WO2014114822A1 - Catalizador de rodio promovido para la conversión selectiva de gas de síntesis en etanol - Google Patents

Catalizador de rodio promovido para la conversión selectiva de gas de síntesis en etanol Download PDF

Info

Publication number
WO2014114822A1
WO2014114822A1 PCT/ES2013/070028 ES2013070028W WO2014114822A1 WO 2014114822 A1 WO2014114822 A1 WO 2014114822A1 ES 2013070028 W ES2013070028 W ES 2013070028W WO 2014114822 A1 WO2014114822 A1 WO 2014114822A1
Authority
WO
WIPO (PCT)
Prior art keywords
rhodium
compound
support
precursor
promoter
Prior art date
Application number
PCT/ES2013/070028
Other languages
English (en)
French (fr)
Inventor
Ricardo ARJONA ANTOLÍN
Juan Luis SANZ YAGÜE
Agustín MARTÍNEZ FELIU
Pedro Luis BURGUETE LLORENS
Original Assignee
Abengoa Bioenergía Nuevas Tecnologías, S.A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Bioenergía Nuevas Tecnologías, S.A filed Critical Abengoa Bioenergía Nuevas Tecnologías, S.A
Priority to PCT/ES2013/070028 priority Critical patent/WO2014114822A1/es
Priority to ES201590076A priority patent/ES2546118B1/es
Publication of WO2014114822A1 publication Critical patent/WO2014114822A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/898Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • C07C27/06Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals

Definitions

  • the present invention falls within the catalytic systems comprising rhodium as a catalytically active metal element and certain metal compounds that act as rhodium promoters, for use in processes where, advantageously, oxygen-containing compounds, particularly ethanol, are obtained. from synthesis gas.
  • promoter effect A particularity of rhodium-based catalytic systems is the so-called "promoter effect" whereby rhodium needs a suitable promotion to show good activity and high selectivity to ethanol in the conversion of synthesis gas. Finding the optimal combination (and relative concentration) of promoters for rhodium is a complicated task since the "promoter effect" depends on many variables, including the chemical nature and textural properties of the support on which the metal phases are deposited (Rh + promoters).
  • metal oxides are often used including those of transition metals (Fe, Mn, V, Zr, etc.), lanthanide oxides (La, Sm, Th, Ce, etc.) or alkaline (for example Li ).
  • US 4,442,228 describes a rhodium catalyst promoted by an element selected from Zr, Hf, La, Pt, Cr and Hg, supported on Si0 2 .
  • US 4,344,868 and US 4,444,909 refer to rhodium catalytic systems supported on a zeolite neutralized with alkali cations (Na).
  • US Patent 4,415,749 describes a process for the selective production of ethanol and methyl acetate from synthesis gas through the use of a rhodium catalyst promoted with alumina-supported iron containing an alkali metal.
  • US 6,346,555 refers to a rhodium-based catalyst that also contains other elements such as Zr, Ir, a transition metal (Cu. Co, Ni, Mn, Fe, Ru or Mo) and an alkali or alkaline earth metal, located on a support of Si0 2 , AI2O 3 , Ti0 2 , zeolite or activated carbon.
  • US 1,501,891 and US 4,235,801 describe a process for obtaining ethanol using a rhodium catalyst promoted with iron and supported on silica gel or alumina.
  • a rhodium catalyst promoted with iron and supported on silica gel or alumina In US 4,096, 164 rhodium is promoted with Mo and / or W using different types of support.
  • European application EP 00301 10 describes a rhodium and zirconium catalyst, which may also include a metal component selected from Fe, Mn, Mo, W, Ru, Cr, U, Th, Pd and Ir, located on a support of Si0 2 . These same metal components are described in GB 2078745 in a catalytic system based on a combination of rhodium and rhenium.
  • zirconium oxide has been described as an additional component of a cerium oxide support on which rhodium is deposited as a catalytically active element, to increase the conversion of carbon monoxide and selectivity to ethanol (Catalysis Today, 2011, 164 , 308-314).
  • the composition of the promoter phase is formed by the combination of at least two of these types of oxides as described in Catalysis Today, 2009, 147 (2), 139-149; Journal of Catalysis, 2009, 267 (2), 167-176 and WO2011 / 053953.
  • the most commonly used catalytic supports are silicon oxide (Si0 2 ) with a wide variety of textural properties (specific area, pore size, etc.), aluminum oxide (AI 2 O 3 ), oxide of titanium (Ti0 2) and mixed oxides M x O y - M 'z Cy such as Ce0 2 -Ti0 2, Ce0 2 -Al 2 0 3, Si0 2 -Al 2 0 3 and Si0 2 -Ti0 2, among others.
  • Carbon materials such as activated carbon or carbon nanotubes have also been used as supports, although the latter type of materials are less convenient from the point of view of a potential application at the industrial level due to the difficulty of regeneration or high cost, such as case of carbon nanotubes.
  • cerium oxide Ce0 2
  • Cerium oxide Ce0 2
  • its own phase support metallic ⁇ Journal of Molecular Catalysis A: Chemical, 2001, 165, 219-230; Journal of Chemical Society, Faraday Transactions, 1992, 88 (9), 1311-1319; Sekiyu Gakkaishi, 1999, 42 (3), 178-179; Reac Kinetics and Catalysis Letters, 2002, 76 (1), 141-150).
  • an iron compound as a rhodium promoter, or a suitable combination of promoters comprising an iron compound, together with the use of Ce0 2 as a support, provides catalysts for Rhodium promoted with catalytic properties (activity and / or selectivity and / or productivity to ethanol) improved for the selective conversion of synthesis gas to ethanol with respect to equivalent systems whose supports are based on other types of oxides more commonly used, such as Si0 2 , A1 2 0 3 , Ti0 2 and mixed oxides M x O and -M ' z O w , as shown in example 2.2.3 of this document.
  • a first aspect of the present invention is directed to a catalytic composition comprising:
  • promoter of the rhodium compound, wherein said promoter comprises an iron compound
  • rhodium compound and the rhodium compound promoter are deposited on a cerium oxide support.
  • the rhodium compound promoter comprises a combination of metal compounds selected from:
  • Another aspect of the present invention relates to a process for the preparation of a catalytic composition as previously defined, wherein said process comprises:
  • step c) subjecting the impregnated and dried support to a calcination step, and d) subjecting the calcined solid obtained in step c) to a reduction process.
  • Another aspect of the present invention relates to a catalytic composition obtainable according to the procedure described above.
  • a further aspect of the invention is directed to a process for the preparation of oxygenated compounds of two or more carbon atoms, wherein said process comprises reacting a gaseous mixture comprising carbon monoxide and hydrogen with the catalytic composition described previously.
  • the oxygenated compound is ethanol.
  • the invention is directed to a process for the preparation of hydrocarbons of two or more carbon atoms, wherein said process comprises reacting a gaseous mixture comprising carbon monoxide and hydrogen with the catalytic composition described previously.
  • the first aspect of the present invention is a catalytic composition
  • a catalytic composition comprising a rhodium compound as the main catalytic ingredient, and a rhodium compound promoter, wherein said promoter comprises an iron compound.
  • Both the rhodium compound, and the promoter thereof, are deposited on a support of dinner oxide (Ce0 2 ).
  • rhodium compound may include rhodium in a metallic state or a mixture of metallic rhodium and rhodium in an oxidation state greater than 0.
  • promoter refers to one or more active catalytic ingredients, in particular one or more metal compounds, which have the ability to synergistically increase the catalytic activity and / or ethanol selectivity of the rhodium compound which is the main ingredient catalytic.
  • the rhodium compound promoter comprises a combination of metal compounds selected from: a) iron + zirconium and, optionally, a lanthanide element;
  • Metal compounds should be understood as compounds that include in their composition the metal elements defined above, either, for example, the element itself in a metallic state, in the form of metal oxide, in the form of metal carbide, or a combination thereof. , among others.
  • Iron compound acts as the sole promoter, it can be in a metallic state, in the form of oxide, in the form of carbide, among others.
  • the catalytic composition of the invention contains rhodium in a proportion ranging from 0.1 to 20% by weight with respect to the total weight of the catalytic composition, preferably between 0.5 and 10% by weight, more preferably between 1 and 5 % in weigh.
  • the atomic ratio between rhodium compound and total precursor compounds varies between 1/10 and 10/1, preferably between 1/5 and 5/1, more preferably between 1/3 and 3/1 .
  • the atomic ratio rhodium / iron ranges between 2/1 and 1/2.
  • Concrete examples of atomic ratios for the rhodium / iron combination are 1 / 0.5, 1/1 and 1/2.
  • the atomic ratio rhodium / iron / zirconium ranges between 1 / 0.2 / 0.2 and 1/3/3, preferably between 1 / 0.5 / 0.5 and 1 / 1.5 / 1.5.
  • Concrete examples of atomic ratios for the rhodium / iron / zirconium combination are 1/1/1, 1 / 1.5 / 1, 1/1 / 0.5, 1 / 0.5 / 1.5, 1/1 / 1.5, 1 / 0.5 / 1, 1 / 1.5 / 1.5 and 1 / 1.5 / 0.5.
  • the combination of iron and zirconium further comprises a lanthanide.
  • Lanthanide means an element selected from lanthanum, cerium, praseodymium, neodymium, promised, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, tulio, ytterbium and lutetium.
  • the lanthanide element is selected from lanthanum, praseodymium and samarium.
  • the rhodium / lanthanide atomic ratio ranges between 1: 0.3 and 1: 3, more preferably between 1 / 0.5 and 1 / 1.5.
  • Concrete examples of atomic relationships for the rhodium / iron / zirconium / lanthanide combination are 1/1/1/1; 1 / 0.5 / 1/1; 1 / 1.5 / 1/1; 1 / 0.5 / 0.5 / 1; 1 / 0.5 / 1.5 / 1; 1 / 1.5 / 0.5 / 1; 1/1/1 / 1.5; 1/1/1 / 0.5 and 1 / 1.5 / 1.5 / 1.
  • the rhodium / iron / element atomic ratio Lanthanide ranges between 1 / 0.5 / 0.5 and 1/2/2.
  • the atomic ratio is 1/1/1.
  • the atomic ratio rhodium / iron / zirconium / vanadium ranges between 1 / 0.5 / 0.5 / 0.5 and 1/2/2/2.
  • Concrete examples of atomic relationships for the rhodium / iron / zirconium / vanadium combination are 1/1/1/1; 1/1/1 / 0.5 and 1/1 / 0.5 / 1.
  • the combination of metal compounds comprises iron, vanadium and a lanthanide element
  • the molar ratio rhodium / iron / vanadium / lanthanide element ranges between 1 / 0.2 / 0.2 / 0.2 and 1/3/3/3, preferably between 1 / 0.5 / 0.5 / 0.5 and 1 / 1.5 / 1.5 / 1.5.
  • molar ratios for the rhodium / iron / vanadium / lanthanide element combination are 1/1/1/1 /; 1 / 0.25 / 1/1; 1 / 0.5 / 1/1; 1 / 0.5 / 1.5 / 1; 1/1/1 / 1.5; 1/1/1 / 0.5; 1/1/1 / 2.5 and 1 / 1.5 / 0.5 / 1.
  • the combination of metal compounds comprises iron and zirconium.
  • the catalytic composition comprising this combination of metal compounds combines a high catalytic activity with a high selectivity to ethanol as evidenced by the examples provided.
  • the combination of metal compounds comprises iron, zirconium and a lanthanide compound.
  • the catalytic composition of the invention lacks an alkali and / or alkaline earth metal.
  • the cerium oxide support (Ce0 2 ) where the rhodium compound is deposited and the iron compound or the combination of metal compounds has a specific surface area of at least 10 m 2 / g, preferably between 10 and 150 m 2 / g, more preferably between 25 and 75 m 2 / g.
  • the cerium oxide support has a pore volume between 0.05 and 0.5 cm 3 / g, preferably between 0.1 and 0.3 cm 3 / g.
  • the cerium oxide support has an average pore diameter between 1 and 50 nm, preferably between 5 and 25 nm.
  • Said support may be in the form of dust, granules, pellets or irregularly shaped agglomerates.
  • any process known to one skilled in the art can be carried out, such as, for example, a precipitation process, in which a soluble and / or colloidal precursor of cerium oxide is treated to produce the solid oxide.
  • a precipitation process in which a soluble and / or colloidal precursor of cerium oxide is treated to produce the solid oxide.
  • such support is also commercially available.
  • the process for depositing the rhodium compound and the promoter on the cerium oxide support (Ce0 2 ) can be carried out by any conventional method of deposition of metal catalysts on solid supports known to one skilled in the art. Such procedures include the impregnation method, either sequential co-impregnation or impregnation, the immersion method, the ion exchange method or the co-precipitation method.
  • the process for depositing the rhodium compound and the promoter thereof on the cerium oxide support is performed by impregnation.
  • a further aspect of the present invention is a process for obtaining a catalytic composition as previously defined comprising:
  • step c) subject the impregnated and dried support to a calcination step; and d) subjecting the calcined solid obtained in step c) to a reduction process.
  • the precursor of the rhodium compound is generally a rhodium salt or a rhodium complex.
  • rhodium salts include inorganic rhodium salts such as chloride, bromide, iodide, nitrate and rhodium carbonate, as well as organic rhodium salts such as acetate or oxalate.
  • rhodium complexes complexes including, together with rhodium and a halide, complex-forming ligands, for example ethylenediamine complexes (Rh (NH 2 C 2 H 4 NH 2 ) 3 Cl 3), pyridine complexes can be employed.
  • acetylacetonate cyclooctadiene complexes, complexes cyclopentadienyl, ⁇ -allyl complexes, rhodium alloy complexes, trialkylphosphine and triarylphosphine complexes.
  • the precursor of the rhodium compound is a water soluble salt, in particular, an inorganic salt of rhodium selected from chloride, nitrate and rhodium carbonate, the use of rhodium trihydrate chloride being even more preferred ( RhCl 3 -3H 2 0).
  • the impregnation of the support with the rhodium compound precursor can be accomplished by previously dissolving the rhodium precursor in a suitable solvent, such as, for example, water, an alcohol (methanol or ethanol), an ether (tetrahydroforan or dioxane) or a hydrocarbon (hexane).
  • a suitable solvent such as, for example, water, an alcohol (methanol or ethanol), an ether (tetrahydroforan or dioxane) or a hydrocarbon (hexane).
  • the solvent used is water as long as the rhodium precursor is an inorganic salt as described above.
  • the support is impregnated with this solution, it is subjected to a drying process to remove the solvent.
  • This drying process can be carried out by subjecting the impregnated support at a temperature close to the boiling point of the solvent used.
  • the impregnated support can be subjected to a heating process at a temperature of approximately 100 ° C for at least 12 hours.
  • the drying step can be carried out at a temperature lower than the boiling point of the solvent, for example, under reduced pressure conditions (lower than atmospheric).
  • the precursors of the metal compounds that act as promoter of the rhodium compound are also salts of metal elements.
  • these salts include organic or inorganic salts such as chlorides, carbonates, hydroxides, acetates, formats, oxalates, silyl ether salts, acetylacetonates, polyhydroxystearates, alkoxides, dicylopentadienyl complexes, ⁇ -allyl complexes, benzyl complexes and iron alloy complexes, Zirconium, vanadium and lanthanide elements.
  • organic or inorganic salts such as chlorides, carbonates, hydroxides, acetates, formats, oxalates, silyl ether salts, acetylacetonates, polyhydroxystearates, alkoxides, dicylopentadienyl complexes, ⁇ -allyl complexes, benzyl complexes and iron alloy complexes, Zirconium,
  • the iron compound precursor is selected from iron trichloride (FeCl 3 ), ferric nitrate (Fe (N0 3 ) 3 ), ferrous nitrate (Fe (N0 3 ) 2 ), ferric hydroxide (Fe (OH ) 3 ), ferric carbonate (Fe 2 (C0 3 ) 3 ), ferric format (Fe (HCOO) 3 ), ferric oxalate (Fe 2 (C 2 0 4 ) 3 -nH 2 0), ferric chlorate (Fe (C10 4 ) 3 ), ferric methoxide (Fe (OCH 3 ) 3 ), ferric ethoxide (Fe (OC 2 H 5 ) 3 ), ferric propoxide (Fe (OC 3 H 7 ) 3 ), ferric butoxide (Fe (OC 4 H 9 ) 3 ) and ferric methyl carbonate (Fe (CH 3 OCOO) 3 ).
  • FeCl 3 iron trichloride
  • the precursor of the zirconium compound is selected from zirconium oxynitrate (ZrO (N () 3 ) 2 -2H 2 0), zirconium nitrate (Zr (N03) 3 -6H 2 0), zirconium oxyacetate (ZrO (CH 3 COO) 3), zirconium oxychloride (ZrOCl 2 ), zirconium tetrachloride (ZrCl 4 ), zirconium acetate (Zr (CH 3 COO) 2 ), zirconium ethoxide (Zr (OC 2 H 5 ) 4 ), zirconium isopropoxide (Zr (0-isoC3H 7 )), zirconium butoxide (Zr (OC 4 H 9 )), dicyclopentadienyl zirconium chloride ((-C 5 H 5 ) 2 ZrCl 2 ), dicarbonyl dicyclopentadienyl zirconium chloride ((
  • the precursor of the compound Zirconium is selected from zirconium oxynitrate (ZrO (N0 3 ) 2 -2H 2 0) and zirconium nitrate (Zr (N0 3 ) 3 -6H 2 0).
  • the vanadium compound precursor is selected from vanadium tetrachloride (VC1 4 ), ammonium metavanadate (ELtVC), vanadium ethoxide (VO (OC 2 H 5 ) 3 ), vanadium butoxide (VO (OC 4 H 9 ) 3 ), vanadium methoxide (VO (OCH 3 ) 3 ), vanadium ethoxychloride (VO (OC 2 H 5 ) 5 ), vanadium acetylacetonate (VO (C 5 H 7 0 2 ) 3 ), vanadocene ( -C 5 H 5 ) 2 V) and ⁇ -allyl carbonyl vanadium ( ⁇ -C3H 5 ) 2 V (CO) 2 ) complex.
  • the precursor of the vanadium compound is ammonium metavanadate.
  • the lanthanide element compound is selected from a halide, a salt of an inorganic acid, a hydroxide, a salt of an organic acid, an alkoxide metal or the like.
  • these precursors are chlorides, nitrates, oxalates, acetates, acetylacetonates and carbonates of the lanthanide element.
  • the impregnation of the support with the precursors of the metal compounds that act as promoter of the rhodium compound can be carried out by previously dissolving them in a suitable solvent, such as, for example, water, an alcohol (methanol or ethanol), an ether (tetrahydrofuran or dioxane) or a hydrocarbon (hexane).
  • a suitable solvent such as, for example, water, an alcohol (methanol or ethanol), an ether (tetrahydrofuran or dioxane) or a hydrocarbon (hexane).
  • the solvent used is water as long as the precursors of the metal compounds are inorganic salts as described above.
  • the support is impregnated with this solution, it is subjected to a drying process to remove the solvent.
  • This drying process can be carried out by subjecting the impregnated support at a temperature close to the boiling point of the solvent used.
  • the support impregnated is subjected to a heating process at a temperature of approximately 100 ° C for at least 12 hours.
  • the drying step can be carried out at a temperature lower than the boiling point of the solvent, for example, under reduced pressure conditions (lower than atmospheric).
  • the impregnation of the rhodium precursor and the precursors of the metal compounds that act as a promoter of the rhodium compound can be carried out sequentially in any order, or it can be carried out simultaneously.
  • the impregnation is carried out by dissolving simultaneously in the same solvent the rhodium precursor and the precursors of the metal compounds, subsequently adding this solution on the cerium oxide support.
  • the process of the invention comprises: a) co-impregnating the cerium oxide support with a solution comprising a rhodium compound precursor and a rhodium compound promoter precursor or precursors;
  • step c) subject the impregnated and dried support to a calcination step; and d) subjecting the calcined solid obtained in step c) to a process of
  • the precursors of the zirconium and vanadium compounds can be incorporated into the support by impregnating the support with a solution comprising the precursor of the zirconium compound and / or vanadium and subsequent drying of the impregnated support, at a stage prior to the co-impregnation of the rhodium precursor and the precursors of the rest of the metal compounds.
  • the process of the invention comprises: a) impregnating the cerium oxide support with a solution comprising a precursor of the zirconium compound and / or a precursor of the vanadium compound;
  • step b) subjecting the impregnated support to a drying step to remove the solvent from the solution used in step a);
  • step b) co-impregnating the solid obtained in step b) with a solution comprising a precursor of the rhodium compound and a precursor or precursors of the rest of the metal compounds that act as a promoter of the rhodium compound not included in the solution of the stage to);
  • step c) subjecting the impregnated support obtained in step c) to a drying step to remove the solvent from the solution used in step c);
  • step d) subject the impregnated and dried support obtained in step d) to a calcination stage; Y
  • step f) subject the calcined solid obtained in step e) to a reduction process.
  • the calcination step is performed by subjecting the impregnated and dry support to a heating of between 250 and 600 ° C, preferably between 300 and 500 ° C, applying a heating ramp of between 1 and 10 ° C / min.
  • the time it remains at this temperature is at least one hour.
  • the calcination is carried out under an atmosphere comprising an oxygen-containing gas, such as for example air, so that the metal salts or precursors of the metal compounds are converted into the corresponding metal oxides.
  • an oxygen-containing gas such as for example air
  • the rhodium precursor used in the impregnation is no longer practically present, but most of the rhodium is as rust. So that the solid obtained after the calcination step can be used as a catalytic composition in the reaction of conversion of the synthesis gas to oxygenated hydrocarbons, it must be activated by a reduction process.
  • Said reduction step can be carried out by applying a temperature between 275 and 500 ° C, preferably between 300 and 400 ° C, and passing a gas containing a reducing agent onto the catalytic composition.
  • reducing agents include hydrogen, the synthesis gas itself, carbon monoxide, hydrazine, boron hydride or aluminum hydride.
  • the reducing agent is hydrogen, synthesis gas or a mixture of both.
  • Said reduction stage can be carried out in the same reactor where the synthesis gas conversion is carried out or in an independent reactor.
  • a further aspect of the invention is a process for the preparation of oxygenated compounds of two carbon atoms, wherein said process comprises reacting a gaseous mixture comprising carbon monoxide and hydrogen with the catalytic composition described previously.
  • oxygenated compounds of two carbon atoms refers to compounds having two carbon atoms and one or more oxygen atoms, in addition to hydrogen, such as ethanol, acetaldehyde, or acetic acid. .
  • the process for preparing the oxygenated compounds is carried out by passing the initial gas mixture over the catalytic composition of the invention.
  • Said process can be carried out by feeding the gaseous mixture comprising carbon monoxide and hydrogen in a suitable catalytic reactor, such as a closed circulation reactor, a fixed bed type reactor adapted for the circulation of an initial gaseous mixture under pressure. Atmospheric or high pressure, a discontinuous pressure reactor or a pressure reactor with discontinuous stirring, and bringing the initial gas mixture into contact with the catalyst composition.
  • the process is carried out at a temperature between about 50 ° C and about 450 ° C, more preferably between 100 and 350 ° C,
  • the pressure at which the procedure is performed can range between about 0.5 and about 350 bars, preferably between 10 and 300 bars.
  • the molar ratio between carbon monoxide and hydrogen in the gas mixture is between 10: 1 and 1: 10, preferably between 5: 1 and 1: 5, more preferably between 2: 1 and 1 :2.
  • the gas mixture used in the process is synthesis gas.
  • synthesis gas is meant a gaseous mixture consisting entirely, or predominantly, of carbon monoxide and hydrogen. In some cases, said mixture may contain other components such as nitrogen, argon, carbon dioxide and / or methane.
  • the synthesis gas can be prepared from a wide variety of substances, such as natural gas, liquid hydrocarbons, coal or biomass following methods known to a person skilled in the art.
  • oxygenated compounds with two carbon atoms particularly ethanol, with high selectivity and / or productivity are obtained.
  • selectivity denotes the percentage of said compound (based carbon) in the reaction products, including C0 2, hydrocarbons and other oxygenated compounds.
  • Processivity means the amount of oxygenated compound produced by mass of catalyst and unit of time.
  • Ethanol obtained as the main ingredient within the fraction of oxygenated compounds, can be easily separated from the rest of oxygenated compounds by conventional techniques known to a person skilled in the art.
  • Example 1 General procedure for preparing the promoted Rh catalyst supported on CeO? and typical conditions used in catalytic synthesis gas conversion tests
  • the catalysts were prepared by co-impregnation at pore volume (wetness impregnatiori) of the Ce0 2 support with an aqueous solution containing the precursors Rh metal (RhCl 3 -3H 2 0) and promoter precursors at the appropriate concentrations to achieve 2.5% by weight of Rh and the desired promoter (s) / Rh atomic ratios in the calcined catalyst (before reducing) .
  • Rh metal RhCl 3 -3H 2 0
  • promoter precursors at the appropriate concentrations to achieve 2.5% by weight of Rh and the desired promoter (s) / Rh atomic ratios in the calcined catalyst (before reducing) .
  • V and Zr compounds were used as Rh promoters, their incorporation into the support was performed by impregnating the support at pore volume and subsequently drying at 100 ° C for approx. 2-3 hours at a stage prior to the co-impregnation of Rh precursors and other metal promoters.
  • the material was dried in an oven at 100 ° C for approx. 12 hours and subsequently calcined in air flow at 400 ° C for 4 hours, using a heating ramp of 2 ° C / min.
  • catalysts The nomenclature used for catalysts is Rh-xPl- ⁇ P2-zP3 / Ce0 2 , where Pl, P2 and P3 are the metals of the corresponding promoters (in the case, for example, of tri-promoted catalysts) where x , and, z the atomic relationships between promoters Pl, P2 and P3, respectively, and Rh.
  • all catalysts have a nominal Rh content of 2.5% by weight (in the calcined material).
  • 94 grams of Ce0 2 with 93.5 cm were impregnated at pore volume 3 of an aqueous solution in which 8.87 grams of ZrO (N0 3 ) 3 -6H 2 0 (clear colorless solution) had previously dissolved. After the addition was completed (filling the pores of the support), the solid was dried in an oven at 100 ° C for 2-3 hours.
  • the catalytic tests were carried out using a fixed bed catalytic reactor of 9.7 mm internal diameter and a length of 335 mm.
  • the amount of catalyst (in its calcined form) used in the tests was approximately 1 g.
  • the reactor was loaded with catalyst previously pressed and screened with a particle size of 0.25-0.45 mm and diluted with SiC (particle size 0.6-0.8 mm) until a total volume of catalytic bed of 6.5 cm 3 was achieved.
  • the spatial velocity was adjusted in each catalyst in order to achieve a constant CO conversion of approx. 10% and thus be able to compare selectivities under iso-conversion conditions.
  • reaction products were separated and quantified by a gas chromatograph (model Varian CP-3800) coupled in line to the reactor outlet after depressurization of the output stream. During the reaction, consecutive analyzes were performed at intervals of approx. 1 hour. Generally the catalyst was tested for a total time of approx. 8 hours, for which a behavior / wewdo-stationary is already observed (little variation in activity and selectivity over time). The activity and selectivity data presented correspond to the values obtained in the state / wewdo-stationary.
  • Table 1 shows examples of representative catalyst compositions of the invention, obtained according to the general preparation procedure described in example 1, exemplified in section 1.3 for the specific case of a catalyst of composition Rh-Fe-Zr / Ce0 2 according to the established nomenclature (section 1.2).
  • the nominal rhodium content in all catalysts is 2.5% by weight.
  • 1-7 stands out (metallic composition: Rh-1.5Fe-1.5Zr) since it combines a high catalytic activity with a high selectivity to ethanol (30.6%), giving rise to the higher productivity of this alcohol ( 80.2 g / kg cat h) of all the catalysts supported in Ce0 2 .
  • Table 4 shows the textural properties of different types of silica of commercial origin used as supports representative of the state of the art.
  • Table 5 shows examples of promoted Rh catalysts supported on the different types of commercial Si0 2 . The catalysts were prepared following the same general methodology described in section 2.2.1 for those supported in Ce0 2 .
  • Tables 7 and 8 show the catalytic compositions and results of catalysts prepared using commercial titanium oxide (P25, Degussa) as support.
  • Table 9 shows Rh catalysts with metal compositions similar to the above promoters phases, but supported on two mixed oxides Ce0 2 - Si0 2 and Ce0 2 -Zr0 2. The catalytic results obtained with these catalysts are shown in Table 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

La presente invención describe una composición catalítica que comprende un metal catalíticamente activo y un soporte sólido, donde dicho metal catalíticamente activo es rodioy dicho soporte sólido es CeO 2, y donde dicha composición catalítica comprende además un compuesto de hierro o una combinación de compuestos metálicos seleccionada entre: a) hierro, zirconio y, opcionalmente, un lántanido; y b) hierro, vanadio y un lantánido; c) hierro, vanadio y zirconio, un procedimiento para su preparación, así como su uso para la conversión selectiva de gas de síntesis en etanol.

Description

CATALIZADOR DE RODIO PROMOVIDO PARA LA CONVERSIÓN SELECTIVA DE GAS DE SÍNTESIS EN ETANOL
CAMPO DE LA INVENCIÓN
La presente invención se encuadra dentro de los sistemas catalíticos que comprenden rodio como elemento metálico catalíticamente activo y ciertos compuestos metálicos que actúan como promotores del rodio, para su uso en procesos donde se obtienen, de forma ventajosa, compuestos que contienen oxígeno, particularmente etanol, a partir de gas de síntesis.
ANTECEDENTES
Es bien conocido en el estado de la técnica que los catalizadores de rodio soportados y convenientemente promovidos por uno o varios óxidos metálicos muestran una elevada selectividad a etanol durante la conversión catalítica de gas de síntesis (también denominada "hidrogenación de CO") en comparación a otros sistemas catalíticos.
Una particularidad de los sistemas catalíticos basados en rodio es el denominado "efecto promotor" mediante el cual el rodio necesita una promoción adecuada para mostrar buena actividad y elevada selectividad a etanol en la conversión de gas de síntesis. Encontrar la combinación (y concentración relativa) óptima de promotores para el rodio es una tarea complicada ya que el "efecto promotor" depende de muchas variables, incluyendo la naturaleza química y propiedades texturales del soporte sobre el que se depositan las fases metálicas (Rh+promotores).
Como promotores del rodio se suelen emplear óxidos metálicos incluyendo los de metales de transición (Fe, Mn, V, Zr, etc.), óxidos de lantánidos (La, Sm, Th, Ce, etc.) o de alcalinos (por ejemplo Li).
En la literatura de patentes, existen numerosos documentos que hacen referencia al desarrollo de sistemas catalíticos basados en rodio promovido. Así, las patente US 4,224,236, US 4,288,558 y US 4,351,908 describen el empleo de un catalizador de rodio promovido con sales de magnesio o complejos o compuestos de magnesio con óxidos de los elementos de los grupos 3 a 6 de la tabla periódica e iones haluros.
La patente US 4,442,228 describe un catalizador de rodio promovido por un elemento seleccionado entre Zr, Hf, La, Pt, Cr y Hg, soportado sobre Si02. Los documentos US 4,344,868 y US 4,444,909 hacen referencia a sistemas catalíticos de rodio soportado sobre una zeolita neutralizada con cationes alcalinos (Na). Por su parte, la patente US 4,415,749 describe un procedimiento para la producción selectiva de etanol y acetato de metilo a partir de gas de síntesis mediante el empleo de un catalizador de rodio promovido con hierro soportado en alúmina conteniendo un metal alcalino.
El documento US 6,346,555 hace referencia a un catalizador basado en rodio que contiene además otros elementos como Zr, Ir, un metal de transición (Cu. Co, Ni, Mn, Fe, Ru o Mo) y un metal alcalino o alcalino-térreo, ubicado sobre un soporte de Si02, AI2O3, Ti02, zeolita o carbón activado.
La solicitud internacional WO2006/000733 describe un catalizador soportado sobre Si02 con fórmula Rh-Mn-Fe-Mi-M2, donde Mi es Li o Na y M2 es Ru o Ir. En la solicitud WO2006/000734 se especifica ese mismo soporte y una combinación de rodio con un promotor seleccionado entre Ir, Ru, Co, Fe, Mn, Ti, Zr, V, Ce, Sm, La, Li, Na, Mg y Ba.
Las patentes US 1,501,891 y US 4,235,801 describen un procedimiento para la obtención de etanol utilizando un catalizador de rodio promovido con hierro y soportado sobre sílica gel o alúmina. En US 4,096, 164 el rodio se promueve con Mo y/o W empleándose distintos tipos de soporte.
La combinación de rodio con elementos alcalinos se describe en US 4,235,798, US 4,446,251 y US 4,471,075.
La solicitud europea EP 00301 10 describe un catalizador de rodio y zirconio, que puede incluir además un componente metálico seleccionado entre Fe, Mn, Mo, W, Ru, Cr, U, Th, Pd e Ir, ubicado sobre un soporte de Si02. Estos mismos componentes metálicos son descritos en GB 2078745 en un sistema catalítico basado en una combinación de rodio y renio.
Por otra parte, existen también varios artículos científicos que describen el uso de distintos promotores del rodio para elaborar sistemas catalíticos útiles en la conversión de gas de síntesis en etanol. Así, los documentos Journal of Catalysis, 1978, 54, 120- 128 y Studies in Surface Science and Catalysis, 1992, 73, 103-110, describen el efecto promotor del óxido de hierro sobre el rodio en reacciones de conversión de gas de síntesis, por el cual la presencia de este óxido en el catalizador proporciona un aumento de la actividad catalítica y de la selectividad a etanol.
Por su parte, los documentos Journal of Catalysis, 1986, 98, 522-529, Journal of Catalysis, 1992, 134, 1-12 y Topics in Catalysis, 2001, 14(1-4), 25-33 describen también el efecto promotor del óxido de vanadio sobre sistemas catalíticos basados en rodio.
El uso del óxido de zirconio ha sido descrito como componente adicional de un soporte de óxido de cerio sobre el que se deposita rodio como elemento catalíticamente activo, para aumentar la conversión de monóxido de carbono y la selectividad a etanol (Catalysis Today, 2011, 164, 308-314).
Algunos documentos que describen el uso de óxidos de elementos lantánidos como promotores del rodio en reacciones de conversión de gas de síntesis son Applied Catalysis, 1986, 28, 303-319, Applied Catalysis, 1987, 35, 77-92, Fresenius Journal Analytical Chemistry, 1991, 341, 387-394 y Journal of Catalysis, 2011, 280, 274-288.
Aunque muchos de estos documentos describen el efecto promotor de óxidos metálicos concretos, por lo general, la composición de la fase promotora está formada por la combinación de, al menos, dos de estos tipos de óxidos tal como se describe en Catalysis Today, 2009, 147(2), 139-149; Journal of Catalysis, 2009, 267 (2), 167-176 and WO2011/053953.
Por su parte, los soportes catalíticos más comúnmente empleados son de tipo óxido de silicio (Si02) con gran variedad de propiedades texturales (área específica, tamaño de poro, etc.), óxido de aluminio (AI2O3), óxido de titanio (Ti02) y óxidos mixtos MxOy- M' zCy tales como Ce02-Ti02, Ce02-Al203, Si02-Al203 y Si02-Ti02, entre otros. También se han empleado como soportes materiales carbonosos como carbón activo o nanotubos de carbono, aunque este último tipo de materiales son menos convenientes desde el punto de vista de una potencial aplicación a nivel industrial debido a la dificultad de regeneración o elevado coste, como es el caso de los nanotubos de carbono.
Existen muy pocos ejemplos en el estado de la técnica en los que se describe el empleo de óxido de cerio (Ce02) como componente de las fases promotoras del rodio (Journal of Physical Chemistry, 1990, 94, 5941-5947) o como propio soporte de las fases metálicas {Journal of Molecular Catalysis A: Chemical, 2001, 165, 219-230; Journal of Chemical Society, Faraday Transactions, 1992, 88(9), 1311-1319; Sekiyu Gakkaishi, 1999, 42(3), 178-179; Reac. Kinetics and Catalysis Letters, 2002, 76(1), 141-150).
Sin embargo, a pesar de las numerosas composiciones catalíticas basadas en rodio descritas en el estado de la técnica, la actividad mostrada en la producción de etanol a partir de gas de síntesis no es del todo satisfactoria, por lo se hace necesario el desarrollo de catalizadores de rodio mejorados que permitan la obtención de etanol con una mayor actividad y/o selectividad.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Los autores de la presente invención han encontrado, sorprendentemente, que el empleo de un compuesto de hierro como promotor del rodio, o una combinación adecuada de promotores que comprende un compuesto de hierro, junto con la utilización de Ce02 como soporte, proporciona catalizadores de rodio promovidos con propiedades catalíticas (actividad y/o selectividad y/o productividad a etanol) mejoradas para la conversión selectiva de gas de síntesis a etanol respecto a sistemas equivalentes cuyos soportes están basados en otro tipo de óxidos más comúnmente empleados, como Si02, A1203, Ti02 y óxidos mixtos MxOy-M'zOw, como se pone de manifiesto en el ejemplo 2.2.3 del presente documento.
De los estudios realizados empleando Ce02 como soporte se ha podido demostrar que, además del hierro, las combinaciones de promotores del rodio más adecuadas que conducen a catalizadores con una elevada actividad y/o selectividad a etanol y, por tanto, a una elevada productividad de etanol, comprenden los siguientes elementos:
- hierro + zirconio y, opcionalmente, un lantánido
- hierro + un lantánido
- hierro + zirconio + vanadio y, opcionalmente, un lantánido
- hierro + vanadio + un lantánido.
Otro aspecto diferenciador y ventajoso de estos catalizadores respecto a los basados en los soportes convencionales, según se deriva de las composiciones típicas descritas en la literatura, es que los catalizadores soportados en Ce02 no requieren de la adición de un elemento alcalino (siendo Li y Na los más comúnmente empleados) o alcalino-térreo (por ejemplo Mg) para alcanzar elevadas selectividades a etanol (ver ejemplo comparativo en el apartado 2.1 del ejemplo 2).
Por tanto, un primer aspecto de la presente invención se dirige a una composición catalítica que comprende:
- un compuesto de rodio; y
- un promotor del compuesto de rodio, donde dicho promotor comprende un compuesto de hierro,
donde el compuesto de rodio y el promotor del compuesto de rodio se encuentran depositados sobre un soporte de óxido de cerio.
En una realización particular, el promotor del compuesto de rodio comprende una combinación de compuestos metálicos seleccionada entre:
- hierro + zirconio y, opcionalmente, un elemento lantánido;
- hierro + un elemento lantánido;
- hierro + zirconio + vanadio y, opcionalmente, un elemento lantánido; y
- hierro + vanadio + un elemento lantánido.
Otro aspecto de la presente invención se refiere a un procedimiento para la preparación de una composición catalítica como se ha definido previamente, donde dicho procedimiento comprende:
a) impregnar el soporte de óxido de cerio con un precursor del compuesto de rodio y con un precursor o precursores del promotor del compuesto de rodio; b) someter el soporte impregnado a una etapa de secado;
c) someter el soporte impregnado y seco a una etapa de calcinación, y d) someter el sólido calcinado obtenido en la etapa c) a un proceso de reducción.
Otro aspecto de la presente invención se refiere a una composición catalítica obtenible según el procedimiento anteriormente descrito.
Un aspecto adicional de la invención se dirige a un procedimiento para la preparación de compuestos oxigenados de dos o más átomos de carbono, donde dicho procedimiento comprende hacer reaccionar una mezcla gaseosa que comprende monóxido de carbono e hidrógeno con la composición catalítica descrita previamente.
En una realización particular, el compuesto oxigenado es etanol. Finalmente, en otro aspecto la invención se dirige a un procedimiento para la preparación de hidrocarburos de dos o más átomos de carbono, donde dicho procedimiento comprende hacer reaccionar una mezcla gaseosa que comprende monóxido de carbono e hidrógeno con la composición catalítica descrita previamente.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El primer aspecto de la presente invención lo constituye una composición catalítica que comprende un compuesto de rodio como principal ingrediente catalítico, y un promotor del compuesto de rodio, donde dicho promotor comprende un compuesto de hierro. Tanto el compuesto de rodio, como el promotor del mismo, se encuentran depositados sobre un soporte de óxido de ceno (Ce02).
En el contexto de la presente invención, el término "compuesto de rodio" puede incluir rodio en estado metálico o una mezcla de rodio metálico y rodio en un estado de oxidación mayor que 0.
El término "promotor" hace referencia a uno o varios ingredientes catalíticos activos, en particular uno o varios compuestos metálicos, que tienen la capacidad de aumentar de manera sinérgica la actividad catalítica y/o selectividad a etanol del compuesto de rodio que es el principal ingrediente catalítico.
En una realización particular, el promotor del compuesto de rodio comprende una combinación de compuestos metálicos seleccionada entre: a) hierro + zirconio y, opcionalmente, un elemento lantánido;
b) hierro + un elemento lantánido;
c) hierro + zirconio + vanadio y, opcionalmente, un elemento lantánido d) hierro + vanadio + un elemento lantánido,
donde el compuesto de rodio y la combinación precursora del mismo se encuentran depositados sobre un soporte de óxido de cerio.
Por "compuestos metálicos" debe entenderse compuestos que incluyen en su composición los elementos metálicos definidos anteriormente, ya sea, por ejemplo, el propio elemento en estado metálico, en forma de óxido metálico, en forma de carburo metálico, o una combinación de los mismos, entre otros. De igual forma, cuando el compuesto de hierro actúa como único promotor, éste puede encontrase en estado metálico, en forma de óxido, en forma de carburo, entre otros.
En una realización particular, la composición catalítica de la invención contiene rodio en una proporción que oscila entre 0.1 y 20% en peso con respecto al peso total de la composición catalítica, preferiblemente entre 0.5 y 10% en peso, más preferiblemente entre 1 y 5% en peso.
En una realización particular, la relación atómica entre el compuesto de rodio y el total de los compuestos precursores varía entre 1/10 y 10/1, preferiblemente entre 1/5 y 5/1, más preferiblemente entre 1/3 y 3/1.
En otra realización particular, cuando el promotor del compuesto de rodio es hierro, la relación atómica rodio/hierro oscila entre 2/1 y 1/2. Ejemplos concretos de relaciones atómicas para la combinación rodio/ hierro son 1/0.5, 1/1 y 1/2.
En otra realización particular, cuando la combinación de compuestos metálicos comprende hierro y zirconio, la relación atómica rodio/ hierro/ zirconio oscila entre 1/0.2/0.2 y 1/3/3, preferiblemente entre 1/0.5/0.5 y 1/1.5/1.5. Ejemplos concretos de relaciones atómicas para la combinación rodio/ hierro/ zirconio son 1/1/1, 1/1.5/1, 1/1/0.5, 1/0.5/1.5, 1/1/1.5, 1/0.5/1, 1/1.5/1.5 y 1/1.5/0.5.
En otra realización particular, la combinación de hierro y zirconio comprende además un lantánido.
Por lantánido se entiende un elemento seleccionado entre lantano, cerio, praseodimio, neodimio, prometió, samario, europio, gadolinio, terbio, disprosio, holmio, erbio, tulio, iterbio y lutecio. En una realización preferente, el elemento lantánido se selecciona entre lantano, praseodimio y samario.
En una realización particular, la relación atómica rodio/lantánido oscila entre 1 :0.3 y 1 : 3, más preferiblemente entre 1/0.5 y 1/1.5. Ejemplos concretos de relaciones atómicas para la combinación rodio/ hierro/ zirconio/ lantánido son 1/1/1/1; 1/0.5/1/1; 1/1.5/1/1; 1/0.5/0.5/1; 1/0.5/1.5/1; 1/1.5/0.5/1; 1/1/1/1.5; 1/1/1/0.5 y 1/1.5/1.5/1.
En otra realización particular, cuando la combinación de compuestos metálicos comprende hierro y un elemento lantánido, la relación atómica rodio/hierro/elemento lantánido oscila entre 1/0.5/0.5 y 1/2/2. De forma preferente, la relación atómica es 1/1/1.
En otra realización particular, cuando la combinación de compuestos metálicos comprende hierro, zirconio y vanadio, la relación atómica rodio/hierro/zirconio/vanadio oscila entre 1/0.5/0.5/0.5 y 1/2/2/2. Ejemplos concretos de relaciones atómicas para la combinación rodio/hierro/zirconio/vanadio son 1/1/1/1; 1/1/1/0.5 y 1/1/0.5/1.
En otra realización particular, cuando la combinación de compuestos metálicos comprende hierro, vanadio y un elemento lantánido, la proporción molar rodio/ hierro/ vanadio/ elemento lantánido oscila entre 1/0.2/0.2/0.2 y 1/3/3/3, preferiblemente entre 1/0.5/0.5/0.5 y 1/1.5/1.5/1.5. Ejemplos concretos de relaciones molares para la combinación rodio/hierro/vanadio/elemento lantánido son 1/1/1/1/; 1/0.25/1/1; 1/0.5/1/1; 1/0.5/1.5/1; 1/1/1/1.5; 1/1/1/0.5; 1/1/1/2.5 y 1/1.5/0.5/1.
En una realización preferente, la combinación de compuestos metálicos comprende hierro y zirconio. La composición catalítica que comprende esta combinación de compuestos metálicos combina una elevada actividad catalítica con una alta selectividad a etanol tal como ponen de manifiesto los ejemplos aportados.
No obstante, cuando se requiere fundamentalmente una elevada selectividad a etanol, la combinación de compuestos metálicos comprende hierro, zirconio y un compuesto lantánido.
En otra realización particular, la composición catalítica de la invención carece de un metal alcalino y/o alcalino-térreo.
En una realización particular, el soporte de óxido de cerio (Ce02) donde se deposita el compuesto de rodio y el compuesto de hierro o la combinación de compuestos metálicos tiene una superficie específica de al menos 10 m2/g, preferiblemente entre 10 y 150 m2/g, más preferiblemente entre 25 y 75 m2/g.
En otra realización particular, el soporte de óxido de cerio tiene un volumen de poro de entre 0.05 y 0.5 cm3/g, preferiblemente entre 0.1 y 0.3 cm3/g.
En otra realización particular, el soporte de óxido de cerio tiene un diámetro medio de poro entre 1 y 50 nm, preferiblemente entre 5 y 25 nm. Dicho soporte puede estar en forma de polvo, gránulos, pellets o aglomerados de formas irregulares. Para su obtención, puede llevarse a cabo cualquier procedimiento conocido por un experto en la materia, tal como por ejemplo, un procedimiento de precipitación, en el que un precursor soluble y/o coloidal del óxido de cerio es tratado para producir el óxido sólido. No obstante, dicho soporte se encuentra también disponible comercialmente.
El procedimiento para depositar el compuesto de rodio y el promotor sobre el soporte de óxido de cerio (Ce02) puede llevarse a cabo mediante cualquier procedimiento convencional de deposición de catalizadores metálicos sobre soportes sólidos conocido por un experto en la materia. Dichos procedimientos incluyen el método de impregnación, ya sea co-impregnación o impregnación secuencial, el método de inmersión, el método de intercambio iónico o el método de co-precipitación.
En una forma de realización preferida, el procedimiento para depositar el compuesto de rodio y el promotor del mismo sobre el soporte de óxido de cerio se realiza mediante impregnación.
Así, un aspecto adicional de la presente invención lo constituye un procedimiento para la obtención de una composición catalítica como se ha definido previamente que comprende:
a) impregnar el soporte de óxido de cerio con un precursor del compuesto de rodio y con un precursor o precursores del promotor del compuesto de rodio; b) someter el soporte impregnado a una etapa de secado;
c) someter el soporte impregnado y seco a una etapa de calcinación; y d) someter el sólido calcinado obtenido en la etapa c) a un proceso de reducción.
El precursor del compuesto de rodio es generalmente una sal de rodio o un complejo de rodio. Ejemplos específicos de sales de rodio incluyen sales inorgánicas de rodio tales como cloruro, bromuro, yoduro, nitrato y carbonato de rodio, así como sales orgánicas de rodio tales como acetato u oxalato. Como complejos de rodio pueden emplearse complejos que incluyen, junto con rodio y un haluro, ligandos formadores de complejos, por ejemplo complejos de etilendiamina (Rh(NH2C2H4NH2)3Cl3), complejos de piridina
Figure imgf000010_0001
acetilacetonato, complejos ciclooctadieno, complejos ciclopentadienilo, complejos π-alilo, complejos aleño de rodio, complejos de trialquilfosfina y triarilfosfina.
En una forma de realización preferida, el precursor del compuesto de rodio es una sal soluble en agua, en particular, una sal inorgánica de rodio seleccionada entre cloruro, nitrato y carbonato de rodio, siendo aún más preferido el empleo de cloruro de rodio trihidratado (RhCl3-3H20).
La impregnación del soporte con el precursor del compuesto de rodio se puede efectuar disolviendo previamente el precursor de rodio en un disolvente adecuado, tal como por ejemplo, agua, un alcohol (metanol o etanol), un éter (tetrahidrof rano o dioxano) o un hidrocarburo (hexano). De forma preferente, el disolvente empleado es agua siempre que el precursor del rodio sea una sal inorgánica como las descritas anteriormente.
Una vez impregnado el soporte con esta disolución, éste es sometido a un proceso de secado para eliminar el disolvente. Este proceso de secado se puede efectuar sometiendo el soporte impregnado a una temperatura próxima al punto de ebullición del disolvente empleado. En el caso particular de emplear agua como disolvente, el soporte impregnado se puede someter a un proceso de calentamiento a una temperatura de aproximadamente 100°C durante al menos un 12 horas. Alternativamente, la etapa de secado se puede llevar a cabo a una temperatura menor que el punto de ebullición del disolvente, por ejemplo, en condiciones de presión reducida (inferior a la atmosférica).
Los precursores de los compuestos metálicos que actúan como promotor del compuesto de rodio también son sales de elementos metálicos. Ejemplos de estas sales incluyen sales orgánicas o inorgánicas tales como cloruros, carbonatos, hidróxidos, acetatos, formatos, oxalatos, sales de silil éter, acetilacetonatos, polihidroxiestearatos, alcóxidos, complejos dicilopentadienilo, complejos π-alilo, complejos bencilo y complejos aleño de hierro, zirconio, vanadio y de elementos lantánidos.
En una realización particular, el precursor del compuesto de hierro se selecciona entre tricloruro de hierro (FeCl3), nitrato férrico (Fe(N03)3), nitrato ferroso (Fe(N03)2), hidróxido férrico (Fe(OH)3), carbonato férrico (Fe2(C03)3), formato férrico (Fe(HCOO)3), oxalato férrico (Fe2(C204)3-nH20), clorato férrico (Fe(C104)3), metóxido férrico (Fe(OCH3)3), etóxido férrico (Fe(OC2H5)3), propóxido férrico (Fe(OC3H7)3), butóxido férrico (Fe(OC4H9)3) y metil carbonato férrico (Fe(CH3OCOO)3). En otra realización particular, el precursor del compuesto de zirconio se selecciona entre oxinitrato de zirconio (ZrO(N()3)2-2H20), nitrato de zirconio (Zr(N03)3-6H20), oxiacetato de zirconio (ZrO(CH3COO)3), oxicloruro de zirconio (ZrOCl2), tetracloruro de zirconio (ZrCl4), acetato de zirconio (Zr(CH3COO)2), etóxido de zirconio (Zr(OC2H5)4), isopropóxido de zirconio (Zr(0-isoC3H7) ), butóxido de zirconio (Zr(OC4H9) ), cloruro de diciclopentadienil zirconio (( -C5H5)2ZrCl2), dicarbonil diciclopentadienil zirconio (( -CsH5)2Zr(CO)2), acetilacetonato de zirconio (Zr(C5H702)4) y complejo de bencil zirconio (Zr(CH2CeH5) . De forma preferente, el precursor del compuesto de zirconio se selecciona entre oxinitrato de zirconio (ZrO(N03)2-2H20) y nitrato de zirconio (Zr(N03)3-6H20).
En otra realización particular, el precursor del compuesto de vanadio se selecciona entre tetracloruro de vanadio (VC14), metavanadato amónico ( ELtVC ), etóxido de vanadio (VO(OC2H5)3), butóxido de vanadio (VO(OC4H9)3), metóxido de vanadio (VO(OCH3)3), etoxicloruro de vanadio (VO(OC2H5)5), acetilacetonato de vanadio (VO(C5H702)3), vanadoceno ( -C5H5)2V) y complejo π-alilo de carbonil vanadio (π- C3H5)2V(CO)2). En una realización preferente, el precursor del compuesto de vanadio es el metavanadato amónico.
En otra realización particular, el compuesto del elemento lantánido se selecciona entre un haluro, una sal de un ácido inorgánico, un hidróxido, una sal de un ácido orgánico, un metal alcóxido o similares. Ejemplos de estos precursores son cloruros, nitratos, oxalatos, acetatos, acetilacetonatos y carbonates del elemento lantánido..
La impregnación del soporte con los precursores de los compuestos metálicos que actúan como promotor del compuesto de rodio se puede efectuar disolviendo previamente éstos en un disolvente adecuado, tal como por ejemplo, agua, un alcohol (metanol o etanol), un éter (tetrahidrofurano o dioxano) o un hidrocarburo (hexano). De forma preferente, el disolvente empleado es agua siempre que los precursores de los compuestos metálicos sean sales inorgánicas como las descritas anteriormente.
Una vez impregnado el soporte con esta disolución, éste es sometido a un proceso de secado para eliminar el disolvente. Este proceso de secado se puede efectuar sometiendo el soporte impregnado a una temperatura próxima al punto de ebullición del disolvente empleado. En el caso particular de emplear agua como disolvente, el soporte impregnado se somete a un proceso de calentamiento a una temperatura de aproximadamente 100°C durante al menos un 12 horas. Alternativamente, la etapa de secado se puede llevar a cabo a una temperatura menor que el punto de ebullición del disolvente, por ejemplo, en condiciones de presión reducida (inferior a la atmosférica).
La impregnación del precursor del rodio y de los precursores de los compuestos metálicos que actúan como promotor del compuesto de rodio puede llevarse a cabo de forma secuencial en cualquier orden, o bien puede efectuarse de forma simultánea.
En una realización preferente, la impregnación se efectúa disolviendo simultáneamente en el mismo disolvente el precursor del rodio y los precursores de los compuestos metálicos, adicionando posteriormente esta disolución sobre el soporte de óxido de cerio.
Por tanto, en una realización preferente, el procedimiento de la invención comprende: a) co-impregnar el soporte de óxido de cerio con una disolución que comprende un precursor del compuesto de rodio y un precursor o precursores del promotor del compuesto de rodio;
b) someter el soporte impregnado a una etapa de secado para eliminar el
disolvente de la disolución empleada en la etapa a):
c) someter el soporte impregnado y seco a una etapa de calcinación; y d) someter el sólido calcinado obtenido en la etapa c) a un proceso de
reducción.
No obstante, debido a la baja solubilidad de algunos de los precursores de los compuestos de zirconio y vanadio, la incorporación de los mismos al soporte se puede realizar mediante impregnación del soporte con una disolución que comprende el precursor del compuesto de zirconio y/o de vanadio y posterior secado del soporte impregnado, en una etapa previa a la co-impregnación del precursor de rodio y de los precursores del resto de compuestos metálicos.
Por tanto, en otra realización particular, cuando la composición catalítica comprende un compuesto de zirconio y/o un compuesto de vanadio, el procedimiento de la invención comprende: a) impregnar el soporte de óxido de cerio con una disolución que comprende un precursor del compuesto de zirconio y/o un precursor del compuesto de vanadio;
b) someter el soporte impregnado a una etapa de secado para eliminar el disolvente de la disolución empleada en la etapa a);
c) co-impregnar el sólido obtenido en la etapa b) con una disolución que comprende un precursor del compuesto de rodio y un precursor o precursores del resto de compuestos metálicos que actúan como promotor del compuesto de rodio no incluidos en la disolución de la etapa a);
d) someter el soporte impregnado obtenido en la etapa c) a una etapa de secado para eliminar el disolvente de la disolución empleada en la etapa c);
e) someter el soporte impregnado y seco obtenido en la etapa d) a una etapa de calcinación; y
f) someter el sólido calcinado obtenido en la etapa e) a un proceso de reducción.
En una forma de realización particular, la etapa de calcinación se realiza sometiendo el soporte impregnado y seco a un calentamiento de entre 250 y 600°C, preferentemente entre 300y 500°C, aplicando una rampa de calentamiento de entre 1 y 10°C/min. De forma preferente, el tiempo en el que permanece a esta temperatura es de al menos una hora.
En una forma de realización preferente, la calcinación se efectúa bajo una atmósfera que comprende un gas que contiene oxígeno, tal como por ejemplo aire, de manera que las sales metálicas o precursores de los compuestos metálicos se conviertan en los correspondientes óxidos metálicos.
Tras la etapa de calcinación, el precursor de rodio empleado en la impregnación ya no está prácticamente presente, sino que la mayor parte del rodio está como óxido. Para que el sólido que se obtiene tras la etapa de calcinación pueda emplearse como composición catalítica en la reacción de conversión del gas de síntesis a hidrocarburos oxigenados, éste debe ser activado mediante un proceso de reducción.
Dicha etapa de reducción puede llevarse a cabo aplicando sobre la composición catalítica una temperatura de entre 275 y 500°C, preferiblemente entre 300 y 400°C y haciendo pasar un gas que contiene un agente reductor. Ejemplos de agentes reductores incluyen hidrógeno, el propio gas de síntesis, monóxido de carbono, hidracina, hidruro de boro o hidruro de aluminio. En una realización preferente, el agente reductor es hidrógeno, gas de síntesis o una mezcla de ambos.
Dicha etapa de reducción puede llevarse a cabo en el mismo reactor en donde se efectúa la conversión de gas de síntesis o en un reactor independiente.
Un aspecto adicional de la invención lo constituye un procedimiento para la preparación de compuestos oxigenados de dos átomos de carbono, donde dicho procedimiento comprende hacer reaccionar una mezcla gaseosa que comprende monóxido de carbono e hidrógeno con la composición catalítica descrita previamente.
En el contexto de la presente invención, el término "compuestos oxigenados de dos átomos de carbono" se refiere a compuestos que tienen dos átomos de carbono y uno o más átomos de oxígeno, además de hidrógeno, tales como etanol, acetaldehído, o ácido acético.
El procedimiento de preparación de los compuestos oxigenados se realiza haciendo pasar la mezcla gaseosa inicial sobre la composición catalítica de la invención. Dicho procedimiento puede ser llevado a cabo alimentando la mezcla gaseosa que comprende monóxido de carbono e hidrógeno en un reactor catalítico adecuado, tal como un reactor de circulación cerrado, un reactor del tipo de lecho fijo adaptado para la circulación de una mezcla gaseosa inicial a presión atmosférica o presión elevada, un reactor a presión discontinuo o un reactor a presión con agitación de tipo discontinuo, y poniendo la mezcla gaseosa inicial en contacto con la composición catalítica.
En una realización particular, el procedimiento se lleva a cabo a una temperatura comprendida entre aproximadamente 50°C y aproximadamente 450°C, más preferiblemente entre 100 y 350°C,
La presión a la que se realiza el procedimiento puede oscilar entre aproximadamente 0.5 y aproximadamente 350 bares, preferiblemente entre 10 y 300 bares.
En una realización particular, la relación molar entre el monóxido de carbono y el hidrógeno en la mezcla gaseosa se encuentra comprendida entre 10: 1 y 1 : 10, preferiblemente entre 5: 1 y 1 :5, más preferiblemente entre 2: 1 y 1 :2. En una realización preferente, la mezcla gaseosa empleada en el procedimiento es gas de síntesis. Por "gas de síntesis" se debe entender una mezcla gaseosa constituida en su totalidad, o predominantemente, por monóxido de carbono e hidrógeno. En algunos casos, dicha mezcla puede contener otros componentes como nitrógeno, argón, dióxido de carbono y/o metano.
El gas de síntesis puede prepararse a partir de una gran variedad de sustancias, tales como gas natural, hidrocarburos líquidos, carbón o biomasa siguiendo métodos conocidos por un experto en la materia.
Siguiendo el procedimiento de la invención se obtienen compuestos oxigenados con dos átomos de carbono, particularmente etanol, con una elevada selectividad y/o productividad. El término "selectividad" denota el porcentaje de dicho compuesto (en base carbono) en los productos de reacción, incluyendo C02, hidrocarburos y otros compuestos oxigenados. Por "productividad" se entiende la cantidad de compuesto oxigenado producido por masa de catalizador y unidad de tiempo.
El etanol, obtenido como ingrediente principal dentro de la fracción de compuestos oxigenados, puede separarse fácilmente del resto de compuestos oxigenados por técnicas convencionales conocidas por un experto en la materia.
La presente invención se ilustra adicionalmente mediante los siguientes ejemplos, que no pretenden ser limitativos de su alcance.
Ejemplos
Ejemplo 1. Procedimiento general de preparación del catalizador de Rh promovido soportado en CeO? y condiciones típicas empleadas en los ensayos catalíticos de conversión de gas de síntesis
1.1. Procedimiento general de preparación del catalizador
El soporte Ce02 empleado en las preparaciones de los catalizadores estudiados es de origen comercial (Aldrich) y posee las siguientes propiedades texturales: superficie específica (BET)= 62.7 m2/g, volumen de poro= 0.20 cm3/g, y diámetro medio de poro= 13.1 nm.
Los catalizadores se prepararon mediante co-impregnación a volumen de poro (wetness impregnatiori) del soporte Ce02 con una disolución acuosa que contiene los precursores metálicos de Rh (RhCl3-3H20) y los precursores de los promotores en las concentraciones adecuadas para conseguir un 2.5% en peso de Rh y las relaciones atómicas promotor(es)/Rh deseadas en el catalizador calcinado (antes de reducir). Cuando se empelaron compuestos de V y Zr como promotores del Rh, la incorporación de los mismos al soporte se realizó mediante impregnación del soporte a volumen de poro y posterior secado a 100°C durante aprox. 2-3 horas en una etapa previa a la coimpregnación de los precursores de Rh y resto de promotores metálicos. Una vez incorporados todos los precursores metálicos al soporte, el material se secó en estufa a 100°C durante aprox. 12 horas y posteriormente se calcinó en flujo de aire a 400°C durante 4 horas, empleando una rampa de calentamiento de 2°C/min.
1.2. Nomenclatura general de los catalizadores
La nomenclatura que se emplea para los catalizadores es Rh-xPl-^P2-zP3/Ce02, donde Pl, P2 y P3 son los metales de los correspondientes promotores (en el caso, por ejemplo, de catalizadores tri-promovidos) siendo x, y, z las relaciones atómicas entre los promotores Pl, P2 y P3, respectivamente, y el Rh. Como se ha mencionado anteriormente, todos los catalizadores poseen un contenido nominal de Rh del 2.5% en peso (en el material calcinado).
1.3. Ejemplo de preparación de un catalizador de composición Rh-Fe-Zr/CeO?
De acuerdo a la nomenclatura establecida, este catalizador contiene un 2.5% en peso de Rh y unas relaciones atómicas Fe/Rh=l y Zr/Rh= 1. Para su preparación, se impregnaron a volumen de poro 94 gramos de Ce02 con 93.5 cm3 de una disolución acuosa en la que previamente se habían disuelto 8.87 gramos de ZrO(N03)3-6H20 (disolución incolora transparente). Una vez completada la adición (llenado de los poros del soporte), el sólido se secó en estufa a 100°C durante 2-3 horas. A continuación el soporte Ce02 impregnado con el precursor de Zr y seco se impregnó de nuevo a volumen de poro con 93.5 cm3 de una disolución acuosa en la que previamente se habían disuelto 10.46 gramos de RhCl3-3H20 y 6.57 gramos de FeCl3-6H20. Tras la impregnación el sólido se secó de nuevo en estufa a 100°C durante aprox. 12 horas, y finalmente se calcinó en flujo de aire a 400°C durante 4 horas. 1.4. Condiciones de los ensayos catalíticos
Los ensayos catalíticos se llevaron a cabo empleando un reactor catalítico de lecho fijo de 9.7 mm de diámetro interno y una longitud de 335 mm. La cantidad de catalizador (en su forma calcinada) utilizada en los ensayos fue de aproximadamente 1 g. En todos los casos, el reactor se cargó con catalizador previamente prensado y tamizado con una granulometría de 0.25-0.45 mm y diluido con SiC (granulometría 0.6-0.8 mm) hasta conseguir un volumen total de lecho catalítico de 6.5 cm3.
Antes de introducir la mezcla de gases reactantes en el reactor, el catalizador se sometió a una etapa de reducción in situ en flujo de H2 (100 cm3/min-gcat) a 300°C durante 6 horas (rampa de calentamiento de l°C/min). Posteriormente, el reactor se enfrió hasta 100°C en flujo de H2, éste se sustituyó por gas de síntesis con la composición volumétrica 45%H2/45%CO/10%Ar (relación H2/CO= 1, Ar empleado como patrón interno para los análisis cromatográficos) con el caudal deseado y el reactor se presurizó a 50 bar. Una vez presurizado, la temperatura del reactor se incrementó hasta 280°C utilizando una rampa de calentamiento de 4°C/min. El inicio de la reacción (TOS=0) se considera cuando se alcanza la temperatura de reacción (280°C). La velocidad espacial se ajustó en cada catalizador con el objeto de conseguir una conversión constante de CO de aprox. un 10% y poder comparar así selectividades en condiciones de iso-conversión.
Los productos de reacción de separaron y cuantificaron mediante un cromatógrafo de gases (modelo Varían CP-3800) acoplado en línea a la salida del reactor tras la despresurización de la corriente de salida. Durante la reacción se realizaron análisis consecutivos a intervalos de aprox. 1 hora. Generalmente el catalizador se ensayó durante un tiempo total de aprox. 8 horas, para el cual ya se observa un comportamiento /wewdo-estacionario (poca variación de la actividad y selectividad con el tiempo). Los datos de actividad y selectividad que se presentan corresponden a los valores obtenidos en el estado /wewdo-estacionario.
Ejemplo 2. Resultados de los ensayos catalíticos para la conversión de gas de síntesis a etanol
2.1. Resultados obtenidos empleando catalizadores de la invención En la Tabla 1 se muestran ejemplos de composiciones catalíticas representativas de la invención, obtenidas según el procedimiento general de preparación descrito en el ejemplo 1, ejemplificado en el apartado 1.3 para el caso concreto de un catalizador de composición Rh-Fe-Zr/Ce02 de acuerdo a la nomenclatura establecida (apartado 1.2). El contenido nominal de rodio en todos los catalizadores es del 2.5% en peso.
Tabla 1. Composición química de catalizadores representativos de la invención.
Figure imgf000019_0001
Estos catalizadores fueron ensayados en la conversión catalítica de gas de síntesis en las condiciones detalladas en el apartado 1.4 (T= 280°C, P= 50 bar). Los resultados de actividad (dada como milimoles de CO convertido por gramo de catalizador y hora), selectividad a los principales productos de reacción (a una conversión de CO constante de aprox. 10%), y de productividad a etanol (dada como gramos de EtOH obtenidos por kg de catalizador y hora) se muestran en la Tabla 2.
Tabla 2. Resultados obtenidos en la conversión de gas de síntesis con los catalizadores de la invención mencionados en la Tabla 1.
Catalizador Actividad Selectividad (%C)a Productividad a
(mmol/gh) EtOH (g/kgcath)
HC's Oxig. C02 EtOH
1-1 13.5 41.0 40.2 18.8 24.9 77.3
1-2 12.4 42.6 40.9 16.5 24.4 69.6
1-3 10.6 41.2 47.3 11.5 31.5 76.8
1-4 11.0 35.3 49.6 15.1 27.6 69.8
1-5 13.5 49.4 37.7 12.9 24.1 74.8
1-6 11.6 37.9 44.1 18.0 27.6 73.6
1-7 11.4 40.6 46.5 12.9 30.6 80.2
1-8 10.7 49.5 42.0 8.5 27.1 66.7
1-9 8.8 40.6 47.3 12.1 31.3 63.4
1-10 8.7 38.0 47.4 14.6 30.3 60.6
1-11 10.2 42.1 46.0 11.9 29.6 69.4
1-12 8.1 40.3 45.7 14.0 29.2 54.4
1-13 7.8 45.3 42.9 11.8 29.1 52.2
1-14 10.5 40.1 42.9 17.0 26.8 64.7
1-15 7.6 40.0 44.4 15.6 29.3 51.2
1-16 11.8 42.4 41.3 16.3 25.6 69.5
1-17 6.9 48.3 45.0 6.7 28.5 45.2 a HC's= hidrocarburos; Oxig.= oxigenados totales.
Todos los catalizadores incluidos en la Tabla 2 se caracterizan por su elevada actividad y/o selectividad a etanol en las condiciones de los ensayos. Hay que tener en cuenta que los ensayos se realizaron en unas condiciones de temperatura y presión fijas (280°C y 50 bar, respectivamente) y a una velocidad espacial tal que se obtuviese una conversión de CO próxima al 10%, y que por tanto, los valores de productividad obtenidos no son los óptimos en cada caso. No obstante, las condiciones de estos ensayos sí son apropiadas para establecer comparativas entre diferentes sistemas catalíticos.
De entre los catalizadores seleccionados destaca el 1-7 (composición metálica: Rh- 1.5Fe-1.5Zr) ya que combina una elevada actividad catalítica con una alta selectividad a etanol (30.6%), dando lugar a la mayor productividad a este alcohol (80.2 g/kgcath) de entre todos los catalizadores soportados en Ce02.
También cabe destacar que cuando se emplea Ce02 como soporte, la gran mayoría de composiciones metálicas que dan lugar a los mejores catalizadores contienen combinaciones de Fe y Zr en diferentes proporciones (catalizadores 1-3 a 1-7).
Por otra parte, a diferencia de lo que ocurre en la mayoría de catalizadores soportados en Si02, la adición de un alcalino (generalmente Li) como co-promotor tiene un efecto negativo sobre el comportamiento de los catalizadores de la invención soportados en Ce02, tal como se muestra en la Tabla 3, a modo de ejemplo, para los catalizadores 1-8 (Rh-Fe-Zr-Pr) e 1-9 (Rh-Fe-Zr-Sm). Claramente se observa que la adición de Li (relación atómica Li/Rh= 0.5) a estos sistemas catalíticos aumenta significativamente la selectividad a C02, reduciendo la selectividad a oxigenados en general y a etanol en particular.
Tabla 3. Efecto de la adición de Li en catalizadores representativos de la invención. Catalizador Conversión Actividad Selectividad (%C) Productividad a de CO (%) (mmol/gh) EtOH (g/kgcath)
HC's Oxig. C02 EtOH
1-8 + Lia 11.5 10.1 35.4 28.0 36.6 17.6 40.9
1-9 + Lia 10.8 12.2 29.8 27.1 43.1 15.5 43.5 a Relación atómica Li/Rh
2.2. Ejemplos comparativos empleando soportes representativos del estado del arte 2.2.1. Catalizadores soportados en S1O2
En la Tabla 4 se presentan las propiedades texturales de diferentes tipos de sílice de origen comercial empleadas como soportes representativos del estado del arte. En la Tabla 5 se muestran ejemplos de catalizadores de Rh promovido soportados en los diferentes tipos de Si02 comerciales. Los catalizadores fueron preparados siguiendo la misma metodología general descrita en el apartado 2.2.1 para los soportados en Ce02.
Tabla 4. Propiedades de diferentes tipos de sílice comerciales (Aldrich) empleadas en la preparación de catalizadores representativos del estado del arte.
Figure imgf000022_0001
Tabla 5. Composición de catalizadores de Rh promovido soportados en materiales tipo sílice de origen comercial. Catalizador Soporte Composición de la fase metálica
C-l Si02-Spher. Rh-Fe-V-Pr
C-2 Si02-G12 Rh-Fe-V-Pr
C-3 Si02-G643 Rh-Fe-V-Pr
C-4 Si02-G635 Rh-Fe-V-Pr
Estos catalizadores se ensayaron en el proceso de conversión de gas de síntesis en las mismas condiciones de reacción empleadas para los catalizadores de la invención (soportados en Ce02), tal como se describe en el apartado 1.4. Los resultados obtenidos se muestran en la Tabla 6.
Tabla 6. Resultados obtenidos en la conversión de gas de síntesis con los catalizadores soportados en S1O2 (Tabla 5) representativos del estado del arte.
Figure imgf000023_0001
2.2.2. Catalizadores soportados en ΏΟ2
En la Tablas 7 y 8 se recogen las composiciones y resultados catalíticos de catalizadores preparados empleando óxido de titanio comercial (P25, Degussa) como soporte.
Tabla 7. Catalizadores de Rh promovido soportados sobre T1O2 comercial. Catalizador3 Soporte Composición de la fase metálica
C-5 Ti02 (P25, Degussa) Rh-Fe-Zr-Pr
C-6 Ti02 (P25, Degussa) Rh-Fe-V-Pr
Tabla 8. Resultados obtenidos en la conversión de gas de síntesis con los catalizadores soportados en T1O2.
Figure imgf000024_0001
2.2.3. Catalizadores soportados en óxidos mixtos
En la Tabla 9 se muestran catalizadores de Rh con composiciones metálicas de las fases promotoras similares a los anteriores, pero soportados sobre dos óxidos mixtos, Ce02- Si02 y Ce02-Zr02. Los resultados catalíticos obtenidos con estos catalizadores se recogen en la Tabla 10.
Tabla 9. Catalizadores de Rh promovido soportados sobre óxidos mixtos.
Figure imgf000024_0002
Tabla 10. Resultados obtenidos en la conversión de gas de síntesis con los catalizadores soportados en óxidos mixtos. Catalizador Conversión Actividad Selectividad (%C) Productividad a de CO (%) (mmol/gh) EtOH (g/kgh)
HC's Oxig. C02 EtOH
C-7 8.3 3.3 64.2 29.8 6.0 17.1 13.0
C-8 9.9 6.7 47.9 41.5 10.6 27.2 41.9
Los resultados de los ejemplos comparativos presentados anteriormente demuestran que, para composiciones de la fase metálica promotora equivalentes, los catalizadores de la invención soportados en Ce02 son más productivos a etanol en las mismas condiciones de operación.

Claims

REIVINDIACIO ES
1. Una composición catalítica que comprende:
- un compuesto de rodio;
- un promotor del compuesto de rodio, donde dicho promotor comprende un compuesto de hierro,
donde el compuesto de rodio y el promotor del mismo se encuentran depositados sobre un soporte de óxido de cerio.
2. Composición catalítica según reivindicación 1, donde el promotor del compuesto de rodio comprende una combinación de compuestos metálicos seleccionada entre: hierro + zirconio y, opcionalmente, un lantánido;
hierro + un lantánido;
hierro + zirconio + vanadio y, opcionalmente, un lantánido; y hierro + vanadio + un lantánido.
3. Composición catalítica según reivindicación 1 ó 2, donde el compuesto de rodio se encuentra en una proporción que oscila entre 0.1 y 20% en peso con respecto al peso total de la composición catalítica.
4. Composición catalítica según cualquiera de las reivindicaciones 1 a 3, donde la relación molar entre el compuesto de rodio y el promotor del mismo oscila entre 1 : 10 y 10: 1.
5. Composición catalítica según cualquiera de las reivindicaciones 1 a 4, donde el compuesto lantánido se selecciona entre lantano, praseodimio y samario.
6. Composición catalítica según cualquiera de las reivindicaciones 1 a 4, donde la combinación de compuestos metálicos comprende hierro y zirconio.
7. Composición catalítica según reivindicación 6, donde la combinación de compuestos metálicos comprende además un lantánido.
8. Composición catalítica según cualquiera de las reivindicaciones 1 a 7, caracterizada porque carece de un metal alcalino.
9. Un procedimiento para la preparación de una composición catalítica como se define en cualquiera de las reivindicaciones 1 a 8, donde dicho procedimiento comprende: a) impregnar el soporte de óxido de cerio con un precursor del compuesto de rodio y con un precursor o precursores del promotors del compuesto de rodio;
b) someter el soporte impregnado a una etapa de secado;
c) someter el soporte impregnado y seco a una etapa de calcinación; y. d) someter el sólido calcinado obtenido en la etapa c) a un proceso de reducción.
10. Procedimiento según la reivindicación 9, donde el precursor del compuesto de rodio es una sal inorgánica seleccionada entre cloruro, bromuro, yoduro, nitrato y carbonato de rodio; una sal orgánica seleccionada entre acetato y oxalato de rodio; o un complejo de rodio seleccionado entre complejos de etilendiamina, complejos de piridina, complejos ciclooctadieno, complejos ciclopentadienilo, complejos π- alilo, complejos aleño de rodio y complejos de trialquilfosfina y triarilfosfina.
11. Procedimiento según cualquiera de las reivindicaciones 9 a 10, donde los precursores del promotor del compuesto de rodio son sales inorgánicas seleccionadas entre cloruros, nitratos, carbonates e hidróxidos; sales orgánicas seleccionadas entre acetatos, formatos, oxalatos, sales de silil éter, acetilacetonatos, polihidroxiestearatos y alcóxidos; o complejos dicilopentadienilo, complejos π- alilo, complejos bencilo y complejos aleño de hierro, zirconio, vanadio y de elementos lantánidos.
12. Procedimiento según cualquiera de las reivindicaciones 9 a 11, donde la impregnación del precursor del compuesto de rodio y de los precursores del promotor del compuesto de rodio se lleva a cabo de forma secuencial en cualquier orden, o de forma simultánea.
13. Procedimiento según cualquiera de las reivindicaciones 9 a 12, donde la impregnación del precursor del compuesto de rodio y de los precursores del promotor del compuesto de rodio se lleva a cabo de forma simultánea, y comprende:
a) co-impregnar el soporte de óxido de cerio con una disolución que comprende un precursor del compuesto de rodio y el precursor o precursores del promotor del compuesto de rodio;
b) someter el soporte impregnado a una etapa de secado; c) someter el soporte impregnado y seco a una etapa de calcinación; y d) someter el sólido calcinado obtenido en la etapa c) a un proceso de reducción.
14. Procedimiento según cualquiera de las reivindicaciones 9 a 12, que comprende:
a) impregnar el soporte de óxido de cerio con una disolución que comprende un precursor del compuesto de zirconio o un precursor del compuesto de vanadio;
b) someter el soporte impregnado a una etapa de secado para eliminar el disolvente de la disolución empleada en la etapa a);
c) co-impregnar el soporte obtenido en la etapa b) con una disolución que comprende un precursor del compuesto de rodio metálico y precursores del resto de compuestos metálicos que actúan como promotor del compuesto de rodio no incluidos en la disolución de la etapa a);
d) someter el soporte impregnado obtenido en la etapa c) a una etapa de secado para eliminar el disolvente de la disolución empleada en la etapa c).
e) someter el soporte impregnado y seco obtenido en la etapa d) a una etapa de calcinación; y
f) someter el sólido calcinado obtenido en la etapa e) a un proceso de reducción.
15. Procedimiento según cualquiera de las reivindicaciones 9 a 14, donde la etapa de calcinación se realiza sometiendo el soporte impregnado y seco a un calentamiento de entre 250 y 600°C, aplicando una rampa de calentamiento de entre 1 y 10°C/min.
16. Procedimiento según cualquiera de las reivindicaciones 9 a 15, donde la etapa de reducción se lleva a cabo aplicando sobre el sólido calcinado una temperatura de entre 275 y 500°C, y haciendo pasar un gas que contiene un agente reductor.
17. Una composición catalítica obtenible según un procedimiento como se define en cualquiera de las reivindicaciones 9 a 16.
18. Un procedimiento para la preparación de compuestos oxigenados de dos átomos de carbono, donde dicho procedimiento comprende hacer reaccionar una mezcla gaseosa que comprende monóxido de carbono e hidrógeno con la composición catalítica definida en cualquiera de las reivindicaciones 1 a 8 y 17.
19. Procedimiento según reivindicación 18, donde el compuesto oxigenado es etanol.
20. Un procedimiento para la preparación de hidrocarburos de dos átomos de carbono, donde dicho procedimiento comprende hacer reaccionar una mezcla gaseosa que comprende monóxido de carbono e hidrógeno con la composición catalítica definida en cualquiera de las reivindicaciones 1 a 8 y 17.
PCT/ES2013/070028 2013-01-24 2013-01-24 Catalizador de rodio promovido para la conversión selectiva de gas de síntesis en etanol WO2014114822A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2013/070028 WO2014114822A1 (es) 2013-01-24 2013-01-24 Catalizador de rodio promovido para la conversión selectiva de gas de síntesis en etanol
ES201590076A ES2546118B1 (es) 2013-01-24 2013-01-24 Catalizador de rodio promovido para la conversión selectiva de gas de síntesis en etanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070028 WO2014114822A1 (es) 2013-01-24 2013-01-24 Catalizador de rodio promovido para la conversión selectiva de gas de síntesis en etanol

Publications (1)

Publication Number Publication Date
WO2014114822A1 true WO2014114822A1 (es) 2014-07-31

Family

ID=48227318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070028 WO2014114822A1 (es) 2013-01-24 2013-01-24 Catalizador de rodio promovido para la conversión selectiva de gas de síntesis en etanol

Country Status (2)

Country Link
ES (1) ES2546118B1 (es)
WO (1) WO2014114822A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759072A (zh) * 2019-01-15 2019-05-17 昆明理工大学 一种自支撑新型稀土插层复合氧化物催化剂的制备方法及应用

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1501891A (en) 1921-04-21 1924-07-15 Schorr Motor Vehicle Company Vehicle spring suspension
US4096164A (en) 1976-08-30 1978-06-20 Union Carbide Corporation Process for producing ethanol, acetic acid and/or acetaldehyde, from synthesis gas
US4224236A (en) 1978-04-04 1980-09-23 Hoechst Aktiengesellschaft Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
US4235798A (en) 1979-06-28 1980-11-25 Union Carbide Corporation Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4235801A (en) 1976-04-12 1980-11-25 Union Carbide Corporation Process for producing ethanol from synthesis gas
EP0030110A1 (en) 1979-11-27 1981-06-10 The British Petroleum Company p.l.c. Process for the production of an oxygenated hydrocarbon product containing ethanol
US4288558A (en) 1978-04-04 1981-09-08 Hoechst Aktiengesellschaft Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
GB2078745A (en) 1980-06-26 1982-01-13 British Petroleum Co Production of alcohols from synthesis gas
US4312955A (en) * 1980-12-01 1982-01-26 Union Carbide Corporation Process for the production of methanol from synthesis gas
US4344868A (en) 1979-08-13 1982-08-17 Mobil Oil Corporation Catalyst for synthesis gas conversion to oxygenates
US4351908A (en) 1980-10-11 1982-09-28 Hoechst Aktiengesellschaft Process for the manufacture of acetic acid, acetic aldehyde and ethanol from synthesis gas
US4415749A (en) 1980-05-27 1983-11-15 Ethyl Corporation Catalytic process for the selective formation of ethanol and methyl acetate from methanol and synthesis gas
US4442228A (en) 1978-10-24 1984-04-10 Hoechst Aktiengesellschaft Process for the manufacture of ethanol from synthesis gas
US4444909A (en) 1980-04-07 1984-04-24 Mobil Oil Corporation Synthesis gas conversion to oxygenates
US4446251A (en) 1980-02-15 1984-05-01 Union Carbide Corporation Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4471075A (en) 1979-06-28 1984-09-11 Union Carbide Corporation Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US5179059A (en) * 1990-02-09 1993-01-12 Degussa Ag Catalyst for purifying the exhaust gases of internal combustion engines and method for making the catalyst
US6346555B1 (en) 1999-06-25 2002-02-12 Basf Aktiengesellschaft Process and catalyst for preparing C2-oxygenates from synthesis gas
EP1419814A1 (en) * 2002-11-15 2004-05-19 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Perovskite catalyst for the partial oxidation of natural gas
WO2006000734A1 (en) 2004-06-23 2006-01-05 Bp P.L.C. The synthesis of the micro-porous silica gel and its application to the preparation of catalysts for c2 oxygenates synthesis from syngas
WO2006000733A1 (en) 2004-06-23 2006-01-05 Bp P.L.C. A catalyst and process for the synthesis of c2-oxygenates by the hydrogenation of carbon monoxide
US20070134145A1 (en) * 2004-02-06 2007-06-14 Wolfgang Strehlau Precious metal catalyst stabilized with iron oxide for the removal of pollutants from exhaust gases from leanburn engines
WO2011053953A2 (en) 2009-11-02 2011-05-05 Dow Global Technologies Llc Supported rhodium synthesis gas conversion catalyst compositions
WO2012108973A1 (en) * 2011-02-11 2012-08-16 Dow Global Technologies Llc Heterogeneous catalyst and its use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503204C3 (de) * 1974-01-28 1982-02-04 Union Carbide Corp., 10017 New York, N.Y. Verfarhen zur Herstellung von Äthanol aus Synthesegas
PT71476A (en) * 1979-07-03 1980-08-01 Sagami Chem Res Process for producing oxygen-containing hydrocarbon compounds

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1501891A (en) 1921-04-21 1924-07-15 Schorr Motor Vehicle Company Vehicle spring suspension
US4235801A (en) 1976-04-12 1980-11-25 Union Carbide Corporation Process for producing ethanol from synthesis gas
US4096164A (en) 1976-08-30 1978-06-20 Union Carbide Corporation Process for producing ethanol, acetic acid and/or acetaldehyde, from synthesis gas
US4288558A (en) 1978-04-04 1981-09-08 Hoechst Aktiengesellschaft Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
US4224236A (en) 1978-04-04 1980-09-23 Hoechst Aktiengesellschaft Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
US4442228A (en) 1978-10-24 1984-04-10 Hoechst Aktiengesellschaft Process for the manufacture of ethanol from synthesis gas
US4471075A (en) 1979-06-28 1984-09-11 Union Carbide Corporation Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4235798A (en) 1979-06-28 1980-11-25 Union Carbide Corporation Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4344868A (en) 1979-08-13 1982-08-17 Mobil Oil Corporation Catalyst for synthesis gas conversion to oxygenates
EP0030110A1 (en) 1979-11-27 1981-06-10 The British Petroleum Company p.l.c. Process for the production of an oxygenated hydrocarbon product containing ethanol
US4446251A (en) 1980-02-15 1984-05-01 Union Carbide Corporation Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4444909A (en) 1980-04-07 1984-04-24 Mobil Oil Corporation Synthesis gas conversion to oxygenates
US4415749A (en) 1980-05-27 1983-11-15 Ethyl Corporation Catalytic process for the selective formation of ethanol and methyl acetate from methanol and synthesis gas
GB2078745A (en) 1980-06-26 1982-01-13 British Petroleum Co Production of alcohols from synthesis gas
US4351908A (en) 1980-10-11 1982-09-28 Hoechst Aktiengesellschaft Process for the manufacture of acetic acid, acetic aldehyde and ethanol from synthesis gas
US4312955A (en) * 1980-12-01 1982-01-26 Union Carbide Corporation Process for the production of methanol from synthesis gas
US5179059A (en) * 1990-02-09 1993-01-12 Degussa Ag Catalyst for purifying the exhaust gases of internal combustion engines and method for making the catalyst
US6346555B1 (en) 1999-06-25 2002-02-12 Basf Aktiengesellschaft Process and catalyst for preparing C2-oxygenates from synthesis gas
EP1419814A1 (en) * 2002-11-15 2004-05-19 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Perovskite catalyst for the partial oxidation of natural gas
US20070134145A1 (en) * 2004-02-06 2007-06-14 Wolfgang Strehlau Precious metal catalyst stabilized with iron oxide for the removal of pollutants from exhaust gases from leanburn engines
WO2006000734A1 (en) 2004-06-23 2006-01-05 Bp P.L.C. The synthesis of the micro-porous silica gel and its application to the preparation of catalysts for c2 oxygenates synthesis from syngas
WO2006000733A1 (en) 2004-06-23 2006-01-05 Bp P.L.C. A catalyst and process for the synthesis of c2-oxygenates by the hydrogenation of carbon monoxide
WO2011053953A2 (en) 2009-11-02 2011-05-05 Dow Global Technologies Llc Supported rhodium synthesis gas conversion catalyst compositions
WO2012108973A1 (en) * 2011-02-11 2012-08-16 Dow Global Technologies Llc Heterogeneous catalyst and its use

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
APPLIED CATALYSIS, vol. 28, 1986, pages 303 - 319
APPLIED CATALYSIS, vol. 35, 1987, pages 77 - 92
CATALYSIS TODAY, vol. 147, no. 2, 2009, pages 139 - 149
CATALYSIS TODAY, vol. 164, 2011, pages 308 - 314
FRESENIUS JOURNAL ANALYTICAL CHEMISTRY, vol. 341, 1991, pages 387 - 394
GONZALO PRIETO ET AL: "New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 280, no. 2, 27 March 2011 (2011-03-27), pages 274 - 288, XP028216800, ISSN: 0021-9517, [retrieved on 20110402], DOI: 10.1016/J.JCAT.2011.03.025 *
JOURNAL OF CATALYSIS, vol. 134, 1992, pages 1 - 12
JOURNAL OF CATALYSIS, vol. 267, no. 2, 2009, pages 167 - 176
JOURNAL OF CATALYSIS, vol. 280, 2011, pages 274 - 288
JOURNAL OF CATALYSIS, vol. 54, 1978, pages 120 - 128
JOURNAL OF CATALYSIS, vol. 98, 1986, pages 522 - 529
JOURNAL OF CHEMICAL SOCIETY, FARADAY TRANSACTIONS, vol. 88, no. 9, 1992, pages 1311 - 1319
JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 165, 2001, pages 219 - 230
JOURNAL OF PHYSICAL CHEMISTRY, vol. 94, 1990, pages 5941 - 5947
REAC. KINETICS AND CATALYSIS LETTERS, vol. 76, no. 1, 2002, pages 141 - 150
SEKIYU GAKKAISHI, vol. 42, no. 3, 1999, pages 178 - 179
STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 73, 1992, pages 103 - 110
TOPICS IN CATALYSIS, vol. 14, no. 1-4, 2001, pages 25 - 33

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759072A (zh) * 2019-01-15 2019-05-17 昆明理工大学 一种自支撑新型稀土插层复合氧化物催化剂的制备方法及应用
CN109759072B (zh) * 2019-01-15 2021-08-03 昆明理工大学 一种自支撑新型稀土插层复合氧化物催化剂的制备方法及应用

Also Published As

Publication number Publication date
ES2546118R1 (es) 2015-11-02
ES2546118B1 (es) 2016-08-09
ES2546118A2 (es) 2015-09-18

Similar Documents

Publication Publication Date Title
JP5216189B2 (ja) 排ガス浄化用触媒
Li et al. Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide
US20140357479A1 (en) Variations for Synthesizing Zero Platinum Group Metal Catalyst Systems
Boaro et al. A comparative study of water gas shift reaction over gold and platinum supported on ZrO2 and CeO2–ZrO2
CN103908959B (zh) Ce‑Zr复合氧化铝材料及其制备方法
WO2014001595A1 (es) Catalizador para la obtención de alcoholes superiores
KR101359990B1 (ko) 황에 대한 내구성이 우수한 메탄 개질용 촉매, 이의 제조방법 및 이를 이용한 메탄개질 방법
US20150209760A1 (en) Exhaust-Gas-Purification Catalyst Carrier
Meiqing et al. Effect of synthesis methods on activity of V2O5/CeO2/WO3-TiO2 catalyst for selective catalytic reduction of NOx with NH3
Alcalde-Santiago et al. Macroporous carrier-free Sr-Ti catalyst for NOx storage and reduction
CN103191720A (zh) 一种镁铝尖晶石负载的耐硫甲烷化催化剂
KR102301754B1 (ko) 산소 저장 물질
JPH08196907A (ja) ルテニウム触媒の製造方法及び該触媒を用いた炭化水素の水蒸気改質方法
Liu et al. Synthesis, characterization and catalytic performance of nanocrystalline Co3O4 towards propane combustion: Effects of small molecular carboxylic acids
CN102744063B (zh) 一种钯催化剂的生物还原制备方法
JP5269892B2 (ja) コバルト−酸化亜鉛フィッシャー・トロプシュ触媒の調製のためのプロセス
JP2003246624A (ja) パイロクロア型酸化物の製造方法
ES2546118B1 (es) Catalizador de rodio promovido para la conversión selectiva de gas de síntesis en etanol
CN108940381A (zh) 一种四方相氧化锆载体、含有该载体的催化剂及其在甲烷干重整反应中的应用
CN105642290B (zh) 一种甲烷二氧化碳重整制合成气催化剂的制备方法
KR102016757B1 (ko) 알루미나 담체에 혼합금속산화물을 첨가한 n2o 분해 촉매의 제조 방법
JP6501778B2 (ja) 酸素吸蔵成分としての混合酸化物の使用
JPH05221602A (ja) 合成ガスの製造方法
JP2022061257A (ja) アンモニア合成触媒、アンモニア合成触媒の製造方法、及び、アンモニアの合成方法
JPH0822378B2 (ja) 炭化水素の水蒸気改質用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13719573

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: P201590076

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13719573

Country of ref document: EP

Kind code of ref document: A1