WO2014114069A1 - 电容储能式可充电电池及其充电装置 - Google Patents

电容储能式可充电电池及其充电装置 Download PDF

Info

Publication number
WO2014114069A1
WO2014114069A1 PCT/CN2013/080588 CN2013080588W WO2014114069A1 WO 2014114069 A1 WO2014114069 A1 WO 2014114069A1 CN 2013080588 W CN2013080588 W CN 2013080588W WO 2014114069 A1 WO2014114069 A1 WO 2014114069A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitor
current
energy storage
rechargeable battery
Prior art date
Application number
PCT/CN2013/080588
Other languages
English (en)
French (fr)
Inventor
罗利文
罗申
Original Assignee
Luo Liwen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luo Liwen filed Critical Luo Liwen
Publication of WO2014114069A1 publication Critical patent/WO2014114069A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the receiving coil is in the long shell, the power receiving chip and the farad capacitor are in the short shell, the anode has the positive and negative electrodes for outputting electric energy, the positive pole is connected with the positive pole of the farad capacitor, and the negative pole is connected with the negative pole of the farad capacitor; the power receiving chip has three wires The terminals are respectively connected to the input end, the ground end and the output end. The two ends of the receiving coil are respectively connected to the input end and the ground end of the power receiving chip, and the positive and negative poles of the farad capacitor are respectively connected with the output end and the ground end of the power receiving chip.
  • the technical drawback lies in: the use of the traditional split-transformer magnetic induction power supply mode, which is the least efficient and the smallest transmission distance in the wireless inductive power supply technology;
  • the Farad capacitor housing is generally a metallic material aluminum, which is worn by an alternating magnetic field.
  • the metal casing of the Faraday capacitor is used, a strong eddy current is induced.
  • no means is used to prevent the generation of the eddy current, which will inevitably cause the eddy current to consume unnecessary electric energy, which not only greatly reduces the power supply efficiency, but also greatly reduces the power supply efficiency. It may cause the Fara capacitor metal case to heat up, which will shorten the service life of the farad capacitor.
  • the relationship between the service life of the farad capacitor and the temperature generally conforms to the "10 degree rule", that is, for every 10 degrees increase in temperature, the service life is halved.
  • the device described in CN202334009U uses the magnetic field emitted by the permanent magnet as a signal for starting the charger, which not only increases cost and weight, but also requires the user to align the two specific positions of the permanent magnet and the magnetron switch. This alignment process may become difficult to operate due to the difference in the arrangement of the batteries in the battery case.
  • the present invention is directed to the above-mentioned deficiencies of the prior art, and proposes a capacitor energy storage rechargeable battery and a charging device thereof, that is, a capacitor energy storage battery that replaces a standard A, AA or AAA type dry battery with a super farad capacitor.
  • the present invention relates to a capacitor energy storage rechargeable battery, comprising: a series connected receiving coil and a resonant capacitor comprising a resonant receiving circuit, a rectifier circuit, a buck regulator circuit, and a storage capacitor, wherein: The coil cooperates with the resonant capacitor to receive the electromagnetic energy sent by the wireless inductive transmitting coil, and generates a stable 1.6V DC voltage through the rectifying circuit and the buck regulator circuit for charging the storage capacitor.
  • the storage capacitor uses a large-capacity farad capacitor to store electrical energy, and can provide power for a period of time for low-power electronic devices.
  • the output end of the rectifier circuit is preferably provided with a charging mechanism with a step-down diode group in parallel with the buck regulator circuit, and the charging mechanism is further preferably a mini USB-B or a Micro USB-B interface.
  • the second charging method is provided for charging the super capacitor by using the +5V power supply in the USB interface.
  • the resonant circuit, the rectifying circuit, the buck regulator circuit, the charging mechanism, and the storage capacitor are encapsulated in a casing having a shape of a single-cell battery, the casing is a column structure, and the column structure is composed of a half
  • the diameter of the semi-cylindrical body is the same as the width of the rectangular parallelepiped and matches the diameter of a standard battery such as an A-type, AA-type or AAA-type battery, which is convenient for compatibility with existing batteries, and at the same time
  • a larger volume facilitates the assembly of the necessary components, and on the other hand, the wireless charging allows the battery to be placed flat on the charger without rolling.
  • the two ends of the outer casing are respectively provided with metal positive and negative electrodes that meet the requirements of the standard battery, so as to maximize the effective space of the battery box, and can be applied to most battery cases, but not applicable to only A battery case that can hold a cylindrical battery.
  • the battery unit can be directly inserted into the battery box instead of one dry battery. If the electronic device requires two dry batteries, two capacitor batteries need to be installed.
  • the maximum charging voltage of each capacitor battery is about 1.6 V, which can be used in series or in parallel.
  • the present invention relates to a charging device for a capacitive energy storage rechargeable battery, comprising: an AC/DC power supply, a control module, a PWM driver, an inverter half bridge circuit, a transmitting circuit, a current detecting resistor, and a current signal processing circuit, wherein :
  • the AC/DC power supply receives the 85V-264V AC input and outputs 5V and 18V DC to the power supply terminal of the control module and the inverter half-bridge circuit respectively.
  • the control module outputs the PWM signal to the PWM driver, the input of the PWM driver and the inverter half-bridge circuit.
  • the terminal is connected and outputs an excitation current
  • the output end of the inverter half-bridge circuit is connected to the transmitting circuit
  • the feedback end of the inverter half-bridge circuit is respectively connected with the current detecting resistor Rx and the current signal processing circuit, and the output of the transmitting circuit is passed through the current detecting resistor.
  • the current is converted into a feedback voltage
  • a current signal processing circuit obtains a pulse signal reflecting the current frequency and a voltage signal reflecting the current amplitude, and respectively output to the counter terminal of the control module and the AD sampling end, and the control module outputs the output current according to the transmitting circuit.
  • the size determines whether the charging has been completed.
  • the inverter half bridge circuit is composed of fifth and sixth capacitors, first and second MOS tubes, and the inverter is in a control mode
  • the PWM control of the block outputs an alternating current at a frequency of 100-200 Khz, which drives the transmitting coil to generate an alternating magnetic field, and the receiving coil induces an alternating magnetic field and resonates with the resonant capacitance of the receiving circuit to achieve maximum efficiency wireless power transmission. .
  • the capacitor battery needs to be charged.
  • the PCB printed coil close to the battery cover should be parallel to the plane of the wireless sensor's transmitting coil. It takes less than 2 minutes to charge the storage capacitor C3 from 0V to 1.6V.
  • a capacitor battery that has been recharged after a period of time has a certain residual charge in its internal storage capacitor C3. In this case, the required charging time is shorter.
  • USB can provide 500mA charging current
  • the present invention determines whether to activate the transmitter and whether to end charging by the magnitude and variation of the current of the transmitting circuit in a short time, without adding any other components, and omitting the alignment process of two specific points.
  • the current waveform of the transmitting circuit during a complete charging process is shown in Figure 7.
  • the control module 11 controls the transmitting circuit to operate for 100 ms, and detects the magnitude and variation of the current during this period, if it continues at I.
  • the control module 11 can also determine whether the transmitting circuit is normal by detecting whether the frequency of the transmitting current is the frequency set by the current program.
  • FIG. 1 is a schematic structural view of the present invention.
  • FIG 3 is a front view of a circuit board.
  • FIG. 4 is a side view of a circuit board.
  • FIG. 5 is a top view of a circuit board.
  • FIG. 6 is a schematic structural diagram of a wireless charger.
  • FIG. 7 is a waveform diagram of an emission current and a farad capacitor voltage during charging.
  • the embodiment includes: a series receiving coil L and a resonant capacitor C1 connected in series to form a resonant receiving circuit 1, a rectifier circuit 2, a buck regulator circuit 3, and a storage capacitor C3, wherein
  • the receiving coil L cooperates with the resonant capacitor C1 to inductively receive the electromagnetic energy sent by the wireless inductive transmitting coil, and generates a stable 1.6V DC voltage through the rectifying circuit 2 and the buck regulator circuit 3 for charging the storage capacitor C3.
  • the rectifier circuit 2 is a diode rectifier circuit composed of four low-dropout diodes D3-D6, and the third to sixth diodes D3, D4, D5, and D6 are 1N5818 or similar low-dropout rectifier diodes;
  • the buck regulator circuit 3 includes: a DC voltage regulator chip U1, a buck circuit composed of a resistor and a diode, and two parallel filter capacitors, wherein: the second capacitor and the fourth capacitor are connected in parallel with the buck
  • the positive terminal of the input terminal of the DC voltage regulator chip U1 is connected to the positive terminal of the input terminal of the buck regulator circuit 3
  • the positive terminal of the output terminal of the buck regulator circuit 3 is connected to the input terminal of the buck circuit.
  • the second capacitor C2 is not more than 10 ( ⁇ F, preferably 1 ( ⁇ F / 25V electrolytic capacitor; the fourth capacitor C4 is InF-lOnF / 25V film capacitor;
  • the step-down circuit is composed of a first resistor and a second resistor connected in series, and a seventh diode connected in series between the U1 output and C3, wherein: the first resistor R1 and the second resistor R2 constitute an output voltage
  • the feedback circuit is sampled such that the output of the step-down circuit is stabilized at a desired voltage value, and the seventh diode D7 is used to prevent the charge on the farad capacitor from being discharged through the first resistor R1 and the second resistor R2.
  • the first resistor R1 is 12K, 1/8W; the second resistor R2 is 10 ⁇ , 1/8W.
  • the seventh diode D7 is 1A1 or 1N4001;
  • the receiving coil L is a printed circuit receiving coil attached to the PCB board 5, a total of 15 turns and a peripheral width of 12 mm;
  • the resonant capacitor C1 is O. ⁇ F / 200V film Capacitor
  • the storage capacitor C3 should select a large-capacity farad capacitor as much as possible under the premise of geometrical size, usually at 1-33F, rated voltage is 2.0V-2.5V; preferably 10F/2.5V (for In the AA type battery) or 3.3F/2.5V (AAA type battery); [0036] As shown in FIG. 1, the embodiment is further provided with a charging mechanism 4, which passes the USB with the step-down diodes D1 and D2. The charging interface is implemented.
  • the USB interface in this embodiment selects a mini USB-B or a Micro USB-B interface, and uses the +5V power supply in the USB interface to provide a second charging mode for charging the super capacitor C3.
  • the first and second diodes D1, D2 are 1A1 or 1N4001;
  • FIG. 3 it is a casing 6 with a battery positive pole 7 and a negative pole 8, wherein: the storage capacitor C3 is located at the front end of the casing 6, and the rectifier circuit 2 and the buck regulator circuit 3 are respectively located in the casing.
  • the charging mechanism 4 is located at the tail of the housing 6.
  • the outer casing 6 has a length of 49 mm and a height and a width of 14 mm, which are matched with a common AA type battery. For other battery types, such as A or AAA, you need to adjust the size of the case.
  • the capacitor battery When the voltage of the storage capacitor C3 drops below the minimum allowable operating voltage of the remote controller (usually around IV), the capacitor battery needs to be charged.
  • the printed circuit receiving coil close to the battery cover should be close to the wireless inductive charger transmitting coil, and the storage capacitor C3 can be charged from 0V to 1.6V in about 2 minutes.
  • a capacitor battery that has been recharged after a period of time has a certain residual charge in its internal storage capacitor C3. In this case, the required charging time is shorter.
  • the first and the second diodes D1, D2 can reduce the USB charging voltage +5V by about 1.4 volts, which can effectively reduce the input and output voltage difference of the DC voltage regulator chip U1 (such as the LM1117) and reduce The heat of U1 can also prevent the USB power supply from being reversed.
  • the first resistor R1 and the second resistor R2 divide the output voltage of the sample U1 for feedback output voltage, which can make the U1 output a stable desired voltage value of 2.3V.
  • an output voltage of approximately 1.6V can be obtained for charging the farad capacitor.
  • another important function of diode D7 is to block the discharge of energy storage capacitor C3 through R1 and R2.
  • the eddy current shielding layer 9 has a thickness of 0.5-0.8 mm, and can be used with TDK's PC44 or other soft magnetic materials with similar properties, which is to prevent the high-frequency magnetic field from being inductively charged in the Faraday capacitor and the metal of the USB connector. A strong eddy current is generated on the outer casing.
  • the output end of the inverter half-bridge circuit 13 is connected to the transmitting circuit 13, and the feedback terminals of the inverter half-bridge circuit 13 are respectively connected to the current-sense resistor Rx and the current.
  • the signal processing circuit 15 is connected, the output current of the transmitting circuit 14 is converted into a feedback voltage by the current detecting resistor Rx, and a pulse signal reflecting the current frequency and a voltage signal reflecting the current amplitude are obtained by the current signal processing circuit 15 and output to the respective signals.
  • the counter terminal of the control module 11 and the AD sampling terminal, the control module 11 determines whether the load to be charged and the storage capacitor are fully charged according to the magnitude of the output current of the transmitting circuit 14.
  • the inverter half bridge circuit 13 is composed of fifth and sixth capacitors C5, C6, first and second MOS tubes Q1, Q2, and the inverter is 100-200Khz under the PWM control of the control module.
  • the frequency outputs an alternating current, which drives the transmitting coil to generate an alternating magnetic field, and the receiving coil induces an alternating magnetic field and resonates with the resonant capacitor of the receiving circuit to achieve maximum efficiency wireless power transmission.
  • the current waveform of the transmitting circuit during a complete charging process is as shown in FIG. 7.
  • the emission current is the lowest I.
  • the emission current will experience a process of rapidly rising to the highest point and then slowly dropping.
  • the control module 11 controls the transmitting circuit to operate for 100 ms, and detects the current amplitude during this period, if it continues at I. Nearby, it indicates that there is no charge to be charged, and the above process is repeated after the transmitting circuit is suspended for 1 second. If the current has a significant upward trend during 100ms, it will continue to work. After the maximum value of the emission current occurs, it will start to slowly decrease, and then delay a period.
  • the charging ends after the time (for example, 30 seconds). If the emission current continues to be at an abnormally high level, it indicates that there is a metal plate near the transmitting coil, and an eddy current appears on the metal plate, causing an abnormal emission current, and the charger automatically shuts down and alarms.
  • the control module 11 can also determine whether the transmitting circuit is normal by detecting whether the frequency of the transmitting current is the frequency set by the current program.
  • a 10F/2.5V farad capacitor is selected.
  • the actual maximum charging voltage is 1.6V
  • the current is charged at 0.2A
  • the required time is 16C.
  • /0.2A 80S.
  • the minimum operating voltage of the dry battery is generally IV
  • the usage of the capacitor capacitor is low for a similar home remote control. Power consumption of electronic equipment is completely feasible. Compared with traditional dry batteries, this new battery does not contain harmful substances such as heavy metals, and can be quickly charged. The maximum charging time is less than 2 minutes. The AA model capacitor battery can be standby at a time. In 3 days, the number of available buttons is about 5,000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电容储能式可充电电池及其充电装置。电容储能式可充电电池包括:依次连接的由串联的接收线圈(L)和谐振电容(C1)组成谐振接收电路(1)、整流电路(2)、降压稳压电路(3)和储能电容(C3),其中:接收线圈(L)配合谐振电容(C1)感应接收无线感应发射线圈(Lx)送出的电磁能量,并通过整流电路(2)和降压稳压电路(3)产生稳定的1.6V直流电压用于对储能电容(C3)充电,该储能电容为1-33F。电容储能式可充电电池采用超级电容及专门设计的充电机构,可以代替A、AA或AAA型号标准电池。

Description

电容储能式可充电电池及其充电装置 技术领域
[0001] 本发明涉及的是一种生活日用品技术领域的装置,具体是一种可替代干电池的电容储能 式可充电电池及其充电装置。
背景技术
[0002] 巨前, 很多电子装置都使用干电池来供电, 如家用电器的遥控器、 无线鼠标、 电子钟, 儿童电动玩具。 这些装置中大部分功耗很小, 如家用遥控器, 待机功耗仅微瓦级, 发射时消耗 电流只有 10-20mA, 并且红外发射持续时间很短, 通常在毫秒级, 仅靠干电池就可以工作数月 甚至更长的时间。 有些则功耗较大, 如儿童电动玩具, 使用起来消耗电池量很大。 这些电子设 备每年消耗的干电池数量数以十亿计。 干电池由于含有重金属及其它化学有害物质, 废弃干电 池需要专门回收处理, 如果随意处置废弃干电池, 将会造成为土壤和水源的污染。 本发明中的 电容储能电池所用材料和部件不含重金属及有毒化学物质, 是一种新型环保可充电电池。
[0003] 经过对现有技术的检索发现, 中国专利文献号 CN202334009U, 公开日 2012-07-11, 公 开了一种替代干电池的无线循环贮能器, 该技术主要由一个接收线圈, 一个电能接收芯片和一 个法拉电容共三个元件组成, 集中分布于一组形状与干电池相似的塑料外壳中, 塑料外壳是由 一个带有负极的长壳和另一个带有正极的短壳联体形成的, 接收线圈在长壳内, 电能接收芯片 和法拉电容在短壳内, 外壳上有输出电能的正极和负极, 正极与法拉电容的正极相连, 负极与 法拉电容的负极相连; 电能接收芯片有三个接线端, 分别是输入端、 地端和输出端, 接收线圈 的两端分别接在电能接收芯片的输入端和地端, 法拉电容的正负极分别与电能接收芯片的输出 端和地端相连。 但该技术缺陷在于: 使用了传统的分裂变压器磁感应供电方式, 这是无线感应 供电技术中效率最低、 传送距离最小的一种; 其次, 法拉电容外壳一般为金属材料铝, 当有交 变磁场穿过法拉电容的金属外壳时, 会感应出很强的电涡流, 在 CN202334009U中未使用任何 手段防止电涡流的产生, 势必导致电涡流会消耗不必要的电能, 不仅会大幅度降低供电效率, 而且可能导致法拉电容金属外壳发热, 轻则缩短法拉电容的使用寿命, 严重的发热可能导致法 拉电容爆炸。 法拉电容的使用寿命与温度的关系一般符合" 10度法则", 即温度每升高 10度, 使用年限减半。 再者, CN202334009U中所描述的装置使用了永磁铁发出的磁场作为启动充电 器的信号, 这种方式不仅增加成本和重量, 还需要用户将永磁铁和磁控开关这两个特定位置对 准, 这个对准的过程可能因为电池盒中电池布置位置不同而变得难以操作。
发明内容 [0004] 本发明针对现有技术存在的上述不足, 提出一种电容储能式可充电电池及其充电装置, 即采用超级法拉电容替代标准 A、 AA或 AAA型号干电池的电容储能式电池。
[0005] 本发明是通过以下技术方案实现的:
[0006] 本发明涉及一种电容储能式可充电电池, 包括: 依次连接的由串联的接收线圈和谐振电 容组成谐振接收电路、 整流电路、 降压稳压电路和储能电容, 其中: 接收线圈配合谐振电容感 应接收无线感应发射线圈送出的电磁能量, 并通过整流电路和降压稳压电路产生稳定的 1.6V 直流电压用于对储能电容充电。
[0007] 所述的储能电容采用大容量法拉电容器来储存电能, 能为低功耗电子设备提供一段时间 的供电。
[0008] 所述的整流电路的输出端优选设有与降压稳压电路并联的、带有降压二极管组的充电机 构, 该充电机构进一步优选为 mini USB-B或 Micro USB-B接口, 利用 USB接口中的 +5V电 源为超级电容充电提供第二充电方式。
[0009] 所述的谐振电路、 整流电路、 降压稳压电路、 充电机构以及储能电容封装在一个具有仿 电池单体外形的外壳内,该外壳为柱体结构,该柱体结构由半圆柱体和长方体结合而成,其中: 半圆柱体的直径和长方体的宽度一致且与标准电池如 A型、 AA型或 AAA型电池的直径相匹 配, 一方面方便与现有电池兼容, 同时又更大容积便于装配必需的部件, 更多另一方面在无线 充电时可以使得电池平放于充电器上不会滚动。
[0010] 所述的外壳的两端分别设有符合标准电池的要求的金属正、 负电极, 以最大程度利用电 池盒的有效空间, 能适用于绝大多数的电池盒, 但不能适用于只能容纳圆柱体电池的电池盒。
[0011] 所述的电池单体可以直接装入电池盒中代替 1节干电池,如果电子设备需要 2节干电池, 就需要装入两节电容电池。每节电容电池的最高充电电压为 1.6 V左右,可以串联或并联使用。
[0012] 本发明涉及上述电容储能式可充电电池的充电装置, 包括: AC/DC 电源、 控制模块、 PWM驱动器、 逆变半桥电路、 发射电路、 检流电阻和电流信号处理电路, 其中: AC/DC电源 接收 85V-264V交流输入并分别输出 5V和 18V直流电至控制模块和逆变半桥电路的电源端, 控制模块输出 PWM信号至 PWM驱动器, PWM驱动器与逆变半桥电路的输入端相连并输出激 励电流, 逆变半桥电路的输出端与发射电路相连, 逆变半桥电路的反馈端分别与检流电阻 Rx 和电流信号处理电路相连, 通过检流电阻将发射电路的输出电流转变成反馈电压, 经过电流信 号处理电路得到一个反映电流频率的脉冲信号和一个反映电流幅度的电压信号, 并分别输出至 控制模块的计数器端和 AD采样端, 控制模块根据发射电路的输出电流的大小判断是否已完成 充电。
[0013] 所述的逆变半桥电路由第五和第六电容、 第一和第二 MOS管构成, 该逆变器在控制模 块的 PWM控制下以 100-200Khz的频率输出交变电流, 该电流驱动发射线圈产生交变磁场, 接 收线圈感应到交变磁场并与接收电路的谐振电容产生谐振, 实现最大效率的无线功率传送。
[0014] 当储能电容 C3 的电压下降到遥控器允许的最低工作电压 (通常为 IV左右) 以下时, 电容电池需要充电。用无线感应充电器充电时, 需将靠近电池盒盖的 PCB印制线圈平行靠近无 线感应充电器发射线圈平面, 只需不到 2分钟时间就可将储能电容 C3从 0V充电至 1.6V。 通 常, 使用过一段时间后再充电的电容电池, 其内部的储能电容 C3 中仍有一定的剩余电荷, 这 种情况下, 所需的充电时间会更短。
[0015] 用 USB充电时,则需将电源从电池盒中取出,利用 USB电缆,连接电容电池的 mmiUSB 或 microUSB和其它 USB充电接口, 由于 USB可以提供 500mA的充电电流, 10F的法拉电容 只需 10Fxl .6V/0.5A=32秒钟就可从 0伏充到 1.6V。
技术效果
[0016] 本发明通过短时间内发射电路的电流大小和变化情况来决定是否启动发射器以及是否 结束充电, 不增加任何其他部件, 也省去了两个特定点的对准过程。 具体地讲, 一次完整的充 电过程中发射电路的电流波形如图 7所示, 当充电器空载时, 发射电流为最低的 I。; 当对电容 电池负载充电过程中, 发射电流会经历一个快速上升到最高点, 然后缓慢下降的过程。 控制模 块 11控制发射电路工作 100ms, 检测此期间的电流大小及变化情况, 如果持续在 I。附近, 则表 明无待充电负载, 发射电路暂停 1秒后再重复以上过程; 如果在 100ms期间电流有明显上升趋 势, 则保持发射电路继续工作, 待发射电流出现最大值后开始缓慢下降, 再延时一段时间 (如 30秒)后结束充电。 如果发射电流持续在不正常的高水平, 则表明发射线圈附近存在金属板状 物, 在金属板上出现电涡流而导致发射电流异常, 充电器自动关机并报警。控制模块 11还可以 通过检测发射电流的频率是否为当前程序设定的频率来判断发射电路是否正常。
[0017]
附图说明
[0018] 图 1为本发明结构示意图。
[0019] 图 2为电路板后视图。
[0020] 图 3为电路板正视图。
[0021] 图 4为电路板侧视图。
[0022] 图 5为电路板俯视图。
[0023] 图 6为无线充电器的结构示意图。
[0024] 图 7为充电过程中发射电流及法拉电容电压波形图。
具体实施方式
[0025] 下面对本发明的实施例作详细说明, 本实施例在以本发明技术方案为前提下进行实施, 给出了详细的实施方式和具体的操作过程, 但本发明的保护范围不限于下述的实施例。
实施例 1
[0026] 如图 1所示, 本实施例包括: 依次连接的由串联的接收线圈 L和谐振电容 C1组成谐振 接收电路 1、 整流电路 2、 降压稳压电路 3和储能电容 C3 , 其中: 接收线圈 L配合谐振电容 C1 感应接收无线感应发射线圈送出的电磁能量, 并通过整流电路 2和降压稳压电路 3产生稳定的 1.6V直流电压用于对储能电容 C3充电。
[0027] 本实施例中:
[0028] 所述的整流电路 2为四个低压差二极管 D3-D6组成的二极管整流电路, 第三至第六二 极管 D3、 D4、 D5、 D6为 1N5818或类似的低压差的整流二极管;
[0029] 所述的降压稳压电路 3包括: 直流稳压芯片 Ul、 由电阻和二极管组成的降压电路以及 两个并联的滤波电容, 其中: 第二电容和第四电容并联于降压稳压电路 3的输入端, 直流稳压 芯片 U1的输入端正极与降压稳压电路 3的输入端正极相连, 降压稳压电路 3的输出端正极与 降压电路的输入端相连。
[0030] 所述的第二电容 C2为不超过 10(^F, 优选为 1(^F/25V电解电容; 所述的第四电容 C4 为 InF-lOnF /25V薄膜电容;
[0031] 所述的降压电路由串联的第一电阻和第二电阻, 以及串联在 U1 输出和 C3间的第七二 极管组成, 其中: 第一电阻 R1和第二电阻 R2构成输出电压取样反馈电路, 使得降压电路的输 出稳定在期望的电压值,第七二级管 D7用于防止法拉电容上的电荷通过第一电阻 R1和第二电 阻 R2泄放。
[0032] 所述的第一电阻 R1为 12K, 1/8W; 所述的第二电阻 R2为 10ΚΩ, 1/8W
[0033] 所述的第七二极管 D7为 1A1或 1N4001 ;
[0034] 如图 2所示, 所述的接收线圈 L为附着于 PCB板 5的印制电路接收线圈, 共 15圈且外 围宽度 12mm; 所述的谐振电容 C1为 O. ^F /200V薄膜电容;
[0035] 所述的储能电容 C3应在几何尺寸允许的前提下尽可能选择容量大的法拉电容, 通常在 1-33F,额定电压为 2.0V-2.5V;优选为 10F/2.5V (用于 AA型电池)或 3.3F/2.5V(AAA型电池); [0036] 如图 1所示, 本实施例还配有充电机构 4, 该充电机构通过带有降压二极管 D1和 D2 的 USB充电接口实现, 本实施例中的 USB接口选用 mini USB-B或 Micro USB-B接口, 利用 USB接口中的 +5V电源为超级电容 C3充电提供第二充电方式。
[0037] 所述的第一和第二二极管 Dl、 D2为 1A1或 1N4001 ;
[0038] 如图 3所示, 为带有电池正极 7和负极 8的外壳 6, 其中: 所述储能电容 C3位于壳体 6 的前端,整流电路 2和降压稳压电路 3分别位于壳体 6的中部,充电机构 4位于壳体 6的尾部。 [0039] 所述的外壳 6的长度为 49mm, 高度及宽度均为 14mm, 与普通 AA型电池相匹配。 其 它型号电池, 如 A或 AAA型, 则需要调整外壳尺寸。
[0040] 当储能电容 C3 的电压下降到遥控器允许的最低工作电压 (通常为 IV左右) 以下时, 电容电池需要充电。 用无线感应充电器充电时, 需将靠近电池盒盖的印制电路接收线圈靠近无 线感应充电器发射线圈, 只需 2分钟左右时间就可将储能电容 C3从 0V充电至 1.6V。 通常, 使用过一段时间后再充电的电容电池, 其内部的储能电容 C3 中仍有一定的剩余电荷, 这种情 况下, 所需的充电时间会更短。
[0041] 用 USB充电时,则需将电源从电池盒中取出,利用 USB电缆,连接电容电池的 mmiUSB 或 microUSB和其它 USB充电接口, 由于 USB可以提供 500mA的充电电流, 10F的法拉电容 只需 10Fxl .6V/0.5A=32秒钟就可从 0伏充到 1.6V。
[0042] 如图 1所示, 第一和第二极管 Dl、 D2可以将 USB充电电压 +5V降低约 1.4伏, 这样可 以有效降低直流稳压芯片 U1 (如 LM1117 ) 的输入输出压差, 减小 U1的发热量, 同时也可以 防止 USB电源反接; 图中第一电阻 R1和第二电阻 R2分压取样 U1的输出电压用于反馈输出 电压, 可以使得 U1输出稳定的期望电压值 2.3V, 通过二极管 D7降压 0.7V, 可以得到约 1.6V 输出电压用于法拉电容的充电。 在不充电时间, 二极管 D7的另一个重要功能就是阻断储能电 容 C3通过 R1和 R2的放电。
[0043] 如图 2所示,为几何尺寸兼容 AA型号干电池(5号电池尺寸:直径 14mm,长度 49mm) 的带有外壳 6的 AA型号电容电池结构图, 替代其它各种型号 (A, AAA, SC, C, D, N, F ) 干电池的电容储能电池的结构与图 2类似, 只是几何尺寸需按各型号电池的尺寸做调整。 感应接收线圈采用在 PCB板 5的背面印制的线圈, PCB板 5的正面中间部分为贴片元件面, 在所述的储能电容 C3和 PCB板 5之间、 USB连接器和 PCB板 5之间、储能电容 C3的外部以 及 USB连接器的外部均设有防涡流屏蔽层 9。
[0044] 该防涡流屏蔽层 9的厚度为 0.5-0.8mm, 可以用 TDK的 PC44或性能相近的其它软磁材 料, 其作用是防止感应充电时高频磁场在法拉电容及 USB连接器的金属外壳上产生强涡流。
[0045] 所述的防涡流屏蔽层 9与 PCB板用胶水固定, 长度比被屏蔽的法拉电容和 USB连接器 略长。
实施例 2
[0046] 如图 6所示, 本实施例涉及一种针对上述电池的无线充电器, 包括: AC/DC电源 10、 控制模块 11、 PWM驱动器 12、 逆变半桥电路 13、 发射电路 14、 检流电阻 Rx和电流信号处理 电路 15, 其中: AC/DC电源 10接收 85V-264V交流输入并分别输出 5V和 18V直流电至控制 模块 11和逆变半桥电路 13的电源端, 控制模块 11输出 PWM信号至 PWM驱动器 12, PWM 驱动器 12与逆变半桥电路 13的输入端相连并输出激励电流, 逆变半桥电路 13的输出端与发 射电路 13相连, 逆变半桥电路 13的反馈端分别与检流电阻 Rx和电流信号处理电路 15相连, 通过检流电阻 Rx将发射电路 14的输出电流转变成反馈电压, 经过电流信号处理电路 15得到 一个反映电流频率的脉冲信号和一个反映电流幅度的电压信号,并分别输出至控制模块 11的计 数器端和 AD采样端, 控制模块 11根据发射电路 14的输出电流的大小来判断是否有待充电负 载以及储能电容充电是否已充满。
[0047] 所述的逆变半桥电路 13由第五和第六电容 C5、 C6、第一和第二 MOS管 Ql、 Q2构成, 该逆变器在控制模块的 PWM控制下以 100-200Khz频率输出交变电流,该电流驱动发射线圈产 生交变磁场, 接收线圈感应到交变磁场并于与接收电路的谐振电容产生谐振, 实现最大效率的 无线功率传送。
[0048] 一次完整的充电过程中发射电路的电流波形如图 7所示, 当充电器空载时, 发射电流为 最低的 I。; 当对电容电池负载充电过程中, 如图 7所示, 发射电流会经历一个快速上升到最高 点, 然后缓慢下降的过程。 控制模块 11控制发射电路工作 100ms, 检测此期间的电流幅度, 如 果持续在 I。附近, 则表明无待充电负载, 发射电路暂停 1秒后再重复以上过程; 如果在 100ms 期间电流有明显上升趋势, 则保持继续工作, 待发射电流出现最大值后开始缓慢下降, 再延时 一段时间 (如 30 秒) 后结束充电。 如果发射电流持续在不正常的高水平, 则表明发射线圈附 近存在金属板状物, 在金属板上出现电涡流而导致发射电流异常, 充电器自动关机并报警。 控 制模块 11 还可以通过检测发射电流的频率是否为当前程序设定的频率来判断发射电路是否正 常。
[0049] 以 AA型号电容电池为例, 选用 10F/2.5V的法拉电容, 实际最高充电电压 1.6V, 则最 大储存电荷为 10Fx l .6V=16C, 以 0.2A电流充电, 所需时间为 16C/0.2A=80S。 干电池最低工作 电压一般为 IV, 则遥控器实际可利用电荷为 (1.6V-1.0V)x lOF=6C。 如果用 1节 10F/1.6V的法 拉电容给家电遥控器供电, 假定遥控器待机电流为 ΙμΑ (多数都低于 ΙμΑ) , 自放电电流典型 值为 22μΑ (初始自放电电流值), 则待机时间理论上可达 6σ(22μΑ +1μΑ)=2.6χ 10¾=3天; 假定 遥控器每次按键发送的串行码中有 lObits需要 15mA电流点亮红外发射管, 每次点亮持续时间 3ms , 则每次按键消耗储能电容 18mAx l5 x4mS=108(^C 的电荷, 6C 的实际可利用电荷可供 6CV108(^C=5555次按键。所以,用法拉电容储能来为类似家用遥控器的低功耗电子设备供电是 完全可行的, 与传统干电池相比, 这种新电池不含重金属等有害物质, 而且可以快速充电, 最 大充电时间不超过 2分钟, AA型号电容电池一次充满电可以待机约 3天,可供按键次数约在 5 千次左右。

Claims

权 利 要 求 书
1、 一种电容储能式可充电电池, 其特征在于, 包括: 依次连接的由串联的接收线圈和谐 振电容组成谐振接收电路、 整流电路、 降压稳压电路和储能电容, 其中: 接收线圈配合谐振电 容感应接收无线感应发射线圈送出的电磁能量, 并通过整流电路和降压稳压电路产生稳定的 1.6V直流电压用于对储能电容充电。
2、 根据权利要求 1 所述的电容储能式可充电电池, 其特征是, 所述的储能电容为法拉电 容, 电容量为 1-33F, 额定电压为 2.0V-2.5V。
3、 根据权利要求 1 所述的电容储能式可充电电池, 其特征是, 所述的整流电路的输出端 设有与降压稳压电路并联的、 带有降压二极管组的充电机构。
4、 根据权利要求 3 所述的电容储能式可充电电池, 其特征是, 所述的谐振电路、 整流电 路、 降压稳压电路、 充电机构以及储能电容封装在外壳内的 PCB板上, 该外壳为柱体结构, 该 柱体剖面由半圆形和长方形组成, 其中: 圆柱体的直径和长方体的宽度一致且与标准电池的直 径相匹配;
所述的储能电容位于壳体的前端, 整流电路和降压稳压电路分别位于壳体的中部, 充电机 构位于壳体的尾部; 所述的储能电容和 PCB板之间、 充电机构和 PCB板之间、 储能电容的外 部以及充电机构的外部均设有防涡流屏蔽层。
5、 根据权利要求 1或 4所述的电容储能式可充电电池, 其特征是, 所述的整流电路为四 个低压差二极管组成的二极管整流电路。
6、 根据权利要求 1或 4所述的电容储能式可充电电池, 其特征是, 所述的降压稳压电路 包括: 直流稳压芯片、 由电阻和二极管组成的降压电路以及两个并联的滤波电容, 其中: 第二 电容和第四电容并联于降压稳压电路的输入端, 直流稳压芯片的输入端正极与降压稳压电路的 输入端正极相连, 降压稳压电路的输出端正极与降压电路的输入端相连。
7、 根据权利要求 6 所述的电容储能式可充电电池, 其特征是, 所述的降压电路由串联的 第一电阻和第二电阻, 以及串联在 U1输出和 C3间的第七二极管组成, 其中: 第一电阻和第二 电阻构成输出电压取样反馈电路, 使得降压电路的输出稳定在期望的电压值, 第七二级管用于 防止法拉电容上的电荷通过第一电阻和第二电阻泄放。
8、 根据权利要求 1 所述的电容储能式可充电电池, 其特征是, 所述的接收线圈为附着于 PCB板的印制电路接收线圈, 共 15圈且外围宽度 12mm。
9、 一种根据上述任一权利要求所述电容储能式可充电电池的无线充电器, 其特征在于, 包括: AC/DC电源、 控制模块、 PWM驱动器、 逆变半桥电路、 发射电路、 检流电阻 Rx和电 流信号处理电路, 其中: AC/DC电源接收 85V-264V交流输入并分别输出 5V和 18V直流电至 控制模块和逆变半桥电路的电源端,控制模块输出 PWM信号至 PWM驱动器, PWM驱动器与 逆变半桥电路的输入端相连并输出激励电流, 逆变半桥电路的输出端与发射电路相连, 发射电 路的反馈包括检流电阻 Rx和电流信号处理电路,通过检流电阻 Rx将发射电路的输出电流转变 成反馈电压, 经过电流信号处理电路得到一个反映电流频率的脉冲信号和一个反映电流幅度的 电压信号, 并分别输出至控制模块的计数器端和 AD采样端, 控制模块根据发射电路的输出电 流的大小判断当前是否有待充电的电容电池以及是否已完成充电。
10、 根据权利要求 9所述的无线充电器, 其特征是, 所述的逆变半桥电路由第五和第六电 容、 第一和第二 MOS管构成, 该逆变器在控制模块的 PWM控制下以 100-200Khz的频率输出 交变电流, 该电流驱动发射线圈产生交变磁场, 接收线圈感应到交变磁场并于与接收电路的谐 振电容产生谐振, 实现最大效率的无线功率传送。
PCT/CN2013/080588 2013-01-28 2013-08-01 电容储能式可充电电池及其充电装置 WO2014114069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310030628.1 2013-01-28
CN2013100306281A CN103051040A (zh) 2013-01-28 2013-01-28 电容储能式可充电电池及其充电装置

Publications (1)

Publication Number Publication Date
WO2014114069A1 true WO2014114069A1 (zh) 2014-07-31

Family

ID=48063587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080588 WO2014114069A1 (zh) 2013-01-28 2013-08-01 电容储能式可充电电池及其充电装置

Country Status (2)

Country Link
CN (1) CN103051040A (zh)
WO (1) WO2014114069A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786813A (zh) * 2016-10-16 2017-05-31 杜金昌 高效率电场感应取电装置
CN107359681A (zh) * 2017-07-18 2017-11-17 上海飞科电器股份有限公司 无线充电式电动牙刷
CN108952347A (zh) * 2018-08-31 2018-12-07 江苏智绿充电科技有限公司 一种电磁锁解锁电路及应用其的充电枪
CN109017326A (zh) * 2018-08-03 2018-12-18 重庆瑞阳科技股份有限公司 电动车制动能量回收系统
CN109412820A (zh) * 2018-12-18 2019-03-01 中国电子科技集团公司第五十四研究所 一种一线接入网络的北斗报文通信终端
CN112769208A (zh) * 2020-12-28 2021-05-07 西安精密机械研究所 一种基于超级电容的低功耗储能供电装置及供电方法
CN114301189A (zh) * 2021-12-30 2022-04-08 河北工业大学 一种无线充电接收线圈电路
CN114394004A (zh) * 2021-12-31 2022-04-26 南京信息工程大学 一种电瓶车共享无线充电装置
CN114794647A (zh) * 2022-04-25 2022-07-29 东北大学 一种基于Arduino单片机的零碳排放智能温控鞋及控制方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051040A (zh) * 2013-01-28 2013-04-17 罗利文 电容储能式可充电电池及其充电装置
CN103324307A (zh) * 2013-05-21 2013-09-25 东南大学 一种无线受电鼠标
CN103248104A (zh) * 2013-05-26 2013-08-14 普乐新能源(蚌埠)有限公司 无线充电电池
CN103368242A (zh) * 2013-07-26 2013-10-23 华南理工大学 一种usb接口的电子设备无线充电接收装置
CN103490486A (zh) * 2013-09-05 2014-01-01 上海锐灵电子科技有限公司 便携式电子设备无线充电装置
CN103545881A (zh) * 2013-09-30 2014-01-29 上海华勤通讯技术有限公司 电池供电的无线通信设备及识别电池充电的方法
CN103633747B (zh) * 2013-11-12 2017-02-15 天津工业大学 用于地铁的电磁谐振式无线供电系统
CN104113120A (zh) * 2014-07-31 2014-10-22 奇瑞汽车股份有限公司 无线充电系统以及电动汽车
CN105006372B (zh) * 2014-09-04 2018-01-26 深圳市前海富达科技有限公司 一种物理电池
CN104660061A (zh) * 2015-03-03 2015-05-27 谢树平 有源电池
CN104734300B (zh) * 2015-04-09 2017-06-20 扬州大学 一种电动车无线充电电路及其控制方法
US10218212B2 (en) * 2016-04-15 2019-02-26 The Gillette Company Llc System and apparatus for inductive charging of a handheld device
CN107546825A (zh) * 2016-06-29 2018-01-05 上海茂昂智能科技股份有限公司 一种二次充电机
CN107607083A (zh) * 2016-07-12 2018-01-19 郑樯 一种恒流电容积分计时器
CN106712251B (zh) * 2017-02-23 2020-01-21 许昌学院 一种精细调整的电容储能式ac-dc电源与充电器
CN207939253U (zh) * 2018-03-26 2018-10-02 林育成 一种大功率鼠标用的无线充电、储电组件
TWI692182B (zh) 2018-08-31 2020-04-21 群光電能科技股份有限公司 電壓轉換器以及用於降低共模雜訊的電壓轉換方法
CN109924928A (zh) * 2019-04-18 2019-06-25 东莞福兆通电子有限公司 一种扫地机无线充电系统及充电方法
CN110096780B (zh) * 2019-04-23 2020-08-28 西安交通大学 一种超级电容一阶rc网络等效电路及参数确定方法
CN110957795B (zh) * 2019-12-05 2021-08-06 深圳市洲明科技股份有限公司 充电电路、充电装置及显示屏
CN112734060A (zh) * 2020-12-31 2021-04-30 北京骑胜科技有限公司 共享单车的电池更换方法、设备、及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201332301Y (zh) * 2009-01-07 2009-10-21 衡阳师范学院 新型遥控器专用电池
CN102074987A (zh) * 2010-12-31 2011-05-25 科翔电子(深圳)有限公司 便携式通讯设备无线感应充电装置及充电方法
CN101335469B (zh) * 2007-06-29 2011-06-15 精工爱普生株式会社 送电控制装置、送电装置、电子设备及无触点电力传输系统
CN202134966U (zh) * 2011-04-28 2012-02-01 惠州市德赛视听科技有限公司 遥控器的免电池无线供电系统及遥控器
CN103051040A (zh) * 2013-01-28 2013-04-17 罗利文 电容储能式可充电电池及其充电装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100259107A1 (en) * 2007-11-14 2010-10-14 Peter Kinget Systems and Methods for Providing Power to a Device Under Test
CN201829979U (zh) * 2010-09-27 2011-05-11 张志平 一种无线感应充电插头
CN102868232A (zh) * 2011-07-04 2013-01-09 中国科学院沈阳自动化研究所 磁谐振无线充电装置
CN102647030B (zh) * 2012-03-31 2014-11-05 海尔集团公司 无线电能发射装置及无线电能供电系统
CN203193349U (zh) * 2013-01-28 2013-09-11 罗利文 电容储能式可充电电池及其充电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335469B (zh) * 2007-06-29 2011-06-15 精工爱普生株式会社 送电控制装置、送电装置、电子设备及无触点电力传输系统
CN201332301Y (zh) * 2009-01-07 2009-10-21 衡阳师范学院 新型遥控器专用电池
CN102074987A (zh) * 2010-12-31 2011-05-25 科翔电子(深圳)有限公司 便携式通讯设备无线感应充电装置及充电方法
CN202134966U (zh) * 2011-04-28 2012-02-01 惠州市德赛视听科技有限公司 遥控器的免电池无线供电系统及遥控器
CN103051040A (zh) * 2013-01-28 2013-04-17 罗利文 电容储能式可充电电池及其充电装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786813A (zh) * 2016-10-16 2017-05-31 杜金昌 高效率电场感应取电装置
CN107359681A (zh) * 2017-07-18 2017-11-17 上海飞科电器股份有限公司 无线充电式电动牙刷
CN107359681B (zh) * 2017-07-18 2024-02-06 上海飞科电器股份有限公司 无线充电式电动牙刷
CN109017326A (zh) * 2018-08-03 2018-12-18 重庆瑞阳科技股份有限公司 电动车制动能量回收系统
CN109017326B (zh) * 2018-08-03 2024-02-20 重庆瑞阳科技股份有限公司 电动车制动能量回收系统
CN108952347B (zh) * 2018-08-31 2023-10-13 江苏智绿充电科技有限公司 一种电磁锁解锁电路及应用其的充电枪
CN108952347A (zh) * 2018-08-31 2018-12-07 江苏智绿充电科技有限公司 一种电磁锁解锁电路及应用其的充电枪
CN109412820A (zh) * 2018-12-18 2019-03-01 中国电子科技集团公司第五十四研究所 一种一线接入网络的北斗报文通信终端
CN109412820B (zh) * 2018-12-18 2024-05-28 中国电子科技集团公司第五十四研究所 一种一线接入网络的北斗报文通信终端
CN112769208A (zh) * 2020-12-28 2021-05-07 西安精密机械研究所 一种基于超级电容的低功耗储能供电装置及供电方法
CN112769208B (zh) * 2020-12-28 2024-03-22 西安精密机械研究所 一种基于超级电容的低功耗储能供电装置及供电方法
CN114301189B (zh) * 2021-12-30 2023-08-11 河北工业大学 一种无线充电接收线圈电路
CN114301189A (zh) * 2021-12-30 2022-04-08 河北工业大学 一种无线充电接收线圈电路
CN114394004B (zh) * 2021-12-31 2023-08-22 南京信息工程大学 一种电瓶车共享无线充电装置
CN114394004A (zh) * 2021-12-31 2022-04-26 南京信息工程大学 一种电瓶车共享无线充电装置
CN114794647A (zh) * 2022-04-25 2022-07-29 东北大学 一种基于Arduino单片机的零碳排放智能温控鞋及控制方法

Also Published As

Publication number Publication date
CN103051040A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2014114069A1 (zh) 电容储能式可充电电池及其充电装置
US6972543B1 (en) Series resonant inductive charging circuit
TWM457349U (zh) 可攜式無線充電器
WO2013097338A1 (zh) 感应装置、感应充电器和感应应急灯
CN203554039U (zh) 无线充电血糖仪
CN204835612U (zh) 一种带远程监控的移动电源
CN203193349U (zh) 电容储能式可充电电池及其充电装置
CN203589793U (zh) 一种风光发电无线充电器
CN104052162A (zh) 一种实时故障检测的智能自取电装置
CN101123319B (zh) 电池盖
CN203099500U (zh) 无线充电台灯及可无线充电设备
DK2808975T3 (en) Inductive power transfer device
CN201947066U (zh) 无线电子装置
RU152332U1 (ru) Электронная ручка с сверхконденсатором
CN204145788U (zh) 用于锅具的电能采集装置、锅具和电磁加热电饭煲
CN201117756Y (zh) 无线手机充电器
CN203434700U (zh) 多功能电子烟无线充电装置及其电子烟
CN205595905U (zh) 双功能可调的无线电能传输装置
CN103078387B (zh) 一种无线话筒充电方法和充电电路
CN204258418U (zh) 一种光电智能两用无线充电器
CN101800342A (zh) 多节锂电池充电器
CN203589794U (zh) 一种太阳能发电无线充电器
CN214675105U (zh) 一种备用电源上电触发复位电路
CN104659851B (zh) 一种风光发电无线充电器
CN203261130U (zh) 一种实时故障检测的智能自取电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873130

Country of ref document: EP

Kind code of ref document: A1