WO2014114148A1 - 单层电容触摸传感器及触控终端 - Google Patents

单层电容触摸传感器及触控终端 Download PDF

Info

Publication number
WO2014114148A1
WO2014114148A1 PCT/CN2013/089177 CN2013089177W WO2014114148A1 WO 2014114148 A1 WO2014114148 A1 WO 2014114148A1 CN 2013089177 W CN2013089177 W CN 2013089177W WO 2014114148 A1 WO2014114148 A1 WO 2014114148A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch sensor
capacitive touch
layer capacitive
trace
Prior art date
Application number
PCT/CN2013/089177
Other languages
English (en)
French (fr)
Inventor
邓耿淳
李海
刘武
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2014114148A1 publication Critical patent/WO2014114148A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • ITO Indium-Tin Oxide
  • indium tin oxide commonly referred to as a transparent conductive film
  • this material also has certain defects, that is, its impedance is high. Therefore, how to provide a single-layer capacitive touch sensor with simple structure and low impedance and low impedance is an urgent problem to be solved.
  • the present invention also provides a touch terminal employing the capacitive touch sensor described above.
  • Figure 3 is an enlarged schematic view of a portion A of Figure 1;
  • Figure 4 is an enlarged schematic view of a portion B of Figure 1;
  • Embodiments of the present invention provide a single-layer capacitive touch sensor including a substrate on which a first electrode and a second electrode are disposed, and the first electrode and the second electrode are both in a metal mesh shape.
  • the first electrode and the second electrode are both designed as a metal mesh shape, which greatly reduces the impedance of the touch sensor electrode compared to the physical bulk electrode structure using ITO in the prior art, thereby solving the high impedance.
  • the resulting tailing, line interference and other problems while reducing the signal attenuation of the touch sensor, improve the sensitivity of the touch sensor; further, compared with the traditional ITO capacitive touch sensor, the metal grid-like capacitive touch sensor can Supporting higher frequency drive signals solves the problem of signal interference that is difficult to solve with ITO capacitive touch sensors.
  • the embodiment of the present invention does not need to specifically design the trace width of the second electrode, and does not need to provide a floating block between the first electrode extension portion and the second electrode extension portion, or at least the first electrode extension portion and the second electrode.
  • the region between the extensions, and/or the trace region of the second electrode, and/or the region between the adjacent first electrode saturation faces are filled with separate metal mesh suspensions that are not connected to each other. Block, the entire sensor structure is simpler and easier to process.
  • Embodiment 1 of the present invention provides a single layer capacitive touch sensor.
  • the application of the single-layer capacitive touch sensor on a mobile phone is taken as an example for description.
  • the single-layer capacitive touch sensor provided in this embodiment can also be applied to other touch terminals, such as a tablet computer, various self-service terminals, and the like.
  • the single-layer capacitive touch sensor is provided with a plurality of rows of first electrodes 1 arranged in a first direction and a plurality of second electrodes 2 arranged in a second direction on a substrate.
  • the line and the second electrode trace 22 are both led out to the flexible printed circuit board bound to the substrate (Flexible Printed Circuit, FPC) (not shown).
  • FPC Flexible Printed Circuit
  • the first direction is a vertical direction and the second direction is a horizontal direction.
  • the first electrode 1 includes a first electrode block 11 disposed along the first direction, and the first electrode block 11 extends from the first electrode block 11 to the second direction.
  • the first electrode extension portion 111 has a first direction perpendicular to the second direction.
  • the second electrode 2 of each row includes a second electrode unit 21 equal in number to the number of columns of the first electrode 1; the second electrode unit 21 includes a second electrode block 211 disposed in the first direction, the same in the second electrode block 211
  • a plurality of second electrode extensions 2111 extend from the second electrode block 211 as a starting point in a direction opposite to the second direction, and the second electrode extensions 2111 are engaged with the first electrode extensions 111.
  • the number of second electrode extensions 2111 of each of the second electrode units 21 is 3 to 5, and there are 4 in this embodiment.
  • the distance between the first electrode extension portion 111 and the second electrode extension portion 2111 is 0.1 mm or more and 0.3 mm or less.
  • the nip position of the first electrode extension portion 111 and the second electrode extension portion 2111 forms a capacitor structure, wherein the first electrode 1 is an induction electrode (electrically connected to RX), and the second electrode 2 is a drive electrode (electrically connected to TX).
  • the first electrode extension portion 111 can sense the change of the charge on the second electrode extension portion 2111 in real time, and can realize single layer touch detection without a jumper.
