WO2014113992A1 - 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站 - Google Patents

信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站 Download PDF

Info

Publication number
WO2014113992A1
WO2014113992A1 PCT/CN2013/071030 CN2013071030W WO2014113992A1 WO 2014113992 A1 WO2014113992 A1 WO 2014113992A1 CN 2013071030 W CN2013071030 W CN 2013071030W WO 2014113992 A1 WO2014113992 A1 WO 2014113992A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel state
state information
codebook
feedback
base station
Prior art date
Application number
PCT/CN2013/071030
Other languages
English (en)
French (fr)
Inventor
张健
张翼
王轶
李宏超
周华
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP13872776.3A priority Critical patent/EP2950458A4/en
Priority to CN201380069066.XA priority patent/CN104919717A/zh
Priority to KR1020157020374A priority patent/KR20150100909A/ko
Priority to PCT/CN2013/071030 priority patent/WO2014113992A1/zh
Priority to KR1020177008763A priority patent/KR20170040367A/ko
Priority to JP2015554007A priority patent/JP2016511566A/ja
Publication of WO2014113992A1 publication Critical patent/WO2014113992A1/zh
Priority to US14/797,342 priority patent/US9379792B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for feeding back channel state information, a method for transmitting a channel state information reference signal, a user equipment, and a base station.
  • MIMO Multiple Input Multiple Output
  • the main gain of MIMO comes from the mastery of the channel state information (CSI).
  • the channel information is obtained through the CSI feedback of the user equipment, and the CSI feedback is based on a pre-defined codebook.
  • Three-dimensional MIMO precoding allows the beam to be tunable in the vertical dimension, increasing the resolution granularity of the beam, enabling more efficient alignment of user equipment or mitigation of interference.
  • Embodiments of the present invention provide a method for feeding back channel state information, a method for transmitting a channel state information reference signal, a user equipment, and a base station.
  • the purpose is to further reduce the overhead of CSI feedback or reference signal transmission for channel state information feedback for a three-dimensional MIMO system.
  • a method for feeding back channel state information is provided, which is applied to a multiple input multiple output system using a two-dimensional antenna array, where the two-dimensional antenna array includes a vertical dimension and a horizontal dimension; :
  • the user equipment respectively feeds back channel state information corresponding to the vertical dimension and channel state information corresponding to the horizontal dimension.
  • a method for feeding back channel state information is provided, which is applied to a multiple input multiple output system using a two-dimensional antenna array, wherein the two-dimensional antenna array includes a vertical dimension and a horizontal dimension; include: The base station independently configures the information of the vertical dimension and the horizontal dimension,
  • a user equipment for use in a multiple input multiple output system using a two-dimensional antenna array, the two-dimensional antenna array including a vertical dimension and a horizontal dimension; the user equipment includes: And means for respectively feeding back channel state information corresponding to the vertical dimension and channel state information corresponding to the horizontal dimension.
  • a base station for use in a multiple input multiple output system using a two-dimensional antenna array, the two-dimensional antenna array including a vertical dimension and a horizontal dimension;
  • a configuration unit configured to independently configure the vertical dimension and the horizontal dimension information
  • the receiving unit receives channel state information corresponding to the vertical dimension and channel state information corresponding to the horizontal dimension, which are respectively fed back by the user equipment according to the configuration information.
  • a method for transmitting a channel state information reference signal is provided, which is applied to a multiple input multiple output system using a two-dimensional antenna array, the method comprising:
  • the base station transmits the channel state information reference signal using any one of the two-dimensional antenna arrays and any one of the array antenna elements.
  • a method for transmitting a channel state information reference signal is provided, which is applied to a multiple input multiple output system using a two-dimensional antenna array, the method comprising:
  • the user equipment receives a channel state information reference signal transmitted by the base station, and the channel state information reference signal is transmitted by the base station using any one of the two antenna array elements and any one of the array antenna elements.
  • a base station for use in a multiple input multiple output system using a two-dimensional antenna array, the base station comprising:
  • the transmission unit transmits the channel state information reference signal using any one of the two-dimensional antenna arrays and any one of the array antenna elements.
  • a user equipment which is applied to a multiple input multiple output system using a two-dimensional antenna array, where the user equipment includes:
  • the receiving unit And receiving, by the receiving unit, a channel state information reference signal transmitted by the base station, where the channel state information reference signal is transmitted by the base station using any one of the antenna elements of the two-dimensional antenna array and any one of the array antenna elements.
  • a communication system comprising a user equipment as described above, and a base station as described above.
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to perform a feedback method of channel state information as described above in the base station Or performing a transmission method of the channel state information reference signal as described above.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform feedback of channel state information as described above in a base station A method, or a method of transmitting a channel state information reference signal as described above.
  • a computer readable program wherein when the program is executed in a user equipment, the program causes a computer to perform channel state information as described above in the user equipment a feedback method, or a method of transmitting a channel state information reference signal as described above.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a feedback method of channel state information as described above in a user equipment, or A method of transmitting a channel state information reference signal as described above.
  • the beneficial effects of the embodiments of the present invention are that the user equipment respectively feeds back channel state information corresponding to the vertical dimension and channel state information corresponding to the horizontal dimension; the overhead of performing channel state information feedback can be further reduced.
  • the base station uses any one of the two-dimensional antenna arrays and any one of the antenna elements to perform channel state information reference signal transmission; the overhead of performing channel state information reference signal transmission can be further reduced.
  • FIG. 1 is a schematic diagram of three-dimensional MIMO precoding according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a response of a two-dimensional antenna array according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of PMI feedback according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a feedback period of a dual codebook according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a feedback method according to Embodiment 2 of the present invention
  • 7 is another schematic diagram of a feedback period of a dual codebook according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a dual-polarized antenna array according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of CSI feedback under a dual-polarized antenna array according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a feedback method according to Embodiment 3 of the present invention.
  • FIG. 11 is a flowchart of a feedback method according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic structural diagram of a user equipment according to Embodiment 5 of the present invention.
  • Figure 13 is a block diagram showing the structure of a base station according to Embodiment 6 of the present invention.
  • Figure 14 is a flowchart of a transmission method according to Embodiment 7 of the present invention.
  • FIG. 15 is a schematic diagram of an example of CSI-RS transmission according to Embodiment 7 of the present invention.
  • Figure 16 is a flowchart of a transmission method according to Embodiment 8 of the present invention.
  • Figure 17 is another flowchart of the transmission method of Embodiment 8 of the present invention.
  • FIG. 18 is a schematic structural diagram of a base station according to Embodiment 9 of the present invention.
  • FIG. 19 is a schematic structural diagram of a user equipment according to Embodiment 10 of the present invention.
  • FIG. 20 is another schematic structural diagram of a user equipment according to Embodiment 10 of the present invention.
  • FIG. 21 is a block diagram showing the configuration of a communication system in accordance with Embodiment 11 of the present invention. detailed description
  • Rel.8 MIMO and subsequent Rel.l0 and Rel.11 enhancements to MIMO can only be beamformed in the horizontal dimension.
  • FIG. 1 A schematic diagram of MIMO precoding, as shown in Fig. 1, a rectangular planar array can be placed in the xoz plane. Since there are array elements arranged in a vertical direction, the main lobe can be directed to a certain direction in three dimensions.
  • the two-dimensional codebook is mainly based on line array design optimization.
  • the codebook structure needs to match the two-dimensional antenna array feature.
  • the planar array response can be uniquely determined by a horizontal dimensional line array response and a vertical dimensional line array response
  • a codebook design can use two discrete Fourier transforms (DFT, Discrete Fourier Transform) from the perspective of matching antenna array response.
  • DFT discrete Fourier transforms
  • the vector quantifies the horizontal and vertical dimensional line array responses, respectively.
  • the user equipment feeds back the sequence numbers of the two DFT vectors in the codebook, that is, the PMI (Precoding Matrix Index) information of the horizontal dimension and the vertical dimension, and the base station can generate the entire planar antenna based on the two DFT vectors of the feedback.
  • the precoding matrix of the array Only one feedback is compared to traditional MIMO precoding
  • the PMI case of dimensions, this CSI feedback with two dimensional PMIs increases the feedback overhead.
  • the following is a detailed description of how to reduce CSI feedback or transmission overhead.
  • Embodiments of the present invention provide a feedback method for channel state information, which is applied to a two-dimensional antenna array.
  • Step 201 A user equipment respectively feeds back channel state information corresponding to a vertical dimension and channel state information corresponding to a horizontal dimension. .
  • the correlation feedback parameters of the vertical dimension and the horizontal dimension may be independently configured, for example, different CSI feedback periods or feedback offsets may be configured.
  • different CSI feedback periods or feedback offsets may be configured.
  • the CSI feedback period of the vertical dimension may be different from the CSI feedback period of the horizontal dimension.
  • the CSI feedback period of the vertical dimension is greater than the CSI feedback period of the horizontal dimension. If the array vertical dimension response changes slowly relative to the horizontal dimension response, the user equipment can feed back the vertical dimension response with a longer feedback period without having to include two CSI information (e.g., PMI indication) in each feedback.
  • the present invention is not limited to this.
  • the CSI feedback period of the vertical dimension is smaller than the CSI feedback period of the horizontal dimension, and the specific implementation manner may be determined according to actual conditions.
  • the CSI feedback offset of the vertical dimension may be different from the CSI feedback bias of the horizontal dimension.
  • the vertical dimension of the CSI feedback offset can be smaller than the horizontal dimension of the CSI feedback offset, and the specific implementation can be determined according to the actual situation.
  • FIG. 3 is a schematic diagram of a two-dimensional antenna array response according to an embodiment of the present invention.
  • the horizontal plane is the xoy plane
  • the vertical direction is along the z-axis direction
  • the antenna array is located on the xoz plane
  • the N array elements are arranged in the horizontal direction.
  • the array element spacing is ⁇
  • the vector k is mainly used to characterize the plane wave propagation direction, and the angle with the z-axis is ⁇ the angle between the horizontal projection and the X-axis is ⁇ , sitting in Cartesian
  • An ideal rectangular array response has the following characteristics: Any two row vectors differ by only one constant coefficient, so all row vectors have the same direction; likewise, all column vectors also have the same direction. Therefore, only one row and one column of respective vector information are needed, and the entire array response can be recovered, thereby obtaining a precoding matrix matching the channel.
  • the antenna array arrangement with small spacing is usually obtained. Therefore, for the horizontal or vertical dimensional element response, the 8 antenna codebook design principle can be modeled, and the DFT vector is used. It is quantified, and the user feeds back the PMI information of the horizontal dimension and the vertical dimension accordingly.
  • the method may further include: independently configuring a spatial over-sampling multiple of the vertical dimension DFT vector and a spatial over-sampling multiple of the horizontal dimension DFT vector.
  • the oversampling multiple of the vertical dimension is less than or equal to the oversampling multiple of the horizontal dimension.
  • a horizontally dimensioned 1 ⁇ vector is used for the array horizontal dimension (row direction array element), and a length DFT vector is used for the array vertical dimension (column direction array element).
  • the ratio of the length of the DFT to the number of elements in the direction determines the multiple of the spatial oversampling. For example, in the case of 8 antennas, for the 4 antennas in the same polarization direction, a DFT vector of length 32 is used, that is, 8 times oversampling, and oversampling can further increase the resolution granularity of the spatial domain.
  • the user equipment can have different distribution characteristics in the horizontal direction and the vertical direction, it is conceivable to use different oversampling multiples for the vertical and horizontal dimensions, for example, to configure the vertical dimension oversampling multiple to be an oversampling multiple of the horizontal dimension.
  • the method may further include: the number of vertical dimension DFT vectors is less than the length of the DFT.
  • the number of DFT vectors used is usually equal to the DFT length, so that the omnidirectional coverage of the spatial domain is obtained. This is necessary for horizontal coverage to achieve seamless coverage.
  • DFT length the number of available DFT vectors to be smaller.
  • the vertical dimension PMI (W v ) feedback can be configured with a longer feedback period than the horizontal dimension PMI ( W′ ) feedback in the CSI feedback.
  • FIG. 4 is a schematic diagram of PMI feedback according to an embodiment of the present invention, in which a RI (Right Index) / Channel Quality Indicator (CQI) component is omitted, and only a PMI component is shown.
  • RI Light Index
  • CQI Channel Quality Indicator
  • the occupied subframes are determined by the two parameters of offset and period.
  • the respective offsets and periods can be independently configured. It is to be noted that FIG. 4 only schematically illustrates the present invention, but the present invention is not limited thereto.
  • the user equipment respectively feeds back channel state information corresponding to the vertical dimension and channel state information corresponding to the horizontal dimension; the overhead of performing channel state information feedback can be further reduced.
  • Example 2
  • the antenna array is mainly a uniform line array.
  • the main optimization scenario of the codebook is a small-pitch cross-polarization linear array, which uses the DFT vector for the same polarization direction for quantization, and adopts a dual codebook structure.
  • the double codebook 1 ⁇ , 1 ⁇ can pass the following public.
  • B is a truncated DFT matrix of 4 rows and 32 columns, and each column forms a beam.
  • X W is an element in the set ⁇ (0) , ⁇ (1) , (15)1, which is used to divide 32 beams into 16 groups: shape y ''
  • ⁇ b 2 , b 3 , b 4 , b 5 ⁇ , ⁇ , b ⁇ bl bj adjacent groups have overlapping beams.
  • is used to determine a small range of beam sets X W for coarse-grained beam selection;
  • W 2 is used to more finely select beams within the selected beam set range.
  • the precoding vector finally used for rank 1 transmission is
  • the upper half of the block matrix represents the same polarization direction, and the lower half represents another polarization direction.
  • p adjusts the phase relationship between different polarized antennas.
  • the 2 multiplication is actually a column selection of X W , that is, the beam is further fine-selected within a number of beam ranges that have been obtained.
  • the physical meaning of the above operation can be summarized as follows: The beams generated in different polarization directions are all adjusted to the direction of the user, and then phase adjustment is performed to obtain in-phase combining between different polarization directions.
  • usually characterizes the long-term/wideband characteristics of the channel
  • ⁇ 2 characterizes the short-term/sub-band characteristics.
  • the ⁇ configuration is usually more than W 2 .
  • Figure 5 is a schematic diagram of the feedback period of the dual codebook showing the feedback period for W P W 2 . 5, the feedback cycle of feedback cycle may be greater than W 2.
  • a dual codebook including a first codebook and a second codebook may be used, and the user equipment may perform CSI feedback according to the dual codebook.
  • FIG. 6 is a flowchart of a feedback method according to an embodiment of the present invention. As shown in FIG. 6, the method includes: Step 601: A user equipment respectively feeds back channel state information corresponding to a vertical dimension of a first codebook and a channel of a horizontal dimension. State information, and channel state information corresponding to the vertical dimension of the second codebook and channel state information of the horizontal dimension, respectively.
  • the 8-antenna MIMO can adopt a dual codebook structure when feeding back the selected DFT vector.
  • a dual codebook can also be used for PMI feedback for vertical and horizontal dimensions. Combined with the long-term/short-term PMI feedback of the dual codebook, the slow variation of the vertical dimensional response can be exploited to achieve a better compromise between saving feedback overhead and guaranteeing precoding performance.
  • N v the number of DFT vectors used for vertical dimensions
  • ⁇ ⁇ [ b; ... b N v v _, ]
  • [W ... J.
  • the vector of ⁇ ⁇ is divided into overlapping subsets, then the vertical dimension long-term precoding matrix ⁇ ;, ... ⁇ ⁇ — ⁇ , each of which contains the same number of 13 ⁇ 4 ⁇ vectors, the DFT vector is taken from the set, the different children Set X; can contain a common DFT vector, ⁇ is a ⁇ dimension matrix.
  • the horizontal dimension long-term precoding matrix W ⁇ X ⁇ X? , ... is the Nx E Ii matrix.
  • the vertical dimension short-term precoding matrix W 2 v e ⁇ ⁇ , S 2 , ⁇ , ⁇ ", where ⁇ is > ⁇ 1 dimension vector, except that the ith element is 1 ,, other elements are 0.
  • the vertical dimension of the feedback double-codebook uniquely determines the DFT vector of the vertical dimension, denoted as r W ⁇ W.
  • the user needs to feed back the W P W 2 information of the vertical dimension and the horizontal dimension.
  • the PMI feedback bias and period can be independently configured for the vertical dimension and the horizontal dimension.
  • the CSI feedback period of the vertical dimension may be different from the CSI feedback period of the horizontal dimension; for the second codebook, the CSI feedback period of the vertical dimension may be the same as the CSI feedback period of the horizontal dimension.
  • the CSI feedback period of the vertical dimension may be greater than the CSI feedback period of the horizontal dimension.
  • the CSI feedback offset of the vertical dimension can be different from the CSI feedback bias of the horizontal dimension.
  • FIG. 7 is a schematic diagram of a feedback period of a dual codebook according to an embodiment of the present invention.
  • the vertical dimension uses a feedback period that is longer than the horizontal dimension, and the vertical and horizontal dimensions have different feedback biases; for > ⁇ 2 feedback, the vertical dimension can use the same horizontal dimension. Feedback cycle and offset.
  • the vertical dimension characteristic changes slowly, even if it changes, it usually does not immediately deviate from the long-term characteristic range, so it can be maintained for a long time, and the feedback W 2 V can still be finely adjusted internally, so the feedback can be saved. Maximize performance on an overhead basis.
  • the CSI feedback period of the vertical dimension may be different from the CSI feedback period of the horizontal dimension; for the second codebook, the CSI feedback period of the vertical dimension may also be the CSI feedback period of the horizontal dimension. different.
  • the configuration that saves feedback overhead is to configure a longer feedback period for the vertical dimension in the w 2 feedback.
  • the two-dimensional antenna array may be configured with a dual-polarized antenna, and the method may further include: the user equipment feeds back information including phase adjustment between polarization directions.
  • FIG. 8 is a schematic diagram of a dual polarized antenna array according to an embodiment of the present invention.
  • the rows are still arranged in M rows and N columns, but the total number of array elements is increased from 2D to N.
  • FIG. 9 is a diagram showing an example of CSI feedback under a dual-polarized antenna array according to an embodiment of the present invention, and the feedback additionally includes phase adjustment information p between polarization directions.
  • the common w is > ⁇ dimension matrix; the feedback is common W 2 V , which is > ⁇ 1 dimensional vector.
  • the feedback is common to the Nx E matrix; the common W 2 A is fed back to the ⁇ 1 dimensional vector.
  • the feedback p is used for phase alignment between different polarization directions, such as an optional value.
  • the base station obtains the feedback double codebook information, obtain a complete precoding matrix on the vertical polarization (or +45 ° polarization) antenna according to ⁇ , horizontal polarization (or -45 ° polarization)
  • the precoding matrix on the antenna is obtained using ⁇ ( ⁇ , ⁇ ) ⁇ ⁇ .
  • the user equipment respectively feeds back channel state information corresponding to the vertical dimension and channel state information corresponding to the horizontal dimension; the overhead of performing channel state information feedback can be further reduced.
  • Example 3
  • Embodiments of the present invention provide a method for feeding back channel state information, which is applied to a chirp system using a two-dimensional antenna array, wherein the two-dimensional antenna array includes a vertical dimension and a horizontal dimension.
  • This embodiment describes the method from the base station side, and the same content as that of Embodiment 1 will not be described again.
  • FIG. 10 is a flowchart of a feedback method according to an embodiment of the present invention. As shown in FIG. 10, the method includes: Step 1001: A base station independently configures information about a vertical dimension and a horizontal dimension.
  • the information may include a feedback period of the channel state information and a feedback offset, but the present invention is not limited thereto, and specific information may be determined according to actual conditions.
  • Step 1002 The base station receives channel state information corresponding to the vertical dimension and channel state information corresponding to the horizontal dimension, which are respectively fed back by the user equipment according to the configuration information.
  • the CSI feedback period of the vertical dimension may be different from the CSI feedback period of the horizontal dimension.
  • the CSI feedback period of the vertical dimension may be greater than the CSI feedback period of the horizontal dimension.
  • the CSI feedback offset of the vertical dimension may be different from the CSI feedback bias of the horizontal dimension.
  • the ⁇ feedback bias of the vertical dimension can be different from the ⁇ feedback bias of the horizontal dimension.
  • the spatial oversampling multiple of the DFT vector used to quantize the vertical dimension may be less than or equal to the oversampling multiple of the horizontal dimension.
  • the number of DFT vectors used to quantize the vertical dimension may be less than the length of the DFT.
  • the base station performs independent configuration on the feedback period and the feedback offset of the vertical dimension and the horizontal dimension channel state information, so that the user equipment respectively feeds back the channel state information corresponding to the vertical dimension and the channel state information corresponding to the horizontal dimension;
  • the overhead of performing channel state information feedback can be further reduced.
  • the present embodiment details the case of the dual codebook, which is the same as that of the third embodiment. The content of this will not be repeated.
  • Step 1101 A base station independently configures vertical dimension information and horizontal dimension information corresponding to a first codebook, and corresponds to Vertical dimension information and horizontal dimension information of two codebooks;
  • the information may include a feedback period of the channel state information and a feedback offset, but the invention is not limited thereto.
  • Step 1102 The base station receives, according to the configuration information, the channel state information corresponding to the vertical dimension of the first codebook and the channel state information of the horizontal dimension, and respectively feedback the channel corresponding to the vertical dimension of the second codebook. Status information and channel status information for horizontal dimensions.
  • the CSI feedback period of the vertical dimension is different from the CSI feedback period of the horizontal dimension.
  • the CSI feedback period of the vertical dimension is different from the CSI feedback period of the horizontal dimension.
  • the CSI feedback period of the vertical dimension is greater than the CSI feedback period of the horizontal dimension.
  • the CSI feedback period of the vertical dimension is greater than the CSI feedback period of the horizontal dimension.
  • the CSI feedback offset of the vertical dimension is different from the CSI feedback bias of the horizontal dimension.
  • the CSI feedback offset of the vertical dimension is different from the CSI feedback bias of the horizontal dimension.
  • the two-dimensional antenna array may be configured with a dual-polarized antenna, and the method may further include: the base station receiving information that is fed back by the user equipment and includes phase adjustment between polarization directions.
  • the base station performs independent configuration on the feedback period and the feedback offset of the vertical dimension and the horizontal dimension channel state information, so that the user equipment respectively feeds back the channel state information corresponding to the vertical dimension and the channel state information corresponding to the horizontal dimension;
  • the overhead of performing channel state information feedback can be further reduced.
  • Embodiments of the present invention provide a user equipment for use in a multiple input multiple output system using a two-dimensional antenna array including a vertical dimension and a horizontal dimension. This embodiment corresponds to the feedback method of Embodiment 1 or 2, and the same content as Embodiment 1 or 2 will not be described again.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present invention. As shown in FIG. 12, the user equipment 1200 includes: a feedback unit 1201. Other parts of the user equipment 1200 may refer to the prior art.
  • the feedback unit 1201 is configured to respectively feed back channel state information corresponding to a vertical dimension and channel state information corresponding to a horizontal dimension.
  • the user equipment 1200 may use a single codebook for feedback, or may use a double codebook for feedback.
  • the user equipment may perform feedback using a dual codebook including a first codebook and a second codebook.
  • the feedback unit 1201 respectively feeds back the channel state information corresponding to the vertical dimension of the first codebook and the channel state information of the horizontal dimension, and respectively feeds back the channel state information and the horizontal dimension corresponding to the vertical dimension of the second codebook.
  • Channel status information may be performed using a dual codebook including a first codebook and a second codebook.
  • the user equipment respectively feeds back channel state information corresponding to the vertical dimension and channel state information corresponding to the horizontal dimension; the overhead of performing channel state information feedback can be further reduced.
  • Embodiments of the present invention provide a base station for use in a multiple input multiple output system using a two-dimensional antenna array including a vertical dimension and a horizontal dimension.
  • This embodiment corresponds to the feedback method of Embodiment 3 or 4, and the same contents as those of Embodiment 3 or 4 will not be described again.
  • FIG. 13 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • the base station 1300 includes: a configuration unit 1301 and a receiving unit 1302. Other parts of the base station 1300 can refer to the prior art.
  • the configuration unit 1301 is configured to independently configure the vertical dimension and the horizontal dimension information (for example, the feedback period and the feedback offset of the channel state information).
  • the receiving unit 1302 receives the feedback that the user equipment separately feeds according to the configuration information, and corresponds to the vertical dimension. Channel state information and channel state information corresponding to a horizontal dimension.
  • the user equipment may use a single codebook for feedback, or may use a dual codebook for feedback.
  • the user equipment may use a dual codebook comprising a first codebook and a second codebook for feedback.
  • the configuration unit 1302 independently configures vertical dimension information and horizontal dimension information corresponding to the first codebook, and vertical dimension information and horizontal dimension information corresponding to the second codebook (eg, the information may include a feedback period of channel state information) And feedback bias).
  • the receiving unit 1302 receives the channel state information corresponding to the vertical dimension of the first codebook and the channel state information of the horizontal dimension respectively fed back by the user equipment according to the configuration information, and respectively feedback the channel state of the vertical dimension corresponding to the second codebook.
  • Channel state information for information and horizontal dimensions are examples of the first codebook.
  • the base station performs independent configuration on the feedback period and the feedback offset of the vertical dimension and the horizontal dimension channel state information, so that the user equipment respectively feeds back the channel state information corresponding to the vertical dimension and the channel state information corresponding to the horizontal dimension;
  • the overhead of performing channel state information feedback can be further reduced.
  • Embodiments of the present invention provide a method for transmitting a channel state information reference signal, which is applied to a multiple input multiple output system using a two-dimensional antenna array.
  • the present invention describes the transmission method from the base station side.
  • Step 1401 The base station performs transmission of a channel state information reference signal by using any one of the antenna elements of the two-dimensional antenna array and any one of the array antenna elements.
  • the contents in Embodiment 1 are referred to.
  • the ideal rectangular array response has the following characteristics: any two row vectors differ by only one constant coefficient, so all row vectors have the same direction; likewise, all column vectors have the same direction. . Therefore, it is only necessary to obtain the respective vector information of one row and one column, and then all the array responses can be recovered, thereby obtaining a precoding matrix matching the channel. Since the complete rectangular array response can be uniquely determined by any vertical dimensional element response and any horizontal dimensional element response, it can be applied This feature reduces CSI-RS overhead.
  • the base station may perform CSI-RS transmission using one of the antenna elements in the two-dimensional antenna array and any one of the array elements in one subframe.
  • the base station may also use another row of antenna elements in the two-dimensional antenna array and another column of antenna elements to perform CSI-RS transmission in another subframe.
  • FIG. 15 is a schematic diagram of transmission of a CSI-RS according to an embodiment of the present invention. As shown in FIG. 15, in one subframe, CSI-RS transmission can be performed only by one row and one column of antennas, thereby reducing CSI-RS overhead. Ideally, the user device can estimate and feed back the PMI of the vertical and horizontal dimensions based on the CSI-RS pattern.
  • CSI-RS transmissions of one row and one column may be distributed to different subframes in the time domain.
  • the base station may perform a pattern transformation as illustrated in FIG. 15 between subframes, for example, using another row and one array element in the subframe j for CSI-RS transmission.
  • the user equipment can also use the CSI-RS of multiple subframes to perform PMI selection, thereby improving the accuracy of PMI selection.
  • the base station may perform CSI-RS transmission using any one of the two-dimensional antenna array and any one of the antenna elements in a set of physical resource block pairs (PRB pairs). .
  • the base station may further perform CSI-RS transmission in another pair of physical resource block pairs by using another row of antenna elements in the two-dimensional antenna array and another column of antenna elements.
  • the CSI-RS transmissions of one row and one column can be distributed to different physical resource block pairs in the frequency domain. Since only one row and one column of CSI-RSs are transmitted in each physical resource block pair, the purpose of reducing CSI-RS overhead can also be achieved.
  • the base station uses any one of the two rows of antenna array elements and any one of the array antenna elements to transmit the channel state information reference signal; the overhead of performing channel state information transmission can be further reduced.
  • Embodiments of the present invention provide a method for transmitting a channel state information reference signal, which is applied to a multiple input multiple output system using a two-dimensional antenna array.
  • the present invention describes the transmission method from the user equipment side, and the same content as that of Embodiment 7 will not be described again.
  • Step 1601 A user equipment receives a channel state information reference signal transmitted by a base station, where the channel state information reference signal is used by the base station to use any one of the antenna elements in the two-dimensional antenna array and any array of antenna arrays. Yuan to transmit.
  • the transmission may be performed in the time domain or in the frequency domain.
  • the CSI-RS transmissions of one row and one column may be distributed to different subframes in the time domain; CSI-RS transmissions of one row and one column may also be distributed to different physical resource block pairs in the frequency domain.
  • Figure 17 is another flow chart of the transmission method of the embodiment of the present invention.
  • the method includes: Step 1701: The user equipment receives a channel state information reference signal transmitted by the base station, where the channel state information reference signal is transmitted by the base station using any one of the antenna elements in the two-dimensional antenna array and any one of the array antenna elements; Step 1702, the user equipment uses The channel state information reference signals in the plurality of subframes or in the plurality of physical resource block pairs are jointly combined to perform precoding matrix indication information selection.
  • the user equipment receives the channel state information reference signal transmitted by the base station using any one of the antenna elements in the two-dimensional antenna array and any one of the array antenna elements; the overhead of performing channel state information reference signal transmission can be further reduced.
  • Embodiments of the present invention provide a base station for use in a multiple input multiple output system using a two-dimensional antenna array. This embodiment corresponds to the transmission method of Embodiment 7, and the same content as Embodiment 7 will not be described again.
  • FIG. 18 is a schematic diagram of a structure of a base station according to an embodiment of the present invention. As shown in FIG. 18, the base station 1800 includes: a transmission unit 1801. Other parts of the base station 1800 can refer to the prior art.
  • the transmission unit 1801 is configured to perform CSI-RS transmission using any one of the two-dimensional antenna array and any one of the array antenna elements.
  • the transmission unit 1801 performs CSI-RS transmission using one of the two-dimensional antenna arrays and any one of the array antenna elements in one subframe.
  • the transmission unit 1801 may also perform transmission of CSI-RS by using another row of antenna elements in the two-dimensional antenna array and another column of antenna elements in another subframe.
  • the transmission unit 1801 performs CSI-RS transmission using any one of the two-dimensional antenna arrays and any one of the array antenna elements within a set of physical resource block pairs.
  • the transmission unit 1801 may also perform CSI-RS transmission by using another row of antenna elements in the two-dimensional antenna array and another column of antenna elements in another pair of physical resource block pairs.
  • the base station uses any one of the two rows of antenna array elements and any one of the array antenna elements to perform channel state information reference signal transmission; the overhead of performing channel state information reference signal transmission can be further reduced.
  • Embodiments of the present invention provide a user equipment for use in a multiple input multiple output system using a two-dimensional antenna array. This embodiment corresponds to the transmission method of Embodiment 8, and the same content as Embodiment 8 will not be described again.
  • FIG. 19 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment 1900 includes: a receiving unit 1901.
  • Other parts of the user equipment 1900 can refer to the prior art.
  • the receiving unit 1901 is configured to receive a CSI-RS transmitted by the base station, where the CSI-RS is transmitted by the base station using any one of the antenna elements of the two-dimensional antenna array and any one of the array elements.
  • FIG. 20 is another schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment 2000 includes: a receiving unit 1901, as described above.
  • the user equipment 2000 may further include: a selecting unit 2002 that jointly performs selection of PMI information using CSI-RSs within a plurality of subframes or a plurality of physical resource block pairs.
  • the user equipment receives the channel state information reference signal transmitted by the base station using any one of the antenna elements in the two-dimensional antenna array and any one of the array antenna elements; the overhead of performing channel state information reference signal transmission can be further reduced.
  • Embodiments of the present invention provide a communication system that is a MIMO system using a two-dimensional antenna array.
  • Figure 21 is a block diagram showing a configuration of a communication system according to an embodiment of the present invention.
  • the communication system 2100 includes: a base station 2101 and a user equipment 2102.
  • the base station 2101 can be as described in Embodiment 6, and the user equipment 2102 can be as described in Embodiment 5. In another embodiment, the base station 2101 can be as described in Embodiment 9, and the user equipment 2102 can be as described in Embodiment 10.
  • Fig. 21 only schematically shows the configuration of the communication system, but the present invention is not limited thereto, and a specific embodiment can be determined depending on the actual situation.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes a computer to perform feedback of channel state information as described in Embodiment 3 or 4 above in the base station when the program is executed in a base station.
  • the program causes a computer to perform feedback of channel state information as described in Embodiment 3 or 4 above in the base station when the program is executed in a base station.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a feedback method of channel state information as described in Embodiment 3 or 4 above in a base station, or execute A method of transmitting a channel state information reference signal as described in Embodiment 7 above.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a user equipment, the program causes a computer to execute channel state information as described in Embodiment 1 or 2 above in the user equipment.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a feedback method of channel state information as described in Embodiment 1 or 2 above in a user equipment, or A transmission method of the channel state information reference signal as described in Embodiment 8 above is performed.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash storage And so on.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站,该反馈方法包括:用户设备分别反馈对应于垂直维的信道状态信息、以及对应于水平维的信道状态信息。通过本发明实施例,可以进一步降低三维MIMO系统中进行信道状态信息反馈的开销,或者信道状态信息参考信号传输的开销。

Description

信道状态信息的反馈方法、 信道状态信息参考信号的传输方法、 用户设备以及基站 技术领域
本发明涉及一种通信领域, 特别涉及一种信道状态信息的反馈方法、 信道状态 信息参考信号的传输方法、 用户设备以及基站。 背景技术 多输入多输出(MIMO, Multiple Input Multiple Output)技术是 LTE-A标准化的 重要内容之一, 通过利用多根天线, 可以实现对波束方向的自适应调整, 从而达到提 高用户信干噪比或协调干扰的目的。 MIMO 的主要增益源自基站侧对信道状态信息 ( CSI, Channel State Information) 的掌握, 信道信息通过用户设备的 CSI反馈获得, 而 CSI反馈基于事先定义的码本 (codebook)。
随着对数据速率需求的不断增长, 未来 MIMO技术将朝着全空间三维波束成形 (Beamforming) /预编码方向发展。三维 MIMO预编码使波束在垂直维度也可调, 增 加了波束的分辨粒度, 能够更加有效地对准用户设备或者规避干扰。
但是, 发明人发现在现有方案中, 三维 MIMO系统所带来的信道状态信息反馈 及参考信号开销增长往往成为其性能提升的瓶颈, 如果不对其进行优化设计, 三维 MIMO预编码性能将受到很大制约。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例提供一种信道状态信息的反馈方法、信道状态信息参考信号的传输 方法、 用户设备以及基站。 目的在于对于三维 MIMO系统, 进一步降低进行 CSI反 馈或者用于信道状态信息反馈的参考信号传输的开销。
根据本发明实施例的一个方面, 提供一种信道状态信息的反馈方法, 应用于使用 二维天线阵列的多输入多输出系统中, 所述二维天线阵列包括垂直维和水平维; 所述 方法包括:
用户设备分别反馈对应于所述垂直维的信道状态信息、以及对应于所述水平维的 信道状态信息。
根据本发明实施例的另一方面, 提供一种信道状态信息的反馈方法, 应用于使用 二维天线阵列的多输入多输出系统中, 所述二维天线阵列包括垂直维和水平维; 所述 方法包括: 基站对所述垂直维和水平维的信息进行独立配置,
接收用户设备根据配置信息而分别反馈的、对应于所述垂直维的信道状态信息以 及对应于所述水平维的信道状态信息。
根据本发明实施例的另一方面, 提供一种用户设备, 应用于使用二维天线阵列的 多输入多输出系统中, 所述二维天线阵列包括垂直维和水平维; 所述用户设备包括: 反馈单元, 用于分别反馈对应于所述垂直维的信道状态信息、 以及对应于所述水 平维的信道状态信息。
根据本发明实施例的另一方面, 提供一种基站, 应用于使用二维天线阵列的多输 入多输出系统中, 所述二维天线阵列包括垂直维和水平维; 所述基站包括:
配置单元, 对所述垂直维和水平维的信息进行独立配置,
接收单元, 接收用户设备根据配置信息而分别反馈的、对应于所述垂直维的信道 状态信息以及对应于所述水平维的信道状态信息。
根据本发明实施例的另一方面, 提供一种信道状态信息参考信号的传输方法, 应 用于使用二维天线阵列的多输入多输出系统中, 所述方法包括:
基站使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元进行信道 状态信息参考信号的传输。
根据本发明实施例的另一方面, 提供一种信道状态信息参考信号的传输方法, 应 用于使用二维天线阵列的多输入多输出系统中, 所述方法包括:
用户设备接收基站传输的信道状态信息参考信号,所述信道状态信息参考信号由 所述基站使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元来传输。
根据本发明实施例的另一方面, 提供一种基站, 应用于使用二维天线阵列的多输 入多输出系统中, 所述基站包括:
传输单元,使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元进行 信道状态信息参考信号的传输。
根据本发明实施例的另一方面, 提供一种用户设备, 应用于使用二维天线阵列的 多输入多输出系统中, 所述用户设备包括:
接收单元, 接收基站传输的信道状态信息参考信号, 所述信道状态信息参考信号 由所述基站使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元来传输。
根据本发明实施例的另一方面, 提供一种通信系统, 所述通信系统包括如上所述 的用户设备, 以及如上所述的基站。
根据本发明实施例的又一个方面, 提供一种计算机可读程序, 其中当在基站中执 行所述程序时,所述程序使得计算机在所述基站中执行如上所述的信道状态信息的反 馈方法, 或者执行如上所述的信道状态信息参考信号的传输方法。
根据本发明实施例的又一个方面, 提供一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算机在基站中执行如上所述的信道状态信息的反馈 方法, 或者执行如上所述的信道状态信息参考信号的传输方法。
根据本发明实施例的又一个方面, 提供一种计算机可读程序, 其中当在用户设备 中执行所述程序时,所述程序使得计算机在所述用户设备中执行如上所述的信道状态 信息的反馈方法, 或者执行如上所述的信道状态信息参考信号的传输方法。
根据本发明实施例的又一个方面, 提供一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算机在用户设备中执行如上所述的信道状态信息的 反馈方法, 或者执行如上所述的信道状态信息参考信号的传输方法。
本发明实施例的有益效果在于, 用户设备分别反馈对应于垂直维的信道状态信 息、 以及对应于水平维的信道状态信息; 可以进一步降低进行信道状态信息反馈的开 销。
以及,基站使用二维天线阵列中的任一行天线阵元以及任一列天线阵元进行信道 状态信息参考信号的传输; 可以进一步降低进行信道状态信息参考信号传输的开销。
参照后文的说明和附图, 详细公开了本发明的特定实施方式, 指明了本发明的 原理可以被采用的方式。 应该理解, 本发明的实施方式在范围上并不因而受到限制。 在所附权利要求的精神和条款的范围内, 本发明的实施方式包括许多改变、修改和等 同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更 多个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中 的特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。 附图中的部件不是成比例 绘制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附 图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个 其它附图或实施方式中示出的元素和特征相结合。 此外, 在附图中, 类似的标号表示 几个附图中对应的部件, 并可用于指示多于一种实施方式中使用的对应部件。
图 1是本发明实施例的三维 MIMO预编码的一示意图;
图 2是本发明实施例 1的反馈方法的一流程图;
图 3是本发明实施例的二维天线阵列响应的示意图;
图 4是本发明实施例的 PMI反馈的一示意图;
图 5是本发明实施例的双码本的反馈周期的一示意图;
图 6是本发明实施例 2的反馈方法的一流程图; 图 7是本发明实施例的双码本的反馈周期的另一示意图;
图 8是本发明实施例的双极化天线阵列的一示意图;
图 9是本发明实施例的双极化天线阵列下的 CSI反馈示例图;
图 10是本发明实施例 3的反馈方法的一流程图;
图 11是本发明实施例 4的反馈方法的一流程图;
图 12是本发明实施例 5的用户设备的一构成示意图;
图 13是本发明实施例 6的基站的一构成示意图;
图 14是本发明实施例 7的传输方法的一流程图;
图 15是本发明实施例 7的 CSI-RS传输的一实例示意图;
图 16是本发明实施例 8的传输方法的一流程图;
图 17是本发明实施例 8的传输方法的另一流程图;
图 18是本发明实施例 9的基站的一构成示意图;
图 19是本发明实施例 10的用户设备的一构成示意图;
图 20是本发明实施例 10的用户设备的另一构成示意图;
图 21是本发明实施例 11的通信系统的一构成示意图。 具体实施方式
参照附图, 通过下面的说明书, 本发明的前述以及其它特征将变得明显。 在说 明书和附图中, 具体公开了本发明的特定实施方式, 其表明了其中可以采用本发明的 原则的部分实施方式, 应了解的是, 本发明不限于所描述的实施方式, 相反, 本发明 包括落入所附权利要求的范围内的全部修改、 变型以及等同物。
随着对数据速率需求的不断增长, 未来 MIMO技术将朝着全空间三维波束成形 / 预编码方向发展。 而 Rel.8 MIMO以及后续 Rel.l0、 Rel.11版本对 MIMO的增强, 例 如 8端口 MIMO双码本, 均只能在水平维度进行波束成形。
相比于均匀线阵, 三维 MIMO预编码通常需要使用二维天线阵列。 图 1是三维
MIMO预编码的一示意图, 如图 1所示, 矩形平面阵可以置于 xoz平面, 由于存在垂 直方向排列的阵元, 能够使主瓣指向三维空间中某一方向。
二维码本主要基于线阵设计优化, 对于三维 MIMO预编码, 其码本结构需要匹 配二维天线阵列特征。由于平面阵列响应可以由一个水平维线阵响应和一个垂直维线 阵响应唯一确定, 一种码本设计可以从匹配天线阵列响应角度出发, 使用两个离散傅 里叶变换 (DFT, Discrete Fourier Transform) 向量分别对水平维和垂直维线阵响应进 行量化。
用户设备反馈这两个 DFT 向量在码本中的序号, 即同时反馈水平维和垂直维的 预编码矩阵指示 (PMI, Precoding Matrix Index) 信息, 则基站可以基于反馈的两个 DFT向量生成整个平面天线阵列的预编码矩阵。 相比于传统 MIMO预编码仅反馈一 个维度的 PMI情形, 这种包含两个维度 PMI的 CSI反馈增加了反馈开销。 以下将对 如何降低 CSI反馈或传输开销进行详细说明。 实施例 1
本发明实施例提供一种信道状态信息的反馈方法, 应用于使用二维天线阵列的
MIMO系统中,其中该二维天线阵列包括垂直维和水平维。本实施例从用户设备侧对 该方法进行说明。
图 2是本发明实施例的反馈方法的一流程图, 如图 2所示, 该方法包括: 步骤 201, 用户设备分别反馈对应于垂直维的信道状态信息、 以及对应于水平维 的信道状态信息。
在本实施例中, 可以对垂直维和水平维的相关反馈参数独立地进行配置, 例如可 以配置不同的 CSI反馈周期或者反馈偏置。至于 CSI的反馈周期以及反馈偏置的具体 内容可以参考现有技术。
在具体实施时,垂直维的 CSI反馈周期可以不同于水平维的 CSI反馈周期。例如, 垂直维的 CSI反馈周期大于水平维的 CSI反馈周期。如果阵列垂直维响应相对于水平 维响应变化较慢, 用户设备可以以更长的反馈周期来对垂直维响应进行反馈, 而不必 在每次反馈中均包含两个 CSI信息 (例如 PMI指示)。 本发明不限于此, 例如还可以 在一定的场景下,垂直维的 CSI反馈周期小于水平维的 CSI反馈周期,可以根据实际 情况确定具体的实施方式。
在具体实施时,垂直维的 CSI反馈偏置可以不同于水平维的 CSI反馈偏置。例如, 垂直维的 CSI反馈偏置可以小于水平维的 CSI反馈偏置,可以根据实际情况确定具体 的实施方式。
图 3是本发明实施例的二维天线阵列响应的示意图。如图 3所示, 其中水平面为 xoy平面, 垂直方向沿 z轴方向, 天线阵列位于 xoz平面, 水平方向排列 N个阵元, 阵元间距为 Δ , 垂直方向排列 Μ个阵元, 阵元间距为 Δζ。 因此, 阵元的位置矢量可 以表示为 =("^,0, ); 其中, " = 0,l,...,N-l,w = 0,l,...,M-l。 矢量 k主要用于 表征平面波传播方向, 与 z轴夹角为^ 其水平面投影与 X轴夹角为 ^, 在笛卡尔坐
_^ 2π 一
标系中将其表不为 k =一 (sin Θ cos φ, sin Θ sin φ, cos θ), 表不波长。 对于某一阵元, 其天
Figure imgf000007_0001
2 ATT _ - 定义/ ?= A sin >cos ,v = Azcos >, 阵元响应表达式可以简化为:
λ λ
e r) = eJ(nk。 整个天线阵列的响应可以写为下面矩阵形式: -l e M-i ei -i)h ~
e eAM-l)v ejh ej -l . . ej2v ej2vejh ej2vej2h . (1)
ejv ejvejh ejvej2h .
jh • . eJ -l)h
1
理想的矩形阵列响应具有如下特点: 任意两个行向量仅相差一个常系数, 因而所 有行向量具有相同的方向; 同样地, 所有列向量也具有相同的方向。 因此仅需获得一 行一列各自的向量信息, 便可恢复出全部阵列响应, 进而得到与信道匹配的预编码矩 阵。
由于二维阵列阵元数目较多, 加之阵列尺寸的限制, 通常会得到小间距的天线阵 元排列, 因此对于水平维或垂直维阵元响应, 可以仿照 8 天线码本设计原则, 使用 DFT向量对其进行量化, 相应地用户反馈水平维和垂直维的 PMI信息。
在本实施例中, 该方法还可以包括: 独立配置垂直维 DFT 向量的空域过采样倍 数以及水平维 DFT 向量的空域过采样倍数。 例如, 垂直维的过采样倍数小于或等于 水平维的过采样倍数。
在具体实施时, 假设对阵列水平维 (行方向阵元) 采用长度为 的 1^了向量, 对阵列垂直维 (列方向阵元)采用长度为 的 DFT向量。 这里 DFT长度与该方向阵 元数目的比值决定了空域过采样的倍数。例如 8天线情形,对同极化方向的 4根天线, 使用了长度为 32的 DFT向量, 即 8倍过采样, 过采样可以进一步增加空域的分辨粒 度。
由于用户设备在水平方向和垂直方向可以具有不同的分布特性,可以考虑对垂直 维和水平维使用不同的过采样倍数,例如将垂直维过采样倍数配置为小于等于水平维 的过采样倍数。
在本实施例中, 该方法还可以包括: 垂直维 DFT向量的数目小于 DFT的长度。 在具体实施时, 通常会令所使用的 DFT向量数目等于 DFT长度, 从而获得对空 域的全向覆盖。 这对于水平维实现无缝覆盖非常必要, 然而对于垂直维, 考虑到用户 设备实际分布情况, 有可能不需要对垂直维也进行全向覆盖, 因此可以考虑减少可用 的 DFT向量数目, 使其小于 DFT长度。
由表达式 (1 ) 可以看到, 对阵列垂直维阵元响应的量化, 其实质是在量化相邻 阵元的相位差 v = ^Az C0S ^, 其中 S的变化导致了相位 V的变化。 同理可由 (1 ) 式 λ
得到, 对阵列水平维阵元响应的量化实际上是在量化相位差 /? = ^A sin ^ C0S , 其 λ
中/ Η衣赖于 ^和 。 在本实施例中, 由于用户设备移动通常发生在水平方向, 因此其与 z轴夹角 S的 变化速度慢于水平方位角 φ的变化速度, 相应地相位 V的变化要慢于相位 Α的变化。 基于垂直方向阵元响应不如水平方向阵元响应变化剧烈这一结果,可以在 CSI反馈中 为垂直维 PMI ( Wv ) 反馈配置比水平维 PMI ( W" ) 反馈更长的反馈周期。
图 4是本发明实施例的 PMI反馈示意图,其中图中省略了秩指示 ( RI, Rank Index ) /信道质量指示 (CQI, Channel Quality Indicator) 成分, 只示出 PMI成分。
如图 4所示, 对于 PMI反馈, 其所占用的子帧由偏置和周期两个参数共同确定, 对于垂直维和水平维 PMI, 其各自的偏置和周期可以独立配置。 值得注意的是, 图 4 仅对本发明进行了示意性说明, 但本发明不限于此。
由上述实施例可知, 用户设备分别反馈对应于垂直维的信道状态信息、 以及对应 于水平维的信道状态信息; 可以进一步降低进行信道状态信息反馈的开销。 实施例 2
在实施例 1的基础上, 本实施例对双码本的情况进行详细说明, 与实施例 1相同 的内容不再赘述。
目前标准中支持天线端口数为 2、 4、 8的 MIMO下行传输, 使用天线阵列主要 为均匀线阵。 以 8天线端口 MIMO系统为例, 其码本的主要优化场景为小间距交叉 极化线阵, 对于相同极化方向使用 DFT 向量进行量化, 并且采用了双码本结构。 以 秩 1传输为例, 其双码本1^,1^可以通过下述公 。
Figure imgf000009_0001
(15)
λ¥ι £ ς
Figure imgf000009_0002
Figure imgf000009_0004
其中, B为 4行 32列的截短的 DFT矩阵, 每一列形成一个波束。 XW是集合 ίχ(0)(1), (15)1 中的元素, 该集合用于将 32 个波束分为 16 组: 形 y ' '
如, {b2,b3,b4,b5} ,〜,
Figure imgf000009_0003
b^b l bj,相邻组具有重叠的波束。 \^用 于确定一个小范围的波束集合 XW, 供粗粒度的波束选择; W2用于在已选波束集合 范围内更加精细地选取波束。 最终用于秩 1传输的预编码向量为
Figure imgf000010_0001
{1, -1,7, -7}
上式中分块矩阵上半部表征同一极化方向, 下半部表征另一极化方向。 p对不同 极化天线间的相位关系进行调整。 2相乘实际上在对 XW进行列选择, 即在已获得 的若干波束范围内进一步细选波束。上式操作的物理意义可以概括为: 将不同极化方 向内产生的波束均调整至对准用户方向,然后通过相位调整以获得不同极化方向间的 同相合并。
双码本的设计实际上综合考虑了 CSI反馈的影响。 上述双码本结构中, λ 通常 表征信道长期 /宽带特性, 、¥2表征短期 /子带特性, 根据 WPW2这一特性, 在周期性 CSI反馈中, 通常为 λ 配置比 W2更长的反馈周期。 例如目前标准中, 对于 CSI反馈 模式 1-1中的子模式 1, W2反馈周期为 Λ^, 反馈周期为 的 倍; 对于 CSI 反馈模式 2-1中的 PTI=0情况, W2反馈周期为 Np , 反馈周期为 Np 的 H '倍。
图 5是双码本的反馈周期的一示意图, 示出对 WPW2的反馈周期。 如图 5所示, 的反馈周期可以大于 W2的反馈周期。
在本实施例中, 在使用二维天线阵列的 MIMO系统中, 可以采用包括第一码本 和第二码本的双码本, 用户设备可以根据双码本进行 CSI反馈。
图 6是本发明实施例的反馈方法的一流程图, 如图 6所示, 该方法包括: 步骤 601, 用户设备分别反馈对应于第一码本的垂直维的信道状态信息和水平维 的信道状态信息,以及分别反馈对应于第二码本的垂直维的信道状态信息和水平维的 信道状态信息。
在本实施例中, 8天线 MIMO在反馈所选择的 DFT向量时可以采用双码本结构。 在 3D MIMO预编码中,对于垂直维和水平维的 PMI反馈也可以使用双码本。结合双 码本的长期 /短期 PMI反馈, 垂直维响应的慢变特性可以被利用在节省反馈开销和保 证预编码性能之间实现更好的折中。
下面以秩 1为例, 对双码本的构成进行阐述。 假设供垂直维使用的 DFT向量数 目为 Nv, 将 DFT向量集合表示为 βν = [ b; ... bN v v_, ] , 同理水平维使用的 DFT 集合表示为^ = [W
Figure imgf000010_0002
... J。将 βν中向量划分为 个可重叠的子集,则垂直 维长期预编码矩阵 χ;, ... Χν— ^, 其中各个 包含相同数目 个1¾^ 向量, DFT向量取自 集合, 不同子集 X;可包含共同的 DFT向量, 、\^为^^ 维 矩阵。
同理, 水平维长期预编码矩阵 W^ ^X^ X? , ... , 为 Nx E Ii矩阵。对 于秩 1情形, 垂直维短期预编码矩阵 W2 v e { ^,S2,^,^」, 其中 ^为 ><1维列向量, 除第 i 个元素为 1 夕卜, 其他元素均为 0。 同理, 水平维短期预编码矩阵 W' e j e^e^^ ^^ } , EA x l维列向量。
反馈的垂直维双码本唯一决定垂直维的 DFT 向量, 记为 r W^W 同理水平 维 DFT向量记为 fA = W^。 已知 , 1^条件下, 可以再生出矩形阵列完整的 PMI矩 阵 Λν
Figure imgf000011_0001
, 其 中 生 成 函 数 形 如 g (a,b) = [a a ... a]Mx v Θ [b; b; ... b]MxW,两个分块矩阵之间乘积为哈达玛积。
双码本结构下, 用户需反馈垂直维和水平维各自的 WP W2信息, 无论对于 \^还 是 W2反馈, 均可以为垂直维和水平维独立配置 PMI反馈偏置和周期。
在一个实施方式中, 对于第一码本, 垂直维的 CSI反馈周期可以与水平维的 CSI 反馈周期不同;对于第二码本,垂直维的 CSI反馈周期可以与水平维的 CSI反馈周期 相同。
在具体实施时, 对于第一码本, 垂直维的 CSI 反馈周期可以大于水平维的 CSI 反馈周期。 并且, 垂直维的 CSI反馈偏置可以不同于水平维的 CSI反馈偏置。
图 7是本发明实施例的双码本的反馈周期的一示意图。 如图 7所示, 对于 \^反 馈, 垂直维使用比水平维更长的反馈周期, 并且垂直维与水平维的反馈偏置不同; 对 于>¥2反馈, 垂直维可以使用与水平维相同的反馈周期及偏置。
由于垂直维特性变化缓慢, 即使发生变化, 通常也不会立即脱离长期特性 范 围, 因此 可以维持较长时间不变, 而反馈的 W2 V仍可以在 内进行细选调整, 因 此能够在节省反馈开销基础上最大限度保证性能。
在另一个实施方式中, 对于第一码本, 垂直维的 CSI 反馈周期可以与水平维的 CSI反馈周期不同; 对于第二码本, 垂直维的 CSI反馈周期也可以与水平维的 CSI反 馈周期不同。 节省反馈开销的配置是在 w2反馈中也为垂直维配置更长的反馈周期。
值得注意的是, 以上实施方式仅进行了示意性说明, 但本发明不限于此, 可以根 据实际情况确定具体的实施方式。
在本实施例中, 二维天线阵列可以配置双极化天线, 该方法还可以包括: 用户设 备反馈包含极化方向之间相位调整的信息。
图 8是本发明实施例的双极化天线阵列的一示意图。对于矩形阵列配置双极化天 线情形, 如图 8所示, 仍按照 M行 N列方式排列, 但阵元总数由原来同向极化情形 下的 增加至 2M . N。
图 9是本发明实施例的双极化天线阵列下的 CSI反馈示例图,反馈中额外包含了 极化方向之间的相位调整信息 p。对于垂直维, 通过对所有极化天线进行信道测量估 计, 反馈共同的 w 为 >< 维矩阵; 反馈共同的 W2 V, 为 >< 1维向量。 对于水平 维,基于不同极化天线上的测量,反馈共同的 为 Nx E 矩阵;反馈共同的 W2 A, 为 ^ 1维向量。
反馈的 p用于不同极化方向间相位对准, 可选值例如 。 基站获得 反馈的双码本信息后, 按照^—^ ^ ^^ ^^获得垂直极化 (或 +45 ° 极化) 天线上的完整预编码矩阵, 水平极化 (或 -45 ° 极化) 天线上的预编码矩阵使用 、 ^(λ^λ^, λ^λ^ ) · ^计算获得。
由上述实施例可知, 用户设备分别反馈对应于垂直维的信道状态信息、 以及对应 于水平维的信道状态信息; 可以进一步降低进行信道状态信息反馈的开销。 实施例 3
本发明实施例提供一种信道状态信息的反馈方法, 应用于使用二维天线阵列的 ΜΙΜΟ系统中,其中该二维天线阵列包括垂直维和水平维。本实施例从基站侧对该方 法进行说明, 与实施例 1相同的内容不再赘述。
图 10是本发明实施例的反馈方法的一流程图, 如图 10所示, 该方法包括: 步骤 1001, 基站对垂直维和水平维的信息进行独立配置,
在具体实施时, 该信息可以包括信道状态信息的反馈周期及反馈偏置, 但本发明 不限于此, 可以根据实际情况确定具体的信息。
步骤 1002, 基站接收用户设备根据配置信息而分别反馈的、 对应于垂直维的信 道状态信息以及对应于水平维的信道状态信息。
在一个实施方式中, 垂直维的 CSI反馈周期可以不同于水平维的 CSI反馈周期。 例如, 垂直维的 CSI反馈周期可以大于水平维的 CSI反馈周期。
在另一个实施方式中,垂直维的 CSI反馈偏置可以不同于水平维的 CSI反馈偏置。 例如, 垂直维的 ΡΜΙ反馈偏置可以不同于水平维的 ΡΜΙ反馈偏置。
在另一个实施方式中, 基站和用户设备采用的码本中, 用于量化垂直维的 DFT 向量的空域过采样倍数可以小于或等于水平维的过采样倍数。
在另一个实施方式中, 基站和用户设备采用的码本中, 用于量化垂直维的 DFT 向量的数目可以小于 DFT的长度。
由上述实施例可知,基站对垂直维和水平维信道状态信息的反馈周期及反馈偏置 进行独立配置, 使得用户设备分别反馈对应于垂直维的信道状态信息、 以及对应于水 平维的信道状态信息; 可以进一步降低进行信道状态信息反馈的开销。 实施例 4
在实施例 3的基础上, 本实施例对双码本的情况进行详细说明, 与实施例 3相同 的内容不再赘述。
图 11是本发明实施例的反馈方法的一流程图, 如图 11所示, 该方法包括: 步骤 1101, 基站独立配置对应于第一码本的垂直维信息和水平维信息, 以及对 应于第二码本的垂直维信息和水平维信息;
其中,该信息可以包括信道状态信息的反馈周期及反馈偏置,但本发明不限于此。 步骤 1102, 基站接收用户设备根据配置信息而分别反馈的对应于第一码本的垂 直维的信道状态信息和水平维的信道状态信息,以及分别反馈的对应于第二码本的垂 直维的信道状态信息和水平维的信道状态信息。
在一个实施方式中,对于第一码本, 垂直维的 CSI反馈周期与水平维的 CSI反馈 周期不同。或者, 对于第二码本, 垂直维的 CSI反馈周期与水平维的 CSI反馈周期不 同。
例如,对于第一码本,垂直维的 CSI反馈周期大于水平维的 CSI反馈周期。或者, 对于第二码本, 垂直维的 CSI反馈周期大于水平维的 CSI反馈周期。
在另一个实施方式中, 对于第一码本, 垂直维的 CSI 反馈偏置不同于水平维的 CSI反馈偏置。 或者, 对于第二码本, 垂直维的 CSI反馈偏置不同于水平维的 CSI反 馈偏置。
在另一个实施方式中,二维天线阵列可以配置双极化天线,所述方法还可以包括: 基站接收用户设备反馈的、 包含极化方向之间相位调整的信息。
由上述实施例可知,基站对垂直维和水平维信道状态信息的反馈周期及反馈偏置 进行独立配置, 使得用户设备分别反馈对应于垂直维的信道状态信息、 以及对应于水 平维的信道状态信息; 可以进一步降低进行信道状态信息反馈的开销。 实施例 5
本发明实施例提供一种用户设备,应用于使用二维天线阵列的多输入多输出系统 中,该二维天线阵列包括垂直维和水平维。本实施例对应于实施例 1或 2的反馈方法, 与实施例 1或 2相同的内容不再赘述。
图 12是本发明实施例的用户设备的一构成示意图。如图 12所示,用户设备 1200 包括: 反馈单元 1201。 用户设备 1200的其他部分可以参考现有技术。
其中, 反馈单元 1201用于分别反馈对应于垂直维的信道状态信息、 以及对应于 水平维的信道状态信息。
在本实施例中, 用户设备 1200可以采用单码本进行反馈, 也可以采用双码本进 行反馈。
在一个实施方式中,用户设备可以采用包括第一码本和第二码本的双码本进行反 馈。 并且, 反馈单元 1201分别反馈对应于第一码本的垂直维的信道状态信息和水平 维的信道状态信息,以及分别反馈对应于第二码本的垂直维的信道状态信息和水平维 的信道状态信息。
由上述实施例可知, 用户设备分别反馈对应于垂直维的信道状态信息、 以及对应 于水平维的信道状态信息; 可以进一步降低进行信道状态信息反馈的开销。 实施例 6
本发明实施例提供一种基站, 应用于使用二维天线阵列的多输入多输出系统中, 该二维天线阵列包括垂直维和水平维。本实施例对应于实施例 3或 4的反馈方法, 与 实施例 3或 4相同的内容不再赘述。
图 13是本发明实施例的基站的一构成示意图。 如图 13所示, 基站 1300包括: 配置单元 1301和接收单元 1302。 基站 1300的其他部分可以参考现有技术。
其中, 配置单元 1301用于对垂直维和水平维的信息(例如, 信道状态信息的反 馈周期及反馈偏置) 进行独立配置; 接收单元 1302接收用户设备根据配置信息而分 别反馈的、 对应于垂直维的信道状态信息以及对应于水平维的信道状态信息。
在本实施例中,用户设备可以采用单码本进行反馈,也可以采用双码本进行反馈。 在一个实施方式中,用户设备可以采用包括第一码本和第二码本的双码本进行反 馈。 并且, 配置单元 1302独立配置对应于第一码本的垂直维信息和水平维信息, 以 及对应于第二码本的垂直维信息和水平维信息(例如, 该信息可以包括信道状态信息 的反馈周期及反馈偏置)。接收单元 1302接收用户设备根据配置信息而分别反馈的对 应于第一码本的垂直维的信道状态信息和水平维的信道状态信息,以及分别反馈的对 应于第二码本的垂直维的信道状态信息和水平维的信道状态信息。
由上述实施例可知,基站对垂直维和水平维信道状态信息的反馈周期及反馈偏置 进行独立配置, 使得用户设备分别反馈对应于垂直维的信道状态信息、 以及对应于水 平维的信道状态信息; 可以进一步降低进行信道状态信息反馈的开销。 实施例 7
本发明实施例提供一种信道状态信息参考信号的传输方法,应用于使用二维天线 阵列的多输入多输出系统中。 本发明从基站侧对该传输方法进行说明。
图 14是本发明实施例的传输方法的一流程图。 如图 14所示, 该方法包括: 步骤 1401, 基站使用二维天线阵列中的任一行天线阵元以及任一列天线阵元进 行信道状态信息参考信号的传输。
在本实施例中, 参考实施例 1 中的内容。 由式 (1 ) 的矩阵形式可知, 理想的矩 形阵列响应具有如下特点: 任意两个行向量仅相差一个常系数, 因而所有行向量具有 相同的方向; 同样地, 所有列向量也具有相同的方向。 因此仅需获得一行一列各自的 向量信息, 便可恢复出全部阵列响应, 进而得到与信道匹配的预编码矩阵。 由于完整 的矩形阵列响应可由任一垂直维阵元响应和任一水平维阵元响应唯一确定,可以应用 这一特性降低 CSI-RS开销。
在一个实施方式中, 在时域上, 基站可以在一个子帧内使用二维天线阵列中的任 一行天线阵元以及任一列天线阵元进行 CSI-RS的传输。 在具体实施时, 基站还可以 在另一个子帧内使用二维天线阵列中的另一行天线阵元以及另一列天线阵元进行 CSI-RS的传输。
图 15是本发明实施例的 CSI-RS的传输示意图。 如图 15所示, 在一个子帧内, 可以仅一行一列天线进行 CSI-RS传输, 从而降低了 CSI-RS开销。 理想情况下, 用 户设备可以基于该 CSI-RS图案估计并反馈垂直维和水平维的 PMI。
在具体实施时, 可以将一行一列的 CSI-RS传输在时域上分布至不同子帧。 为提 高 CSI-RS估计的准确性, 在发送 CSI-RS时, 基站可以在子帧间进行如图 15示例的 图案变换, 例如在子帧 j中使用另外一行一列阵元进行 CSI-RS传输, 以提供天线选 择性增益。 此外, 用户设备也可以使用多个子帧的 CSI-RS联合进行 PMI选择, 从而 提高 PMI选择的准确性。
在另一个实施方式中, 在频域上, 基站可以在一组物理资源块对 (PRB pair) 内 使用二维天线阵列中的任一行天线阵元以及任一列天线阵元进行 CSI-RS的传输。 在 具体实施时,基站还可以在另一组物理资源块对内使用二维天线阵列中的另一行天线 阵元以及另一列天线阵元进行 CSI-RS的传输。
在具体实施时, 同样地可以将一行一列的 CSI-RS传输在频域上分布至不同的物 理资源块对。 由于每个物理资源块对中只传输一行一列的 CSI-RS, 同样可以达到降 低 CSI-RS开销的目的。
由上述实施例可知,基站使用二维天线阵列中的任一行天线阵元以及任一列天线 阵元进行信道状态信息参考信号的传输;可以进一步降低进行信道状态信息传输的开 销。 实施例 8
本发明实施例提供一种信道状态信息参考信号的传输方法,应用于使用二维天线 阵列的多输入多输出系统中。本发明从用户设备侧对该传输方法进行说明, 与实施例 7相同的内容不再赘述。
图 16是本发明实施例的传输方法的一流程图。 如图 16所示, 该方法包括: 步骤 1601, 用户设备接收基站传输的信道状态信息参考信号, 该信道状态信息 参考信号由基站使用二维天线阵列中的任一行天线阵元以及任一列天线阵元来传输。
在具体实施时, 可以在时域上进行传输, 也可以在频域上进行传输。 可以将一行 一列的 CSI-RS传输在时域上分布至不同子帧; 也可以将一行一列的 CSI-RS传输在 频域上分布至不同的物理资源块对。
图 17是本发明实施例的传输方法的另一流程图。 如图 17所示, 该方法包括: 步骤 1701, 用户设备接收基站传输的信道状态信息参考信号, 该信道状态信息 参考信号由基站使用二维天线阵列中的任一行天线阵元以及任一列天线阵元来传输; 步骤 1702, 用户设备使用多个子帧内或者多个物理资源块对内的信道状态信息 参考信号, 联合进行预编码矩阵指示信息的选择。
由上述实施例可知,用户设备接收基站使用二维天线阵列中的任一行天线阵元以 及任一列天线阵元进行传输的信道状态信息参考信号;可以进一步降低进行信道状态 信息参考信号传输的开销。 实施例 9
本发明实施例提供一种基站, 应用于使用二维天线阵列的多输入多输出系统中。 本实施例对应于实施例 7的传输方法, 与实施例 7相同的内容不再赘述。
图 18是本发明实施例的基站的一构成示意图。 如图 18所示, 基站 1800包括: 传输单元 1801。 基站 1800的其他部分可以参考现有技术。
其中, 传输单元 1801用于使用二维天线阵列中的任一行天线阵元以及任一列天 线阵元进行 CSI-RS的传输。
在一个实施方式中, 在时域上, 传输单元 1801在一个子帧内使用二维天线阵列 中的任一行天线阵元以及任一列天线阵元进行 CSI-RS的传输。
在具体实施时, 传输单元 1801还可以在另一个子帧内使用二维天线阵列中的另 一行天线阵元以及另一列天线阵元进行 CSI-RS的传输。
在另一个实施方式中, 在频域上, 传输单元 1801在一组物理资源块对内使用二 维天线阵列中的任一行天线阵元以及任一列天线阵元进行 CSI-RS的传输。
在具体实施时, 传输单元 1801还可以在另一组物理资源块对内使用二维天线阵 列中的另一行天线阵元以及另一列天线阵元进行 CSI-RS的传输。
由上述实施例可知,基站使用二维天线阵列中的任一行天线阵元以及任一列天线 阵元进行信道状态信息参考信号的传输;可以进一步降低进行信道状态信息参考信号 传输的开销。 实施例 10
本发明实施例提供一种用户设备,应用于使用二维天线阵列的多输入多输出系统 中。 本实施例对应于实施例 8的传输方法, 与实施例 8相同的内容不再赘述。
图 19是本发明实施例的用户设备的一构成示意图。如图 19所示,用户设备 1900 包括: 接收单元 1901。 用户设备 1900的其他部分可以参考现有技术。
其中, 接收单元 1901用于接收基站传输的 CSI-RS, 该 CSI-RS由基站使用二维 天线阵列中的任一行天线阵元以及任一列天线阵元来传输。
图 20是本发明实施例的用户设备的另一构成示意图。 如图 20所示, 用户设备 2000包括: 接收单元 1901, 如上所述。
如图 20所示, 用户设备 2000还可以包括: 选择单元 2002, 使用多个子帧内或 者多个物理资源块对内的 CSI-RS, 联合进行 PMI信息的选择。
由上述实施例可知,用户设备接收基站使用二维天线阵列中的任一行天线阵元以 及任一列天线阵元进行传输的信道状态信息参考信号;可以进一步降低进行信道状态 信息参考信号传输的开销。 实施例 11
本发明实施例提供一种通信系统, 该通信系统是使用二维天线阵列的 MIMO系 统。
图 21 是本发明实施例的通信系统的一构成示意图, 如图 21 所示, 该通信系统 2100包括: 基站 2101和用户设备 2102。
在一个实施方式中, 基站 2101可如实施例 6所述, 用户设备 2102可如实施例 5 所述。 在另一个实施方式中, 基站 2101可如实施例 9所述, 用户设备 2102可如实施 例 10所述。
对于通信系统 2100的其他内容, 可以参考实施例 1至 10。 值得注意的是, 图 21 仅示意性地示出了该通信系统的构成, 但本发明不限于此, 可以根据实际情况确定具 体的实施方式。
本发明实施例还提供一种计算机可读程序, 其中当在基站中执行所述程序时, 所述程序使得计算机在所述基站中执行如上面实施例 3或 4所述的信道状态信息的反 馈方法, 或者执行如上面实施例 7所述的信道状态信息参考信号的传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质, 其中所述计算机 可读程序使得计算机在基站中执行如上面实施例 3或 4所述的信道状态信息的反馈方 法, 或者执行如上面实施例 7所述的信道状态信息参考信号的传输方法。
本发明实施例还提供一种计算机可读程序, 其中当在用户设备中执行所述程序 时,所述程序使得计算机在所述用户设备中执行如上面实施例 1或 2所述的信道状态 信息的反馈方法, 或者执行如上面实施例 8 所述的信道状态信息参考信号的传输方 法。
本发明实施例还提供一种存储有计算机可读程序的存储介质, 其中所述计算机 可读程序使得计算机在用户设备中执行如上面实施例 1或 2所述的信道状态信息的反 馈方法, 或者执行如上面实施例 8所述的信道状态信息参考信号的传输方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。 本发 明涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实 现上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。本 发明还涉及用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储 器等。
针对附图中描述的功能方框中的一个或多个和 /或功能方框的一个或多个组合, 可以实现为用于执行本申请所描述功能的通用处理器、 数字信号处理器 (DSP)、 专 用集成电路 (ASIC)、 现场可编程门阵列 (FPGA) 或者其它可编程逻辑器件、 分立 门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方 框中的一个或多个和 /或功能方框的一个或多个组合, 还可以实现为计算设备的组合, 例如, DSP和微处理器的组合、 多个微处理器、 与 DSP通信结合的一个或多个微处 理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述, 但本领域技术人员应该清楚, 这些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据 本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范 围内。

Claims

权利要求书
1、 一种信道状态信息的反馈方法, 应用于使用二维天线阵列的多输入多输出系 统中, 所述二维天线阵列包括垂直维和水平维; 所述方法包括:
用户设备分别反馈对应于所述垂直维的信道状态信息、以及对应于所述水平维的 信道状态信息。
2、 根据权利要求 1所述的方法, 其中, 所述垂直维的信道状态信息的反馈周期 不同于所述水平维的信道状态信息的反馈周期。
3、 根据权利要求 2所述的方法, 其中, 所述垂直维的信道状态信息的反馈周期 大于所述水平维的信道状态信息的反馈周期。
4、 根据权利要求 1所述的方法, 其中, 所述垂直维的信道状态信息的反馈偏置 不同于所述水平维的信道状态信息的反馈偏置。
5、 根据权利要求 1所述的方法, 其中, 码本中用于量化垂直维的离散傅里叶变 换向量的空域过采样倍数小于或等于水平维的过采样倍数。
6、 根据权利要求 1所述的方法, 其中, 码本中用于量化垂直维的离散傅里叶变 换向量的数目小于所述离散傅里叶变换向量的长度。
7、 根据权利要求 1所述的方法, 其中, 所述用户设备采用包括第一码本和第二 码本的双码本进行反馈;
并且,所述用户设备分别反馈对应于所述第一码本的垂直维的信道状态信息和水 平维的信道状态信息,以及分别反馈对应于所述第二码本的垂直维的信道状态信息和 水平维的信道状态信息。
8、 根据权利要求 7所述的方法, 其中, 对于所述第一码本或者所述第二码本, 垂直维的信道状态信息的反馈周期与水平维的信道状态信息的反馈周期不同。
9、 根据权利要求 8所述的方法, 其中, 对于所述第一码本或者所述第二码本, 垂直维的信道状态信息的反馈周期大于水平维的信道状态信息的反馈周期。
10、 根据权利要求 7或 8所述的方法, 其中, 对于所述第一码本或者所述第二码 本, 垂直维的信道状态信息的反馈偏置不同于水平维的信道状态信息的反馈偏置。
11、 根据权利要求 7所述的方法, 其中, 所述二维天线阵列配置双极化天线, 所 述方法还包括:
所述用户设备反馈包含极化方向之间相位调整的信息。
12、一种信道状态信息的反馈方法, 应用于使用二维天线阵列的多输入多输出系 统中, 所述二维天线阵列包括垂直维和水平维; 所述方法包括:
基站对所述垂直维和水平维的信息进行独立配置;
接收用户设备根据配置信息而分别反馈的、对应于所述垂直维的信道状态信息以 及对应于所述水平维的信道状态信息。
13、 根据权利要求 12所述的方法, 其中, 所述垂直维的信道状态信息的反馈周 期不同于所述水平维的信道状态信息的反馈周期。
14、 根据权利要求 13所述的方法, 其中, 所述垂直维的信道状态信息的反馈周 期大于所述水平维的信道状态信息的反馈周期。
15、 根据权利要求 12所述的方法, 其中, 所述垂直维的信道状态信息的反馈偏 置不同于所述水平维的信道状态信息的反馈偏置。
16、 根据权利要求 12所述的方法, 其中, 码本中用于量化垂直维的离散傅里叶 变换向量的空域过采样倍数小于或等于水平维的过采样倍数。
17、 根据权利要求 12所述的方法, 其中, 码本中用于量化垂直维的离散傅里叶 变换向量的数目小于所述离散傅里叶变换向量的长度。
18、 根据权利要求 14所述的方法, 其中, 所述用户设备采用包括第一码本和第 二码本的双码本进行反馈;
并且, 所述基站独立配置对应于所述第一码本的垂直维信息和水平维信息, 以及 对应于所述第二码本的垂直维信息和水平维信息。
19、 根据权利要求 18所述的方法, 其中, 对于所述第一码本或者所述第二码本, 垂直维的信道状态信息的反馈周期与水平维的信道状态信息的反馈周期不同。
20、 根据权利要求 19所述的方法, 其中, 对于所述第一码本或者所述第二码本, 垂直维的信道状态信息的反馈周期大于水平维的信道状态信息的反馈周期。
21、 根据权利要求 18或 19所述的方法, 其中, 对于所述第一码本或者所述第二 码本, 垂直维的信道状态信息的反馈偏置不同于水平维的信道状态信息的反馈偏置。
22、 根据权利要求 18所述的方法, 其中, 所述二维天线阵列配置双极化天线, 所述方法还包括:
所述基站接收所述用户设备反馈的、 包含极化方向之间相位调整的信息。
23、 一种用户设备, 应用于使用二维天线阵列的多输入多输出系统中, 所述二维 天线阵列包括垂直维和水平维; 所述用户设备包括:
反馈单元, 用于分别反馈对应于所述垂直维的信道状态信息、 以及对应于所述水 平维的信道状态信息。
24、 根据权利要求 23所述的用户设备, 其中, 所述用户设备采用包括第一码本 和第二码本的双码本进行反馈;
并且,所述反馈单元分别反馈对应于所述第一码本的垂直维的信道状态信息和水 平维的信道状态信息,以及分别反馈对应于所述第二码本的垂直维的信道状态信息和 水平维的信道状态信息。
25、 一种基站, 应用于使用二维天线阵列的多输入多输出系统中, 所述二维天线 阵列包括垂直维和水平维; 所述基站包括:
配置单元, 对所述垂直维和水平维的信息进行独立配置; 接收单元, 接收用户设备根据配置信息而分别反馈的、对应于所述垂直维的信道 状态信息以及对应于所述水平维的信道状态信息。
26、 根据权利要求 25所述的基站, 其中, 所述用户设备采用包括第一码本和第 二码本的双码本进行反馈;
并且, 所述配置单元独立配置对应于所述第一码本的垂直维信息和水平维信息, 以及对应于所述第二码本的垂直维信息和水平维信息。
27、一种信道状态信息参考信号的传输方法, 应用于使用二维天线阵列的多输入 多输出系统中, 所述方法包括:
基站使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元进行信道 状态信息参考信号的传输。
28、 根据权利要求 27所述的方法, 其中, 在时域上, 所述基站在一个子帧内使 用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元进行信道状态信息参 考信号的传输。
29、 根据权利要求 28所述的方法, 其中, 所述基站在另一个子帧内使用所述二 维天线阵列中的另一行天线阵元以及另一列天线阵元进行信道状态信息参考信号的 传输。
30、 根据权利要求 27所述的方法, 其中, 在频域上, 所述基站在一组物理资源 块对内使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元进行信道状 态信息参考信号的传输。
31、 根据权利要求 30所述的方法, 其中, 所述基站在另一组物理资源块对内使 用所述二维天线阵列中的另一行天线阵元以及另一列天线阵元进行信道状态信息参 考信号的传输。
32、一种信道状态信息参考信号的传输方法, 应用于使用二维天线阵列的多输入 多输出系统中, 所述方法包括:
用户设备接收基站传输的信道状态信息参考信号,所述信道状态信息参考信号由 所述基站使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元来传输。
33、 根据权利要求 32所述的方法, 其中, 所述方法还包括:
所述用户设备使用多个子帧内或者多组物理资源块对内的信道状态信息参考信 号, 联合进行预编码矩阵指示信息的选择。
34、一种基站,应用于使用二维天线阵列的多输入多输出系统中,所述基站包括: 传输单元,使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元进行 信道状态信息参考信号的传输。
35、 根据权利要求 34所述的基站, 其中, 在时域上, 所述传输单元在一个子帧 内使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元进行信道状态信 息参考信号的传输。
36、 根据权利要求 35所述的基站, 其中, 所述传输单元在另一个子帧内使用所 述二维天线阵列中的另一行天线阵元以及另一列天线阵元进行信道状态信息参考信 号的传输。
37、 根据权利要求 34所述的基站, 其中, 在频域上, 所述传输单元在一组物理 资源块对内使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元进行信 道状态信息参考信号的传输。
38、 根据权利要求 37所述的基站, 其中, 所述传输单元在另一组物理资源块对 内使用所述二维天线阵列中的另一行天线阵元以及另一列天线阵元进行信道状态信 息参考信号的传输。
39、 一种用户设备, 应用于使用二维天线阵列的多输入多输出系统中, 所述用户 设备包括:
接收单元, 接收基站传输的信道状态信息参考信号, 所述信道状态信息参考信号 由所述基站使用所述二维天线阵列中的任一行天线阵元以及任一列天线阵元来传输。
40、 根据权利要求 39所述的用户设备, 其中, 所述用户设备还包括: 选择单元, 使用多个子帧内或者多个物理资源块对内的信道状态信息参考信号, 联合进行预编码矩阵指示信息的选择。
41、一种通信系统, 所述通信系统包括如权利要求 23或 24所述的用户设备以及 如权利要求 25或 26所述的基站;
或者, 所述通信系统包括如权利要求 34至 38任一项所述的基站、 以及如权利要 求 39或 40所述的用户设备。
42、 一种计算机可读程序, 其中当在基站中执行所述程序时, 所述程序使得计算 机在所述基站中执行如权利要求 12至 22中任一项所述的信道状态信息的反馈方法, 或者执行如权利要求 27至 31中任一项所述的信道状态信息参考信号的传输方法。
43、一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算 机在基站中执行如权利要求 12至 22中任一项所述的信道状态信息的反馈方法,或者 执行如权利要求 27至 31中任一项所述的信道状态信息参考信号的传输方法。
44、 一种计算机可读程序, 其中当在用户设备中执行所述程序时, 所述程序使得 计算机在所述用户设备中执行如权利要求 1至 11中任一项所述的信道状态信息的反 馈方法, 或者执行如权利要求 32或 33所述的信道状态信息参考信号的传输方法。
45、一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算 机在用户设备中执行如权利要求 1至 11中任一项所述的信道状态信息的反馈方法, 或者执行如权利要求 32或 33所述的信道状态信息参考信号的传输方法。
PCT/CN2013/071030 2013-01-28 2013-01-28 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站 WO2014113992A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13872776.3A EP2950458A4 (en) 2013-01-28 2013-01-28 FEEDBACK METHOD FOR CHANNEL STATUS INFORMATION, METHOD FOR TRANSMITTING CHANNEL STATUS INFORMATION REFERENCE SIGNALS, USER DEVICE AND BASE STATION
CN201380069066.XA CN104919717A (zh) 2013-01-28 2013-01-28 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站
KR1020157020374A KR20150100909A (ko) 2013-01-28 2013-01-28 채널 상태 정보 피드백 방법, 채널 상태 정보 참조 신호 송신 방법, 사용자 장비 및 기지국
PCT/CN2013/071030 WO2014113992A1 (zh) 2013-01-28 2013-01-28 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站
KR1020177008763A KR20170040367A (ko) 2013-01-28 2013-01-28 채널 상태 정보 피드백 방법, 채널 상태 정보 참조 신호 송신 방법, 사용자 장비 및 기지국
JP2015554007A JP2016511566A (ja) 2013-01-28 2013-01-28 チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局
US14/797,342 US9379792B2 (en) 2013-01-28 2015-07-13 Method for feeding back channel state information, method for transmitting channel state information reference signal, UE and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071030 WO2014113992A1 (zh) 2013-01-28 2013-01-28 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/797,342 Continuation US9379792B2 (en) 2013-01-28 2015-07-13 Method for feeding back channel state information, method for transmitting channel state information reference signal, UE and base station

Publications (1)

Publication Number Publication Date
WO2014113992A1 true WO2014113992A1 (zh) 2014-07-31

Family

ID=51226862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071030 WO2014113992A1 (zh) 2013-01-28 2013-01-28 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站

Country Status (6)

Country Link
US (1) US9379792B2 (zh)
EP (1) EP2950458A4 (zh)
JP (1) JP2016511566A (zh)
KR (2) KR20170040367A (zh)
CN (1) CN104919717A (zh)
WO (1) WO2014113992A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450332A (zh) * 2014-08-18 2016-03-30 电信科学技术研究院 一种三维信道状态信息确定方法及装置
CN105827370A (zh) * 2015-01-07 2016-08-03 北京信威通信技术股份有限公司 Pdsch进行二维预编码时csi-rs的发送方法
CN106209194A (zh) * 2015-04-29 2016-12-07 北京信威通信技术股份有限公司 二维mimo系统的csi-rs传输方法
CN106470052A (zh) * 2015-08-14 2017-03-01 财团法人工业技术研究院 动态波束形成方法和使用所述方法的基站和用户设备
US9954592B2 (en) 2013-03-11 2018-04-24 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
US10038530B2 (en) 2015-08-14 2018-07-31 Industrial Technology Research Institute Method of transmitting and receiving CSI-RS and related apparatuses using the same
JP2018529268A (ja) * 2015-08-14 2018-10-04 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 情報フィードバック方法、情報フィードバック装置および端末
JP2018530947A (ja) * 2015-08-24 2018-10-18 電信科学技術研究院 コーディング指示情報の伝送及びプリコーディングマトリックス確定の方法と装置
JP2018534836A (ja) * 2015-09-25 2018-11-22 華為技術有限公司Huawei Technologies Co.,Ltd. マルチアンテナチャネル測定方法及び装置
US10841057B2 (en) 2016-08-08 2020-11-17 Futurewei Technologies, Inc. Systems and methods for UE-specific beam management for high frequency wireless communication

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204305A (ja) 2013-04-05 2014-10-27 株式会社Nttドコモ 無線通信システム、無線基地局装置、およびユーザ装置
EP2996375B1 (en) 2013-05-09 2018-07-25 Fujitsu Limited Mobile station and reporting method
WO2015021596A1 (en) * 2013-08-13 2015-02-19 Nec(China) Co., Ltd. Methods and apparatuses for channel estimation and feedback in a three-dimensional multiple input and multiple ouput system
JP6608375B2 (ja) 2014-01-28 2019-11-20 富士通株式会社 情報構成方法、情報構成装置及び通信システム
US10224993B2 (en) * 2014-05-02 2019-03-05 Lg Electronics Inc. Beamforming method in multi-antenna wireless communication system and apparatus for same
US10299250B2 (en) 2014-11-07 2019-05-21 Acer Incorporated Device of reporting control information
US10085241B2 (en) * 2014-11-07 2018-09-25 Acer Incorporated Device of reporting control information
WO2016111427A1 (ko) 2015-01-05 2016-07-14 엘지전자 주식회사 무선 통신 시스템에서 안테나의 편파 특성을 이용한 채널 상태 정보의 구성 방법 및 이를 위한 장치
EP3251228A1 (en) * 2015-01-30 2017-12-06 Telefonaktiebolaget LM Ericsson (publ) A csi report framework for enhanced separate dimension feedback
CN106302269B (zh) * 2015-06-04 2020-06-23 电信科学技术研究院 一种信道状态信息的反馈及其控制方法及装置
US9882617B2 (en) 2015-11-16 2018-01-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for reporting precoding information in a communication network
KR102527279B1 (ko) * 2015-11-18 2023-04-28 삼성전자주식회사 이동통신 시스템에서 채널 상태 정보의 송수신 방법 및 장치
CN107181513B (zh) * 2016-03-11 2021-01-22 电信科学技术研究院 一种信道状态信息的反馈方法及装置
US10056956B2 (en) * 2016-03-24 2018-08-21 Samsung Electronics Co., Ltd. Precoder codebook for CSI reporting in advanced wireless communication systems
JP6420934B2 (ja) * 2016-07-07 2018-11-07 株式会社日立製作所 無線システム、およびそれを用いた昇降機制御システム、変電設備監視システム
KR20190041578A (ko) 2017-10-13 2019-04-23 주식회사 브이밸류 개인 체중관리 서비스 제공 시스템 및 방법
CN111628807A (zh) * 2019-02-28 2020-09-04 英国电讯有限公司 Mimo系统中的信道估计
CN114879138B (zh) * 2022-07-13 2022-09-27 广东大湾区空天信息研究院 一种毫米波雷达二维角度计算方法、装置及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877865A (zh) * 2009-04-30 2010-11-03 中兴通讯股份有限公司 发送测量参考信号的方法、系统以及基站和中继站
CN102195755A (zh) * 2010-03-10 2011-09-21 松下电器产业株式会社 反馈双极化天线的预编码矩阵索引的方法和设备
WO2012005476A2 (ko) * 2010-07-05 2012-01-12 (주)팬택 송신장치 및 그 통신방법, 수신장치, 그 통신방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2375604T (pt) * 2009-01-07 2018-11-14 Sun Patent Trust Aparelho de comunicação sem fio, sistema de comunicação sem fio e método de comunicação sem fio
US8537658B2 (en) * 2010-08-16 2013-09-17 Motorola Mobility Llc Method of codebook design and precoder feedback in wireless communication systems
US9154988B2 (en) 2010-12-06 2015-10-06 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and device therefor
US8817647B2 (en) * 2011-02-15 2014-08-26 Mediatek Inc. Priority rules of periodic CSI reporting in carrier aggregation
JP5449231B2 (ja) * 2011-02-18 2014-03-19 三菱電機株式会社 車両無線装置
CN102857285B (zh) * 2011-06-30 2017-11-03 中兴通讯股份有限公司 信道信息反馈方法及装置
US9119209B2 (en) * 2012-03-30 2015-08-25 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
US9397738B2 (en) * 2012-05-17 2016-07-19 Qualcomm Incorporated Codebook and feedback design for high order MIMO

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877865A (zh) * 2009-04-30 2010-11-03 中兴通讯股份有限公司 发送测量参考信号的方法、系统以及基站和中继站
CN102195755A (zh) * 2010-03-10 2011-09-21 松下电器产业株式会社 反馈双极化天线的预编码矩阵索引的方法和设备
WO2012005476A2 (ko) * 2010-07-05 2012-01-12 (주)팬택 송신장치 및 그 통신방법, 수신장치, 그 통신방법

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954592B2 (en) 2013-03-11 2018-04-24 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
CN105450332A (zh) * 2014-08-18 2016-03-30 电信科学技术研究院 一种三维信道状态信息确定方法及装置
CN105450332B (zh) * 2014-08-18 2019-02-05 电信科学技术研究院 一种三维信道状态信息确定方法及装置
CN105827370A (zh) * 2015-01-07 2016-08-03 北京信威通信技术股份有限公司 Pdsch进行二维预编码时csi-rs的发送方法
CN105827370B (zh) * 2015-01-07 2019-06-21 北京信威通信技术股份有限公司 Pdsch进行二维预编码时csi-rs的发送方法
CN106209194A (zh) * 2015-04-29 2016-12-07 北京信威通信技术股份有限公司 二维mimo系统的csi-rs传输方法
US10039104B2 (en) 2015-08-14 2018-07-31 Industrial Technology Research Institute Dynamic beamforming method and related apparatuses using the same
US10038530B2 (en) 2015-08-14 2018-07-31 Industrial Technology Research Institute Method of transmitting and receiving CSI-RS and related apparatuses using the same
EP3349368A1 (en) * 2015-08-14 2018-07-18 Industrial Technology Research Institute Dynamic beamforming method and related apparatuses using the same
TWI633765B (zh) * 2015-08-14 2018-08-21 財團法人工業技術研究院 傳輸和接收csi-rs方法以及使用該方法的基地台和使用者設備
JP2018529268A (ja) * 2015-08-14 2018-10-04 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 情報フィードバック方法、情報フィードバック装置および端末
EP3131211A3 (en) * 2015-08-14 2017-03-29 Industrial Technology Research Institute Dynamic beamforming method and related apparatuses using the same
CN106470052A (zh) * 2015-08-14 2017-03-01 财团法人工业技术研究院 动态波束形成方法和使用所述方法的基站和用户设备
CN106470052B (zh) * 2015-08-14 2019-10-25 财团法人工业技术研究院 动态波束形成方法和使用所述方法的基站和用户设备
JP2018530947A (ja) * 2015-08-24 2018-10-18 電信科学技術研究院 コーディング指示情報の伝送及びプリコーディングマトリックス確定の方法と装置
JP2018534836A (ja) * 2015-09-25 2018-11-22 華為技術有限公司Huawei Technologies Co.,Ltd. マルチアンテナチャネル測定方法及び装置
US10530450B2 (en) 2015-09-25 2020-01-07 Huawei Technologies Co., Ltd. Multi-antenna channel measurement method and apparatus
US10841057B2 (en) 2016-08-08 2020-11-17 Futurewei Technologies, Inc. Systems and methods for UE-specific beam management for high frequency wireless communication

Also Published As

Publication number Publication date
US9379792B2 (en) 2016-06-28
EP2950458A1 (en) 2015-12-02
EP2950458A4 (en) 2016-11-16
KR20150100909A (ko) 2015-09-02
JP2016511566A (ja) 2016-04-14
CN104919717A (zh) 2015-09-16
KR20170040367A (ko) 2017-04-12
US20150318909A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2014113992A1 (zh) 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站
KR102198018B1 (ko) 무선 통신 네트워크에서 프리코더 파라미터들을 결정하기 위한 방법들 및 디바이스들
WO2018126988A1 (zh) 信道状态信息的反馈、确定方法及装置
CN111342912B (zh) 一种信道测量方法和通信装置
WO2015101109A1 (zh) 一种信道状态信息测量、参考信号的发送方法和装置
WO2016165652A1 (zh) 信道信息反馈方法及装置
TWI716612B (zh) 在多輸入多輸出系統中預編碼選擇的裝置以及方法、製造預編碼選擇的裝置的方法以及構造具有預編碼選擇的裝置的積體電路的方法
TWI622276B (zh) Channel state information acquisition method, channel state information feedback method and device
WO2016169213A1 (zh) 一种信道信息的获取方法和装置
CN111342913B (zh) 一种信道测量方法和通信装置
WO2016065557A1 (zh) 码书确定方法、装置以及通信系统
Yin et al. A partial channel reciprocity-based codebook for wideband FDD massive MIMO
JP2024502789A (ja) 信号プリコーディング
WO2014153681A1 (zh) Mimo系统中的多天线信道码本反馈方法及装置
WO2023063844A1 (en) Devices and methods for generating compressed channel state information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872776

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013872776

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013872776

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015554007

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157020374

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE