WO2014115268A1 - 減速走行制御装置 - Google Patents

減速走行制御装置 Download PDF

Info

Publication number
WO2014115268A1
WO2014115268A1 PCT/JP2013/051320 JP2013051320W WO2014115268A1 WO 2014115268 A1 WO2014115268 A1 WO 2014115268A1 JP 2013051320 W JP2013051320 W JP 2013051320W WO 2014115268 A1 WO2014115268 A1 WO 2014115268A1
Authority
WO
WIPO (PCT)
Prior art keywords
deceleration
control
vehicle
accelerator
fuel consumption
Prior art date
Application number
PCT/JP2013/051320
Other languages
English (en)
French (fr)
Inventor
正樹 高野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/051320 priority Critical patent/WO2014115268A1/ja
Publication of WO2014115268A1 publication Critical patent/WO2014115268A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0625Fuel consumption, e.g. measured in fuel liters per 100 kms or miles per gallon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/702Road conditions

Definitions

  • the present invention relates to a deceleration traveling control device.
  • the fuel cut operation is generally performed during accelerator-off traveling.
  • the fuel cut operation may be unsuitable for improving the fuel consumption, for example, in an environment where the running resistance is large and the deceleration period (the period during which the fuel cut operation is possible) is short.
  • the deceleration period the period during which the fuel cut operation is possible
  • the present invention has been made in view of the above, and an object of the present invention is to provide a deceleration traveling control device that can improve fuel consumption during deceleration traveling of a vehicle.
  • a deceleration traveling control apparatus includes a first deceleration control that performs a fuel cut operation while the vehicle is traveling off an accelerator, and a first deceleration that injects fuel while the accelerator is traveling off.
  • the deceleration traveling control device capable of executing a plurality of deceleration controls including two deceleration control, based on the environmental information on a predetermined section indicating from the predetermined point before the stop position to the stop position, the first deceleration control and the Of the prediction means for predicting the fuel consumption amount in the predetermined section when executing the second deceleration control, and the fuel consumption amount predicted by the prediction means among the first deceleration control and the second deceleration control is small.
  • a deceleration control means for selecting and executing either one of them.
  • the deceleration traveling control device can further execute third deceleration control that performs coasting operation that interrupts power transmission between the engine and the drive wheels during the accelerator-off traveling, and the prediction means includes Based on the environmental information, the fuel consumption amount in the predetermined section when the third deceleration control is executed is further predicted, and the deceleration control means includes the first deceleration control, the second deceleration control, and the third deceleration control. It is preferable to select and execute any one of the deceleration controls that minimizes the fuel consumption predicted by the prediction unit.
  • the deceleration travel control device includes a deceleration calculation unit that calculates a deceleration during the accelerator-off travel when executing the plurality of deceleration controls based on the environment information, and the deceleration calculation unit.
  • Travel time calculation means for calculating the travel time from the start position of the accelerator-off running to the stop position when executing the plurality of deceleration controls based on the deceleration calculated by
  • the predicting means predicts the fuel consumption amount when executing the plurality of deceleration controls based on the travel time calculated by the travel time calculating means.
  • the deceleration travel control device includes a deceleration calculation unit that calculates a deceleration during the accelerator-off travel when executing the plurality of deceleration controls based on the environment information, and the deceleration calculation unit.
  • Position calculating means for calculating a start position of the accelerator-off travel when the plurality of deceleration controls are executed based on the deceleration calculated by the vehicle, and the accelerator-off travel for the driver of the vehicle.
  • the environmental information includes vehicle air resistance, road load, road surface gradient, weather, road surface ⁇ , road surface type, atmospheric pressure, altitude, temperature, vehicle weight, load weight, and the number of passengers. It is preferable to include at least one.
  • the deceleration traveling control device can determine whether or not the fuel cut operation is appropriate for the traveling environment, the fuel cut operation is not performed in the environment where the fuel cut operation does not lead to the improvement of the fuel consumption. It is possible to select and execute a deceleration control method that is more suitable for improving fuel efficiency than fuel cut operation. As a result, it is possible to direct accelerator-off traveling with good fuel efficiency, and as a result, it is possible to improve the fuel efficiency during deceleration traveling of the vehicle.
  • FIG. 1 is a block diagram showing a schematic configuration of a driving support apparatus to which a deceleration traveling control apparatus according to an embodiment of the present invention is applied.
  • FIG. 2 is a diagram illustrating an example of changes in the vehicle speed and the fuel injection amount when a deceleration operation is performed by the deceleration control that can be executed by the deceleration traveling control device of the present embodiment.
  • FIG. 3 is a flowchart of the deceleration support process performed by the ECU as the deceleration traveling control device of the present embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a driving support apparatus to which a deceleration traveling control apparatus according to an embodiment of the present invention is applied.
  • the driving support device 1 is mounted on a vehicle 2 as a host vehicle, and includes a state detection device 3, an ECU (Electronic Control Unit: electronic control unit) 4 (deceleration running control device), and an HMI ( Human Machine Interface) device 5 (notification means). Based on the information acquired by the state detection device 3, the driving support device 1 controls the HMI device 5 and causes the driver of the vehicle 2 to present various driving support information to the driver of the vehicle 2. It supports safe driving.
  • a state detection device 3 an ECU (Electronic Control Unit: electronic control unit) 4 (deceleration running control device), and an HMI ( Human Machine Interface) device 5 (notification means).
  • the driving support device 1 controls the HMI device 5 and causes the driver of the vehicle 2 to present various driving support information to the driver of the vehicle 2. It supports safe driving.
  • the drive support device 1 when the driving support device 1 has a stop position X_stp (see FIG. 2) where the vehicle 2 needs to stop in front of the travel route of the vehicle 2, the drive support device 1 is on the front side of the travel route from the stop position X_stp.
  • the driving support information for prompting the driver to perform a deceleration operation for stopping the vehicle 2 at the stop position X_stp is displayed on the HMI device 5 within the service provision section set in the range of.
  • the deceleration operation as the target of driving support includes an accelerator off operation in which the accelerator pedal is returned and the engine brake decelerates, and a brake on operation in which the brake pedal is depressed to decelerate by the foot brake.
  • examples of the stop position X_stp where the vehicle 2 needs to stop include an intersection, a pedestrian crossing point, a street, a point facing a store entrance, a temporary stop line, and the like.
  • the vehicle 2 is a so-called conventional vehicle including an engine 6 as a driving source for driving for rotating the driving wheels.
  • the vehicle 2 travels by converting the power output from the engine 6 into an appropriate driving force by the transmission 7 and transmitting the driving force to the driving wheels.
  • the transmission 7 has a plurality of gear stages having different gear ratios, and can output a desired driving force by shifting to an appropriate gear stage according to the traveling state of the vehicle 2.
  • the state detection device 3 detects the state of the vehicle 2 and the surrounding state of the vehicle 2, and detects various state quantities and physical quantities representing the state of the vehicle 2, operating states of switches, and the like.
  • the state detection device 3 is electrically connected to the ECU 4 and outputs various signals to the ECU 4.
  • the state detection device 3 detects information related to the stop position X_stp in front of the course of the vehicle 2, environmental information on the traveling route of the vehicle 2 and the surrounding traveling environment, information related to the driving state of the vehicle 2, and the like.
  • it includes a camera, a radar, a car navigation device, a map database, a road-to-vehicle communication device, a vehicle-to-vehicle communication device, a wireless communication device, a vehicle speed sensor, an accelerator pedal sensor, a brake pedal sensor, and the like.
  • the ECU4 controls each part of the vehicle 2 based on the various information input from the state detection apparatus 3.
  • FIG. The ECU 4 is connected to the state detection device 3, the HMI device 5, the engine 6, and the transmission 7.
  • the ECU 4 controls the HMI device 5 according to the degree of approach to the stop position X_stp in front of the course of the vehicle 2 to decelerate the accelerator for the driver of the vehicle 2 (accelerator off operation, brake on Driving assistance is provided to provide instructions for prompting (operation).
  • the ECU 4 controls the engine 6 and the transmission 7 during traveling from when the driver of the vehicle 2 performs an accelerator-off operation to when a brake-on operation is performed (accelerator-off traveling), Driving assistance for executing deceleration control for decelerating the vehicle 2 is performed.
  • the ECU 4 is configured to be able to execute a plurality of deceleration controls.
  • the ECU 4 selects, from among a plurality of executable deceleration controls, a deceleration control that provides the best fuel efficiency under the current conditions based on various conditions such as the current driving state of the vehicle and the surrounding traveling environment. Execute. That is, the ECU 4 functions as a “deceleration running control device” according to the present embodiment for executing the one of the plurality of deceleration controls that consumes the least amount of fuel during the accelerator-off running of the vehicle 2.
  • the ECU 4 is configured to be able to execute fuel cut control, N coasting control, and engine brake control.
  • the fuel cut control is a control in which the fuel injection to the engine 6 is temporarily stopped and the generation of power from the engine 6 is stopped while maintaining the transmission 7 in the drive range (D range) used during normal driving. .
  • the engine 6 is in a stopped state, and the power transmission path is connected from the engine 6 to the drive wheels. Therefore, if the fuel cut control is executed during the accelerator-off running, the vehicle 2 The deceleration due to the load of the entire power transmission element from the drive wheel to the drive wheel is generated.
  • N coasting control is control in which the vehicle 2 travels by switching the transmission 7 to the neutral range (N range).
  • the power transmission on the power transmission path from the engine 6 to the drive wheels is interrupted and the engine brake is reduced, so that the traveling load can be reduced and the fuel consumption can be improved.
  • the power transmission path from the engine 6 to the drive wheels is interrupted by an engagement element such as a clutch in the transmission 7, so that when the N coasting control is executed during accelerator-off traveling, the vehicle 2 is driven.
  • a deceleration due to the load of the power transmission element between the wheel and the clutch in the transmission 7 is generated. Therefore, the deceleration generated in the N coasting control is smaller than that in the fuel cut control.
  • the engine brake control is a control for decelerating the vehicle 2 by the engine brake by controlling the change of the gear stage of the transmission 7 while maintaining the transmission 7 in the D range.
  • a timing (shift schedule) for shifting down the gear stage of the transmission 7 is appropriately controlled to obtain a desired speed. Deceleration can be generated. For example, if the shift down timing is made earlier, the period during which the engine braking force on the low gear side is large can be taken longer, so that the deceleration generated in the vehicle 2 can be increased.
  • the deceleration generated by the engine brake control is set to a value between the deceleration of the fuel cut control and the deceleration of the N coasting control.
  • the ECU 4 executes the following three types of deceleration control, that is, deceleration control 1 (first deceleration control), deceleration control 2 (second deceleration control), and deceleration control 3 (third deceleration control). be able to.
  • Deceleration control 1 Fuel cut control is executed while the vehicle 2 is traveling off the accelerator, and a fuel cut operation is performed in which the vehicle 2 travels with the fuel supply to the engine 6 cut off.
  • Deceleration control 2 While the vehicle 2 is running off the accelerator, the engine 7 is controlled so that the transmission 7 is maintained in the D range while the fuel is injected without performing the fuel cut operation, and the vehicle is decelerated by the engine brake.
  • Deceleration control 3 N coasting control is executed during accelerator-off traveling, and the coasting operation is performed in which the transmission stage of the transmission 7 is set to the neutral position (N range) and power transmission between the engine 6 and the drive wheels is interrupted Do.
  • FIG. 2 is a diagram illustrating an example of changes in the vehicle speed and the fuel injection amount when a deceleration operation is performed by the deceleration control that can be executed by the deceleration traveling control device of the present embodiment.
  • the horizontal axis in FIG. 2 represents the travel distance of the vehicle, and the current position X_now of the vehicle at the start of the deceleration support process described later with reference to FIG.
  • a stop position X_stp for stopping the vehicle 2 is shown at a position in the positive direction by a distance D_stp-now.
  • the horizontal axis of FIG. 2 shows a target brake start position X_b at which the brake operation should be started at a position returned by the distance D_stp-b from the stop position X_stp in the direction of the current position X_now.
  • the accelerator-off operation is started when the deceleration control 1 to 3 is performed at a position returned by the distance D_b-a1, D_b-a2, D_b-a3 from the target brake start position X_b to the current position X_now.
  • the power accelerator off start positions X_a1, X_a2, and X_a3 are shown.
  • the vertical axis in FIG. 2 represents the vehicle speed and the fuel injection amount.
  • the transition of the vehicle speed and the fuel injection amount when the deceleration control 1 that is decelerated by the fuel cut control is executed after the accelerator off operation is indicated by a dotted line
  • the deceleration control 2 that is decelerated by the engine brake control after the accelerator off operation is executed.
  • the transition of the vehicle speed and the fuel injection amount in this case is shown by a one-dot chain line
  • the transition of the vehicle speed and the fuel injection amount when the deceleration control 3 that decelerates by N coasting control after the accelerator-off operation is executed is shown by a solid line.
  • the vehicle 2 decelerates at different deceleration rates by the deceleration controls 1 to 3 and decelerates to the same target brake start vehicle speed V_brk at the target brake start position X_b. Then, when a brake operation is performed at the target brake start position X_b, the vehicle 2 is decelerated at the target brake deceleration A_brk generated by the brake operation, the speed becomes 0 at the stop position X_stp, and the vehicle 2 stops.
  • the deceleration A_1 generated in the vehicle 2 when the fuel cut control (deceleration control 1) is executed is larger than the deceleration A_2 generated in the vehicle 2 when the engine brake control (deceleration control 2) is executed.
  • the deceleration A_2 is larger than the deceleration A_3 generated in the vehicle 2 when the N coasting control (deceleration control 3) is executed. That is, the deceleration decreases in the order of A_1, A_2, and A_3.
  • the distances D_b-a1, D_b-a2, and D_b-a3 required to decelerate from the current vehicle speed V_now to the target brake start vehicle speed V_brk in each deceleration control 1 to 3 are as shown in FIG. , D_b-a1, D_b-a2, and D_b-a3.
  • the accelerator-off start positions X_a1, X_a2, and X_a3 of the deceleration controls 1 to 3 are such that X_a1 is closest to the target brake start position X_b, X_a3 is closest to the current position X_now, and X_a2 is intermediate between X_a1 and X_a3. It is set to be.
  • the fuel injection amount F_now determined according to the current vehicle speed V_now when the vehicle 2 enters the current position X_now is maintained until the accelerator-off operation is performed. Depending on 3, it changes to a different value.
  • the fuel cut control is executed after the accelerator off start position X_a1 and the fuel supply to the engine 6 is stopped. Change.
  • the deceleration control 2 is executed, as shown by a one-dot chain line in FIG. 2, after the accelerator off start position X_a2, the transmission 7 is decelerated by the engine brake while being maintained in the D range. The fuel injection amount F_D of the range changes.
  • the deceleration control 3 is executed, as shown by a solid line in FIG. 2, the transmission 7 is switched to the N range after the accelerator-off start position X_a3, so that the fuel injection amount changes to the fuel injection amount F_N in the N range. .
  • the load acting on the engine 6 includes all loads due to power transmission elements from the engine 6 to the drive wheels in the case of the D range, while in the N range, it becomes a load from the engine 6 to the clutch. Is larger than the N range. Due to the difference in load, as shown in FIG. 2, the fuel injection amount F_D in the D range is larger than the fuel injection amount F_N in the N range.
  • the ECU 4 executes each deceleration control 1 to 3 on the fuel consumption amount, which is the total amount of fuel injection in a predetermined section from a predetermined point (current position X_now) in the service providing section to the stop position X_stp. Predict the case. Then, the deceleration control with the smallest predicted fuel consumption is selected and actually executed.
  • the fuel consumption amount in each deceleration control varies depending on the driving state of the vehicle 2 such as the vehicle speed (current vehicle speed V_now) entering the service providing section and the surrounding traveling environment.
  • the ECU 4 determines a predetermined distance from the current position X_now to the stop position X_stp based on various conditions at that time.
  • the optimal deceleration control is selected by sequentially predicting the fuel consumption in the section.
  • the ECU 4 provides an information acquisition unit 41, a deceleration calculation unit 42, in order to enable driving support for the deceleration traveling of the vehicle 2, such as teaching of the accelerator off operation and execution of deceleration control.
  • a deceleration calculation unit 42 in order to enable driving support for the deceleration traveling of the vehicle 2, such as teaching of the accelerator off operation and execution of deceleration control.
  • Each function of the deceleration operation position calculation unit 43, the travel time calculation unit 44, the fuel consumption amount prediction unit 45, and the deceleration support control unit 46 is realized.
  • the information acquisition unit 41 acquires information on the driving state of the vehicle 2 and information (environment information) on the driving route of the vehicle 2 and the surrounding driving environment (environment information) from the state detection device 3. Specifically, the information acquisition unit 41 includes information on driving conditions such as the stop position X_stp of the vehicle 2, the current position X_now of the vehicle 2, and the current vehicle speed V_now, air resistance of the vehicle, road load (travel load resistance), road Acquire environmental information such as slope, weather, road surface ⁇ , road surface type (unpaved road, etc.).
  • driving conditions such as the stop position X_stp of the vehicle 2, the current position X_now of the vehicle 2, and the current vehicle speed V_now, air resistance of the vehicle, road load (travel load resistance), road Acquire environmental information such as slope, weather, road surface ⁇ , road surface type (unpaved road, etc.).
  • the deceleration calculation unit 42 calculates the decelerations A_1, A_2, A_3 and the target brake deceleration A_brk when each of the deceleration controls 1 to 3 is executed based on various information acquired by the information acquisition unit 41.
  • the deceleration operation position calculation unit 43 starts accelerator-off when each deceleration control 1 to 3 is executed based on various information acquired by the information acquisition unit 41 and various decelerations calculated by the deceleration calculation unit 42.
  • the positions X_a1, X_a2, X_a3 and the target brake start position X_b are calculated.
  • the travel time calculation unit 44 Based on the various information acquired by the information acquisition unit 41, the calculation results of the deceleration calculation unit 42, and the deceleration operation position calculation unit 43, the travel time calculation unit 44 until the accelerator off start position X_an is reached from the current position X_now. Travel time T_an-now, and travel time T_stp-an (n: 1 to 3) from the accelerator off start position X_an to the stop position X_stp are calculated.
  • the fuel consumption amount prediction unit 45 predicts the fuel consumption amounts F_1, F_2, and F_3 in a predetermined section indicating the current position X_now to the stop position X_stp in the service providing section when each deceleration control 1 to 3 is executed.
  • the details of the calculations of the deceleration calculation unit 42, the deceleration operation position calculation unit 43, the travel time calculation unit 44, and the fuel consumption amount prediction unit 45 will be described later with reference to the flowchart of FIG.
  • the deceleration support control unit 46 selects one of the deceleration controls 1 to 3 based on the fuel consumption amount of each deceleration control 1 to 3 predicted by the fuel consumption amount prediction unit 45, and executes the selected deceleration control. Accordingly, the driving support operation for the deceleration operation of the driver of the vehicle 2 is controlled.
  • the driving support operation for the deceleration operation is selected by urging the vehicle driver to perform the accelerator off operation at the selected accelerator off start position X_an of the deceleration control, and by controlling the engine 6 or the transmission 7 after the accelerator off operation. Executing the controlled deceleration control and prompting the driver to perform a brake operation at the target brake start position.
  • the ECU 4 is physically an electronic circuit mainly composed of a known microcomputer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an interface, and the like.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • Each of the functions of the ECU 4 described above loads various application programs held in the ROM into the RAM and executes them by the CPU, thereby operating various devices in the vehicle 2 under the control of the CPU, and in the RAM and ROM. This is realized by reading and writing data.
  • the HMI device 5 is a support device that can output driving support information that is information for supporting driving of the vehicle 2, and is a device that provides driving support information to the driver.
  • the HMI device 5 is an in-vehicle device and includes, for example, a display device (visual information display device), a speaker (auditory information output device), and the like provided in the vehicle interior of the vehicle 2.
  • the HMI device 5 provides driving support information to the driver by outputting visual information (graphic information, character information), auditory information (voice information, sound information), etc., and guides the driving operation of the driver.
  • the HMI device 5 supports the realization of the target value by the driving operation of the driver by providing such information.
  • the HMI device 5 is electrically connected to the ECU 4 and controlled by the ECU 4.
  • the HMI device 5 presents driving support information (accelerator off, brake on) regarding the deceleration operation generated by the deceleration support control unit 46 to the driver, and stops the vehicle 2 at the stop position X_stp. Encourage a deceleration operation.
  • an existing device such as a display device or a speaker of a navigation system may be used, and for example, haptic information output for outputting haptic information such as steering wheel vibration, seat vibration, pedal reaction force, etc. You may comprise including an apparatus etc.
  • FIG. 3 is a flowchart of the deceleration support process performed by the ECU as the deceleration traveling control device of the present embodiment.
  • the processing of the flowchart shown in FIG. 3 is performed when, for example, the ECU 4 detects that the vehicle 2 has entered the service providing section of the driving support service, and a stop position X_stp such as a signal or a stop line is detected in the service providing section. To be implemented.
  • step S1 the information acquisition unit 41 acquires the current position X_now and the current vehicle speed V_now of the vehicle 2 and the stop position X_stp from the state detection device 3.
  • the current vehicle speed V_now can be acquired from a vehicle speed sensor of the state detection device 3, for example.
  • the current position X_now and the stop position X_stp of the vehicle 2 can be acquired from learning data and infrastructure information of the car navigation device of the state detection device 3.
  • step S2 the deceleration calculation unit 42 calculates the target brake deceleration A_brk and the deceleration A_n (n: 1 to 3) when each deceleration control n is executed.
  • the target brake deceleration A_brk is a target value of the deceleration that occurs in accordance with the brake operation by the driver of the vehicle 2.
  • the target brake deceleration A_brk is a deceleration at which the driver of the vehicle 2 or the following vehicle does not feel sudden braking, and a deceleration at which the driver can stop without feeling stress can be set.
  • the deceleration calculation unit 42 determines the target brake deceleration according to the inter-vehicle distance from other vehicles around the vehicle 2, the environmental information such as the vehicle speed and road surface condition of the other vehicles, and the driving state such as the traveling speed of the vehicle 2.
  • A_brk can be set as appropriate.
  • the decelerations A_1, A_2, and A_3 in each deceleration control 1 to 3 can be calculated based on environmental information on the travel route of the vehicle 2, friction (load) on the power transmission route in each deceleration control 1 to 3.