  • the sensing electrode and the driving electrode are back-to-back arrangement between the electrodes of the same type in the horizontal direction of "drive-induction-induction-drive-drive-induction-induction-drive". As shown in FIG. 3 and FIG.
  • a floating block 3 is provided in a region between the wiring region of the second electrode and the saturation faces of the two adjacent first electrodes 1 for maintaining the flatness of the entire substrate wiring and
  • the two electrodes are designed to be in the shape of a bite, and the capacitor structure is formed by the nip portion, and the jumper is not required to be designed, thereby simplifying the wiring and reducing the process conditions to a certain extent.
  • the requirements are simple in structure and easy to process.
  • the region between the first electrode extension portion 111 and the second electrode extension portion 2111 also has a floating block 3, the first electrode block 11 in FIG. 3, the first electrode extension portion 111,
  • the gap between the second electrode block 211, the second electrode extension 2111, the floating block 3, and each of the floating blocks 3 constitutes a complete touch detection node.
  • One of the functions of the floating block 3 is to cause the electric field between the driving and the sensing to be more divergent, which is beneficial to the touch change; the second effect is to effectively reduce the total area of the driving and sensing of the node portion, and the induction by the finger in the floating state.
  • the interference signal becomes smaller.
  • the metal grid-like single-layer capacitive touch sensor is fabricated by the nano silver process, the metal grid-like nano silver has a low impedance compared to the ITO method, and the width of the second electrode trace 22 is not required to be specifically designed. For example, all the trace widths of the second electrode can be uniform. In the sensor using ITO, since the ITO impedance is high, the second electrode trace of the lower end portion of the sensor needs to be widened, thereby reducing the impedance. Moreover, as shown in FIGS.
  • the floating blocks 3 in the area may be independent metal grid-like floating blocks 3 which are not connected to each other. Compared with the ITO method, the structure of the entire sensor is simpler and easier to process.
  • this embodiment adopts a bilateral outgoing mode. If the upper bottom edge is selected as the IC position, then the driving line (ie, the second electrode trace 22) coming out of the lower bottom edge needs to pass through the two sides. The traces lead to the top.
  • the upper and lower bottom edges are bound to the FPC routing structure, and the FPC is used to short together the second electrode units 21 in each row of the second electrodes 2, and is also used to lead the second electrode 2 to The detection circuit needs to be jumpered when shorted. This can be jumpered on the FPC or jumpered on the substrate.
  • the second electrode trace 22 leads to the upper and lower bottom edges of the substrate to the corresponding FPC.
  • Both sides of the electrode trace 22 are adjacent to the second electrode 2, and the second electrode trace 22 is completely located on the saturation surface of the second electrode 2.
  • the second electrode 2 isolates all of its traces from the first electrode 1 and can be grounded when there is no scanning, so that the electric field between the second electrode trace 22 and the first electrode 1 is completely absorbed by the intermediate second electrode block 21. The mutual capacitance is zero. When the touch area is touched, the trace does not interfere with the data generation at all.
  • the upper and lower bottom edge-bonded FPCs can be arranged with the second electrode traces 22 on the upper and lower sides, and the second electrode traces of the bilateral outlets are in the same size of the wiring area as compared with the single-sided outgoing lines. 22 can be doubled to increase linearity.
  • Embodiment 2 of the present invention also provides a single layer capacitive touch sensor.
  • This embodiment is different from Embodiment 1 in that the present embodiment does not have a floating block in a region between the first electrode extension portion and the second electrode extension portion. Only the parts different from the first embodiment will be described below, and the rest will be similar to the embodiment 1, and will not be described again here.
  • the area between the first electrode extending portion 111 and the second electrode extending portion 2111 is not provided with a floating block, so that the structure of the entire sensor is simpler and convenient for processing.
  • the floating blocks 3 in the region between the wiring region of the second electrode and the saturation faces of the two adjacent first electrodes 1 are independent floating blocks 3 which are not connected to each other.
  • Embodiment 4 of the present invention provides a touch terminal.
  • the touch terminal 4 employs the capacitive touch sensor provided in any one of Embodiments 1 to 3.
  • the touch terminal 4 is a mobile phone.
  • it may also be other types of touch terminals, such as a tablet computer, various self-service terminals, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明涉及触控技术领域,提供了一种单层电容触摸传感器,其中单层电容触摸传感器包括一基板,所述基板上布设有第一电极和第二电极,所述第一电极和第二电极均为金属网格状。本发明同时还提供了一种触摸终端,所述触摸终端采用前述的电容触摸传感器。本发明的单层电容触摸传感器采用金属网格状电极,与传统ITO电容触摸传感器相比,大大降低了触摸传感器电极的阻抗,克服了阻抗高导致的拖尾、走线干扰的缺陷,同时降低了触摸传感器的信号衰减,提高了触摸传感器灵敏度的一致性;进一步地,与传统ITO电容触摸传感器相比,本发明金属网格状的电容触摸传感器可以支持更高频率的驱动信号,克服了ITO电容触摸传感器低频信号干扰较大的缺陷。

