WO2014115516A1 - 生体内における被検物質の濃度を計測する計測方法、および、計測装置 - Google Patents

生体内における被検物質の濃度を計測する計測方法、および、計測装置 Download PDF

Info

Publication number
WO2014115516A1
WO2014115516A1 PCT/JP2014/000205 JP2014000205W WO2014115516A1 WO 2014115516 A1 WO2014115516 A1 WO 2014115516A1 JP 2014000205 W JP2014000205 W JP 2014000205W WO 2014115516 A1 WO2014115516 A1 WO 2014115516A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
test substance
living body
sensor
light
Prior art date
Application number
PCT/JP2014/000205
Other languages
English (en)
French (fr)
Inventor
河村 達朗
泰章 奥村
勝 南口
正彦 塩井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014554646A priority Critical patent/JP5834192B2/ja
Publication of WO2014115516A1 publication Critical patent/WO2014115516A1/ja
Priority to US14/631,095 priority patent/US9861303B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • the present application relates to a measurement method and a measurement apparatus for measuring the concentration of a test substance in a living body.
  • a method for measuring the concentration of a test substance such as glucose contained in a living body based on reflected light, scattered light, or transmitted light of light irradiated on the living body is known. For example, development of a method for observing Raman scattered light of a test substance and calculating the concentration of the test substance based on this intensity is underway.
  • Patent Document 1 discloses a technique for measuring biological components such as glucose in a cell interstitial fluid with high accuracy.
  • a fine particle chip made of metal nanoparticles is embedded in the dermis of a living body, and the parallel light is irradiated from outside the living body to detect light generated on the fine particle chip.
  • Patent Documents 2 and 3 disclose methods for measuring the glucose concentration.
  • this method first, fine particles containing a reagent that changes fluorescence characteristics when reacted with glucose are embedded in the upper layer of the skin.
  • light having an excitation wavelength is irradiated to the fine particles from outside the living body, and fluorescence generated in the fine particles is measured transcutaneously. Based on the measured fluorescence, the glucose concentration is measured.
  • Patent Document 5 in the method of detecting light generated in a living body by irradiating light from outside the living body, the measurement accuracy of the concentration of the living body component can be maintained even when the concentration of the living body component changes rapidly. Is disclosed. The maintenance of this measurement accuracy is realized by increasing the speed at which the concentration of the biological component in the blood vessel and the concentration of the biological component outside the blood vessel reach equilibrium using means such as warming the living body. Yes.
  • Patent No. 5002078 Japanese translation of PCT publication No. 2004-510527 Special table 2007-537805 gazette JP 2008-537141 A Special table 2004-500155 gazette
  • the concentration of the test substance in the blood vessel and the concentration of the test substance measured in a living body and at a position outside the blood vessel in the living body are in an equilibrium state. There was a problem that it was not possible. Thereby, in the conventional method, for example, when the concentration of the test substance in the blood changes rapidly, the accuracy of the measured value of the concentration cannot be sufficiently increased.
  • a measuring apparatus for measuring a concentration of a test substance in a living body comprising a measuring means and a judging means, wherein the measuring means measures a first concentration which is a concentration of the test substance at a position A. And the 2nd density
  • acquisition substance in Embodiment 2 The figure which shows an example of the measuring device by Embodiment 3.
  • Flowchart illustrating measurement method in embodiment Flowchart illustrating the measurement method in the first embodiment
  • the concentration is measured as a test substance for obtaining clinical findings.
  • the blood glucose level directly refers to the glucose concentration in blood in blood vessels and is clinically utilized.
  • microparticles are immersed in a cell interstitial fluid existing in the dermis, and the microparticle is a test substance such as glucose in the cell interstitial fluid. Acts. By detecting light corresponding to this action in vitro, the concentration of the test substance is measured, and this measured value is utilized as, for example, a blood glucose level.
  • the reason why the concentration in the cell interstitial fluid can be considered as the concentration in the blood is as follows.
  • Biological components such as glucose are supplied to skin cells via blood moving in blood vessels.
  • biological components such as glucose in the blood permeate the blood vessel wall, diffuse into the cell interstitial fluid, and are supplied to the cells.
  • the concentration of biological components such as glucose in the blood and the concentration of biological components such as glucose in the cell interstitial fluid have reached an equilibrium state and can be regarded as substantially the same concentration. Therefore, by measuring the concentration in the interstitial fluid, this measured value can be regarded as the concentration in blood.
  • the glucose concentration in the interstitial fluid changes with a delay of several seconds to several minutes from the blood glucose level. That is, after the blood sugar level reaches the maximum value, the glucose concentration in the cell interstitial fluid reaches the maximum value after several seconds to several minutes.
  • the blood glucose level is rising at a constant rate, for example, when the rate of increase is 5 [(mg / dl) / min] and the delay time is 1 minute, The glucose concentration will be 5 mg / dl lower than the blood glucose level.
  • a spatial concentration gradient occurs in the cell interstitial fluid. This state will be described with reference to schematic FIGS.
  • FIG. 1 shows a cross section of skin and subcutaneous tissue.
  • the epidermal tissue 1 on the surface of the living body has a thickness of approximately 0.2 to approximately 0.5 mm.
  • the outermost surface portion of the epidermal tissue 1 is a stratum corneum (not shown), and has a thickness of 10 to 20 ⁇ m.
  • the dermis tissue 2 has a thickness of approximately 0.5 to 2.0 mm.
  • capillaries 3 are distributed.
  • there is interstitial fluid that is a body fluid between tissue cells. Since the dermal tissue 2 has a large number of capillaries 3, the interstitial fluid contains a component that has permeated through the capillaries.
  • the subcutaneous tissue 4 is mainly composed of adipose tissue, and the capillaries 3 are distributed.
  • a black dot 5 in FIG. 1 indicates a position A in the dermal tissue 2
  • a black dot 6 in FIG. 1 indicates a position B in the dermal tissue 2.
  • the distance between the position A and the capillary 3 is smaller than the distance between the position B and the capillary 3.
  • the periphery of position A and position B is filled with cell interstitial fluid.
  • FIG. 2 is a schematic diagram showing the time change of the blood glucose level and the time change of the glucose concentration in the cell interstitial fluid.
  • the horizontal axis represents time
  • the vertical axis represents blood glucose level or glucose concentration in the interstitial fluid.
  • the solid line L1 indicates the blood glucose level in the capillary 3
  • the dotted line L2 indicates the glucose concentration in the cell interstitial fluid at the position A
  • the dashed line L3 indicates the glucose concentration in the cell interstitial fluid at the position B.
  • the blood glucose level in the capillary 3 is not changed, and the blood glucose level in the capillary 3 is in equilibrium with the glucose concentration in the interstitial fluid. That is, they are at the same concentration.
  • the blood glucose level in the capillary 3 is rapidly increased at t1.
  • the equilibrium state is lost, glucose is transported to the cell interstitial fluid through the blood vessel wall, and the glucose concentration in the cell interstitial fluid also starts to rise.
  • the glucose concentration at position A begins to rise first, and then the glucose concentration at position B begins to rise.
  • This phenomenon is due to the fact that the position A is closer to the capillary 3 than the position B, so that glucose that has permeated the blood vessel wall of the capillary 3 and diffused in the interstitial fluid reaches the position A earlier. .
  • the increase rate of the blood glucose level in the capillary blood vessel 3 decreases, that is, the increase becomes slow, the glucose concentration in the interstitial fluid approaches the blood glucose level in the capillary blood vessel 3.
  • the blood glucose level in the capillary 3 and the glucose concentration in the cell interstitial fluid return to an equilibrium state.
  • test substance is, for example, a substance that diffuses from inside the blood vessel of the living body to outside the blood vessel.
  • a measuring device is a measuring device that measures the concentration of a test substance in a living body, and includes a measuring unit and a determining unit, and the measuring unit includes the test substance at a position A.
  • the position of the living body outside the blood vessel, the position B is a position farther from the blood vessel than the position A, and the determination means is based on the first concentration and the second concentration. Determining whether or not the concentration of the test substance in the blood vessel and the concentration of the test substance measured in a position outside the blood vessel in the living body are in an equilibrium state. To do.
  • the determination means determines the concentration of the test substance in the blood vessel, the living body, and the living body.
  • the concentration of the test substance measured at a position outside the blood vessel may be determined to be in an equilibrium state.
  • the measurement value of the first concentration may be output as the concentration of the test substance in the living body.
  • the determination means determines the concentration of the test substance in the blood vessel, the living body, and the living body. It may be determined that the concentration of the test substance measured at a position outside the blood vessel is not in an equilibrium state.
  • the determination means determines that the state is not in an equilibrium state, it may be notified that the concentration of the test substance in the blood vessel is changing rapidly.
  • the determination means determines that it is not in an equilibrium state
  • the measurement value of the first concentration is provisionally output as the concentration of the test substance in the living body, and the output first concentration measurement You may alert
  • a heating unit may be further provided, and the heating unit may heat the vicinity of the position A and the position B when the determination unit determines that the state is not in an equilibrium state.
  • a first sensor is disposed at the position A
  • a second sensor is disposed at the position B
  • the measuring means applies irradiation light to the first sensor and the second sensor.
  • Irradiation means for irradiating and detecting first return light that is return light from the vicinity of the first sensor, and detecting second return light that is return light from the vicinity of the second sensor
  • detecting means for calculating the first density based on the first return light and calculating the second density based on the second return light. You may go out.
  • a metal pattern is formed on each of the first sensor and the second sensor on the side irradiated with the irradiation light, and the irradiation light causes localized surface plasmon resonance in the metal pattern.
  • the first return light is a first surface-enhanced Raman scattered light generated in the vicinity of the metal pattern of the first sensor, and the first concentration is the first surface enhancement.
  • the second return light is second surface-enhanced Raman scattered light generated in the vicinity of the metal pattern of the second sensor, and the second concentration May be calculated based on the intensity of the second surface enhanced Raman scattered light.
  • the first surface-enhanced Raman-scattered light and the second surface-enhanced Raman-scattered light may be surface-enhanced Raman-scattered light generated by the test substance existing in the vicinity of the metal pattern.
  • a capture substance that captures the test substance may be immobilized on the metal pattern of the first sensor and the second sensor.
  • the first surface-enhanced Raman scattered light and the second surface-enhanced Raman scattered light may be surface-enhanced Raman scattered light generated by the trapping substance existing in the vicinity of the metal pattern.
  • the first sensor is a first fluorescent fine particle
  • the second sensor is a second fluorescent fine particle
  • the first fluorescent fine particle and the second fluorescent fine particle are the irradiation light.
  • the fluorescence of which intensity changes by reacting with the test substance in the living body is generated by the irradiation
  • the irradiation light is light having a wavelength synchronized with the absorption wavelength of the first and second fluorescent fine particles.
  • the first return light is first fluorescence generated in the vicinity of the first fluorescent fine particles, and the first concentration is calculated based on the intensity of the first fluorescence
  • the second return light is second fluorescence generated in the vicinity of the second fluorescent fine particles, and the second concentration may be calculated based on the intensity of the second fluorescence.
  • the first sensor and the second sensor may be sensors embedded in the dermis of the living body.
  • the test substance may be glucose.
  • a measurement method is a measurement method for measuring the concentration of a test substance in a living body, and includes the following steps (a) and (b): (a) position A A measurement step of measuring a first concentration that is a concentration of the test substance at a position and a second concentration that is a concentration of the test substance at a position B, wherein the position A and the position B Is a position outside the blood vessel of the living body, and the position B is a position farther from the blood vessel than the position A, and (b) the first concentration and the second The concentration of the test substance in the blood vessel and the concentration of the test substance measured at a position outside the blood vessel of the living body are in an equilibrium state based on the concentration of A determination step of determining whether or not.
  • the determination step (b) when the difference between the first concentration and the second concentration is less than a predetermined value, the concentration of the test substance in the blood vessel, the living body, and The step of determining that the concentration of the test substance measured at a position outside the blood vessel of the living body is in an equilibrium state.
  • the measurement value of the first concentration may be output as the concentration of the test substance in the living body.
  • the determination step (b) when the difference between the first concentration and the second concentration is a predetermined value or more, the concentration of the test substance in the blood vessel, the living body, and The step of determining that the concentration of the test substance measured at a position outside the blood vessel of the living body is not in an equilibrium state.
  • the measured value of the first concentration is provisionally output as the concentration of the test substance in the living body, and the output first You may alert
  • the vicinity of the position A and the position B may be heated.
  • a first sensor is disposed at the position A
  • a second sensor is disposed at the position B
  • the measurement step (a) includes (a-1) the first sensor and the second sensor.
  • A-2) detecting the first return light that is the return light from the vicinity of the first sensor, and the vicinity of the second sensor (A-3) calculating the first concentration based on the first return light, and detecting the second return light that is the return light from the second return light.
  • a calculation step of calculating the second concentration includes (a-1) the first sensor and the second sensor.
  • a metal pattern is formed on each of the first sensor and the second sensor on the side irradiated with the irradiation light, and the irradiation light causes localized surface plasmon resonance in the metal pattern.
  • the first return light is a first surface-enhanced Raman scattered light generated in the vicinity of the metal pattern of the first sensor, and the first concentration is the first surface enhancement.
  • the second return light is second surface-enhanced Raman scattered light generated in the vicinity of the metal pattern of the second sensor, and the second concentration May be calculated based on the intensity of the second surface enhanced Raman scattered light.
  • the first surface-enhanced Raman-scattered light and the second surface-enhanced Raman-scattered light may be surface-enhanced Raman-scattered light generated by the test substance existing in the vicinity of the metal pattern.
  • a capture substance that captures the test substance may be immobilized on the metal pattern of the first sensor and the second sensor.
  • the first surface-enhanced Raman scattered light and the second surface-enhanced Raman scattered light may be surface-enhanced Raman scattered light generated by the trapping substance existing in the vicinity of the metal pattern.
  • the first sensor is a first fluorescent fine particle
  • the second sensor is a second fluorescent fine particle
  • the first fluorescent fine particle and the second fluorescent fine particle are the irradiation light.
  • the fluorescence of which intensity changes by reacting with the test substance in the living body is generated by the irradiation
  • the irradiation light is light having a wavelength synchronized with the absorption wavelength of the first and second fluorescent fine particles.
  • the first return light is first fluorescence generated in the vicinity of the first fluorescent fine particles, and the first concentration is calculated based on the intensity of the first fluorescence
  • the second return light is second fluorescence generated in the vicinity of the second fluorescent fine particles, and the second concentration may be calculated based on the intensity of the second fluorescence.
  • the first sensor and the second sensor may be embedded in the dermis of the living body.
  • the test substance may be glucose.
  • a control method for a measurement device is a control method for a measurement device that measures the concentration of a test substance in a living body, and the measurement device includes a measurement unit and a determination unit. And measuring the first concentration, which is the concentration of the test substance at the position A, and measuring the second concentration, which is the concentration of the test substance, at the position B.
  • the position A and the position B are positions inside the living body and outside the blood vessel of the living body, and the position B is a position farther from the blood vessel than the position A ( a) and the determination means, based on the first concentration and the second concentration, the concentration of the test substance in the blood vessel, and in the living body and outside the blood vessel of the living body.
  • the concentration of the test substance measured at the position, Performing the step (b) determines whether the ⁇ state.
  • FIG. 12 is a flowchart illustrating a measurement method according to the embodiment.
  • the measurement method in the embodiment is a measurement method for measuring the concentration of a test substance in a living body, and includes the following steps (a) and (b).
  • the position A and the position B are positions inside the living body and outside the blood vessel of the living body. Furthermore, the position B is a position farther from the blood vessel than the position A.
  • test substance is glucose
  • the measured value of a blood glucose level with high reliability can be provided.
  • Embodiments 1 to 5 Specific examples of the measurement method and the measurement apparatus will be described as Embodiments 1 to 5.
  • FIG. 13 is a flowchart illustrating the measurement method according to the first embodiment.
  • the first sensor is arranged at the position A. Further, a second sensor is disposed at the position B.
  • the measurement step (a) may include the following three steps.
  • Irradiation step (a-1) Irradiation light is irradiated to the first sensor and the second sensor.
  • Detection step (a-2) detecting the first return light that is the return light from the vicinity of the first sensor, and detecting the second return light that is the return light from the vicinity of the second sensor To do.
  • Calculation step (a-3) The first concentration is calculated based on the first return light, and the second concentration is calculated based on the second return light.
  • a metal pattern may be formed on the side irradiated with the irradiation light of the first sensor and the second sensor.
  • the irradiation light can be light that causes localized surface plasmon resonance in the metal pattern.
  • the first return light is first surface-enhanced Raman scattering light generated in the vicinity of the metal pattern of the first sensor.
  • the first concentration is calculated based on the intensity of the first surface-enhanced Raman scattered light.
  • the second return light is second surface-enhanced Raman scattered light generated in the vicinity of the metal pattern of the second sensor.
  • the second concentration is calculated based on the intensity of the second surface-enhanced Raman scattered light.
  • the first return light and the second return light are surface-enhanced Raman scattered light generated in the test substance existing in the vicinity of the metal pattern.
  • the first sensor and the second sensor may be embedded in the dermis of a living body.
  • the test substance is a substance that diffuses from inside the blood vessel of the living body to outside the blood vessel.
  • glucose is exemplified as the test substance.
  • the fine particle chip 7 is exemplified as the first sensor.
  • the fine particle chip 8 is exemplified as the second sensor.
  • the fine particle 11 is illustrated as a metal pattern.
  • substantially parallel light 9 and substantially parallel light 10 are exemplified.
  • FIG. 3 shows a cross section of the skin irradiated with light.
  • the epidermal tissue 1, the dermal tissue 2, the capillary 3 and the subcutaneous tissue 4 correspond to the epidermal tissue 1, the dermal tissue 2, the capillary 3 and the subcutaneous tissue 4 in FIG.
  • black points 5 and 6 in FIG. 3 respectively represent a position A in the dermis tissue 2 and a position B in the dermis tissue 2 as in FIG.
  • the fine particle chips 7 and 8 are arranged such that their upper surfaces (surfaces on the body surface side) are located at positions A and B in the dermal tissue 2, respectively.
  • the fine particle chips 7 and 8 are maintained in a state where they are immersed in an interstitial fluid which is a body fluid between tissue cells of the dermal tissue 2.
  • FIG. 4 shows an example of the fine particle chips 7 and 8.
  • the fine particle chips 7 and 8 include a substrate and fine particles 11 disposed on the surface of the substrate. By irradiation with light, localized surface plasmon resonance occurs in the fine particles 11.
  • the fine particles 11 are, for example, nano fine particles.
  • An example of the microparticle 11 is a gold nanorod having a diameter of approximately 10 nm and a length of approximately 38 nm.
  • the absorption spectrum of the fine particles 11 shows an absorption peak at a wavelength of 785 nm, and the half width at half maximum is about 70 nm.
  • the wavelength of the absorption peak is referred to as a localized surface plasmon resonance wavelength.
  • the fine particle chips 7 and 8 have the same shape and characteristics.
  • the substrate has, for example, a diameter of about 100 ⁇ m and a thickness of about 100 ⁇ m.
  • the material of the substrate are a resin material such as acrylic, glass, or silicon.
  • the fine particles 11 are formed from, for example, gold nanorods.
  • the fine particles 11 are arranged so that the major axis direction thereof is parallel to the xy plane shown in the drawing, that is, the upper surface of the substrate. In other words, the major axis is parallel to the xy plane, and the side surfaces of the fine particles 11 are in contact with the upper surface of the substrate.
  • the y direction is a direction orthogonal to the x direction on the surface of the substrate, and the z direction is a direction along the thickness of the substrate.
  • the fine particle chips 7 and 8 are embedded in the dermal tissue 2 so that the upper surface including the fine particles 11 is parallel to the surface of the epidermal tissue 1.
  • the distance from the outermost surface of the epidermal tissue 1 to the upper surface of the fine particle chip 7 (position where the fine particles 11 are arranged) is approximately 1.2 mm.
  • the distance to the upper surface of the fine particle chip 8 (position where the fine particles 11 are disposed) is approximately 1.0 mm.
  • substantially parallel lights 9 and 10 indicate substantially parallel lights having a wavelength of 785 nm.
  • the substantially parallel lights 9 and 10 have a circular beam shape having a diameter of 100 ⁇ m.
  • the substantially parallel lights 9 and 10 are transmitted through the epidermis tissue 1 and propagate through the dermis tissue 2 and are irradiated to the fine particle chips 7 and 8, respectively.
  • the substantially parallel lights 9 and 10 propagate in the z direction shown in FIG.
  • the particle chips 7 and 8 are irradiated with the substantially parallel lights 9 and 10, respectively, localized surface plasmon resonance occurs in the particles 11 and the electromagnetic field strength in the vicinity of the particles 11 is enhanced. This results in enhancement of Raman scattered light of a substance located in the vicinity of the fine particles 11 (within 0.5 to 30 nm). In this way, surface enhanced Raman scattered light is generated.
  • the surface-enhanced Raman scattered light has an intensity that is 10 5 times or more that of normal Raman scattered light. Therefore, the surface-enhanced Raman scattered light generated from the substance in the vicinity of the fine particles 11 has a much higher intensity than the Raman scattered light generated on the skin surface (the stratum corneum of the epidermal tissue 1), the epidermal tissue 1 or the dermal tissue 2. Have This means that only the Raman scattered light of the substance in the vicinity of the fine particles 11 is selectively enhanced.
  • a capture substance 14 that specifically captures a test substance 13 such as glucose is immobilized on the gold surface portion 12 of the microparticle 11.
  • the capture substance 14 when the test substance is glucose, 4-MPBA (4-Mercaptophenylboranic acid, C 6 H 7 BO 2 S, 4-mercaptophenylboronic acid), 3-MPBA (3-Mercaptophenylboronic acid, C 6 H 7 BO 2 S, 3-mercaptophenylboronic acid) and other boronic acid compounds having a mercapto group.
  • a boronic acid compound having a mercapto group can be immobilized by bonding the mercapto group to the gold surface of the fine particles 11.
  • the boronic acid group specifically binds to glucose, whereby glucose can be specifically captured.
  • the capture substance 14 may be 1-mercaptodeca-tri-ethyleneglycol (HS (CH 2 ) 11 (OCH 2 CH 2 ) 3 OH), mercaptohexanol (HS (CH 2 ) 6 OH), or the like. These can also be immobilized by bonding the mercapto group to the gold surface of the fine particles 11. Furthermore, glucose can be trapped by glucose entering between these adjacent molecules.
  • the Raman scattered light of the trapping substance 14 is enhanced and surface enhanced Raman scattered light is generated.
  • the test substance 13 captured by the capture substance 14 is also in the vicinity of the fine particles 11, the Raman scattered light of the test substance 13 is enhanced and surface enhanced Raman scattered light is generated.
  • the intensity of the surface-enhanced Raman scattered light of the test substance 13 is proportional to the number (amount) of the test substance 13 captured by the capture substance 14. Further, the number of test substances 13 captured by the capture substance 14 increases as the concentration of the test substance 13 in the cell interstitial fluid increases. That is, the number of test substances 13 captured by the capture substance 14 depends on the concentration of the test substance 13. Therefore, the intensity of the surface-enhanced Raman scattered light of the test substance 13 depends on the concentration of the test substance 13. Therefore, the concentration of the test substance 13 can be calculated by measuring the intensity of the surface enhanced Raman scattered light of the test substance 13.
  • the concentration around the fine particles 11 of the fine particle chips 7 and 8 can be calculated from the surface-enhanced Raman scattering light of the test substance 13 generated around the fine particles 11 of the fine particle chips 7 and 8.
  • test substance 13 is glucose
  • the vicinity of the fine particles 11 of the fine particle chips 7 and 8 corresponds to the position A and the position B, respectively. For this reason, the glucose concentration in the cell interstitial fluid at these positions can be individually measured.
  • the epidermal tissue 1, the dermal tissue 2, the subcutaneous tissue 4, the fine particle chips 7, 8, and the substantially parallel light 9, 10 are the epidermal tissue 1, the dermal tissue 2, the subcutaneous tissue 4, and the fine particle chip 7 in FIGS. , 8 and substantially parallel light 9 and 10.
  • Light sources 15 and 16 are light sources obtained by modularizing a semiconductor laser and an irradiation optical system, and generate substantially parallel light 9 and substantially parallel light 10 respectively.
  • the substantially parallel lights 9 and 10 each have a circular beam shape with a wavelength of 785 nm, an intensity of 2 mW, and a diameter of 100 ⁇ m.
  • the substantially parallel light 9 and the substantially parallel light 10 are applied to the fine particle chip 7 and the fine particle chip 8 in the dermis tissue 2, respectively.
  • the fine particle chip 7 and the fine particle chip 8 are separated by 300 ⁇ m or more in the surface direction of the skin. For this reason, the particle chip 7 is not irradiated with the substantially parallel light 10, and the particle chip 8 is not irradiated with the substantially parallel light 9.
  • the surface-enhanced Raman scattering light 17 generated on the fine particle chip 7 is focused on the optical sensor 23 via the optical system 19.
  • the optical system 19 includes a lens group.
  • the spectral filter 21 transmits only a specific wavelength. The wavelength transmitted by the spectral filter 21 is matched with the wavelength of the Raman scattered light of the test substance 13.
  • the surface-enhanced Raman scattered light 18 generated on the fine particle chip 8 is focused on the optical sensor 24 via the optical system 20.
  • the optical system 20 includes a lens group.
  • the spectral filter 22 transmits only a specific wavelength. The wavelength transmitted by the spectral filter 22 is matched with the wavelength of the Raman scattered light of the test substance 13.
  • the optical system 19 is arranged so that the surface-enhanced Raman scattering light generated on the fine particle chip 8 does not enter the optical sensor 23.
  • the optical system 20 is arranged in the optical sensor 24 so that the surface enhanced Raman scattered light generated on the fine particle chip 7 does not enter.
  • the computer (PC) 25 individually calculates the glucose concentration in the interstitial fluid at the positions A and B based on the output signals of the optical sensor 23 and the optical sensor 24. Further, the computer 25 provides a function of providing a blood sugar level after determining the effectiveness of measurement, a function of providing a provisional blood sugar level, and information that the blood sugar level is changing rapidly, which will be described later. It may have at least one of the functions.
  • the support 26 holds the light source 15, the light source 16, the optical system 19, the optical system 20, the spectral filter 21, the spectral filter 22, the optical sensor 23, and the optical sensor 24.
  • the glucose concentration in the cell interstitial fluid at position A and position B can be measured.
  • the spatial concentration gradient of glucose in the cell interstitial fluid is It can be determined that it has not occurred. It can be determined that the blood glucose level in the capillary 3 and the glucose concentration of the interstitial fluid are in an equilibrium state.
  • the difference in glucose concentration in the cell interstitial fluid at position A and position B is equal to or greater than a predetermined value, it can be determined that a spatial glucose concentration gradient has occurred in the cell interstitial fluid. It can be determined that the blood glucose level in the capillary 3 and the glucose concentration in the cell interstitial fluid have not reached an equilibrium state.
  • the glucose concentration difference in the cell interstitial fluid at the position A and the position B is calculated.
  • the glucose concentration in the cell interstitial fluid at position A and position B can be measured. Then, based on these two concentrations, it can be determined whether or not the blood glucose level in the capillary 3 and the glucose concentration in the cell interstitial fluid have reached an equilibrium state.
  • the concentration of the test substance in the blood vessel is determined. It can be a step of determining that the concentration of the test substance measured in a living body and at a position outside the blood vessel of the living body is not in an equilibrium state.
  • the concentration of the test substance in the blood vessel and the in vivo may be a step of determining that the concentration of the test substance measured at a position outside the blood vessel of the living body is in an equilibrium state.
  • the measurement value of the first concentration or the measurement value of the second concentration is output as the concentration of the test substance in the living body. May be.
  • the measurement value of the first concentration may be output as the concentration of the test substance in the living body.
  • the process waits and determines that the equilibrium state has been reached and then glucose Outputs the measured concentration value.
  • the measurement value may be transmitted to a higher-level device or memory.
  • the measurement value may be displayed by the display means so that the user of the measurement device can confirm the measurement result.
  • a measurement value including an error due to a time delay between the blood glucose level and the glucose concentration in the interstitial fluid is provided. Can be prevented.
  • the measurement may be determined to be valid when the equilibrium state is reached.
  • the measured value of the glucose concentration at position A and position B is a measured value that changes before the glucose concentration at position B. May be temporarily output and a signal indicating that it is a temporary value may be output at the same time.
  • the concentration of the test substance in the blood vessel is changing rapidly. Also good.
  • the measurement value of the first concentration may be temporarily output. At this time, it may be notified that the output measurement value of the first density is a provisional value.
  • FIG. 1 of Non-Patent Document 1 shows a surface-enhanced Raman scattering spectrum of glucose.
  • the surface enhanced Raman scattering spectrum of glucose in the range of the Raman shift is 300cm -1 ⁇ 1500cm -1, having a plurality of peaks of glucose-specific.
  • a peak having a Raman shift of 1120 cm ⁇ 1 does not overlap with peaks of albumin and creatinine Raman scattering spectra. That is, it is a peak peculiar to glucose. Therefore, the intensity of the surface-enhanced Raman scattered light having the Raman shift at 1120 cm ⁇ 1 is proportional only to the glucose concentration.
  • spectral filters 21 and 22 that transmit a wavelength smaller than this by 1120 cm ⁇ 1 , that is, a wavelength of 860.7 nm, are used.
  • FIG. 7 is an example showing the transition of the glucose concentration (blood glucose level) contained in the blood of a diabetic patient.
  • the horizontal axis represents time, and the vertical axis represents blood glucose level.
  • the fasting blood glucose level is measured.
  • the sampled blood is measured using a normal blood glucose meter.
  • blood collection and blood glucose meter measurement are performed multiple times.
  • the output signals of the optical sensor 23 and the optical sensor 24 are measured and recorded using the measuring apparatus according to the first embodiment.
  • the blood glucose level measured with a normal blood glucose meter is indicated by ⁇ and ⁇ surrounded by a dotted line 27 in FIG.
  • is the first blood sugar level
  • is the second blood sugar level.
  • the output signal of the optical sensor 23 and the optical sensor 24 is measured simultaneously with the second blood glucose level (indicated by ⁇ in FIG. 7).
  • 75 g of glucose is taken.
  • the measurement is performed a plurality of times using a normal blood glucose meter again to confirm that the blood glucose level is stable.
  • the optical sensor 23 using the measurement device according to the first embodiment, and The output signal of the optical sensor 24 is measured and recorded.
  • the blood glucose level is indicated by ⁇ and ⁇ surrounded by a dotted line 28 in FIG. 7.
  • is the first blood sugar level
  • is the second blood sugar level.
  • the output signals of the optical sensor 23 and the optical sensor 24 are measured and recorded.
  • the measurement is performed a plurality of times using a normal blood glucose meter to confirm that the blood glucose level is stable, and at the same time, the light is measured using the measuring device according to the first embodiment.
  • the output signals of the sensor 23 and the optical sensor 24 are measured.
  • the blood glucose level is indicated by ⁇ and ⁇ surrounded by a dotted line 29 in FIG. ⁇ is the first blood sugar level, and ⁇ is the second blood sugar level.
  • is the second blood sugar level.
  • FIG. 8 shows the relationship between the blood sugar level obtained above and corresponding to the ⁇ in the figure, and the output signals of the optical sensor 23 and the optical sensor 24.
  • the horizontal axis represents the blood sugar level
  • the vertical axis represents the output signal (signal intensity)
  • represents the output signal of the optical sensor 23
  • represents the output signal of the optical sensor 24.
  • the primary straight line that is closest to the graph connecting the output signals of these optical sensors 23 is calculated and indicated by a solid line.
  • a linear straight line that is most approximate to a graph connecting the output signals of these optical sensors 24 is calculated and indicated by a dotted line.
  • the blood glucose level is calculated from the output signal of the optical sensor 23 and the output signal of the optical sensor 24 using these solid and dotted lines as calibration curves.
  • each calibration curve is created in the case where the output signals of the optical sensor 23 and the optical sensor 24 are each three pieces of data is shown, it is not limited to three.
  • a calibration curve can be created with at least two.
  • each calibration curve is created for each individual. Since the difference in the embedding position also leads to different light propagation characteristics, a calibration curve may be created each time the fine particle chips 7 and 8 are embedded in the skin. By creating a calibration curve each time the conditions are changed in this way, it is possible to realize further high accuracy of measurement.
  • the glucose concentration around the fine particles 11 of the fine particle chips 7 and 8 can be calculated from the output signals of the optical sensors 23 and 24. Thereby, the glucose concentration in the cell interstitial fluid of position A and position B can be individually measured. If the difference in glucose concentration in the cell interstitial fluid at positions A and B is less than a predetermined value (for example, the two concentrations are the same), the blood glucose level in the capillary 3 and the glucose in the cell interstitial fluid It can be determined that the concentration has reached equilibrium. And it determines with it being effective measurement when the equilibrium state is reached
  • a predetermined value for example, the two concentrations are the same
  • Embodiment 2 A method for measuring the concentration of a biological component according to Embodiment 2 and a measurement device used in the method will be described.
  • This embodiment is an example in which the concentration of the test substance 13 is measured from the Raman scattered light of the trapping substance 14.
  • the capture substance that captures the test substance is immobilized on the metal pattern of the first sensor and the second sensor.
  • the first return light and the second return light are surface-enhanced Raman scattered light generated by a trapping substance existing in the vicinity of the metal pattern.
  • the configuration of the measuring device may be the same as that in FIG. 6 described in the first embodiment. However, the wavelength range transmitted by the spectral filters 21 and 22 is adjusted to the wavelength of the Raman scattered light of the trapping substance 14.
  • the intensity of the surface-enhanced Raman scattered light of the trapping substance 14 changes by binding to the test substance 13. This amount of change is proportional to the number of capture substances 14 bound to the test substance 13.