  • the environmental information includes air resistance, road load (running load resistance), road surface gradient, weather, road surface ⁇ , road surface type (such as unpaved road), atmospheric pressure, altitude, temperature, vehicle weight, It may include at least one of information such as loading weight and number of passengers.
  • the friction in each deceleration control is determined by various operating conditions such as the operating state of the engine 6, the engagement state of the tire and the transmission 7, the gear stage, the engagement state of the transmission 7 and the engine 6.
  • the environmental information and the driving state information described above are information on a predetermined section indicating a position from a predetermined point (current position X_now) before the stop position X_stp in the service providing section to the stop position X_stp. It can be acquired from the state detection device 3.
  • the deceleration A_1 is a deceleration generated in a portion including the tire (drive wheel) to the engine 6 when the vehicle 2 is in a fuel cut state (running by executing fuel cut control).
  • the deceleration A_1 can be calculated in consideration of loads caused by individual power transmission elements from the tire to the engine 6 when the vehicle travels by executing the deceleration control 1 (fuel cut control).
  • the deceleration A_2 is a deceleration generated in a portion including from the tire (drive wheel) to the transmission 7 when the vehicle 2 is in the D range state (a state where the shift position of the transmission 7 is in the drive range).
  • the deceleration A_1 can be calculated in consideration of loads caused by individual power transmission elements from the tire to the transmission 7 when the vehicle travels by executing the deceleration control 2 (engine brake control).
  • the deceleration A_3 is a clutch that switches between the N range and the D range in the transmission 7 from the tire (driving wheel) when the vehicle 2 is in the N range state (the shift position of the transmission 7 is in the neutral range). This is the deceleration generated in the portion including up to the engaging element.
  • the deceleration A_3 can be calculated in consideration of loads caused by individual power transmission elements from the tire to the clutch when the vehicle is traveling while executing the deceleration control 3 (N coasting control).
  • step S3 the deceleration operation position calculation unit 43 calculates a target brake start vehicle speed V_brk.
  • the target brake start vehicle speed V_brk is a vehicle speed at which the driver feels that the vehicle can stop or decelerate without stress at the target brake deceleration A_brk, and changes in proportion to the approach vehicle speed (current vehicle speed V_now) and the road gradient.
  • the deceleration operation position calculation unit 43 calculates the target brake deceleration A_brk based on information such as the current vehicle speed V_now and the travel path gradient acquired by the information acquisition unit 41.
  • step S4 the deceleration operation position calculation unit 43 continues the remaining distance D_stp-now from the current position X_now to the stop position X_stp, the remaining distance D_stp-b from the target brake start position X_b to the stop position X_stp, and the accelerator off start.
  • the remaining distance D_b-an (n: 1 to 3) from the position X_an to the target brake start position X_b is calculated.
  • the remaining distance D_stp-now from the current position X_now to the stop position X_stp is calculated by the following equation (1) using the current position X_now and the stop position X_stp acquired in step S1.
  • D_stp-now X_stp-X_now (1)
  • the remaining distance D_stp-b from the target brake start position X_b to the stop position X_stp can be derived as follows. Considering the behavior in which the vehicle 2 moves from the target brake start position X_b to the stop position X_stp and stops at the stop position X_stp, the speed transition in this period changes from the target brake start vehicle speed V_brk at the target brake start position X_b to the target. The vehicle decelerates at the brake deceleration A_brk and becomes 0 at the stop position X_stp.
  • the remaining distance D_b-an (n: 1 to 3) from the accelerator off start position X_an to the target brake start position X_b can be derived as follows.
  • the speed change during this period is the same vehicle speed as the current vehicle speed V_now as shown in FIG. 2 at the accelerator-off start position X_an, and decelerates at the deceleration A_n of each deceleration control n from the accelerator-off start position X_an.
  • the target brake start vehicle speed V_brk is reached at the brake start position X_b.
  • the behavioral equation of this behavior can be expressed by the following equation (4) based on the law of conservation of mechanical energy.
  • V_brk 2 ⁇ V_now 2 2 ⁇ A_n ⁇ D_b-an (N: 1 to 3) (4)
  • the current vehicle speed V_now acquired in step S1 the deceleration A_n calculated in step S2, and the target brake start vehicle speed V_brk calculated in step S3 are substituted into the above equation (5).
  • the remaining distance D_b-an can be calculated.
  • the deceleration operation position calculation unit 43 calculates the remaining distances D_stp-now, D_stp-b, and D_b-an using the above equations (1), (3), and (5).
  • the process of step S4 proceeds to step S5.
  • step S5 the deceleration operation position calculation unit 43 continues to calculate the accelerator-off start position X_an and the target brake start position X_b for each deceleration control n.
  • X_b X_stp ⁇ D_stp ⁇ b (6)
  • step S5 Since the accelerator-off start position X_an of each deceleration control n is a position that is a short distance D_b-an before the target brake start position X_b on the travel route, it can be calculated by the following equation (7).
  • step S6 the travel time calculation unit 44 uses the travel time T_an-now from the current position X_now to the accelerator off start position X_an, and the travel time T_stp ⁇ from the accelerator off start position X_an to the stop position X_stp ⁇ . an (n: 1 to 3) is calculated.
  • the travel time T_an-now is the distance (D_stp-now-D_b-an-D_stp-b) between the current position X_now and the accelerator-off start position X_an and the vehicle speed in the section from the current position X_now to the accelerator-off start position X_an Using (current vehicle speed V_now), it is calculated by the following equation (8).
  • T_an-now (D_stp-now-D_b-an -D_stp-b) / V_now ... (8)
  • T_stp-an (V_brk-V_now) / A_n + (0 ⁇ V_brk) / A_brk ... (9)
  • the fuel consumption amount prediction unit 45 calculates the fuel consumption amount F_n (n: 1 to 3) when each deceleration control n is executed.
  • the fuel consumption amounts F_1, F_2, and F_3 are the deceleration control 1 (fuel cut control), deceleration control 2 (engine brake control), and deceleration control 3 (N coasting control) in the section from the current position X_now to the stop position X_stp. This is the total fuel injection amount required for traveling.
  • the fuel consumption amount prediction unit 45 calculates the fuel consumption amounts F_1, F_2, and F_3 when executing the deceleration controls 1 to 3 by the following equations (10) to (12), respectively.
  • F_1 T_a1-now ⁇ F_now (10)
  • F_2 T_a2-now ⁇ F_now + T_stp ⁇ a2 ⁇ F_D (11)
  • F_3 T_a3-now ⁇ F_now + T_stp ⁇ a3 ⁇ F_N (12)
  • F_now is a fuel injection amount consumed per unit time at the current vehicle speed V_now.
  • F_now can be acquired from information related to the driving state of the vehicle 2 or the like.
  • F_N is a fuel injection amount consumed per unit time when traveling in the N range.
  • F_D is a fuel injection amount consumed per unit time when traveling in the D range.
  • F_D is a fuel injection amount necessary for the engine to operate independently in a state where the torque received by the engine 6 from the transmission 7 is subtracted.
  • step S8 the deceleration support control unit 46 compares the fuel consumption amounts F_1, F_2, and F_3 calculated in step S7, and the deceleration control n that minimizes the fuel consumption amount (n is any one of 1 to 3). ) Is selected.
  • step S9 the deceleration support control unit 46 determines whether or not the vehicle 2 has reached the accelerator-off start position X_an (n is any one of 1 to 3) of the deceleration control n selected in step S8. Is done.
  • the process proceeds to step S10.
  • the process waits until the vehicle 2 reaches the accelerator-off start position X_an.
  • step S10 since the vehicle 2 has reached the accelerator off start position X_an, the deceleration support control unit 46 teaches the driver driving assistance information for prompting the driver to perform the accelerator off operation via the HMI device 5. At the same time, the engine 6 or the transmission 7 is operated as appropriate, and the selected deceleration control is executed. When the process of step S10 is completed, this control flow ends.
  • step S8 is completed before the vehicle 2 reaches the accelerator-off start position X_a3 when the deceleration control 3 with the earliest accelerator-off timing is performed.
  • the ECU 4 as the deceleration traveling control device of the present embodiment performs the deceleration control 1 that performs the fuel cut operation while the vehicle 2 is traveling off the accelerator, and performs the engine brake control in the D range state while injecting fuel while the accelerator is traveling off.
  • a plurality of deceleration controls including the deceleration control 2 that decelerates can be executed.
  • the ECU 4 performs the deceleration control 1 and the deceleration control 2 in the predetermined section based on the environmental information on the predetermined section indicating the predetermined position (current position X_now) before the stop position X_stp to the stop position X_stp.
  • the ECU 4 as the deceleration traveling control device of the present embodiment can further execute the deceleration control 3 for performing N coasting operation for transmitting power between the engine 6 and the drive wheels during the accelerator-off traveling.
  • the fuel consumption amount prediction unit 45 further predicts the fuel consumption amount F_3 in the predetermined section when the deceleration control 3 is executed based on the environmental information.
  • the deceleration support control unit 46 performs any one of the deceleration control 1, the deceleration control 2, and the deceleration control 3 so that the fuel consumption amounts F_1, F_2, and F_3 predicted by the fuel consumption prediction unit 45 are minimized. Select and execute.
  • the ECU 4 as the deceleration traveling control device of the present embodiment calculates the decelerations A_1, A_2, and A_3 during the accelerator-off traveling when the plurality of deceleration controls 1 to 3 are executed based on the environmental information. Based on the speed calculation unit 42 and the deceleration-off travel start positions X_a1, X_a2, and X_a3 when a plurality of deceleration controls 1 to 3 are executed based on the decelerations A_1, A_2, and A_3 calculated by the deceleration calculation unit 42 A travel time calculation unit 44 that calculates travel times T_stp-a1, T_stp-a2, and T_stp-a3 to the stop position X_stp.
  • the fuel consumption amount prediction unit 45 performs the fuel consumption amount F_1 when performing a plurality of deceleration controls 1 to 3 based on the travel times T_stp-a1, T_stp-a2, and T_stp-a3 calculated by the travel time calculation unit 44. , F_2, F_3.
  • the fuel consumption amounts F_1, F_2, and F_3 can be calculated based on the deceleration and travel time that are strongly related to fuel consumption during deceleration traveling, so that the fuel consumption amount of each deceleration control can be accurately predicted. .
  • the ECU 4 as the deceleration traveling control device of the present embodiment calculates the decelerations A_1, A_2, and A_3 during the accelerator-off traveling when the plurality of deceleration controls 1 to 3 are executed based on the environmental information. Based on the speed calculation unit 42 and the decelerations A_1, A_2, and A_3 calculated by the deceleration calculation unit 42, the start positions X_a1, X_a2, and X_a3 of the accelerator-off travel when performing a plurality of deceleration controls 1 to 3 are determined. A deceleration operation position calculation unit 43 for calculating, and an HMI device 5 for notifying the driver of the vehicle 2 of an accelerator-off operation for performing accelerator-off running.
  • the deceleration support control unit 46 is at a start position (any one of X_a1, X_a2, and X_a3) when executing one deceleration control that minimizes the fuel consumption F_1, F_2, and F_3 among the plurality of deceleration controls 1 to 3. Based on this, the timing for notification by the HMI device 5 is determined.
  • “environmental information” means air resistance of the vehicle, road load, road surface gradient, weather, road surface ⁇ , road surface type, atmospheric pressure, altitude, temperature, vehicle weight. , At least one of the loading weight and the number of passengers.
  • the deceleration control 1 fuel cut control
  • the deceleration control 2 engine brake control
  • the deceleration control 3 N coasting control
  • the deceleration control that can be performed is a part of various states relating to the driving of the vehicle 2 such as the engagement state of the tire and the transmission 7, the gear stage, the engagement state of the transmission 7 and the engine 6, and the presence or absence of fuel cut of the engine 6. Alternatively, it can be realized by controlling all combinations or durations of various states.
  • one deceleration control is selected and executed based on the fuel consumption when a plurality of deceleration controls are executed. For example, the slope near the stop point X_stp is steep. If it is known in advance that the running resistance is large, such as a large road load, a specific deceleration control may be selected without predicting the fuel consumption.

