WO2014114269A1 - 近区反射自干扰信号抵消方法及装置 - Google Patents

近区反射自干扰信号抵消方法及装置 Download PDF

Info

Publication number
WO2014114269A1
WO2014114269A1 PCT/CN2014/071507 CN2014071507W WO2014114269A1 WO 2014114269 A1 WO2014114269 A1 WO 2014114269A1 CN 2014071507 W CN2014071507 W CN 2014071507W WO 2014114269 A1 WO2014114269 A1 WO 2014114269A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interference
digital
reconstructed
self
Prior art date
Application number
PCT/CN2014/071507
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014114269A1 publication Critical patent/WO2014114269A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input

Definitions

  • the present invention relates to the field of computer and communication technologies, and in particular, to a method and apparatus for canceling near-field reflection self-interference signals. Background technique
  • a wireless local area network such as a mobile cellular communication system
  • a wireless local area network such as a mobile cellular communication system
  • FWA fixed wireless access
  • BS base station
  • AP access point
  • Communication nodes such as Relay Station (RS) and User Equipment (UE) usually have the ability to transmit their own signals and receive signals from other communication nodes. Since the attenuation of the wireless signal in the wireless channel is very large, the signal from the communication peer arrives at the receiving end is very weak compared to its own transmitted signal. For example, the power difference between the transmitting and receiving signals of one communication node in the mobile cellular communication system is reached.
  • the transmission and reception of the wireless signal are usually distinguished by different frequency bands or time periods.
  • Frequency Division Duplex FDD
  • transmission and reception use different frequency bands separated by a certain guard band for communication.
  • Time Division Duplex TDD
  • transmission and reception are separated by a certain distance.
  • the different time periods of the protection interval are communicated, wherein the protection band in the FDD system and the protection time interval in the TDD system are both to ensure sufficient isolation between reception and transmission, and to avoid interference caused by transmission.
  • Wireless full-duplex technology differs from existing FDD or TDD technologies in that it can perform both receive and transmit operations on the same wireless channel.
  • the theoretical full-duplex wireless technology is twice as efficient as FDD or TDD.
  • the premise of implementing wireless full-duplex is to avoid, reduce and eliminate the strong interference of the transmitted signal of the same transceiver to the received signal (called self-interference), so as to prevent the correct reception of the useful signal. Make an impact.
  • Figure 1 shows the block diagram of the interference suppression principle of the existing wireless full-duplex system.
  • the DAC digital-to-analog converter
  • the up-conversion and power amplification and the low noise amplifier (LNA) of the receiving channel
  • the down-conversion and the ADC analog-to-digital converter
  • the self-interference cancellation caused by the transmitted signal is completed by the unit of spatial interference suppression, RF front-end analog interference cancellation, and digital interference cancellation shown in Figure 1.
  • the RF front-end analog interference cancellation module uses the RF signal coupled after the transmitter power amplifier as a reference signal, and uses the estimated local transmit antenna to the receiving antenna's channel parameters, such as amplitude and phase, to adjust the reference signal. As close as possible to the self-interfering signal component in the received signal, the local self-interference signal received by the receiving antenna is cancelled in the analog domain.
  • RF analog self-interference suppression is done before the LNA, but in addition to the transmitted signal from the transmitting antenna through the line-of-sight (LOS) propagation
  • the transmitted signal will also enter the receiving antenna after being transmitted through the scatterer in space, so that the self-interference signal will also include the near-field reflection self-interference signal and the far-field reflection self-interference signal.
  • LOS line-of-sight
  • the far-field reflected self-interference signal component has little power and does not affect the receiving channel after the LNA. It can be used for interference cancellation at the baseband through the digital filter after the analog-to-digital converter (ADC).
  • ADC analog-to-digital converter
  • the power of the self-interference signal component of the area reflection is large, which may cause saturation of the receiver after the LNA. Therefore, it is necessary to eliminate the self-interference component of the near-field reflection after the LNA.
  • the self-interference component of the near-field reflection in Figure 2 is typically composed of a near-field reflection multipath signal from the transmitting antenna of about 0.3m to 30m. In order to cancel the self-interference component of the near-field reflection, it is necessary to reconstruct all the multipaths of the region.
  • the near-field reflection self-interference component cancellation is performed after the LNA, and it is difficult to reconstruct each multipath signal of the near-field reflection self-interference component on the radio frequency frequency because each multipath signal is to be applied to the radio frequency. It is difficult to perform adaptive delay, amplitude and phase tracking. Taking a 2 GHz signal as an example, if a fixed delay line is used, the phase shifter can be adjusted within one wavelength (0.5 ns) (360° phase shift), assuming that the near-field self-interference signal multipath delay is distributed in the range of 100 ns, The branch of 200 RF delay lines, attenuators and phase shifters can better reconstruct the near-field self-interference signal components, as shown in Figure 3. This is not only highly complex, but also difficult to achieve automatic control of the amplitude and phase of each branch. Summary of the invention
  • the method and system for canceling the near-field reflection self-interference signal provided by the embodiments of the present invention solve the problem of high complexity of offsetting the self-interference component of the near-field reflection in the prior art.
  • a near-field reflection self-interference signal cancellation method comprising: forming a digital baseband reference signal or a digital intermediate frequency by inputting a radio frequency interference reference signal by performing operations including down-conversion, low-pass filtering, and analog-to-digital conversion.
  • the RF output signal reflected by the near-field self-interference cancellation is subjected to an operation including down-conversion, low-pass filtering, and analog-to-digital conversion to form a baseband or intermediate frequency signal as an error signal;
  • the baseband or intermediate frequency signal of the self-interference signal component forms a near-field reflection self-interference radio frequency reconstruction signal by including digital-to-analog conversion, low-pass filtering, and up-conversion operation;
  • the pre-obtained radio frequency signal is subtracted from the near-field reflected self-interference radio frequency reconstruction signal to form a radio frequency output signal that cancels the near-field reflection self-interference component.
  • the digital baseband reference signal or the digital intermediate frequency reference signal, and the error signal are adaptively filtered to form a reconstructed near-region reflection self-interference signal component.
  • the baseband or IF signal specifically includes:
  • the digital baseband reference signal or the digital intermediate frequency reference signal, and the error signal are respectively delayed N times, N ⁇ 1; And multiplying the N delayed signals outputted by the N times and the preset N filter coefficients respectively, and then adding the obtained N products to obtain a signal after the filtering operation;
  • a baseband or intermediate frequency signal of the reconstructed near-region reflected self-interference signal component is formed based on the filtered computed signal.
  • the N filter coefficients are adaptively updated using an LMS or RLS algorithm.
  • the baseband or intermediate frequency signal that reflects the reconstructed near-region self-interference signal component is formed by performing operations including digital-to-analog conversion, low-pass filtering, and up-conversion.
  • the up-conversion operation further includes: filtering out various out-of-band frequency components generated by the mixer.
  • a near-region reflection self-interference signal cancellation device comprising: an interference signal processing device, a reconstructed signal generating device, an output signal feedback device, and an interference signal filtering device, the reconstructed signal generating device Connecting the interference signal processing device, the output signal feedback device, and the interference signal filtering device respectively;
  • the interference signal processing device forms a digital baseband reference signal or a digital intermediate frequency reference signal by using an operation including down-conversion, low-pass filtering, and analog-to-digital conversion, and forms a digital baseband reference signal or a digital intermediate frequency reference signal. Transmitting to the reconstructed signal generating device; the output signal feedback device converts the RF output signal after the near-field reflection self-interference cancellation into a baseband or an intermediate frequency as an error signal by performing operations including down-conversion, low-pass filtering, and analog-to-digital conversion. Transmitting, and transmitting the error signal to the reconstructed signal generating device;
  • the reconstructed signal generating device performs an adaptive filtering operation on the digital baseband reference signal or the digital intermediate frequency reference signal and the error signal to form a baseband or intermediate frequency signal of the reconstructed near-region reflected self-interference signal component; Including digital-to-analog conversion, low-pass filtering, and up-conversion operations, forming a near-field reflection self-interference radio frequency reconstruction signal, and transmitting a near-field reflection self-interference radio frequency reconstruction signal to the interference signal filtering device;
  • the interference signal filtering device reflects the pre-obtained radio frequency signal and the near-field reflection self-interference
  • the frequency reconstruction signal is subtracted to form a radio frequency output signal that cancels the self-interference component of the near-field reflection.
  • the interference signal processing apparatus includes: a down converter, a low pass filter, and an analog to digital converter,
  • the down converter down-converts the input radio frequency interference reference signal, and transmits the down-converted signal to the low-pass filter;
  • the low pass filter is respectively connected to the down converter and the analog to digital converter, low-pass filtering the down-converted signal, and transmitting the filtered signal to the analog-to-digital converter;
  • An analog to digital converter is coupled to the reconstructed signal generating means, performs analog-to-digital conversion on the filtered signal, and transmits the converted signal to the reconstructed signal generating means.
  • the output signal feedback device includes: a down converter, a low pass filter, and an analog to digital converter,
  • the down converter is connected to the interference signal filtering device, and down-converts the RF output signal after the near-field reflection self-interference cancellation, and transmits the down-converted signal to the low-pass filter;
  • the low-pass a filter is connected to the down converter and the analog to digital converter, low pass filtering the downconverted signal, and transmitting the filtered signal to the analog to digital converter;
  • the analog-to-digital converter is coupled to the reconstructed signal generating means, performs analog-to-digital conversion on the filtered signal, and transmits the converted signal to the reconstructed signal generating means.
  • the reconstructed signal generating apparatus includes: an adaptive digital filter, a digital-to-analog converter, a low-pass filter, and an up-converter,
  • the adaptive digital filter is respectively connected to the interference signal processing device and the output signal feedback device, and performs adaptive filtering operation on the digital baseband reference signal or the digital intermediate frequency reference signal and the error signal to form a reconstructed near
  • the region is reflected from the baseband or intermediate frequency signal of the interference signal component, and transmits the reconstructed near-region reflected from the interference signal component baseband or intermediate frequency signal to the digital-to-analog converter;
  • the digital-to-analog converter is respectively connected to the adaptive digital filter and the low-pass filter, and performs digital-to-analog conversion on the baseband or intermediate frequency signal of the reconstructed near-region reflected self-interference signal component, and turns The changed signal is transmitted to the low pass filter;
  • the low pass filter is connected to the upconverter, low pass filtering the converted signal, and transmitting the low pass filtered signal to the upconverter;
  • the up-converter is connected to the interference signal filtering device, up-converts the converted signal, and transmits the up-converted signal to the interference signal filtering device.
  • the reconstructed signal generating apparatus further includes: a band pass filter, connecting the up-converter and the interference signal filtering device, after the up-converting The signal is filtered to filter out the out-of-band frequency component produced by the mixer, and the filtered up-converted signal is transmitted to the interference signal filtering device.
  • the interference signal filtering apparatus includes: a reverse power synthesizer.
  • the self-interference signal component of the near-region is reconstructed by the baseband, and the multi-path signal of the self-interference signal of the near-region is tracked by using the adaptive digital filter, so that the self-interference of the near-field reflection is effectively realized.
  • the offset of the component is effectively realized.
  • FIG. 1 is a block diagram showing the principle of interference suppression of a wireless full duplex system in the prior art
  • 2 is a schematic diagram of the composition of self-interference signals during signal transmission
  • FIG. 3 is a schematic diagram of analog cancellation of a near-field reflection self-interference signal in the prior art
  • FIG. 4 is a flow chart of a near-field reflection self-interference signal cancellation method according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a near-field reflection self-interference signal cancellation apparatus according to an embodiment of the present invention. The near zone is reflected in the self-interference signal cancellation device.
  • a first embodiment of the present invention provides a near-field reflection self-interference signal cancellation method, and the process thereof is as shown in FIG. 4, including:
  • Step S410 forming a digital baseband reference signal or a digital intermediate frequency reference signal by using an operation including down-conversion, low-pass filtering, and analog-to-digital conversion on the input radio frequency interference reference signal.
  • the RF interference reference signal is the same as the reference signal used by the RF interference cancellation module before the LNA in the prior art shown in FIG. 1, and is obtained by coupling the output of the transmitter power amplifier through a RF device such as a directional coupler.
  • Step S420 in order to automatically track the multipath components of the near-region reflection self-interference component, it is necessary to adaptively update the adaptive digital filter coefficients of the self-interference signal reconstruction. Therefore, the RF output signal of the near-field reflection self-interference cancellation is formed into a baseband or intermediate frequency signal as an error signal by operations including down-conversion, low-pass filtering, and analog-to-digital conversion.
  • Step S430 Perform adaptive filtering operation on the digital baseband reference signal or the digital intermediate frequency reference signal and the error signal to form a baseband or intermediate frequency signal of the reconstructed near-region reflected self-interference signal component.
  • the specific process of this step is as follows:
  • digital baseband reference signal or the digital intermediate frequency reference signal, and the error signal are respectively delayed N times, N ⁇ 1;
  • N delay signals outputted N times and the preset N filter coefficients are respectively Multiply, and then add the obtained N products to obtain the calculated signal;
  • a baseband or intermediate frequency signal of the reconstructed near-region reflected self-interference signal component is formed based on the computed signal.
  • the algorithm for adaptively updating the N filter coefficients may adopt an algorithm such as LMS (Least Mean Square) or RLS (Recursive Least Square) in the prior art.
  • the above error signal is used for the adaptive filtering operation to continuously update the filter coefficients so that the power of the final output error signal (i.e., the near-field reflected self-interference component canceled RF output signal) in step S450 is as small as possible.
  • the original input signal includes an X+Y signal, where Y is an interference signal and X is a useful signal.
  • the adaptive filtering operation outputs an X+Y' signal according to the S450, and continuously updates the filter coefficients to make the power of X+Y'. Try to be as small as possible. Since the power of the interference signal ⁇ is much higher than the power of the wanted signal X, the power of ⁇ + ⁇ ' is made as small as possible so that the power of the residual interference signal ⁇ ' is as small as possible.
  • Step S440 the baseband or intermediate frequency signal of the reconstructed near-region self-interference signal component is subjected to operations including digital-to-analog conversion, low-pass filtering, and up-conversion to form a near-field reflection self-interference radio frequency reconstruction signal.
  • Step S450 subtracting the pre-obtained radio frequency signal from the near-field reflection self-interference radio frequency reconstruction signal to form a radio frequency output signal that cancels the near-field reflection self-interference component.
  • the interference signal cancellation method is a continuous cycle process, that is, the above processes S410 to S450 are cycled.
  • the method further includes: filtering out various out-of-band frequency components generated by the mixer to achieve better effect of removing interference signals.
  • the self-interference signal component of the near-region is reconstructed by the baseband, and the multi-path signal of the self-interference signal in the near-area is tracked by the adaptive digital filter, so that the self-interference of the near-field reflection is effectively realized.
  • the amount of the loss is effectively realized.
  • a second embodiment of the present invention provides a near-field reflection self-interference signal cancellation device, which can implement the above-described near-field reflection self-interference signal cancellation method.
  • the structure of the device is as shown in FIG. 5, and includes:
  • the signal processing device 510 the reconstructed signal generating device 520, the output signal feedback device 530, and the interference signal filtering device 540.
  • the reconstructed signal generating means 520 is connected to the interference signal processing means 510, the output signal feedback means 530 and the interference signal filtering means 540, respectively.
  • the interference signal processing device 510 forms a digital baseband reference signal or a digital intermediate frequency reference signal by using an operation including down-conversion, low-pass filtering, and analog-to-digital conversion, and forms a digital baseband reference signal or a digital intermediate frequency reference.
  • the signal is transmitted to the reconstructed signal generating device 520.
  • the interference signal processing device 510 specifically includes a down converter 511, a low pass filter 512, and an analog to digital converter ADC 513.
  • the downconverter 511 downconverts the input radio frequency interference reference signal and transmits the downconverted signal to the low pass filter 512.
  • the low pass filter 512 is coupled to the down converter 511 and the ADC 513, respectively, and low pass filters the downconverted signal, and transmits the filtered signal to the ADC 513. Since the downconverter 511 outputs an analog signal, the low pass filter 512 here is an analog low pass filter.
  • the ADC 513 is coupled to the reconstructed signal generating means 520, performs analog-to-digital conversion on the filtered signal, and transmits the converted signal to the reconstructed signal generating means 520.
  • the output signal feedback device 530 converts the near-field self-interference-rejected RF output signal into a baseband or intermediate frequency signal as an error signal by performing operations including down-conversion, low-pass filtering, and analog-to-digital conversion, and transmits the error signal. To the reconstructed signal generating device 520.
  • the output signal feedback device 530 specifically includes: a down converter 531, a low pass filter 532, and an analog to digital converter ADC 533.
  • the down converter 531 is connected to the interference signal filtering device 540, and the near-field reflection self-interference is resisted.
  • the eliminated RF output signal is downconverted and the downconverted signal is transmitted to a low pass filter 532.
  • the low pass filter 532 is coupled to the down converter 531 and the ADC 533 to low pass filter the downconverted signal and transmit the filtered signal to the ADC 533. Since the downconverter 531 outputs an analog signal, the low pass filter 532 here is an analog low pass filter.
  • the ADC 533 is coupled to the reconstructed signal generating means 520, performs analog-to-digital conversion on the filtered signal, and transmits the converted signal to the reconstructed signal generating means 520.
  • the reconstructed signal generating means 520 performs an adaptive filtering operation on the digital baseband reference signal or the digital intermediate frequency reference signal and the error signal to form a baseband or intermediate frequency signal of the reconstructed near-region reflected self-interference signal component;
  • the near-region reflection self-interference radio frequency reconstruction signal is formed by the operation including digital-to-analog conversion, low-pass filtering and up-conversion, and the near-field reflection self-interference radio frequency reconstruction signal is transmitted to the dry 4 special signal filtering device 540.
  • the reconstructed signal generating means 520 comprises: an adaptive digital filter 521, a digital to analog converter DAC 522, a low pass filter 523 and an upconverter 524.
  • the adaptive digital filter 521 is connected to the interference signal processing device 510 and the output signal feedback device 530, respectively, and is specifically connected to the ADC 513 of the interference signal processing device 510 and the ADC 533, the ADC 513 and the ADC 533 in the output signal feedback device 530.
  • the output is taken as an input to the adaptive digital filter 521.
  • the adaptive digital filter 521 performs an adaptive filtering operation on the digital baseband reference signal or the digital intermediate frequency reference signal, and the error signal to form a baseband or intermediate frequency signal of the reconstructed near-region reflected self-interference signal component, and The baseband or intermediate frequency signal of the near region reflected from the interfering signal component is transmitted to the DAC 522.
  • the adaptive digital filter 521 is a digital FIR (finite impulse response) filter having a structure as shown in FIG. 6, including N delay units 610, N multipliers 620, and an adder 630.
  • the N delay units 610 are respectively connected to the N multipliers 620, and the N delayed signals are respectively multiplied by the N filter coefficients d ⁇ C n .
  • the adder 630 is connected to the N multipliers 620, and adds the N products to obtain a signal after the filtering operation.
  • the DAC 522 is coupled to the adaptive digital filter 521 and the low pass filter 523, respectively.
  • the DAC 522 performs a baseband or intermediate frequency signal on the reconstructed near-region reflected self-interference signal component. Digital-to-analog conversion, transmitting the converted signal to the low-pass filter 523;
  • the low pass filter 523 is coupled to the upconverter 524, low pass filtering the converted signal, and transmitting the low pass filtered signal to the upconverter 524. Since the DAC 522 outputs an analog signal, the low pass filter 523 here is an analog low pass filter.
  • the upconverter 524 is coupled to the interference signal filtering device 540, upconverts the converted signal, and transmits the upconverted signal to the dry signal filtering device 540.
  • the reconstructed signal generating device 520 further includes: a band pass filter 525 that connects the upconverter 524 and the interference signal filtering device 540.
  • a bandpass filter 525 filters the upconverted signal to filter out the out-of-band frequency components produced by the mixer, and transmits the filtered upconverted signal to the dry signal filtering device 540.
  • the interference signal filtering device 540 subtracts the pre-obtained radio frequency signal from the near-field reflected self-interference radio frequency reconstruction signal to form a radio frequency output signal that cancels the near-field reflection self-interference component.
  • the pre-obtained RF signal is the signal output by the LNA, that is, the signal output by the LNA in Fig. 1.
  • the interference signal filtering device 540 may be a reverse power synthesizer.
  • the near-field reflection self-interference signal canceling apparatus of this embodiment is an implementation method of the above method, and the near-field reflection self-interference signal canceling method is not limited to the apparatus of the embodiment.
  • aspects of the present invention, or possible implementations of various aspects can be embodied as a system, method, or computer program product.
  • aspects of the invention, or possible implementations of various aspects may be in the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, etc.), or a combination of software and hardware aspects, They are collectively referred to herein as "circuits," “modules,” or “systems.”
  • aspects of the invention, or possible implementations of various aspects may take the form of a computer program product, which is a computer readable program code stored in a computer readable medium.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium includes, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing, such as random access memory (RAM), read only memory (ROM), Erase programmable read-only memory (EPROM or flash memory), optical fiber, portable read-only memory (CD-ROM).
  • the processor in the computer reads the computer readable program code stored in the computer readable medium, such that the processor can perform the functional actions specified in each step or combination of steps in the flowchart; A device that functions as specified in each block, or combination of blocks.
  • the computer readable program code can be executed entirely on the user's computer, partly on the user's computer, as a separate software package, partly on the user's computer and partly on the remote computer, or entirely on the remote computer or server. .
  • the functions noted in the various steps of the flowchart, or in the blocks in the block diagrams may not occur in the order noted.
  • two steps, or two blocks, shown in succession may in fact be executed substantially simultaneously, or the blocks may sometimes be executed in the reverse order.
  • the spirit and scope of the invention. it is intended that the present invention cover the modifications and variations of the inventions

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开了一种近区反射自干扰信号抵消方法,包括:将输入的射频干扰参考信号变换成数字基带参考信号或数字中频参考信号;将近区反射自干扰抵消后的射频输出信号变换成作为误差信号的基带或中频信号;对数字基带参考信号或数字中频参考信号,及误差信号进行自适应滤波运算,形成重构的近区反射自干扰信号分量的基带或中频信号;将重构的近区反射自干扰信号分量的基带或中频信号变换成近区反射自干扰射频重构信号;将预先获得的射频信号与近区反射自干扰射频重构信号相减,形成将近区反射自干扰分量抵消后的射频输出信号。本发明还公开了一种近区反射自干扰信号抵消装置。本发明实施例中简单有效地实现了对近区反射自干扰分量的抵消。

Description

近区反射自干扰信号抵消方法及装置 技术领域
本发明涉及计算机及通信技术领域, 尤其涉及一种近区反射自干扰信号 抵消方法及装置。 背景技术
在移动蜂窝通信系统、无线局域网( Wireless Local Area Network , WLAN )、 固定无线接入 ( Fixed Wireless Access , FWA )等无线通信系统中, 基站( Base Station, BS )或接入点( Access Point, AP )、 中继站( Relay Station, RS )以 及用户设备( User Equipment, UE )等通信节点通常具有发射自身信号和接收 其它通信节点信号的能力。 由于无线信号在无线信道中的衰减非常大, 与自 身的发射信号相比, 来自通信对端的信号到达接收端时信号已非常微弱, 例 如, 移动蜂窝通信系统中一个通信节点的收发信号功率差达到 80dB 〜 140dB 甚至更大, 因此, 为了避免同一收发信机的发射信号对接收信号的自干扰, 无线信号的发送和接收通常采用不同的频段或时间段加以区分。 例如, 在频 分双工 ( Frequency Division Duplex, FDD ) 中, 发送和接收使用相隔一定保 护频带的不同频段进行通信, 在时分双工( Time Division Duplex, TDD )中, 发送和接收则使用相隔一定保护时间间隔的不同时间段进行通信,其中, FDD 系统中的保护频带和 TDD系统中的保护时间间隔都是为了保证接收和发送之 间充分地隔离, 避免发送对接收造成干扰。
无线全双工技术不同于现有的 FDD或 TDD技术, 可以在相同无线信道 上同时进行接收与发送操作,这样,理论上无线全双工技术的频谱效率是 FDD 或 TDD技术的两倍。 显然, 实现无线全双工的前提在于尽可能地避免、 降低 与消除同一收发信机的发射信号对接收信号的强干扰 (称为自干扰, Self-interference ), 使之不对有用信号的正确接收造成影响。 图 1 所示为现有无线全双工系统的干扰抑制原理框图。 其中, 发射通道 的 DAC (数字模拟转换器)、 上变频及功率放大, 以及接收通道的低噪声放大 器(Low Noise Amplifier, LNA )、 下变频及 ADC (模拟数字转换器)等是现 有收发信机中射频单元的功能模块。对发射信号造成的自干扰抵消是通过图 1 中所示空间干扰抑制、 射频前端模拟干扰抵消、 数字干扰抵消等单元来完成 的。
由于经过空间干扰抑制的接收信号中自干扰信号的强度远远高于有用信 号的强度, 接收信号会造成接收机前端 LNA等模块的阻塞。 因此, 在 LNA 之前, 射频前端模拟干扰抵消模块将以发射端功放之后耦合的射频信号作为 参考信号, 利用估计的本地发射天线到接收天线的信道参数, 如: 幅度与相 位等, 调节参考信号使之尽可能地接近接收信号中的自干扰信号成份, 从而 在模拟域抵消接收天线收到的本地自干扰信号。
如图 1所示,在现有的无线全双工系统中,射频模拟自干扰抑制是在 LNA 之前完成的, 但是, 除了发射信号从发射天线经视距(Light-of-sight, LOS ) 传播到达接收天线形成的主径自干扰信号分量外, 发射信号在空间传播经过 散射体发射后也会进入接收天线, 这样, 自干扰信号还将包括近区反射自干 扰信号以及远区反射自干扰信号等其它分量。
如图 2所示, 远区反射自干扰信号分量功率很小, 不会对 LNA之后的接 收通道造成影响, 可以在模拟数字转换器 (ADC )之后在基带通过数字滤器 进行干扰抵消, 但是, 近区反射自干扰信号分量功率较大, 可能造成 LNA之 后接收机的饱和, 因此需要在 LNA之后对近区反射自干扰分量进行消除。 图 2中近区反射自干扰分量典型是由距离发射天线约 0.3m 〜 30m的近区反射多 径信号组成, 为了对近区反射自干扰分量进行抵消, 需要重构所有的该区域 的多径信号分量, 但是, 近区反射自干扰分量抵消是在 LNA之后进行的, 在 射频频率上重构近区反射自干扰分量的每个多径信号比较困难, 因为要在射 频上对各多径信号进行自适应时延、 幅度和相位跟踪比较困难。 以 2GHz信号为例, 若采用固定延迟线, 移相器可以在一个波长 (0.5ns) 内调节( 360°移相),假定近区发射自干扰信号多径延迟分布在 100ns范围内, 则需要 200个射频延迟线、 衰减器和移相器构成的支路才能较好重构近区自 干扰信号分量, 如图 3 所示。 这样不但复杂度很高, 而且对每条支路的幅度 和相位自动控制也较难实现。 发明内容
本发明实施例提供的近区反射自干扰信号抵消方法及系统,以解决现有技 术中对近区反射自干扰分量的抵消的复杂度高的问题。
为了解决上述技术问题, 本发明实施例公开了如下技术方案:
第一方面, 提供一种近区反射自干扰信号抵消方法, 该方法包括: 对输入的射频干扰参考信号通过包括下变频、 低通滤波和模数转换的操 作, 形成数字基带参考信号或数字中频参考信号;
将近区反射自干扰抵消后的射频输出信号通过包括下变频、 低通滤波和 模数转换的操作, 形成作为误差信号的基带或中频信号;
对所述数字基带参考信号或数字中频参考信号, 以及所述误差信号进行 自适应滤波运算, 形成重构的近区反射自干扰信号分量的基带或中频信号; 将所述重构的近区反射自干扰信号分量的基带或中频信号通过包括数模 转换、 低通滤波和上变频的操作, 形成近区反射自干扰射频重构信号;
将预先获得的射频信号与所述近区反射自干扰射频重构信号相减, 形成 将近区反射自干扰分量抵消后的射频输出信号。
在第一方面的第一种可能的实现方式中, 所述对所述数字基带参考信号 或数字中频参考信号, 以及所述误差信号进行自适应滤波, 形成重构的近区 反射自干扰信号分量的基带或中频信号具体包括:
将所述数字基带参考信号或数字中频参考信号, 以及所述误差信号分别 进行 N次延时, N≥ 1 ; 将 N次延时输出的 N个延时信号与所述预先设定的 N个滤波系数分别相 乘, 然后将得到的 N个乘积相加, 以得到滤波运算后的信号;
根据滤波运算后的信号形成所述重构的近区反射自干扰信号分量的基带 或中频信号。
在第一方面的第二种可能的实现方式中,采用 LMS或 RLS算法自适应地 更新所述 N个滤波系数。
在第一方面的第三种可能的实现方式中, 在将所述重构的近区反射自干 扰信号分量的基带或中频信号通过包括数模转换、 低通滤波和上变频的操作, 形成近区反射自干扰射频重构信号的步骤中, 上变频操作后还包括: 滤除混 频器产生的各种带外频率分量。
第二方面, 提供了一种近区反射自干扰信号抵消装置, 该装置包括: 干 扰信号处理装置、 重构信号生成装置、 输出信号反馈装置及干扰信号滤除装 置, 所述重构信号生成装置分别连接所述干扰信号处理装置、 输出信号反馈 装置及干扰信号滤除装置;
所述干扰信号处理装置对输入的射频干扰参考信号通过包括下变频、 低 通滤波和模数转换的操作, 形成数字基带参考信号或数字中频参考信号, 并 将数字基带参考信号或数字中频参考信号传输至所述重构信号生成装置; 所述输出信号反馈装置将近区反射自干扰抵消后的射频输出信号通过包 括下变频、 低通滤波和模数转换的操作, 形成作为误差信号的基带或中频信 号, 并将所述误差信号传输至所述重构信号生成装置;
所述重构信号生成装置对所述数字基带参考信号或数字中频参考信号, 以及所述误差信号进行自适应滤波运算, 形成重构的近区反射自干扰信号分 量的基带或中频信号; 并通过包括数模转换、 低通滤波和上变频的操作, 形 成近区反射自干扰射频重构信号, 并将近区反射自干扰射频重构信号传输至 所述干扰信号滤除装置;
所述干扰信号滤除装置将预先获得的射频信号与所述近区反射自干扰射 频重构信号相减, 形成将近区反射自干扰分量抵消后的射频输出信号。
在第二方面的第一种可能的实现方式中, 所述干扰信号处理装置包括: 下变频器、 低通滤波器和模数转换器,
所述下变频器将输入的射频干扰参考信号进行下变频, 并将下变频后的 信号传输至所述低通滤波器;
所述低通滤波器分别连接所述下变频器和模数转换器, 对下变频的信号 进行低通滤波, 并将滤波后的信号传输至模数转换器;
模数转换器连接所述重构信号生成装置, 对滤波后的信号进行模数转换, 并将转换后的信号传输至所述重构信号生成装置。
在第二方面的第二种可能的实现方式中, 所述输出信号反馈装置包括: 下变频器、 低通滤波器和模数转换器,
所述下变频器连接所述干扰信号滤除装置, 对近区反射自干扰抵消后的 射频输出信号进行下变频, 并将下变频后的信号传输至所述低通滤波器; 所述低通滤波器连接所述下变频器和所述模数转换器, 对下变频后的信 号进行低通滤波, 并将滤波后的信号传输至所述模数转换器;
所述模数转换器连接所述重构信号生成装置, 对滤波后的信号进行模数 转换, 并将转换后的信号传输至所述重构信号生成装置。
在第二方面的第三种可能的实现方式中, 所述重构信号生成装置包括: 自适应数字滤波器、 数模转换器、 低通滤波器和上变频器,
所述自适应数字滤波器分别连接所述干扰信号处理装置和输出信号反馈 装置, 对所述数字基带参考信号或数字中频参考信号, 以及所述误差信号进 行自适应滤波运算, 形成重构的近区反射自干扰信号分量的基带或中频信号, 并将重构的近区反射自干扰信号分量的基带或中频信号传输至所述数模转换 器;
所述数模转换器分别连接所述自适应数字滤波器和所述低通滤波器, 对 所述重构的近区反射自干扰信号分量的基带或中频信号进行数模转换, 将转 换后的信号传输至所述低通滤波器;
所述低通滤波器连接所述上变频器, 对转换后的信号进行低通滤波, 并 将低通滤波后的信号传输至所述上变频器;
所述上变频器连接所述干扰信号滤除装置, 对转换后的信号进行上变频, 并将上变频后的信号传输至所述干扰信号滤除装置。
在第二方面的第四种可能的实现方式中, 所述重构信号生成装置还包括: 带通滤波器, 连接所述上变频器和所述干扰信号滤除装置, 对所述上变频后 的信号进行滤波以滤除混频器产生的带外频率分量, 将滤波后的上变频信号 传输至所述干扰信号滤除装置。
在第二方面的第五种可能的实现方式中, 所述干扰信号滤除装置包括: 反向功率合成器。
本发明实施例中, 通过基带重构近区自干扰信号分量, 利用自适应数字 滤波器实现对近区自干扰信号多径信号的跟踪, 从而筒单、 有效地实现了对 近区反射自干扰分量的抵消。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中无线全双工系统的干扰抑制原理框图;
图 2是信号传输过程中自干扰信号组成示意图;
图 3是现有技术中的近区反射自干扰信号模拟抵消原理图;
图 4是本发明实施例的一种近区反射自干扰信号抵消方法流程图; 图 5是本发明实施例的一种近区反射自干扰信号抵消装置结构示意图; 图 6是本发明实施例的近区反射自干扰信号抵消装置中的。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明 中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例, 都属于本发明保护的范围。
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
本发明的第一实施例中提供了一种近区反射自干扰信号抵消方法, 其流 程如图 4所示, 包括:
步骤 S410, 对输入的射频干扰参考信号通过包括下变频、 低通滤波和模 数转换的操作, 形成数字基带参考信号或数字中频参考信号。 其中, 射频干 扰参考信号与图 1所示现有技术中 LNA之前的射频干扰抵消模块所使用的参 考信号相同, 都是从发射机功放的输出端通过定向耦合器等射频器件耦合获 得的。
步骤 S420, 为了对近区反射自干扰分量的各多径分量进行自动跟踪, 需 要对自干扰信号重构自适应数字滤波器系数进行自适应更新。 因此, 将近区 反射自干扰抵消后的射频输出信号通过包括下变频、 低通滤波和模数转换的 操作, 形成作为误差信号的基带或中频信号。
步骤 S430, 对所述数字基带参考信号或数字中频参考信号, 以及所述误 差信号进行自适应滤波运算, 形成重构的近区反射自干扰信号分量的基带或 中频信号。 该步骤具体流程如下:
将所述数字基带参考信号或数字中频参考信号, 以及所述误差信号分别 进行 N次延时, N≥ 1 ;
将 N次延时输出的 N个延时信号与所述预先设定的 N个滤波系数分别相 乘, 然后将得到的 N个乘积相加, 从而得到运算后的信号;
根据运算后的信号形成所述重构的近区反射自干扰信号分量的基带或中 频信号。
其中,自适应更新 N个滤波系数的算法可以采用现有技术中的 LMS( Least Mean Square )、 RLS ( Recursive Least Square )等算法。 上述误差信号用于自 适应滤波运算, 从而不断更新滤波器系数, 以使步骤 S450中最终输出的误差 信号 (即近区反射自干扰分量抵消后的射频输出信号) 的功率尽量小。 例如 原始输入信号中包括 X+Y信号, 其中 Y是干扰信号, X是有用信号, 该自适 应滤波运算根据 S450输出 X+Y' 信号, 不断地更新滤波器系数, 使 X+Y' 的功率尽量小。由于干扰信号 γ的功率远远高于有用信号 X的功率,使 χ+γ' 的功率尽量小使得剩余干扰信号 Ύ' 的功率尽量小。
步骤 S440, 将所述重构的近区反射自干扰信号分量的基带或中频信号通 过包括数模转换、 低通滤波和上变频的操作, 形成近区反射自干扰射频重构 信号。
步骤 S450, 将预先获得的射频信号与所述近区反射自干扰射频重构信号 相减, 形成将近区反射自干扰分量抵消后的射频输出信号。
由于信号在不断地接收, 需要对近区反射自干扰分量的各多径分量进行 自动跟踪, 自适应算法将逐步更新滤波器系数, 使干扰信号尽量小, 因此, 本实施例的近区反射自干扰信号抵消方法是一个不断循环的过程, 即循环上 述过程 S410~S450。
进一步地, 在将所述重构的近区反射自干扰信号分量的基带或中频信号 通过包括数模转换、 低通滤波和上变频的操作, 形成近区反射自干扰射频重 构信号的步骤中, 上变频操作后还包括: 滤除混频器产生的各种带外频率分 量, 以达到更好的除去干扰信号的效果。
通过基带重构近区自干扰信号分量, 利用自适应数字滤波器实现对近区 自干扰信号多径信号的跟踪, 从而筒单、 有效地实现了对近区反射自干扰分 量的氏消。
本发明第二实施例中提供了一种近区反射自干扰信号抵消装置, 该装置 可以实现上述的近区反射自干扰信号抵消方法, 该装置的结构如图 5 所示, 包括:
干 4尤信号处理装置 510、 重构信号生成装置 520、 输出信号反馈装置 530 及干扰信号滤除装置 540。重构信号生成装置 520分别连接干扰信号处理装置 510、 输出信号反馈装置 530及干扰信号滤除装置 540。
所述干扰信号处理装置 510对输入的射频干扰参考信号通过包括下变频、 低通滤波和模数转换的操作, 形成数字基带参考信号或数字中频参考信号, 并将数字基带参考信号或数字中频参考信号传输至所述重构信号生成装置 520。
所述干扰信号处理装置 510具体包括: 下变频器 511、低通滤波器 512和 模数转换器 ADC 513。
所述下变频器 511 将输入的射频干扰参考信号进行下变频, 并将下变频 后的信号传输至所述低通滤波器 512。
所述低通滤波器 512分别连接所述下变频器 511和 ADC 513 , 对下变频 的信号进行低通滤波, 并将滤波后的信号传输至 ADC 513。 由于下变频器 511 输出的是模拟信号, 此处的低通滤波器 512为模拟低通滤波器。
ADC 513连接所述重构信号生成装置 520,对滤波后的信号进行模数转换, 并将转换后的信号传输至所述重构信号生成装置 520。
所述输出信号反馈装置 530将近区反射自干扰抵消后的射频输出信号通 过包括下变频、 低通滤波和模数转换的操作, 形成作为误差信号的基带或中 频信号, 并将所述误差信号传输至所述重构信号生成装置 520。
所述输出信号反馈装置 530具体包括: 下变频器 531、低通滤波器 532和 模数转换器 ADC 533 ,
所述下变频器 531连接所述干扰信号滤除装置 540,对近区反射自干扰抵 消后的射频输出信号进行下变频,并将下变频后的信号传输至低通滤波器 532。 所述低通滤波器 532连接所述下变频器 531和所述 ADC 533 , 对下变频 后的信号进行低通滤波, 并将滤波后的信号传输至所述 ADC 533。 由于下变 频器 531输出的是模拟信号, 此处的低通滤波器 532为模拟低通滤波器。
所述 ADC 533连接所述重构信号生成装置 520, 对滤波后的信号进行模 数转换, 并将转换后的信号传输至所述重构信号生成装置 520。
所述重构信号生成装置 520对所述数字基带参考信号或数字中频参考信 号, 以及所述误差信号进行自适应滤波运算, 形成重构的近区反射自干扰信 号分量的基带或中频信号;并通过包括数模转换、低通滤波和上变频的操作, 形成近区反射自干扰射频重构信号, 并将近区反射自干扰射频重构信号传输 至所述干 4尤信号滤除装置 540。
所述重构信号生成装置 520 包括: 自适应数字滤波器 521、 数模转换器 DAC 522、 低通滤波器 523和上变频器 524。
所述自适应数字滤波器 521分别连接所述干扰信号处理装置 510和输出 信号反馈装置 530, 具体连接干扰信号处理装置 510的 ADC 513和输出信号 反馈装置 530中的 ADC 533 , ADC 513和 ADC 533的输出作为自适应数字滤 波器 521 的输入。 自适应数字滤波器 521对所述数字基带参考信号或数字中 频参考信号, 以及所述误差信号进行自适应滤波运算, 形成重构的近区反射 自干扰信号分量的基带或中频信号, 并将重构的近区反射自干扰信号分量的 基带或中频信号传输至所述 DAC 522。 本实施例中, 自适应数字滤波器 521 为数字 FIR (有限冲击响应) 滤波器, 其结构如图 6所示, 包括 N个延迟单 元 610、 N个乘法器 620和一个加法器 630。 N个延迟单元 610分别连接 N个 乘法器 620, 将 N路延时后的信号分别与 N个滤波系数 d ~ Cn相乘。 加法器 630连接 N个乘法器 620, 将 N个乘积相加得到滤波运算后的信号。
所述 DAC 522分别连接所述自适应数字滤波器 521 和所述低通滤波器 523。 DAC 522对所述重构的近区反射自干扰信号分量的基带或中频信号进行 数模转换, 将转换后的信号传输至所述低通滤波器 523;
所述低通滤波器 523连接所述上变频器 524,对转换后的信号进行低通滤 波, 并将低通滤波后的信号传输至所述上变频器 524。 由于 DAC 522输出的 是模拟信号, 此处低通滤波器 523为模拟低通滤波器。
所述上变频器 524连接所述干扰信号滤除装置 540,对转换后的信号进行 上变频, 并将上变频后的信号传输至所述干 4尤信号滤除装置 540。
进一步地, 为了达到更好的滤除干扰信号的效果, 所述重构信号生成装 置 520还包括: 带通滤波器 525 , 连接所述上变频器 524和所述干扰信号滤除 装置 540。带通滤波器 525对所述上变频后的信号进行滤波以滤除混频器产生 的带外频率分量, 将滤波后的上变频信号传输至所述干 4尤信号滤除装置 540。
所述干扰信号滤除装置 540将预先获得的射频信号与所述近区反射自干 扰射频重构信号相减, 形成将近区反射自干扰分量抵消后的射频输出信号。 如图 5中, 预先获得的射频信号为 LNA输出的信号, 即图 1中 LNA输出的 信号。 本实施例中, 所述干扰信号滤除装置 540可以是反向功率合成器。
本实施例的近区反射自干扰信号抵消装置的具体工作流程如上述方法及 图 4所述, 此处不再赘述。
本实施例的近区反射自干扰信号抵消装置为实现上述方法的一种实施方 式, 上述近区反射自干扰信号抵消方法并不限于本实施例的装置来实施。
本领域普通技术人员将会理解, 本发明的各个方面、 或各个方面的可能 实现方式可以被具体实施为系统、 方法或者计算机程序产品。 因此, 本发明 的各方面、 或各个方面的可能实现方式可以采用完全硬件实施例、 完全软件 实施例 (包括固件、 驻留软件等等), 或者组合软件和硬件方面的实施例的形 式, 在这里都统称为"电路"、 "模块 "或者 "系统"。 此外, 本发明的各方面、 或 各个方面的可能实现方式可以采用计算机程序产品的形式, 计算机程序产品 是指存储在计算机可读介质中的计算机可读程序代码。
计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。 计算机可读存储介质包含但不限于电子、 磁性、 光学、 电磁、 红外或半导体 系统、 设备或者装置,或者前述的任意适当组合,如随机存取存储器 (RAM)、 只读存储器 (ROM)、 可擦除可编程只读存储器(EPROM 或者快闪存储器)、 光纤、 便携式只读存储器 (CD-ROM )。
计算机中的处理器读取存储在计算机可读介质中的计算机可读程序代码, 使得处理器能够执行在流程图中每个步骤、 或各步骤的组合中规定的功能动 作; 生成实施在框图的每一块、 或各块的组合中规定的功能动作的装置。
计算机可读程序代码可以完全在用户的计算机上执行、 部分在用户的计 算机上执行、 作为单独的软件包、 部分在用户的计算机上并且部分在远程计 算机上, 或者完全在远程计算机或者服务器上执行。 也应该注意, 在某些替 代实施方案中, 在流程图中各步骤、 或框图中各块所注明的功能可能不按图 中注明的顺序发生。 例如, 依赖于所涉及的功能, 接连示出的两个步骤、 或 两个块实际上可能被大致同时执行, 或者这些块有时候可能被以相反顺序执 行。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求 书
1、 一种近区反射自干扰信号抵消方法, 其特征在于, 包括:
对输入的射频干扰参考信号通过包括下变频、 低通滤波和模数转换的操作, 形成数字基带参考信号或数字中频参考信号;
将近区反射自干扰抵消后的射频输出信号通过包括下变频、 低通滤波和模 数转换的操作, 形成作为误差信号的基带或中频信号;
对所述数字基带参考信号或数字中频参考信号, 以及所述误差信号进行自 适应滤波运算, 形成重构的近区反射自干扰信号分量的基带或中频信号;
将所述重构的近区反射自干扰信号分量的基带或中频信号通过包括数模转 换、 低通滤波和上变频的操作, 形成近区反射自干扰射频重构信号;
将预先获得的射频信号与所述近区反射自干扰射频重构信号相减, 形成将 近区反射自干扰分量抵消后的射频输出信号。
2、 如权利要求 1所述的近区反射自干扰信号抵消方法, 其特征在于, 所述 对所述数字基带参考信号或数字中频参考信号, 以及所述误差信号进行自适应 滤波, 形成重构的近区反射自干扰信号分量的基带或中频信号具体包括:
将所述数字基带参考信号或数字中频参考信号, 以及所述误差信号分别进 行 N次延时, N≥ 1 ;
将 N次延时输出的 N个延时信号与所述预先设定的 N个滤波系数分别相乘, 然后将得到的 N个乘积相加, 以得到滤波运算后的信号;
根据滤波运算后的信号形成所述重构的近区反射自干扰信号分量的基带或 中频信号。
3、 如权利要求 1或 2所述的近区反射自干扰信号抵消方法, 其特征在于, 采用 LMS或 RLS算法自适应地更新所述 N个滤波系数。
4、 如权利要求 1所述的近区反射自干扰信号抵消方法, 其特征在于, 在将 所述重构的近区反射自干扰信号分量的基带或中频信号通过包括数模转换、 低 通滤波和上变频的操作, 形成近区反射自干扰射频重构信号的步骤中, 上变频 操作后还包括: 滤除混频器产生的各种带外频率分量。
5、 一种近区反射自干扰信号抵消装置, 其特征在于, 包括: 干扰信号处理 装置、 重构信号生成装置、 输出信号反馈装置及干扰信号滤除装置, 所述重构 信号生成装置分别连接所述干扰信号处理装置、 输出信号反馈装置及干扰信号 滤除装置;
所述干扰信号处理装置对输入的射频干扰参考信号通过包括下变频、 低通 滤波和模数转换的操作, 形成数字基带参考信号或数字中频参考信号, 并将数 字基带参考信号或数字中频参考信号传输至所述重构信号生成装置;
所述输出信号反馈装置将近区反射自干扰抵消后的射频输出信号通过包括 下变频、 低通滤波和模数转换的操作, 形成作为误差信号的基带或中频信号, 并将所述误差信号传输至所述重构信号生成装置;
所述重构信号生成装置对所述数字基带参考信号或数字中频参考信号, 以 及所述误差信号进行自适应滤波运算, 形成重构的近区反射自干扰信号分量的 基带或中频信号; 并通过包括数模转换、 低通滤波和上变频的操作, 形成近区 反射自干扰射频重构信号, 并将近区反射自干扰射频重构信号传输至所述干扰 信号滤除装置;
所述干扰信号滤除装置将预先获得的射频信号与所述近区反射自干扰射频 重构信号相减, 形成将近区反射自干扰分量抵消后的射频输出信号。
6、 如权利要求 5所述的近区反射自干扰信号抵消装置, 其特征在于, 所述 干扰信号处理装置包括: 下变频器、 低通滤波器和模数转换器,
所述下变频器将输入的射频干扰参考信号进行下变频, 并将下变频后的信 号传输至所述低通滤波器;
所述低通滤波器分别连接所述下变频器和模数转换器, 对下变频的信号进 行低通滤波, 并将滤波后的信号传输至模数转换器;
模数转换器连接所述重构信号生成装置, 对滤波后的信号进行模数转换, 并将转换后的信号传输至所述重构信号生成装置。
7、 如权利要求 5所述的近区反射自干扰信号抵消装置, 其特征在于, 所述 输出信号反馈装置包括: 下变频器、 低通滤波器和模数转换器,
所述下变频器连接所述干扰信号滤除装置, 对近区反射自干扰抵消后的射 频输出信号进行下变频, 并将下变频后的信号传输至所述低通滤波器;
所述低通滤波器连接所述下变频器和所述模数转换器, 对下变频后的信号 进行低通滤波, 并将滤波后的信号传输至所述模数转换器;
所述模数转换器连接所述重构信号生成装置, 对滤波后的信号进行模数转 换, 并将转换后的信号传输至所述重构信号生成装置。
8、 如权利要求 5所述的近区反射自干扰信号抵消装置, 其特征在于, 所述 重构信号生成装置包括: 自适应数字滤波器、 数模转换器、 低通滤波器和上变 频器,
所述自适应数字滤波器分别连接所述干扰信号处理装置和输出信号反馈装 置, 对所述数字基带参考信号或数字中频参考信号, 以及所述误差信号进行自 适应滤波运算, 形成重构的近区反射自干扰信号分量的基带或中频信号, 并将 重构的近区反射自干扰信号分量的基带或中频信号传输至所述数模转换器; 所述数模转换器分别连接所述自适应数字滤波器和所述低通滤波器, 对所 述重构的近区反射自干扰信号分量的基带或中频信号进行数模转换, 将转换后 的信号传输至所述低通滤波器;
所述低通滤波器连接所述上变频器, 对转换后的信号进行低通滤波, 并将 低通滤波后的信号传输至所述上变频器;
所述上变频器连接所述干扰信号滤除装置, 对转换后的信号进行上变频, 并将上变频后的信号传输至所述干扰信号滤除装置。
9、 如权利要求 8所述的近区反射自干扰信号抵消装置, 其特征在于, 所述 重构信号生成装置还包括: 带通滤波器, 连接所述上变频器和所述干扰信号滤 除装置, 对所述上变频后的信号进行滤波以滤除混频器产生的带外频率分量, 将滤波后的上变频信号传输至所述干扰信号滤除装置。
10、 如权利要求 5~9 中任一项所述的近区反射自干扰信号抵消装置, 其特 征在于, 所述干扰信号滤除装置包括: 反向功率合成器。
PCT/CN2014/071507 2013-01-25 2014-01-26 近区反射自干扰信号抵消方法及装置 WO2014114269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310030073.0A CN103973612A (zh) 2013-01-25 2013-01-25 近区反射自干扰信号抵消方法及装置
CN201310030073.0 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014114269A1 true WO2014114269A1 (zh) 2014-07-31

Family

ID=51226947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071507 WO2014114269A1 (zh) 2013-01-25 2014-01-26 近区反射自干扰信号抵消方法及装置

Country Status (2)

Country Link
CN (1) CN103973612A (zh)
WO (1) WO2014114269A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847865B2 (en) * 2014-08-20 2017-12-19 Huawei Technologies Co., Ltd. System and method for digital cancellation of self-interference in full-duplex communications
CN104716980B (zh) * 2015-01-13 2017-09-15 中央军委装备发展部第六十三研究所 一种同时同频全双工射频多子带自干扰消除方法
CN106301419B (zh) * 2015-06-04 2019-05-28 华为技术有限公司 射频干扰消除方法及装置
US9966993B2 (en) * 2015-07-15 2018-05-08 Cisco Technology, Inc. Interference suppression in full duplex cable network environments
CN107359896B (zh) * 2017-06-27 2019-06-07 电子科技大学 一种三维区域内电磁波设备的干扰抑制系统及方法
CN109302198B (zh) * 2017-07-24 2020-04-10 深圳市中兴微电子技术有限公司 无线收发机系统及其混频器电路
CN107632064B (zh) * 2017-08-25 2021-12-21 爱德森(厦门)电子有限公司 一种涡流检测干扰信号抑制方法
CN112235055B (zh) * 2020-03-27 2022-04-26 中国人民解放军海军工程大学 基于数字希尔伯特变换的外差式自适应干扰对消装置
CN113938149B (zh) * 2021-12-08 2022-11-08 中国电子科技集团公司第三十六研究所 一种射频干扰抵消器及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101529729A (zh) * 2006-10-17 2009-09-09 交互数字技术公司 具有用于移除由发射机生成的噪声的混合型自适应干扰消除器的收发信机
CN101986573A (zh) * 2010-10-25 2011-03-16 中兴通讯股份有限公司 一种双模通信系统的频谱干扰抵消装置、系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745018B1 (en) * 2000-09-29 2004-06-01 Intel Corporation Active cancellation of a wireless coupled transmit signal
US8170487B2 (en) * 2006-02-03 2012-05-01 Qualcomm, Incorporated Baseband transmitter self-jamming and intermodulation cancellation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101529729A (zh) * 2006-10-17 2009-09-09 交互数字技术公司 具有用于移除由发射机生成的噪声的混合型自适应干扰消除器的收发信机
CN101986573A (zh) * 2010-10-25 2011-03-16 中兴通讯股份有限公司 一种双模通信系统的频谱干扰抵消装置、系统及方法

Also Published As

Publication number Publication date
CN103973612A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2014114269A1 (zh) 近区反射自干扰信号抵消方法及装置
JP6487109B2 (ja) トランシーバおよびトランシーバの自己干渉を低減するための方法
Korpi et al. Adaptive nonlinear digital self-interference cancellation for mobile inband full-duplex radio: Algorithms and RF measurements
JP5155338B2 (ja) 信号の完全性及び増幅を促進するためにリアルタイム測定メトリック及び適応アンテナアレイを利用する物理層中継器
RU2664392C2 (ru) Способ и устройство подавления помех
US9768826B2 (en) Self-interference cancellation method, transceiver, and communications device for transmit/receive shared antenna
EP3210307B1 (en) Full duplex radio with tx leakage cancellation
JP6339702B2 (ja) 干渉除去装置および方法
US9973233B2 (en) Interference cancellation apparatus and method
Tamminen et al. Digitally-controlled RF self-interference canceller for full-duplex radios
US20100197231A1 (en) Method and apparatus for interference cancellation
WO2014036930A1 (zh) 一种干扰信号的处理方法、装置和系统
Soriano-Irigaray et al. Adaptive self-interference cancellation for full duplex radio: Analytical model and experimental validation
WO2013131279A1 (zh) 抵消多载波发射干扰的方法、装置、设备及系统
EP3155726B1 (en) Active cancellation of transmitter leakage in a radio receiver
Kanumalli et al. Active digital cancellation of transmitter induced modulated spur interference in 4G LTE carrier aggregation transceivers
CN108141237A (zh) 具有反馈的高性能pim消除
US9906262B2 (en) All-analog and hybrid radio interference cancellation using cables, attenuators and power splitters
Emara et al. A full duplex transceiver with reduced hardware complexity
EP3100423B1 (en) Multi-stage isolation sub-system for a remote antenna unit
Kiayani et al. Active RF cancellation of nonlinear TX leakage in FDD transceivers
Kanumalli et al. Mixed-signal based enhanced widely linear cancellation of modulated spur interference in LTE-CA transceivers
Askar et al. Agile full-duplex transceiver: The concept and self-interference channel characteristics
EP3048739B1 (en) Interference cancellation method and apparatus
Chandran et al. Transmitter leakage analysis when operating USRP (N210) in duplex mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743196

Country of ref document: EP

Kind code of ref document: A1