WO2014113900A2 - Dispositivo de embalaje - Google Patents

Dispositivo de embalaje Download PDF

Info

Publication number
WO2014113900A2
WO2014113900A2 PCT/CL2014/000010 CL2014000010W WO2014113900A2 WO 2014113900 A2 WO2014113900 A2 WO 2014113900A2 CL 2014000010 W CL2014000010 W CL 2014000010W WO 2014113900 A2 WO2014113900 A2 WO 2014113900A2
Authority
WO
WIPO (PCT)
Prior art keywords
packaging device
gras
active agent
precursor
tartaric acid
Prior art date
Application number
PCT/CL2014/000010
Other languages
English (en)
French (fr)
Other versions
WO2014113900A3 (es
Inventor
Andrés DE WITT HEPP
Juan Pablo Zoffoli Guerra
Soledad SANTIAGO NUÑEZ
Jessica Evelyn RODRIGUEZ FARIAS
Thomas Andreas HANKE WUTSCHECK
Original Assignee
Quimas S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51228143&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014113900(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Quimas S.A. filed Critical Quimas S.A.
Publication of WO2014113900A2 publication Critical patent/WO2014113900A2/es
Publication of WO2014113900A3 publication Critical patent/WO2014113900A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/144Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/144Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23B7/152Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O ; Elimination of such other gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/02Packaging agricultural or horticultural products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/04Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Definitions

  • the present invention relates to packaging devices for the preservation of food, agricultural products and botanical species, constituted by plastic material coextruded in one or more layers, and / or a combination of polymers, plastics and waxes, and / or a combination of plastic and paper In them, at least one of its layers contains active ingredients type GRAS (Generally Recognized As Safe), volatile organic compounds that generate gases with antimicrobial properties and are safe to use for the consumer and the environment.
  • GRAS Generally Recognized As Safe
  • the deterioration caused by microorganisms in food, agricultural products and botanical species, which require periods of prolonged storage, is chemically controlled in a process that includes in an initial stage the sanitization, reduction or elimination of surface or primary contamination (living microorganisms, inoculums or conidia); and in a second stage that prevents the development of mycelium of primary infections. Secondary infection is prevented depending on the primary. Therefore, the more effective the sanitization, the better the overall control of the microorganisms. Both processes can be performed in the same operation or in separate operations. The effectiveness of each treatment depends on the sensitivity of the treated product, the exposure time and the concentration used.
  • a prolonged exposure time allows greater protection of the products.
  • Higher concentrations of the fungicidal agent improve rot control, however, the effects of phytotoxicity on treated products should be considered, in addition to the efficiency of the application from an economic and environmental point of view. In the same way, the continued use of certain chemical disinfectants can lead to the selection of resistant microorganisms.
  • Sulfur dioxide gas has been found to be especially effective against molds and fungi and has been widely used to control the decomposition by gray mold (Botrytis cinérea sp) in grapes and other fresh produce. To date, it has not been possible to replace the SO2 with another fungicidal agent applicable in post-harvest of grapes, being the treatment with S0 2 an indispensable necessity to guarantee the quality of the fruit in its commercialization.
  • GRAS products are among the most widely accepted alternatives for use in food. GRAS, is the acronym used for the phrase Generally Recognized As Safe, which refers to the set of substances added to food, which do not require approval by the Fooo "Administration Agency (FDA), for their specific use.
  • FDA Administration Agency
  • the FDA offers a notification program for a substance under the GRAS category, which is voluntary.
  • the notification criteria and subsequent publication by the FDA is based on the scientific evidence associated with the safety of the substance for the intended use, which must be supported by publications in journals in the field. Additionally, it is based on the prolonged use of the substance in the industry, on a significant number of consumers.
  • GRAS substances under two main categories: GRAS substances added directly to food intended for human consumption, and GRAS substances added indirectly. With respect to the substances belonging to this second category, only the use of these is authorized, through the migration to the food from a wrapper, container or any other surface in contact with the food. In both cases, it should be used under the purpose and dose for which it was recognized as GRAS.
  • FDA Food and Drug Administration
  • GRAS generally recognized as safe
  • These substances are recognized by a group of qualified experts, as elements that have proven safe in certain uses, and therefore do not require approval by the US FDA. They are therefore constituted in packaging solutions for "consumer pack", in addition to being a viable alternative for the market of organic products and with restrictions for the use of pesticides.
  • GRAS compounds with fungicidal properties include: sodium acetate, sodium benzoate, sodium bicarbonate, sodium carbonate, sodium citrate, sodium lactate, sodium propionate, sodium sorbate, sodium tartrate, potassium sorbate, potassium propionate, potassium carbonate, potassium bicarbonate, potassium benzoate, lactic acid, hydrogen peroxide, ascorbic acid, acetic acid, ethanol, hexanol, chlorine, chlorine dioxide, thymol, carvacrol, and others.
  • beneficial substances such as antimicrobials, antioxidants, flavorings, etc.
  • interactions between the food and the container occur, which can be based on the regulation of the content of gases (oxygen, carbon dioxide, ethylene, etc.), on the control of humidity (anti-fog additives, absorbents, etc. ), in the action of various enzymes (control of cholesterol and lactose) and in the release of antimicrobial substances (ethanol, chelating agents, organic acids, sulfur or chlorine dioxide, antibiotics, bactericides and fungicides).
  • gases oxygen, carbon dioxide, ethylene, etc.
  • humidity anti-fog additives, absorbents, etc.
  • antimicrobial substances ethanol, chelating agents, organic acids, sulfur or chlorine dioxide, antibiotics, bactericides and fungicides.
  • the first active packaging systems that were developed were those separated from food and packaging in the form of sachets or sachets.
  • integrated designs are developed in the container (on the walls of a film, tray, bottle, in the intermediate layer of multilayer structures) or in its lid, in the form of labels, hot-melt, adhesive tapes, gaskets and / or plugs
  • the active component there are two ways to apply the active component to the package: a) Active ingredient inside the container by using small bags or sachets containing the active substance (substances that act by absorbing oxygen, C0 2, moisture, etc. ). These bags are made of a material permeable that, on the one hand, allows the active compound to act and, on the other, prevents its contact with the food. These devices must be resistant to breakage and also be conveniently labeled. b) Active component included in the packaging material: they were developed as an alternative to the above, and are constituted in packaging materials, synthetic and edible films, which contain the active substance in their structure (additives, antimicrobial agents, enzymes, etc.). ).
  • the antimicrobial plastic films in development constitute a technique of great potential since they allow a slow release and incorporation into the food of bactericidal or fungicidal substances compatible with food.
  • oxygen absorbers in the form of small bags or labels based on iron powder
  • systems that remove ethylene produced by certain fruits and vegetables whose senescence (maturity) is accelerated by the presence of this substance
  • spraying of ethanol widely used in bakery and bakery products since it reduces mold growth, among others.
  • the following ingredients can be used: ethanol, sulfur dioxide, chlorine dioxide, organic acids, essential oils, chelating compounds (EDTA), metals (silver), enzymes (glucose oxidase, muramidase), bacteriocides , antibiotics and fungicides.
  • Ethanol is a good antimicrobial agent resulting effective in the form of steam.
  • Low concentrations of alcohol (20% v / v) show a persistent action on microorganisms. It usually occurs in envelopes where ethanol is adsorbed to silica gel, gradually releasing through its walls whose permeability is selective.
  • some of the active materials used as additives in plastic films with antimicrobial effect are: silver ions, organic acids, and enzymes (nisin, muramidase). They constitute a technique of great potential since they allow a slow release and incorporation into the food of bactericidal or fungicidal substances perfectly compatible with food.
  • Patent application WO 2009/051594 A1 which is a continuation of US patent application No. 11 / 873,575 describes an article intended to generate and release gas, consisting essentially of a polymer and a solid gas generator incorporated at. It is a multi-layer coextruded film; in which the inner layer is an olefin, such as a low density polyethylene (LDPE) that allows water vapor to enter the active layer and thus generate sulfur dioxide gas.
  • LDPE low density polyethylene
  • Said sulfur dioxide gas prevents, retards, controls and kills microorganisms from food, agricultural crops and contaminated botanical species.
  • the medium and third layers of the film or sheet consist of a polymeric mixture with a precursor salt that generates moisture activated sulfur dioxide gas.
  • These salts include sodium sulfite, sodium metabisulfite or sodium bisulfite, which are dispersed in an LDPE polymer.
  • the article generates a rapidly released gas, followed by a slow-release gas, in response to moisture.
  • the proposed solution differs considerably from the present invention in that the active ingredients used are not subject to restrictions to be used in foods since they are of the GRAS type, while in the prior art it is described that the films comprise active substances that release SO2 .
  • ES Patent No. 2,172,872 describes a chlorine generator used to preserve fruits and vegetables.
  • the generator includes a first layer consisting of paper or polyethylene that is permeable to moisture and gases and has a weight of 20 to 70 g / m 2 (preferably coated with polyethylene weighing 5 to 25 g / m 2 ) , and a second layer consisting of polyethylene weighing 25 to 70 g / m 2 and a thickness of 10 to 17 micrometers.
  • These layers are joined together by one or more joints, such that they form at least one pocket between them. That pocket contains a hypochlorite material that releases active chlorine gas by reacting with the moisture of the fruits and vegetables that are being preserved.
  • the first layer is preferably paper, and more preferably, it is made of "laja" paper.
  • the second layer is preferably a microperforated polyethylene film. The joints between these two layers are preferably heat sealed. It has been found that the preferred embodiment of this invention is particularly effective in the control of cinematic Botrytis in grapes.
  • the present invention differs from that mentioned in the constitution of the generator. Indeed, in the case of the present invention, it is a generator formed by a coextruded polymer of 1 or more layers, a structure of which hypochlorite and / or the chlorine gas releasing compounds are part. In this there is no possibility of breakage that can cause the active ingredient to come into contact, as a solid, in food, since it is closely associated with the polymer particles.
  • the present invention differs in that a controlled delivery of the active ingredient in its gaseous form, which prevents damage from excessive concentrations or by the presence of the salt of the active ingredient as a solid.
  • the gaseous emission in the invention is prolonged for a longer period of time, which ensures a prolonged fungicidal effect.
  • U.S. Patent 7,915,325 B2 describes a food packaging of mono or multilayer plastic material, where at least one layer comprises a metal, either Ag, Cu, Sn, or Zn or mixtures thereof, with antimicrobial activity.
  • the proposed solution differs considerably from the present invention in the active ingredients used, metal ions versus GRAS products, harmless to be used in food. It also differs in the manufacturing process and in the way that metal ions act in the food.
  • the polymers have antimicrobial effects on their surface due to the presence of metal ions, and also due to their mobility in the film.
  • the gas of GRAS compounds that is generated on the entire surface of the film migrates to the environment surrounding the food and the food itself, protecting of new infections from the environment and inoculums of the same food, agricultural product or botanical species.
  • patent application JP2003250443 describes a package to maintain the freshness of fruits and vegetables avoiding fungal rot.
  • This consists of an air permeable polymeric film inside which fruits or vegetables are placed, and containing an ethanol concentration of 0.001-3% w / w in the sealed container.
  • the polymeric film consists of 1 micropore in an open area.
  • the concentrations of oxygen, carbon dioxide and ethanol should be: 0.5-10% w / w, 10-25 w / w and 0.001-3% w / w ( preferably 0.05-0.5% w / w), respectively.
  • the present invention differs in that ethanol or another alcohol is formulated as a gel and contained in a sachet or sachet consisting of paper, plastic and waxes.
  • EP 0867125 describes a natural antiseptic for use in foods that considers ethanol among its ingredients. It is a mixture of hemicellulose combined with ethanol, glycine, lysine or glycerol ester, which is added directly in the preparation of products such as fish paste, noodles, and salads.
  • the present invention differs in that ethanol or other alcohol, is formulated as a gel and is contained in a sachet or sachet consisting of paper, plastic and waxes, used externally to food, agricultural products and botanical species.
  • the film with Thymol has an antimicrobial effect only on its surface when contacting the food, instead in the present invention the gas of GRAS compounds that is generated on the entire surface of the film migrates to the environment surrounding the food and the food itself, protecting of new infections from the environment and inoculums of the same food, agricultural product or botanical species.
  • the objective of the present invention is to obtain gas precursor formulations of GRAS products, mainly solids and gels, which are more stable, allow storage under ambient conditions and are easy to handle.
  • the present invention provides, solid or gel formulations, precursors of gaseous GRAS products, which are incorporated in devices generating said gases
  • Vaporization or gasification of GRAS products from liquid formulations occurs in short periods of time and cannot be controlled, so it is not possible to use them in commercial packaging processes.
  • GRAS products be more stable at room temperature, generate gases that can be distributed homogeneously in a given space and for a prolonged or sufficient period of time to control the pathogens that cause rot. .
  • the creators of the present invention have surprisingly found that formulations in gels or powders of GRAS products, in conjunction with a controlled release system, or gas generating device, used during storage, provide the necessary packaging conditions to prevent them from occurring infections or rot in food products, agricultural or other botanical species, such as preservation of healthy grapes inside the packaging box for distribution and marketing.
  • the present invention relates to packaging devices comprising gas generating systems whose active agent is selected from one or more products of the GRAS type.
  • gas generating systems whose active agent is selected from one or more products of the GRAS type.
  • the GRAS compounds in solid formulations (powder) and gels incorporated into sachet and / or sheets and / or films, have a gas emission curve with a determined pattern in terms of volumes issued and emission times. Such patterns are measurable and reproducible, and determine the potential of GRAS assets in the devices of the invention, to control microbiological problems, both in intensity and in protection period.
  • controlled gas emission curves of the GRAS products have been generated in the gas generating devices, which confirms them successfully, as antimicrobials or fungicides for the control of microbiological problems, in individual packages and in packaging systems. commercial.
  • the present invention provides a gas releasing device that hereafter referred to as "gas generator”.
  • gas generator comprises a coextruded plastic film formed by one or more layers, and / or a combination of polymers, plastics and waxes, and / or a combination of plastic and paper and active components of the GRAS type.
  • Such compounds release gases with fungicidal and / or fungistatic effect by reacting with the moisture generated by the packaged products.
  • the invention comprises generators of different active ingredients GRAS, volatile organic compounds that have the common objective of preventing, retarding control, delaying or killing microbiological contamination in food, agricultural products and botanical species.
  • These generators supply gases of the GRAS type for antimicrobial control or to delay the unwanted microbial effect on packaged foods, agricultural crops and botanical species at levels that allow them to extend the shelf life and prevent deterioration of their quality.
  • the proposed invention considers seven particular active agents: Chlorine dioxide, chlorine gas, ethanol, propanol, acetic acid, formic acid and 1-Methylcyclopropene (1- MCP), which are generated from the structure of the gas generating device.
  • the gas generator of the present invention considers the inclusion of GRAS compounds in sachets and sachets and sheets that are included in the package of food, agricultural products and botanical species or, in a mono or multilayer coextruded film or film, which It is included in the package or is part of the packaging material of food, agricultural products and botanical species.
  • the mono or multilayer coextruded film, containing it or the GRAS active ingredients may be designed as a bag, envelope, pad, foam, insert, tray, cover, film liner, foil or other container container.
  • the devices are as defined below:
  • Sachets are made up of two layers, both formed of plastic film and / or plasticized paper and the GRAS ingredient in compounds formulated as solids or gels.
  • the plastic films are all materials with permeabilities such that they allow gas and water vapor exchange so that the reaction of moisture with the GRAS compound occurs, to generate the necessary gas around the food or on its surface, to allow antimicrobial effect.
  • the products are applied in liquid form, which alters the organoleptic conditions of the food, and the concentrations are not controlled, producing excesses or faults of the ingredient, which do not allow an effectiveness in the function of microbiological control, and in some cases make their extraction necessary.
  • Plastic sheet or generator This type of film is obtained by a lamination process and has at least 2 layers, up to 5 or more. In the case of 2 layers, there is a layer formed by a polymer smaller than 16 ⁇ , which for one phase is coated with a wax material combined with the solid compound that generates the active agent.
  • the 3-layer plastic sheet or generator includes: the first layer exposed to the product or filter; the second and third formed by a polymer that for one phase is coated with ⁇ wax material combined with the solid compound that generates the active agent.
  • Mono or multilayer coextruded films or films are packaging materials that have the GRAS active substance precursor incorporated into their structure, by means of a coextrusion process, which has not been previously described. The previous technology corresponds to the films provided by the firm QUIMAS, with its Smartpac product that corresponds to a coextruded film that contains as active agent for microbiological control, SO2, and not a GRAS product.
  • Coextruded films or films have the advantage that the gas generation of the active component is homogeneous over the entire surface of the film, which facilitates the contact of the gas with the surface of the food, agricultural product, and botanical species, which is He wants to protect. In addition, they allow a controlled release of antimicrobial or fungicidal substances compatible with food.
  • the coextrusion of the active substance GRAS with the polymers eliminates the possibility of losses of salts of GRAS compounds that can be caused by breakage of the material, so that the consumer or final recipient of the food, which is packaged with this type of film that contains the GRAS product, you will never find any foreign element in the purchased product.
  • Smartpac QUIMAS technology is used with precursor agents that generate the following gases of the GRAS type: chlorine dioxide, gaseous chlorine, acetic acid and 1-MCP or 1-Methylcyclopropene.
  • the present invention contains as main active agents GRAS products, characterized by being exempt from maximum residue limits (MRLs) and tolerances, which are in the list of accepted products to be used directly in food for humans according to the Department of Health Services of the US Food and Drug Administration (FDA) Therefore, the present invention provides a double security to the consumer and the environment, since in addition to using harmless products of the GRAS type, they are generating devices whose characteristics make them constitute a barrier that eliminates the possibility that the active ingredient, solid or gel, deposit as such in the treated product.
  • the active compound by the action of humidity and / or temperature is transformed into gas, and it is this which produces the control of the deterioration in the treated product.
  • the GRAS active ingredients used in the present invention in addition to being considered substances authorized to be used in food, without requiring registration processes or specific tolerances, act and come into contact with the food in its gaseous form, not in its liquid form, mainly avoiding the formation of stains, unwanted odors, salt deposits, etc.
  • the gas generators of the present invention allow an emission of the antimicrobial or fungicidal agent for a longer period of time than a liquid formulation, enabling food protection for longer periods, and therefore a longer food storage life. , agricultural products and botanical species.
  • Figure 1 Microscopic cross-sectional image of co-extruded three-layer film with active ingredient in the central layer. Corresponds to film with Quimas Smartpac technology, with active ingredient sodium metabisulfite in the central layer. Image obtained with an Olympus BX50 microscope, cut with a CUT 4060 - Slee ainz microtome at approximately 10 microns, and 20X magnification.
  • FIGS 2A to 2E Emission pattern of acetic acid (AA) gas generating devices, under controlled conditions of temperature and humidity. The variation of the emission is indicated according to the ratio of the components in the premix, tartaric acid and acetate, and also to the particle size of the compounds. In the same way, the storage capacity of acetic acid devices is evaluated.
  • AA acetic acid
  • Figure 2A Emissions of AA in 11 liter boxes with different proportions of tartaric acid keeping 1 g of acetate constant;
  • Figure 2B Emissions of AA in 1 liter boxes with the 1: 3 ratio of acetate and tartaric acid, for 2 particle sizes of the active ingredients (20 ⁇ and 53 ⁇ );
  • Figure 2C Emissions of AA in 11-liter boxes with different proportions of tartaric acid keeping 1 g of acetate constant with particles smaller than 20 ⁇ in diameter;
  • Figure 2D Emissions of AA in boxes of 11 liters from sachet stored for 0, 3 and 7 days;
  • Figure 2E AA emissions in 11 liter box system from AA films or coextruded film at 141, 8 cm 2 / L.
  • Figure 3 Emission pattern of a solid formulation of acetic acid from sachet and sheets as a function of time, measured at room temperature around 20 ° C and cold at 0 ° C.
  • Figure 4 Pattern of cumulative emissions of a solid formulation of acetic acid from sheets as a function of time, measured at different temperature regimes. On the first day the temperature was approximately 20 ° C, then it was lowered to 0 ° C, to later return to environmental conditions with about 20 ° C.
  • Figure 5 Emissions pattern of a solid formulation of propanol from sachet and sheets as a function of time, measured at room temperature around 20 ° C and cold at 0 ° C.
  • Figure 6 Cumulative emission pattern of a solid propanol formulation from sheets as a function of time, measured at different temperatures. The first day the temperature was about 20 ° C and then it was lowered to 0 ° C.
  • Figure 7 Graph representing the results on the control of cinematic Botrytis from a first trial. The percentage of severity of damage or progress of gray rot is indicated, in the average of Thompson Seedles cv table grape berries for GRAS products of the invention, and SO2 applied in 11-liter boxes. The measurement was performed for a control or control without treatment, acetic acid (AA) in sachet, formic acid (AF) in sachet, ethanol gel in sachet, propanol gel in sachet and generator of S0 2 . Equal letters indicate that the averages between treatments are statistically similar according to the LSD test, p ⁇ 0.05. When indicated below 25% 49-25%; greater than 50%: refers to the average percentage of area of the affected berries.
  • Figure 8 Graph representing the results on the control of cinematic Botrytis from a second trial. The percentage of severity of damage or progress of the gray rot is indicated, in the average of table grape berries cv Thompson Seedles for GRAS products of the invention and S0 2 applied in boxes of 11 liters. The measurement was performed for a control or control without treatment, acetic acid (AA) in sachet, formic acid (AF) in sachet, ethanol gel, propanol gel and S0 2 . Equal letters indicate that the averages between treatments are statistically similar according to the LSD test, p ⁇ 0.05. When less than 25% is indicated; 49-25%; greater than 50%: refers to the average area percentage of the affected berries.
  • Figure 9 Graph representing the results on the control of cinematic Botrytis in percentage of severity of damage or progress of gray rot; and the presence of stain damage in the average table grape berries cv Thompson Seedles inoculated This occurs for different concentrations of active product or acetic acid (AA) in the premix. and then storage for 5 days at 20 ° C.
  • AA active product or acetic acid
  • the present invention comprises sachet or plastic sheets with GRAS products, which are used within the individual packages of food, agricultural products and botanical species, and have a prolonged antimicrobial effect, compared to existing liquid or other treatments, which have a effect that does not extend beyond the period of immersion or spray application.
  • the problems of handling a liquid product in contact with food or other products of plant origin are avoided.
  • the present invention also points to a coextruded film, mono or multilayer, with powdered precursor compounds of GRAS gases, such as acetate salts, which can be part of the packages containing the food, generating an active antimicrobial or fungicidal action, of prolonged protection towards food, agricultural products and botanical species, -in the presence of moisture.
  • This device, mono or multilayer can be used as films, liners, covers, pads and bags. That is to say, as elements contained in a container, for example sheet, or as actual containers, for example container bags.
  • the present invention makes it possible to adapt GRAS compounds, so that they are suitable for storage, transport and use for microbiological control in food, agricultural products and botanical species in commercial operations.
  • the present invention also allows a safe, consistent and convenient use of gases in the microbiological control of food, agricultural products and botanical species. .
  • Ethanol Liquid ethanol is formulated in gel, to be incorporated into a sachet that is used inside food containers or other products of plant origin. In these, the ethanol gel reacts with room temperature and emits ethanol gas in a controlled manner for a prolonged period of time, which has fungicidal and fungistatic effects. The emission of ethanol gas from the generating device used in individual food or other containers, allows to extend the shelf life of the product, in relation to what is obtained with the liquid ethanol formulation.
  • Propanol Liquid propanol is formulated in gel, to be incorporated into a sachet that is used inside food or other containers. In these, the propanol gel reacts with room temperature and emits propanol gas in a controlled manner for a prolonged period of time, which has fungicidal and fungistatic effects. The emission of propanol gas from the generating device used in individual food or other containers, allows to extend the shelf life of the product in relation to what is obtained with the liquid formulation of propanol.
  • a compound formulated as a solid (or salt), a precursor of acetic acid gas, is used in order to incorporate it in a sachet or plastic sheets or in a film obtained by coextrusion.
  • Formic Acid A compound formulated as a solid (or salt), a precursor to formic acid gas, is used so that it can be incorporated into a sachet and plastic sheets. These two devices with the powdered compound, precursor of the active ingredient GRAS, when used in food packaging and by reaction with the moisture of them actively generate gas of formic acid in controlled quantities and for prolonged periods, which has fungicidal effects on food, prolonging its shelf life.
  • Chlorine Dioxide As a precursor of this gas, a composition of Sodium Chlorite in solid form is used, which is coextrusion incorporated into a plastic film. The film in the presence of moisture from food, plant products or botanical species, generates gaseous chlorine dioxide in controlled quantities and for prolonged periods, which has fungicidal effects on food, prolonging its useful life.
  • Gaseous Chlorine As a precursor of this gas a composition of calcium hypochlorite + calcium chloride in acidic medium, or calcium hypochlorite + sodium chloride is used. The solid composition is incorporated into plastic sheets and by coextrusion in a plastic film. The sheets and the film used in the packaging of food or other products of plant origin, with the production of moisture from these, generates gaseous chlorine in controlled quantities and for prolonged periods, which has fungicidal effects on food or others.
  • 1-MCP (1-Methylcyclopropene).
  • the powdered compound is incorporated by coextrusion to a plastic film, which reacts with the moisture of the food to emit the gas in controlled quantities and for prolonged periods. This gas controls the ripening of the fruits, which reduces their sensitivity to rot.
  • the film coextruded with 1-MCP used in fruit packaging allows a new postharvest treatment to be incorporated into the individual box or container, unlike the application in chamber or in bulk that existed until now.
  • the present invention provides gas releasing devices or gas generators, based on GRAS products (Ethanol, Propanol, Acetic acid, Formic Acid, Chlorine Dioxide, Gaseous Chlorine, 1-MCP (1- Methylcyclopropene )), for microbiological and maturation control in food, agricultural products and botanical species.
  • GRAS products Euthanol, Propanol, Acetic acid, Formic Acid, Chlorine Dioxide, Gaseous Chlorine, 1-MCP (1- Methylcyclopropene )
  • These generators include the compound or mixture of precursor compounds of the fungicidal gas, and a vehicle or structure that includes the compound or mixture of compounds. According to the above, in this invention precursor formulations of the following GRAS products have been prepared: W
  • the structures that include the compounds or mixture of compounds are: • Envelopes or sachet of Ethanol, Propanol, Acetic Acid and Formic Acid;
  • the envelopes or sachet are constituted of two layers formed of plastic film and / or plasticized paper that contain the ingredient G AS in compounds formulated in the form of solids or gels.
  • the structure comprises a layer of plasticized paper and / or Polyethylene, and a second layer of plasticized paper and / or polyethylene, where the active ingredient or agent is disposed between the two layers.
  • Plasticized paper and polyethylene are permeable to moisture and gases and have a weight of 20 to 50 g / m 2 and 20 to 30 g / m 2 , respectively.
  • the thickness can vary between 50 and 100 microns.
  • the layers are joined together by one or more joints, such that they form at least one pocket between them. This pocket contains the gas precursor compound in a solid or gel formulation, which, when reacted with moisture, generates the fungicidal gas.
  • the joints between the two layers are heat sealed and one of the layers is microperforated.
  • This sheet must have at least two layers, a polymer covered with wax material combined with the compound or mixture that generates the fungicidal gas, or three layers, adding to the above, a layer exposed to the product composed of a filter to avoid solid deposits.
  • the structure or film can be monolayer or multilayer, preferably three layer, as shown in the Figure 1, and is obtained by a coextrusion process.
  • This structure generates gas in a controlled manner in a rapid phase followed by a slow one in response to moisture.
  • the film or gas generator with fungicidal effects of the GRAS type can be part of the food packaging material, bag type or others.
  • the total thickness of the film structure reaches a maximum of 100 ⁇ (microns) and a minimum of 35 ⁇ .
  • the individual layers in the case of bilayer or multilayer film can have a minimum thickness of 6 ⁇ , and generally in a three-layer structure they fluctuate between 7 ⁇ to 60 ⁇ , depending on their functionality.
  • the active compound or mixture is incorporated in one or more of the polymer layers when it is a multilayer film, in the case of three layer, the active ingredient is generally incorporated in the intermediate polymer layer or in the single layer if it is monolayer.
  • the structure of an average film includes a proportion of between 10% to 16% of the active compound or mixture and therefore between 84% to 90% of the polymer.
  • the polymer that constitutes the layers is an olefin of the low density polyethylene type, with densities in values between 0.89 to 0.93 gr / cc.
  • the low density polyethylene has a permeability such that it allows water vapor to enter the layer containing the active compound GRAS, so that its activation occurs. In the same way, it allows the exit of the active GRAS gas so that it makes contact with the food, agricultural product or botanical species, inside the packaging and exerts the fungicidal action, protecting it from deterioration.
  • the GRAS compound (s) or mixture of GRAS compounds that are incorporated into one or more of the layers may have average particle sizes of 10 ⁇ and 20 ⁇ , and have size distribution curves, where 100% is under 10 ⁇ or up to 100 % under 53 ⁇ .
  • the smaller particles allow the rapid emission of the gas and the larger particles allow the gaseous emission to extend over time.
  • the precursor compounds or mixtures of the GRAS, Acetic Acid, Chlorine Dioxide, Chlorine Gas, and 1- CP gases used are: sodium acetate and tartaric acid; Calcium hypochlorite, tartaric acid, and calcium chloride; e Calcium hypochlorite and sodium chloride; sodium chlorite; and 1- methylcyclopropene.
  • the functionality of the coextruded film depends on the particle sizes of the active ingredients used, the thickness of the different layers that constitute it, the number of layers, and the concentration of the active ingredients, among others.
  • GRAS gas precursor compounds which are in liquid or solid state, were selected and prepared.
  • the generators of the present invention correspond to solid precursors of: acetic acid, formic acid, propanol, gaseous chlorine, chlorine dioxide and 1- CP. In addition to ethanol and propanol where the product was used in liquid formulation.
  • the preparation consisted mainly of grinding solid active agents.
  • the acetate and tartaric acid were milled in Netchsz-Chimetal mill, obtaining a particle size 100% under 20 ⁇ .
  • sodium acetate, sodium formate, Triisopropyl, tartaric acid, sodium chlorite, calcium hypochlorite, sodium chloride were ground in electric mortar to obtain two ranges of particle sizes, 53 ⁇ and 43 ⁇ , that is, particle under 270 mesh (53 ⁇ ) and 325 (43 ⁇ ).
  • Premixes of the precursor compounds of each of the GRAS products were prepared, depending on the gas generating device to be used. to.
  • the premixes prepared for sachet devices are as follows: Premixes of liquid alcohols, ethanol and propanol, with carbopol, for the formation of gels and; premixes of gas-generating salts of acetic acid and formic acid, to obtain solid mixtures.
  • acetic acid sodium acetate and tartaric acid were mixed in a ratio of 1: 3; and for formic acid, sodium formate and tartaric acid in a ratio of 1: 2.
  • the premixes prepared for sheet devices are as follows:
  • the generating compounds of acetic acid, formic acid, propanol and chlorine gas were mixed with waxes and / or hotmelt (wax or polyolefin) and then applied to the sheets by lamination.
  • Premixtures of each of the GRAS precursor compounds were prepared separately with low density polyethylene (PDBD) in a single extruder. This process is carried out at a temperature that does not exceed 140 ° C as a working temperature.
  • the different mixtures, low density polyethylene and active ingredient were extruded in a double vented extruder screw and cut into pellet form. In this way pellets of each of the precursor active ingredients were obtained.
  • the concentrations of the gas precursor compounds of the GRAS type in said pellets that is, sodium acetate, tartaric acid, sodium chlorite, calcium hypochlorite, calcium chloride, sodium chloride, and 1-MCP, fluctuated between 5 and 40% With this, the PDBD fluctuated between 95% and 60%. 3. Incorporation of the premix to different types of generators
  • Sachet are made by placing the premixes either in gel or powder between two layers of plasticized paper that are then heat sealed.
  • the premixes described above are incorporated into a film or polyester of less than 16 ⁇ , by a lamination process. This process is preferably performed by a roller mill. As explained above, generators or plastic sheets have 2 to 5 layers.
  • the coextruded film generator for example that of acetic acid, it was made using acetate premix + PDBD (low density polyethylene), in addition to tartaric acid premix + PDBD and PDBD premix, in proportions of 10%, 30% and 60% respectively.
  • a monolayer film with the capacity to generate acetic acid gas with fungicidal and fungistatic properties was obtained.
  • the extrusion temperature conditions were maintained below 40 ° C and above 0 ° C.
  • the layer with greater permeability to both water vapor and gases of GRAS compounds is found in the inner layers or that will be in contact with the food or the surrounding environment.
  • the layers of greater thickness have a more restricted permeability and therefore are on the outside, in such a way to limit the gaseous emission to the outside and thus avoid losses.
  • Acetic Acid gas generator an acetic acid gas precursor composition was prepared, which included sodium acetate and tartaric acid in proportions of 1: 3.
  • Acetic acid generating sachet are prepared including the composition or premix of sodium acetate and tartaric acid in plastic film structure and / or plasticized paper. Such a structure is composed of 2 layers that contain inside the precursor composition of the GRAS product.
  • the two outer layers of this structure are composed of polyethylene coated paper, which in the middle contains the precursor composition of the GRAS compound.
  • the mixture of sodium acetate and tartaric acid, in powder form, is placed between the two plastic coated sheets, and they are joined together at the peripheral edges by a thermal sealing process to form a pocket-like compartment.
  • Each sachet can contain 1 gr of sodium acetate and 3 grams of tartaric acid. In total 4 grams of mixture.
  • the plastic sheets generating acetic acid consist of 2 layers, a layer of polymer and a layer of the premix with wax.
  • the precursor acetic acid premix is incorporated into the polymer by a hot rolling process.
  • This lamination is done by mixing the composition of sodium acetate and tartaric acid, with wax and hotmelt, which is another type of wax that favors the adhesion of the compounds to the film.
  • the proportions are 10%, 30%, 50% and 10% respectively. This process is carried out at temperatures of 80 ° C.
  • the acetic acid generating film is obtained by a coextruction process using the sodium acetate premixes, tartaric acid and low density polyethylene premix.
  • the proportions of such premixes are 10%, 30% and 60% PDBD, that is, in the coextruded film there is tartaric acid, sodium acetate and PDBD, in proportions of 6: 2: 92, respectively. This is done in a monolayer extruder for loads of 6 kilos.
  • the film has a thickness that fluctuates between 80 and 100 ⁇ .
  • the precursor premix of formic acid gas comprises sodium formate and tartaric acid in proportions of 1: 2.
  • Plastic sachet formic acid generators are prepared including the premix of sodium formate and tartaric acid in plastic film structure and / or plasticized paper.
  • Such a structure is composed of 2 layers, which contain inside the GRAS precursor ingredient.
  • the two outer layers of this structure are composed of polyethylene coated paper, which in the middle contains the composition of the precursor agents.
  • the composition of formic acid precursor agents is a powder composition that is placed between the two plastic-coated sheets, and they are joined together at the peripheral edges by a thermal sealing process.
  • Each sachet can contain 1 g of sodium formate and 2 grams of tartaric acid. In total 3 grams of mixture.
  • the formic acid-generating plastic sheets consist of 2 layers, a polymer layer and a wax premix layer.
  • the precursor formic acid premix is incorporated into the polymer by a hot rolling process.
  • This lamination is done by mixing the composition of sodium formate and tartaric acid, with wax and hotmeit, which is another type of wax that favors the adhesion of the compounds to the film.
  • the proportions are 17%, 33%, 45%, 5%, respectively. This process is carried out at temperatures of 80 ° C.
  • Ethanol-generating plastic sachets were prepared including ethanol gel prepared according to the process described above.
  • the structure of the sachet is formed of 2 layers of plastic film that contains inside the gel of ethanol that generates gaseous ethanol, which is released into the environment.
  • the sachet were prepared at the time of use and contained 7 grams of ethanol gel in each.
  • a gel-based premix and a powder premix were obtained.
  • the gel formulation 300 ml of propanol were mixed with 18 g of carbopol (powder, commercial product) + (isopropanol) (liquid), with vigorous stirring, 200 g of gel were obtained and packed in plastic bottles until were incorporated into the application structure. Triisopropyl was used for the powder formulation.
  • Propanol-generating plastic sachets were prepared including the propanol gel prepared according to the process described above.
  • the sachet structure is formed of 2 layers, of low density polyethylene that contains the compound or mixture of propanol and carbopol that generates propanol in the middle.
  • the sachet were prepared at the time of use and contained 7 grams of propanol gel in each.
  • the propanol-generating plastic sheets consist of 2 layers, a polymer layer and a wax premix layer.
  • Propanol precursor premix is incorporated into the polymer by a hot rolling process. This lamination is done by mixing Triisopropyl, with wax and hotmeit, which is another type of wax that favors the adhesion of the compounds to the film. The proportions are, 30%, 60% and 10% respectively. This process is carried out at temperatures of 80 ° C.
  • EXAMPLE 5 CHLORINE DIOXIDE (CIO?)
  • Pellet or premix is obtained in extruder with Sodium Chlorite, with 5% and 10% active ingredient.
  • the chlorine dioxide generating film is obtained by a coextruction process using the pellet or premix 5% sodium chlorite and low density polyethylene.
  • This premix is added in a 40 to 50% to the extruder, with the remaining 60 and 70% being low density polyethylene pellets, that is, in the coextruded film there is sodium chlorite and PDBD, in proportions of 2 to 2, 5: 97.5 to 98, respectively. This is done in a monolayer extruder for loads of 6 kilos.
  • the film has a thickness that fluctuates between 80 and 100 ⁇ .
  • GAS CHLORINE GENERATORS EXAMPLE 6-A PLASTIC SHEET
  • the premixes of Hypochlorite + PDBD and Chloride + PDBD in ratios of 2: 1 were used in a larger portion of PDBD.
  • the second coextrusion was performed with 30% calcium hypochlorite premix + PDBD, PDBD premix * 15% sodium chloride and 55% low density polyethylene, in a low temperature process, 120 ° C.
  • a monolayer coextruded film with an average thickness of 100 ⁇ was thus obtained, with calcium hypochlorite, sodium chloride and PDBD, in proportions of 6: 3: 91, respectively.
  • Pellet or premix is obtained in extruder with 30-40% 1-Methylcyclopropene active ingredient.
  • the premix of 1-methylcyclopropene and low density polyethylene, 40% was incorporated into a gas-generating monolayer film through a coextruction process using the pellet or premix in 30 to 40% and low density polyethylene in a 60 and 70% This is done in a monolayer extruder for loads of 6 kilos.
  • the coextruded film obtained has a thickness that fluctuates between 80 and 100 ⁇ , with 1-methylcyclopropene and PDBD, in proportions of 16: 84, respectively.
  • the three types of devices with the proposed active agents have been obtained, and the gas release of the active agents under different conditions of temperatures and humidity has been measured.
  • the measurements were made through gas chromatography.
  • the purpose of these measurements is to determine the potential for the release of active agents from the devices, under conditions that reproduce those prevailing in harvest, storage, transport and commercialization of food, agricultural products and botanical species. That is, the potential of application of the devices originated in the present invention in microbiological control, and therefore in the preservation of food, agricultural products and botanical species, in storage, transport and marketing processes is demonstrated.
  • the present invention can maintain a disinfectant environment around the fruit for prolonged periods, which prevents deterioration and allows its storage for up to several days. Even the emission of GRAS disinfectant gas occurs in low temperature conditions, whereby two technologies, low temperatures and harmless disinfectants, complement each other to achieve better product preservation.
  • formulations, powders and gels, together with the devices considered in the invention allow for stable products, which can, unlike existing ones, be stored and managed in commercial operations, maintaining their integrity and effectiveness.
  • the particle size of the premix components influences acetic acid emissions, as in the other GRAS compounds.
  • acetic acid a higher emission was obtained when using compounds with a lower grain size or lower particle sizes.
  • Acetate with particles smaller than 20 ⁇ in combination with tartaric acid with particles smaller than 20 ⁇ presented a better emission than acetate with particles smaller than 53 ⁇ in combination with tartaric acid with particles smaller than 20, Figure 2B.
  • the devices or film with Smartpac technology emitted gas at increasing concentrations in temperature conditions of 20 ° C, reaching values of 1.5 uL / L at 12 o'clock, Figure 2E).
  • the devices of the present invention had the ability to emit the gaseous compound with fungicidal properties continuously for an average of 14 days, even at temperatures close to 0 ° C, while maintaining its ability to control under such conditions. This gives them important advantages in their use in refrigerated storage conditions of food products.
  • the acetic acid sachet ( Figure 3) emitted increasing amounts of gas reaching 11 ul / L and 8.5 ul / L at 12 days of storage at room temperature and cold, respectively.
  • acetic acid sheets also recorded increasing emissions of 2.5 ul / L and 2 ul / L at 12 days of storage at room temperature and cold, respectively.
  • Figure 4 shows the cumulative emissions of the solid formulation of acetic acid, contained in sheets, at different temperatures to simulate the temperature conditions presented in packaging (Ambient temperature), storage (0 ° C) and commercialization (Temperature environment) of export fruit and vegetable products. As noted, at 0 ° C the sheets do not exceed the 1pL L emissions, but if the sheet is placed again at room temperature, the emissions are restarted. This represents a great advantage in the protection of fruit and vegetable products by interrupting the cold chain.
  • the products of the present invention proved to be effective both in sanitizing or initial disinfection treatments, and in prolonged storage treatments.
  • Control 86.2 c 53.0 be 2.7 2.9
  • Sachet AF (0.5g) 15.2 to 40.0 b 2.8 * 3.1 *
  • the effectiveness of the treatment based on acetic acid (AA) and formic acid (AF) is significantly reduced after 1 day of preparation, however, treatments with active ingredients based on ethanol and propanol gel, improve its effectiveness with the delay in application, as the incidence decreases.
  • the AA sachet as shown in Figure 9, achieved an average pathogen control of 66% over the control or control without treatment, when they were prepared 24 hours before being applied .
  • a similar control of the pathogens was achieved by decreasing the amount of AA in the sachet to 0.5 gr, which at the same time allowed to reduce the effects on the browning of the fruit.
  • the generators with GRAS assets which are part of the present invention, demonstrated different degrees of effectiveness in the control of pathogens in fruit stored for 30 days, in relation to an untreated control. This is demonstrated by the different trials shown in Tables 3, 4 and 5, which are part of a study conducted by the Postharvest Unit of the Faculty of Agronomy of the Pontifical Catholic University of Chile, for Quimas SA, as part of a project Innova- Corfo.
  • Table 4 compares the effectiveness of 6 Gras compounds and SO2 which is the conventional treatment currently used. It shows the high effectiveness of alcohols, Ethanol and Propanol, in the control of the pathogen in storage for 30 days, at levels equal to the standard treatment of S02.
  • the 6 GRAS compounds used in the devices of the invention have interesting control levels.
  • the results obtained with two devices such as acetic acid and propanol are highlighted, followed by Formic acid and Chlorine dioxide.
  • Table 5 shows the results of control effectiveness for 4 devices of GRAS compounds and for the conventional treatment of SO2, both in a closed environment (unperforated bag) and an open environment (perforated bag). They emphasize, as in the previous test, alcohols, ethanol and propanol, which reach a level of control similar to SO 2 . Formic acid and acetic acid devices have a similar level of control, which reach a 53% and 59% decrease respectively with respect to the control without treatment.
  • the Smartpac sachet, sheet and active film devices which are part of the invention, are effective in reducing the incidence of the disease that causes significant damage to fruits and in general in food and agricultural products, allowing important applications in which there are no other alternatives. Examples are: organic products, those that need to be used for direct consumption, food for children or babies, and in general in those niche markets that require less polluting, healthier and more environmentally friendly products.
  • AA-P Sac et for the release of acetic acid and gel for the release of propanol.
  • the fruit treated with AA, salt AF, D-CI film was packed in unperforated bag, closed environment
  • the fruit treated with S02 gasification, S02gasi./S02 gen. was packed in perforated bag, semi-open environment.
  • Clamshell sample unit of 1.5 kilos of fruit and 4 repetitions.
  • the fruit treated with AA, AF salt, D-CI film was packed in unperforated bag, closed environment.
  • the fruit treated with generator S0 2 was packed in perforated bag, semi open environment.
  • Clamshell sample unit of 1.5 kilos of fruit and 4 repetitions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Agronomy & Crop Science (AREA)
  • Dispersion Chemistry (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Packages (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

Dispositivo de embalaje para la conservación de alimentos, productos agrícolas y especies botánicas constituido por un portador generador de gas que contiene un agente activo o un precursor del agente activo del tipo GRAS (Generalmente Reconocidos como Seguros), que puede ser usado directamente sobre los alimentos productos agrícolas y especies botánicas, incluso de consumo directo y orgánicos, en forma segura para el consumidor y el ambiente.

Description

DISPOSITIVO DE EMBALAJE
CAMPO DE LA INVENCIÓN
La presente invención se relaciona con dispositivos de embalaje para la conservación de alimentos, productos agrícolas y especies botánicas, constituidos por material plástico coextruído en una o más capas, y/o una combinación de polímeros, plásticos y ceras, y/o una combinación de plástico y papel. En ellos, al menos una de sus capas contiene ingredientes activos tipo GRAS (Generally Recognized As Safe), compuestos orgánicos volátiles que generan gases con propiedades antimicrobianas y son seguros de usar para el consumidor y el ambiente.
ANTECEDENTES
Los mecanismos más frecuentes del deterioro de los alimentos son el crecimiento microbiológico y la oxidación. Se han usado dispositivos y compuestos generadores de gases durante el empaque, transporte y almacenamiento de los alimentos, a fin de protegerlos de la descomposición debida a la contaminación microbiológica.
El deterioro ocasionado por microorganismos en alimentos, productos agrícolas y especies botánicas, que requieren periodos de almacenamiento prolongado, se controla químicamente en un proceso que incluye en una etapa inicial la sanitización, reducción o eliminación de la contaminación superficial o primaria (microorganismos vivos, inóculos o conidias); y en una segunda etapa que evita que se desarrollen o avance el micelio de las infecciones primarias. Se impide la infección secundaria en función de la primaria. Por lo tanto, mientras más efectiva sea la sanitización, mejor será el control general de los microorganismos. Ambos procesos pueden ser realizados en una misma operación o en operaciones separadas. La efectividad de cada tratamiento depende de la sensibilidad del producto tratado, el tiempo de exposición y la concentración utilizada. Un producto o alimento con daños o heridas, madurez avanzada, entre otros, presentará un mayor riesgo de daño por microorganismos. Un tiempo de exposición prolongada permite una mayor protección de los productos. Mayores concentraciones del agente fungicida mejoran el control de pudriciones, sin embargo, se deben considerar los efectos de la fitotoxicidad sobre los productos tratados, además de la eficiencia de la aplicación desde el punto de vista económico y ambiental. De la misma forma, el uso continuo de ciertos desinfectantes químicos puede dar lugar a la selección de microorganismos resistentes.
Desde hace muchos años se sabe que diversos gases y vapores naturales, o artificiales, destruyen o inhiben a los microorganismos. De estos, se han utilizado comercialmente algunos como: dióxido de carbono, óxido de etileno, óxido de propileno, dióxido de azufre y ozono.
Se ha encontrado que el gas Dióxido de azufre es especialmente efectivo contra mohos y hongos y se le ha utilizado ampliamente para controlar la descomposición por moho gris (Botrytis cinérea sp) en uvas y otros productos frescos. Hasta la fecha no se ha logrado reemplazar el SO2 por otro agente fungicida aplicable en poscosecha de uvas, siendo el tratamiento con S02 una necesidad indispensable para garantizar la calidad de la fruta en su comercialización.
Sin embargo, su uso ha sido cuestionado por agencias regulatorias, que han restringido su aplicación, mediante la implementación de límites de residuos máximos tolerados. La Agencia de Protección Ambiental (EPA) de EE.UU., publicó en mayo de 2007 los informes del proceso de re - registro tanto para el Dióxido de Azufre como para el Metabisulfito de Sodio. En ellos se establece el límite máximo de residuos de sulfitos en 10 ppm para su uso en poscosecha de uva como fungicida y preservante así como, las normativas de etiquetado (EPA, 2007. Re-registration Eligebility Decisión - Inorganic Sulfites. 16 pgs). En el mercado europeo, el SO2, se considera un aditivo alimenticio y su uso está normado sólo para uva de mesa, litchies y arándanos.
En general el uso de los compuestos que ayudan a la conservación de los alimentos, está sometido a crecientes regulaciones en los distintos países. Las restricciones al uso de los productos existentes, obedecen a las tendencias presentes en los mercados consumidores, que están exigiendo investigar la factibilidad de contar con compuestos gaseosos alternativos a los existentes, con un perfil más amigable desde el punto de vista ambiental y seguridad humana.
Los productos GRAS, están entre las alternativas con mayor aceptación para ser usados en alimentos. GRAS, es la sigla utilizada para la frase Generally Recognized As Safe, la cual se refiere al conjunto de sustancias adicionadas a los alimentos, que no requieren aprobación por la Fooo" Administration Agency (FDA), para su uso específico.
La FDA, ofrece un programa de notificación de una sustancia bajo la categoría GRAS, el cual es voluntario. Los criterios de notificación y posterior publicación por la FDA, se sustenta en la evidencia científica asociada a la inocuidad de la sustancia para el uso previsto, lo cual debe estar respaldado por publicaciones en revistas del ámbito. Adicionalmente, se basa en el uso prolongado de la sustancia en la industria, sobre un número significativo de consumidores.
La FDA, clasifica las sustancias GRAS bajo dos categorías principales: sustancias GRAS adicionadas directamente sobre el alimento destinado a consumo humano, y sustancias GRAS adicionadas indirectamente. Con respecto a las sustancias pertenecientes a esta segunda categoría, sólo se autoriza el uso de éstas, a través de la migración hacia el alimento desde una envoltura, contenedor o cualquier otra superficie en contacto con el alimento. En ambos casos, debe usarse bajo el propósito y dosis por el cual fue reconocido como GRAS.
El título número 21 , Capítulo 1 , parte 182, de las publicaciones del Departamento de Servicios de Salud de la Administración de Alimentos y Drogas de EE.UU. (FDA), incluye la lista de sustancias que pueden ser usadas directamente en alimentos para humanos, confirmadas como generalmente reconocidas como seguras (GRAS). Estas sustancias son reconocidas por un grupo de expertos calificados, como elementos que han demostrado ser seguros en determinados usos, y por lo tanto no requieren aprobación por parte de la FDA de EE.UU. Se constituyen por lo tanto en soluciones de embalaje para "consumer pack", además de ser una alternativa viable para el mercado de productos orgánicos y con restricciones para el uso de pesticidas.
Entre los compuestos GRAS con propiedad fungicida figuran: acetato de sodio, benzoato de sodio, bicarbonato de sodio, carbonato de sodio, citrato de sodio, lactato de sodio, propionato de sodio, sorbato de sodio, tartrato de sodio, sorbato de potasio, propionato de potasio, carbonato de potasio, bicarbonato de potasio, benzoato de potasio, ácido láctico, peróxido de hidrógeno, ácido ascórbico, ácido acético, etanol, hexanol, cloro, dióxido de cloro, timol, carvacrol, y otros.
Se ha generado importante evidencia de los efectos antimicrobianos de los productos GRAS, y sus posibles aplicaciones.
En una primera investigación realizada en el año 2005, se midió el efecto de sustancias GRAS en la tasa de crecimiento de hongos en alimentos infectados. Se consideraron alrededor de 14 especies. En él se demostró que tales sustancias son una barrera efectiva para inhibir el crecimiento de hongos en alimentos, constituyéndose en una interesante alternativa para ser usado como preservante (Philippe Dantignya, P., Guilmarta, A., Radoia, F., Bensoussana, M., y Zwieteringb, . 2005. Modelling the effect of ethanol on the growth rate of food spoilage molds. International Journal of Food Microbiology. Volumen 98, Issue 3, pgs. 261-269).
Estudios recientes publicados por la International Society for Horticultural Science (ISHS) han mostrado que sumergiendo uvas en una solución de activos GRAS a cosecha, ha mejorado el almacenamiento de la fruta. Se reportan así los primeros resultados obtenidos en tratamientos de uva "Chasselas" indicando que los tratamientos reducen la incidencia de Botrytis y el daño de las bayas, pero aceleran el pardeamiento del escobajo. Además se realizaron análisis sensoriales que determinaron, que no hay efectos de los productos en las características organolépticas de las uvas ((Chervin, C, A. El Kereamy, P. Rache, A. Tournaire, B. Roger, P. Westercamp, F. Goubran, S. Salib, S. Kreidl, R. Holmes,. 2005. Etanol vapors to complemet or replace sulphur dioxide fumigation of table grapes. En: XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticultura. Acta Horticulturae 628I); (Chervin C, Westercamp P and Monteils G. Ethanol vapours limit Botrytis development over the postharvest life of table grapes. Postharvest Biology and Technology 2005:36:319-322.)).
En el Congreso Internacional de Poscosecha, realizado en Bologna Italia, durante 2007, y organizado por COST (Commission of the European Communities, Brussels) y CRIOF (Department of Agri-Food Protection and Improvement, University of Bologna) se presentaron las principales alternativas que se están estudiando actualmente para el control de enfermedades y desórdenes en poscosecha de frutas. Se mostraron interesantes resultados obtenidos en diferentes países para el control de Botrytis cinérea en uvas y otras frutas, con productos o sustancias diferentes a S02, y catalogadas como GRAS. Los resultados mostraron promisorias alternativas de productos habitualmente no utilizados como fungicidas en la poscosecha de uvas, como el caso de etanol y ácido acético (COST-European Commission/ CRIOF-Faculty of Agricultura, University of Bologna. 2007. Novel approaches for the control of postharvest diseases and disorders. Book of Abstracts. 89 pgs).
Se presentaron resultados de ensayos de investigación que demostraban la efectividad de las sustancias GRAS para el control de Botrytis cinérea en uvas de mesa. Se probaron en uvas Superior y Thompson Seedless, sustancias GRAS, con tres métodos de aplicación, obteniéndose controles similares o mejores a los obtenidos con los generadores de SO2. En este caso, algunos de los métodos de aplicación consideraban el vapor de la sustancia como medio de control (Lurie, S., Pesis, O., Gadiyeva, O., Feygenberg, O., Ben-Arie, R., Kaplonov, T., Zutahy, Y., and A. Lichter. 2007. Modified ethanol atmosphere to control decay of table grapes during storage. En: Novel approaches for the control of postharvest diseases and disorders. CRIOF-Faculty of Agriculture-University of Bologna. Page 23).
Otros estudios realizados por el Instituto Volcáni en Israel demostraron la efectividad de etanol como ingrediente activo GRAS para el control de pudriciones de uva de mesa (Lichter, A., Zutchy, Y., Sonego, L. Dvir, O., Kaplunov, T., Sarig, P., and Ben -Arie, R. 2002. Ethanol controls postharvest decay of table grapes. Postharvest Biol. Technol, 24:301-208).
Respecto a la forma de aplicación de tales productos, se puede decir que, además de las normativas exigidas al tipo de sustancias utilizadas, existe reticencia por parte de los consumidores a la adición de conservantes u otro tipo de sustancias, especialmente las sintéticos, directamente sobre los alimentos, lo que ha provocado un interés especial en el desarrollo de la tecnología denominada envase activo.
La aplicación directa de sustancias antimicrobianas sobre los alimentos tiene una serie de inconvenientes asociados. Ejemplos de éstos, son una concentración inicial relativamente elevada (y consiguiente rechazo por parte del consumidor), y pérdida rápida de actividad. Por ello los tipos de embalajes activos han despertado un gran interés en la industria alimentaria, especialmente porque implican el desarrollo de mecanismos de "liberación controlada". Con ello existe una gradualidad en la liberación de la sustancia activa, la que se va consumiendo a medida que el alimento lo va necesitando, no se presentan cantidades excesivas de las sustancias activas, y se consigue la efectividad deseada.
Tradicionalmente, el término "envase" se ha definido como una barrera pasiva que actúa retrasando el efecto adverso del ambiente sobre los alimentos envasados. Sin embargo, las nuevas tecnologías de conservación de alimentos están basadas en potenciar o aprovechar las posibles interacciones del envase con el producto y/o el ambiente que lo rodea. Según la definición del Reglamento (CE) N° 450/2009, los "materiales y objetos activos" son aquellos destinados a prolongar la vida útil o a mantener o mejorar el estado del alimento envasado. Se trata de sistemas diseñados para incorporar intencionadamente componentes que:
• Liberan o emiten sustancias a los alimentos envasados o a su entorno: sustancias beneficiosas, tales como antimicrobianos, antioxidantes, aromatizantes, etc.
• Absorben sustancias de los alimentos envasados o de su entorno: sustancias no deseadas o perjudiciales, tales como oxígeno, humedad, etileno, dióxido de carbono, olores, sabores, y otros componentes específicos.
En el envasado activo se producen interacciones entre el alimento y el envase, que pueden basarse en la regulación del contenido en gases (oxígeno, dióxido de carbono, etileno, etc), en el control de la humedad (aditivos antivaho, absorbentes, etc.), en la acción de diversas enzimas (control del colesterol y la lactosa) y en la liberación de sustancias antimicrobianas (etanol, agentes quelantes, ácidos orgánicos, dióxido de azufre o de cloro, antibióticos, bactericidas y fungicidas).
Los primeros sistemas de envase activo que se desarrollaron eran aquellos separados del alimento y del envase en forma de bolsitas o saquitos. Actualmente, se desarrollan diseños integrados en el envase (en las paredes de un film, bandeja, botella, en la capa intermedia de estructuras multicapa) o en su tapa, en forma de etiquetas, hot-melt, cintas adhesivas, juntas y/o tapones.
Según lo anterior existen dos formas de aplicar el componente activo al envase: a) Componente activo en el interior del envase mediante el uso de pequeñas bolsas o sobres que contienen el principio activo (sustancias que actúan absorbiendo oxígeno, C02, humedad, etc.). Estas bolsitas están fabricadas con un material permeable que, por una parte, permite actuar al compuesto activo y, por otra, impide el contacto del mismo con el alimento. Estos dispositivos deben ser resistentes a las roturas y además ir convenientemente etiquetados. b) Componente activo incluido en el material del envase: se desarrollaron como alternativa a los anteriores, y se constituyen en materiales para envasado, películas sintéticas y comestibles, que contienen el principio activo en su estructura (aditivos, agentes antimicrobianos, enzimas, etc.). Se basan en fenómenos deseables de migración, ya que ceden al producto envasado sustancias beneficiosas. La ventaja de esta técnica es que se consigue que toda la superficie del componente activo entre en contacto con el producto y que el consumidor no encuentre ningún elemento extraño en el producto adquirido. Las películas plásticas antimicrobianas en desarrollo, constituyen una técnica de gran potencial puesto que permiten una lenta liberación e incorporación al alimento de sustancias bactericidas o fungicidas compatibles con los alimentos.
Algunos ejemplos de lo anterior son: los absorbedores de oxígeno en forma de pequeñas bolsas o etiquetas basados en polvo de hierro; los sistemas que retiran el etileno producido por ciertas frutas y hortalizas cuya senescencia (madurez) se ve acelerada por la presencia de esta sustancia; la pulverización de etanol utilizada ampliamente en productos de bollería y panadería, ya que reduce el crecimiento de mohos, entre otros.
Por otro lado, se está trabajando intensamente en la incorporación de las sustancias activas en el propio material de envase (por ejemplo, el film OS de Cryovac con secuestrador de oxígeno).
Las respuestas tecnológicas de investigadores y científicos así como de la industria del envase y del embalaje en el mundo, se han focalizado en reducir la aplicación y uso de fungicidas. La utilización de la combinación - productos GRAS y envases activos- están entre las alternativas más promisorias.
En los sistemas de envasado activo antimicrobiano se pueden utilizar los siguientes ingredientes: etanol, dióxido de azufre, dióxido de cloro, ácidos orgánicos, aceites esenciales, compuestos quelantes (EDTA), metales (plata), enzimas (glucosa oxidasa, muramidasa), bacteriocidas, antibióticos y fungicidas. El etanol es un buen agente antimicrobiano resultando efectivo en forma de vapor. Bajas concentraciones de alcohol (20% v/v) demuestran tener una acción persistente sobre los microorganismos. Generalmente se presenta en sobres donde el etanol está adsorbido a gel de sílice liberándose gradualmente a través de las paredes del mismo cuya permeabilidad es selectiva. El uso de estos dispositivos debe acompañarse con plásticos de envase con impermeabilidad media / alta al etanol, permeabilidad menor a 2 g/m2/día. Otras sustancias con efecto antimicrobiano y que pueden presentarse en sobres son: dióxido de carbono y dióxido de azufre.
Por otro lado, algunas de las materias activas utilizadas como aditivos en películas plásticas con efecto antimicrobiano son: iones de plata, ácidos orgánicos, y enzimas (nisina, muramidasa). Constituyen una técnica de gran potencial puesto que permiten una lenta liberación e incorporación al alimento de sustancias bactericidas o fungicidas perfectamente compatibles con los alimentos.
La solicitud de patente WO 2009/051594 A1 , que es una continuación de la solicitud de patente de Estados Unidos N° 11/873,575 describe un artículo destinado a generar y liberar gas, que consiste esencialmente de un polímero y un sólido generador de gas incorporado en él. Se trata de una película coextruida de varias capas; en que la capa interna es una olefina, como ser un polietileno de baja densidad (LDPE) que permite que entre vapor de agua en la capa activa y de este modo genere gas bióxido de azufre. El LDPE también es permeable y permite que el gas bióxido de azufre se transfiera dentro de los cultivos agrícolas y productos empacados. Dicho gas de bióxido de azufre impide, retarda, controla y mata los microorganismos de los alimentos, cultivos agrícolas y especies botánicas contaminadas. La mediana y tercera capas de la película o lámina consisten de una mezcla polimérica con una sal precursora que genera gas bióxido de azufre activada por humedad. Estas sales incluyen sulfito de sodio, metabisulfito de sodio o bisulfito de sodio, que se dispersan en un polímero LDPE. El artículo genera un gas liberado en forma rápida, seguido por un gas de liberación lenta, en respuesta a la humedad. La solución planteada difiere considerablemente de la presente invención en que los ingredientes activos utilizados, no están sometidos a restricciones para ser usados en alimentos ya que son del tipo GRAS, mientras que en el arte previo se describe que las películas comprenden sustancias activas que liberan SO2.
i
! La patente ES N° 2.172.872, describe un generador de cloro usado para conservar frutas y verduras. El generador incluye una primera capa que consiste en papel o polietileno que es permeable a la humedad y a gases y que tiene un peso de 20 a 70 g/m2 (preferiblemente revestido de polietileno de un peso de 5 a 25 g/m2), y una segunda capa que consiste en polietileno de un peso de 25 a 70 g/m2 y un espesor de 10 a 17 micrómetros. Estas capas se unen entre sí mediante una o más uniones, tales que forman al menos un bolsillo entre ellas. Ese bolsillo contiene un material de hipoclorito que libera gas cloro activo al reaccionar con la humedad de las frutas y verduras que están siendo conservadas. La primera capa es preferiblemente papel, y más preferiblemente, está hecha de papel tipo "laja". La segunda capa es preferiblemente una película de polietileno microperforada. Las uniones entre estas dos capas son preferiblemente termoselladas. Se ha encontrado que la forma de realización preferida de esta invención es particularmente efectiva en el control de Botrytis cinérea en uvas. La presente invención difiere de la mencionada en la constitución del generador. Efectivamente, en el caso de la presente invención, se trata de un generador formado por un polímero coextruido de 1 o más capas, estructura de la cual forma parte el hipoclorito y/o los compuestos que liberan cloro gas. En éste no existe posibilidad de rotura que pueda hacer que el ingrediente activo entre en contacto, como sólido, en los alimentos, ya que está asociado estrechamente a las partículas del polímero.. Además la presente invención difiere en que se presenta una entrega controlada del ingrediente activo en su forma gaseosa, lo que evita daños por concentraciones excesivas o por la presencia de la sal del ingrediente activo como un sólido. De la misma forma, la emisión gaseosa en la invención se prolonga por un mayor periodo de tiempo, lo que asegura un efecto fungicida prolongado.
La patente U.S. 7.915.325 B2 describe un embalaje para alimentos de material plástico mono o multicapa, donde al menos una capa comprende un metal, ya sea Ag, Cu, Sn, o Zn o mezclas de ellos, con actividad antimicrobiana. La solución planteada difiere considerablemente de la presente invención en los ingredientes activos utilizados, iones metálicos versus productos GRAS, inocuos para ser usados en alimentos. También difiere en el proceso de fabricación y en la forma que los iones metálicos actúan en el alimento. Los polímeros presentan efectos antimicrobianos en su superficie por la presencia de iónes metálicos, y también por cierta movilidad de ellos en el film, lo
El film con
Figure imgf000010_0001
contactar al alimento (por ejemplo se usa en la fabricación de cecinas o embutidos), en cambio en la presente invención el gas de compuestos GRAS que se genera en toda la superficie del film migra al ambiente que rodea al alimento y al alimento mismo, protegiendo de nuevas infecciones desde el ambiente y de inóculos del mismo alimento, producto agrícola o especies botánicas.
Respecto a los alcoholes, la solicitud de patente JP2003250443 describe un envase para mantener la frescura de frutas y vegetales evitando la pudrición por hongos. Este consiste en un film polimérico permeable al aire en cuyo interior se colocan frutas o verduras, y que contiene una concentración de etanol al 0,001-3 % p/p en el envase sellado. El film polimérico consta de 1 microporo en un área abierta. Cuando el envase está sellado y luego de 48 horas, las concentraciones de oxígeno, dióxido de carbono y etanol, deben ser de: 0,5-10 % p/p, 10-25 p/p y 0,001-3 % p/p (preferentemente 0,05- 0,5 % p/p), respectivamente. La presente invención difiere en que el etanol u otro alcohol, está formulado como gel y contenido en un sachet o bolsita constituido por papel, plástico y ceras. De igual forma la patente EP 0867125 describe un antiséptico natural para usar en alimentos que considera entre sus ingredientes al etanol. Es una mezcla de hemicelulosa combinada con etanol, glicina, lisina o el éster de glicerol, que es agregada directamente en la preparación de productos como pasta de pescado, fideos, y ensaladas. La presente invención difiere en que el etanol u otro alcohol, está formulado como gel y está contenido en un sachet o bolsita constituido por papel, plástico y ceras, utilizado en forma externa al alimento, producto agrícola y especies botánicas.
La publicaciónN0 WO/2012/123901 , describe un proceso para obtener un film que permite la incorporación de agentes antimicrobianos naturales o Thymol en una estructura polimérica, para desarrollar envases diseñados para incrementar la vida útil de carne enfriada o refrigerada, preferentemente salmón fresco refrigerado. La solución planteada difiere en que se está patentando un proceso, que ya está siendo utilizado y es parte de la presente invención. Las películas o film coextruido mono o multicapa, son materiales de envase que tienen incorporado al precursor del principio activo en su estructura, mediante un proceso de coextrusión. La tecnología previa corresponde a los films proporcionados por la firma QUIMAS, con su producto Smartpac que corresponde a un film coextruido que contiene como agente activo para control microbiológico, SO2. Además, difiere considerablemente de la presente invención en los ingredientes activos utilizados, productos GRAS, inocuos para ser usados en alimentos, en lugar de Thymol. También difiere en la forma que el Thymol actúa en los productos de salmón. El film con Thymol tiene un efecto antimicrobiano sólo en su superficie al contactar al alimento, en cambio en la presente invención el gas de compuestos GRAS que se genera en toda la superficie del film migra al ambiente que rodea al alimento y al alimento mismo, protegiendo de nuevas infecciones desde el ambiente y de inóculos del mismo alimento, producto agrícola o especies botánicas.
Uno de los principales problemas asociados a preservación de productos agrícolas en poscosecha es el control de Botrytis cinérea en uvas de exportación, y la principal alternativa de control hasta ahora es el uso de SO2 En los inicios de la década de 1960, la Universidad de California, EE.UU., introdujo el concepto de la "fumigación en embalaje" mediante el uso de generadores de SO2. Esta técnica produjo un incremento exponencial en la comercialización de uva de mesa a nivel mundial, permitiendo que territorios como Chile, África del Sur, California y otros llegaran a ser líderes en exportaciones y ventas de uva de mesa ((Luvisi, D.A., Shorey, HL, Smilanick, J., Thompson, J., Gump, B. H., and Knutson, J. 1992. Sulfur dioxide fumigation of table grapes. Univ. Calif. Div. Agrie. Nat. Resour. Bull); (Nelson, K.E., 1985. Harvesting and Handling California Table Grapes for Market, Pub. 1913. University of California, División of Agriculture Science, Oakland, CA, USA, pp. 52-53); (Nelson, K.E., and M. Ahmedullah, 1972. Effect of type of in-package sulfur dioxide generator and packaging materials on quality of stored table grapes. Amer. J. Enol. Viticult. 23:78-85)).
Hasta la fecha no se ha logrado reemplazar el S02 por otro agente fungicida aplicable en poscosecha de uvas, siendo el tratamiento con SO2 una necesidad estratégica indispensable para garantizar la calidad de la fruta en su comercialización (Hanke, T. 1977. Alternativas de tratamiento de poscosecha de uva de mesa y su impacto en la calidad y condición final. En: Botrytis: Nuevas estrategias de control cultural, biológico y químico en uva de mesa. Facultad de Ciencias Agrarias y Forestales, Departamento de Sanidad Vegetal, Universidad de Chile. Pgs 94-116).
A pesar de lo anterior, el uso del SO2 ha sido cuestionado por agencias regulatorias, que han restringido su aplicación, mediante la implementación de límites de residuos máximos tolerados. Por lo mismo, los mercados y los consumidores están exigiendo investigar la factibilidad de contar con fungicidas gaseosos alternativos y de un perfil más amigable desde el punto de vista ambiental y seguridad humana. Los productos GRAS se presentan como una alternativa con alto potencial para reemplazar al S02, en el control de tal enfermedad en alimentos, así como también en el control de pudriciones y para procurar la conservación de los alimentos u otros productos agrícolas y/o especies botánicas. .
En relación a los productos de tipo GRAS, en general se presentan en estado líquido a temperatura ambiente, es el caso de: etanol, ácido fórmico, ácido acético y propanol. Estos productos son inestables y se volatilizan, teniendo un efecto superficial y de corto plazo cuando se usan como antimicrobianos, en tratamientos superficiales, principalmente por inmersión o aspersiones. Además aplicados directamente en su forma líquida, sobre los alimentos producen daños, y cambios no deseados de sabores y/o aromas. Por ello, el objetivo de la presente invención es obtener formulaciones precursoras de gases de productos GRAS, principalmente sólidos y geles, que son más estables, permiten su almacenamiento en condiciones ambientales y son de fácil manejo. De esta forma, la presente invención proporciona, formulaciones sólidas o en geles, precursoras de productos GRAS gaseosos, las cuales se encuentran incorporadas en dispositivos generadores de dichos gases
La vaporización o gasificación de los productos GRAS a partir de formulaciones líquidas, ocurre en cortos períodos de tiempo y no puede ser controlada, por lo que no es posible utilizarlas en los procesos comerciales de embalaje. Para solucionar este problema de la técnica es necesario que los productos GRAS sean más estables a temperatura ambiente, generen gases que puedan distribuirse homogéneamente en un espacio determinado y por un periodo de tiempo prolongado o suficiente como para controlar los patógenos que producen las pudriciones. .
Los creadores de la presente invención sorprendentemente han encontrado que formulaciones en geles o polvo de productos GRAS, en conjunto con un sistema de liberación controlada, o dispositivo generador de gas, utilizado durante el almacenaje, proporcionan las condiciones de embalaje necesarias para impedir que se produzcan infecciones o pudriciones en productos alimenticios, agrícolas u otras especies botánicas, como por ejemplo, preservación de uvas sanas al interior de la caja de embalaje para su distribución y comercialización.
Tal como se ha descrito previamente, la presente invención se relaciona con dispositivos de embalaje que cpmprenden sistemas generadores de gases cuyo agente activo se selecciona de uno o más productos del tipo GRAS. Mediante los ejemplos de la presente invención ha sido posible demostrar que los compuestos GRAS en formulaciones sólidas (polvo) y geles, incorporados a sachet y/o láminas y/o films, tienen una curva de emisión gaseosa con un patrón determinado en cuanto a volúmenes emitidos y tiempos de emisión. Tales patrones son medibles y reproducibles, y determinan el potencial de los activos GRAS en los dispositivos de la invención, para controlar problemas microbiológicos, tanto en intensidad como en período de protección. En la presente invención se han generado curvas de emisión gaseosa controlada de los productos GRAS en los dispositivos generadores de gas, lo que los confirma en forma exitosa, como antimicrobianos o fungicidas para el control de problemas microbiológicos, en envases individuales y en sistemas de embalajes comerciales.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención provee un dispositivo liberador de gas que de aquí en adelante es denominado "generador de gas". El generador de gas comprende una película plástica coextruida formada por una o más capas, y/o una combinación de polímeros, plásticos y ceras, y/o una combinación de plástico y papel y componentes activos del tipo GRAS. Tales compuestos liberan gases con efecto fungicida y/o fungistático al reaccionar con la humedad generada por los productos envasados.
La invención comprende generadores de diferentes ingredientes activos GRAS, compuestos orgánicos volátiles que tienen el objetivo común de impedir, retardar controlar, demorar o matar la contaminación microbiológica en los alimentos, productos agrícolas y especies botánicas.
Estos generadores suministran gases del tipo GRAS para el control antimicrobiano o para retrasar el efecto microbiano no deseado en los alimentos envasados, cultivos agrícolas y especies botánicas en niveles tales que permiten extender la vida útil y evitar el deterioro de la calidad de ellos.
La invención propuesta considera siete agentes activos particulares: dióxido de Cloro, cloro gaseoso, etanol, propanol, ácido acético, ácido fórmico y 1-Metilciclopropeno (1- MCP), que se generan desde la estructura del dispositivo generador de gas. El generador de gas de la presente invención considera la inclusión de los compuestos GRAS en sobres o sachet y láminas que se incluyen dentro del envase de los alimentos, productos agrícolas y especies botánicas o bien, en una película o film coextruido mono o multicapa, que se incluye dentro del envase o bien forma parte del material del envase de los alimentos, productos agrícolas y especies botánicas. En este último caso el film coextruido mono o multicapa, conteniendo él o los ingredientes activos GRAS, puede estar diseñado como bolsa, sobre, almohadilla, espuma, inserto, bandeja, cubierta, forro de película, lámina u otro depósito contenedor.
De manera particular los dispositivos son como se definen a continuación:
Los sobres o sachet, están constituidos de dos capas, ambas formadas de film plástico y/o papel plastificado y el ingrediente GRAS en compuestos formulados como sólidos o geles. Los film plásticos son todos materiales con permeabilidades tales que permiten el intercambio gaseoso y de vapor de agua de forma que se produzca la reacción de la humedad con el compuesto GRAS, para generar el gas necesario entorno al alimento o sobre su superficie, para permitir el efecto antimicrobiano. Ello le otorga ventajas respecto a la aplicación directa de sustancias líquidas a los alimentos, como son los métodos de aplicación por inmersión y aspersión utilizados hasta ahora para algunos productos GRAS. En tales casos, los productos son aplicados en forma líquida, lo que altera las condiciones organolépticas del alimento, y las concentraciones no son controladas, produciéndose excesos o faltas del ingrediente, que no permiten una efectividad en la función de control microbiológico, y en algunos casos hacen necesario su extracción.
Lámina o Generador plástico: Este tipo de película es obtenido por un proceso de laminación y al menos tiene 2 capas, pudiendo existir hasta 5 o más. En el caso de 2 capas, se tiene una capa formada por un polímero menor de 16μ, que por una fase está recubierto de un material de cera combinado con el compuesto sólido que genera el agente activo. La lámina o generador plástico de 3 capas, incluye: la primera capa expuesta hacia el producto o filtro; la segunda y tercera formada por un polímero que por una fase está recubierto de μη material de cera combinado con el compuesto sólido que genera el agente activo. Las películas o film coextruido mono o multicapa, son materiales de envase que tienen incorporado al precursor del principio activo GRAS en su estructura, mediante un proceso de coextrusión, lo que no ha sido descrito anteriormente. La tecnología previa corresponde a los films proporcionados por la firma QUIMAS, con su producto Smartpac que corresponde a un film coextruido que contiene como agente activo para control microbiológico, SO2, y no un producto GRAS.
Las películas o films coextruidos tienen la ventaja de que la generación del gas del componente activo es homogénea en toda la superficie del film, con lo que se facilita el contacto del gas con la superficie del alimento, producto agrícola, y especie botánica, que se quiere proteger. Además, permiten una liberación controlada de las sustancias antimicrobianas o fungicidas compatibles con los alimentos. En los films, la coextrusión de la sustancia activa GRAS con los polímeros, elimina la posibilidad de pérdidas de sales de compuestos GRAS que se puedan originar por roturas del material, con lo que el consumidor o receptor final del alimento, que es envasado con este tipo de film que contiene el producto GRAS, nunca encontrará algún elemento extraño en el producto adquirido.
En la presente invención se utiliza la tecnología Smartpac QUIMAS con agentes precursores que generan los siguientes gases del tipo GRAS: dióxido de cloro, cloro gaseoso, ácido acético y 1-MCP o 1-Metilciclopropeno.
La presente invención contiene como agentes activos principales a los productos GRAS, caracterizados por estar exentos de límites máximos de residuos (LMR) y tolerancias, los que se encuentran en la lista de productos aceptados para ser usados directamente en alimentos para humanos según el Departamento de Servicios de Salud de la Administración de Alimentos y Drogas de EE.UU. (FDA). Por lo tanto, el presente invento proporciona una doble seguridad al consumidor y al ambiente, ya que además de utilizar productos inocuos del tipo GRAS, son dispositivos generadores cuyas características hacen que se constituyan en una barrera que elimina la posibilidad de que el ingrediente activo, sólido o gel, se deposite como tal en el producto tratado. El compuesto activo por acción de la humedad y/o temperatura se transforma en gas, y es éste el que produce el control del deterioro en el producto tratado.
Los ingredientes activos GRAS utilizados en la presente invención, además de ser considerados sustancias autorizadas para ser usadas en alimentos, sin necesitar procesos de registros o tolerancias determinadas, actúan y entran en contacto con el alimento en su forma gaseosa, no en su forma líquida, evitando principalmente la formación de manchas, olores no deseados, depósito de sales, etc. Los generadores de gas de la presente invención permiten una emisión del agente antimicrobiano o fungicida por un período de tiempo más prolongado que una formulación líquida, posibilitando una protección de los alimentos por mayores períodos, y por lo tanto una mayor vida de almacenaje de los alimentos, productos agrícolas y especies botánicas.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1 : Imagen microscópica de corte transversal de film tricapa coextruido con ingrediente activo en capa central. Corresponde a film con tecnología Quimas Smartpac, con ingrediente activo metabisulfito de sodio en capa central. Imagen obtenida con un microscopio Olympus BX50, cortada con micrótomo CUT 4060 - Slee ainz a 10 micrones aproximadamente, y aumento 20X.
Figuras 2A a 2E: Patrón de emisiones de dispositivos generadores de gas de ácido acético (AA), en condiciones controladas de temperatura y humedad. Se indica la variación de la emisión de acuerdo a la relación de los componentes en la premezcla, ácido tartárico y acetato, y también al tamaño de partícula de los compuestos. De la misma forma, se evalúa la capacidad de almacenamiento de los dispositivos de ácido acético.
Figura 2A: Emisiones de AA en cajas de 11 litros con diferentes proporciones de ácido tartárico manteniendo constante 1 g de acetato;
Figura 2B: Emisiones de AA en cajas de 1 litros con la proporción 1:3 de acetato y acido tartárico, para 2 tamaños de partículas de los ingredientes activos (20μ y 53μ); Figura 2C: Emisiones de AA en cajas de 11 litros con diferentes proporciones de ácido tartárico manteniendo constante 1 g de acetato con partículas de diámetro menor a 20μ;
Figura 2D: Emisiones de AA en cajas de 11 litros desde sachet almacenados por 0, 3 y 7 días;
Figura 2E: Emisiones de AA en sistema cajas de 11 litros desde películas o film coextruido de AA a 141 ,8 cm2/L.
Figura 3: Patrón de emisiones de una formulación sólida de ácido acético desde sachet y láminas en función del tiempo, medida para temperatura ambiente alrededor de 20° C y en frío a 0 °C. Figura 4: Patrón de emisiones acumuladas de una formulación sólida de ácido acético desde láminas en función del tiempo, medida a diferentes regímenes de temperaturas. El primer día la temperatura fue de aproximadamente 20°C, luego se bajó a 0°C, para posteriormente volver acondiciones ambientales con cerca de 20 °C.
Figura 5: Patrón de emisiones de una formulación sólida de propanol desde sachet y láminas en función del tiempo, medida para temperatura ambiente alrededor de 20° C y en frío a 0 °C.
Figura 6: Patrón de emisiones acumuladas de una formulación sólida de propanol desde láminas en función del tiempo, medida a diferentes temperaturas. El primer día la temperatura fue de aproximadamente 20°C y luego se bajó a 0°C.
Figura 7: Gráfica que representa los resultados sobre el control de Botrytis cinérea de un primer ensayo. Se indica el porcentaje de severidad de daño o avance de la pudrición gris, en el promedio de las bayas de uva de mesa cv Thompson Seedles para productos GRAS de la invención, y SO2 aplicados en cajas de 11 Litros. La medición fue realizada para un control o testigo sin tratamiento, ácido ácetico (AA) en sachet, ácido fórmico (AF) en sachet, etanol gel en sachet, propanol gel en sachet y generador de S02. Letras iguales indica que los promedios entre tratamientos son estadísticamente similares según la prueba LSD, p<0,05. Cuando se indica menor a 25% 49 - 25%; mayor a 50%: se refiere al porcentaje promedio de área de las bayas afectadas.
Figura 8: Gráfica que representa los resultados sobre el control de Botrytis cinérea de un segundo ensayo. Se indica el porcentaje de severidad de daño o avance de la pudrición gris, en el promedio de las bayas de uva de mesa cv Thompson Seedles para productos GRAS de la invención y S02 aplicados en cajas de 11 Litros. La medición fue realizada para un control o testigo sin tratamiento, ácido ácetico (AA) en sachet, ácido fórmico (AF) en sachet, etanol gel, propanol gel y S02. Letras iguales indica que los promedios entre tratamientos son estadísticamente similares según la prueba LSD, p<0,05. Cuando se indica menor a 25%; 49 - 25%; mayor a 50%: se refiere al prcentaje promedio de área de las bayas afectadas.
Figura 9: Gráfica que representa los resultados sobre el control de Botrytis cinérea en porcentaje de severidad de daño o avance de la pudrición gris; y la presencia de daños por manchas en el promedio de las bayas de uva de mesa cv Thompson Seedles inoculadas. Ello se presenta para diferentes concentraciones de producto activo o ácido ácetico (AA) en la premezcla. y luego de almacenamiento por 5 días a 20°C.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención, comprende sachet o láminas plásticas con productos GRAS, que se utilizan dentro de los envases individuales de alimentos, productos agrícolas y especies botánicas, y tienen un efecto antimicrobiano prolongado, en comparación a los tratamientos líquidos u otros existentes, que tienen un efecto que no se prolonga más allá del período de inmersión o aplicación por aspersión. Además se evitan los problemas de manejo de un producto líquido en contacto con alimentos u otros productos de origen vegetal.
También la presente invención apunta a un film coextruido, mono o multicapa, con compuestos precursores en polvo de gases GRAS, como por ejemplo sales de acetato, que pueden formar parte de los envases que contienen los alimentos, generando una acción antimicrobiana o fungicida activa, de protección prolongada hacia los alimentos, productos agrícolas y especies botánicas,-en presencia de humedad. Este dispositivo, mono o multicapa, se puede usar como películas, forros, cubiertas, almohadillas y bolsas. Es decir, como elementos contenidos en un envases, ejemplo lámina, o como envases propiamente tal, por ejemplo bolsas contenedoras.
La presente invención permite adaptar los compuestos GRAS, de tal forma que sean aptos para ser almacenados, transportados y utilizados para el control microbiológico en alimentos, productos agrícolas y especies botánicas en operaciones comerciales. La presente invención también permite un uso seguro, consistente y conveniente de gases en el control microbiológico de alimentos, productos agrícolas y especies botánicas. .
En la presente invención se utilizan los siguientes compuestos para ser incorporados en los sachet, láminas plásticas o films coextruidos de la presente invención (Ver Tabla
• Etanol: El etanol líquido se formula en gel, para ser incorporado a un sachet que se utiliza dentro de los envases de alimentos u otros productos de origen vegetal. En éstos, el gel de etanol reacciona con la temperatura ambiente y emite etanol gaseoso en forma controlada por un período de tiempo prolongado, el que tiene efectos fungicidas y fungistáticos. La emisión del gas etanol del dispositivo generador utilizado en envases individuales de alimentos u otros, permite alargar la vida útil del producto, en relación a lo que se obtiene con la formulación líquida de etanol.
• Propanol. El propanol líquido se formula en gel, para ser incorporado a un sachet que se utiliza dentro de los envases de alimentos u otros. En éstos el gel de propanol reacciona con la temperatura ambiente y emite propanol gaseoso en forma controlada por un período de tiempo prolongado, el que tiene efectos fungicidas y fungistáticos. La emisión de gas propanol del dispositivo generador utilizado en envases individuales de alimentos u otros, permite alargar la vida útil del producto en relación a lo que se obtiene con la formulación líquida de propanol.
También se puede utilizar un sólido (sal), triisopropyl,, precursor del gas propanol, con el fin de incorporarlo en un sachet o láminas plásticas. Ambos dispositivos con el compuesto en polvo, precursor del ingrediente activo GRAS, al ser utilizados en el envasado de alimentos u otros, y por reacción con la humedad de ellos, generan en forma activa gas propanol en cantidades controladas y por períodos prolongados, el que tiene efectos fungicidas en los productos que se requiere conservar.
• Ácido Acético. Se utiliza un compuesto formulado como sólido (o sal), precursor del gas ácido acético, con el fin de incorporarlo en un sachet o láminas plásticas o en un film obtenido por coextrusión. Los tres dispositivos con el compuesto en polvo, precursor del ingrediente activo GRAS, al ser utilizados en el envasado de alimentos y por reacción con la humedad de los alimentos, generan en forma activa gas de ácido acético en cantidades controladas y por períodos prolongados, el que tiene efectos fungicidas en alimentos, prolongando su vida útil.
• Ácido Fórmico: Se utiliza un compuesto formulado como sólido (o sal), precursor del gas ácido fórmico, de tal forma de poder incorporarlo en un sachet y láminas plásticas. Estos dos dispositivos con el compuesto en polvo, precursor del ingrediente activo GRAS, al ser utilizados en el envasado de alimentos y por reacción con la humedad de ellos generan en forma activa gas de ácido fórmico en cantidades controladas y por períodos prolongados, el que tiene efectos fungicidas en alimentos, prolongando su vida útil..
• Dióxido de Cloro: Como precursor de este gas se utiliza una composición de Clorito de sodio en forma sólida que se incorpora por coextrusión a un film plástico. El film en presencia de la humedad de los alimentos, productos vegetales o especies botánicas, genera Dióxido de cloro gaseoso en cantidades controladas y por períodos prolongados, el que tiene efectos fungicidas en alimentos, prolongando su vida útil.
• Cloro Gaseoso. Como precursor de este gas se utiliza una composición de Hipoclorito de calcio + cloruro de calcio en medio ácido, o bien Hipoclorito de calcio + cloruro de sodio. La composición sólida se incorpora a láminas plásticas y por coextrusión en un film plástico. Las láminas y el film utilizado en el embalaje de alimentos u otros productos de origen vegetal, con la producción de humedad de éstos, genera cloro gaseoso en cantidades controladas y por períodos prolongados, el que tiene efectos fungicidas en alimentos u otros.
• 1-MCP (1-Metilciclopropeno). El compuesto en polvo es incorporado por coextrusión a un film plástico, el que reacciona con la humedad de los alimentos para emitir el gas en cantidades controladas y por períodos prolongados. Este gas controla la maduración de los frutos con lo cual se disminuye en ellos la sensibilidad a pudriciones. El film coextruido con 1-MCP utilizado en embalaje de frutas permite incorporar un nuevo tratamiento de poscosecha a la caja o envase individual, a diferencia de la aplicación en cámara o a granel que existía hasta ahora.
En forma más específica, la presente invención provee de dispositivos liberadores de gas o generadores de gases,¡ en base a productos GRAS (Etanol, Propanol, Ácido acético, Ácido Fórmico, Dióxido de Cloro, Cloro Gaseoso, 1-MCP (1- Metilciclopropeno)), para el control microbiológico y de maduración en alimentos, productos agrícolas y especies botánicas.
Estos generadores incluyen el compuesto o mezcla de compuestos precursores del gas fungicida, y un vehículo o estructura que incluye el compuesto o mezcla de compuestos. Según lo anterior, en esta invención se han preparado formulaciones precursoras de los siguientes prpductos GRAS: W
21
• Etanol,
• Propanol,
• Ácido Acético,
• Acido Fórmico,
• Dióxido de Cloro,
• Cloro Gaseoso
• 1- CP (1 -Metilciclopropeno)
Los compuestos o mezcla de compuestos en polvo o sólidos, precursores de cada uno de los gases mencionados se describen en la Tabla N° 1.
Tabla N° 1
Figure imgf000022_0001
De la misma forma, las estructuras que incluyen los compuestos o mezcla de compuestos, son: • Sobres o sachet de Etanol, Propanol, Ácido Acético y Ácido Fórmico;
• Láminas plásticas de Ácido Acético, Ácido Fórmico, Propanol, Cloro Gaseoso, y
• Film coextruído de Ácido Acético, Dióxido de Cloro, Cloro Gaseoso, 1-MCP y combinaciones.
Sobres o sachet de Etanol, Propanol, Ácido Acético y Ácido Fórmico
Los sobres o sachet, están constituidos de dos capas formados de film plástico y/o papel plastificado que contienen el ingrediente G AS en compuestos formulados en forma de sólidos o geles. La estructura comprende una capa de papel plastificado y/o Polietileno, y una segunda capa de papel plastificado y/o polietileno, donde entre ambas capas se dispone el ingrediente o agente activo. El papel plastificado y el polietileno son permeables a la humedad y a gases y tienen un peso de 20 a 50 g/m2 y 20 a 30 g/m2, respectivamente. El espesor puede variar entre 50 y 100 micrones. Las capas se unen entre sí mediante una o más uniones, tales que forman al menos un bolsillo entre ellas. Este bolsillo contiene el compuesto precursor del gas en una formulación sólida o en gel, el que al reaccionar con la humedad genera el gas fungicida. Las uniones entre las dos capas son por termosellado y una de las capas está microperforada.
Láminas plásticas de Ácido Acético, Ácido Fórmico, Propanol y Cloro Gaseoso.
Esta lámina debe tener al menos dos capas, un polímero cubierto con material de cera combinado con el compuesto o mezcla que genera el gas fungicida, o bien tres capas, agregando a lo anterior, una capa expuesta hacia el producto compuesta por un filtro para evitar depósitos de sólidos.
Film coextruído de Ácido Acético, Dióxido de Cloro, Cloro Gaseoso, 1-MCP y combinaciones.
Consiste en una estructura en base a polímeros plásticos y un compuesto o mezcla sólida formando parte de la estructura de una de las capas del polímero. La estructura o film puede ser monocapa o multicapa, de preferencia tricapa, como se muestra en la Figura 1 , y es obtenida por un proceso de coextrusión. Esta estructura genera gas en forma controlada en una fase rápida seguida de una lenta en respuesta a la humedad. El film o generador de gases con efectos fungicidas del tipo GRAS, puede formar parte del material del envase de los alimentos, tipo bolsas u otros.
Principalmente el espesor total de la estructura del film alcanza un máximo de 100μ (micrones) y un mínimo de 35μ. Las capas individuales en el caso de film bicapa o multicapa, pueden tener un espesor mínimo de 6μ, y generalmente en una estructura tricapa fluctúan entre 7μ a 60μ, dependiendo de su funcionalidad. El compuesto o mezcla activa está incorporada en una o más de las capas de polímero cuando se trata de film multicapa, en el caso de tricapa, generalmente el ingrediente activo está incorporado en la capa de polímero intermedio o en la única capa si es monocapa. La estructura de un film promedio incluye una proporción de entre un 10% a un 16% del compuesto activo o mezcla y por lo tanto entre un 84% a 90% del polímero.
El polímero que constituye las capas es una oleofina del tipo polietileno de baja densidad, con densidades en valores entre 0,89 a 0,93 gr/cc. El polietileno de baja densidad tiene una permeabilidad tal que permite la entrada del vapor de agua a la capa que contiene el compuesto activo GRAS, para que se produzca su activación. De la misma forma, permite la salida del gas del GRAS activo para que tome contacto con el alimento, producto agrícola o especie botánica, al interior del embalaje y ejerza la acción fungicida, protegiéndolo del deterioro.
El o los compuestos GRAS o mezcla de compuestos GRAS que son incorporados en una o más de las capas, pueden tener tamaños de partículas promedios de 10μ y 20μ, y tienen curvas de distribución por tamaño, donde el 100% está bajo 10μ o hasta 100% bajo 53μ. Las partículas de menor tamaño permiten la emisión rápida del gas y las partículas de mayor tamaño permiten que la emisión gaseosa se prolongue en el tiempo. Los compuestos o mezclas precursoras de los gases GRAS, Ácido Acético, Dióxido de Cloro, Cloro Gaseoso, y 1- CP, utilizados son: acetato de sodio y ácido tartárico; Hipoclorito de calcio, ácido tartárico, y cloruro de calcio; e Hipoclorito de calcio y cloruro de sodio; clorito de sodio; y 1- Metilciclopropeno. La funcionalidad del film coextruido, depende de los tamaños de partículas de los ingredientes activos utilizados, del grosor de las diferentes capas que lo constituyen, del número de capas, y de la concentración de los ingredientes activos, entre otros. EJEMPLOS
Para la preparación de los generadores de gas de compuestos GRAS de la presente invención, se siguieron las siguientes etapas generales:
1. Selección y preparación de compuestos GRAS
2. Preparación de premezclas
3. Incorporación de la premezcla a distintos tipos de generadores a utilizar (sachet, láminas y film).
1. Selección y preparación de compuestos GRAS
Se seleccionaron y prepararon compuestos precursores de gases GRAS, que se encuentran en estado líquido o en estado sólido. Los generadores de la presente invención corresponden a precursores sólidos de: ácido acético, ácido fórmico, propanol, cloro gaseoso, dióxido de cloro y 1- CP. Además de etanol y propanol donde se utilizó el producto en formulación líquida.
La preparación consistió principalmente en la molienda de los agentes activos sólidos. El acetato y el ácido tartárico fueron molidos en molino Netchsz-Quimetal, obteniendo un tamaño de partícula 100 % bajo 20 μ. También, el acetato de sodio, formiato de sodio, Triisopropyl, , acido tartárico, clorito de sodio, hipoclorito de calcio, cloruro de sodio.fueron molidos en mortero eléctrico obteniendo dos rangos de tamaños de partículas, 53μ y 43 μ, es decir partícula bajo malla 270 (53 μ) y 325 (43 μ).
De la misma forma se implementaron metodologías para evaluar y registrar la calidad de los insumos utilizados en cada caso, entre ellos: análisis de pureza, composición, densidad, distribución del tamaño de partículas, granulometría, y otros.
2. Preparación de Premezclas
Se prepararon premezclas de los compuestos precursores de cada uno de los productos GRAS, dependiendo del dispositivo generador de gas a utilizar. a. Las premezclas preparadas para los dispositivos de sachet son las siguientes: Premezclas de alcoholes, etanol y propanol líquidos, con carbopol, para formación de geles y; premezclas de sales generadoras de gases de ácido acético y ácido fórmico, para obtención de mezclas sólidas. Para ácido acético se mezclaron acetato de sodio y ácido tartárico en proporción de 1 :3; y para ácido fórmico, formiato de sodio y ácido tartárico en proporción de 1 :2. b. Las premezclas preparadas para los dispositivos de láminas son las siguientes:
Se mezclaron los compuestos generadores de ácido acético, ácido fórmico, propanol y cloro gas, con ceras y/o hotmelt (cera o poliolefina) para luego ser aplicado a las láminas por laminación.
Para el ácido acético se utilizó acetato de sodio y ácido tartárico, (proporción 1 :3); para el propanol, Triisopropyl para el ácido fórmico, formiato de sodio y ácido tartárico, (proporción 1 :2); y para cloro gaseoso, hipoclorito de calcio en mezcla con cloruro de calcio o cloruro de sodio y ácido tartárico. En todos los casos se realizó una mezcla con cera y/o hotmelt donde la proporción de cera fluctuó entre un máximo de 50%, y el hotmelt en un máximo de 5%. c. Las premezclas preparadas para los dispositivos de film coextruido son las siguientes:
Se prepararon premezclas de cada uno de los compuestos precursores de GRAS en forma separada con polietileno de baja densidad (PDBD) en un extrusor simple. Este proceso es realizado a una temperatura que no sobrepasa los 140°C como temperatura de trabajo. Las diferentes mezclas, polietileno de baja densidad e ingrediente activo, fueron extruídas en un tornillo extrusor doble ventilado y se cortó en forma de peliets. De esta forma se obtuvieron pellet de cada uno de los ingredientes activos precursores. Las concentraciones de los compuestos precursores de gases del tipo GRAS en dichos pellet, es decir, acetato de sodio, ácido tartárico, clorito de sodio, hipoclorito de calcio, cloruro de calcio, cloruro de sodio, y 1-MCP, fluctuó entre 5 y 40%. Con ello el PDBD fluctuó entre 95% y 60%. 3. Incorporación de la premezcla a distintos tipos de generadores
Los sachet se fabrican colocando las premezclas ya sea en gel o en polvo entre dos capas de papel plastificado que luego son termosellados.
En el caso de las láminas, las premezclas descritas anteriormente son incorporadas a un film o poliéster de menos de 16 μ, mediante un proceso de laminación. Este proceso se realiza preferentemente mediante una laminadora de rodillos. Como se explicó anteriormente los generadores o láminas plásticas tienen 2 a 5 capas..
En el caso del generador de film coextruido, por ejemplo el de ácido acético, se realizó utilizando premezcla de acetato + PDBD (polietileno de baja densidad), además de premezcla de ácido tartárico + PDBD y premezcla de PDBD, en proporciones de 10%, 30% y 60% respectivamente. Mediante un proceso de coextrusión de dichos compuestos, se obtuvo un film monocapa con capacidad de generación de gas ácido acético con propiedades fungicidas y fungistáticas. Las condiciones de temperatura de la extrusión fueron mantenidas bajo 40 °C y sobre 0 °C.
La capa con mayor permeabilidad tanto al vapor de agua como a los gases de los compuestos GRAS se encuentra en las capas interiores o que estarán en contacto con el alimento o con el entorno que lo rodea. Las capas de mayor espesor, tienen una permeabilidad más restringida y por lo tanto están en la parte externa, de tal forma limitar la emisión gaseosa hacia el exterior y así evitar las pérdidas.
EJEMPLO 1: ÁCIDO ACÉTICO (CH3-COOH)
Para el generador de gas de Ácido Acético se preparó una composición precursora de gas ácido acético, que incluyó acetato de sodio y ácido tartárico en proporciones de 1:3.
La reacción entre ambos compuestos es la que se describe en presencia de humedad, para originar el gas ácido acético.
CH3-COO- Na+ + H20 + C4H606 > CH3-COOH + Na -C4H506 GENERADORES DE ACIDO ACÉTICO
EJEMPLO 1-A: SACHET:
Los sachet generadores de ácido acético se preparan incluyendo la composición o premezcla de acetato de sodio y ácido tartárico en estructura de film plástico y/o papel plastificado. Tal estructura está compuesta de 2 capas que en su interior contienen la composición precursora del producto GRAS.
Las dos capas externas de ésta estructura están compuestas de papel revestido de polietileno, que en el medio contiene la composición precursora del compuesto GRAS. La mezcla acetato de sodio y ácido tartárico, en forma de polvo, se coloca entre las dos láminas revestidas de plástico, y se unen entre sí en los bordes periféricos mediante un proceso de sellado térmico para formar un compartimento tipo bolsillo. Cada sachet puede contener 1 gr de acetato de sodio y 3 gramos de ácido tartárico. En total 4 gramos de mezcla.
EJEMPLO 1-B: LAMINAS PLÁSTICAS
Las láminas plásticas generadoras de ácido acético, están constituidas por 2 capas, una capa de polímero y una capa de la premezcla con cera.
La premezcla precursora de ácido acético se incorpora al polímero mediante un proceso de laminación en caliente. Esta laminación se realiza mezclando la composición de acetato de sodio y ácido tartárico, con cera y hotmelt, que es otro tipo de cera que favorece la adherencia de los compuestos al film. Las proporciones son 10%, 30%, 50% y 10% respectivamente. Este proceso se realiza a temperaturas de 80 °C.
EJEMPLO 1-C: FILM COEXTRUIDO
El film generador de ácido acético se obtiene por un proceso de coextrución utilizando las premezclas de acetato de sodio, ácido tartárico y premezcla de polietileno de baja densidad. Las proporciones de tales premezclas son de 10 %, 30% y 60 % de PDBD, es decir, en el film coextruido se tiene ácido tartárico, acetato de sodio y PDBD, en proporciones de 6: 2: 92, respectivamente. Ello se realiza en una extrusora monocapa para cargas de 6 kilos. El film tiene un espesor que fluctúa entre 80 y 100 μ. EJEMPLO 2: ACIDO FORMICO
La premezcla precursora del gas de ácido fórmico comprende formiato de sodio y ácido tartárico en proporciones de 1:2.
GENERADORES DE ÁCIDO FÓRMICO EJEMPLO 2-A: SACHET
Los sachet plásticos generadores de ácido fórmico se preparan incluyendo la premezcla de formiato de sodio y ácido tartárico en estructura de film plástico y/o papel plastificado. Tal estructura está compuesta de 2 capas, que en su interior contienen el ingrediente precursor GRAS. Las dos capas externas de ésta estructura están compuestas de papel revestido de polietileno, que en el medio contiene la composición de los agentes precursores. La composición de agentes precursores de ácido fórmico, es una composición en polvo que se coloca entre las dos láminas revestidas de plástico, y se unen entre sí en los bordes periféricos mediante un proceso de sellado térmico.
Entre ambas capas en compartimientos tipo bolsillo se incorpora la composición del precursor de ácido fórmico Cada sachet puede contener 1 gr de formiato de sodio y 2 gramos de ácido tartárico. En total 3 gramos de mezcla.
EJEMPLO 2-B: LÁMINAS
Las láminas plásticas generadoras de ácido fórmico, están constituidas por 2 capas, una capa de polímero y una capa de la premezcla con cera.
La premezcla precursora de ácido fórmico se incorpora al polímero mediante un proceso de laminación en caliente. Esta laminación se realiza mezclando la composición de formiato de sodio y ácido tartárico, con cera y hotmeit, que es otro tipo de cera que favorece la adherencia de los compuestos al film. Las proporciones son 17%, 33%, 45%, 5%, respectivamente. Este proceso se realiza a temperaturas de 80 ° C.
EJEMPLO 3: ETANOL
Para el generador de gas de Etanol se mezclaron 300 mi de etanol con 18 gr de carbopol con agitación vigorosa, se obtuvieron 200 gr de gel que se envasaron en frascos de plásticos hasta que fueran incorporados en el dispositivo generador del gas. GENERADORES DE ETANOL GASEOSO
EJEMPLO 3-A: SACHET
Los sachet plásticos generadores de etanol se prepararon incluyendo el gel de etanol preparado de acuerdo al proceso descrito anteriormente. La estructura del sachet está formada de 2 capas de film plástico que en su interior contiene el gel de etanol que genera etanol gaseoso, el que se libera al medio. Los sachet se prepararon en el momento de su uso y contuvieron 7 gramos de gel etanol en cada uno.
EJEMPLO 4: PROPANOL
Para el generador de gas de propanol se obtuvo una premezcla en base a gel y otra en polvo. Para la formulación en gel, se mezclaron 300 mi de propanol con 18 gr de carbopol (polvo, producto comercial) + (isopropanol) (líquido), con agitación vigorosa, se obtuvieron 200 gr de gel que se envasaron en frascos de plásticos hasta que fueran incorporados a la estructura de aplicación. Para la formulación en polvo se utilizó Triisopropyl.
GENERADORES DE PROPANOL GASEOSO EJEMPLO 4-A: SACHET
Los sachet plásticos generadores de propanol se prepararon incluyendo el gel de propanol preparado de acuerdo al proceso descrito anteriormente. La estructura de sachet está formada de 2 capas, de polietileno de baja densidad que en su interior contiene el compuesto o mezcla de propanol y carbopol que genera propanol al medio. Los sachet se prepararon en el momento de su uso y contuvieron 7 gramos de gel de propanol en cada uno.
EJEMPLO 4-B: LÁMINAS
Las láminas plásticas generadoras de propanol, están constituidas por 2 capas, una capa de polímero y una capa de la premezcla con cera. La premezcla precursora de propanol se incorpora al polímero mediante un proceso de laminación en caliente. Esta laminación se realiza mezclando Triisopropyl, con cera y hotmeit, que es otro tipo de cera que favorece la adherencia de los compuestos al film. Las proporciones son, 30%, 60% y 10% respectivamente. Este proceso se realiza a temperaturas de 80 ° C. EJEMPLO 5: DIÓXIDO DE CLORO (CIO?)
Se obtienen pellet o premezcla en extrusora con Clorito de Sodio, con 5 % y 10% de ingrediente activo.
GENERADORES DE DIÓXIDO DE CLORO EJEMPLO 5-A: FILM COEXTRUIDO
El film generador de dióxido de Cloro se obtiene por un proceso de coextrución utilizando el pellet o premezcla al 5% clorito de sodio y polietileno de baja densidad. Esta premezcla se agrega en un 40 a 50% a la extrusora, siendo el 60 y 70% restantes pellet de polietileno de baja densidad, es decir, en el film coextruido se tiene clorito de sodio y PDBD, en proporciones de 2 a 2,5: 97,5 a 98, respectivamente. Ello se realiza en una extrusora monocapa para cargas de 6 kilos. El film tiene un espesor que fluctúa entre 80 y 100 μ.
EJEMPLO 6: CLORO GAS íCb):
Para el generador de gas de Cfe o láminas se mezclaron Hipoclorito de Calcio y Cloruro de Sodio en proporciones de 4:1 , obteniéndose el compuesto base en polvo. Para el generador de gas de CIO2 o film, se obtuvieron dos premezclas o pellets uno de Hipoclorito de Calcio y PDBD y otro de Cloruro de Sodio con PDBD, con concentraciones promedios de 20%. Luego mediante una segunda extrusión se utilizaron las premezclas de Hipoclorito + PDBD y Cloruro + PDBD en proporciones de 2:1 en una porción mayor de PDBD. La segunda extrusión se realizó con 30 % de premezcla de hipoclorito de calcio, premezcla de cloruro de sodio 15% y polietileno de baja densidad en un 55 %, en un proceso a baja temperatura, 120 °C.
GENERADORES DE CLORO GASEOSO EJEMPLO 6-A: LÁMINA PLÁSTICA
Se hizo una mezcla de Cera y Hotmelt + Hipoclorito de calcio+ Cloruro de Sodio, en proporciones de 55: 36: 9, la que mediante un proceso de laminación en caliente, de entre 60 a 90 °C, se aplicó a lámina plástica de polipropileno de baja densidad.
EJEMPLO 6-B: FILM COEXTRUIDO
Mediante una segunda extrusión se utilizaron las premezclas de Hipoclorito+PDBD y Cloruro +PDBD en proporciones de 2:1 en una porción mayor de PDBD. La segunda coextrusión se realizó con 30 % de premezcla de hipoclorito de calcio + PDBD, premezcla de PDBD * cloruro de sodio 15% y polietileno de baja densidad en un 55 %, en un proceso a baja temperatura, 120 °C. Se obtuvo así un film coextruido monocapa con un espesor promedio de 100 μ, con hipoclorito de calcio, cloruro de sodio y PDBD, en proporciones de 6: 3: 91 , respectivamente.
EJEMPLO 7: 1-METILCICLOPROPENO.
Se obtienen pellet o premezcla en extrusora con 1-Metilciclopropeno al 30 a 40% de ingrediente activo.
GENERADORES DE METILCICLOPROPENO EJEMPLO 7-A: FILM COEXTRUIDO
La premezcla de 1-metilciclopropeno y polietileno de baja densidad, al 40%, se incorporó a un film monocapa generador del gas mediante un proceso de coextrución utilizando el pellet o premezcla en un 30 a 40% y polietileno de baja densidad en un 60 y 70% . Ello se realiza en una extrusora monocapa para cargas de 6 kilos. El film coextruido obtenido tiene un espesor que fluctúa entre 80 y 100 μ, con 1- metilciclopropeno y PDBD, en proporciones de 16: 84, respectivamente.
DISCUSIONES Y RESULTADOS
Potencial de control microbiológico, aplicabilidad en procesos comerciales y prolongación de vida útil
En la presente invención se han obtenido los tres tipos de dispositivos con los agentes activos propuestos, y se ha medido la liberación de gas de los agentes activos en diferentes condiciones de temperaturas y humedades. Las mediciones fueron realizadas a través de la cromatografía gaseosa. El objetivo de estas mediciones es determinar el potencial de liberación de agentes activos desde los dispositivos, en condiciones que reproducen las prevalecientes en cosecha, almacenamiento, transporte y comercialización de alimentos, productos agrícolas y especies botánicas. Es decir, se demuestra el potencial de aplicación de los dispositivos originados en la presente invención en el control microbiológico, y por lo tanto en la conservación de alimentos, productos agrícolas y especies botánicas, en procesos de almacenamiento, transporte y comercialización.
I
La capacidad de los dispositivos de la presente invención para generar emisiones gaseosas con efectos fungicidas por tiempos prolongados y en cantidades suficientes para el control de los patógenos, como se muestra en las Figuras 2,3, 4, 5 y 6, les otorga la capacidad de prolongar la vida útil de alimentos, productos agrícolas y especies botánicas en los que se aplica, lo que los diferencia de las opciones existentes hasta ahora. Por ejemplo el etanol líquido es utilizado hasta ahora para desinfectar fruta, mediante inmersión, logrando controles por cortos periodos, o por varios días pero en niveles bajos, no superiores a 30% (2010, Park, H. J.; Park, Y. M. ; Yang, Y. J, Effect of Ethanol Dipping on Decay and Postharvest Quality of Table Grapes during Cold Storage, International Horticulture Congress, Lisboa 2010, ISHS, http://www.ishs.org).
En cambio la presente invención puede mantener un ambiente desinfectante en torno a la fruta por períodos prolongados, lo que evita el deterioro y permite su almacenamiento hasta por varios días. Incluso la emisión de gas GRAS desinfectante ocurre en condiciones de baja temperatura, con lo cual dos tecnologías, bajas temperaturas y agentes desinfectantes inocuos, se complementan para lograr una mejor conservación de los productos.
Además, las formulaciones, polvos y geles, junto a los dispositivos considerados en la invención, permiten contar con productos estables, que pueden, a diferencia de lo existente hasta ahora, ser almacenados y manejados en operaciones comerciales, manteniendo su integridad y efectividad.
Para los dispositivos generadores de gas de ácido acético, se verificaron emisiones crecientes en condiciones controladas de temperatura y humedad. Estas emisiones variaron de acuerdo a la relación de los componentes en la premezcla, ácido tartárico y acetato, y también al tamaño de partícula de los compuestos. De la misma forma, se evaluó la capacidad de almacenamiento de los dispositivos de ácido acético. La información para tales parámetros se muestra en las Figuras 2A a 2 E.
La evaluación de las emisiones l para ácido acético con diferentes proporciones acetato: ácido tartárico que se observan en la Figura 2A, determinaron que la mezcla 1:3 es la que presentó la mayor emisión a las 24 horas con 3,5 ul/L.
El tamaño de partículas de los componentes de la premezcla influye en las emisiones de ácido acético, como en los otros compuestos GRAS. En el caso de ácido acético se obtuvo una mayor emisión al utilizar compuestos con una menor granulometría o tamaños de partículas inferiores. El acetato con partículas menores a 20 μ en combinación con ácido tartárico con partículas de tamaño inferior a 20 μ, presentó una mejor emisión que acetato con partículas menores a 53 μ en combinación con ácido tartárico con partículas de tamaño inferior a 20, Figura 2B.
La mejor proporción y el tamaño de partícula (1 :3 y molienda de 20 μ) permitió un mejoramiento de emisiones en cantidad y rapidez a 20°C, como se observa en la figura 2C. Estas son sobre 4 uL L a las 4 horas y la curva acumulada a las 8 horas fue de 24,8 uL/L.
Asimismo, las pruebas de almacenaje mostraron que sachet con 7 días de fabricación mantenidos a condiciones ambientales de 20°C y HR de 60% no vieron alteradas sus emisiones (Figura 2 D.).
Los dispositivos o film con la tecnología Smartpac emitieron gas a concentraciones crecientes en condiciones de temperatura de 20 °C, alcanzando valores de 1 ,5 uL/L a las 12 horas, Figura 2E).
Los dispositivos de la presente invención, tuvieron la capacidad de emitir el compuesto gaseoso con propiedades fungicidas en forma continua por un promedio de 14 días, incluso con temperaturas cercanas a 0°C, manteniendo su capacidad de control en dichas condiciones. Ello les da importantes ventajas en su uso en condiciones de almacenamiento refrigerado de productos alimenticios.
En las Figuras 3 a 6 se muestras las emisiones obtenidas para 4 de los generadores que son parte de la presente invención, sachet y láminas de ácido acético y propanol.
Los sachet de ácido acético (Figura 3) emitieron cantidades crecientes de gas alcanzando a 11 ul/L y 8,5 ul/L a los 12 días de almacenamiento a temperatura ambiente y en frió, respectivamente. Por su parte, las láminas de ácido acético registraron emisiones también crecientes de 2,5 ul/L y 2 ul/L a los 12 días de almacenamiento a temperatura ambiente y en frió, respectivamente.
En la Figura 4 se muestran las emisiones acumuladas de la formulación sólida de ácido acético, contenida en láminas, a diferentes temperaturas para simular las condiciones de temperatura que se presentan en embalaje (Temperatura ambiente), almacenamiento (0°C) y comercialización (Temperatura ambiente) de productos hortofrutícolas de exportación. Según se observa, a 0°C las láminas no sobrepasan las emisiones de 1pL L, pero si la lámina se coloca nuevamente a temperatura ambiente se reinician las emisiones. Esto representa una gran ventaja en la protección de los productos hortofrutícolas al interrumpir la cadena de frío.
Para el caso del Propanol, como se muestra en Figura 5, las emisiones desde sachet fueron mayores a la de las láminas para similares cantidades de ingredientes activos. En la primera formulación se obtienen emisiones mayores de 50 uL L, mientras que en las láminas alrededor de 10 y 20 uL/L. Ello para condiciones de almacenamiento refrigerado y en condiciones ambientales y para 12 días de almacenamiento.
Las emisiones acumuladas de la formulación sólida de propanol desde láminas, simulando las condiciones de temperatura que se presentan en embalaje temperatura ambiente y almacenamiento (0°C) de productos hortofrutícolas de exportación, muestran en la Figura 6 que la baja de temperatura también afecta las emisiones de este gas pero en menor proporción que para el ácido acético.
Efectividad en Sanitización o Desinfección y Almacenamiento prolongado
Los productos de la presente invención demostraron ser efectivos tanto en tratamientos de sanitización o desinfección inicial, como en tratamientos para almacenamiento prolongado.
Sanitización o Desinfección
La efectividad de los diferentes dispositivos de la presente invención en la sanitización de fruta intencionalmente inoculada con el patógeno Botritys cinérea, fue verificada por un estudio realizado por la Unidad de Poscosecha de la Facultad de Agronomía de la Pontificia Universidad Católica de Chile, realizado para Quimas S.A. como parte de un proyecto Innova-Corfo.
En dicho estudio, destacaron los tratamientos en base a ácido Acético (AA), Ácido Fórmico (AF) y Propanol en el control de Botrytis.
Como se aprecia en las Figura 7 y 8, los generadores de ácido acético (AA), ácido fórmico (AF), etanol y propanol, que son parte de la presente invención, bajo condiciones controladas de laboratorio y con inoculación o infestación intencionada de hongos patógenos, demostraron su efectividad como satinizantes en la reducción de pudriciones en frutas, respecto al un control sin tratamiento. En las Figuras 7 y 8 se muestra la efectividad del tratamiento actualmente utilizado para estos fines, el SO2, y la de los tratamientos GRAS de la presente invención. Cabe destacar, que a diferencia del S02, los principios activos que forman parte de la presente invención no tienen restricciones de uso y no están sometidos a ninguna normativa en los principales mercados mundiales, ya que son productos GRAS, es decir inocuos para el ser humano.
Se muestra que el ácido fórmico y propanol fueron los más próximos en efectividad cuando se evaluó en una condición de alta incidencia (caso de 80% de incidencia en testigo o control). En el caso de una segunda evaluación, en la cual la fruta control presentaba una incidencia de 60%, la efectividad de los productos GRAS fue muy similar, no existiendo diferencias entre los tratamientos a base de ácido acético, fórmico o propanol.
De la misma forma, la incidencia y severidad de pudrición gris en bayas, se ven afectadas por el tiempo de preparación de los ingredientes activos. Los resultados se muestran en la Tabla 2.
Tabla 2. Incidencia (% de bayas afectadas del total) y severidad (% de área afectada en la baya) de pudrición gris en bayas inoculadas por inmersión de Botrytis cinérea, considerando el tiempo de preparación de los ingredientes activos.
Tratamientos Incidencia (1-4) Severidad
Tiempo de preparación Tiempo de preparación de
de IA., (h) IA., (h)
0 24 0 24
Control 86,2 c 53,0 be 2,7 2,9
AA sachet (lg) 40,6 b 64,3 c 2,2* 3,0
AF sachet (0,5g) 15,2 a 40,0 b 2,8* 3,1*
etanol gel (7g) 81,9 c 33,9 ab 2,2 2,7
propanol gel (7g) 47,8 b 20,9 a 1,6 2,3
S02 8,0 1,7 2,3 2,5*
*Se produjo desarrollo de fitotóxicidad a través de manchas
Letras iguales en una misma columna indican que los promedios entre tratamientos son estadísticamente similares según la prueba LSD, p<0,05. Severidad: (% de área afectada en la baya) 1=baja y 4 alta. AA: Ácido acético: AF: ácido fórmico.
Así la efectividad del tratamiento a base de ácido acético (AA) y ácido fórmico (AF) se reduce significativamente después de 1 día de preparación, en cambio, los tratamientos con ingredientes activos a base de etanol y propanol gel, mejoran su efectividad con el atraso en la apllicación, ya que disminuye la incidencia. De la misma forma, una de las invenciones, los sachet de AA, según se muestra en la Figura 9, lograron un control promedio de patógenos de un 66% sobre el control o testigo sin tratamiento, cuando se prepararon 24 horas antes de ser aplicados. Además, se logró un control similar de los patógenos disminuyendo las la cantidad de AA en el sachet hasta 0,5 gr, lo que a la vez permitió disminuir los efectos en el pardeamiento de la fruta.
Efectividad en Control de Patógenos en Almacenamiento
Los generadores con activos GRAS, que son parte de la presente invención, demostraron diferentes grados de efectividad en el control de patógenos en fruta almacenada por 30 días, en relación a un testigo sin tratamiento. Así lo demuestran los diferentes ensayos mostrados en las Tablas 3, 4 y 5, que son parte de un estudio realizado por la Unidad de Poscosecha de la Facultad de Agronomía de la Pontificia Universidad Católica de Chile, para Quimas S.A., como parte de un proyecto Innova- Corfo.
Los dispositivos que utilizaron ácido acético y ácido fórmico permitieron disminuir la pudrición gris (Botritys cinérea) equivalente en un 86% y 72% respectivamente respecto al testigo sin tratamiento, al final de un periodo de almacenamiento de
30 días. Lo anterior en una condición de ambiente cerrado y con un nivel inicial de infestación de alto de 84,2 %. En este caso el dispositivo con Dióxido de cloro presentó un nivel de control respecto al testigo de 42%.
Tabla 3. Efecto de los productos GRAS sobre el desarrollo de pudrición gris (%), en uva embalada en clamshell y almacenada por 30 días a 0°C.
Tratamientos Pudrición gris
Total (%)
Control/sin
perforaciones 84,2 c
AA sal 11,6 a
AF sal 18,4 a
D-CI (film) 48,9 b
Control / perforada 16,4 a
Cloro gas 14,0 a
S02 gasificación 5,6
S02gasi./S02 gen. 0,4 La fruta tratada con AA, AF sal, D-CI film fue embalada en bolsa sin perforar, ambiente cerrado.
La fruta tratada con Cloro gas, S02 gasificación, S02gasi./S02 gen., fue embalada en bolsa perforada, ambiente semiabierto. Unidad de muestra clamshell de 1,5 kilos de fruta y 4 repeticiones.
Diferentes letras entre tratamientos indican diferencias estadísticamente significativas (p<0.05).
Otro ensayo mostrado en la Tabla 4, compara la efectividad de 6 compuestos Gras y del SO2 que es el tratamiento convencional actualmente utilizado. Se muestra la alta efectividad de los alcoholes, Etanol y Propanol, en el control del patógeno en el almacenamiento por 30 días, en niveles iguales al tratamiento estándar de S02. En este caso, los 6 compuestos GRAS utilizados en los dispositivos de la invención presentan niveles de control interesantes. Además de los alcoholes, se destacan los resultados obtenidos con dos dispositivos como son ácido acético y propanol, seguidos por ácido Fórmico y Dióxido de cloro. Estos resultados se obtuvieron para una condición de ambiente cerrado, utilizando una bolsa sin perforar y con un alto nivel de infestación, casi de 83%.
Asimismo, en la Tabla 5 se muestran los resultados de efectividad de control para 4 dispositivos de compuestos GRAS y para el tratamiento convencional de SO2, tanto en ambiente cerrado (bolsa sin perforar) y ambiente abierto (bolsa perforada). Destacan, al igual que en el ensayo anterior los alcoholes, etanol y propanol, los que alcanzan un nivel de control similar a SO2. Los dispositivos de ácido fórmico y ácido acético, presentan un nivel de control similar, los que alcanzan a 53% y 59% de disminución respectivamente respecto al testigo sin tratamiento.
De esta forma, los dispositivos tanto de sachet, láminas y film activo Smartpac, que son parte de la invención, son efectivos en reducir la incidencia de la enfermedad que produce importantes daños en frutas y en general en alimentos y productos agrícolas, posibilitando importantes aplicaciones en las que no se tienen otras alternativas. Ejemplo de ello son: los productos orgánicos, aquellos que requieren ser usados para el consumo directo, alimentos para niños o bebes, y en general en aquellos nichos de mercado que requieren productos menos contaminantes, más saludables y amigables con el medio ambiente.
Tabla 4. Efecto de los productos GRAS alternativos a ácido acético sobre el desarrollo de pudrición gris (%), embalada en clamshell y almacenada por 30 días a 0°C. Tratamiento Pudrición
Gris Total (%)
Control /sin perf 82,9 d
Etanol gel 3,1 a
Propanol gel 2,5 a
AF sal 52,2 c
AA+P 10,7 b
D-CI (film) 63,1 c
Control / perforada 38,3
S02 4,1
AA-P: Sac et para la liberación de ácido acético y gel para la liberación de propanol.
La fruta tratada con AA, AF sal, D-CI film fue embalada en bolsa sin perforar, ambiente cerradoLa fruta tratada con S02 gasificación, S02gasi./S02 gen., fue embalada en bolsa perforada, ambiente semi abierto. Unidad de muestra clamshell de 1,5 kilos de fruta y 4 repeticiones.
Diferentes letras entre tratamientos indican diferencias estadísticamente significativas (p<0.05).
Tabla 5. Efecto de los productos GRASS alternativos a ácido acético sobre el desarrollo de pudrición gris (%) según los síntomas en la inserción pedicelo baya (pedicelar), lateral y base de la baya (basal), embalada en clamshell y almacenada por 30 días a 0°C.
Figure imgf000039_0001
La fruta tratada con AA, AF sal, D-CI film fue embalada en bolsa sin perforar, ambiente cerrado.
La fruta tratada con generador S02, fue embalada en bolsa perforada, ambiente semi abierto.
Unidad de muestra clamshell de 1,5 kilos de fruta y 4 repeticiones.
Diferentes letras entre tratamientos indican diferencias estadísticamente significativas (p<0.05).

Claims

39 REIVINDICACIONES
1. Dispositivo de embalaje para la conservación de alimentos, productos agrícolas y especies botánicas, CARACTERIZADO porque comprende un portador generador de gas que contiene un agente activo o un precursor del agente activo del tipo GRAS (Generalmente Reconocidos como Seguros), que puede ser usado directamente sobre los alimentos productos agrícolas y especies botánicas, incluso de consumo directo y orgánicos, en forma segura para el consumidor y el ambiente.
2. Dispositivo de embalaje de acuerdo a la reivindicación 1 , CARACTERIZADO porque el portador generador de gas se selecciona de sachets o sobres, láminas o películas co-extruidas.
3. Dispositivo de embalaje de acuerdo a la reivindicación 2, CARACTERIZADO porque el portador generador de gas comprende un agente activo o un precursor del agente activo del tipo GRAS que se encuentra en estado sólido o gel.
4. Dispositivo de embalaje de acuerdo a la reivindicación 2, CARACTERIZADO porque el portador generador de gas es un sachet o sobres.
5. Dispositivo de embalaje de acuerdo a la reivindicación 4, CARACTERIZADO porque el sachet o sobre está formado por dos capas constituidas de un film plástico y/o papel plastificado permeables a la humedad y a los gases, con un peso de 20 a 50 g/m2 y 20 a 30 g/m2, respectivamente, estando estas capas unidas entre sí mediante una o más uniones, tales que forman al menos un bolsillo entre ellas, en el cual se dispone el compuesto precursor del gas en una formulación gel, la que al reaccionar con la humedad genera el gas fungicida.
6. Dispositivo de embalaje de acuerdo a la reivindicación 4, CARACTERIZADO porque el sachet o sobre comprende como agente activo o precursor del agente activo del tipo GRAS, una formulación que comprende al menos un compuesto seleccionado de ácido fórmico, ácido acético, propanol, etanol, ácido tartárico, formiato de sodio, acetato de sodio o una combinación de los mismos.
7. Dispositivo de embalaje de acuerdo a la reivindicación 6, CARACTERIZADO porque el sachet o sobre comprende una formulación en forma de gel precursora de la liberación de etanol como agente activo tipo GRAS, que comprende una mezcla de etanol y carbopol en una proporción de 13:1 p/p.
8. Dispositivo de embalaje de acuerdo a la reivindicación 6, CARACTERIZADO porque el sachet o sobre comprende una formulación en forma de gel precursora de la liberación de propanol como agente activo tipo GRAS que comprende una mezcla de propanol y carbopol en una proporción de 13:1 p/p.
9. Dispositivo de embalaje de acuerdo a la reivindicación 6, CARACTERIZADO porque el sachet o sobre comprende una formulación sólida precursora de liberación de ácido acético como agente activo tipo GRAS, compuesta por una mezcla sólida de acetato de sodio y ácido tartárico en una proporción de acetato de sodio y ácido tartárico de entre 1 :2; 1 :2,5; 1 :3 y 1 :4.
10. Dispositivo de embalaje de acuerdo a la reivindicación 9, CARACTERIZADO porque la proporción entre acetato de sodio y ácido tartárico es de 1:3.
11. Dispositivo de embalaje de acuerdo a la reivindicación 9, CARACTERIZADO porque el 00% de las partículas de acetato de sodio y el ácido tartárico tienen un tamaño inferior a 20 μ, o un tamaño de partícula inferior a 43 μ, o un tamaño de partícula inferior a 53 μ.
12. Dispositivo de embalaje de acuerdo a la reivindicación 6, CARACTERIZADO porque el sachet o sobre comprende una formulación precursora de liberación de ácido fórmico como agente activo tipo GRAS, compuesta por una mezcla sólida de formiato de sodio y ácido tartárico en una proporción de 1 :2.
13. Dispositivo de embalaje de acuerdo a la reivindicación 12, CARACTERIZADO porque el 100% de las partículas de formiato de sodio y ácido tartárico tienen un tamaño inferior a 20 μ, o un tamaño de partícula inferior a 43 μ, o un tamaño de partícula inferior a 53 μ.
14. Dispositivo de embalaje de acuerdo a la reivindicación 2, CARACTERIZADO porque el portador generador de gas es una lámina de material polimérico.
15. Dispositivo de embalaje de acuerdo a la reivindicación 14, CARACTERIZADO porque el portador generador de gas comprende al menos dos capas, siendo una capa de material polimérico y una segunda capa correspondiente a una mezcla precursora de la liberación del agente activo tipo GRAS.
16. Dispositivo de embalaje de acuerdo a la reivindicación 15, CARACTERIZADO porque la segunda capa además comprende una cera y/o un producto hotmelt.
17. Dispositivo de embalaje de acuerdo a la reivindicación 14, CARACTERIZADO porque el portador generador de gas comprende 3 ó 5 capas.
18. Dispositivo de embalaje de acuerdo a la reivindicación 14, CARACTERIZADO porque la lámina comprende como agente activo o precursor del agente activo del tipo GRAS, uno o más compuestos seleccionados de ácido fórmico, ácido acético, triisopropyl, ácido tartárico, formiato de sodio, acetato de sodio, hipoclorito de calcio, cloruro de calcio y cloruro de sodio.
19. Dispositivo de embalaje de acuerdo a la reivindicación 18, CARACTERIZADO porque la mezcla precursora de agente activo del tipo GRAS libera propanol como agente activo del tipo GRAS, en que el compuesto precursor del agente activo tipo GRAS, es triisopropyl y tiene un tamaño de partículas ciento por ciento inferiores a 53μ, o inferiores a 43 μ,
20. Dispositivo de embalaje de acuerdo a la reivindicación 19, CARACTERIZADO porque la mezcla precursora comprende una mezcla en polvo de triisopropyl, cera y hotmelt en proporciones de 3:6:1 respectivamente.
21. Dispositivo de embalaje de acuerdo a la reivindicación 18, CARACTERIZADO porque la mezcla precursora de agente activo del tipo GRAS libera ácido fórmico como agente activo del tipo GRAS, en que la mezcla precursora comprende una mezcla en polvo de formiato de sodio y ácido tartárico en proporciones de 1:2, en que el 100% de las partículas de formiato de sodio y el ácido tartárico tienen un tamaño inferior a 53 μ, o inferior a 43 μ, y el 100% de las partículas de ácido tartárico también puede tener un tamaño inferior a 20 μ.
22. Dispositivo de embalaje de acuerdo a la reivindicación 21, CARACTERIZADO porque la mezcla precursora comprende una mezcla en polvo de formiato de sodio, ácido tartárico, cera y hotmelt en una proporción de 17: 33: 45: y 5, respectivamente.
23. Dispositivo de embalaje de acuerdo a la reivindicación 18, CARACTERIZADO porque la mezcla precursora de agente activo del tipo GRAS libera ácido acético como agente activo del tipo GRAS, y en que la mezcla precursora comprende una mezcla sólida de acetato de sodio y ácido tartárico en una proporción de 1:2 ó 1 :2,5 ó 1 :3, preferentemente de 1 :3; en que el 100% de las partículas de acetato de sodio y ácido tartárico tienen un tamaño inferior a 20 μ, o inferior a 53 μ, o inferior a 43 μ.
24. Dispositivo de embalaje de acuerdo a la reivindicación 23, CARACTERIZADO por que la formulación precursora comprende una mezcla de acetato de sodio, ácido tartárico, cera y hotmelt en una proporción de 1: 3: 5: y 1, respectivamente.
25. Dispositivo de embalaje de acuerdo a la reivindicación 18, CARACTERIZADO porque la mezcla precursora de agente activo del tipo GRAS libera cloro gaseoso como agente activo del tipo GRAS, en que la mezcla precursora comprende una mezcla en polvo de hipoclorito de calcio y cloruro de sodio en proporciones 4:1, ó una mezcla en polvo de hipoclorito de calcio, cloruro de calcio y ácido tartárico; en que el 100% de las partículas de hipoclorito de calcio, cloruro de sodio, cloruro de calcio y ácido tartárico tienen un tamaño inferior a 53μ, o inferior a 43 μ; y/o el 100/ de las partículas de ácido tartárico puede tener un tamaño inferior a 20 μ.
26. Dispositivo de embalaje de acuerdo a la reivindicación 25, CARACTERIZADO porque la mezcla precursora de cloro gaseoso comprende una mezcla de cera, Hotmelt y mezcla precursora de activo GRAS hipoclorito de calcio y cloruro de sodio, en proporciones de 50: 5: 36: y 9, respectivamente.
27. Dispositivo de embalaje de acuerdo a la reivindicación 2, CARACTERIZADO porque el portador generador de gas es un film co-extruido.
28. Dispositivo de embalaje de acuerdo a la reivindicación 27, CARACTERIZADO porque el film co-extruido comprende en su estructura compuestos precursores que liberan un agente activo tipo GRAS y polietileno de baja densidad (PDBD), el film coextruido puede ser de 1 o más capas de preferencia tres, en este último caso la mezcla precursora o premezcla forma parte de la estructura de la capa del medio.
29. Dispositivo de embalaje de acuerdo a la reivindicación 27, CARACTERIZADO porque el film co-extruido portador del generador de activo GRAS de una o más capas, puede diseñarse o ser materia prima para la fabricación de bolsas, sobres, almohadillas, espumas, insertos, bandejas, cubiertas, forros de película o láminas y otro depósito contenedor.
30. Dispositivo de embalaje de acuerdo a la reivindicación 27, CARACTERIZADO porque el film co-extruido comprende como agente activo o precursor del agente activo del tipo GRAS, un compuesto seleccionado de ácido acético, ácido tartárico, acetato de sodio, clorito de sodio, hipoclorito de calcio, cloruro de calcio, cloruro de sodio, 1-metilciclopropeno o una combinación de los mismos.
31. Dispositivo de embalaje de acuerdo a la reivindicación 30, CARACTERIZADO porque el film co-extruido comprende en su estructura y en al menos una capa una mezcla precursora de ácido acético como agente activo del tipo GRAS, en que la mezcla precursora comprende: ácido tartárico en una proporción de ácido tartárico y polietileno de baja densidad de 20%, y acetato de sodio en una proporción de acetato de sodio y polietileno de baja densidad de 20%; esta premezcla forma parte de un 40% del film coextruido monocapa, con lo que el ácido tartárico, acetato de sodio y PDBD, constituyen parte de la estructura del film coextruido monocapa en proporciones de 6%, 2% y 92% respectivamente; el espesor del film monocapa varía entre 80 y 100 μ; el 100% de las partículas de acetato y ácido tartárico tienen un tamaño inferior a 20 μ, o inferior a 53 μ o inferior a 43 μ.
32. Dispositivo de embalaje de acuerdo a la reivindicación 30, CARACTERIZADO porque el film co-extruido comprende en su estructura una mezcla precursora de la liberación de dióxido de cloro como agente activo del tipo GRAS, en que la mezcla precursora comprende clorito de sodio en una proporción de clorito de sodio y polietileno de baja densidad de 5% y PDBD en un 95%, la premezcla forma parte de un 40 a 50% del film, con lo que el clorito de sodio y PDBD, constituyen parte de la estructura del film coextruido monocapa en proporciones de entre 2 a 2,5% y 97,5 a 98, respectivamente; el espesor del film monocapa varía entre 80 y 100 μ; el 100% de las partículas de clorito de sodio tienen un tamaño inferior a 53μ o inferior 43 μ.
33. Dispositivo de embalaje de acuerdo a la reivindicación 30, CARACTERIZADO porque el film co-extruido comprende en su estructura y en al menos una capa una mezcla precursora de la liberación de cloro gaseoso como agente activo del tipo GRAS, en que la mezcla precursora comprende: hipoclorito de calcio en una proporción de hipoclorito de calcio y polietileno de baja densidad de 20%; y cloruro de sodio en una proporción de cloruro de sodio y polietileno de baja densidad de 20%, estas premezclas forman parte del film coextruido monocapa, en proporciones de 30% hipoclorito de calcio y PDBD, 15% cloruro de sodio y PDBD, y 55% de PDBD, por lo que hipoclorito de calcio, cloruro de sodio y PDBD, constituyen parte de la estructura del film coextruido monocapa en proporciones de 6%, 3% y 91 % respectivamente; el espesor del film monocapa varía entre 80 y 00 μ; el 100% de las partículas de hipoclorito de calcio y cloruro de sodio, tienen un tamaño inferior a 53μ o inferior a 43 μ.
34. Dispositivo de embalaje de acuerdo a la reivindicación 30, CARACTERIZADO porque el film co-extruido comprende en su estructura y en al menos una capa una mezcla precursora de la liberación de ácido acético y -meti ciclopropeno como agentes activos del tipo GRAS, en que la mezclas precursoras comprenden: ácido tartárico y polietileno de baja densidad; acetato de sodio y polietileno de baja densidad; y 1-Metilciclopropeno y polietileno de baja densidad, las premezclas forman parte del film coextruido monocapa, con lo que el ácido tartárico, acetato de sodio y 1-metilciclopropeno, constituyen parte de la estructura del film coextruido monocapa.
35. Dispositivo de embalaje de acuerdo a la reivindicación 30, CARACTERIZADO porque el film co-extruido comprende en su estructura una mezcla precursora de la liberación de 1-Metilciclopropeno como agente activo del tipo GRAS, en que la mezcla precursora comprende 1-Metilciclopropeno en una proporción de 1- metilciclopropeno y polietileno de baja densidad de 20 a 40% y PDBD en un 80 a 60%, la premezcla forma parte en un 30 o 40% del film, con lo que el 1- Metilciclopropeno y PDBD, constituyen parte de la estructura del film coextruido monocapa en proporciones de entre 6 o 16% y 94 o 84%, respectivamente, el espesor del film monocapa varía entre 80 y 100 μ.
36. Uso del dispositivo de embalaje de acuerdo a las reivindicaciones 1 a 34, CARACTERIZADO porque se utiliza en el control de contaminación microbiológica durante el empaque, transporte y/o almacenamiento de: alimentos, productos agrícolas y especies botánicas.
37. Uso del dispositivo de embalaje de acuerdo a las reivindicaciones 1 a 34, CARACTERIZADO porque se utiliza en la sanitización, reducción o eliminación de la contaminación superficial o primaria de alimentos, productos agrícolas y especies botánicas.
38. Uso del dispositivo de embalaje de acuerdo a la reivindicación 1 a 34, CARACTERIZADO porque se utiliza en la etapa de desarrollo o avance de la contaminación superficial o primaria de alimentos, productos agrícolas y especies botánicas.
39. Uso del dispositivo de embalaje de acuerdo a la reivindicación 36, CARACTERIZADO porque se utiliza como fungicida en post-cosecha de uvas reemplazando el uso de SO2.
40. Uso del dispositivo de embalaje de acuerdo a las reivindicaciones 1 a 35, CARACTERIZADO porque permite una liberación controlada de agentes activos en estado gaseoso para impedir, retardar, controlar, demorar, la contaminación microbiológica en alimentos, productos agrícolas y especies botánicas durante la post-cosecha.
41. Uso del dispositivo de embalaje de acuerdo a las reivindicaciones 34 y 35, CARACTERIZADO porque permite una liberación controlada de agentes activos en estado gaseoso para retardar la maduración e impedir, retardar, controlar, demorar, la contaminación microbiológica en alimentos, productos agrícolas y especies botánicas durante la post-cosecha.
42. Uso del dispositivo de embalaje de acuerdo a la reivindicación
CARACTERIZADO porque permite una liberación controlada de agentes activos estado gaseoso para retardar la maduración en alimentos, productos agrícolas y especies botánicas durante la post-cosecha.
43. Uso del dispositivo de embalaje de acuerdo a las reivindicaciones 1 a 35, CARACTERIZADO porque sirve para extender la vida útil y evitar el deterioro de alimentos, productos agrícolas y especies botánicas.
44. Método de control de crecimiento microbiano en alimentos, productos agrícolas y especies botánicas, CARACTERIZADO porque comprende poner en contacto un dispositivo de embalaje de acuerdo a las reivindicaciones 1 a 35, con los alimentos, productos agrícolas y especies botánicas, durante su envasado, almacenaje, transporte, distribución y comercialización.
PCT/CL2014/000010 2013-01-24 2014-03-21 Dispositivo de embalaje WO2014113900A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL243-2013 2013-01-24
CL2013000243A CL2013000243A1 (es) 2013-01-24 2013-01-24 Dispositivo de embalaje para la conservacion de alimentos, productos agricolas y especies botanicas que comprende un portador generador de gas; uso de dicho dispositivo para el control de contaminacion microbiologica; y metodo de control de crecimiento microbiano.

Publications (2)

Publication Number Publication Date
WO2014113900A2 true WO2014113900A2 (es) 2014-07-31
WO2014113900A3 WO2014113900A3 (es) 2014-11-27

Family

ID=51228143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000010 WO2014113900A2 (es) 2013-01-24 2014-03-21 Dispositivo de embalaje

Country Status (2)

Country Link
CL (1) CL2013000243A1 (es)
WO (1) WO2014113900A2 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550026A (en) * 1983-02-15 1985-10-29 Yosuke Akiba Method for preserving food using a preservative gas atmosphere
US6037374A (en) * 1997-11-19 2000-03-14 The United States Of America As Represented By The Secretary Of Agriculture Composition and method for the control of parasitic mites in honey bees
WO2002011548A2 (en) * 2000-08-09 2002-02-14 Syngenta Mogen Bv Means for extending the shelf-life of vegetables
ES2172872T3 (es) * 1997-01-31 2002-10-01 Embalajes Proem Limitada Generador de cloro para la conservacion de frutas y verduras.
JP2003052343A (ja) * 2001-08-17 2003-02-25 Freunt Ind Co Ltd 食品保存用具
JP2004121053A (ja) * 2002-09-30 2004-04-22 Freunt Ind Co Ltd アルコール蒸散用具とそれを用いた包装物品、食品保存用具およびそれを用いた包装物品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550026A (en) * 1983-02-15 1985-10-29 Yosuke Akiba Method for preserving food using a preservative gas atmosphere
ES2172872T3 (es) * 1997-01-31 2002-10-01 Embalajes Proem Limitada Generador de cloro para la conservacion de frutas y verduras.
US6037374A (en) * 1997-11-19 2000-03-14 The United States Of America As Represented By The Secretary Of Agriculture Composition and method for the control of parasitic mites in honey bees
WO2002011548A2 (en) * 2000-08-09 2002-02-14 Syngenta Mogen Bv Means for extending the shelf-life of vegetables
JP2003052343A (ja) * 2001-08-17 2003-02-25 Freunt Ind Co Ltd 食品保存用具
JP2004121053A (ja) * 2002-09-30 2004-04-22 Freunt Ind Co Ltd アルコール蒸散用具とそれを用いた包装物品、食品保存用具およびそれを用いた包装物品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CANDIR, E. ET AL.: 'Modified atmosphere packaging and ethanol vapor to control decay of Red Globe table grapes during storage.' POSTHARVEST BIOLOGY AND TECHNOLOGY. vol. 63, no. 1, 13 September 2011, pages 98 - 106 *
COMA, V.: 'Bioactive packaging technologies For extended shelf life of meat-based.' MEAT SCIENCE vol. 78, 13 November 2007, pages 90 - 10 *

Also Published As

Publication number Publication date
CL2013000243A1 (es) 2014-11-14
WO2014113900A3 (es) 2014-11-27

Similar Documents

Publication Publication Date Title
Álvarez-Hernández et al. Current scenario of adsorbent materials used in ethylene scavenging systems to extend fruit and vegetable postharvest life
Bodbodak et al. Recent trends in active packaging in fruits and vegetables
JP6974456B2 (ja) 抗微生物性ガス放出剤、ならびにその使用のためのシステム及び方法
Bhat et al. Progress in food preservation
JP6059136B2 (ja) 調整雰囲気包装の処理
Haghighi‐Manesh et al. Active packaging systems with emphasis on its applications in dairy products
Jung et al. Antimicrobial packaging for fresh and minimally processed fruits and vegetables
Ebrahimi et al. Novel strategies to control ethylene in fruit and vegetables for extending their shelf life: A review
F Soares et al. Recent patents on active packaging for food application
US9485918B2 (en) Treatment system to prolong life of cut flowers
ES2791451T3 (es) Membrana y método para la conservación de productos agrícolas
WO2013149356A1 (es) Envase que extiende la vida útil de los alimentos que contiene, especialmente berries, al incorporar en su superficie un agente antifúngico. particularmente berries. procedimiento de preparación y usos
CN101755895B (zh) 贴片式二氧化氯气体发生剂
Alonso et al. Active packaging films based on polyolefins modified by organic and inorganic nanoparticles
Deshwal et al. Active packaging of fruits and vegetables: Quality preservation and shelf-life enhancement
WO2014113900A2 (es) Dispositivo de embalaje
US20120070508A1 (en) Methods, Compositions, and Devices for Managing Chlorine Dioxide Release
KR20130031501A (ko) 미량 서방형 이산화염소 가스 훈증 팩
Gupta et al. New insight in active packaging of fruits
Aydınoğlu Active food packaging technology as an application in the food industry
US20120100230A1 (en) Systems, Devices, and/or Methods for Managing Crops
WO2020080542A1 (ja) 鮮度保持フィルム及び鮮度保持容器
JP3216401U (ja) 野菜の包装体
JPS6322501A (ja) 農産物の鮮度保持剤
KR100287743B1 (ko) 식품용방향성항균포대

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 14742982

Country of ref document: EP

Kind code of ref document: A2