  • the number of capture substances 14 bound to the test substance 13 increases as the concentration of the test substance 13 in the cell interstitial fluid increases. That is, the number of capture substances 14 bound to the test substance 13 depends on the concentration of the test substance 13. Therefore, the amount of change in the intensity of the surface-enhanced Raman scattered light of the capture substance 14 depends on the concentration of the test substance 13. For this reason, the concentration of the test substance 13 can be calculated by measuring the amount of change in the intensity of the surface-enhanced Raman scattered light of the capture substance 14.
  • test substance 13 is glucose and the capture substance 14 is 4-MPBA will be described.
  • the Raman concentration of 4-MPBA can be detected by the optical sensors 23 and 24 to measure the glucose concentration.
  • the wavelength transmitted by the spectral filters 21 and 22 is matched with the Raman scattering light wavelength of 4-MPBA.
  • FIG. 9 shows a Raman scattering spectrum of 4-MPBA having a Raman shift in the range of 400 cm ⁇ 1 to 2000 cm ⁇ 1 .
  • the peak 30 having a Raman shift of 1075 cm ⁇ 1 does not overlap with the peaks of the Raman scattering spectra of albumin and creatinine. Furthermore, this peak 30 increases when 4-MPBA binds to glucose.
  • the increase in peak 30 is proportional to the number of 4-MPBA bound to glucose.
  • the number of 4-MPBA bound to glucose increases as the concentration of glucose in the cell interstitial fluid increases. That is, the number of 4-MPBA bound to glucose depends on the glucose concentration. Therefore, the amount of increase of the peak 30, which is the surface enhanced Raman scattered light of 4-MPBA, depends on the glucose concentration.
  • the increase amount of the peak 30 corresponds to the increase amount of the output signals of the optical sensors 23 and 24. For this reason, the glucose concentration can be calculated from the output signals of the optical sensors 23 and 24. Since 4-MPBA is a main substance in the cell interstitial fluid, it binds only to glucose, so that the glucose concentration can be measured specifically.
  • spectral filters 21 and 22 that transmit a wavelength smaller than this by 1075 cm ⁇ 1 , that is, a wavelength of 857.3 nm, are used.
  • the relationship between the wavelength ⁇ and the wave number k is as shown in (Formula 1).
  • the wavelength ⁇ of 785 nm is converted into the wave number k, it becomes 12739 cm ⁇ 1 .
  • 11664 cm ⁇ 1 is converted into a wavelength, it is 857.3 nm.
  • the glucose concentration in the interstitial fluid at the positions A and B is calculated individually.
  • This example is the same as the method described in the first embodiment, and after confirming that the blood glucose level is stable, the output signals of the optical sensor 23 and the optical sensor 24 are measured, and the same graph as FIG. Get. Then, a graph similar to that in FIG. 8 is created to create a calibration curve. Using this calibration curve, the glucose concentration around the fine particles 11 of the fine particle chips 7 and 8 is calculated from the output signals of the optical sensors 23 and 24. Thereby, the glucose concentration in the cell interstitial fluid of position A and position B can be individually measured.
  • the metal pattern formed on the first sensor or the second sensor only needs to cause localized surface plasmon resonance upon irradiation with irradiation light.
  • the gold nanorods used as the fine particles 11 in the first and second embodiments fine particles obtained by coating the surface of a dielectric made of silica with a metal such as gold and silver can be used.
  • the irradiation light emitted from the light sources 15 and 16 has a wavelength of 785 nm, for example. This has the following advantages.
  • a living body has high permeability to light of 700 to 900 nm.
  • the specific Raman scattered light of glucose has a wave number approximately 1100 to 1200 cm ⁇ 1 smaller than the wave number of the irradiation light. Therefore, by setting the wavelength of the irradiation light to 700 to 800 nm, both the irradiation light and the surface-enhanced Raman scattering light can utilize the above high transmittance.
  • the resonance spectrum due to the localized surface plasmon resonance has a broadening, and the wavelength that shows the peak of this resonance spectrum is generally used as the resonance wavelength.
  • the case where the localized surface plasmon resonance wavelength of the fine particle 11 coincides with the wavelength of the irradiation light has been described, but this is not necessarily required.
  • the half width at half maximum (usually several tens to hundreds of nm) of the resonance spectrum of localized surface plasmon resonance may be different from the resonance wavelength and the wavelength of irradiation light. In other words, it suffices if the wavelength of the irradiation light is within the full width at half maximum of the resonance spectrum, and this state is expressed as tuning the wavelength of the irradiation light to the localized surface plasmon resonance wavelength.
  • the wavelength of the irradiation light may be tuned to a shorter wavelength side than the resonance wavelength.
  • the resonance spectrum of the localized surface plasmon resonance can be observed as the absorption spectrum of the fine particles 11.
  • the first sensor is the first fluorescent fine particle.
  • the second sensor is a second fluorescent fine particle.
  • the first fluorescent fine particles and the second fluorescent fine particles generate fluorescence whose intensity changes by reacting with a test substance in the living body by irradiation with irradiation light.
  • the irradiation light is light having a wavelength synchronized with the absorption wavelength of the fluorescent fine particles.
  • the first return light is the first fluorescence generated in the vicinity of the first fluorescent fine particles.
  • the first concentration is calculated based on the intensity of the first fluorescence.
  • the second return light is second fluorescence generated in the vicinity of the second fluorescent fine particles.
  • the second concentration is calculated based on the intensity of the second fluorescence.
  • the fluorescent fine particles 31 are exemplified as the first fluorescent fine particles.
  • fluorescent fine particles 32 are exemplified.
  • fluorescence 33 is exemplified.
  • Fluorescence 34 is exemplified as the second fluorescence.
  • fluorescent fine particles 31 and fluorescent fine particles 32 are examples of spherical fine particles whose fluorescence is enhanced when reacted with glucose, and have a diameter of about 10 ⁇ m to 100 ⁇ m.
  • the fluorescent fine particles 31 and 32 absorb the irradiated light and emit fluorescence corresponding to the irradiation light intensity and the glucose concentration.
  • the fluorescent fine particles 31 and the fluorescent fine particles 32 are disposed at the same positions as the fine particle chip 7 and the fine particle chip 8 shown in FIG. 6, that is, at the positions A and B, respectively.
  • the light sources 15 and 16 irradiate the fluorescent fine particles 31 and 32 with substantially parallel lights 9 and 10 in the ultraviolet to near-infrared region, respectively.
  • the fluorescent fine particles 31 and 32 generate substantially fluorescent light 33 and 34 by absorbing substantially parallel lights 9 and 10 respectively.
  • the spectral filters 21 and 22 have a characteristic of transmitting the wavelength ranges of the generated fluorescences 33 and 34. Therefore, the output signals of the optical sensors 23 and 24 correspond to the intensities of the fluorescences 33 and 34 generated by the fluorescent fine particles 31 and 32, respectively.
  • the epidermal tissue 1, dermal tissue 2, subcutaneous tissue 4, optical system 19, optical system 20, computer (PC) 25, and support 26 in FIG. 10 are the epidermal tissue 1 and dermal tissue in FIG. 6 described in the first embodiment. 2, corresponds to the subcutaneous tissue 4, the optical system 19, the optical system 20, the computer (PC) 25, and the support 26, and may operate similarly.
  • the glucose concentrations at positions A and B around the fluorescent fine particles 31 and 32 can be calculated from the output signals of the optical sensors 23 and 24, respectively.
  • the glucose concentration in the cell interstitial fluid at position B can be individually measured. And when the glucose concentration in the cell interstitial fluid of the position A and the position B is the same, it can be judged that the equilibrium has been reached.
  • the glucose concentration in the interstitial fluid at the position A and the position B is calculated individually.
  • This example is the same as the method described in the first embodiment, and after confirming that the blood glucose level is stable, the output signals of the optical sensor 23 and the optical sensor 24 are measured, and the same graph as FIG. Get. Then, a graph similar to that in FIG. 8 is created to create a calibration curve. Using this calibration curve, the glucose concentration around the fluorescent fine particles 31 and 32 can be calculated from the output signals of the optical sensors 23 and 24, and the glucose concentrations in the interstitial fluid at the positions A and B are individually determined. It can be measured.
  • the configuration of the third embodiment may be combined with the configuration of the second embodiment as well as the first embodiment.
  • the heater 35 has a function of irradiating a living body with infrared rays and heating it.
  • the computer (PC) 25 also has a function of controlling the heater 35 to maintain the temperature in the vicinity where the fine particle chips 7 and 8 are embedded at 38 ° C. to 42 ° C. .
  • This embodiment uses the effect of shortening the time for the glucose concentration in the interstitial fluid and the blood glucose level to reach an equilibrium state by warming the living body. An example of the operation will be described below.
  • the glucose concentration difference in the cell interstitial fluid at the position A and the position B is calculated, and if the concentration is less than a predetermined value, these concentrations may be determined to be the same.
  • the computer 25 controls the heater 35 to heat the temperature in the vicinity where the fine particle chips 7 and 8 are embedded to 38 ° C. to 42 ° C.
  • an effective measurement value can be provided quickly.
  • the configuration of the fourth embodiment may be combined with the configuration of the second embodiment or the third embodiment as well as the first embodiment.
  • FIG. 14 shows an example of the configuration of a measuring apparatus for measuring the concentration of a test substance in a living body in the fifth embodiment.
  • the measurement device 1000 illustrated in FIG. 14 includes a measurement unit 100 and a determination unit 200.
  • the measurement device 1000 illustrated in FIG. 14 is a measurement unit 100 and a determination unit 200.
  • the measuring means 100 measures the first concentration, which is the concentration of the test substance at the position A, and measures the second concentration, which is the concentration of the test substance at the position B.
  • the position A and the position B are positions inside the living body and outside the blood vessel of the living body. Furthermore, the position B is a position farther from the blood vessel than the position A.
  • the determination unit 200 determines the concentration of the test substance in the blood vessel based on the first concentration and the second concentration, and the concentration of the test substance measured in the living body and at a position outside the blood vessel of the living body. Determines whether or not an equilibrium state exists.
  • test substance is glucose
  • the measured value of a blood glucose level with high reliability can be provided.
  • the configuration described in the first to fourth embodiments may be used as the measuring unit 100.
  • the configuration of the measurement apparatus 1001 shown in FIG. 15 can be employed.
  • the first sensor may be disposed at the position A. Further, a second sensor may be disposed at the position B.
  • the measurement unit 100 may include an irradiation unit 101, a detection unit 102, and a calculation unit 103.
  • the irradiation unit 101 irradiates the first sensor and the second sensor with irradiation light.
  • the detecting means 102 detects the first return light that is the return light from the vicinity of the first sensor, and detects the second return light that is the return light from the vicinity of the second sensor.
  • the calculating means 103 calculates a first density based on the first return light and calculates a second density based on the second return light.
  • the configuration described in the first to fourth embodiments may be used as the irradiation unit 101.
  • the irradiation unit 101 may include the light source 15 and the light source 16 described in the first to fourth embodiments.
  • the configuration described in the first to fourth embodiments may be used as the detection unit 102.
  • the detection means 102 may include the optical sensor 23, the optical sensor 24, etc. described in the first to fourth embodiments. Further, the detection means 102 may include the optical system 19, the optical system 20, the spectral filter 21, and the spectral filter 22 described in the first to fourth embodiments.
  • the configuration described in the first to fourth embodiments may be used as the calculation unit 103.
  • the calculation unit 103 may be an arithmetic unit that constitutes a part of the computer 25.
  • the determination unit 200 may be an arithmetic unit that constitutes a part of the computer 25.
  • the measuring device in the fifth embodiment may have the following configuration described in the first to fourth embodiments.
  • the determination means determines the concentration of the test substance in the blood vessel and the in vivo when the difference between the first concentration and the second concentration is less than a predetermined value.
  • the concentration of the test substance measured at a position outside the blood vessel of the living body may be determined to be in an equilibrium state.
  • the measurement value of the first concentration may be output as the concentration of the test substance in the living body when the determination unit determines that the state is in an equilibrium state.
  • the determination means determines the concentration of the test substance in the blood vessel and the living body when the difference between the first concentration and the second concentration is a predetermined value or more. Further, the concentration of the test substance measured at a position outside the blood vessel of the living body may be determined not to be in an equilibrium state.
  • the determination unit when the determination unit determines that the state is not in an equilibrium state, it may be notified that the concentration of the test substance in the blood vessel is changing rapidly.
  • the determination unit determines that the equilibrium state is not established, the measurement value of the first concentration is provisionally output as the concentration of the test substance in the living body. Also good. At this time, it may be notified that the output measurement value of the first density is a provisional value.
  • the measurement device may further include a heating unit.
  • the heating means may heat the vicinity of position A and position B when the determination means determines that the state is not in an equilibrium state.
  • heating means may include the heater 35 described in the fourth embodiment.
  • a metal pattern may be formed on the side irradiated with the irradiation light of the first sensor and the second sensor.
  • the irradiation light may be light that causes localized surface plasmon resonance in the metal pattern.
  • the first return light may be first surface-enhanced Raman scattering light generated in the vicinity of the metal pattern of the first sensor.
  • the first concentration may be calculated based on the intensity of the first surface enhanced Raman scattered light.
  • the second return light may be second surface-enhanced Raman scattered light generated in the vicinity of the metal pattern of the second sensor.
  • the second concentration may be calculated based on the intensity of the second surface enhanced Raman scattered light.
  • the first return light and the second return light may be surface-enhanced Raman scattered light generated in the test substance existing in the vicinity of the metal pattern.
  • a capture substance that captures a test substance may be immobilized on the metal pattern of the first sensor and the second sensor.
  • the first return light and the second return light may be surface-enhanced Raman scattered light generated by a trapping substance present in the vicinity of the metal pattern.
  • the first sensor may be the first fluorescent fine particles.
  • the second sensor may be second fluorescent fine particles.
  • the first fluorescent fine particles and the second fluorescent fine particles may generate fluorescence whose intensity changes by reacting with a test substance in a living body by irradiation with irradiation light.
  • the irradiation light may be light having a wavelength synchronized with the absorption wavelength of the fluorescent fine particles.
  • the first return light may be first fluorescence generated in the vicinity of the first fluorescent fine particles.
  • the first concentration may be calculated based on the intensity of the first fluorescence.
  • the second return light may be second fluorescence generated in the vicinity of the second fluorescent fine particles.
  • the second concentration may be calculated based on the intensity of the second fluorescence.
  • the first sensor and the second sensor may be embedded in the dermis of a living body.
  • the test substance may be a substance that diffuses from inside the blood vessel of the living body to outside the blood vessel.
  • the test substance may be glucose.
  • the test substance may be, for example, glucose, lactic acid, pyruvic acid, acetoacetic acid, 3-hydroxybutyric acid ( ⁇ -hydroxybutyric acid), or the like.
  • the irradiating means for irradiating the irradiation light irradiates the first sensor and the second sensor with the irradiation light by, for example, branching the irradiation light from one light source.
  • the structure which irradiates may be sufficient.
  • the optical system that can be included in the detection means is not limited to one constituted by a lens group.
  • the optical system may be composed of a waveguide.
  • the measurement device in the fifth embodiment can measure the concentration of the test substance in the living body by being controlled according to the measurement method described in the first to fourth embodiments.
  • the measurement methods described in the first to fourth embodiments may be executed by being controlled based on instructions from the measurement unit 100 and the determination unit 200.
  • the measurement method described in the first to fourth embodiments may be executed by being controlled based on an instruction from a calculation unit constituting a part of the computer 25.
  • the return light for calculating the concentration is not limited to the surface-enhanced Raman scattered light and the fluorescence.
  • Raman scattered light or reflected light from a sensor embedded in a living body may be used.
  • the return light may be any light that can calculate the concentration of the test substance based on the return light.
  • the measurement step and the measurement means in the embodiment do not use a sensor embedded in the living body, but use the transmitted light that is transmitted through the living body to determine the concentration of the test substance at each position. You may measure.
  • the concentration of the test substance at the position A and the position B may be measured at the same time.
  • the timing for measuring the concentration of the test substance at the position A and the position B may be shifted as long as it can be appropriately determined whether or not the equilibrium state is reached.
  • a third concentration that is the concentration of the test substance at a position C (not shown) outside the blood vessel in the living body, which is different from the position A or the position B, may be measured.
  • the measurement value of the third concentration may be output as the concentration of the test substance in the living body.
  • a third sensor may be arranged at the position C.
  • the third concentration may be measured using the third sensor based on the same principle as the first sensor and the second sensor.
  • the method for measuring a biological component according to the embodiment of the present invention and the measurement device used therefor improve the reliability of the measurement value.
  • the embodiment of the present invention is suitably applied to a method of embedding a sensor in a living body and measuring the concentration of a test substance contained in a body fluid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Emergency Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 生体内における被検物質の濃度を計測する計測方法であって、(a)位置Aにおける前記被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける前記被検物質の濃度である第2の濃度を計測する計測工程、(b)前記第1の濃度と前記第2の濃度とに基づいて、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であるか否かを判定する判定工程、を包含する計測方法。

Description

生体内における被検物質の濃度を計測する計測方法、および、計測装置
 本願は、生体内における被検物質の濃度を計測する計測方法、および、計測装置に関する。
 生体に照射した光の反射光、散乱光または透過光に基づいて、当該生体に含まれるグルコースのような被検物質の濃度を計測する方法が知られている。例えば、被検物質のラマン散乱光を観測し、この強度に基づき、被検物質の濃度を算出する方法の開発が進められている。
 特許文献1では、細胞間質液のグルコース等の生体成分を高精度に計測する技術が開示されている。当該技術では、生体の真皮内に金属ナノ微粒子からなる微粒子チップを埋め込み、微粒子チップに生体外より略平行光を照射し、微粒子チップ上で発生した光を検出する。
 特許文献2、および、3では、グルコース濃度を計測する方法が開示されている。当該方法では、まず、グルコースと反応すると蛍光特性を変化させる試薬を含有する微粒子が皮膚上層に埋め込まれる。次に、生体外から励起波長の光が微粒子に照射され、微粒子で発生した蛍光を経皮的に測定する。測定された蛍光に基づき、グルコース濃度が計測される。
 また、特許文献4では、生体内の血管の周辺の体積に励起光を照射し、当該体積で発生した光を検出することで、血管外の生体成分の空間的な濃度勾配を計測する方法が開示されている。
 さらに、特許文献5では、生体外から生体へ光を照射し生体内で発生した光を検出する方式において、生体成分の濃度が急激に変化する場合でも、生体成分の濃度の計測精度を維持できることが開示されている。この計測精度の維持は、生体を加温する等の手段を用いて、血管内の生体成分の濃度と、血管外の生体成分の濃度が平衡に到達する速度を増大させることで、実現されている。
特許第5002078号明細書 特表2004-510527号公報 特表2007-537805号公報 特表2008-537141号公報 特表2004-500155号公報
Melissa F. Mrozek, and Michael J. Weaver, "Detection and Identification of Aqueous Saccharides by Using Surface-Enhanced Raman Spectroscopy", Analytical Chemistry, Vol. 74, No. 16, 4069-4075, 2002
 従来の方法では、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態であるか否かを判定することができないという課題があった。これにより、従来の方法では、例えば、血液中の被検物質の濃度が急激に変化する際には、濃度の計測値の精度を十分に高くすることができなかった。
 前記従来の課題を解決するために、本発明の例示的な実施形態として以下のものが提供される。
 生体内における被検物質の濃度を計測する計測装置であって、計測手段と、判定手段とを備え、前記計測手段は、位置Aにおける前記被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける前記被検物質の濃度である第2の濃度を計測し、ここで、前記位置Aと前記位置Bとは、前記生体内で、かつ、前記生体の血管外の位置であり、前記位置Bは、前記位置Aよりも前記血管から遠い位置であり、前記判定手段は、前記第1の濃度と前記第2の濃度とに基づいて、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であるか否かを判定する。
 本発明の実施形態によれば、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態であるか否かを判定することができる。
皮膚、および、皮下組織の断面図 血糖値の時間変化、および、細胞間質液中のグルコース濃度の時間変化を示した概略図 実施の形態1を説明するための、光が照射された皮膚の断面図 実施の形態1における微粒子チップ7、8の一例を示す概略図 実施の形態1の微粒子上に固定化された捕捉物質と、被検物質とを示す概略図 実施の形態1による計測装置の一例を示す図 実施の形態1において、検量線を作成する過程の例を説明するための図 実施の形態1において、検量線を作成する過程の例を説明するための図 実施の形態2における、捕捉物質の表面増強ラマン散乱スペクトルの例を示す図 実施の形態3による計測装置の一例を示す図 実施の形態4による計測装置の一例を示す図 実施の形態における計測方法を例示するフローチャート 実施の形態1における計測方法を例示するフローチャート 実施の形態5による計測装置の一例を示す図 実施の形態5による計測装置の他の一例を示す図
 まず、本発明者らの着眼点を説明する。
 血液や尿に含まれる生体成分は、サンプルの採取が容易である。そのため、従来、臨床的所見を得るための被検物質としてその濃度が計測されている。例えば、血糖値は、直接的には血管内の血液中のグルコース濃度を指し、臨床的に活用されている。
 一方、特許文献1、2、3に記載されている技術においては、真皮内に存在する細胞間質液に微粒子が浸されており、微粒子が、細胞間質液中のグルコース等の被検物質と作用する。この作用に応じた光を生体外で検出することで、被検物質の濃度を計測し、この計測値を例えば血糖値として活用する。
 上記のように、細胞間質液中の濃度を血液中の濃度とみなして活用することが可能である理由は以下である。グルコース等の生体成分は血管内を移動する血液を経由して皮膚の細胞に供給される。この際、血液中のグルコース等の生体成分は、血管壁を透過して細胞間質液中に拡散し、細胞へ供給される。通常は、血液中のグルコース等の生体成分の濃度と、細胞間質液中のグルコース等の生体成分の濃度は、平衡状態に到達しており、実質的に同一濃度とみなせる。従って、細胞間質液中の濃度を計測することで、この計測値を血液中の濃度とみなせる。
 しかしながら、血液中の生体成分の濃度が急激に変化する際には、血液中の濃度と細胞間質液中の濃度に差異が発生する場合がある。この差異は、両者の濃度が平衡に到達する前に、血液中の濃度が変化してしまうことにより発生する。血液中の生体成分の濃度が急激に変化する場合としては、糖尿病患者が、大量の糖分を一度に摂取した際に生じる血糖値の急激な変化が有る。比較的極端な例としては、血糖値が正常である100mg/dlの状態において75gのグルコースを服用すると、30分後には血糖値が250mg/dlに到達する(血糖値の上昇速度=5[(mg/dl)/min]に相当)ことが有る。
 このように急激に血糖値が上昇する場合においては、細胞間質液中のグルコース濃度は、血糖値より数秒から数分遅延して変化する。即ち、血糖値が最大値に到達した後、数秒~数分してから、細胞間質液中のグルコース濃度は最大値に到達する。また、血糖値が一定速度で上昇している場合を考えると、例えば、上昇速度=5[(mg/dl)/min]で、遅延時間が1分である場合は、細胞間質液中のグルコース濃度は、血糖値より5mg/dl低いことになる。さらに、このように急激に変化する場合は、細胞間質液中においても、空間的な濃度勾配が生じる。この様子を、模式的な図1、2を用いて説明する。
 図1は、皮膚、および、皮下組織の断面を示す。生体の表面にある表皮組織1は、およそ0.2~およそ0.5mmの厚さを有する。この表皮組織1の最表面部分が角質層(図示せず)であり、10~20μmの厚さを有する。真皮組織2は、およそ0.5~2.0mmの厚さを有する。真皮組織2中には、毛細血管3が分布している。真皮組織2には、組織細胞間の体液である細胞間質液(interstitial fluid)が存在している。真皮組織2は多数の毛細血管3を有するので、細胞間質液は当該毛細血管壁を透過した成分を含有している。特にグルコースは高い透過性を有するので、細胞間質液中のグルコース濃度と血糖値とは短時間で平衡状態に到達する。従って、血糖値が急激に変化しない状況下では、細胞間質液中のグルコース濃度と血糖値は実質的に一致する。皮下組織4は、主に脂肪組織から構成されており、毛細血管3が分布している。図1中の黒点5は、真皮組織2中の位置Aを、図1中の黒点6は、真皮組織2中の位置Bをそれぞれ示している。位置Aと毛細血管3との間の距離は、位置Bと毛細血管3との間の距離より小さい。位置A、および、位置Bの周囲は、細胞間質液によって満たされている。
 図2は、血糖値の時間変化、および、細胞間質液中のグルコース濃度の時間変化を示した概略図である。横軸は時間を示し、縦軸は血糖値または細胞間質液中のグルコース濃度を示す。ここで、実線L1は毛細血管3中の血糖値を、点線L2は位置Aにおける細胞間質液中のグルコース濃度を、一点破線L3は位置Bにおける細胞間質液中のグルコース濃度をそれぞれ示す。
 図2において、0~t1の期間は、毛細血管3中の血糖値が変化しておらず、毛細血管3中の血糖値は、細胞間質液中のグルコース濃度と平衡状態にある。即ち、これらは同一濃度にある。図2に示す例では、t1において毛細血管3中の血糖値が急激に上昇している。ここで、平衡状態がくずれ、血管壁を透過して細胞間質液へグルコースが輸送され、細胞間質液中のグルコース濃度も上昇し始める。位置Aにおけるグルコース濃度が先に上昇を開始し、その後位置Bにおけるグルコース濃度が上昇を開始する。この現象は、位置Aの方が位置Bよりも毛細血管3に近いので、毛細血管3の血管壁を透過し、細胞間質液中を拡散したグルコースが、より早く位置Aに到達することによる。毛細血管3中の血糖値の上昇速度が低下する、即ち、上昇が緩やかになると、細胞間質液中のグルコース濃度が毛細血管3中の血糖値に近づく。そして、t2において、毛細血管3中の血糖値と細胞間質液のグルコース濃度とが平衡状態に戻る。
 上記のように、血糖値が急激に上昇しているt1~t2の期間においては、血糖値と細胞間質液中のグルコース濃度との間に時間遅れ(図2中、△tで示す)が生じると同時に、細胞間質液中において空間的な濃度勾配が発生する。この時間遅れが生じている場合、細胞間質液中のグルコース濃度の計測値を血糖値とみなす方式においては、誤差が発生する。従って、血糖値の計測精度が低下する。
 なお、グルコースのみに限らず、被検物質が、例えば、生体の血管内から血管外に拡散する物質である場合には、上記と同様の課題が生じる。
 以上の着眼点に基づく、本発明の実施の形態を以下に説明する。
 まず、本発明の一態様の概要を説明する。
 本発明の一態様である計測装置は、生体内における被検物質の濃度を計測する計測装置であって、計測手段と、判定手段とを備え、前記計測手段は、位置Aにおける前記被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける前記被検物質の濃度である第2の濃度を計測し、ここで、前記位置Aと前記位置Bとは、前記生体内で、かつ、前記生体の血管外の位置であり、前記位置Bは、前記位置Aよりも前記血管から遠い位置であり、前記判定手段は、前記第1の濃度と前記第2の濃度とに基づいて、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であるか否かを判定する。
 前記判定手段は、前記第1の濃度と前記第2の濃度との差が所定値未満の場合には、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であると判定してもよい。
 前記判定手段により平衡状態であると判定された際に、前記第1の濃度の計測値を、前記生体内における被検物質の濃度として、出力してもよい。
 前記判定手段は、前記第1の濃度と前記第2の濃度との差が所定値以上の場合には、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態でないと判定してもよい。
 前記判定手段により平衡状態でないと判定された際に、前記血管内における前記被検物質の濃度が、急激に変化中であることを報知してもよい。
 前記判定手段により平衡状態でないと判定された際に、前記第1の濃度の計測値を、前記生体内における被検物質の濃度として、暫定的に出力し、前記出力した第1の濃度の計測値が暫定値であることを報知してもよい。
 加温手段をさらに備え、前記加温手段は、前記判定手段により平衡状態でないと判定された際に、前記位置A、および、前記位置Bの周辺を加温してもよい。
 前記位置Aには、第1のセンサが配置され、前記位置Bには、第2のセンサが配置され、前記計測手段は、前記第1のセンサと前記第2のセンサとに、照射光を照射する照射手段と、前記第1のセンサの近傍からの戻り光である第1の戻り光を検出し、かつ、前記第2のセンサの近傍からの戻り光である第2の戻り光を検出する検出手段と、前記第1の戻り光に基づいて、前記第1の濃度を算出し、かつ、前記第2の戻り光に基づいて、前記第2の濃度を算出する算出手段と、を含んでいてもよい。
 前記第1のセンサおよび前記第2のセンサのそれぞれにおける前記照射光が照射される側には、金属パターンが形成されており、前記照射光は、前記金属パターンに局在表面プラズモン共鳴を生じさせる光であり、前記第1の戻り光は、前記第1のセンサの前記金属パターンの近傍で発生した第1の表面増強ラマン散乱光であり、前記第1の濃度は、前記第1の表面増強ラマン散乱光の強度に基づいて、算出され、前記第2の戻り光は、前記第2のセンサの前記金属パターンの近傍で発生した第2の表面増強ラマン散乱光であり、前記第2の濃度は、前記第2の表面増強ラマン散乱光の強度に基づいて、算出されてもよい。
 前記第1の表面増強ラマン散乱光、および、前記第2の表面増強ラマン散乱光は、前記金属パターンの近傍に存在する前記被検物質で発生した表面増強ラマン散乱光であってもよい。
 前記第1のセンサ、および、前記第2のセンサの前記金属パターン上に、前記被検物質を捕捉する捕捉物質が固定化されていてもよい。
 前記第1の表面増強ラマン散乱光、および、前記第2の表面増強ラマン散乱光は、前記金属パターンの近傍に存在する前記捕捉物質で発生した表面増強ラマン散乱光であってもよい。
 前記第1のセンサは、第1の蛍光微粒子であり、前記第2のセンサは、第2の蛍光微粒子であり、前記第1の蛍光微粒子、および、前記第2の蛍光微粒子は、前記照射光の照射により、前記生体内の前記被検物質と反応することで強度が変化する蛍光を生成し、前記照射光は、前記第1および第2の蛍光微粒子の吸収波長に同調した波長の光であり、前記第1の戻り光は、前記第1の蛍光微粒子の近傍で発生した第1の蛍光であり、前記第1の濃度は、前記第1の蛍光の強度に基づいて、算出され、前記第2の戻り光は、前記第2の蛍光微粒子の近傍で発生した第2の蛍光であり、前記第2の濃度は、前記第2の蛍光の強度に基づいて、算出されてもよい。
 前記第1のセンサ、および、前記第2のセンサは、前記生体の真皮中に埋め込まれたセンサであってもよい。
 前記被検物質は、グルコースであってもよい。
 本発明の他の一態様である計測方法は、生体内における被検物質の濃度を計測する計測方法であって、以下の工程(a)および(b)を包含する方法:(a)位置Aにおける前記被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける前記被検物質の濃度である第2の濃度を計測する計測工程、ここで、前記位置Aと前記位置Bとは、前記生体内で、かつ、前記生体の血管外の位置であり、前記位置Bは、前記位置Aよりも前記血管から遠い位置であり、(b)前記第1の濃度と前記第2の濃度とに基づいて、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であるか否かを判定する判定工程。
 前記判定工程(b)は、前記第1の濃度と前記第2の濃度との差が所定値未満の場合には、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であると判定する工程であってもよい。
 前記判定工程(b)において平衡状態であると判定された際に、前記第1の濃度の計測値を、前記生体内における被検物質の濃度として、出力してもよい。
 前記判定工程(b)は、前記第1の濃度と前記第2の濃度との差が所定値以上の場合には、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態でないと判定する工程であってもよい。
 前記判定工程(b)において平衡状態でないと判定された際に、前記血管内における前記被検物質の濃度が、急激に変化中であることを報知してもよい。
 前記判定工程(b)において平衡状態でないと判定された際に、前記第1の濃度の計測値を、前記生体内における被検物質の濃度として、暫定的に出力し、前記出力した第1の濃度の計測値が暫定値であることを報知してもよい。
 前記判定工程(b)において平衡状態でないと判定された際に、前記位置A、および、前記位置Bの周辺を加温してもよい。
 前記位置Aには、第1のセンサが配置され、前記位置Bには、第2のセンサが配置され、前記計測工程(a)は、(a-1)前記第1のセンサと前記第2のセンサとに、照射光を照射する照射工程と、(a-2)前記第1のセンサの近傍からの戻り光である第1の戻り光を検出し、かつ、前記第2のセンサの近傍からの戻り光である第2の戻り光を検出する検出工程と、(a-3)前記第1の戻り光に基づいて、前記第1の濃度を算出し、かつ、前記第2の戻り光に基づいて、前記第2の濃度を算出する算出工程と、を包含していてもよい。
 前記第1のセンサおよび前記第2のセンサのそれぞれにおける前記照射光が照射される側には、金属パターンが形成されており、前記照射光は、前記金属パターンに局在表面プラズモン共鳴を生じさせる光であり、前記第1の戻り光は、前記第1のセンサの前記金属パターンの近傍で発生した第1の表面増強ラマン散乱光であり、前記第1の濃度は、前記第1の表面増強ラマン散乱光の強度に基づいて、算出され、前記第2の戻り光は、前記第2のセンサの前記金属パターンの近傍で発生した第2の表面増強ラマン散乱光であり、前記第2の濃度は、前記第2の表面増強ラマン散乱光の強度に基づいて、算出されてもよい。
 前記第1の表面増強ラマン散乱光、および、前記第2の表面増強ラマン散乱光は、前記金属パターンの近傍に存在する前記被検物質で発生した表面増強ラマン散乱光であってもよい。
 前記第1のセンサ、および、前記第2のセンサの前記金属パターン上に、前記被検物質を捕捉する捕捉物質を固定化してもよい。
 前記第1の表面増強ラマン散乱光、および、前記第2の表面増強ラマン散乱光は、前記金属パターンの近傍に存在する前記捕捉物質で発生した表面増強ラマン散乱光であってもよい。
 前記第1のセンサは、第1の蛍光微粒子であり、前記第2のセンサは、第2の蛍光微粒子であり、前記第1の蛍光微粒子、および、前記第2の蛍光微粒子は、前記照射光の照射により、前記生体内の前記被検物質と反応することで強度が変化する蛍光を生成し、前記照射光は、前記第1および第2の蛍光微粒子の吸収波長に同調した波長の光であり、前記第1の戻り光は、前記第1の蛍光微粒子の近傍で発生した第1の蛍光であり、前記第1の濃度は、前記第1の蛍光の強度に基づいて、算出され、前記第2の戻り光は、前記第2の蛍光微粒子の近傍で発生した第2の蛍光であり、前記第2の濃度は、前記第2の蛍光の強度に基づいて、算出されてもよい。
 前記第1のセンサ、および、前記第2のセンサは、前記生体の真皮中に埋め込まれていてもよい。
 前記被検物質は、グルコースであってもよい。
 本発明のさらに他の一態様である計測装置の制御方法は、生体内における被検物質の濃度を計測する計測装置の制御方法であって、前記計測装置は、計測手段と、判定手段とを備え、前記計測手段により、位置Aにおける前記被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける前記被検物質の濃度である第2の濃度を計測する工程であって、ここで、前記位置Aと前記位置Bとは、前記生体内で、かつ、前記生体の血管外の位置であり、前記位置Bは、前記位置Aよりも前記血管から遠い位置である工程(a)と、前記判定手段により、前記第1の濃度と前記第2の濃度とに基づいて、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であるか否かを判定する工程(b)とを実行する。
 以下、図面を参照しながら、本発明の実施の形態を詳細に説明する。
 図12は、実施の形態における計測方法を例示するフローチャートである。
 実施の形態における計測方法は、生体内における被検物質の濃度を計測する計測方法であって、以下の工程(a)および(b)を包含する。
 計測工程(a):位置Aにおける被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける被検物質の濃度である第2の濃度を計測する。
 ここで、位置Aと位置Bとは、生体内で、かつ、生体の血管外の位置である。さらに、位置Bは、位置Aよりも血管から遠い位置である。
 判定工程(b):第1の濃度と第2の濃度とに基づいて、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態であるか否かを判定する。
 以上の構成によれば、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態であるか否かを判定することができる。
 これにより、例えば、被検物質がグルコースであれば、血糖値が急激に上昇している際に発生する、血糖値の計測精度が低下する現象を回避できる。これにより、信頼性の高い血糖値の計測値を提供できる。
 以下、計測方法および計測装置の具体例を、実施の形態1~5として説明する。
 (実施の形態1)
 図13は、実施の形態1における計測方法を例示するフローチャートである。
 実施の形態1においては、例えば、位置Aには、第1のセンサが配置される。また、位置Bには、第2のセンサが配置される。
 また、実施の形態1においては、計測工程(a)は、以下の3つの工程を包含してもよい。
 照射工程(a-1):第1のセンサと第2のセンサとに、照射光を照射する。
 検出工程(a-2):第1のセンサの近傍からの戻り光である第1の戻り光を検出し、かつ、第2のセンサの近傍からの戻り光である第2の戻り光を検出する。
 算出工程(a-3):第1の戻り光に基づいて、第1の濃度を算出し、かつ、第2の戻り光に基づいて、第2の濃度を算出する。
 実施の形態1においては、第1のセンサおよび第2のセンサの照射光が照射される側には、金属パターンが形成されていてもよい。
 照射光は、金属パターンに局在表面プラズモン共鳴を生じさせる光であり得る。
 例えば、第1の戻り光は、第1のセンサの金属パターンの近傍で発生した第1の表面増強ラマン散乱光である。第1の濃度は、第1の表面増強ラマン散乱光の強度に基づいて、算出される。
 また、例えば、第2の戻り光は、第2のセンサの金属パターンの近傍で発生した第2の表面増強ラマン散乱光である。第2の濃度は、第2の表面増強ラマン散乱光の強度に基づいて、算出される。
 実施の形態1においては、第1の戻り光、および、第2の戻り光は、金属パターンの近傍に存在する被検物質で発生した表面増強ラマン散乱光である。
 実施の形態1においては、第1のセンサ、および、第2のセンサは、生体の真皮中に埋め込まれていてもよい。
 実施の形態1においては、被検物質は、生体の血管内から血管外に拡散する物質である。ここでは、被検物質として、グルコースが例示される。
 実施の形態1による生体成分の濃度を計測する方法、および、当該方法に用いられる計測装置について、具体的な構成の一例を、図3~図4を参照しながら説明する。
 以下の説明においては、第1のセンサとして、微粒子チップ7が例示される。
 また、第2のセンサとして、微粒子チップ8が例示される。
 また、金属パターンとして、微粒子11が例示される。
 また、照射光として、略平行光9、および、略平行光10が例示される。
 図3は、光が照射された皮膚の断面を示す。表皮組織1、真皮組織2、毛細血管3、および、皮下組織4は、図1における表皮組織1、真皮組織2、毛細血管3、および、皮下組織4にそれぞれ対応する。また、図3中の黒点5、および、黒点6は、図1と同様に、真皮組織2中の位置A、および、真皮組織2中の位置Bをそれぞれ表す。
 微粒子チップ7、8は、その上面(体表側の面)側が、それぞれ、真皮組織2中の位置A、位置Bに位置するように配置されている。微粒子チップ7、8は、真皮組織2の組織細胞間の体液である細胞間質液(interstitial fluid)に浸された状態が維持されている。
 図4は、微粒子チップ7、8の一例を示す。微粒子チップ7、8は、基板と当該基板の表面に配置された微粒子11とを具備する。光が照射されることによって、微粒子11において局在表面プラズモン共鳴が発生する。微粒子11は、例えばナノ微粒子である。微粒子11の一例は、およそ10nmの直径、および、およそ38nmの長さを有する金ナノロッドである。当該微粒子11の吸光スペクトルは、波長785nmに吸光のピークを示し、半値半幅が約70nmである。ここで、吸光のピークの波長を局在表面プラズモン共鳴波長と称する。また、微粒子チップ7、8は、同一の形状と特性を有する。
 基板は、例えば、およそ100μmの直径、および、およそ100μmの厚さを有する。基板の材料の例は、アクリル等の樹脂材料、ガラス、またはシリコンである。微粒子11は、例えば金ナノロッドから形成されている。微粒子11は、その長軸方向が、図に示すxy面、即ち、基板の上面に平行となるように配置されている。言い換えると、長軸はxy面と平行であり、微粒子11の側面は基板の上面に接した状態である。なお、y方向は基板の表面においてx方向と直交する方向で、z方向は基板の厚さに沿った方向である。
 図3に示されるように、微粒子11を具備する上面が表皮組織1の表面と平行になるように、微粒子チップ7、8は真皮組織2中に埋め込まれる。表皮組織1の最表面から微粒子チップ7の上面(微粒子11が配置されている位置)までの距離は、およそ1.2mmである。微粒子チップ8の上面(微粒子11が配置されている位置)までの距離は、およそ1.0mmである。
 図3中の略平行光9、10は、785nmの波長を有する略平行光を示す。略平行光9、10は、100μmの直径を有する円形のビーム形状を有している。略平行光9、10は表皮組織1を透過して真皮組織2を伝搬し、それぞれ、微粒子チップ7、8に照射される。略平行光9、10は、図3に示されるz方向に伝搬している。略平行光9、10がそれぞれ微粒子チップ7、8に照射されると、微粒子11で局在表面プラズモン共鳴が生じ、微粒子11の近傍における電磁場強度が増強される。これは、微粒子11の近傍(0.5~30nm以内)に位置する物質のラマン散乱光の増強をもたらす。このようにして、表面増強ラマン散乱光が発生する。
 表面増強ラマン散乱光は、通常のラマン散乱光よりも105倍以上の強度を有する。従って、微粒子11の近傍にある物質から発生する表面増強ラマン散乱光は、皮膚表面(表皮組織1の角質層)、表皮組織1、または真皮組織2において発生するラマン散乱光よりも遥かに大きい強度を有する。これは、微粒子11の近傍の物質のラマン散乱光のみが選択的に増強されていることを意味する。
 図5に例示する構成では、グルコース等の被検物質13を特異的に捕捉する捕捉物質14が、微粒子11の金表面部分12に固定化されている。この捕捉物質14としては、被検物質がグルコースの場合、4-MPBA(4-Mercaptophenylboranic acid、 C67BO2S 、4-メルカプトフェニルボロン酸)、3-MPBA(3-Mercaptophenylboronic acid、 C67BO2S 、3-メルカプトフェニルボロン酸)等のメルカプト基を有するボロン酸系の化合物が挙げられる。メルカプト基を有するボロン酸系の化合物は、メルカプト基が微粒子11の金表面と結合することで、固定化できる。さらに、ボロン酸基がグルコースと特異的に結合することで、グルコースを特異的に捕捉することができる。
 また、捕捉物質14は、1-mercaptoundeca-tri-ethylene glycol(HS(CH211(OCH2CH23OH)、mercaptohexanol(HS(CH26OH)等でもよい。これらも、メルカプト基が微粒子11の金表面と結合することで、固定化できる。さらに、これらの隣接分子間にグルコースが侵入することで、グルコースを捕捉することができる。
 捕捉物質14は、微粒子11の近傍にあるために、捕捉物質14のラマン散乱光が増強され表面増強ラマン散乱光が発生する。また、捕捉物質14に捕捉された被検物質13も、微粒子11の近傍にあるために、被検物質13のラマン散乱光が増強され表面増強ラマン散乱光が発生する。
 被検物質13の表面増強ラマン散乱光の強度は、捕捉物質14に捕捉された被検物質13の数(量)に比例する。また、捕捉物質14に捕捉された被検物質13の数は、細胞間質液中の被検物質13の濃度が上昇するに伴い増加する。即ち、捕捉物質14に捕捉された被検物質13の数は、被検物質13の濃度に依存する。従って、被検物質13の表面増強ラマン散乱光の強度は、被検物質13の濃度に依存する。このため、被検物質13の表面増強ラマン散乱光の強度を計測することで、被検物質13の濃度を算出できる。
 上記のように、微粒子チップ7、8の微粒子11周辺で発生した被検物質13の表面増強ラマン散乱光より、微粒子チップ7、8の微粒子11周辺の濃度を算出することができる。
 ここで、被検物質13がグルコースの場合においては、微粒子チップ7、8の微粒子11周辺は、それぞれ位置A、位置Bに相当する。このため、これらの位置の細胞間質液中のグルコース濃度を個別に計測できる。
 以下に、上記のように位置A、位置Bにおける細胞間質液中のグルコース濃度を個別に計測できる装置を、図6を用いて説明する。図6において、表皮組織1、真皮組織2、皮下組織4、微粒子チップ7、8、略平行光9、10は、図1~5における表皮組織1、真皮組織2、皮下組織4、微粒子チップ7、8、略平行光9、10に対応する。
 光源15、16は、半導体レーザと照射光学系をモジュール化した光源で、それぞれが、略平行光9、略平行光10を発生させる。略平行光9、10は、共に波長が785nmで、強度が2mWで、100μmの直径を有する円形のビーム形状を有する。そして、略平行光9と略平行光10は、それぞれ、真皮組織2内の微粒子チップ7、微粒子チップ8に照射される。ここで、微粒子チップ7、微粒子チップ8は、皮膚の面方向に300μm以上離れている。このため、微粒子チップ7には略平行光10は照射されず、微粒子チップ8には略平行光9は照射されない。
 微粒子チップ7上で発生した表面増強ラマン散乱光17は、光学系19を介して光センサ23に集束される。光学系19は、レンズ群から構成されている。分光フィルター21は、特定の波長のみを透過する。分光フィルター21が透過する波長は、被検物質13のラマン散乱光の波長に一致させている。同様に、微粒子チップ8上で発生した表面増強ラマン散乱光18は、光学系20を介して光センサ24に集束される。光学系20は、レンズ群から構成されている。分光フィルター22は、特定の波長のみを透過する。分光フィルター22が透過する波長は、被検物質13のラマン散乱光の波長に一致させている。ここで、光センサ23には微粒子チップ8上で発生した表面増強ラマン散乱光が入射しないように、光学系19が配置されている。光センサ24には微粒子チップ7上で発生した表面増強ラマン散乱光が入射しないように、光学系20が配置されている。
 コンピュータ(PC)25は、光センサ23と光センサ24の出力信号に基づき、位置A、位置Bにおける細胞間質液中のグルコース濃度を個別に算出する。さらに、コンピュータ25は、後述する、計測の有効性を判定した後に血糖値を提供する機能、暫定的な血糖値を提供する機能、および、血糖値が急激に変化しているという情報を提供する機能のうちの少なくとも1つを有していてもよい。
 支持体26は、光源15、光源16、光学系19、光学系20、分光フィルター21、分光フィルター22、光センサ23、および、光センサ24を保持する。
 上記の様な構成により、位置A、位置Bにおける細胞間質液中のグルコース濃度を計測することができる。
 位置A、位置Bにおける細胞間質液中のグルコース濃度の差が、所定値未満(例えば、この2つの濃度が同一)であれば、細胞間質液中において、空間的なグルコースの濃度勾配が発生していないと判定できる。毛細血管3中の血糖値と細胞間質液のグルコース濃度が、平衡状態にあると判定できる。
 一方、位置A、位置Bにおける細胞間質液中のグルコース濃度の差が、所定値以上であれば、細胞間質液中において、空間的なグルコースの濃度勾配が発生していると判定できる。毛細血管3中の血糖値と細胞間質液のグルコース濃度が、平衡状態に到達していないと判定できる。
 ここで、グルコース濃度の同一性を判定するために、位置A、位置Bにおける細胞間質液中のグルコース濃度差を算出して、所定値未満であれば、同一と判定すればよい。
 所定値は、要求される血糖値の定量精度程度にすればよい。例えば、要求される血糖値の定量精度=±7.5[mg/dl]であれば、所定値=7.5[mg/dl]に設定すればよい。
 このように、本実施の形態によれば、位置A、位置Bにおける細胞間質液中のグルコース濃度を計測することができる。そして、この2つの濃度に基づいて、毛細血管3中の血糖値と細胞間質液のグルコース濃度が、平衡状態へ到達しているか否かを判定できる。
 以上のように、本実施の形態1においては、判定工程(b)は、第1の濃度と第2の濃度との差が所定値以上の場合には、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態でないと判定する工程であり得る。
 また、本実施の形態1においては、判定工程(b)は、第1の濃度と第2の濃度との差が所定値未満の場合には、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態であると判定する工程であり得る。
 なお、判定工程(b)において平衡状態であると判定された際に、第1の濃度の計測値、もしくは、第2の濃度の計測値を、生体内における被検物質の濃度として、出力してもよい。
 このとき、判定工程(b)において平衡状態であると判定された際に、第1の濃度の計測値を、生体内における被検物質の濃度として、出力してもよい。
 これにより、血管内における被検物質の濃度により近い値である計測値を、出力することができる。
 この判定結果は以下のように活用できる。
 例えば、平衡状態でないと判定された場合、即ち、位置A、位置Bにおける細胞間質液中のグルコース濃度差が所定値以上の場合は、待機し、平衡状態へ到達したと判定されてからグルコース濃度の計測値を出力する。
 ここで、計測値を出力することで、例えば、より上位の装置やメモリに対して、計測値を送信してもよい。例えば、計測装置の利用者が、計測結果を確認可能となるように、計測値を表示手段により表示してもよい。
 このように、平衡状態への到達を確認してから血糖値を提供することで、血糖値と細胞間質液中のグルコース濃度との間の時間遅れによる誤差を含んだ計測値を提供することを防止することができる。言い換えると、平衡状態へ到達している場合に計測を有効と判定するようにしてもよい。このように有効性を判定することで、計測値の信頼性を向上することができる。
 一方、血糖値が急激に変化している最中で平衡状態でない場合は、位置A、位置Bのグルコース濃度の計測値において、位置Bのグルコース濃度よりも先に変化する計測値である位置Aのグルコース濃度を暫定的に出力し、それが暫定値であることを示す信号を同時に出力してもよい。
 この暫定値は、より毛細血管3中の血糖値に近いので誤差が小さい。この暫定値を出力することで、毛細血管3中の血糖値が急激に変化している最中にも暫定的に血糖値を知ることができる。この場合は、同時に暫定値であることを示す信号も出力しているので、血糖値が急激に変化しているという情報を提供することができ、臨床的効果も大きい。
 以上のように、本実施の形態1においては、判定工程(b)において平衡状態でないと判定された際に、血管内における被検物質の濃度が、急激に変化中であることを報知してもよい。
 また、本実施の形態1においては、判定工程(b)において平衡状態でないと判定された際に、第1の濃度の計測値を暫定的に出力してもよい。このとき、出力した第1の濃度の計測値が暫定値であることを報知してもよい。
 次に、分光フィルター21、22が満たす特性を述べる。
 被検物質13がグルコースで、グルコースのラマン散乱光を光センサ23、24で検出する場合は、分光フィルター21、22が透過する波長は、グルコースのラマン散乱光の波長に一致させる。この場合、光センサ23、24の出力信号は、捕捉物質14に捕捉されたグルコース数に比例して変化する。非特許文献1の図1は、グルコースの表面増強ラマン散乱スペクトルを示す。非特許文献1の図1に示されているように、グルコースの表面増強ラマン散乱スペクトルは、300cm-1~1500cm-1であるラマンシフトの範囲に、グルコース特有の複数のピークを有する。
 当該複数のピークの中でも、ラマンシフトが1120cm-1にあるピークは、アルブミン、および、クレアチニンのラマン散乱スペクトルのピークに重ならない。即ち、グルコースに特有のピークである。従って、当該ラマンシフトが1120cm-1にある表面増強ラマン散乱光の強度は、グルコースの濃度にのみ比例する。
 光源15、16からの光の波長が785nmである場合、これよりも波数が1120cm-1だけ小さい波長、即ち、860.7nmの波長を透過する分光フィルター21、22が利用される。
 波長λと波数kとの間の関係は以下の数式1の通りである。
  (数1) k(cm-1)=107/λ(nm)
 785nmの波長λを波数kに換算すると12739cm-1になる。グルコース特有のピークの波数は、12739cm-1よりも1120cm-1だけ小さい。よって、当該波数は、12739(cm-1)-1120(cm-1)=11619(cm-1)である。11619cm-1を波長に換算すると860.7nmである。
 次に、光センサ23、および、光センサ24の出力信号に基づき、位置A、位置Bにおける細胞間質液中のグルコース濃度を個別に算出する方法の例を、図7、8を用いて示す。
 図7は、糖尿病患者の血液に含まれるグルコース濃度(血糖値)の推移を示した例である。横軸は時間、縦軸は血糖値を表している。まず、空腹時の血糖値を計測する。このとき、採血したサンプルを通常の血糖計を用いて計測する。なお、採血および血糖計による計測は複数回行われる。これにより血糖値が安定していることを確認すると同時に、本実施の形態1による計測装置を用いて光センサ23、および、光センサ24の出力信号を計測し記録する。ここで、通常の血糖計で計測された血糖値を図7中、点線27によって囲まれた○と●で示す。○は1回目の血糖値、●は2回目の血糖値である。このように、1回目と2回目の血糖値が90mg/dlで同一であることを確認する。そして2回目の血糖値(図7中、●で示す)を得たと同時に光センサ23、および、光センサ24の出力信号を計測する。ここで、即ち、t1の時点で、75gのグルコースが服用される。
 次に約1時間後に、再び通常の血糖計を用いて複数回計測を行い、血糖値が安定していることを確認すると同時に、本実施の形態1による計測装置を用いて光センサ23、および、光センサ24の出力信号を計測し記録する。ここで血糖値は、図7中、点線28によって囲まれた○と●で示されている。○は1回目の血糖値、●は2回目の血糖値である。このように、1回目と2回目の血糖値が370mg/dlで同一であることを確認する。そして2回目の血糖値●を得たと同時に、即ち、t2の時点で、光センサ23、および、光センサ24の出力信号を計測し記録する。
 さらに、t2より約2時間後、同様に、通常の血糖計を用いて複数回計測を行い、血糖値が安定していることを確認すると同時に、本実施の形態1による計測装置を用いて光センサ23、および、光センサ24の出力信号を計測する。ここで血糖値は、図7中、点線29によって囲まれた○と●で示されている。○は1回目の血糖値、●は2回目の血糖値である。このように、1回目と2回目の血糖値が170mg/dlで同一であることを確認する。そして2回目の血糖値(図7中、●で示す)を得たと同時に、即ち、t3の時点で、光センサ23、および、光センサ24の出力信号を計測し記録する。
 上記で得られた、図中の●に相当する血糖値と、光センサ23、および、光センサ24の出力信号との関係を図8に示す。図8において、横軸は血糖値、縦軸は出力信号(信号強度)を表し、■が光センサ23の出力信号、▲が光センサ24の出力信号をそれぞれ示す。
 これら光センサ23の出力信号(図8中、■で示す)を結ぶグラフに最も近似する1次直線を算出して実線で示している。また、これら光センサ24の出力信号(図8中、▲で示す)を結ぶグラフに最も近似する1次直線を算出して点線で示している。これらの、実線、および、点線を検量線として、光センサ23の出力信号、および、光センサ24の出力信号より、血糖値が算出される。
 言うまでもないが、光センサ23、および、光センサ24の出力信号がそれぞれ3個のデータである場合における、それぞれの検量線を作成した例を示したが、3個に限られない。最低でも2個あれば検量線を作成できる。
 なお、血糖値が安定していることを確認するためには、最低2回、採血して通常の血糖計で血糖値を計測する。2回計測した結果、安定していない場合は、待機後、再度、最低2回血糖値を計測して安定性を確認する。この動作を、安定性が確認できるまで繰り返すことで、図8に示した検量線を得ることができる。
 なお、各個人の皮膚は異なる光伝搬特性を有するので、個人ごとに各検量線が作成される。埋め込み位置の違いも異なる光伝搬特性に繋がるので、微粒子チップ7、8を皮膚に埋め込む毎に、検量線を作成してもよい。このように条件が替わる毎に検量線を作成することで、計測のさらなる高精度化を実現することができる。
 上記のように、本実施の形態によれば、微粒子チップ7、8の微粒子11周辺のグルコース濃度を、光センサ23、24の出力信号より算出することができる。これにより、それぞれ位置A、位置Bの細胞間質液中のグルコース濃度を個別に計測できる。そして、位置A、位置Bの細胞間質液中のグルコース濃度の差が、所定値未満(例えば、この2つの濃度が同一)の場合、毛細血管3中の血糖値と細胞間質液のグルコース濃度が、平衡に到達していると判定できる。そして、平衡状態に到達している場合に有効な計測と判定して、例えば、血糖値を提供することで、計測値の信頼性を向上することができる。
 一方、血糖値が急激に変化している最中であって平衡状態でない場合は、血糖値が急激に変化しているという情報を提供することができ、臨床的効果も大きい。
 (実施の形態2)
 実施の形態2による生体成分の濃度を計測する方法、および、当該方法に用いられる計測装置を説明する。
 本実施の形態は、捕捉物質14のラマン散乱光より、被検物質13の濃度を計測する例である。
 即ち、本実施の形態2においては、第1のセンサ、および、第2のセンサの金属パターン上に、被検物質を捕捉する捕捉物質を固定化する。
 さらに、本実施の形態2においては、第1の戻り光、および、第2の戻り光は、金属パターンの近傍に存在する捕捉物質で発生した表面増強ラマン散乱光である。
 計測装置の構成は、実施の形態1で説明した図6と同様であってよい。ただし、分光フィルター21、22が透過させる波長域を、捕捉物質14のラマン散乱光の波長にあわせる。
 また、図5において、捕捉物質14の表面増強ラマン散乱光の強度は、被検物質13と結合することで変化する。この変化量は、被検物質13と結合した捕捉物質14の数に比例する。被検物質13と結合した捕捉物質14の数は、細胞間質液中の被検物質13の濃度が上昇するに伴い増加する。即ち、被検物質13と結合した捕捉物質14の数は、被検物質13の濃度に依存する。従って、捕捉物質14の表面増強ラマン散乱光の強度の変化量は、被検物質13の濃度に依存する。このため、捕捉物質14の表面増強ラマン散乱光の強度の変化量を計測することで、被検物質13の濃度を算出できる。
 以下に被検物質13がグルコースで、捕捉物質14が4-MPBAの場合を説明する。
 被検物質13がグルコースで、捕捉物質14が4-MPBAの場合は、4-MPBAのラマン散乱光を光センサ23、24で検出してグルコース濃度を計測することができる。この場合、分光フィルター21、22が透過する波長を4-MPBAのラマン散乱光波長に一致させる。
 図9に、ラマンシフトが400cm-1~2000cm-1の範囲の4-MPBAのラマン散乱スペクトルを示す。
 図9に示された複数のピークの中でも、ラマンシフトが1075cm-1にあるピーク30は、アルブミンおよびクレアチニンのラマン散乱スペクトルのピークに重ならない。さらに、このピーク30は、4-MPBAがグルコースと結合すると増大する。このピーク30の増大量は、グルコースと結合した4-MPBAの数に比例する。グルコースと結合した4-MPBAの数は、細胞間質液中のグルコースの濃度が上昇するに伴い増加する。即ち、グルコースと結合した4-MPBAの数は、グルコースの濃度に依存する。従って、4-MPBAの表面増強ラマン散乱光であるピーク30の増大量は、グルコースの濃度に依存する。ピーク30の増大量は、光センサ23、24の出力信号の増大量に相当する。このため、光センサ23、24の出力信号からグルコースの濃度を算出できる。なお、4-MPBAは細胞間質液の主要物質では、グルコースとのみ結合するので、グルコース濃度を特異的に計測できる。
 光源15、16からの光の波長が785nmである場合、これよりも波数が1075cm-1だけ小さい波長、即ち、857.3nmの波長を透過する分光フィルター21、22が利用される。波長λと波数kとの間の関係は(数式1)の通りで、785nmの波長λを波数kに換算すると12739cm-1になる。4-MPBA特有のピークの波数は、12739cm-1よりも1075cm-1だけ小さい。よって、当該波数は、12739(cm-1)-1075(cm-1)=11664(cm-1)である。11664cm-1を波長に換算すると857.3nmである。
 次に、光センサ23、および、光センサ24の出力信号に基づき、位置A、位置Bにおける細胞間質液中のグルコース濃度を個別に算出する。本例は実施の形態1で説明した方法と同様で、血糖値が安定していることを確認すると同時に光センサ23、および、光センサ24の出力信号を計測して、図7と同様のグラフを得る。そして図8と同様のグラフを作成して、検量線を作成する。この検量線を用いて微粒子チップ7、8の微粒子11周辺のグルコース濃度を、光センサ23、24の出力信号より算出する。これにより、それぞれ位置A、位置Bの細胞間質液中のグルコース濃度を個別に計測できる。
 なお、第1のセンサや第2のセンサに形成される金属パターンは、照射光の照射により局在表面プラズモン共鳴を生じるものであればよい。例えば、実施の形態1、2で微粒子11として使用した金ナノロッドに代えて、シリカからなる誘電体の表面を金および銀のような金属によって被覆した微粒子が用いられ得る。
 実施の形態1、2では、光源15、16が発光する照射光は、例えば785nmの波長を有する。このことは、以下の利点を有する。
 一般的に、生体は、700~900nmの光に対する高い透過性を有する。グルコースの特異的ラマン散乱光は、照射光の波数よりもおよそ1100~1200cm-1小さい波数を有する。従って、照射光の波長を700~800nmに設定することによって、照射光および表面増強ラマン散乱光の双方が、上記の高い透過性を利用できる。
 また、局在表面プラズモン共鳴による共鳴スペクトルは広がりを持っており、一般的にこの共鳴スペクトルのピークを示す波長を共鳴波長としている。本実施の形態では、微粒子11の局在表面プラズモン共鳴波長が、照射光の波長と一致する場合で説明したが、必ずしもこの必要はない。局在表面プラズモン共鳴の共鳴スペクトルの半値半幅(通常数十~百nm)程度は、共鳴波長と照射光の波長とはずれていてもよい。言い換えると、照射光の波長が、共鳴スペクトルの半値全幅内に有ればよく、この状態を、照射光の波長を局在表面プラズモン共鳴波長に同調すると表現する。