Description

单层电容触摸传感器及触控终端 技术领域
本发明涉及触控技术领域,特别是涉及一种单层电容触摸传感器及触控终端。
背景技术
传统的电容触摸传感器通常需要多层导电材料结构,有些虽然只用单层导电材料结构来实现,但却需要在X方向-Y方向交叉点处增加跳线以形成X、Y两个维度相互交叉的网络,即要求其中一个维度的电极设计成在另一个维度的电极上进行跳线的结构,制作跳线结构时,首先需要在交叉的位置布设一绝缘层,然后再在绝缘层上布设由导电材料形成的跳线,这种布线非常复杂,对工艺精度要求较高。此外,现有的电容式触摸传感器通常采用ITO(Indium-Tin Oxide,氧化铟锡,通常称为透明导电薄膜)作为导电材料,其透光性较好。但该材料也存在一定的缺陷,即其阻抗较高。因此,如何提供一种结构简单易加工,且阻抗低的单层电容触摸传感器,是目前亟待解决的问题。
技术问题
本发明提供了一种单层电容触摸传感器及触控终端,旨在解决现有的电容触摸传感器结构阻抗高的技术问题。
技术解决方案
一种单层电容触摸传感器,包括一基板,所述基板上布设有第一电极和第二电极,所述第一电极和第二电极均为金属网格状。
本发明还提供了一种触摸终端,所述触摸终端采用上面所述的电容触摸传感器。
有益效果
本发明的有益效果在于:
通过将第一电极和第二电极均设计为金属网格状,与传统ITO电容触摸传感器相比,大大降低了触摸传感器电极的阻抗,从而解决了阻抗高导致的拖尾、走线干扰等问题,同时降低了触摸传感器的信号衰减,提高触摸传感器灵敏度一致性;进一步地,与传统ITO电容触摸传感器相比,这种金属网格状的电容触摸传感器可以支持更高频率的驱动信号,解决了ITO电容触摸传感器难以解决的信号干扰问题。
附图说明
图1是本发明实施例1提供的单层电容触摸传感器的布线示意图;
图2是本发明实施例1中第一电极、第二电极及其咬合示意图;
图3是图1中A部分的放大示意图;
图4是图1中B部分的放大示意图;
图5是图3中C部分的放大示意图;
图6是本发明实施例2提供的单层电容触摸传感器的局部放大布线示意图。
附图标记:
第一电极1,
第一电极块11,
第一电极延伸部111,
第二电极2,
第二电极单元21,
第二电极块211,
第二电极延伸部2111,
第二电极走线22,
悬浮块3,
触摸终端4。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种单层电容触摸传感器,包括一基板,所述基板上布设有第一电极和第二电极,所述第一电极和第二电极均为金属网格状。
本发明实施例还提供了一种触摸终端,该触摸终端采用上面所述的电容触摸传感器。
本发明实施例通过将第一电极和第二电极均设计为金属网格状,相比现有技术中采用ITO的实体块状电极结构,大大降低了触摸传感器电极的阻抗,从而解决了阻抗高导致的拖尾、走线干扰等问题,同时降低了触摸传感器的信号衰减,提高触摸传感器灵敏度一致性;进一步地,与传统ITO电容触摸传感器相比,这种金属网格状的电容触摸传感器可以支持更高频率的驱动信号,解决了ITO电容触摸传感器难以解决的信号干扰问题。
本发明实施例无需对第二电极的走线宽度进行特殊的设计,且无需在第一电极延伸部与第二电极延伸部之间设置悬浮块,或者至少在第一电极延伸部与第二电极延伸部之间的区域、和/或第二电极的走线区域,和/或两两相邻的第一电极饱和面之间的区域内填充有相互之间未连接的独立金属网格状悬浮块,整个传感器的结构更为简单,易加工。
实施例1:
本发明实施例1提供了一种单层电容触摸传感器。如图1所示,本实施例以该单层电容触摸传感器在手机上的应用为例进行说明。当然,本实施例提供的单层电容触摸传感器还可以应用于其他触控终端,例如平板电脑、各种自助服务终端等等。
如图1~图3所示,该单层电容触摸传感器在基板上布设有若干列沿第一方向排列的第一电极1和若干行沿第二方向排列的第二电极2,第一电极走线、第二电极走线22均引出至与基板绑定的柔性印刷电路板(Flexible Printed Circuit,FPC)(图中未示出)。本实施例中,第一方向为竖直方向,第二方向为水平方向。
如图1~图3所示,第一电极1包括沿第一方向布设的第一电极块11,在第一电极块11的同一侧以第一电极块11为起点向第二方向延伸出若干第一电极延伸部111,第一方向与第二方向相垂直。每一行的第二电极2包括数量与第一电极1列数相等的第二电极单元21;第二电极单元21包括沿第一方向布设的第二电极块211,在第二电极块211的同一侧以第二电极块211为起点向第二方向的反方向延伸出若干第二电极延伸部2111,第二电极延伸部2111与第一电极延伸部111相咬合。优选地,每一个第二电极单元21的第二电极延伸部2111的数量为3~5个,本实施例中有4个。第一电极延伸部111与第二电极延伸部2111之间的间距大于等于0.1mm且小于等于0.3mm。
第一电极延伸部111与第二电极延伸部2111的咬合位置即形成电容结构,以第一电极1为感应电极(电气连接至RX)、第二电极2为驱动电极(电气连接至TX)为例,则第一电极延伸部111可实时感应到第二电极延伸部2111上电荷的变化,无需跳线即可实现单层触摸检测。图1中感应电极和驱动电极在水平方向上为“驱动-感应-感应-驱动-驱动-感应-感应-驱动...”的同类电极之间背靠背式的排布。如图3和图5所示,在第二电极的走线区和两列相邻的第一电极1饱和面之间的区域内设有悬浮块3,用于保持整个基板布线的平整度和整体透光率,其中悬浮块3是指没有任何走线连接的电气独立金属线,饱和面是指电极完全平滑的一面。第一电极1饱和面之间的区域内完全没有走线。在本实施例的单层导电材料结构中,将两种电极设计为咬合的形状,通过咬合部分形成电容结构,而无需再设计跳线,使布线得到简化,在一定程度上降低了对工艺条件的要求,结构简单,易加工。
如图3和图4所示,在第一电极延伸部111与第二电极延伸部2111之间的区域也具有悬浮块3,图3中的第一电极块11、第一电极延伸部111、第二电极块211、第二电极延伸部2111、悬浮块3及各个悬浮块3间的缝隙即构成了一个完整的触摸检测节点。悬浮块3的作用之一是导致驱动与感应间的电场更发散,有利于触摸变化;作用之二则是可以有效减小节点部分驱动与感应的总面积,悬浮情况下通过手指传入感应的干扰信号变小。