Abstract

 減速走行制御装置としてのECU(4)は、車両(2)のアクセルオフ走行中に燃料カット運転を行なう減速制御1と、アクセルオフ走行中に燃料を噴射しながらDレンジ状態でエンジンブレーキ制御を行って減速する減速制御2とを含む複数の減速制御を実行可能である。ECU(4)は、車両(2)の走行経路上の環境情報に基づいて、減速制御1及び減速制御2を実行する 場合の燃料消費量F_1,F_2を予測する燃料消費量予測部(45)と、減速制御1及び減速制御2のうち、燃料消費量予測部(45)により予測された燃料消費量F_1,F_2が少ないいずれか一方を選択して実行する減速支援制御部(46)と、を備える。これにより、車両(2)の減速走行中の燃費を向上できる。

Description

減速走行制御装置
 本発明は、減速走行制御装置に関する。
 従来、車両のアクセルオフ走行中に車両を減速させるための減速手段を複数有する車両が知られている。このような技術として、例えば特許文献1には、ハイブリッド車両の減速燃料カット運転の前に、モータジェネレータによる回生を行なう場合と回生を行なわない場合の燃料消費量を予測・比較し、どちらの場合が燃費の良好な減速運転方法であるかを判定する技術が開示されている。
特開2010-241185号公報
 ところで、アクセルオフ走行中には、特許文献1に記載されるように、燃料カット運転が常時実施されるのが一般的である。しかし、燃料カット運転は、例えば走行抵抗が大きく減速期間(燃料カット運転が可能な期間)が短い環境など、燃費向上に不向きな場合がある。このように、従来技術では、車両の減速走行中の燃費を向上させる点で、さらなる改善の余地があった。
 本発明は、上記に鑑みてなされたものであって、車両の減速走行中の燃費を向上できる減速走行制御装置を提供することを目的とする。
 上記課題を解決するために、本発明に係る減速走行制御装置は、車両のアクセルオフ走行中に燃料カット運転を行なう第一減速制御と、前記アクセルオフ走行中に燃料を噴射しながら減速する第二減速制御とを含む複数の減速制御を実行可能な減速走行制御装置において、停止位置手前の所定地点から前記停止位置までを示す所定区間上における環境情報に基づいて、前記第一減速制御及び前記第二減速制御を実行する場合の前記所定区間における燃料消費量を予測する予測手段と、前記第一減速制御及び前記第二減速制御のうち、前記予測手段により予測された前記燃料消費量が少ないいずれか一方を選択して実行する減速制御手段と、を備えることを特徴とする。
 また、上記の減速走行制御装置は、前記アクセルオフ走行中にエンジンと駆動輪との間の動力伝達を遮断する惰行運転を行なう第三減速制御をさらに実行可能であり、前記予測手段は、前記環境情報に基づいて、前記第三減速制御を実行する場合の前記所定区間における燃料消費量をさらに予測し、前記減速制御手段は、前記第一減速制御、前記第二減速制御、及び前記第三減速制御のうち、前記予測手段により予測された前記燃料消費量が最少となるいずれか1つの制御を選択して実行する、ことが好ましい。
 また、上記の減速走行制御装置は、前記環境情報に基づいて、前記複数の減速制御を実行する場合の前記アクセルオフ走行中の減速度をそれぞれ演算する減速度演算手段と、前記減速度演算手段により演算された前記減速度に基づいて、前記複数の減速制御を実行する場合の前記アクセルオフ走行の開始位置から前記停止位置までの旅行時間をそれぞれ演算する旅行時間演算手段と、を備え、前記予測手段は、前記旅行時間演算手段により演算された前記旅行時間に基づいて、前記複数の減速制御を実行する場合の前記燃料消費量を予測することが好ましい。
 また、上記の減速走行制御装置は、前記環境情報に基づいて、前記複数の減速制御を実行する場合の前記アクセルオフ走行中の減速度をそれぞれ演算する減速度演算手段と、前記減速度演算手段により演算された前記減速度に基づいて、前記複数の減速制御を実行する場合の前記アクセルオフ走行の開始位置を演算する位置演算手段と、前記車両の運転者に対して、前記アクセルオフ走行を行うためのアクセルオフ操作を促す報知を行なう報知手段と、を備え、前記減速制御手段は、前記複数の減速制御のうち前記燃料消費量が最少となる1つの減速制御を実行する場合の前記開始位置に基づいて、前記報知手段により報知を行うタイミングを決定することが好ましい。
 また、上記の減速走行制御装置において、前記環境情報は、車両の空気抵抗、ロードロード、路面勾配、天候、路面μ、路面種類、大気圧、標高、気温、車重、積載重量、乗車人数の少なくとも1つを含むことが好ましい。
 本発明に係る減速走行制御装置は、走行環境に対する燃料カット運転の適否を判断できるので、燃料カット運転が燃費向上に結び付かない環境下では、燃費カット運転を実行せずに、この環境下で燃料カット運転よりも燃費向上に適した減速制御手法を選択・実行することができる。これにより、燃費の良いアクセルオフ走行を仕向けることが可能となり、この結果、車両の減速走行中の燃費を向上できるという効果を奏する。
図1は、本発明の一実施形態に係る減速走行制御装置が適用される運転支援装置の概略構成を示すブロック図である。 図2は、本実施形態の減速走行制御装置により実行可能な減速制御による減速操作を行なうときの車両の速度と燃料噴射量の推移の一例を示す図である。 図3は、本実施形態の減速走行制御装置としてのECUにより実施される減速支援処理のフローチャートである。
 以下に、本発明に係る減速走行制御装置の実施形態を図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 まず図1を参照して、本実施形態に係る減速走行制御装置の構成について説明する。図1は、本発明の一実施形態に係る減速走行制御装置が適用される運転支援装置の概略構成を示すブロック図である。
 図1に示すように、運転支援装置1は、自車両としての車両2に搭載され、状態検出装置3と、ECU(Electronic Control Unit:電子制御ユニット)4(減速走行制御装置)と、HMI(Human Machine Interface)装置5(報知手段)とを備える。運転支援装置1は、状態検出装置3により取得される情報に基づいて、ECU4がHMI装置5を制御し種々の運転支援情報を車両2の運転者に提示させることで、運転者による車両2の安全な運転を支援するものである。
 特に本実施形態では、運転支援装置1は、車両2の走行経路の前方に車両2が停止する必要のある停止位置X_stp(図2参照)がある場合に、その停止位置X_stpから走行経路手前側の範囲に設定されたサービス提供区間内において、車両2を停止位置X_stpにて停止させる減速操作を運転者に促すための運転支援情報をHMI装置5に表示する。運転支援の対象としての減速操作は、アクセルペダルを戻しエンジンブレーキにより減速するアクセルオフ操作と、ブレーキペダルを踏み込みフットブレーキにより減速するブレーキオン操作とを含む。また、車両2が停止する必要のある停止位置X_stpとしては、例えば、交差点、横断歩道地点、丁字路、店舗入口に面した地点、一時停止線などが挙げられる。
 車両2は、駆動輪を回転駆動させるための走行用駆動源としてエンジン6を備える、所謂コンベ(コンベンショナル)車両である。車両2は、エンジン6から出力される動力をトランスミッション7により適切な駆動力に変換して、駆動輪にこの駆動力を伝達して走行する。トランスミッション7は、変速比の異なる複数のギヤ段を有し、車両2の走行状態に応じて適切なギヤ段に変速されることで、所望の駆動力を出力することができる。
 状態検出装置3は、車両2の状態や車両2の周囲の状態を検出するものであり、車両2の状態を表す種々の状態量や物理量、スイッチ類の作動状態等を検出するものである。状態検出装置3は、ECU4に電気的に接続され、このECU4に各種信号を出力する。本実施形態では、状態検出装置3は、車両2の進路前方の停止位置X_stpに関する情報や、車両2の走行経路上や周囲の走行環境に関する環境情報、車両2の運転状態に関する情報等を検出するものであり、例えば、カメラ、レーダ、カーナビゲーション装置、地図データベース、路車間通信機、車車間通信機、無線通信装置、車速センサ、アクセルペダルセンサ、ブレーキペダルセンサ、等を含んで構成される。
 ECU4は、状態検出装置3から入力される各種情報に基づいて、車両2の各部の制御を行う。ECU4には、状態検出装置3、HMI装置5、エンジン6、トランスミッション7がそれぞれ接続されている。
 本実施形態では、ECU4は、車両2の進路前方の停止位置X_stpへの接近度合いに応じて、HMI装置5を制御して、車両2の運転者に対して減速操作(アクセルオフ操作、ブレーキオン操作)を促すための教示を行なう運転支援を実施する。
 また本実施形態では、ECU4は、車両2の運転者がアクセルオフ操作を行なった後、ブレーキオン操作を行なうまでの走行中(アクセルオフ走行中)に、エンジン6やトランスミッション7を制御して、車両2を減速するための減速制御を実行する運転支援を実施する。ECU4は、複数の減速制御を実行可能に構成されている。ECU4は、実行可能な複数の減速制御のうち、現在の車両の運転状態や周囲の走行環境などの諸条件に基づいて、現在の諸条件下で燃費効率が最も良くなる減速制御を選択して実行する。すなわち、ECU4は、車両2のアクセルオフ走行中に、複数の減速制御のうち燃料消費量が最も少ないものを実行するための、本実施形態に係る「減速走行制御装置」として機能する。
 本実施形態では、ECU4は、フューエルカット制御、N惰行制御、エンジンブレーキ制御を実行可能に構成されている。
 フューエルカット制御は、トランスミッション7を通常走行時に使用するドライブレンジ(Dレンジ)に維持したまま、エンジン6への燃料噴射を一時的に停止させ、エンジン6からの動力の発生を停止させる制御である。フューエルカット制御中は、エンジン6は停止状態であり、エンジン6から駆動輪まで動力伝達経路が接続されている状態であるので、アクセルオフ走行中にフューエルカット制御を実行すると、車両2はエンジン6から駆動輪までの間の動力伝達要素全体の負荷による減速度を発生する。
 N惰行制御は、トランスミッション7をニュートラルレンジ(Nレンジ)に切り替えて、車両2を走行させる制御である。N惰行制御では、エンジン6から駆動輪までの動力伝達経路上の動力伝達が遮断され、エンジンブレーキが低減するので、走行負荷を低減して燃費の向上を図ることができる。N惰行制御中はエンジン6から駆動輪までの動力伝達経路は、トランスミッション7内のクラッチ等の係合要素により遮断されているので、アクセルオフ走行中にN惰行制御を実行すると、車両2は駆動輪からトランスミッション7内のクラッチまでの間の動力伝達要素の負荷による減速度を発生する。したがって、N惰行制御で発生する減速度は、フューエルカット制御よりも小さくなる。