 この時、照射光の波長に対して、共鳴波長が長波長側にあるとより大きな増強が期待できる。従って、照射光の波長を、共鳴波長より短波長側に同調させてもよい。
 なお、ここで、局在表面プラズモン共鳴の共鳴スペクトルは、微粒子11の吸光スペクトルとして観測できる。
 (実施の形態3)
 本実施の形態3では、以下の構成を例示する。
 即ち、本実施の形態3では、第1のセンサは、第1の蛍光微粒子である。第2のセンサは、第2の蛍光微粒子である。
 第1の蛍光微粒子、および、第2の蛍光微粒子は、照射光の照射により、生体内の被検物質と反応することで強度が変化する蛍光を生成する。
 照射光は、蛍光微粒子の吸収波長に同調した波長の光である。
 第1の戻り光は、第1の蛍光微粒子の近傍で発生した第1の蛍光である。第1の濃度は、第1の蛍光の強度に基づいて、算出される。
 第2の戻り光は、第2の蛍光微粒子の近傍で発生した第2の蛍光である。第2の濃度は、第2の蛍光の強度に基づいて、算出される。
 本実施の形態では、図10に示すように蛍光微粒子を用いる場合を説明する。
 即ち、本実施の形態3では、第1の蛍光微粒子として、蛍光微粒子31が例示される。
 また、第2の蛍光微粒子として、蛍光微粒子32が例示される。
 また、第1の蛍光として、蛍光33が例示される。
 また、第2の蛍光として、蛍光34が例示される。
 図10において、蛍光微粒子31、および、蛍光微粒子32は、グルコースと反応すると蛍光が増強する球形微粒子の例であり、直径が10μm~100μm程度である。この蛍光微粒子31、32は、紫外から近赤外領域の光を照射すると、照射光を吸収して、照射光強度とグルコース濃度とに応じた蛍光を発する。この蛍光微粒子31、および、蛍光微粒子32を、それぞれ図6に示した微粒子チップ7、および、微粒子チップ8と同位置に、即ち、位置A、および、位置Bに配置する。本実施の形態では、光源15、16は、紫外から近赤外領域の略平行光9、10を蛍光微粒子31、32にそれぞれ照射する。蛍光微粒子31、32は、それぞれ略平行光9、10を吸収して蛍光33、34を生成する。また分光フィルター21、22は、生成された蛍光33、34の波長域を透過する特性を有している。従って、光センサ23、24の出力信号は、それぞれ、蛍光微粒子31、32が生成した蛍光33、34の強度に相当する。図10における表皮組織1、真皮組織2、皮下組織4、光学系19、光学系20、コンピュータ(PC)25、支持体26は、実施の形態1で述べた図6における表皮組織1、真皮組織2、皮下組織4、光学系19、光学系20、コンピュータ(PC)25、支持体26に対応し、同様に動作してよい。
 本実施の形態は、実施の形態1と同様に、蛍光微粒子31、32の周辺の位置A、位置Bのグルコース濃度を、光センサ23、24の出力信号より算出することができ、それぞれ位置A、位置Bの細胞間質液中のグルコース濃度を個別に計測できる。そして、位置A、位置Bの細胞間質液中のグルコース濃度が同一の際は、平衡に到達していると判断できる。
 さらに、光センサ23、および、光センサ24の出力信号に基づき、位置A、位置Bにおける細胞間質液中のグルコース濃度を個別に算出する。本例は実施の形態1で説明した方法と同様で、血糖値が安定していることを確認すると同時に光センサ23、および、光センサ24の出力信号を計測して、図7と同様のグラフを得る。そして図8と同様のグラフを作成して、検量線を作成する。この検量線を用いて蛍光微粒子31、32周辺のグルコース濃度を、光センサ23、24の出力信号より算出することができ、それぞれ位置A、位置Bの細胞間質液中のグルコース濃度を個別に計測できる。
 なお、本実施の形態では、グルコースと反応すると蛍光が増強する場合を説明したが、グルコースと反応すると蛍光が減少する場合でも、同様に検量線を作成することで、位置A、位置Bの細胞間質液中のグルコース濃度を個別に計測できる。
 なお、本実施の形態3の構成は、実施の形態1のみでなく、実施の形態2の構成と組み合わされてもよい。
 (実施の形態4)
 本実施の形態4では、以下の構成を例示する。
 即ち、本実施の形態4では、判定工程(b)において平衡状態でないと判定された際に、位置A、および、位置Bの周辺を加温する。
 本実施の形態を、図11を用いて説明する。
 図11において、加温器35は、生体に赤外線を照射して、加温する機能を有している。本実施の形態では、コンピュータ(PC)25は、加温器35を制御して、微粒子チップ7、8が埋め込まれている付近の温度を38℃~42℃に維持する機能も有している。
 本実施の形態は、生体を加温することで、細胞間質液中のグルコース濃度と血糖値とが平衡状態に到達する時間を短縮する効果を利用している。その動作の例を以下に述べる。
 実施の形態1で述べたように、位置A、位置Bにおける細胞間質液中のグルコース濃度差を算出して、所定値未満であれば、これらの濃度が同一と判定してよい。
 一方、グルコース濃度差が所定値以上の場合は、コンピュータ25が加温器35を制御して、微粒子チップ7、8が埋め込まれている付近の温度を38℃~42℃に加温する。
 これにより、細胞間質液中のグルコース濃度と血糖値の平衡化を促進する。この結果、グルコース濃度差が所定値未満になるまで、即ち、計測が有効と判定されるまで待機する時間を短縮できる。
 上記のように、本実施の形態によれば、迅速に有効な計測値を提供することができる。
 なお、本実施の形態4の構成は、実施の形態1のみでなく、実施の形態2、または、実施の形態3の構成と組み合わされてもよい。
 (実施の形態5)
 図14は、実施の形態5における、生体内における被検物質の濃度を計測する計測装置の構成の一例を示す。
 図14に例示する計測装置1000は、計測手段100と、判定手段200とを備える。
 計測手段100は、位置Aにおける被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける被検物質の濃度である第2の濃度を計測する。
 ここで、位置Aと位置Bとは、生体内で、かつ、生体の血管外の位置である。さらに、位置Bは、位置Aよりも血管から遠い位置である。
 判定手段200は、第1の濃度と第2の濃度とに基づいて、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態であるか否かを判定する。
 以上の構成によれば、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態であるか否かを判定することができる。
 これにより、例えば、被検物質がグルコースであれば、血糖値が急激に上昇している際に発生する、血糖値の計測精度が低下する現象を回避できる。これにより、信頼性の高い、血糖値の計測値を提供できる。
 なお、計測手段100としては、実施の形態1~4で説明された構成が用いられてもよい。例えば、図15に示す計測装置1001の構成も採用し得る。
 即ち、実施の形態5においては、位置Aには、第1のセンサが配置されていてもよい。また、位置Bには、第2のセンサが配置されていてもよい。
 このとき、計測装置1001のように、計測手段100は、照射手段101と、検出手段102と、算出手段103とを含んでいてもよい。
 照射手段101は、第1のセンサと第2のセンサとに、照射光を照射する。
 検出手段102は、第1のセンサの近傍からの戻り光である第1の戻り光を検出し、かつ、第2のセンサの近傍からの戻り光である第2の戻り光を検出する。
 算出手段103は、第1の戻り光に基づいて、第1の濃度を算出し、かつ、第2の戻り光に基づいて、第2の濃度を算出する。
 なお、照射手段101としては、実施の形態1~4で説明された構成が用いられてもよい。例えば、照射手段101は、実施の形態1~4で説明された、光源15や光源16等を含んでいてもよい。
 なお、検出手段102としては、実施の形態1~4で説明された構成が用いられてもよい。例えば、検出手段102は、実施の形態1~4で説明された、光センサ23や光センサ24等を含んでいてもよい。さらに、検出手段102は、実施の形態1~4で説明された、光学系19、光学系20、分光フィルター21、および、分光フィルター22等を含んでいてもよい。
 なお、算出手段103は、実施の形態1~4で説明された構成が用いられてもよい。例えば、算出手段103は、コンピュータ25の一部を構成する演算部であってもよい。
 なお、判定手段200は、実施の形態1~4で説明された構成が用いられてもよい。例えば、判定手段200は、コンピュータ25の一部を構成する演算部であってもよい。
 また、実施の形態5における計測装置は、実施の形態1~4において説明された、下記の構成を有していてもよい。
 即ち、実施の形態5における計測装置においては、判定手段は、第1の濃度と第2の濃度との差が所定値未満の場合には、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態であると判定してもよい。
 また、実施の形態5における計測装置においては、判定手段により平衡状態であると判定された際に、第1の濃度の計測値を、生体内における被検物質の濃度として、出力してもよい。
 また、実施の形態5における計測装置においては、判定手段は、第1の濃度と第2の濃度との差が所定値以上の場合には、血管内における被検物質の濃度と、生体内で、かつ、生体の血管外の位置において計測される被検物質の濃度とが、平衡状態でないと判定してもよい。
 また、実施の形態5における計測装置においては、判定手段により平衡状態でないと判定された際に、血管内における被検物質の濃度が、急激に変化中であることを報知してもよい。
 また、実施の形態5における計測装置においては、判定手段により平衡状態でないと判定された際に、第1の濃度の計測値を、生体内における被検物質の濃度として、暫定的に出力してもよい。このとき、出力した第1の濃度の計測値が暫定値であることを報知してもよい。
 また、実施の形態5における計測装置は、加温手段をさらに備えていてもよい。このとき、加温手段は、判定手段により平衡状態でないと判定された際に、位置A、および、位置Bの周辺を加温してもよい。
 なお、加温手段は、実施の形態4で説明された加温器35を含んでいてもよい。
 また、実施の形態5における計測装置においては、第1のセンサおよび第2のセンサの照射光が照射される側には、金属パターンが形成されていてもよい。照射光は、金属パターンに局在表面プラズモン共鳴を生じさせる光であってもよい。第1の戻り光は、第1のセンサの金属パターンの近傍で発生した第1の表面増強ラマン散乱光であってもよい。第1の濃度は、第1の表面増強ラマン散乱光の強度に基づいて、算出されてもよい。第2の戻り光は、第2のセンサの金属パターンの近傍で発生した第2の表面増強ラマン散乱光であってもよい。第2の濃度は、第2の表面増強ラマン散乱光の強度に基づいて、算出されてもよい。
 また、実施の形態5における計測装置においては、第1の戻り光、および、第2の戻り光は、金属パターンの近傍に存在する被検物質で発生した表面増強ラマン散乱光であってもよい。
 また、実施の形態5における計測装置においては、第1のセンサ、および、第2のセンサの金属パターン上に、被検物質を捕捉する捕捉物質が固定化されていてもよい。
 また、実施の形態5における計測装置においては、第1の戻り光、および、第2の戻り光は、金属パターンの近傍に存在する捕捉物質で発生した表面増強ラマン散乱光であってもよい。
 また、実施の形態5における計測装置においては、第1のセンサは、第1の蛍光微粒子であってもよい。第2のセンサは、第2の蛍光微粒子であってもよい。第1の蛍光微粒子、および、第2の蛍光微粒子は、照射光の照射により、生体内の被検物質と反応することで強度が変化する蛍光を生成してもよい。照射光は、蛍光微粒子の吸収波長に同調した波長の光であってもよい。第1の戻り光は、第1の蛍光微粒子の近傍で発生した第1の蛍光であってもよい。第1の濃度は、第1の蛍光の強度に基づいて、算出されてもよい。第2の戻り光は、第2の蛍光微粒子の近傍で発生した第2の蛍光であってもよい。第2の濃度は、第2の蛍光の強度に基づいて、算出されてもよい。
 また、実施の形態5における計測装置においては、第1のセンサと第2のセンサとが、生体の真皮中に埋め込まれていてもよい。
 また、実施の形態5における計測装置においては、被検物質は、生体の血管内から血管外に拡散する物質であってもよい。例えば、被検物質は、グルコースであってもよい。
 なお、実施の形態1~5においては、被検物質は、例えば、グルコース、乳酸、ピルビン酸、アセト酢酸、3-ヒドロキシ酪酸(β-ヒドロキシ酪酸)等であってもよい。
 なお、実施の形態1~5において、照射光を照射する照射手段は、1つの光源からの照射光を、例えば分岐させる等して、第1のセンサ、および、第2のセンサに照射光を照射する構成であってもよい。
 なお、実施の形態1~5において、検出手段に含まれ得る光学系は、レンズ群から構成されるものに限られない。例えば、光学系は、導波路から構成されていてもよい。
 実施の形態5における計測装置は、実施の形態1~4において説明した計測方法に従って制御されることにより、生体内における被検物質の濃度を計測することができる。実施の形態1~4において説明した計測方法は、計測手段100や判定手段200の指示に基づいて制御されることにより実行されてもよい。例えば、コンピュータ25の一部を構成する演算部の指示に基づいて制御されることにより、実施の形態1~4において説明した計測方法が実行されてもよい。
 なお、実施の形態1~5において、濃度を算出するための戻り光は、表面増強ラマン散乱光や蛍光のみに限られない。戻り光として、生体に埋め込まれたセンサからのラマン散乱光や反射光等を利用してもよい。戻り光は、それに基づいて被検物質の濃度を算出可能なものであればよい。
 なお、実施の形態における計測工程、および、計測手段は、生体に埋め込まれたセンサを用いずに、生体を透過した光である透過光等を利用して、各位置における被検物質の濃度を計測してもよい。
 なお、実施の形態1~5において、位置Aと位置Bとにおける被検物質の濃度の計測は、同時に行われてもよい。もしくは、平衡状態か否かを適切に判定できるのであれば、位置Aと位置Bとにおける被検物質の濃度の計測のタイミングは、ずれていてもよい。
 なお、実施の形態1~5において、位置Aや位置Bとは異なる生体内の血管外の位置C(図示せず)における被検物質の濃度である第3の濃度を計測してもよい。このとき、例えば、判定手段により平衡状態であると判定された場合に、第3の濃度の計測値を、生体内における被検物質の濃度として、出力してもよい。
 なお、位置Cに、第3のセンサを配置してもよい。このとき、第1のセンサや第2のセンサと同じ原理により、第3のセンサを利用して第3の濃度を計測してもよい。
 本発明の実施形態に係る生体成分を計測する方法、および、それに用いられる計測装置は、計測値の信頼性を向上させる。例えば、本発明の実施形態は、生体内に、センサを埋め込み、体液に含有される被検物質の濃度を計測する方法に好適に適用される。
 1  表皮組織
 2  真皮組織
 3  毛細血管
 4  皮下組織
 5  位置Aを示す点
 6  位置Bを示す点
 7  微粒子チップ
 8  微粒子チップ
 9  略平行光
 10  略平行光
 11  微粒子
 12  微粒子11の金表面部分
 13  被検物質
 14  捕捉物質
 15  光源
 16  光源
 17  表面増強ラマン散乱光
 18  表面増強ラマン散乱光
 19  光学系
 20  光学系
 21  分光フィルター
 22  分光フィルター
 23  光センサ
 24  光センサ
 25  コンピュータ
 26  支持体
 30  4-MPBAの表面増強ラマン散乱スペクトルのピーク
 31  蛍光微粒子
 32  蛍光微粒子

Claims (16)

  1.  生体内における被検物質の濃度を計測する計測装置であって、
      計測手段と、判定手段とを備え、
       前記計測手段は、位置Aにおける前記被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける前記被検物質の濃度である第2の濃度を計測し、
       ここで、
        前記位置Aと前記位置Bとは、前記生体内で、かつ、前記生体の血管外の位置であり、
        前記位置Bは、前記位置Aよりも前記血管から遠い位置であり、
       前記判定手段は、前記第1の濃度と前記第2の濃度とに基づいて、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であるか否かを判定する計測装置。
  2.  前記判定手段は、前記第1の濃度と前記第2の濃度との差が所定値未満の場合には、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であると判定する、
    請求項1に記載の計測装置。
  3.  前記判定手段により平衡状態であると判定された際に、前記第1の濃度の計測値を、前記生体内における被検物質の濃度として、出力する、
    請求項2に記載の計測装置。
  4.  前記判定手段は、前記第1の濃度と前記第2の濃度との差が所定値以上の場合には、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態でないと判定する、
    請求項1から3のいずれかに記載の計測装置。
  5.  前記判定手段により平衡状態でないと判定された際に、前記血管内における前記被検物質の濃度が、急激に変化中であることを報知する、
    請求項4に記載の計測装置。
  6.  前記判定手段により平衡状態でないと判定された際に、前記第1の濃度の計測値を、前記生体内における被検物質の濃度として、暫定的に出力し、
     前記出力した第1の濃度の計測値が暫定値であることを報知する、
    請求項4または5に記載の計測装置。
  7.  加温手段をさらに備え、
      前記加温手段は、前記判定手段により平衡状態でないと判定された際に、前記位置A、および、前記位置Bの周辺を加温する、
    請求項4から6のいずれかに記載の計測装置。
  8.  前記位置Aには、第1のセンサが配置され、
     前記位置Bには、第2のセンサが配置され、
     前記計測手段は、
      前記第1のセンサと前記第2のセンサとに、照射光を照射する照射手段と、
      前記第1のセンサの近傍からの戻り光である第1の戻り光を検出し、かつ、前記第2のセンサの近傍からの戻り光である第2の戻り光を検出する検出手段と、
      前記第1の戻り光に基づいて、前記第1の濃度を算出し、かつ、前記第2の戻り光に基づいて、前記第2の濃度を算出する算出手段と、
     を含む、
    請求項1から7のいずれかに記載の計測装置。
  9.  前記第1のセンサおよび前記第2のセンサのそれぞれにおける前記照射光が照射される側には、金属パターンが形成されており、
     前記照射光は、前記金属パターンに局在表面プラズモン共鳴を生じさせる光であり、
     前記第1の戻り光は、前記第1のセンサの前記金属パターンの近傍で発生した第1の表面増強ラマン散乱光であり、
     前記第1の濃度は、前記第1の表面増強ラマン散乱光の強度に基づいて、算出され、
     前記第2の戻り光は、前記第2のセンサの前記金属パターンの近傍で発生した第2の表面増強ラマン散乱光であり、
     前記第2の濃度は、前記第2の表面増強ラマン散乱光の強度に基づいて、算出される、
    請求項8に記載の計測装置。
  10.  前記第1の表面増強ラマン散乱光、および、前記第2の表面増強ラマン散乱光は、前記金属パターンの近傍に存在する前記被検物質で発生した表面増強ラマン散乱光である、
    請求項9に記載の計測装置。
  11.  前記第1のセンサ、および、前記第2のセンサの前記金属パターン上に、前記被検物質を捕捉する捕捉物質が固定化されている、
    請求項9に記載の計測装置。
  12.  前記第1の表面増強ラマン散乱光、および、前記第2の表面増強ラマン散乱光は、前記金属パターンの近傍に存在する前記捕捉物質で発生した表面増強ラマン散乱光である、
    請求項11に記載の計測装置。
  13.  前記第1のセンサは、第1の蛍光微粒子であり、
     前記第2のセンサは、第2の蛍光微粒子であり、
     前記第1の蛍光微粒子、および、前記第2の蛍光微粒子は、前記照射光の照射により、前記生体内の前記被検物質と反応することで強度が変化する蛍光を生成し、
     前記照射光は、前記第1および第2の蛍光微粒子の吸収波長に同調した波長の光であり、
     前記第1の戻り光は、前記第1の蛍光微粒子の近傍で発生した第1の蛍光であり、
     前記第1の濃度は、前記第1の蛍光の強度に基づいて、算出され、
     前記第2の戻り光は、前記第2の蛍光微粒子の近傍で発生した第2の蛍光であり、
     前記第2の濃度は、前記第2の蛍光の強度に基づいて、算出される、
    請求項8に記載の計測装置。
  14.  前記第1のセンサ、および、前記第2のセンサは、前記生体の真皮中に埋め込まれたセンサである、
    請求項8から13のいずれかに記載の計測装置。
  15.  前記被検物質は、グルコースである、
    請求項1から14のいずれかに記載の計測装置。
  16.  生体内における被検物質の濃度を計測する計測方法であって、以下の工程(a)および(b)を包含する方法:
      (a)位置Aにおける前記被検物質の濃度である第1の濃度を計測し、かつ、位置Bにおける前記被検物質の濃度である第2の濃度を計測する計測工程、
       ここで、
        前記位置Aと前記位置Bとは、前記生体内で、かつ、前記生体の血管外の位置であり、
        前記位置Bは、前記位置Aよりも前記血管から遠い位置であり、
      (b)前記第1の濃度と前記第2の濃度とに基づいて、前記血管内における前記被検物質の濃度と、前記生体内で、かつ、前記生体の血管外の位置において計測される前記被検物質の濃度とが、平衡状態であるか否かを判定する判定工程。
PCT/JP2014/000205 2013-01-25 2014-01-17 生体内における被検物質の濃度を計測する計測方法、および、計測装置 WO2014115516A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014554646A JP5834192B2 (ja) 2013-01-25 2014-01-17 生体内における被検物質の濃度を計測する計測方法、および、計測装置
US14/631,095 US9861303B2 (en) 2013-01-25 2015-02-25 Method and apparatus for measuring concentration of test substance in organism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-011639 2013-01-25
JP2013011639 2013-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/631,095 Continuation US9861303B2 (en) 2013-01-25 2015-02-25 Method and apparatus for measuring concentration of test substance in organism

Publications (1)

Publication Number Publication Date
WO2014115516A1 true WO2014115516A1 (ja) 2014-07-31

Family

ID=51227310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000205 WO2014115516A1 (ja) 2013-01-25 2014-01-17 生体内における被検物質の濃度を計測する計測方法、および、計測装置

Country Status (3)

Country Link
US (1) US9861303B2 (ja)
JP (1) JP5834192B2 (ja)
WO (1) WO2014115516A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200124556A1 (en) * 2018-10-18 2020-04-23 Freshair Sensor, Llc Diol and triol sensors and associated methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102655736B1 (ko) * 2016-07-19 2024-04-05 삼성전자주식회사 이종 스펙트럼 기반 혈당 추정 장치 및 방법
DE102017114317A1 (de) 2016-07-27 2018-02-01 Endress+Hauser Conducta Gmbh+Co. Kg Spektrometrisches Messgerät
KR101851107B1 (ko) * 2017-09-18 2018-04-20 ㈜엠에스엘 심전도(ecg) 파형 측정을 위한 전극 구조

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107890A (ja) * 1994-07-18 1996-04-30 Minimed Inc 光グルコースセンサー
JP2003508186A (ja) * 1999-09-10 2003-03-04 ベックマン コールター インコーポレイテッド 最小限に観血的な生体内の分析物の測定方法
WO2008143651A2 (en) * 2006-12-07 2008-11-27 The Ohio State University Research Foundation A system for in vivo biosensing based on the optical response of electronic polymers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240306B1 (en) 1995-08-09 2001-05-29 Rio Grande Medical Technologies, Inc. Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
US6152876A (en) * 1997-04-18 2000-11-28 Rio Grande Medical Technologies, Inc. Method for non-invasive blood analyte measurement with improved optical interface
US6002954A (en) * 1995-11-22 1999-12-14 The Regents Of The University Of California Detection of biological molecules using boronate-based chemical amplification and optical sensors
GB0025147D0 (en) 2000-10-13 2000-11-29 Torsana Diabetes Diagnostics A Optical sensor for in situ measurement of analytes
US20090118605A1 (en) * 2002-08-30 2009-05-07 Northwestern University Surface-enhanced raman nanobiosensor
GB0411162D0 (en) 2004-05-19 2004-06-23 Precisense As Optical sensor for in vivo detection of analyte
EP1874175A1 (en) * 2005-04-19 2008-01-09 Koninklijke Philips Electronics N.V. Spectroscopic determination of analyte concentration
WO2012046423A1 (ja) 2010-10-06 2012-04-12 パナソニック株式会社 生体に含有される生体成分の濃度を測定する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107890A (ja) * 1994-07-18 1996-04-30 Minimed Inc 光グルコースセンサー
JP2003508186A (ja) * 1999-09-10 2003-03-04 ベックマン コールター インコーポレイテッド 最小限に観血的な生体内の分析物の測定方法
WO2008143651A2 (en) * 2006-12-07 2008-11-27 The Ohio State University Research Foundation A system for in vivo biosensing based on the optical response of electronic polymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200124556A1 (en) * 2018-10-18 2020-04-23 Freshair Sensor, Llc Diol and triol sensors and associated methods
US11680921B2 (en) * 2018-10-18 2023-06-20 Freshair Sensor, Llc Diol and triol sensors and associated methods

Also Published As

Publication number Publication date
US20150164393A1 (en) 2015-06-18
JPWO2014115516A1 (ja) 2017-01-26
US9861303B2 (en) 2018-01-09
JP5834192B2 (ja) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5214036B2 (ja) 生体に含有される生体成分の濃度を測定する方法
EP1037553B1 (en) Method for non-invasive measurement of an analyte
US8509868B2 (en) Method for measuring a concentration of a biogenic substance contained in a living body
JP2008531989A (ja) 埋め込まれたバイオセンサによる表面増強分光
JP5834192B2 (ja) 生体内における被検物質の濃度を計測する計測方法、および、計測装置
JP5002078B2 (ja) 生体に含有される生体成分の濃度を測定する方法
JP2013142546A (ja) 生体成分の濃度を測定する方法及び測定装置
US9964491B2 (en) Method and detection system for detecting an analyte
WO2008039299A3 (en) Three diode optical bridge system
KR20180127939A (ko) 라만 피크점 변동을 이용한 정량적 분자 센싱 장치 및 방법
US20160341668A1 (en) Angled confocal spectroscopy
JP4618341B2 (ja) コヒーレントアンチストークスラマン散乱光を利用した生体内物質量測定方法
JP4985214B2 (ja) レーザーを用いた生体物質検出方法
JP5076035B1 (ja) 生体に含有される生体成分の濃度を測定する方法
WO2007060583A2 (en) Method and apparatus for determining concentrations of analytes in a turbid medium
JP2013176436A (ja) 生体成分濃度測定装置
US20130122608A1 (en) Method for Estimating Binding Kinetic Rate Constants by Using Fiber Optics Particle Plasmon Resonance (FOPPR) Sensor
JP5889487B2 (ja) センサーチップ、検出方法および検出装置
JP2013205078A (ja) ラマン分光法による生体内成分の濃度計測方法および濃度計測装置
Nam et al. Electronic Raman scattering calibration for quantitative surface-enhanced Raman spectroscopy and improved biostatistical analysis
WO2023152478A1 (en) Detection using sers probes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743176

Country of ref document: EP

Kind code of ref document: A1