WO2014112752A1 - 공작기계의 이송계 열변위 보정장치 및 보정방법 - Google Patents

공작기계의 이송계 열변위 보정장치 및 보정방법 Download PDF

Info

Publication number
WO2014112752A1
WO2014112752A1 PCT/KR2014/000307 KR2014000307W WO2014112752A1 WO 2014112752 A1 WO2014112752 A1 WO 2014112752A1 KR 2014000307 W KR2014000307 W KR 2014000307W WO 2014112752 A1 WO2014112752 A1 WO 2014112752A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal displacement
rapid
time density
maximum value
time
Prior art date
Application number
PCT/KR2014/000307
Other languages
English (en)
French (fr)
Inventor
김태원
박세훈
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to EP14741169.8A priority Critical patent/EP2946877B1/en
Publication of WO2014112752A1 publication Critical patent/WO2014112752A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/30Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37336Cutting, machining time
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49205Compensate with stored values as function of machining time
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49207Compensate thermal displacement using measured distance

Definitions

  • the present invention relates to a feed system thermal displacement correction device and a correction method of a machine tool, and more particularly, a rapid feed time used for changing a tool or selecting a position of a tool as a machining point is used for rapid feed per unit time. Rapid feed time density calculated by the time ratio, and the maximum value calculated using the average value of the rapid feed time density calculated in this way is compared with the current correction value. It relates to a series displacement correction device and a correction method.
  • a lathe of a conventional machine tool 1 is mounted on a bed 2 disposed adjacent to the ground, a main shaft 3 mounted on an upper surface of the bed 2, and a part of the main shaft 3.
  • a chuck for holding the work piece 8 is provided.
  • the upper surface of the bed (2) is provided with a guide way (5)
  • the transfer system 4 is installed so as to be transportable on the guide way (5)
  • the upper part of the transfer system is provided with the tool 7 is fastened
  • the turret 6 is provided.
  • the conventional machine tool (1) in particular the lathe is to machine the desired workpiece shape while the tool (7) and the workpiece (8) mounted on the turret (6) installed in the feed system (4) relative movement.
  • the part on which the tool is mounted may be fixed and the main shaft including the work may be transferred, and if necessary, the tool and the work may be provided.
  • the feed system 4 of this machine tool is driven by a power transmission unit, more particularly by a motor.
  • the machine tool may be provided with a numerical control (NC) device as necessary.
  • NC numerical control
  • machine tools (1) in particular in the case of lathes are used for the machining of circular workpieces
  • the feed system is operated at high speed to reduce the processing time and mass production of the workpiece.
  • the feed system is operated at a high speed, there is a problem in that the dimensions of the workpiece or the size of the parts constituting the feed system are deformed by heat generated to change the diameter dimension of the workpiece.
  • the machining precision of the workpiece is reduced according to the changed diameter dimension of the workpiece, and if the variation of the diameter dimension of the workpiece exceeds the tolerance, there is a problem in that productivity decreases as the operator must readjust the machine tool.
  • the present invention is to solve the above problems, the object of the present invention is to calculate the rapid feed time used when changing the tool or the position of the tool to the machining point calculated by the ratio of time used for rapid feed per unit time It can be applied to various workpieces and machine tools by obtaining the rapid feed time density, and comparing the maximum value calculated using the average value of the rapid feed time density and the current correction value, and correcting the feed system according to the thermal displacement of the feed system. It is an object of the present invention to provide a feed system thermal displacement correction apparatus and a method for correcting a feed system thermal displacement, and to reduce manufacturing costs.
  • the present invention is a work comprising a bed, a main shaft mounted on the bed, a transfer system movably installed on the bed, and a power transmission unit for transmitting power for transferring the transfer system.
  • a machine comprising: a timer operated for a predetermined set time when the transfer system is transferred; A rapid traverse time measuring unit for measuring a rapid traverse time of the transfer system while the timer is operated; A quick feed time density calculator for calculating a quick feed time density per unit time by using the quick feed time measured by the quick feed time measuring unit; An average rapid traverse time density calculation unit configured to calculate an average rapid traverse time density based on the rapid traverse time density; A thermal displacement increase rate, a thermal displacement decrease rate, and a maximum reference data storage unit; And a control unit.
  • the feed system thermal displacement correction apparatus of the machine tool stores the rapid feed time density calculated by the rapid feed time density calculation unit Rapid transfer time density storage unit; may further include.
  • the control unit includes a correction value calculation unit for calculating the current correction value; A maximum value calculation unit for calculating a maximum value based on the average rapid transfer time density calculated by the average rapid transfer time density calculation unit and the maximum value data stored in the reference data storage unit; A thermal displacement increase rate calculator configured to calculate a thermal displacement increase rate based on the average rapid transfer time density calculated by the average rapid transfer time density calculator and the thermal displacement increase rate data stored in the reference data storage; A thermal displacement reduction rate calculator configured to calculate a thermal displacement decrease rate based on the average rapid transfer time density calculated by the average rapid transfer time density calculator and the thermal displacement decrease rate data stored in the reference data storage; And a comparing unit comparing the current correction value calculated by the correction value calculating unit with the maximum value calculated by the maximum value calculating unit, wherein the thermal displacement reduction rate is greater than the maximum correction value.
  • the transport system may be calibrated, and when the current correction value is less than the maximum value, the transport system may be calibrated, and when the current correction value is less than the maximum value, the transport system may be calibr
  • a method of correcting a transfer system thermal displacement of a machine tool includes: storing a thermal displacement increase rate, a thermal displacement decrease rate, and a maximum reference data; Operating a predetermined set time timer when the transfer system transfers; Measuring a rapid traverse time of the transfer system during the time that the timer is operated; Calculating a rapid traverse time density per unit time using the measured rapid traverse time; Calculating an average rapid traverse time density; Calculating a current correction value; Calculating a maximum value from the average rapid transfer time density and the maximum value data; Calculating a thermal displacement increase rate based on the average rapid transfer time density and the thermal displacement increase rate data; Calculating a thermal displacement reduction rate based on the average rapid transfer time density and the thermal displacement reduction rate data; And comparing the current correction value with the maximum value.
  • the feed system thermal displacement correction method of the machine tool after comparing the current correction value and the maximum value, if the current correction value is larger than the maximum value, And correcting the transport system at a thermal displacement reduction rate, and if the current correction value is less than the maximum value, correcting the transport system at the thermal displacement increase rate.
  • the feed system thermal displacement correction apparatus and method for correcting a machine tool corrects the heat displacement of the feed system in real time through a rapid feed time of the feed system, more specifically, an average rapid feed time density to improve the machining precision of the workpiece. There is an effect that can be improved.
  • the feed system thermal displacement correction apparatus and the correction method of the machine tool according to the present invention can be applied to a variety of machine tools and workpieces has the effect of improving the productivity of the workpiece.
  • the feed system thermal displacement correction apparatus and the correction method of the machine tool according to the present invention does not require an expensive configuration such as a separate sensor has the effect of reducing the manufacturing cost of the machine tool.
  • FIG. 1 shows a schematic view of a conventional machine tool.
  • Figure 2 shows a conceptual diagram for explaining the concept of cutting feed and rapid feed according to the present invention.
  • 3 is a graph showing the dimensional change of the workpiece over time.
  • Figure 4 shows a conceptual diagram of a feed system thermal displacement correction apparatus for a machine tool according to an embodiment of the present invention.
  • FIG. 5 shows a table for calculating a rate of thermal displacement increase, a maximum value, and a rate of thermal displacement decrease according to an average rapid transfer time density in a preferred embodiment of the present invention.
  • 6A, 6B, and 6C are graphs showing the relationship between the average rapid transfer time density, the rate of thermal displacement increase, the maximum value, and the rate of thermal displacement decrease according to a preferred embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of correcting a transfer system thermal displacement of a machine tool according to a preferred embodiment of the present invention.
  • S11-2 correcting at the rate of thermal displacement increase when the current correction value is smaller than the maximum value.
  • FIG. 2 shows a conceptual diagram for explaining the concept of cutting feed and rapid feed according to the present invention.
  • the operation of the feed system in particular the lathe feed system, is a cutting feed 140, 150 in which the tool 120 mounted on the actual turret 130 cuts the workpiece 110 mounted on the chuck 100.
  • the rapid traversing (160, 170) to exchange the tool 120 or to select the position of the tool (120).
  • the cutting feed (140, 150) is fed at a low speed of several hundred mm per minute, so the heat generation amount of the feed system is not large.
  • the rapid transport 160 and 170 are transported at a maximum speed of several tens of meters per minute, thus occupying most of the heat generated in the transport system. Therefore, the factors affecting the increase or decrease in the diameter of the workpiece according to the thermal displacement of the workpiece 110 according to the thermal displacement of the feed system are the rapid feeding (160, 170).
  • the rapid feed time means the time required for rapid feed.
  • a rapid feed time density means the time ratio (formula (1) below) used for rapid feed per unit time.
  • Rapid traverse time density Rapid traverse time / unit time ----- Equation (1)
  • the rapid feed density becomes 10%.
  • Rapid feed time density can vary depending on the type of machine tool, the type and type of workpiece and the machining conditions. Therefore, according to a preferred embodiment of the present invention, the rapid traverse time density is calculated a predetermined number of times in order to calculate the accurate rapid traverse time density, and the thermal displacement of the feed system is corrected through the average, that is, the average rapid traverse time density. Done.
  • the average rapid transfer time density is usually calculated by dividing the value measured by ten rapid transfer time densities by 10 (Equation (2)).
  • Average rapid traverse time density sum of 10 rapid traverse time density / 10-equation (2)
  • FIG. 3 shows a graph of dimensional variation of a workpiece over time.
  • the initial operation of the machine tool will show a temperature rise section in which the dimensions of the workpiece increases.
  • This increases the frictional heat generated in the feed system at the beginning of the operation of the machine tool, thereby increasing the temperature of the feed system itself and increasing the dimensions of the workpiece by the heat transmitted through the feed system.
  • the frictional heat generated from the feed system reaches a saturation state, from which the temperature of the feed system is kept constant. This results in a stable section in which the dimensions of the workpiece are also kept constant.
  • the heat generated from the feed system is released to the outside to be cooled, and thus a cooling section in which the size of the workpiece is reduced appears.
  • the thermal displacement increase rate means a thermal displacement increase rate when the machine tool starts to operate in a completely cooled state. This can be expressed as a change in the diameter dimension of the workpiece per unit time.
  • the maximum value is the maximum thermal displacement value that occurs when the temperature stops and the machine tool temperature stabilizes.
  • Thermal displacement reduction rate refers to the rate at which the thermal displacement decreases when the machine tool is stopped.
  • Figure 4 shows a conceptual diagram of the feed system thermal displacement correction apparatus 10 of the machine tool according to an embodiment of the present invention
  • Figure 5 is a thermal displacement increase rate according to the average rapid feed time density in a preferred embodiment of the present invention
  • 6A, 6B, and 6C are graphs showing the relationship between the average rapid transfer time density, the rate of thermal displacement increase, the maximum value, and the rate of thermal displacement decrease according to a preferred embodiment of the present invention.
  • the feed system thermal displacement correction apparatus 10 of the machine tool according to the present invention includes a timer 20, a rapid feed time measuring unit 31, a rapid feed time density calculating unit 32, and an average rapid feed time density calculating unit 34. ), The reference data storage 40, and the controller 50.
  • the feed system thermal displacement correction apparatus 10 of the machine tool includes the bed 2, the spindle 3, the feed system 4, and the power transmission unit. It is provided.
  • the timer 20 is operated for a predetermined set time when the transfer system 4 is transferred. Although not necessarily limited thereto, according to one preferred embodiment of the present invention, the timer is operated for 60 seconds after the transfer system starts transfer.
  • the rapid traverse time measuring unit 31 measures the rapid traverse time of the transfer system 4 while the timer 20 is operating.
  • the rapid traverse time means a transfer time of a feed system used when exchanging a tool or selecting a position of a tool as a machining point.
  • the rapid transfer time density calculation unit 32 calculates the rapid transfer time density per unit time by using the rapid transfer time measured by the rapid transfer time measuring unit 31.
  • the unit time of the rapid transfer time density calculator 32 may be calculated based on 60 seconds. That is, the rapid traverse time density calculation unit 32 calculates the rapid traverse time density through the above equation (1).
  • the feed system thermal displacement correction apparatus 10 of the machine tool includes a rapid feed time density storage unit for storing the rapid feed time density calculated by the rapid feed time density calculating unit 32 ( 33) may be further provided.
  • the average rapid traverse time density calculation unit 34 calculates the average rapid traverse time density through the rapid traverse time density stored in the rapid traverse time density storage unit 33. Although not necessarily limited thereto, according to an exemplary embodiment of the present invention, the average rapid transfer time density calculator 34 calculates the rapid transfer time density stored in the rapid transfer time density storage based on 10 times. That is, the average rapid transfer time density calculation unit 34 calculates the average rapid transfer time density through the above-described formula (2).
  • the temperature rising section, the stable section, and the cooling section of the various machine tools and the workpieces are calculated by experiments, and as a result, the thermal displacement increase rate, the maximum value, and the thermal displacement decrease rate are calculated.
  • the data storage unit The data storage unit.
  • the controller 50 includes a correction value calculator 51, a maximum value calculator 52, a thermal displacement increase rate calculator 53, and a thermal displacement.
  • the reduction rate calculation part 54 and the comparison part 55 are comprised.
  • the correction value calculator 51 calculates the current correction value.
  • the current correction value is calculated by preset data according to the type of machine tool and the type and type of the workpiece.
  • the maximum value calculation unit 52 calculates the maximum value based on the average rapid transfer time density calculated by the average rapid transfer time density calculation unit 34 and the maximum value data stored in the reference data storage unit 40.
  • the thermal displacement increase rate calculation unit 53 calculates the thermal displacement increase rate based on the average rapid transfer time density calculated by the average rapid transfer time density calculator 34 and the thermal displacement increase rate data stored in the reference data storage 40. .
  • the thermal displacement reduction rate calculation unit 54 calculates the thermal displacement reduction rate based on the average rapid transfer time density calculated by the average rapid transfer time density calculation unit 34 and the thermal displacement reduction rate data stored in the reference data storage unit 40. .
  • the rate of thermal displacement increase, the maximum value, and the rate of thermal displacement reduction for values between the intervals of the mean rapid traverse time density can be obtained using linear interpolation.
  • the comparator 55 compares the current correction value calculated by the correction value calculator 51 with the maximum value calculated by the maximum value calculator 52.
  • the transfer system is corrected by the heat displacement reduction rate calculated by the heat displacement reduction rate calculation unit 54.
  • the transfer system is corrected by the thermal displacement increase rate calculated by the thermal displacement increase rate calculation unit 53.
  • FIG. 7 is a flowchart illustrating a method of correcting a transfer system thermal displacement of a machine tool according to another exemplary embodiment of the present invention.
  • the feed system thermal displacement correction method of the machine tool according to the present invention includes a reference data storage step (S1), a timer operation step (S2), a rapid feed time measurement step (S3), a rapid feed time density calculation step (S4), the average rapid Transfer time density calculation step (S5), current correction value calculation step (S6), maximum value calculation step (S7), thermal displacement increase rate calculation step (S8), thermal displacement reduction rate calculation step (S9), and current correction value and maximum A value comparison step S10 is made.
  • the thermal displacement increase rate, the thermal displacement decrease rate, and the maximum value reference data are stored in the reference data storage 40 by experimental values according to various types of machine tools and workpieces.
  • the timer 20 is operated for a predetermined set time when the transfer system 4 transfers. According to a preferred embodiment of the feed system thermal displacement correction method of the machine tool of the present invention, such a timer is operated for 60 seconds.
  • the rapid transfer time measuring unit 31 measures the rapid transfer time of the feed system 4 during the time the timer 20 is operated.
  • the rapid traverse time calculation unit 32 calculates the rapid traverse time density, which is the rapid traverse time per unit time, using the measured rapid traverse time.
  • this rapid time feed density calculation step S4 is calculated by the above equation (1).
  • the average rapid feed time density calculation unit 34 calculates the average rapid feed time density through the rapid feed time density. According to a preferred embodiment of the feed system thermal displacement correction method of the machine tool of the present invention, this average rapid feed time density is calculated by the above equation (2).
  • the current correction value is calculated from the data stored in the correction value calculation unit 51.
  • the maximum value is calculated by the average rapid transfer time density calculated by the average rapid transfer time density calculation unit 33 and the maximum value data stored in the reference data storage 40.
  • the thermal displacement increase rate is calculated based on the average rapid transfer time density calculated in the average rapid transfer time density calculator 33 and the thermal displacement increase rate data stored in the reference data storage 40.
  • the thermal displacement decrease rate is calculated based on the average rapid transfer time density calculated in the average rapid transfer time density calculator 33 and the thermal displacement decrease rate data stored in the reference data storage 40. .
  • the current correction value calculated by the correction value calculator 51 and the maximum value calculated by the maximum value calculator 52 are compared.
  • step S11-2 is performed to correct the feed meter 4 at a thermal displacement increase rate.
  • the feed system thermal displacement correction apparatus and the correction method of the machine tool in accordance with the present invention by using the average rapid feed time density through the rapid feed time density of the feed system in consideration of the heat generated by the transfer of the feed system By correcting, the machining accuracy of the workpiece can be improved, and the overall manufacturing cost of the machine tool can be reduced.
  • the present invention obtains the rapid traverse time density calculated from the rapid rate of time used for rapid traverse per unit time to the rapid traverse time used when exchanging the tool or selecting the position of the tool as a machining point.
  • the present invention relates to a feed system thermal displacement correction apparatus and a correction method of a machine tool for comparing a maximum value calculated using an average value with a current correction value and correcting the feed system according to the heat displacement of the feed system.