 エンジンブレーキ制御は、トランスミッション7をDレンジに維持したまま、トランスミッション7のギヤ段の変更を制御して、エンジンブレーキにより車両2を減速させる制御である。トランスミッション7のギヤ段は低ギヤ側ほどエンジンブレーキ力が大きく減速度が大きくなるので、エンジンブレーキ制御では、トランスミッション7のギヤ段をシフトダウンさせるタイミング(シフトスケジュール)を適宜制御することで、所望の減速度を発生させることができる。例えば、シフトダウンのタイミングを早くすれば、低ギヤ側のエンジンブレーキ力が大きい期間が長くとれるので、車両2に発生する減速度を増加できる。エンジンブレーキ制御で発生する減速度は、フューエルカット制御の減速度とN惰行制御の減速度との間の値に設定される。
 本実施形態では、ECU4は、以下に示す3種類の減速制御、すなわち減速制御1(第一減速制御)、減速制御2(第二減速制御)及び減速制御3(第三減速制御)を実行することができる。
(i)減速制御1:車両2のアクセルオフ走行中にフューエルカット制御を実行して、エンジン6への燃料供給がカットされた状態で走行する燃料カット運転を行なう。
(ii)減速制御2:車両2のアクセルオフ走行中に、燃料カット運転を行なわずに燃料を噴射しながら、トランスミッション7をDレンジに維持してエンジンブレーキにより減速するエンジンブレーキ制御を行う。
(iii)減速制御3:アクセルオフ走行中にN惰行制御を実行し、トランスミッション7の変速段をニュートラル位置(Nレンジ)として、エンジン6と駆動輪との間の動力伝達を遮断する惰行運転を行なう。
 ここで、図2を参照して、本実施形態においてECU4が実行可能な減速制御1~3の詳細について説明する。図2は、本実施形態の減速走行制御装置により実行可能な減速制御による減速操作を行なうときの車両の速度と燃料噴射量の推移の一例を示す図である。
 図2の横軸は車両の走行距離を表し、横軸の左端の原点に、図3を参照して後述する減速支援処理の開始時点での車両の現在位置X_nowが示され、現在位置X_nowから距離D_stp-nowだけ正方向の位置に、車両2を停止させる停止位置X_stpが示されている。また、図2の横軸には、停止位置X_stpから現在位置X_nowの方向に距離D_stp-bだけ戻った位置に、ブレーキ操作を開始させるべき目標ブレーキ開始位置X_bが示されている。さらに、目標ブレーキ開始位置X_bから現在位置X_nowの方向に、それぞれ距離D_b-a1,D_b-a2,D_b-a3だけ戻った位置に、減速制御1~3を実施する場合にアクセルオフ操作を開始すべきアクセルオフ開始位置X_a1,X_a2,X_a3が示されている。
 図2の縦軸は、車速と燃料噴射量をそれぞれ表す。図2では、アクセルオフ操作後にフューエルカット制御により減速する減速制御1を実行した場合の車速と燃料噴射量の推移が点線で示され、アクセルオフ操作後にエンジンブレーキ制御により減速する減速制御2を実行した場合の車速と燃料噴射量の推移が一点鎖線で示され、アクセルオフ操作後にN惰行制御により減速する減速制御3を実行した場合の車速と燃料噴射量の推移が実線で示されている。
 ここで、図2の車速の推移に注目する。車速推移では、車両2が現在車速V_nowで現在位置X_nowに進入すると、減速制御1~3によってそれぞれ異なる減速度で減速し、目標ブレーキ開始位置X_bにて同一の目標ブレーキ開始車速V_brkまで減速する。そして、目標ブレーキ開始位置X_bにおいてブレーキ操作が行われると、ブレーキ操作によって発生する目標ブレーキ減速度A_brkで減速し、停止位置X_stpにて速度が0となって車両2が停止する。
 上述のように、フューエルカット制御(減速制御1)を実行したときに車両2に発生する減速度A_1は、エンジンブレーキ制御(減速制御2)の実行時に車両2に発生する減速度A_2より大きい。また、減速度A_2は、N惰行制御(減速制御3)の実行時に車両2に発生する減速度A_3より大きい。すなわち、減速度は、A_1,A_2,A_3の順に小さくなる。この減速度の関係により、各減速制御1~3において、現在車速V_nowから目標ブレーキ開始車速V_brkまで減速させるまでに要する距離D_b-a1,D_b-a2,D_b-a3は、図2に示すように、D_b-a1,D_b-a2,D_b-a3の順に大きくなる。したがって、各減速制御1~3のアクセルオフ開始位置X_a1,X_a2,X_a3は、X_a1が目標ブレーキ開始位置X_bに最も接近し、X_a3が現在位置X_nowに最も接近し、X_a2がX_a1及びX_a3の中間となるよう設定されている。
 次に、図2の燃料噴射量の推移に注目する。燃料噴射量推移では、車両2が現在位置X_nowに進入したときの現在車速V_nowに応じて決まる燃料噴射量F_nowが、アクセルオフ操作が行なわれるまで維持され、アクセルオフ操作後に、各減速制御1~3に応じて異なる値に変化する。
 減速制御1を実行する場合は、図2に点線で示すように、アクセルオフ開始位置X_a1の後はフューエルカット制御が実行されエンジン6への燃料供給が停止されるため、燃料噴射量は0に変化する。減速制御2を実行する場合は、図2に一点鎖線で示すように、アクセルオフ開始位置X_a2の後はトランスミッション7がDレンジに維持されたままエンジンブレーキにより減速されるので、燃料噴射量はDレンジの燃料噴射量F_Dに変化する。減速制御3を実行した場合には、図2に実線で示すように、アクセルオフ開始位置X_a3の後はトランスミッション7がNレンジに切り替わるので、燃料噴射量はNレンジの燃料噴射量F_Nに変化する。
 ここで、トランスミッション7がDレンジの場合、エンジン6から駆動輪までの動力伝達経路が接続された状態となる。一方、トランスミッション7がNレンジの場合、トランスミッション7内のクラッチ等の係合要素が解放されることにより動力伝達が遮断された状態となる。このため、エンジン6に作用する負荷は、Dレンジの場合エンジン6から駆動輪までの動力伝達要素による負荷をすべて含み、一方Nレンジの場合エンジン6からクラッチまでの負荷となるので、Dレンジの方がNレンジよりも大きくなる。この負荷の違いによって、図2に示すように、Dレンジの燃料噴射量F_Dは、Nレンジの燃料噴射量F_Nと比較して多くなっている。
 本実施形態では、ECU4は、サービス提供区間内の所定地点(現在位置X_now)から停止位置X_stpまでの所定区間における燃料噴射量の総量である燃料消費量を、各減速制御1~3を実行した場合を想定して予測する。そして、予測した燃料消費量が最も少ない減速制御を選択して、実際に実行する。各減速制御における燃料消費量は、サービス提供区間への進入車速(現在車速V_now)などの車両2の運転状態や、周囲の走行環境に応じて変動するものである。このため、ECU4は、車両2がサービス提供区間に進入し、停止位置X_stpへの減速操作が必要と判明した場合に、その時点の各種条件に基づいて、現在位置X_nowから停止位置X_stpまでの所定区間における燃料消費量を逐次予測して、最適な減速制御を選択する。
 図1に戻り、ECU4は、これらのアクセルオフ操作の教示と減速制御の実行という、車両2の減速走行のための運転支援を実施可能とすべく、情報取得部41、減速度演算部42、減速操作位置演算部43、旅行時間演算部44、燃料消費量予測部45、減速支援制御部46の各機能を実現するよう構成されている。
 情報取得部41は、車両2の運転状態に関する情報や、車両2の走行経路上や周囲の走行環境に関する情報(環境情報)を、状態検出装置3から取得する。情報取得部41は、具体的には、車両2の停止位置X_stpや、車両2の現在位置X_now、現在車速V_nowなどの運転状況に関する情報、車両の空気抵抗、ロードロード(走行負荷抵抗)、道路勾配、天候、路面μ、路面種類(未舗装路など)などの環境情報を取得する。
 減速度演算部42は、情報取得部41により取得された各種情報に基づいて、各減速制御1~3を実行したときの減速度A_1,A_2,A_3と、目標ブレーキ減速度A_brkを算出する。
 減速操作位置演算部43は、情報取得部41により取得された各種情報や、減速度演算部42により算出された各種減速度に基づいて、各減速制御1~3を実行したときのアクセルオフ開始位置X_a1,X_a2,X_a3と、目標ブレーキ開始位置X_bを算出する。
 旅行時間演算部44は、情報取得部41により取得された各種情報、減速度演算部42及び減速操作位置演算部43の演算結果に基づいて、現在位置X_nowからアクセルオフ開始位置X_anに到達するまでの所要時間である旅行時間T_an-nowと、アクセルオフ開始位置X_anから停止位置X_stpに到達するまでの旅行時間T_stp-an(n:1~3)と、を算出する。
 燃料消費量予測部45は、各減速制御1~3を実行した場合の、サービス提供区間内の現在位置X_nowから停止位置X_stpまでを示す所定区間における燃料消費量F_1,F_2,F_3を予測する。なお、減速度演算部42、減速操作位置演算部43、旅行時間演算部44、燃料消費量予測部45の演算の詳細については、図3のフローチャートを参照して後述する。
 減速支援制御部46は、燃料消費量予測部45により予測された各減速制御1~3の燃料消費量に基づき、減速制御1~3の中から1つを選択し、この選択した減速制御に応じて、車両2の運転者の減速操作のための運転支援操作を制御する。減速操作のための運転支援操作とは、選択された減速制御のアクセルオフ開始位置X_anにて車両の運転者にアクセルオフ操作を促すこと、アクセルオフ操作後にエンジン6やトランスミッション7を制御して選択された減速制御を実行すること、目標ブレーキ開始位置にて運転者にブレーキ操作を促すこと、を含む。
 ECU4は、物理的には、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)及びインターフェースなどを含む周知のマイクロコンピュータを主体とする電子回路である。上述したECU4の各機能は、ROMに保持されるアプリケーションプログラムをRAMにロードしてCPUで実行することによって、CPUの制御のもとで車両2内の各種装置を動作させると共に、RAMやROMにおけるデータの読み出し及び書き込みを行うことで実現される。
 HMI装置5は、車両2の運転を支援する情報である運転支援情報を出力可能な支援装置であり、運転者に対する運転支援情報の提供等を行う装置である。HMI装置5は、車載機器であって、例えば、車両2の車室内に設けられたディスプレイ装置(視覚情報表示装置)やスピーカ(聴覚情報出力装置)等を有する。HMI装置5は、視覚情報(図形情報、文字情報)や聴覚情報(音声情報、音情報)等を出力することによって運転者に運転支援情報の提供を行い、運転者の運転操作を誘導する。HMI装置5は、こうした情報提供により運転者の運転操作による目標値の実現を支援する。HMI装置5は、ECU4に電気的に接続されこのECU4により制御される。