如图3和图4所示,第一电极1和第二电极2为金属网格状。本实施例中,第一电极1和第二电极2均由纳米银制成,呈菱形网格状,在其他实施例中,第一电极1和第二电极2还可以由其他金属材料制成,并呈现其他形状的网格,例如方形、三角形等等。上述悬浮块3以及传感器中所有走线的材质(例如第一电极走线和第二电极走线22)也可采用和第一电极1、第二电极2相同的材质,例如纳米银。该悬浮块3为相互之间未连接的独立金属网格状悬浮块3。由于采用纳米银工艺制作金属网格状的单层电容触摸传感器,相比采用ITO的方式,金属网格状的纳米银的阻抗低,无需对第二电极走线22的宽度进行特定的设计,例如第二电极的所有走线宽度均可以一致,而在采用ITO的传感器中,由于ITO阻抗高,传感器下端部位的第二电极走线需要加宽,从而降低阻抗。而且,如图4和图5所示,第一电极延伸部111与第二电极延伸部2111之间的区域、第二电极的走线区和两列相邻的第一电极1饱和面之间的区域内的悬浮块3均可以是相互之间未连接的独立金属网格状悬浮块3,相比ITO的方式,整个传感器的结构更为简单,易加工。
如图1~图3所示,本实施例采用双边出线方式,如果选择上底边为IC位置,那么就需要将下底边出来的驱动线(即第二电极走线22)通过两侧边的走线引到上端来。本实施例采用上下两底边均绑定FPC的走线结构,FPC用于将每行第二电极2中的各个第二电极单元21短接到一起,还用于将第二电极2引至检测电路,短接时需要进行跳线,这个可以在FPC上跳线,也可以在基板上进行跳线,第二电极走线22就近向基板的上下两底边引出至相应的FPC,第二电极走线22两侧均与第二电极2相邻,且第二电极走线22完全位于第二电极2饱和面。第二电极2将其所有的走线与第一电极1相隔离,可以在没有扫描的时候接地,因此第二电极走线22与第一电极1间电场完全被中间的第二电极块21吸收,互电容为零,触摸走线区时走线完全没有干扰数据产生。同时,这种上下两底边绑定FPC可在上下两边都布置第二电极走线22,与单边出线的方式相比,在同样大小的布线区域内,双边出线方式的第二电极走线22数量可以加倍,提高了线性度。如图3所示,本实施例中,第一电极延伸部111与第二电极延伸部2111均为矩形结构。矩型对称咬合的一个作用是使节点电容分布更均匀,增大了触摸有效区间,另一个作用可以减小第一电极1与走线区的有效正对面积,减小第一电极1与走线间的互电容。
实施例2:
本发明实施例2也提供了一种单层电容触摸传感器。本实施例与实施例1的不同之处在于:本实施例在第一电极延伸部与第二电极延伸部之间的区域没有设置悬浮块。下面仅对本实施例与实施例1不同的部分进行阐述,其余部分因与实施例1类似,此处将不再赘述。
如图6所示,第一电极延伸部111与第二电极延伸部2111之间的区域没有设置悬浮块,这样,整个传感器的结构更为简单,方便加工。与实施例1相似的是,第二电极的走线区和两列相邻的第一电极1饱和面之间的区域内的悬浮块3为互相之间未连接的独立悬浮块3。
实施例3:
本发明实施例3提供了另一种单层电容触摸传感器。本实施例与实施例1不同之处在于:其基板仅有一底边绑定FPC,可以是上底边或者下底边,优选为上底边,第二电极走线引出至该FPC。与实施例1相同,第二电极走线两侧均与第二电极相邻,第二电极将其所有走线与第一电极相隔离,同样触摸走线区时走线完全没有干扰数据产生。此单边出线的方式最佳效果最高可适配到100ohm。
实施例4:
本发明实施例4提供了一种触摸终端。如图1所示,该触摸终端4采用实施例1~实施例3中任一项提供的电容触摸传感器。本实施例中,该触摸终端4为手机,当然,其还可以是其他类型的触摸终端,例如平板电脑、各种自助服务终端等等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种单层电容触摸传感器,包括一基板,所述基板上布设有第一电极和第二电极,其特征在于,所述第一电极和第二电极均为金属网格状。
  2. 根据权利要求1所述的单层电容触摸传感器,其特征在于,所述第一电极包括沿第一方向布设的第一电极块,在所述第一电极块的同一侧以所述第一电极块为起点向第二方向延伸出若干第一电极延伸部,所述第一方向与第二方向相垂直;所述第二电极包括沿第一方向布设的第二电极块,在所述第二电极块的同一侧以所述第二电极块为起点向所述第二方向的反方向延伸出若干第二电极延伸部,所述第二电极延伸部与所述第一电极延伸部相咬合。
  3. 根据权利要求2所述的单层电容触摸传感器,其特征在于,至少在所述第一电极延伸部与所述第二电极延伸部之间的区域,和/或所述第二电极的走线区域,和/或两两相邻的第一电极饱和面之间的区域内填充有悬浮块。
  4. 根据权利要求3所述的单层电容触摸传感器,其特征在于,所述悬浮块为相互之间未连接的独立金属网格状悬浮块。
  5. 根据权利要求4所述的单层电容触摸传感器,其特征在于,所述第一电极、第二电极、第一电极的走线、第二电极的走线和悬浮块均由纳米银制成。
  6. 根据权利要求1所述的单层电容触摸传感器,其特征在于,所述基板的上下两底边均绑定有柔性印刷电路板,所述第二电极的走线就近向所述基板的上下两底边引出至相应的柔性印刷电路板,所述第二电极的走线两侧均与第二电极相邻,第二电极将所有第二电极的走线与所述第一电极相隔离;或者
    所述基板的一底边绑定有柔性印刷电路板,所述第二电极的走线引出至所述柔性印刷电路板,所述第二电极的走线两侧均与第二电极相邻,第二电极将所有第二电极的走线与所述第一电极相隔离。
  7. 根据权利要求1~6任一项所述的单层电容触摸传感器,其特征在于,所述第一电极延伸部与所述第二电极延伸部之间的间距大于等于0.1mm且小于等于0.3mm。
  8. 根据权利要求1~6任一项所述的单层电容触摸传感器,其特征在于,所述第一电极延伸部与所述第二电极延伸部均为矩形结构。
  9. 根据权利要求1~6任一项所述的单层电容触摸传感器,其特征在于,所述第一电极为感应电极,所述第二电极为驱动电极。
  10. 一种触摸终端,其特征在于,所述触摸终端采用权利要求1~9任一项所述的电容触摸传感器。
PCT/CN2013/089177 2013-01-25 2013-12-12 单层电容触摸传感器及触控终端 WO2014114148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310028353.8A CN103105990B (zh) 2013-01-25 2013-01-25 单层电容触摸传感器及触控终端
CN201310028353.8 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014114148A1 true WO2014114148A1 (zh) 2014-07-31

Family

ID=48313899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089177 WO2014114148A1 (zh) 2013-01-25 2013-12-12 单层电容触摸传感器及触控终端

Country Status (2)

Country Link
CN (1) CN103105990B (zh)
WO (1) WO2014114148A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108217575A (zh) * 2017-12-11 2018-06-29 华南师范大学 一种传感器及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105990B (zh) * 2013-01-25 2016-08-31 深圳市汇顶科技股份有限公司 单层电容触摸传感器及触控终端
TWM494960U (zh) * 2013-12-20 2015-02-01 Wintek Corp 元件基板與觸控顯示面板
CN104063108B (zh) * 2014-07-03 2017-04-05 深圳市华星光电技术有限公司 基于单层金属网格的互电容多点触控电极结构
CN104777939B (zh) * 2015-04-24 2018-01-16 昆山龙腾光电有限公司 触控面板
CN108614652B (zh) * 2016-12-13 2021-07-09 和鑫光电股份有限公司 触控面板
KR102534668B1 (ko) * 2018-01-05 2023-05-22 현대자동차주식회사 스티어링 휠

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2927175Y (zh) * 2006-02-13 2007-07-25 陈其良 网格式触控屏
CN102402354A (zh) * 2010-09-10 2012-04-04 敦泰科技有限公司 具有网状电极的电容式触摸屏
CN103105990A (zh) * 2013-01-25 2013-05-15 深圳市汇顶科技股份有限公司 单层电容触摸传感器及触控终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9244568B2 (en) * 2008-11-15 2016-01-26 Atmel Corporation Touch screen sensor
TWI446253B (zh) * 2011-04-08 2014-07-21 Elan Microelectronics Corp Single - layer sensing layer of two - dimensional capacitive touchpad
CN102855046A (zh) * 2012-10-08 2013-01-02 江西联创电子有限公司 一种单层多点电容屏传感器的图案结构
CN203070265U (zh) * 2013-01-25 2013-07-17 深圳市汇顶科技股份有限公司 单层电容触摸传感器及触控终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2927175Y (zh) * 2006-02-13 2007-07-25 陈其良 网格式触控屏
CN102402354A (zh) * 2010-09-10 2012-04-04 敦泰科技有限公司 具有网状电极的电容式触摸屏
CN103105990A (zh) * 2013-01-25 2013-05-15 深圳市汇顶科技股份有限公司 单层电容触摸传感器及触控终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108217575A (zh) * 2017-12-11 2018-06-29 华南师范大学 一种传感器及其制备方法

Also Published As

Publication number Publication date
CN103105990B (zh) 2016-08-31
CN103105990A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2014114148A1 (zh) 单层电容触摸传感器及触控终端
WO2014114147A1 (zh) 单层电容触摸传感器及触控终端
US10222919B2 (en) Capacitive touch screen and single layer wiring electrode array
JP5059844B2 (ja) キャパシティタッチパネル
WO2013131361A1 (zh) 单层式二维触摸传感器及触控终端
WO2011095102A1 (zh) 一种电容式触摸传感器、触摸检测装置及触控终端
TWI436256B (zh) Mutual capacitive touchpad and modular mutual capacitive touchpad
US20120299868A1 (en) High Noise Immunity and High Spatial Resolution Mutual Capacitive Touch Panel
CN202771407U (zh) 电容式触摸屏及单层布线电极阵列
WO2017024599A1 (zh) 一种具有触控功能的阵列基板及显示装置
WO2016082231A1 (zh) 触控面板以及触摸式显示装置
WO2017076209A1 (zh) 一种单层布线的电容式触摸传感器及触摸屏
WO2016074275A1 (zh) 互电容式ogs触摸面板及其制造方法
WO2013085227A1 (en) Electrode pattern of touch panel and method of manufacturing the same
CN104850295B (zh) 触控显示装置及彩色滤光片基板
CN206991268U (zh) 触控面板及显示设备
WO2014153897A1 (zh) 透明导电膜
TWM500929U (zh) 觸控式螢幕設備及其單層互電容觸控式螢幕體和電子裝置
WO2019227695A1 (zh) 一种阵列基板、显示面板及显示设备
CN107390914A (zh) 触控面板及显示设备
TWM466307U (zh) 窄邊框之內嵌顯示觸控結構
WO2014054878A2 (ko) 간섭 없이 감도가 향상되는 단일 적층 구조를 갖는 터치스크린 패널
CN105630258B (zh) 单层互容式触摸屏及触控装置及电子装置
CN105511685B (zh) 金属网电磁触控感应器、触控模组及触控电子装置
TWI552061B (zh) 觸控式螢幕設備及其單層互電容觸控式螢幕體和電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872809

Country of ref document: EP

Kind code of ref document: A1