Abstract

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 공구를 교환하거나 가공점으로 공구의 위치를 선정할 때 사용하는 급속 이송 시간을 단위시간당 급속 이송에 사용되는 시간비율로 계산한 급속 이송 시간 밀도를 구하고, 이렇게 계산된 급속 이송 시간 밀도의 평균값을 이용하여 계산된 최대값과 현재 보정값을 비교하여 이송계의 열변위에 따라 이송계를 보정하여 다양한 공작물과 공작기계에 적용가능하고, 이송계의 이동에 따라 신속한 이송계 열변위 보정이 가능하며, 제작비용을 절감할 수 있는 공작기계의 이송계 열변위 보정장치 및 보정방법을 제공하는 것을 목적으로 한다.

Description

공작기계의 이송계 열변위 보정장치 및 보정방법
본 발명은 공작기계의 이송계 열변위 보정장치 및 보정방법에 관한 것으로, 더욱 상세하게는 공구를 교환하거나 가공점으로 공구의 위치를 선정할 때 사용하는 급속 이송 시간을 단위시간당 급속 이송에 사용되는 시간비율로 계산한 급속 이송 시간 밀도를 구하고, 이렇게 계산된 급속 이송 시간 밀도의 평균값을 이용하여 계산된 최대값과 현재 보정값을 비교하여 이송계의 열변위에 따라 이송계를 보정하는 공작기계의 이송계 열변위 보정장치 및 보정방법에 관한 것이다.
터닝센터, 머시닝센터, 문형머시닝센터, 스위스 턴, 방전 가공기, 수평형 NC 보링머신, CNC 선반 등을 비롯한 다양한 종류의 공작기계는 다양한 산업 현장에서 해당 작업의 용도에 맞게 널리 사용되고 있다.
도 1에 도시된 것처럼, 종래 공작기계(1) 중 선반은 지면에 인접하게 배치되는 베드(2), 베드(2)의 상면에 장착되는 주축(3), 주축(3)의 일부에 장착되어 공작물(8)을 파지하는 척을 구비한다. 또한, 베드(2)의 상면은 가이드 웨이(5)를 구비하고, 이러한 가이드 웨이(5) 상에서 이송가능하도록 설치되는 이송계(4), 이송계의 상부에 설치되어 공구(7)가 체결되는 터렛(6)을 구비한다.
일반적으로 종래 공작기계(1), 특히 선반은 이송계(4)에 설치된 터렛(6)에 장착된 공구(7)와 공작물(8)이 상대 운동을 하면서 원하는 공작물의 형상을 가공하게 된다.
전체적인 공작기계의 경우에는 공구가 장착된 부분이 고정되고 공작물을 구비하는 주축이 이송될 수도 있고, 필요에 따라서는 공구와 공작물이 모두 이송될 수 있는 구조를 구비할 수도 있다.
이러한 공작기계의 이송계(4)는 동력전달유닛, 더욱 상세하게는 모터에 의해 구동된다. 보다 정확하게 이송계를 제어하기 위해 공작기계는 필요에 따라 NC(numerical control)장치를 구비할 수도 있다.
일반적으로 공작기계(1), 특히 선반의 경우에는 원형 공작물의 가공에 사용되고, 가공시간을 줄이고 공작물의 대량생산을 위해 이송계가 고속으로 작동된다. 이러한 이송계가 고속으로 작동되는 경우 발생되는 열에 의해 공작물의 치수나 이송계를 구성하는 부품의 치수가 변형되어 공작물의 직경 치수가 변동하게 되는 문제점이 있었다.
또한 변동된 공작물의 직경 치수에 따라 공작물의 가공 정밀도가 감소되고, 이러한 공작물의 직경치수의 변동이 허용공차를 넘게 되면 작업자가 공작기계를 다시 조정해야 함에 따라 생산성이 저하되는 문제점이 있었다.
더욱이, 이러한 이송계의 열변형에 의한 공작물의 가공 정밀도와 생산성을 향상하기 위해 종래 온도센서를 이용한 열변위 오차를 보정하는 장치가 일부 개발되었으나, 생산성 향상을 위하여 이전보다 빠르게 작동하여 발열이 커지고 있는 이송계의 열변위에 대한 정확한 보정이 이루어지지 않고, 센서 등과 같은 고가의 부품에 따라 장비의 제작비용을 증가시키는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 공구를 교환하거나 가공점으로 공구의 위치를 선정할 때 사용하는 급속 이송 시간을 단위시간당 급속 이송에 사용되는 시간비율로 계산한 급속 이송 시간 밀도를 구하고, 이렇게 계산된 급속 이송 시간 밀도의 평균값을 이용하여 계산된 최대값과 현재 보정값을 비교하여 이송계의 열변위에 따라 이송계를 보정하여 다양한 공작물과 공작기계에 적용가능하고, 이송계의 이동에 따라 신속한 이송계 열변위 보정이 가능하며, 제작비용을 절감할 수 있는 공작기계의 이송계 열변위 보정장치 및 보정방법을 제공하는 것을 목적으로 한다.
본 발명의 목적을 달성하기 위해 본 발명은 베드와, 베드 위에 장착되는 주축과, 상기 베드에 이동가능하게 설치되는 이송계와, 상기 이송계를 이송시키는 동력을 전달하는 동력전달유닛을 포함하는 공작기계에 있어서, 상기 이송계가 이송되는 경우 소정의 설정시간 동안 작동되는 타이머; 상기 타이머가 작동되는 동안 상기 이송계의 급속 이송 시간을 측정하는 급속 이송 시간 측정부; 상기 급속 이송 시간 측정부에 의해 측정된 상기 급속 이송 시간을 이용하여 단위 시간당 급속 이송 시간 밀도를 계산하는 급속 이송 시간 밀도 계산부; 상기 급속 이송 시간 밀도를 통해 평균 급속 이송 시간 밀도를 계산하는 평균 급속 이송 시간 밀도 계산부; 열변위 증가율, 열변위 감소율, 및 최대값 기준 데이터 저장부; 및 제어부;를 포함하는 것을 특징으로 한다.
또한, 본 발명에 의한 공작기계의 이송계 열변위 보정장치의 바람직한 다른 실시예에서, 공작기계의 이송계 열변위 보정장치는 급속 이송 시간 밀도 계산부에 의해 계산된 상기 급속 이송 시간 밀도를 저장하는 급속 이송 시간 밀도 저장부;를 더 포함할 수 있다.
또한, 본 발명에 의한 공작기계의 이송계 열변위 보정장치의 바람직한 다른 실시예에서, 제어부는 현재 보정값을 계산하는 보정값 계산부; 상기 평균 급속 이송 시간 밀도 계산부에 의해 계산된 평균 급속 이송 시간 밀도와 상기 기준 데이터 저장부에 저장된 상기 최대값 데이터에 의해 최대값을 계산하는 최대값 계산부; 상기 평균 급속 이송 시간 밀도 계산부에 의해 계산된 평균 급속 이송 시간 밀도와 상기 기준 데이터 저장부에 저장된 상기 열변위 증가율 데이터에 의해 열변위 증가율을 계산하는 열변위 증가율 계산부; 상기 평균 급속 이송 시간 밀도 계산부에 의해 계산된 평균 급속 이송 시간 밀도와 상기 기준 데이터 저장부에 저장된 상기 열변위 감소율 데이터에 의해 열변위 감소율을 계산하는 열변위 감소율 계산부; 및 상기 보정값 계산부에 의해 계산된 현재 보정값과 상기 최대값 계산부에 의해 계산된 최대값을 비교하는 비교부;를 포함하되, 상기 현재 보정값이 상기 최대값보다 클 경우 상기 열변위 감소율로 상기 이송계를 보정하고, 상기 현재 보정값이 상기 최대값보다 작을 경우 상기 열변위 증가율로 상기 이송계를 보정할 수 있다.
본 발명의 또 다른 목적을 달성하기 위해 공작기계의 이송계 열변위 보정방법은 열변위 증가율, 열변위 감소율, 및 최대값 기준 데이터를 저장하는 단계; 이송계가 이송하는 경우 소정의 설정시간 타이머가 작동되는 단계; 상기 타이머가 작동되는 시간 동안 상기 이송계의 급속 이송 시간을 측정하는 단계; 측정된 상기 급속 이송 시간을 이용하여 단위 시간당 급속 이송 시간 밀도를 계산하는 단계; 평균 급속 이송 시간 밀도를 계산하는 단계; 현재 보정값을 계산하는 단계; 상기 평균 급속 이송 시간 밀도와 상기 최대값 데이터에 의해 최대값을 계산하는 단계; 상기 평균 급속 이송 시간 밀도와 상기 열변위 증가율 데이터에 의해 열변위 증가율을 계산하는 단계; 상기 평균 급속 이송 시간 밀도와 상기 열변위 감소율 데이터에 의해 열변위 감소율을 계산하는 단계; 및 상기 현재 보정값과 상기 최대값을 비교하는 단계;로 이루어질 수 있다.
또한, 본 발명에 의한 공작기계의 이송계 열변위 보정방법의 바람직한 다른 실시예에서, 상기 현재 보정값과 상기 최대값을 비교하는 단계 이후에, 상기 현재 보정값이 상기 최대값보다 클 경우에는 상기 열변위 감소율로 상기 이송계를 보정하는 단계를 수행하고, 상기 현재 보정값이 상기 최대값보다 작을 경우에는 상기 열변위 증가율로 상기 이송계를 보정하는 단계를 수행하는 것을 특징으로 한다.
본 발명에 의한 공작기계의 이송계 열변위 보정장치 및 보정방법은 이송계의 급속 이송 시간, 더욱 상세하게는 평균 급속 이송 시간 밀도를 통해 이송계의 열변위를 실시간으로 보정하여 공작물의 가공 정밀도를 향상시킬 수 있는 효과가 있다.
또한, 본 발명에 의한 공작기계의 이송계 열변위 보정장치 및 보정방법은 다양한 공작기계와 공작물에 적용가능하여 공작물의 생산성을 향상시킬 수 있는 효과가 있다.
더욱이, 본 발명에 의한 공작기계의 이송계 열변위 보정장치 및 보정방법은 별도의 센서와 같은 고가의 구성을 필요로 하지 않아 공작기계의 제작비용을 절감할 수 있는 효과가 있다.
도 1은 종래 공작기계의 개략도를 나타낸다.
도 2는 본 발명에 의한 절삭이송과 급속이송의 개념을 설명하기 위한 개념도를 나타낸다.
도 3은 시간의 경과에 따른 공작물의 치수변동을 나타내는 그래프이다.
도 4는 본 발명의 바람직한 일 실시예에 따른 공작기계의 이송계 열변위 보정장치의 개념도를 나타낸다.
도 5는 본 발명의 바람직한 일 실시예에서 평균 급속 이송 시간 밀도에 따라 열변위 증가율, 최대값, 열변위 감소율을 계산하기 위한 테이블을 나타낸다.
도 6a, 6b, 6c는 본 발명의 바람직한 실시예에 따른 평균 급속 이송 시간 밀도와 열변위 증가율, 최대값, 열변위 감소율의 관계를 나타내는 그래프이다.
도 7은 본 발명의 바람직한 실시예에 따른 공작기계의 이송계 열변위 보정방법의 절차도를 나타낸다.
<도면의 주요 참조 부호에 대한 설명>
1 : 공작기계, 2 : 베드,
3 : 주축, 4 : 이송계,
5 : 가이드 웨이, 6 : 터렛,
7 : 공구, 8 : 공작물,
10 : 이송계 열변위 보정 장치, 20 : 타이머,
31 : 급속 이송 시간 측정부,
32 : 급속 이송 시간 밀도 계산부,
33 : 급속 이송 시간 밀도 저장부,
34 : 평균 급속 이송 시간 밀도 계산부,
40 : 기준 데이터 저장부,
50 : 제어부, 51 : 보정값 계산부,
52 : 최대값 계산부, 53 : 열변위 증가율 계산부,
54 : 열변위 감소율 계산부, 55 : 비교부,
100 : 척, 110 : 공작물,
120 : 공구, 130 : 터렛,
140, 150 : 절삭 이송, 160, 170 : 급속 이송,
S1 : 기준 데이터 저장 단계,
S2 : 타이머 작동 단계,
S3 : 급속 이송 시간 측정 단계,
S4 : 급속 이송 시간 밀도 계산 단계,
S5 : 평균 급속 이송 시간 밀도 계산 단계,
S6 : 현재 보정값 계산 단계,
S7 : 최대값 계산 단계,
S8 : 열변위 증가율 계산 단계,
S9 : 열변위 감소율 계산 단계,
S10 : 현재 보정값과 최대값 비교 단계,
S11-1 : 현재 보정값이 최대값보다 클 경우 열변위 감소율로 보정하는 단계,
S11-2 : 현재 보정값이 최대값보다 작을 경우 열변위 증가율로 보정하는 단계.
본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성요소들에 대해서는 동일한 부호를 가지도록 하고 있다.
도 2는 본 발명에 의한 절삭이송과 급속이송의 개념을 설명하기 위한 개념도를 나타낸다. 도 2에 도시된 것처럼, 이송계, 특히 선반 이송계의 작동은 실제 터렛(130)에 장착된 공구(120)가 척(100)에 장착된 공작물(110)을 절삭하는 절삭 이송(140, 150)과 공구(120)를 교환하거나 공구(120)의 위치를 선정하는 급속 이송(160, 170)으로 나누어진다. 일반적으로 절삭 이송(140, 150)은 분당 수백mm의 저속으로 이송되므로 이송계의 열발생량이 크지 않다. 이에 반해 급속 이송(160, 170)은 분당 수십m의 최고속도로 이송하게 되어 이송계의 열발생량의 대부분을 차지하게 된다. 따라서, 이송계의 열변위에 따른 공작물(110)의 열변위에 따른 공작물의 직경 증가 또는 감소에 영향을 미치는 요소는 급속 이송(160, 170)이 된다.
본 발명의 바람직한 실시예에 따른 공작기계의 이송계 열변위 보정장치 및 보정방법에서 급속 이송 시간이란 급속이송에 소요된 시간을 의미한다. 또한, 급속 이송 시간 밀도란 단위시간당 급속이송에 사용되는 시간 비율(하기 식 (1))을 의미한다.
급속 이송 시간 밀도 = 급속 이송 시간/단위시간 ----- 식 (1)
예를 들어, 60초 동안에 급속 이송 시간이 6초라면 급속 이송 밀도는 10%가 된다.
공작기계의 종류 및 공작물의 형태와 종류와 가공 상태에 따라 급속 이송 시간 밀도가 달라질 수 있다. 따라서, 본 발명의 바람직한 실시예에 따르면 정확한 급속 이송 시간 밀도를 계산하기 위해 일정한 횟수로 급속 이송 시간 밀도를 계산하고, 이들에 의한 평균, 즉 평균 급속 이송 시간 밀도를 통해 이송계의 열변위를 보정하게 된다. 평균 급속 이송 시간 밀도는 통상 10회의 급속 이송 시간 밀도로 측정된 값을 10으로 나누어 계산(식 (2))한다.
평균 급속 이송 시간 밀도 = 10회의 급송 이송 시간 밀도의 합/10 -- 식 (2)
도 3은 시간의 경과에 따른 공작물의 치수변동의 그래프를 나타낸다. 도 3에 도시된 것처럼, 공작기계가 작동되는 초기에는 공작물의 치수가 증가하는 온도상승 구간을 나타내게 된다. 이는 공작기계가 작동 초기에는 이송계에서 발생하는 마찰열이 증가하고, 이에 따라 이송계 자체의 온도가 상승하며, 이송계를 통해 전달받은 열에 의해 공작물의 치수가 증가하게 된다. 공작기계의 작동 중기에는 이송계에서 발생하는 마찰열이 포화 상태에 도달하게 되고, 이때부터 이송계의 온도가 일정하게 유지된다. 이에 따라 공작물의 치수도 일정하게 유지되는 안정 구간이 나타나게 된다. 공작기계의 작동이 정지된 경우에는 이송계에서 발생되는 열이 외부로 방출되어 냉각되고, 이에 따라 공작물의 치수가 감소하게 되는 냉각 구간이 나타나게 된다.
본 발명에 따른 공작기계의 이송계 열변위 보정장치 및 보정방법의 바람직한 실시예에서, 열변위 증가율이란 공작기계가 완전히 냉각된 상태에서 공작기계가 작동하기 시작할 때 열변위 증가 비율을 의미한다. 이는 단위 시간당 공작물의 직경 치수의 변화로 표현이 가능하게 된다. 최대값이란 온도 상승이 멈추고 공작기계의 온도가 안정화 되었을 때 나타나는 최대 열변위값을 의미한다. 열변위 감소율이란 공작기계의 작동이 정지되었을 때 열변위가 감소하는 비율을 의미한다.
이러한 온도 상승 구간, 안정 구간, 냉각 구간에 의해 열변위 증가율, 최대값, 열변위 감소율에 대한 기준 데이터를 실험에 의해 결정할 수 있게 된다.
도 4는 본 발명의 바람직한 일 실시예에 따른 공작기계의 이송계 열변위 보정장치(10)의 개념도를 나타내고, 도 5는 본 발명의 바람직한 일 실시예에서 평균 급속 이송 시간 밀도에 따라 열변위 증가율, 최대값, 열변위 감소율을 계산하기 위한 테이블을 나타낸다. 도 6a, 6b, 6c는 본 발명의 바람직한 실시예에 따른 평균 급속 이송 시간 밀도와 열변위 증가율, 최대값, 열변위 감소율의 관계를 나타내는 그래프이다.
도 4 내지 도 6을 참고하여 본 발명에 의한 공작기계의 이송계 열변위 보정장치(10)를 설명한다. 본 발명에 의한 공작기계의 이송계 열변위 보정장치(10)는 타이머(20), 급속 이송 시간 측정부(31), 급속 이송 시간 밀도 계산부(32), 평균 급속 이송 시간 밀도 계산부(34), 기준 데이터 저장부(40), 및 제어부(50)로 이루어진다.
반드시 이에 한정되는 것은 아니지만, 본 발명의 바람직한 일 실시예에 따른 공작기계의 이송계 열변위 보정장치(10)는 상술한 베드(2), 주축(3), 이송계(4), 동력전달유닛을 구비한다.
타이머(20)는 이송계(4)가 이송되는 경우 소정의 설정시간 동안 작동된다. 반드시 이에 한정되는 것은 아니지만, 본 발명의 바람직한 일 실시예에 따르면 타이머는 이송계가 이송이 시작되고 60초 동안 작동된다.
급속 이송 시간 측정부(31)는 타이머(20)가 작동되는 동안 상기 이송계(4)의 급속 이송 시간을 측정한다. 상술한 바와 같이 급속 이송 시간이란 공구를 교환하거나 가공점으로 공구의 위치를 선정할 때 사용하는 이송계의 이송 시간을 의미한다.
급속 이송 시간 밀도 계산부(32)에서 급속 이송 시간 측정부(31)에 의해 측정된 급속 이송 시간을 이용하여 단위 시간당 급속 이송 시간 밀도를 계산한다. 반드시 이에 한정되는 것은 아니지만, 본 발명의 바람직한 일 실시예에 따르면 급속 이송 시간 밀도 계산부(32)의 단위시간은 60초를 기준으로 설정되어 계산될 수 있다. 즉, 급속 이송 시간 밀도 계산부(32)에서 상술한 식(1)을 통해 급속 이송 시간 밀도를 계산하게 된다.
본 발명의 바람직한 다른 일 실시예에 따르면 공작기계의 이송계 열변위 보정장치(10)는 급속 이송 시간 밀도 계산부(32)에 의해 계산된 급속 이송 시간 밀도를 저장하는 급속 이송 시간 밀도 저장부(33)를 추가로 구비할 수 있다.
평균 급속 이송 시간 밀도 계산부(34)에서 급속 이송 시간 밀도 저장부(33)에 저장된 급속 이송 시간 밀도를 통해 평균 급속 이송 시간 밀도를 계산한다. 반드시 이에 한정되는 것은 아니지만, 본 발명의 바람직한 일 실시예에 따르면 평균 급속 이송 시간 밀도 계산부(34)는 상기 급속 이송 시간 밀도 저장부에 저장된 급속 이송 시간 밀도를 10회를 기준으로 계산한다. 즉, 평균 급속 이송 시간 밀도 계산부(34)에서 상술한 식(2)를 통해 평균 급속 이송 시간 밀도를 계산하게 된다.
기준 데이터 저장부(40)에 실험에 의해 다양한 공작기계와 공작물에 대해서 도 2 그래프와 같은 온도 상승 구간, 안정 구간, 냉각 구간을 산정하고, 이에 의해 열변위 증가율, 최대값, 열변위 감소율의 기준 데이터 저장부하게 된다.
도 4에 도시된 것처럼, 본 발명의 바람직한 다른 일 실시예에 따르면, 제어부(50)는 보정값 계산부(51), 최대값 계산부(52), 열변위 증가율 계산부(53), 열변위 감소율 계산부(54), 및 비교부(55)로 이루어진다.
보정값 계산부(51)는 현재 보정값을 계산한다. 본 발명의 바람직한 실시예에 따르면 공작기계의 종류와 공작물의 형태와 종류에 따라 미리 설정된 데이터에 의해 현재 보정값이 계산된다.
최대값 계산부(52)에서 평균 급속 이송 시간 밀도 계산부(34)에 의해 계산된 평균 급속 이송 시간 밀도와 기준 데이터 저장부(40)에 저장된 최대값 데이터에 의해 최대값을 계산한다.
열변위 증가율 계산부(53)에서 평균 급속 이송 시간 밀도 계산부(34)에 의해 계산된 평균 급속 이송 시간 밀도와 기준 데이터 저장부(40)에 저장된 열변위 증가율 데이터에 의해 열변위 증가율을 계산한다.
열변위 감소율 계산부(54)에서 평균 급속 이송 시간 밀도 계산부(34)에 의해 계산된 평균 급속 이송 시간 밀도와 기준 데이터 저장부(40)에 저장된 열변위 감소율 데이터에 의해 열변위 감소율을 계산한다.
도 5의 테이블과 같이, 평균 급속 이송 시간 밀도 계산부(34)에서 계산된 평균 급속 이송 시간 밀도와 도 3과 같이 실험에 의해 계산되어 저장된 기준 데이터 저장부(40)의 열변위 증가율, 최대값, 열변위 감소율에 의해 해당 평균 급속 이송 시간 밀도에 따른 열변위 증가율, 최대값, 열변위 감소율을 계산하게 된다.
평균 급속 이송 시간 밀도의 구간 사이의 값에 대한 열변위 증가율, 최대값, 열변위 감소율은 선형 보간법을 사용하여 구할 수 있다.
비교부(55)에서 보정값 계산부(51)에 의해 계산된 현재 보정값과 최대값 계산부(52)에 의해 계산된 최대값을 비교한다.
만약, 비교부(55)에서 비교 결과 현재 보정값이 최대값보다 클 경우에는 열변위 감소율 계산부(54)에서 계산된 열변위 감소율로 이송계를 보정하게 된다.
만약, 비교부(55)에서 비교 결과 현재 보정값이 최대값보다 작을 경우에는 열변위 증가율 계산부(53)에서 계산된 열변위 증가율로 이송계를 보정하게 된다.
도 7은 본 발명의 바람직한 다른 실시예에 따른 공작기계의 이송계 열변위 보정방법의 절차도를 나타낸다.
도 7을 참고하여 본 발명에 의한 공작기계의 이송계 열변위 보정방법을 설명한다. 본 발명에 의한 공작기계의 이송계 열변위 보정방법은 기준 데이터 저장 단계(S1), 타이머 작동 단계(S2), 급속 이송 시간 측정 단계(S3), 급속 이송 시간 밀도 계산 단계(S4), 평균 급속 이송 시간 밀도 계산 단계(S5), 현재 보정값 계산 단계(S6), 최대값 계산 단계(S7), 열변위 증가율 계산 단계(S8), 열변위 감소율 계산 단계(S9), 및 현재 보정값과 최대값 비교 단계(S10)로 이루어진다.
도 3과 같이 다양한 공작기계의 종류 및 공작물의 종류에 따른 실험값에 의해 열변위 증가율, 열변위 감소율, 및 최대값 기준 데이터를 기준 데이터 저장부(40)에 저장한다.
기준 데이터 저장 단계(S1) 이후, 이송계(4)가 이송하는 경우에 소정의 설정시간 동안 타이머(20)가 작동된다. 본 발명의 공작기계의 이송계 열변위 보정방법의 바람직한 일 실시예에 따르면 이러한 타이머는 60초 동안 작동된다.
타이머 작동 단계(S2) 이후, 타이머(20)가 작동되는 시간 동안 급속 이송 시간 측정부(31)에서 이송계(4)의 급속 이송 시간을 측정한다.
급속 이송 시간 측정 단계(S3) 이후, 측정된 급속 이송 시간을 이용하여 급속 이송 시간 계산부(32)에서 단위시간당 급속 이송 시간인 급속 이송 시간 밀도를 계산한다. 본 발명의 공작기계의 이송계 열변위 보정방법의 바람직한 일 실시예에 따르면 이러한 급속 시간 이송 밀도 계산 단계(S4)는 상술한 식(1)에 의해 계산된다.
급속 시간 이송 밀도 계산 단계(S4) 이후, 급속 이송 시간 밀도를 통해 평균 급속 이송 시간 밀도 계산부(34)에서 평균 급속 이송 시간 밀도를 계산한다. 본 발명의 공작기계의 이송계 열변위 보정방법의 바람직한 일 실시예에 따르면 이러한 평균 급속 이송 시간 밀도는 상술한 식(2)에 의해 계산된다.
평균 급속 이송 시간 밀도 계산 단계(S5) 이후, 보정값 계산부(51)에서 저장된 데이터에 의해 현재 보정값을 계산한다.
현재 보정값 계산 단계(S6) 이후, 평균 급속 이송 시간 밀도 계산부(33)에서 계산된 평균 급속 이송 시간 밀도와 기준 데이터 저장부(40)에 저장된 최대값 데이터에 의해 최대값을 계산한다.
최대값 계산 단계(S7) 이후, 평균 급속 이송 시간 밀도 계산부(33)에서 계산된 평균 급속 이송 시간 밀도와 기준 데이터 저장부(40)에 저장된 열변위 증가율 데이터에 의해 열변위 증가율을 계산한다.
열변위 증가율 계산 단계(S8) 이후, 평균 급속 이송 시간 밀도 계산부(33)에서 계산된 평균 급속 이송 시간 밀도와 기준 데이터 저장부(40)에 저장된 열변위 감소율 데이터에 의해 열변위 감소율을 계산한다.
열변위 감소율 계산 단계(S9) 이후, 보정값 계산부(51)에 의해 계산된 현재 보정값과 최대값 계산부(52)에 의해 계산된 최대값을 비교한다.
도 7에 도시된 것처럼, 본 발명의 공작기계의 이송계 열변위 보정방법의 바람직한 일 실시예에 따르면 현재 보정값과 최대값을 비교하여 현재 보정값이 최대값보다 클 경우에는 열변위 감소율로 이송계(4)를 보정하는 단계(S11-1)를 수행한다.
현재 보정값이 최대값보다 작을 경우에는 열변위 증가율로 이송계(4)를 보정하는 단계(S11-2)를 수행한다.
이처럼, 본 발명에 의한 공작기계의 이송계 열변위 보정장치 및 보정방법은 이송계의 급속 이송 시간 밀도를 통한 평균 급속 이송 시간 밀도를 이용하여 이송계의 이송에 따른 열발생량을 고려하여 이송계를 보정함으로써 공작물의 가공정밀도를 향상시키고, 공작기계의 전체적인 제작비용을 절감할 수 있게 된다.
상술한 내용은 주로 선반 공작기계에 대한 내용을 기재하였으나 반드시 이에 한정되지 않으며 다른 공작기계에도 적용될 수 있다.
또한, 본 발명은 도면에 도시된 변형예와 상기에서 설명된 실시예에 국한되지 않으며, 첨부된 청구항의 범주내에 속하는 다른 실시예로 확장될 수 있다.
본 발명은 공구를 교환하거나 가공점으로 공구의 위치를 선정할 때 사용하는 급속 이송 시간을 단위시간당 급속 이송에 사용되는 시간비율로 계산한 급속 이송 시간 밀도를 구하고, 이렇게 계산된 급속 이송 시간 밀도의 평균값을 이용하여 계산된 최대값과 현재 보정값을 비교하여 이송계의 열변위에 따라 이송계를 보정하는 공작기계의 이송계 열변위 보정장치 및 보정방법에 관한 것이다.

Claims (5)

  1. 베드와, 베드 위에 장착되는 주축과, 상기 베드에 이동가능하게 설치되는 이송계와, 상기 이송계를 이송시키는 동력을 전달하는 동력전달유닛을 포함하는 공작기계에 있어서,
    상기 이송계가 이송되는 경우 소정의 설정시간 동안 작동되는 타이머;
    상기 타이머가 작동되는 동안 상기 이송계의 급속 이송 시간을 측정하는 급속 이송 시간 측정부;
    상기 급속 이송 시간 측정부에 의해 측정된 상기 급속 이송 시간을 이용하여 단위 시간당 급속 이송 시간 밀도를 계산하는 급속 이송 시간 밀도 계산부;
    상기 급속 이송 시간 밀도를 통해 평균 급속 이송 시간 밀도를 계산하는 평균 급속 이송 시간 밀도 계산부;
    열변위 증가율, 열변위 감소율, 및 최대값 기준 데이터 저장부; 및
    제어부;를 포함하는 것을 특징으로 하는 공작기계의 이송계 열변위 보정장치.
  2. 제1항에 있어서,
    상기 급속 이송 시간 밀도 계산부에 의해 계산된 상기 급속 이송 시간 밀도를 저장하는 급속 이송 시간 밀도 저장부;를 더 포함하는 것을 특징으로 하는 공작기계의 이송계 열변위 보정장치.
  3. 제1항 또는 제2항에 있어서,
    상기 제어부는,
    현재 보정값을 계산하는 보정값 계산부;
    상기 평균 급속 이송 시간 밀도 계산부에 의해 계산된 평균 급속 이송 시간 밀도와 상기 기준 데이터 저장부에 저장된 상기 최대값 데이터에 의해 최대값을 계산하는 최대값 계산부;
    상기 평균 급속 이송 시간 밀도 계산부에 의해 계산된 평균 급속 이송 시간 밀도와 상기 기준 데이터 저장부에 저장된 상기 열변위 증가율 데이터에 의해 열변위 증가율을 계산하는 열변위 증가율 계산부;
    상기 평균 급속 이송 시간 밀도 계산부에 의해 계산된 평균 급속 이송 시간 밀도와 상기 기준 데이터 저장부에 저장된 상기 열변위 감소율 데이터에 의해 열변위 감소율을 계산하는 열변위 감소율 계산부; 및
    상기 보정값 계산부에 의해 계산된 현재 보정값과 상기 최대값 계산부에 의해 계산된 최대값을 비교하는 비교부;를 포함하되,
    상기 현재 보정값이 상기 최대값보다 클 경우 상기 열변위 감소율로 상기 이송계를 보정하고,
    상기 현재 보정값이 상기 최대값보다 작을 경우 상기 열변위 증가율로 상기 이송게를 보정하는 것을 특징으로 하는 공작기계의 이송계 열변위 보정장치.
  4. 열변위 증가율, 열변위 감소율, 및 최대값 기준 데이터를 저장하는 단계;
    이송계가 이송하는 경우 소정의 설정시간 타이머가 작동되는 단계;
    상기 타이머가 작동되는 시간 동안 상기 이송계의 급속 이송 시간을 측정하는 단계;
    측정된 상기 급속 이송 시간을 이용하여 단위 시간당 급속 이송 시간 밀도를 계산하는 단계;
    평균 급속 이송 시간 밀도를 계산하는 단계;
    현재 보정값을 계산하는 단계;
    상기 평균 급속 이송 시간 밀도와 상기 최대값 데이터에 의해 최대값을 계산하는 단계;
    상기 평균 급속 이송 시간 밀도와 상기 열변위 증가율 데이터에 의해 열변위 증가율을 계산하는 단계;
    상기 평균 급속 이송 시간 밀도와 상기 열변위 감소율 데이터에 의해 열변위 감소율을 계산하는 단계; 및
    상기 현재 보정값과 상기 최대값을 비교하는 단계;로 이루어지는 것을 특징으로 하는 공작기계의 이송계 열변위 보정방법.
  5. 제4항에 있어서,
    상기 현재 보정값과 상기 최대값을 비교하는 단계 이후에,
    상기 현재 보정값이 상기 최대값보다 클 경우에는 상기 열변위 감소율로 상기 이송계를 보정하는 단계를 수행하고,
    상기 현재 보정값이 상기 최대값보다 작을 경우에는 상기 열변위 증가율로 상기 이송계를 보정하는 단계를 수행하는 것을 특징으로 하는 공작기계의 이송계 열변위 보정방법.
PCT/KR2014/000307 2013-01-18 2014-01-10 공작기계의 이송계 열변위 보정장치 및 보정방법 WO2014112752A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14741169.8A EP2946877B1 (en) 2013-01-18 2014-01-10 Transfer system thermal displacement compensating device and compensating method for machine tools

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0005821 2013-01-18
KR1020130005821A KR102109982B1 (ko) 2013-01-18 2013-01-18 공작기계의 이송계 열변위 보정장치 및 보정방법

Publications (1)

Publication Number Publication Date
WO2014112752A1 true WO2014112752A1 (ko) 2014-07-24

Family

ID=51209810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000307 WO2014112752A1 (ko) 2013-01-18 2014-01-10 공작기계의 이송계 열변위 보정장치 및 보정방법

Country Status (3)

Country Link
EP (1) EP2946877B1 (ko)
KR (1) KR102109982B1 (ko)
WO (1) WO2014112752A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171352A3 (ko) * 2016-03-28 2018-09-07 두산공작기계 주식회사 공작기계의 열변위 보정 파라메터 자동 변환 장치 및 변환 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067843B1 (ko) * 2013-12-10 2020-02-11 두산공작기계 주식회사 공작기계의 이송계 열변위 보정 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294803A (ja) * 1989-05-10 1990-12-05 Mori Seiki Seisakusho:Kk 熱変位補正機能付き装置
KR970005523A (ko) * 1995-07-10 1997-02-19 원본미기재 수치제어장치를 사용한 가공방법
JP2006116663A (ja) * 2004-10-22 2006-05-11 Yamazaki Mazak Corp 工作機械の熱変位補正方法及び熱変位補正装置
KR20120044638A (ko) * 2010-10-28 2012-05-08 주식회사아일 호빙머신의 변위 보정 장치 및 방법
KR20120069056A (ko) * 2010-12-20 2012-06-28 두산인프라코어 주식회사 공작기계의 공구계측을 이용한 열변위 보정장치 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199343A (ja) * 1986-02-25 1987-09-03 Fanuc Ltd 同時4軸旋盤の加工時間表示方法
JP3136464B2 (ja) * 1995-09-22 2001-02-19 オークマ株式会社 工作機械の熱変位補正方法
KR20010050212A (ko) 1999-09-13 2001-06-15 스테븐 디.피터스 메모리 카드에 기록된 파일에 대한 접근 제어 시스템
JP4917665B1 (ja) * 2010-11-11 2012-04-18 ファナック株式会社 工作機械の熱変位補正方法及び熱変位補正装置
KR20140092078A (ko) * 2013-01-15 2014-07-23 김성철 머시닝센터 볼스크류의 열변위보정방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294803A (ja) * 1989-05-10 1990-12-05 Mori Seiki Seisakusho:Kk 熱変位補正機能付き装置
KR970005523A (ko) * 1995-07-10 1997-02-19 원본미기재 수치제어장치를 사용한 가공방법
JP2006116663A (ja) * 2004-10-22 2006-05-11 Yamazaki Mazak Corp 工作機械の熱変位補正方法及び熱変位補正装置
KR20120044638A (ko) * 2010-10-28 2012-05-08 주식회사아일 호빙머신의 변위 보정 장치 및 방법
KR20120069056A (ko) * 2010-12-20 2012-06-28 두산인프라코어 주식회사 공작기계의 공구계측을 이용한 열변위 보정장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171352A3 (ko) * 2016-03-28 2018-09-07 두산공작기계 주식회사 공작기계의 열변위 보정 파라메터 자동 변환 장치 및 변환 방법
CN109070295A (zh) * 2016-03-28 2018-12-21 斗山机床株式会社 机床的热位移补偿参数自动转换装置及转换方法
US11353842B2 (en) 2016-03-28 2022-06-07 Doosan Machine Tools Co., Ltd. Apparatus and method for automatically converting thermal displacement compensation parameters of machine tool

Also Published As

Publication number Publication date
KR20140093847A (ko) 2014-07-29
EP2946877A1 (en) 2015-11-25
KR102109982B1 (ko) 2020-05-13
EP2946877B1 (en) 2019-12-25
EP2946877A4 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
KR0122494B1 (ko) Nc 선반에 있어서의 공구의 절삭날 위치 교정방법 및 장치
CN100595707C (zh) 一种数控机床双轴同步控制装置
EP2481521B1 (en) Machine tool
WO2019135596A1 (ko) 공작기계의 공구이상 검출장치 및 검출방법
WO2014112752A1 (ko) 공작기계의 이송계 열변위 보정장치 및 보정방법
KR101533303B1 (ko) 공작 기계
JP2015104765A (ja) 工作機械および工作機械における加工制御方法
US10513000B2 (en) Machine tool
EP2678134B1 (en) Machine tool with thermal deformation compensation of measuring means
KR101368048B1 (ko) 공작 기계의 공구대 위치 보정 장치 및 그 방법
JP4898290B2 (ja) 測定機能付電動チャックを備えたワーク搬送装置
CN104076740A (zh) 数控装置
JP2009208206A (ja) 同期制御装置
US4417490A (en) Lathe tool calibrator and method
WO2014061930A1 (ko) 볼스크류를 구비한 공작기계의 열변위 방지장치 및 열변위 방지방법
EP0940737B1 (en) Monitoring method for workpiece and tool carriage movement
WO2018226071A1 (ko) 심압대 이송용 실린더의 변위 측정 장치 및 이를 갖는 공작 기계
US3754178A (en) Apparatus for adjusting the tools of a multi-spindle tool machine
KR20140072401A (ko) 정적 처짐에 의한 공작기계의 위치 오차 보정장치 및 보정방법
WO2023149765A1 (ko) 공작기계의 열변위 보정 장치 및 보정 방법
JPS58132441A (ja) 自動熱変位補正装置
WO2018135788A1 (ko) 공작기계의 제어 장치, 이를 포함하는 공작기계, 및 이를 이용한 공작기계의 제어 방법
WO2020105983A1 (ko) 로봇팔을 이용한 정밀 가공장치 및 이의 작동방법
JP2019013996A (ja) 工作機械のワーク加工方法
WO2022220646A1 (ko) 램스핀들의 냉각 및 부하보상 장치 및 이를 포함하는 공작기계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14741169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014741169

Country of ref document: EP