 特に本実施形態では、HMI装置5は、減速支援制御部46により生成される減速操作に関する運転支援情報(アクセルオフ、ブレーキオン)を運転者に提示して、停止位置X_stpにて車両2を停止させるような減速操作を促す。なお、HMI装置5は、既存の装置、例えば、ナビゲーションシステムのディスプレイ装置やスピーカ等が流用されてもよいし、例えば、ハンドル振動、座席振動、ペダル反力などの触覚情報を出力する触覚情報出力装置等を含んで構成されてもよい。
 次に、図3を参照して本実施形態の減速走行制御装置の動作を説明する。図3は、本実施形態の減速走行制御装置としてのECUにより実施される減速支援処理のフローチャートである。
 図3に示すフローチャートの処理は、ECU4により例えば車両2が運転支援サービスのサービス提供区間に進入したことが検出され、当該サービス提供区間に信号や停止線などの停止位置X_stpが検出されたときに実施される。
 ステップS1では、情報取得部41により、車両2の現在位置X_now及び現在車速V_nowと、停止位置X_stpが、状態検出装置3から取得される。現在車速V_nowは、例えば状態検出装置3の車速センサから取得することができる。車両2の現在位置X_now、停止位置X_stpは、状態検出装置3のカーナビゲーション装置の学習データやインフラ情報から取得することができる。ステップS1の処理が完了するとステップS2に進む。
 ステップS2では、減速度演算部42により、目標ブレーキ減速度A_brkと、各減速制御nを実行したときの減速度A_n(n:1~3)が算出される。目標ブレーキ減速度A_brkは、車両2の運転者によるブレーキ操作に伴い発生する減速度の目標値である。目標ブレーキ減速度A_brkは、車両2や後続車両の運転者が急ブレーキと感じない減速度であり、かつ、運転者がストレスを感じずに停車できる減速度を設定することができる。減速度演算部42は、例えば車両2の周囲の他車両との車間距離や、他車両の車速、路面状態等の環境情報、車両2の走行速度等の運転状態に応じて、目標ブレーキ減速度A_brkを適宜設定することができる。
 各減速制御1~3における減速度A_1,A_2,A_3は、車両2の走行経路上の環境情報や、各減速制御1~3における動力伝達経路上のフリクション(負荷)などに基づき算出できる。環境情報は、具体的には、車両2の空気抵抗、ロードロード(走行負荷抵抗)、路面勾配、天候、路面μ、路面種類(未舗装路など)、大気圧、標高、気温、車重、積載重量、乗車人数などの情報の少なくとも1つを含むことができる。各減速制御におけるフリクションは、エンジン6の運転状態、タイヤとトランスミッション7の係合状態、ギヤ段、トランスミッション7とエンジン6の係合状態、などの各種運転条件により決まる。なお、上記の環境情報や運転状態の情報は、サービス提供区間内の停止位置X_stp手前の所定地点(現在位置X_now)から停止位置X_stpまでを示す所定区間上における情報であり、情報取得部41により状態検出装置3から取得することができる。
 減速度A_1は、車両2がフューエルカット状態(フューエルカット制御を実行して走行中)のときに、タイヤ(駆動輪)からエンジン6までを含んだ部分で発生する減速度である。減速度A_1は、減速制御1(フューエルカット制御)を実行して走行している際に、タイヤからエンジン6までの間の個々の動力伝達要素により生じる負荷を考慮して算出できる。
 減速度A_2は、車両2がDレンジ状態(トランスミッション7のシフトポジションがドライブレンジにある状態)のとき、タイヤ(駆動輪)からトランスミッション7までを含んだ部分で発生する減速度である。減速度A_1は、減速制御2(エンジンブレーキ制御)を実行して走行している際に、タイヤからトランスミッション7までの間の個々の動力伝達要素により生じる負荷を考慮して算出できる。
 減速度A_3は、車両2がNレンジ状態(トランスミッション7のシフトポジションがニュートラルレンジにある状態)のときに、タイヤ(駆動輪)から、トランスミッション7内のNレンジとDレンジを切り替えているクラッチ等の係合要素までを含んだ部分で発生する減速度である。減速度A_3は、減速制御3(N惰行制御)を実行して走行している際に、タイヤからクラッチまでの間の個々の動力伝達要素により生じる負荷を考慮して算出できる。ステップS2の処理が完了すると、ステップS3に進む。
 ステップS3では、減速操作位置演算部43により、目標ブレーキ開始車速V_brkが算出される。目標ブレーキ開始車速V_brkは、目標ブレーキ減速度A_brkで運転者がストレスなく停車または減速できると感じる車速であり、進入車速(現在車速V_now)や道路勾配に比例して変化する。減速操作位置演算部43は、情報取得部41により取得された現在車速V_nowや走行路の勾配などの情報に基づき、目標ブレーキ減速度A_brkを算出する。ステップS3の処理が完了するとステップS4に進む。
 ステップS4では、引き続き減速操作位置演算部43により、現在位置X_nowから停止位置X_stpまでの残距離D_stp-nowと、目標ブレーキ開始位置X_bから停止位置X_stpまでの残距離D_stp-bと、アクセルオフ開始位置X_anから目標ブレーキ開始位置X_bまでの残距離D_b-an(n:1~3)が算出される。
 現在位置X_nowから停止位置X_stpまでの残距離D_stp-nowは、ステップS1に取得された現在位置X_now及び停止位置X_stpを用いて、下記の(1)式により算出される。
  D_stp-now=X_stp-X_now ・・・(1)
 目標ブレーキ開始位置X_bから停止位置X_stpまでの残距離D_stp-bは、次のように導出できる。車両2が、目標ブレーキ開始位置X_bから停止位置X_stpまで移動し、停止位置X_stpにて停車する挙動を考えると、この期間の速度推移は、目標ブレーキ開始位置X_bにおける目標ブレーキ開始車速V_brkから、目標ブレーキ減速度A_brkで減速してゆき、停止位置X_stpにて0となる。この挙動の運動方程式は、力学的エネルギー保存則に基づき、下記の(2)式で表すことができる。
  0-V_brk=2・A_brk・D_stp-b
                        ・・・(2)
 上記の(2)式をD_stp-bを求める形式に変形すると、下記の(3)式となる。
  D_stp-b=-V_brk/(2・A_brk)
                        ・・・(3)
 従って、上記の(3)式に、ステップS2にて算出された目標ブレーキ減速度A_brkと、ステップS3にて算出された目標ブレーキ開始車速V_brkとを代入すれば、残距離D_stp-bを算出できる。
 アクセルオフ開始位置X_anから目標ブレーキ開始位置X_bまでの残距離D_b-an(n:1~3)は、次のように導出できる。車両2が、減速制御nの実行時のアクセルオフ開始位置X_an(n:1~3)から目標ブレーキ開始位置X_bまで移動する挙動を考える。この期間の速度推移は、アクセルオフ開始位置X_anでは、図2に示すとおり現在車速V_nowと同一の車速であり、アクセルオフ開始位置X_anから各減速制御nの減速度A_nで減速してゆき、目標ブレーキ開始位置X_bにて目標ブレーキ開始車速V_brkとなる。この挙動の運度方程式は、力学的エネルギー保存則に基づき、下記の(4)式で表すことができる。
  V_brk-V_now=2・A_n・D_b-an
               (n:1~3)  ・・・(4)
 上記の(4)式をD_b-anを求める形式に変形すると、下記の(5)式となる。
  D_b-an=-(V_brk-V_now
                /(2・A_n)
               (n:1~3)  ・・・(5)
 従って、上記の(5)式に、ステップS1にて取得された現在車速V_nowと、ステップS2にて算出された減速度A_nと、ステップS3にて算出された目標ブレーキ開始車速V_brkとを代入すれば、残距離D_b-anを算出できる。
 このように、減速操作位置演算部43は、上記の(1),(3),(5)式を用いて、残距離D_stp-now,D_stp-b,D_b-anを算出する。ステップS4の処理が完了するとステップS5に進む。
 ステップS5では、引き続き減速操作位置演算部43により、各減速制御nのアクセルオフ開始位置X_anと、目標ブレーキ開始位置X_bが算出される。
 目標ブレーキ開始位置X_bは、走行経路上の停止位置X_stpより残距離D_stp-bだけ手前の位置であるので、以下の(6)式により算出することができる。
  X_b=X_stp-D_stp-b  ・・・(6)
 各減速制御nのアクセルオフ開始位置X_anは、走行経路上の目標ブレーキ開始位置X_bより残距離D_b-anだけ手前の位置であるので、以下の(7)式により算出することができる。ステップS5の処理が完了するとステップS6に進む。
  X_an=X_b-D_b-an (n:1~3)
                        ・・・(7)
 ステップS6では、旅行時間演算部44により、現在位置X_nowからアクセルオフ開始位置X_anに到達するまでの旅行時間T_an-nowと、アクセルオフ開始位置X_anから停止位置X_stpに到達するまでの旅行時間T_stp-an(n:1~3)と、が算出される。
 旅行時間T_an-nowは、現在位置X_nowとアクセルオフ開始位置X_anとの間の距離(D_stp-now-D_b-an-D_stp-b)と、現在位置X_nowからアクセルオフ開始位置X_anまでの区間の車速(現在車速V_now)を用いて、以下の(8)式により算出される。
  T_an-now=(D_stp-now-D_b-an
             -D_stp-b)/V_now
                        ・・・(8)
 旅行時間T_stp-an(n:1~3)は、アクセルオフ開始位置X_anから目標ブレーキ開始位置X_bまでの区間は、現在車速V_nowから減速度A_nで目標ブレーキ開始車速V_brkまで減速し、目標ブレーキ開始位置X_bから停止位置X_stpまでの区間は、目標ブレーキ開始車速V_brkから目標ブレーキ減速度A_brkで0まで減速する。したがって、T_stp-anは、以下の(9)式により算出できる。ステップS6の処理が完了するとステップS7に進む。
  T_stp-an=(V_brk-V_now)/A_n
            +(0-V_brk)/A_brk
                        ・・・(9)
 ステップS7では、燃料消費量予測部45により、各減速制御nを実行した場合の燃料消費量F_n(n:1~3)が算出される。燃料消費量F_1,F_2,F_3は、現在位置X_nowから停止位置X_stpまでの区間において、減速制御1(フューエルカット制御)、減速制御2(エンジンブレーキ制御)、減速制御3(N惰行制御)での走行に必要な総燃料噴射量である。燃料消費量予測部45は、減速制御1~3を実行時の燃料消費量F_1,F_2,F_3を、以下の(10)~(12)式によりそれぞれ算出する。
  F_1=T_a1-now×F_now  ・・・(10)
  F_2=T_a2-now×F_now
        +T_stp-a2×F_D  ・・・(11)
  F_3=T_a3-now×F_now
        +T_stp-a3×F_N  ・・・(12)
 ここで、F_nowは、現在車速V_nowで単位時間あたりに消費される燃料噴射量である。F_nowは、車両2の運転状態に関する情報などから取得することができる。F_Nは、Nレンジでの走行時に単位時間あたりに消費される燃料噴射量である。F_Nは、エンジン6が自立運転を維持するのに必要な燃料噴射量となる。ただし、自立運転が不要であればF_N=0となる。F_Dは、Dレンジでの走行時に単位時間あたりに消費される燃料噴射量である。F_Dは、エンジン6がトランスミッション7から受けるトルクを差し引いた状態で、エンジンが自立運転するために必要な燃料噴射量となる。ステップS7の処理が完了するとステップS8に進む。
 ステップS8では、減速支援制御部46により、ステップS7にて算出された燃料消費量F_1,F_2,F_3が比較されて、燃料消費量が最少となる減速制御n(nは1~3のいずれか)が選択される。
 ステップS9では、引き続き減速支援制御部46により、ステップS8にて選択された減速制御nのアクセルオフ開始位置X_an(nは1~3のいずれか)に車両2が到達しているか否かが判定される。ステップS9の判定の結果、選択された減速制御nのアクセルオフ開始位置X_anに車両2が到達している場合には(ステップS9のYes)、ステップS10に進む。一方、アクセルオフ開始位置X_anに車両2が到達していない場合には(ステップS9のNo)、車両2がアクセルオフ開始位置X_anに到達するまで待機する。
 ステップS10では、車両2がアクセルオフ開始位置X_anに到達しているため、減速支援制御部46により、運転者にアクセルオフ操作を促すための運転支援情報がHMI装置5を介して運転者に教示されるとともに、エンジン6またはトランスミッション7を適宜作動させて、選択された減速制御が実行される。ステップS10の処理が完了すると本制御フローを終了する。
 なお、図3のフローチャートにおいて、複数の減速制御1~3から燃料消費量が最少のものを選択する処理まで、すなわちステップS1~S8の処理は、車両2の現在位置X_nowが、すべての減速制御のアクセルオフ開始位置よりも走行経路の手前にて完了することが好ましい。つまり、アクセルオフタイミングが最も早い減速制御3を実施する場合のアクセルオフ開始位置X_a3に車両2が到達する前に、ステップS8までが完了することが好ましい。
 次に、本実施形態に係る減速走行制御装置の効果について説明する。
 本実施形態の減速走行制御装置としてのECU4は、車両2のアクセルオフ走行中に燃料カット運転を行なう減速制御1と、アクセルオフ走行中に燃料を噴射しながらDレンジ状態でエンジンブレーキ制御を行って減速する減速制御2とを含む複数の減速制御を実行可能である。ECU4は、停止位置X_stp手前の所定地点(現在位置X_now)から停止位置X_stpまでを示す所定区間上における環境情報に基づいて、減速制御1及び減速制御2を実行する場合の、上記の所定区間における燃料消費量F_1,F_2を予測する燃料消費量予測部45と、減速制御1及び減速制御2のうち、燃料消費量予測部45により予測された燃料消費量F_1,F_2が少ないいずれか一方を選択して実行する減速支援制御部46と、を備える。
 この構成により、走行環境に対する燃料カット運転の適否を判断できるので、燃料カット運転が燃費向上に結び付かない環境下では、燃料カット運転を実行せずに、この環境下で燃料カット運転よりも燃費向上に適した減速制御手法(エンジンブレーキ制御)を選択・実行することができる。これにより、燃費の良いアクセルオフ走行を仕向けることが可能となり、この結果、車両2の減速走行中の燃費を向上できる。
 また、本実施形態の減速走行制御装置としてのECU4は、アクセルオフ走行中にエンジン6と駆動輪との間の動力伝達をするN惰行運転を行なう減速制御3をさらに実行可能である。燃料消費量予測部45は、環境情報に基づいて、減速制御3を実行する場合の、上記の所定区間における燃料消費量F_3をさらに予測する。減速支援制御部46は、減速制御1、減速制御2、及び減速制御3のうち、燃料消費量予測部45により予測された燃料消費量F_1,F_2,F_3が最少となるいずれか1つの制御を選択して実行する。
 この構成により、燃料カット運転だけでなく、エンジンブレーキ制御やN惰行制御の適否を判断して、燃料消費量が最少の手法を選択できるので、所与の走行環境下において燃費向上のためにより一層適切な減速制御手法を精度良く選択することが可能となる。これにより、車両2の減速走行中の燃費をより一層向上できる。
 また、本実施形態の減速走行制御装置としてのECU4は、環境情報に基づいて、複数の減速制御1~3を実行する場合のアクセルオフ走行中の減速度A_1,A_2,A_3をそれぞれ演算する減速度演算部42と、減速度演算部42により演算された減速度A_1,A_2,A_3に基づいて、複数の減速制御1~3を実行する場合のアクセルオフ走行の開始位置X_a1,X_a2,X_a3から停止位置X_stpまでの旅行時間T_stp-a1,T_stp-a2,T_stp-a3をそれぞれ演算する旅行時間演算部44と、を備える。燃料消費量予測部45は、旅行時間演算部44により演算された旅行時間T_stp-a1,T_stp-a2,T_stp-a3に基づいて、複数の減速制御1~3を実行する場合の燃料消費量F_1,F_2,F_3を予測する。
 この構成により、減速走行中の燃料消費に関係性の強い減速度や旅行時間に基づき燃料消費量F_1,F_2,F_3を算出できるので、各減速制御の燃料消費量を精度良く予測することができる。これにより、この予測された燃料消費量に基づく減速制御手法の選択をより一層適切に行なうことが可能となり、車両2の減速走行中の燃費をより一層向上できる。
 また、本実施形態の減速走行制御装置としてのECU4は、環境情報に基づいて、複数の減速制御1~3を実行する場合のアクセルオフ走行中の減速度A_1,A_2,A_3をそれぞれ演算する減速度演算部42と、減速度演算部42により演算された減速度A_1,A_2,A_3に基づいて、複数の減速制御1~3を実行する場合のアクセルオフ走行の開始位置X_a1,X_a2,X_a3を演算する減速操作位置演算部43と、車両2の運転者に対して、アクセルオフ走行を行うためのアクセルオフ操作を促す報知を行なうHMI装置5と、を備える。減速支援制御部46は、複数の減速制御1~3のうち燃料消費量F_1,F_2,F_3が最少となる1つの減速制御を実行する場合の開始位置(X_a1,X_a2,X_a3のいずれか)に基づいて、HMI装置5により報知を行うタイミングを決定する。
 この構成により、車両2の運転者に適切なタイミングでアクセルオフ操作を行なうように仕向けることが可能となり、減速走行中の実際の燃費を好適に改善することができる。
 また、本実施形態の減速走行制御装置としてのECU4において、「環境情報」とは、車両の空気抵抗、ロードロード、路面勾配、天候、路面μ、路面種類、大気圧、標高、気温、車重、積載重量、乗車人数の少なくとも1つを含む。
 この構成により、減速度や燃料消費量に影響の強い情報を用いて減速度や燃料消費量を算出できるので、減速度や燃料消費量の予測精度を向上できる。
 以上、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 上記実施形態では、アクセルオフ走行中に選択・実行する複数の減速制御として、減速制御1(フューエルカット制御)、減速制御2(エンジンブレーキ制御)、減速制御3(N惰行制御)を例示したが、これらの一部のみを適用してもよいし、他の減速制御を適用してもよい。実施可能な減速制御とは、タイヤとトランスミッション7の係合状態、ギヤ段、トランスミッション7とエンジン6の係合状態、エンジン6のフューエルカット有無、などの車両2の運転に係る各種状態の一部またはすべての組み合わせや、各種状態の継続時間を制御することによって実現されるものである。
 なお、上記実施形態では、複数の減速制御を実行した場合の燃料消費量に基づいて1つの減速制御を選択・実行する構成としたが、例えば、停止地点X_stp付近の勾配が急勾配であったり、ロードロードが大きい等、走行抵抗が大きいことが事前に分かれば、燃料消費量を予測することなく特定の減速制御を選択する構成としても良い。
 2 車両
 4 ECU(減速走行制御装置)
 42 減速度演算部(減速度演算手段)
 43 減速操作位置演算部(位置演算手段)
 44 旅行時間演算部(旅行時間演算手段)
 45 燃料消費量予測部(予測手段)
 46 減速支援制御部(減速制御手段)
 5 HMI装置(報知手段)
 F_1 減速制御1(第一減速制御)を実行する場合の燃料消費量
 F_2 減速制御2(第二減速制御)を実行する場合の燃料消費量
 F_3 減速制御3(第三減速制御)を実行する場合の燃料消費量
 A_1 減速制御1(第一減速制御)を実行する場合のアクセルオフ走行中の減速度
 A_2 減速制御2(第二減速制御)を実行する場合のアクセルオフ走行中の減速度
 A_3 減速制御3(第三減速制御)を実行する場合のアクセルオフ走行中の減速度
 T_stp-a1 減速制御1(第一減速制御)を実行する場合のアクセルオフ走行の開始位置から停止位置までの旅行時間
 T_stp-a2 減速制御2(第二減速制御)を実行する場合のアクセルオフ開始位置から停止位置までの旅行時間
 T_stp-a3 減速制御3(第三減速制御)を実行する場合のアクセルオフ開始位置から停止位置までの旅行時間
 X_a1 減速制御1(第一減速制御)を実行する場合のアクセルオフ開始位置
 X_a2 減速制御2(第二減速制御)を実行する場合のアクセルオフ開始位置
 X_a3 減速制御3(第三減速制御)を実行する場合のアクセルオフ開始位置

Claims (5)

  1.  車両のアクセルオフ走行中に燃料カット運転を行なう第一減速制御と、前記アクセルオフ走行中に燃料を噴射しながら減速する第二減速制御とを含む複数の減速制御を実行可能な減速走行制御装置において、
     停止位置手前の所定地点から前記停止位置までを示す所定区間上における環境情報に基づいて、前記第一減速制御及び前記第二減速制御を実行する場合の前記所定区間における燃料消費量を予測する予測手段と、
     前記第一減速制御及び前記第二減速制御のうち、前記予測手段により予測された前記燃料消費量が少ないいずれか一方を選択して実行する減速制御手段と、
    を備えることを特徴とする減速走行制御装置。
  2.  前記アクセルオフ走行中にエンジンと駆動輪との間の動力伝達を遮断する惰行運転を行なう第三減速制御をさらに実行可能であり、
     前記予測手段は、前記環境情報に基づいて、前記第三減速制御を実行する場合の前記所定区間における燃料消費量をさらに予測し、
     前記減速制御手段は、前記第一減速制御、前記第二減速制御、及び前記第三減速制御のうち、前記予測手段により予測された前記燃料消費量が最少となるいずれか1つの制御を選択して実行する、
    ことを特徴とする、請求項1に記載の減速走行制御装置。
  3.  前記環境情報に基づいて、前記複数の減速制御を実行する場合の前記アクセルオフ走行中の減速度をそれぞれ演算する減速度演算手段と、
     前記減速度演算手段により演算された前記減速度に基づいて、前記複数の減速制御を実行する場合の前記アクセルオフ走行の開始位置から前記停止位置までの旅行時間をそれぞれ演算する旅行時間演算手段と、を備え、
     前記予測手段は、前記旅行時間演算手段により演算された前記旅行時間に基づいて、前記複数の減速制御を実行する場合の前記燃料消費量を予測する
    ことを特徴とする、請求項1または2に記載の減速走行制御装置。
  4.  前記環境情報に基づいて、前記複数の減速制御を実行する場合の前記アクセルオフ走行中の減速度をそれぞれ演算する減速度演算手段と、
     前記減速度演算手段により演算された前記減速度に基づいて、前記複数の減速制御を実行する場合の前記アクセルオフ走行の開始位置を演算する位置演算手段と、
     前記車両の運転者に対して、前記アクセルオフ走行を行うためのアクセルオフ操作を促す報知を行なう報知手段と、を備え、
     前記減速制御手段は、前記複数の減速制御のうち前記燃料消費量が最少となる1つの減速制御を実行する場合の前記開始位置に基づいて、前記報知手段により報知を行うタイミングを決定することを特徴とする、請求項1または2に記載の減速走行制御装置。
  5.  前記環境情報は、車両の空気抵抗、ロードロード、路面勾配、天候、路面μ、路面種類、大気圧、標高、気温、車重、積載重量、乗車人数の少なくとも1つを含むことを特徴とする、請求項1~4のいずれか1項に記載の減速走行制御装置。
PCT/JP2013/051320 2013-01-23 2013-01-23 減速走行制御装置 WO2014115268A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051320 WO2014115268A1 (ja) 2013-01-23 2013-01-23 減速走行制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051320 WO2014115268A1 (ja) 2013-01-23 2013-01-23 減速走行制御装置

Publications (1)

Publication Number Publication Date
WO2014115268A1 true WO2014115268A1 (ja) 2014-07-31

Family

ID=51227084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051320 WO2014115268A1 (ja) 2013-01-23 2013-01-23 減速走行制御装置

Country Status (1)

Country Link
WO (1) WO2014115268A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241185A (ja) * 2009-04-02 2010-10-28 Hitachi Automotive Systems Ltd ハイブリッド車両の充電制御装置
JP2012117473A (ja) * 2010-12-02 2012-06-21 Mitsubishi Motors Corp 車両制御装置
JP2012214181A (ja) * 2011-04-01 2012-11-08 Toyota Motor Corp 車両制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241185A (ja) * 2009-04-02 2010-10-28 Hitachi Automotive Systems Ltd ハイブリッド車両の充電制御装置
JP2012117473A (ja) * 2010-12-02 2012-06-21 Mitsubishi Motors Corp 車両制御装置
JP2012214181A (ja) * 2011-04-01 2012-11-08 Toyota Motor Corp 車両制御システム

Similar Documents

Publication Publication Date Title
US10081360B2 (en) Vehicle propulsion systems and methods
US9994234B2 (en) Driving assistance apparatus
US9437110B2 (en) Drive assisting apparatus
JP5846214B2 (ja) 運転支援装置
JP5692386B2 (ja) 運転支援装置
JP5751339B2 (ja) 走行支援装置
JP5737423B2 (ja) 運転支援装置
JP5703597B2 (ja) 運転支援装置
CN107787284B (zh) 控制车辆速度的方法
JP6421565B2 (ja) 運転支援装置
US11220276B2 (en) Travel control device, vehicle, and travel control method
JP5744818B2 (ja) 車両用運転支援装置
JP5591306B2 (ja) 車両用運転支援装置
KR101886443B1 (ko) 감속 주행시 타력 주행 제어 방법 및 이의 저장 매체
JP5454689B2 (ja) 車両用情報処理装置
CN112797151B (zh) 档位决定装置、方法及仿真装置
WO2014115268A1 (ja) 減速走行制御装置
US20210387525A1 (en) Method for improving the energy efficiency of a motor vehicle, motor vehicle, and computer-readable medium
JP2019098957A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP