WO2014112064A1 - Wireless communication system, and electronic component mounting device - Google Patents

Wireless communication system, and electronic component mounting device Download PDF

Info

Publication number
WO2014112064A1
WO2014112064A1 PCT/JP2013/050766 JP2013050766W WO2014112064A1 WO 2014112064 A1 WO2014112064 A1 WO 2014112064A1 JP 2013050766 W JP2013050766 W JP 2013050766W WO 2014112064 A1 WO2014112064 A1 WO 2014112064A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
wireless
transmission
signal
transmission unit
Prior art date
Application number
PCT/JP2013/050766
Other languages
French (fr)
Japanese (ja)
Inventor
重元 廣田
神藤 高広
伸夫 長坂
泰章 今寺
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2013/050766 priority Critical patent/WO2014112064A1/en
Priority to JP2014557235A priority patent/JP6189336B2/en
Publication of WO2014112064A1 publication Critical patent/WO2014112064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/0882Control systems for mounting machines or assembly lines, e.g. centralized control, remote links, programming of apparatus and processes as such

Definitions

  • the present invention relates to a communication system for performing wireless communication and an electronic component mounting apparatus using the wireless communication system.
  • Patent Literature 1 discloses an optical wireless communication system that adjusts the intensity of light output from a transmission device based on the distance between the transmission device and the reception device.
  • the distance between the transmission device and the reception device is classified into three steps of distance, short distance, medium distance, and long distance, and light having an intensity corresponding to each distance is collectively transmitted from the transmission device.
  • Each of the reception devices is arranged at a position that is separated from the transmission device by a distance, and receives an optical radio including light having a plurality of light intensities at each position.
  • the distance between each receiving device and the transmitting device is set in advance, and light having an intensity based on each distance is transmitted.
  • the light intensity may fluctuate due to various factors, and such a fluctuation in the light intensity can sufficiently cope with the range of the light intensity setting value based on a predetermined distance. difficult.
  • a laser diode (LD) is used as a light source of a transmission device. Even if the same standard LD is used as the light source corresponding to each distance of the transmission device, the output light of each LD may have different light intensity due to element-specific characteristics such as element degradation and temperature characteristics. is there. Therefore, a wireless communication system that can cope with fluctuations in the intensity of light output from the transmission device in actual communication is desired.
  • the present invention has been made in view of the above-described problems, and a wireless communication system capable of improving the followability with respect to fluctuations in the signal strength of a wireless signal output from a transmission apparatus, and an electronic component mounting apparatus using the wireless communication system
  • the purpose is to provide.
  • a wireless communication system made in view of the above problems, a first transmission unit that transmits a first wireless signal based on a supplied drive current, and a drive current supplied to the first transmission unit
  • a first wireless device including a driving unit, a second transmission unit that receives a first wireless signal transmitted from the first transmission unit, and a signal strength of the first wireless signal received by the second transmission unit And a feedback means for transmitting the signal strength detected by the detection unit of the second wireless device as a second wireless signal from the second wireless device to the first wireless device.
  • the first wireless device includes a processing unit that changes the magnitude of the drive current that the drive unit supplies to the first transmission unit based on the signal strength received by the feedback unit.
  • the radio communication system according to claim 2 is the radio communication system according to claim 1, wherein the feedback means transmits the second radio signal and the first transmission receives the second radio signal.
  • Each of the first and second transmission units is a multiplexing apparatus that performs multiplexed optical wireless bidirectional communication, and optical wireless communication from the second transmission unit to the first transmission unit.
  • the second radio signal including the signal strength is multiplexed.
  • At least one of the first and second wireless devices is relative to the other while holding the optical axis of the optical wireless.
  • the movable part to displace it is provided.
  • the feedback unit is configured to drive the drive unit in addition to the signal strength information. It transmits as a 2nd radio signal including the restriction
  • the electronic component mounting apparatus transmits data related to the mounting operation of the electronic component on the substrate by the wireless communication system according to any one of claims 1 to 4.
  • the wireless communication system wherein the first transmission unit transmits the first wireless signal from the first transmission unit of the first wireless device to the second transmission unit of the second wireless device.
  • the signal strength of the first radio signal received in step S1 is detected by the detector, and the signal strength is transmitted as a second radio signal from the second radio device to the first radio device by the feedback means.
  • the magnitude of the drive current supplied from the drive unit to the first transmission unit is changed based on the signal strength received by the feedback unit.
  • the signal strength of the first radio signal is quickly feedback-processed from the second radio device on the reception side to the first radio device on the transmission side using the radio signal (second radio signal).
  • the transmission output of the first transmission unit is changed. Therefore, it is possible to improve the followability with respect to the fluctuation of the signal strength of the first radio signal caused by various factors in actual communication.
  • the feedback means includes a second transmission unit that transmits the second radio signal and a first transmission unit that receives the second radio signal, and each transmission unit is multiplexed.
  • the apparatus is a device that performs multiplexed optical wireless bidirectional communication, while the second wireless signal including the signal strength is multiplexed in the optical wireless communication from the second transmission unit to the first transmission unit. Sent.
  • the wireless communication system further includes a movable unit that displaces at least one of the first and second wireless devices relative to the other while holding the optical axis of the optical wireless.
  • a movable unit that displaces at least one of the first and second wireless devices relative to the other while holding the optical axis of the optical wireless.
  • the information of the second wireless signal transmitted by the feedback unit is transmitted by including the restriction information for restricting the processing for increasing the drive current of the drive unit. Unnecessary power consumption can be reduced.
  • the electronic component mounting apparatus in the electronic component mounting apparatus that transmits data related to the mounting operation of the electronic component on the board by the wireless communication system, actual communication, for example, between the movable portion and the fixed portion.
  • the electronic component mounting apparatus can be improved in the followability to the fluctuation of the signal strength of the radio signal generated by the communication.
  • FIG. 1 It is a perspective view of the electronic component mounting apparatus to which the radio
  • mounting apparatus an electronic component mounting apparatus (hereinafter sometimes abbreviated as “mounting apparatus”) will be described as an example of an apparatus to which the communication system of the present application is applied.
  • the mounting device 10 includes a device main body 11, a pair of display devices 13 provided integrally with the device main body 11, and supply devices 15 and 16 provided detachably with respect to the device main body 11. Is provided.
  • the mounting device 10 according to the present embodiment is based on the control of the control device 80 shown in FIG. 3, and electronic components (not shown) with respect to the circuit board 17 transported by the transport device 21 housed in the device main body 11. It is an apparatus which implements mounting work.
  • the direction in which the circuit board 17 is transported by the transport device 21 (the left-right direction in FIG. 2) is the X-axis direction, and is horizontal to the transport direction of the circuit board 17.
  • a direction perpendicular to the direction is referred to as a Y-axis direction and will be described.
  • the device body 11 includes display devices 13 at both ends in the Y-axis direction on one end side in the X-axis direction. Each display device 13 is a touch panel display device, and displays information related to the mounting operation of the electronic component. Further, the apparatus main body 11 includes supply devices 15 and 16 that are mounted so as to be sandwiched from both sides in the Y-axis direction.
  • the supply device 15 is a feeder-type supply device, and includes a plurality of tape feeders 15A that are housed in a state where various electronic components are taped and wound on a reel.
  • the supply device 16 is a tray-type supply device, and has a plurality of component trays 16A (see FIG. 2) on which a plurality of electronic components are placed.
  • FIG. 2 is a schematic plan view showing the mounting apparatus 10 from the upper (upper side in FIG. 1) viewpoint with the upper cover 11A (see FIG. 1) of the apparatus main body 11 removed.
  • the apparatus body 11 includes the transport device 21, a mounting head 22 for mounting electronic components on the circuit board 17, and a moving device 23 for moving the mounting head 22. Prepare for the top.
  • the transfer device 21 is provided in a substantially central portion of the base 20 in the Y-axis direction, and moves the pair of conveyor belts 31, the substrate holding device 32 held on the conveyor belt 31, and the substrate holding device 32. And an electromagnetic motor 33.
  • the substrate holding device 32 holds the circuit board 17.
  • the output shaft of the electromagnetic motor 33 is drivingly connected to the conveyor belt 31.
  • the electromagnetic motor 33 is, for example, a servo motor that can accurately control the rotation angle.
  • the circuit board 17 moves in the X-axis direction together with the substrate holding device 32 when the conveyor belt 31 rotates based on the driving of the electromagnetic motor 33.
  • the mounting head 22 has a suction nozzle 41 that sucks electronic components on the lower surface facing the circuit board 17.
  • the suction nozzle 41 communicates with the negative pressure air and the positive pressure air passage via a positive / negative pressure supply device 42 (see FIG. 3), sucks and holds the electronic component with the negative pressure, and supplies a slight positive pressure.
  • the held electronic component is removed.
  • the mounting head 22 includes a nozzle lifting device 43 (see FIG. 3) that lifts and lowers the suction nozzle 41 and a nozzle rotation device 44 (see FIG. 3) that rotates the suction nozzle 41 around its axis.
  • the vertical position of the electronic component and the holding posture of the electronic component are changed based on control from the control device 80.
  • the nozzle lifting device 43 includes, for example, an electromagnetic motor 43A as a drive source.
  • the mounting head 22 has a position detection sensor 45 (see FIG. 3) for detecting the position of the electronic component to be held in the vertical direction. Further, a mark camera 47 for photographing the circuit board 17 is fixed to the mounting head 22 in a state of facing downward.
  • the suction nozzle 41 is detachable from the mounting head 22 and can be changed according to the size and shape of the electronic component.
  • the mounting head 22 is moved to an arbitrary position on the base 20 by the moving device 23.
  • the moving device 23 includes an X-axis direction slide mechanism 50 for moving the mounting head 22 in the X-axis direction, and a Y-axis direction slide mechanism 52 for moving the mounting head 22 in the Y-axis direction.
  • the X-axis direction slide mechanism 50 has an X-axis slider 54 provided on the base 20 so as to be movable in the X-axis direction, and an electromagnetic motor 56 as a drive source.
  • the X-axis slider 54 moves to an arbitrary position in the X-axis direction based on driving of the electromagnetic motor 56.
  • the Y-axis direction slide mechanism 52 has a Y-axis slider 58 provided on the side surface of the X-axis slider 54 so as to be movable in the Y-axis direction, and an electromagnetic motor 60 as a drive source.
  • the Y-axis slider 58 moves to an arbitrary position in the Y-axis direction based on driving of the electromagnetic motor 60.
  • the mounting head 22 is attached to the Y-axis slider 58 and moves to an arbitrary position on the base 20 as the moving device 23 is driven. Thereby, the mark camera 47 can image the surface of an arbitrary position of the circuit board 17 by moving the mounting head 22. Image data photographed by the mark camera 47 is processed by the image processing device 71 (see FIG. 3) and output to the control device 80.
  • the mounting head 22 is attached to the Y-axis slider 58 via the connector 48 and can be attached and detached with a single touch, and can be changed to a different type of work head, for example, a dispenser head.
  • the base 20 has supply devices 15 and 16 connected to each side surface in the Y-axis direction. Each of the supply devices 15 and 16 can be attached to and detached from the base 20 in order to cope with a shortage of electronic components to be supplied, changes in the types of electronic components, and the like.
  • the base 20 is provided with a parts camera 73 at a substantially central portion in the X-axis direction at a portion to which the supply devices 15 and 16 are connected. Each part camera 73 is fixed in a state of facing upward, and images the electronic components sucked and held by the suction nozzle 41 of the mounting head 22 from each of the supply devices 15 and 16.
  • the parts camera 73 outputs the captured image data to the image processing device 71 (see FIG. 3).
  • the image processing device 71 outputs the processed data to the control device 80.
  • the mounting apparatus 10 uses optical wireless multiplexed communication for data communication between the control apparatus 80 of the mounting apparatus 10 and parts (various apparatuses) other than the control apparatus 80. Is used.
  • the configuration of the mounting apparatus 10 illustrated in FIG. 3 is an example in the case of applying a communication system, and is appropriately changed according to the type and number of apparatuses provided in the mounting apparatus 10.
  • the communication system of the present application is a system that can be applied to an automatic machine operating in various production lines in addition to the electronic component mounting apparatus exemplified by the mounting apparatus 10.
  • the control device 80 includes a controller 82 mainly composed of a computer having a CPU, ROM, RAM, and the like, an image board 84, a drive control board 85, and an I / O board 86.
  • the controller 82 communicates with each device via each board 84, 85, 86.
  • Each board 84, 85, 86 is connected to one end of a transmission path 95 via an optical wireless device 91, and optical wireless communication is performed on the transmission path 95.
  • the other end of the transmission path 95 is connected to various devices (camera, motor, sensor, etc.) via the optical wireless device 92.
  • various devices camera, motor, sensor, etc.
  • the moving device 23 is provided with a light emitting / receiving unit 94 of the optical wireless device 92 facing the light emitting / receiving unit 93 of the optical wireless device 91 connected to the control device 80. .
  • the light emitting / receiving unit 94 is fixed to the X-axis slider 54 of the moving device 23 so that the optical axis coincides with the light emitting / receiving unit 93 on the optical wireless device 91 side. Thereby, various information communication is enabled between the light emitting / receiving units 93 and 94 (optical wireless devices 91 and 92).
  • the image board 84 shown in FIG. 3 is a board that controls input / output of image data.
  • the controller 82 uses the image board 84 to hold information about the circuit board 17 detected by the image processing apparatus 71 from processing the image data of the mark camera 47 (type, shape, etc.) and hold the circuit board 17 by the board holding device 32. Receive camera information such as position error.
  • the drive control board 85 is a board that controls input / output of operation commands for the electromagnetic motor and information fed back from the electromagnetic motor in real time.
  • the controller 82 receives servo control information such as torque information and position information (vertical position of the electronic component held by the suction nozzle 41) acquired by the electromagnetic motor 43A via the drive control board 85.
  • the I / O board 86 is a board that controls input / output of an output signal of the position detection sensor 45, for example.
  • Data input from these devices to the control device 80 is multiplexed by the optical wireless device 92 and transmitted through the transmission path 95 as an optical wireless signal.
  • the optical wireless device 91 performs a process of demultiplexing the transmitted multiplexed signal and separating it into individual data. Of the separated data, the optical wireless device 91 transfers image data to the image board 84, servo control information to the drive control board 85, and I / O signals to the I / O board 86.
  • the controller 82 processes each data received by the optical wireless device 91. For example, the controller 82 outputs a control signal for the electromagnetic motor 43 ⁇ / b> A based on the processing result to the optical wireless device 91 via the drive control board 85.
  • the optical wireless device 92 transfers the control signal transmitted from the optical wireless device 91 to the nozzle lifting / lowering device 43.
  • the electromagnetic motor 43A operates based on the control signal.
  • the controller 82 outputs a control signal for changing the display of the display device 13 to the display device 13 via the I / O board 86 and the optical wireless devices 91 and 92.
  • various types of information transmitted and received between the control device 80 and each device other than the control device 80 are transmitted and received as data multiplexed on the transmission path 95, for example, time division multiplexing (TDM) frame data.
  • TDM time division multiplexing
  • the data transfer rate is 3 GBPS
  • one frame is 8 nsec
  • the number of bits of one frame is 24 bits.
  • an electronic component is mounted on the circuit board 17 held by the substrate holding device 32 by the mounting head 22.
  • the controller 82 drives the transport device 21 to transport the circuit board 17 to the working position, stops the electromagnetic motor 33, and holds the circuit board 17 in a fixed manner.
  • the controller 82 drives the moving device 23 to move the mounting head 22 onto the circuit board 17 and images the circuit board 17 with the mark camera 47.
  • the controller 82 determines an error in the type of the circuit board 17 and the holding position of the circuit board 17 received from the image processing apparatus 71.
  • the controller 82 drives the supply devices 15 and 16 having electronic components according to the determination result for the type of board, and performs control to send the corresponding electronic components to the supply position to the mounting head 22.
  • the controller 82 drives the moving device 23 to suck and hold the electronic component conveyed at the supply position by the suction nozzle 41 of the mounting head 22.
  • the controller 82 moves the mounting head 22 holding the electronic component onto the parts camera 73 to image the state of the electronic component. At this time, the controller 82 acquires an error in the holding position of the electronic component based on the imaging result. The controller 82 moves the mounting head 22 to the mounting position on the circuit board 17, rotates the suction nozzle 41 based on the holding position error of the circuit board 17 and the electronic component, and then mounts the electronic component on the circuit board 17.
  • the optical wireless devices 91 and 92 of the present embodiment feed back the intensity values of the light received by the light emitting / receiving units 93 and 94 to the transmitting side so that the transmission output values of the transmitting / receiving units 93 and 94 on the transmitting side are Be changed.
  • the light receiving / emitting unit 93 of the optical wireless device 91 includes a laser diode (LD) 93A as a light emitting element for transmission and a photo detector (Photo detector: PD) of the light receiving element. ) 93B.
  • LD laser diode
  • Photo detector Photo detector
  • the optical wireless device 91 includes a multiplexer (hereinafter referred to as “MUX”) 101, a demultiplexer (hereinafter referred to as “DEMUX”) 102, a transimpedance amplifier (TIA) circuit 103, an LD drive circuit 104, an AD A conversion circuit 105 and a control unit 106 are provided.
  • the optical wireless device 92 has the same configuration as the optical wireless device 91.
  • the light emitting / receiving unit 94 of the optical wireless device 92 includes a laser diode (LD) 94A as a light emitting element for transmission and a photo detector (PD) 94B as a light receiving element.
  • LD laser diode
  • PD photo detector
  • the optical wireless device 92 includes a multiplexer (hereinafter referred to as “MUX”) 201, a demultiplexer (hereinafter referred to as “DEMUX”) 202, a transimpedance amplifier (TIA) circuit 203, an LD drive circuit 204, an AD A conversion circuit 205 and a control unit 206 are provided.
  • MUX multiplexer
  • DEMUX demultiplexer
  • TIA transimpedance amplifier
  • the PD 93B of the optical wireless device 91 receives an optical wireless signal from the LD 94A of the optical wireless device 92 through the transmission path 95.
  • the PD 93B outputs a current converted according to the intensity of received light to the TIA circuit 103 as an electric signal.
  • the TIA circuit 103 converts the current signal input from the PD 93 ⁇ / b> B into a voltage signal of a pulse signal and outputs it to the DEMUX 102.
  • the DEMUX 102 detects the data signal of the bit string from the pulse signal input from the TIA circuit 103, demultiplexes it, separates it into individual data, and sends it to each board 84, 85, 86 of the control device 80 (see FIG. 3). Output.
  • the MUX 101 of the optical wireless device 91 multiplexes data signals input from the boards 84, 85, 86 of the control device 80 and outputs them to the LD drive circuit 104.
  • the LD drive circuit 104 controls the drive current supplied to the LD 93A based on the input signal.
  • the LD 93 ⁇ / b> A transmits a radio signal having a light intensity based on the drive current supplied from the LD drive circuit 104 to the PD 94 ⁇ / b> B of the optical radio apparatus 92 through the transmission path 95.
  • control information for the electromagnetic motor 43A (see FIG. 3) output from the control device 80 (drive control board 85) is multiplexed by the MUX 101 and the LD.
  • the data is transmitted from the LD 93A to the PD 94B via the drive circuit 104.
  • the optical wireless device 92 detects the control information by demultiplexing the signal input to the DEMUX 202 via the PD 94B and the TIA circuit 203.
  • Control information detected by the DEMUX 202 is input to the nozzle lifting device 43 (see FIG. 3), and the electromagnetic motor 43A is controlled based on the control information.
  • the light intensity between the light emitting and receiving units 93 and 94 varies depending on various factors. For example, even if laser diodes of the same standard are used for the LD 93A of the optical wireless device 91 and the LD 94A of the optical wireless device 92, the transmission output of each LD 93A, 94A due to element-specific characteristics such as element degradation and temperature characteristics May have different values.
  • the mounting device 10 has a light emitting / receiving unit 93 (optical wireless device 91) fixed to the mounting device 10, while a light receiving / emitting unit 94 (optical wireless device 92) is mounted on the X axis.
  • the moving device 23 is movable in the direction.
  • the distance between the light emitting / receiving units 93 and 94 as the moving device 23 moves that is, The distance of the transmission path 95 varies.
  • the intensity of light received by each of the light emitting / receiving units 93 and 94 (PD93B and 94B) varies.
  • the laser beams output from the LDs 93A and 94A are diffused in a region spread according to the distance from the light source, for example, from a light source such as a TEM00 mode of a Gaussian beam to a contrasting wavefront. For this reason, the intensity of light received by the PDs 93B and 94B decreases in proportion to the distance of the transmission path 95 even if attenuation in the transmission path 95 (for example, in the air) does not occur.
  • the optical wireless devices 91 and 92 feed back the intensity of light received by the PDs 93B and 94B to the transmission side to change the transmission output of the LDs 93A and 94A.
  • the TIA circuit 103 of the optical wireless device 91 outputs the received signal strength (RSSI) based on the current signal input from the PD 93 ⁇ / b> B to the AD conversion circuit 105.
  • the AD conversion circuit 105 outputs light intensity information OI based on RSSI input from the TIA circuit 103 to the MUX 101.
  • the TIA circuit 103 outputs a voltage signal corresponding to the received signal strength to the AD conversion circuit 105.
  • the AD conversion circuit 105 includes, for example, a plurality of comparators, and a voltage value of RSSI is divided and input to each comparator.
  • each comparator the divided voltage value and the reference voltage are compared, and a plurality of bit values of the comparison result are output to the MUX 101 as the light intensity information OI. That is, the light intensity information OI is set with a bit value representing the RSSI size.
  • the optical wireless device 91 is provided with a plurality of LEDs 108 connected to the output terminals of the comparators of the AD conversion circuit 105, and the LEDs 108 are turned on according to the magnitude of the RSSI voltage value. Thereby, the user can confirm the magnitude of the RSSI of the wireless signal (light intensity) received by the optical wireless device 91 from the lighting of the LED 108.
  • the DEMUX 202 of the optical wireless device 92 detects the light intensity information OI from the bit string input from the TIA circuit 203 and outputs it to the control unit 206.
  • the control unit 206 changes the magnitude of the drive current supplied from the LD drive circuit 204 to the LD 94A based on the input light intensity information OI. For example, when the light intensity information OI indicating the value where the intensity of light received by the PD 93B of the optical wireless device 91 is reduced is feedback-processed, the control unit 206 supplies a drive current for the LD 94A to the LD drive circuit 204. Execute the control to increase. Thereby, the transmission output on the transmission side can be adjusted according to the intensity of light actually received on the reception side, and an increase in transmission data errors in the transmission path 95 and a disconnection of the transmission path 95 can be prevented.
  • the control unit 206 controls the LD drive circuit 204 step by step based on the bit value of the light intensity information OI. For example, if the light intensity information OI is 8 bits, the drive current can be controlled based on 256 kinds of control information. However, for example, if the control information for increasing the drive current is set for the light intensity information OI as the intensity of light received by the PD 93B decreases, the transmission output of the LD 94A increases unnecessarily. Become.
  • the transmission output of the LD 94A increases without limit, and the light intensity becomes dangerous for the worker. There is a risk of becoming bigger. Also, unnecessary power is consumed. Therefore, by adding a bit value indicating an upper limit for increasing the transmission output of the LD 94A to the light intensity information OI, the amount of increase in drive current in the control unit 206 can be limited, and the light intensity is limited and unnecessary power consumption is reduced. Can be reduced.
  • the bit value indicating the upper limit set in the light intensity information OI can be set based on the maximum distance of the transmission path 95 (in this case, the distance that the moving device 23 has moved to the end in the X-axis direction) or the like. it can.
  • the control of limiting the RSSI reduction and the transmission output to the user is performed by turning on the LEDs 108. Can be notified.
  • time division multiplexing frame data is transmitted and received.
  • the MUX 101 is provided with a speed conversion circuit (not shown) that performs conversion between the data transfer rate from each of the boards 84, 85, 86 and the data transfer rate of the transmission path 95.
  • the MUX 101 transmits the light intensity information OI input from the AD conversion circuit 105 by setting it as dummy data of the frame added by the speed conversion circuit.
  • the MUX 101 may set and transmit the light intensity information OI to a bit value for which data is not defined in a bit string of frame data.
  • the optical wireless devices 91 and 92 may include a wireless line that feeds back the light intensity information OI separately from the transmission path 95.
  • the TIA circuits 103 and 203 are configured to output RSSI for each input from the PD 93B and 94B. Thereby, the followability with respect to the fluctuation
  • the TIA circuits 103 and 203 may be configured to calculate and output an average RSSI value at a predetermined time interval. Thereby, the processing load concerning the feedback process in other circuits (MUX101 etc.) can be reduced, improving the followability with respect to the fluctuation
  • control units 106 and 206 may be configured by programmable logic devices such as FPGA (Field Programmable Gate Gate Array) without being configured by a processor such as a CPU.
  • the LD drive circuits 104 and 204 may include variable resistance circuits that change the drive currents of the LDs 93A and 94A. In this variable resistance circuit, for example, the connection of a plurality of resistance elements connected in series is selected based on the light intensity information OI (bit value) input from the control units 106 and 206, and the combined resistance value is changed. The driving current output is changed.
  • OI bit value
  • the plurality of resistance elements of the variable resistance circuit are connected so that selectable resistance elements having resistance values that can be changed stepwise within the prescribed range of the LD93A and 94A drive current values of the LD93A and 94A.
  • optical wireless communication is used for the feedback processing of the light intensity information OI, and the feedback processing in the control units 106 and 206 and the LD drive circuits 104 and 204 is processed by hardware, thereby changing the light intensity. The followability to can be improved.
  • the process from the light reception to the change of the drive current can be processed in the order of several ⁇ sec, and the followability is sufficient. Can be increased.
  • the intensity of light received by the PDs 93B and 94B is detected as received signal intensity (RSSI) by the TIA circuits 103 and 203, and transmitted from the AD conversion circuits 105 and 205 as light intensity information OI.
  • RSSI received signal intensity
  • OI light intensity information
  • the control units 206 and 106 control the magnitude of the drive current supplied to the LDs 94A and 93A of the LD drive circuits 204 and 104 based on the light intensity information OI.
  • optical intensity information OI is quickly feedback-processed using optical wireless communication, and the transmission output of the LD 94A, 93A is changed, thereby improving the followability to the fluctuation of the transmission output of the LD 94A, 93A.
  • An optical wireless communication system can be constructed.
  • this invention is not limited to said embodiment, It cannot be overemphasized that various improvement and change are possible within the range which does not deviate from the meaning of this invention.
  • communication by optical wireless has been described as an example.
  • the present application is not limited to this, and can be applied to wireless communication using various electromagnetic waves in addition to infrared rays and visible light. Even with such a configuration, attenuation of wireless radio waves or the like occurs according to the characteristics of the transmission device of wireless communication or the distance of the transmission path, so that the same effect as described above can be obtained by applying the present invention. Can do.
  • multiplexed wireless communication has been described as an example. However, the present application is not limited to this, and the present invention may be applied to wireless communication that does not use multiplexing.
  • the configuration or use of stopping the optical wireless devices 91, 92 It is good also as a structure which issues the warning which notifies that to a person.
  • the user corrects the direction of the light emitting / receiving units 93 and 94 to change the mounting device 10. Appropriate responses such as starting up can be performed.
  • the optical wireless devices 91 and 92 may have a configuration in which a logarithmic conversion circuit is provided between each of the TIA circuits 103 and 203 and the AD conversion circuits 105 and 205.
  • a logarithmic conversion circuit is provided between each of the TIA circuits 103 and 203 and the AD conversion circuits 105 and 205.
  • the ratio dynamic range
  • the light intensity information OI output from the AD conversion circuits 105 and 205 is necessary.
  • the bit width increases and the amount of data required to transmit the light intensity information OI may increase.
  • the bit width necessary for the light intensity information OI can be compressed and the amount of data can be reduced.
  • the optical wireless devices 91 and 92 may be configured to transmit the optical intensity information OI with priority over the retransmission request when requesting retransmission of data by disconnecting the transmission path 95.
  • the data re-transmission is executed after increasing the transmission output of the LD 93A, 94A, so that the data re-processing can be executed more reliably.
  • the optical wireless devices 91 and 92 may be configured to transmit the light intensity information OI by increasing the transmission output of the LDs 93A and 94A on the feedback side when the transmission path 95 is disconnected for a certain time. . Thereby, the light intensity information OI can be transmitted more reliably.
  • one of the optical wireless devices 91 and 92 (optical wireless device 92) is provided in the movable part (moving device 23).
  • both optical wireless devices 91 and 92 are fixed, or both devices are It is good also as a structure which can move.
  • the configuration of the mounting device 10 of the above embodiment is an example, and is changed as appropriate.
  • the mounting device 10 includes the pair of optical wireless devices 91 and 92, but may include two or more.
  • it is good also as a structure provided with two or more moving apparatuses 23 which can be attached or detached with respect to the apparatus main body 11.
  • FIG. it is good also as a structure provided with multiple conveyor belts 31 (plural lanes).
  • a configuration in which a plurality of mounting devices 10 are drivingly connected in the transport direction may be employed.
  • the mounting device 10 is an example of an electronic component mounting device
  • the light emitting / receiving unit 93 is an example of a first transmission unit
  • the LD driving circuit 104 is an example of a driving unit
  • the optical wireless device 91 is an example of the first wireless device.
  • the optical wireless signal from the LD 93A to the PD 94B is an example of the first wireless signal
  • the light emitting / receiving unit 94 is an example of the second transmission unit
  • the TIA 203 and the AD conversion circuit 205 are the optical detectors.
  • the wireless device 92 is an example of a second wireless device
  • the LD 94A and the PD 93B are examples of a feedback unit
  • the control unit 106 is an example of a processing unit
  • the MUXs 101 and 201 and the DEMUXs 102 and 202 are first included in the feedback unit.
  • the moving device 23 is an example of a movable unit.

Abstract

Provided are a wireless communication system that can better adapt to fluctuations in the signal intensity of wireless signals output from a transmission device, and an electronic component mounting device that uses the wireless communication system. The intensity of light received by a laser diode (93A, 94A) is detected by a TIA circuit (103, 203) as a received signal strength indicator (RSSI), and is transmitted from an AD conversion circuit (105, 205) to a transmission-side optical wireless device (91, 92) as optical intensity information (OI). In the transmission-side optical wireless device (91, 92), a control unit (106, 206) controls, on the basis of the optical intensity information (OI), the size of the drive current supplied to the laser diode (93A, 94A) of a laser diode drive circuit (104, 204).

Description

無線通信システム及び電子部品装着装置Wireless communication system and electronic component mounting apparatus
 本発明は、無線通信を行う通信システム、及びその無線通信システムを用いる電子部品装着装置に関するものである。 The present invention relates to a communication system for performing wireless communication and an electronic component mounting apparatus using the wireless communication system.
 従来、無線通信システムの一つとして赤外線などの光を用いた光無線通信システムがある。例えば、特許文献1には、送信装置から出力する光の強度を、送信装置と受信装置との距離に基づいて調整する光無線通信システムが開示されている。この光無線通信システムでは、送信装置と受信装置との距離を近距離、中距離及び遠距離の3段階の距離に分類し各距離に応じた強度の光をまとめて送信装置から送信する。受信装置の各々は、送信装置から各距離だけ離れた位置に配置され複数の光強度の光が含まれる光無線を各位置で受信する。 Conventionally, there is an optical wireless communication system using light such as infrared rays as one of wireless communication systems. For example, Patent Literature 1 discloses an optical wireless communication system that adjusts the intensity of light output from a transmission device based on the distance between the transmission device and the reception device. In this optical wireless communication system, the distance between the transmission device and the reception device is classified into three steps of distance, short distance, medium distance, and long distance, and light having an intensity corresponding to each distance is collectively transmitted from the transmission device. Each of the reception devices is arranged at a position that is separated from the transmission device by a distance, and receives an optical radio including light having a plurality of light intensities at each position.
特開2012-60680号公報JP 2012-60680 A
 上記した光無線通信システムは、各受信装置と送信装置との間の距離が予め設定されており、各距離に基づいた強度の光が送信されるものである。しかしながら、実際の通信では光強度が様々な要因で変動する場合があり、そのような光強度の変動に対し、予め決められた距離に基づく光強度の設定値の範囲では十分に対応することは難しい。例えば、この種の光無線通信システムでは、送信装置の光源としてレーザーダイオード(Laser Diode:LD)が用いられる。仮に、送信装置の各距離に対応する光源に同一規格のLDを用いたとしても、素子の劣化や温度特性のような素子固有の特性等によって各LDの出力光が異なる光強度となる場合がある。従って、実際の通信において送信装置から出力される光の強度の変動に対応できる無線通信システムが望まれている。 In the optical wireless communication system described above, the distance between each receiving device and the transmitting device is set in advance, and light having an intensity based on each distance is transmitted. However, in actual communication, the light intensity may fluctuate due to various factors, and such a fluctuation in the light intensity can sufficiently cope with the range of the light intensity setting value based on a predetermined distance. difficult. For example, in this type of optical wireless communication system, a laser diode (LD) is used as a light source of a transmission device. Even if the same standard LD is used as the light source corresponding to each distance of the transmission device, the output light of each LD may have different light intensity due to element-specific characteristics such as element degradation and temperature characteristics. is there. Therefore, a wireless communication system that can cope with fluctuations in the intensity of light output from the transmission device in actual communication is desired.
 本発明は、上記した課題を鑑みてなされたものであり、送信装置から出力される無線信号の信号強度の変動に対する追従性の向上が図れる無線通信システム及びその無線通信システムを用いる電子部品装着装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and a wireless communication system capable of improving the followability with respect to fluctuations in the signal strength of a wireless signal output from a transmission apparatus, and an electronic component mounting apparatus using the wireless communication system The purpose is to provide.
 上記課題を鑑みてなされた本願の請求項1に記載の無線通信システムは、供給される駆動電流に基づいて第1無線信号を送信する第1伝送部と、第1伝送部に駆動電流を供給する駆動部とを備える第1無線装置と、第1伝送部から送信される第1無線信号を受信する第2伝送部と、第2伝送部において受信された第1無線信号の信号強度を検出する検出部とを備える第2無線装置と、第2無線装置の検出部において検出された信号強度を、第2無線装置から第1無線装置に第2無線信号として送信するフィードバック手段と、を有し、第1無線装置は、フィードバック手段により受信した信号強度に基づいて駆動部が第1伝送部に供給する駆動電流の大きさを変更する処理部を備える。 A wireless communication system according to claim 1 of the present application made in view of the above problems, a first transmission unit that transmits a first wireless signal based on a supplied drive current, and a drive current supplied to the first transmission unit A first wireless device including a driving unit, a second transmission unit that receives a first wireless signal transmitted from the first transmission unit, and a signal strength of the first wireless signal received by the second transmission unit And a feedback means for transmitting the signal strength detected by the detection unit of the second wireless device as a second wireless signal from the second wireless device to the first wireless device. The first wireless device includes a processing unit that changes the magnitude of the drive current that the drive unit supplies to the first transmission unit based on the signal strength received by the feedback unit.
 また、請求項2に記載の無線通信システムは、請求項1に記載の無線通信システムにおいて、フィードバック手段は、第2無線信号を送信する第2伝送部と第2無線信号を受信する第1伝送部とを備え、第1及び第2伝送部は、各々、多重化された光無線の双方向通信を行う多重化装置であり、第2伝送部から第1伝送部に向けた光無線の通信に信号強度を含む第2無線信号が多重化される。 The radio communication system according to claim 2 is the radio communication system according to claim 1, wherein the feedback means transmits the second radio signal and the first transmission receives the second radio signal. Each of the first and second transmission units is a multiplexing apparatus that performs multiplexed optical wireless bidirectional communication, and optical wireless communication from the second transmission unit to the first transmission unit. The second radio signal including the signal strength is multiplexed.
 また、請求項3に記載の無線通信システムは、請求項2に記載の無線通信システムにおいて、第1及び第2無線装置の少なくとも一方を、他方に対して光無線の光軸を保持しつつ相対的に変位させる可動部を備える。 According to a third aspect of the present invention, in the wireless communication system according to the second aspect, at least one of the first and second wireless devices is relative to the other while holding the optical axis of the optical wireless. The movable part to displace it is provided.
 また、請求項4に記載の無線通信システムは、請求項1乃至請求項3のいずれかに記載の無線通信システムにおいて、フィードバック手段は、信号強度の情報に加えて、処理部が駆動部の駆動電流を増大させる処理を制限する制限情報を含めて第2無線信号として送信する。 According to a fourth aspect of the present invention, in the wireless communication system according to any one of the first to third aspects, the feedback unit is configured to drive the drive unit in addition to the signal strength information. It transmits as a 2nd radio signal including the restriction | limiting information which restrict | limits the process which increases an electric current.
 また、本願の請求項5に記載の電子部品装着装置は、電子部品の基板への装着作業に係るデータの伝送を請求項1乃至請求項4のいずれかに記載の無線通信システムにより伝送する。 Further, the electronic component mounting apparatus according to claim 5 of the present application transmits data related to the mounting operation of the electronic component on the substrate by the wireless communication system according to any one of claims 1 to 4.
 請求項1に記載の無線通信システムでは、第1無線装置の第1伝送部から第2無線装置の第2伝送部に向けて第1無線信号が送信される無線通信システムにおいて、第2伝送部で受信した第1無線信号の信号強度が検出部により検出され当該信号強度がフィードバック手段により第2無線装置から第1無線装置に向けて第2無線信号として送信される。そして、第1無線装置では、フィードバック手段により受信した信号強度に基づいて駆動部が第1伝送部に供給する駆動電流の大きさを変更する。 The wireless communication system according to claim 1, wherein the first transmission unit transmits the first wireless signal from the first transmission unit of the first wireless device to the second transmission unit of the second wireless device. The signal strength of the first radio signal received in step S1 is detected by the detector, and the signal strength is transmitted as a second radio signal from the second radio device to the first radio device by the feedback means. In the first wireless device, the magnitude of the drive current supplied from the drive unit to the first transmission unit is changed based on the signal strength received by the feedback unit.
 このような構成では、第1無線信号の信号強度が受信側の第2無線装置から送信側の第1無線装置に無線信号(第2無線信号)を用いて迅速にフィードバック処理され、送信側の第1伝送部の送信出力が変更される。従って、実際の通信での様々な要因によって生じる第1無線信号の信号強度の変動に対する追従性の向上を図ることができる。 In such a configuration, the signal strength of the first radio signal is quickly feedback-processed from the second radio device on the reception side to the first radio device on the transmission side using the radio signal (second radio signal). The transmission output of the first transmission unit is changed. Therefore, it is possible to improve the followability with respect to the fluctuation of the signal strength of the first radio signal caused by various factors in actual communication.
 また、請求項2に記載の無線通信システムでは、フィードバック手段は第2無線信号を送信する第2伝送部と第2無線信号を受信する第1伝送部とを備え、各々の伝送部は多重化装置であり、多重化された光無線の双方向通信が行われる一方で、第2伝送部から第1伝送部に向けた光無線の通信に信号強度を含む第2無線信号が多重化されて送信される。このような構成では、双方向通信が行われる無線通信システムにおいて当該双方向通信において信号強度(光強度)のフィードバック処理ができ、送信側に信号強度を送るための回線を別途設ける必要がない。従って、第1無線信号の信号強度の変動に対する追従性の向上を図りつつ、無線通信システムの構成の簡略化が図れる。 In the radio communication system according to claim 2, the feedback means includes a second transmission unit that transmits the second radio signal and a first transmission unit that receives the second radio signal, and each transmission unit is multiplexed. The apparatus is a device that performs multiplexed optical wireless bidirectional communication, while the second wireless signal including the signal strength is multiplexed in the optical wireless communication from the second transmission unit to the first transmission unit. Sent. With such a configuration, in a wireless communication system in which two-way communication is performed, signal intensity (light intensity) feedback processing can be performed in the two-way communication, and there is no need to separately provide a line for sending signal strength to the transmission side. Therefore, it is possible to simplify the configuration of the wireless communication system while improving the followability to the fluctuation of the signal strength of the first wireless signal.
 また、請求項3に記載の無線通信システムでは、第1及び第2無線装置の少なくとも一方を、他方に対して光無線の光軸を保持しつつ相対的に変位させる可動部を備える。ここで、第1及び第2無線装置の少なくとも一方が可動する構成では、第1及び第2無線装置の位置が相対的に変位するのにともなって両無線装置の間の距離が変動する。このため、第2伝送部で受信する第1無線信号の信号強度が、両無線装置間の距離に応じて変動することとなる。そこで、可動部を備えたことで信号強度に両無線装置間の距離に応じた変動が生じる通信システムにおいて、信号強度をフィードバック処理し第1伝送部の送信出力を変更する処理を行えば、信号強度の変動に対する追従性の向上によって得られる効果は大きい。 The wireless communication system according to claim 3 further includes a movable unit that displaces at least one of the first and second wireless devices relative to the other while holding the optical axis of the optical wireless. Here, in the configuration in which at least one of the first and second radio apparatuses is movable, the distance between the radio apparatuses varies as the positions of the first and second radio apparatuses are relatively displaced. For this reason, the signal strength of the first radio signal received by the second transmission unit varies according to the distance between the two radio devices. Thus, in a communication system in which the signal strength varies depending on the distance between the two wireless devices due to the provision of the movable unit, if the signal strength is feedback processed and the transmission output of the first transmission unit is changed, The effect obtained by improving the followability with respect to fluctuations in strength is great.
 また、請求項4に記載の無線通信システムでは、フィードバック手段が送信する第2無線信号の情報に、処理部が駆動部の駆動電流を増大させる処理を制限する制限情報を含めて送信することによって、不要な消費電力が低減できる。 Further, in the wireless communication system according to claim 4, the information of the second wireless signal transmitted by the feedback unit is transmitted by including the restriction information for restricting the processing for increasing the drive current of the drive unit. Unnecessary power consumption can be reduced.
 また、請求項5に記載の電子部品装着装置では、電子部品の基板への装着作業に係るデータを無線通信システムにより伝送する電子部品装着装置において、実際の通信、例えば可動部と固定部の間の通信で生じる無線信号の信号強度の変動に対する追従性の向上を図った電子部品装着装置とすることができる。 Further, in the electronic component mounting apparatus according to claim 5, in the electronic component mounting apparatus that transmits data related to the mounting operation of the electronic component on the board by the wireless communication system, actual communication, for example, between the movable portion and the fixed portion. Thus, the electronic component mounting apparatus can be improved in the followability to the fluctuation of the signal strength of the radio signal generated by the communication.
本実施形態の無線通信システムが適用される電子部品装着装置の斜視図である。It is a perspective view of the electronic component mounting apparatus to which the radio | wireless communications system of this embodiment is applied. 図1に示す電子部品装着装置の上部カバーを取り外した状態の概略平面図である。It is a schematic plan view of the state which removed the upper cover of the electronic component mounting apparatus shown in FIG. 電子部品装着装置のブロック図である。It is a block diagram of an electronic component mounting apparatus. 光無線装置のブロック図である。It is a block diagram of an optical wireless apparatus.
 以下、本発明の実施形態について図を参照して説明する。初めに、本願の通信システムを適用する装置の一例として電子部品装着装置(以下、「装着装置」と略する場合がある)について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, an electronic component mounting apparatus (hereinafter sometimes abbreviated as “mounting apparatus”) will be described as an example of an apparatus to which the communication system of the present application is applied.
(装着装置10の構成)
 図1に示すように、装着装置10は、装置本体11と、装置本体11に一体的に設けられる一対の表示装置13と、装置本体11に対して着脱可能に設けられる供給装置15,16とを備える。本実施形態の装着装置10は、図3に示す制御装置80の制御に基づいて、装置本体11内に収容される搬送装置21にて搬送される回路基板17に対して電子部品(図示略)の装着作業を実施する装置である。なお、本実施例では、図1に示すように、搬送装置21により回路基板17が搬送される方向(図2における左右方向)をX軸方向、回路基板17の搬送方向に水平でX軸方向に対して直角な方向をY軸方向と称し、説明する。
(Configuration of mounting device 10)
As shown in FIG. 1, the mounting device 10 includes a device main body 11, a pair of display devices 13 provided integrally with the device main body 11, and supply devices 15 and 16 provided detachably with respect to the device main body 11. Is provided. The mounting device 10 according to the present embodiment is based on the control of the control device 80 shown in FIG. 3, and electronic components (not shown) with respect to the circuit board 17 transported by the transport device 21 housed in the device main body 11. It is an apparatus which implements mounting work. In this embodiment, as shown in FIG. 1, the direction in which the circuit board 17 is transported by the transport device 21 (the left-right direction in FIG. 2) is the X-axis direction, and is horizontal to the transport direction of the circuit board 17. A direction perpendicular to the direction is referred to as a Y-axis direction and will be described.
 装置本体11は、X軸方向の一端側でY軸方向における両端部に表示装置13を各々備える。各表示装置13は、タッチパネル式の表示装置であり、電子部品の装着作業に関する情報を表示する。また、装置本体11は、Y軸方向の両側から挟むようにして装着される供給装置15,16を備える。供給装置15は、フィーダ型の供給装置であり、各種の電子部品がテーピング化されリールに巻回させた状態で収容されるテープフィーダ15Aを複数有している。供給装置16は、トレイ型の供給装置であり、複数の電子部品が載置された部品トレイ16A(図2参照)を複数有している。 The device body 11 includes display devices 13 at both ends in the Y-axis direction on one end side in the X-axis direction. Each display device 13 is a touch panel display device, and displays information related to the mounting operation of the electronic component. Further, the apparatus main body 11 includes supply devices 15 and 16 that are mounted so as to be sandwiched from both sides in the Y-axis direction. The supply device 15 is a feeder-type supply device, and includes a plurality of tape feeders 15A that are housed in a state where various electronic components are taped and wound on a reel. The supply device 16 is a tray-type supply device, and has a plurality of component trays 16A (see FIG. 2) on which a plurality of electronic components are placed.
 図2は、装置本体11の上部カバー11A(図1参照)を取り除いた状態で装着装置10を上方(図1における上側)からの視点において示した概略平面図である。図2に示すように、装置本体11は、上記搬送装置21と、回路基板17に対して電子部品を装着する装着ヘッド22と、その装着ヘッド22を移動させる移動装置23とを基台20の上に備える。 FIG. 2 is a schematic plan view showing the mounting apparatus 10 from the upper (upper side in FIG. 1) viewpoint with the upper cover 11A (see FIG. 1) of the apparatus main body 11 removed. As shown in FIG. 2, the apparatus body 11 includes the transport device 21, a mounting head 22 for mounting electronic components on the circuit board 17, and a moving device 23 for moving the mounting head 22. Prepare for the top.
 搬送装置21は、基台20におけるY軸方向の略中央部に設けられており、1対のコンベアベルト31と、コンベアベルト31に保持された基板保持装置32と、基板保持装置32を移動させる電磁モータ33とを有している。基板保持装置32は回路基板17を保持する。電磁モータ33は、出力軸がコンベアベルト31に駆動連結されている。電磁モータ33は、例えば、回転角度を精度良く制御可能なサーボモータである。搬送装置21は、電磁モータ33の駆動に基づいてコンベアベルト31が周回動作を行うことで、基板保持装置32とともに回路基板17がX軸方向に移動する。 The transfer device 21 is provided in a substantially central portion of the base 20 in the Y-axis direction, and moves the pair of conveyor belts 31, the substrate holding device 32 held on the conveyor belt 31, and the substrate holding device 32. And an electromagnetic motor 33. The substrate holding device 32 holds the circuit board 17. The output shaft of the electromagnetic motor 33 is drivingly connected to the conveyor belt 31. The electromagnetic motor 33 is, for example, a servo motor that can accurately control the rotation angle. In the transport device 21, the circuit board 17 moves in the X-axis direction together with the substrate holding device 32 when the conveyor belt 31 rotates based on the driving of the electromagnetic motor 33.
 装着ヘッド22は、回路基板17と対向する下面に電子部品を吸着する吸着ノズル41を有する。吸着ノズル41は、正負圧供給装置42(図3参照)を介して負圧エア、正圧エア通路に通じており、負圧にて電子部品を吸着保持し、僅かな正圧が供給されることで保持した電子部品を離脱する。また、装着ヘッド22は、吸着ノズル41を昇降させるノズル昇降装置43(図3参照)及び吸着ノズル41を軸心回りに自転させるノズル自転装置44(図3参照)を有しており、保持する電子部品の上下方向の位置及び電子部品の保持姿勢が制御装置80からの制御に基づいて変更される。ノズル昇降装置43は、駆動源として例えば電磁モータ43Aを備える。また、装着ヘッド22は、保持する電子部品の上下方向の位置を検出するための位置検出センサ45(図3参照)を有している。また、装着ヘッド22には、回路基板17を撮影するためのマークカメラ47が下方を向いた状態で固定されている。なお、吸着ノズル41は、装着ヘッド22に対し着脱可能であり、電子部品のサイズ、形状等に応じて変更できる。 The mounting head 22 has a suction nozzle 41 that sucks electronic components on the lower surface facing the circuit board 17. The suction nozzle 41 communicates with the negative pressure air and the positive pressure air passage via a positive / negative pressure supply device 42 (see FIG. 3), sucks and holds the electronic component with the negative pressure, and supplies a slight positive pressure. The held electronic component is removed. The mounting head 22 includes a nozzle lifting device 43 (see FIG. 3) that lifts and lowers the suction nozzle 41 and a nozzle rotation device 44 (see FIG. 3) that rotates the suction nozzle 41 around its axis. The vertical position of the electronic component and the holding posture of the electronic component are changed based on control from the control device 80. The nozzle lifting device 43 includes, for example, an electromagnetic motor 43A as a drive source. The mounting head 22 has a position detection sensor 45 (see FIG. 3) for detecting the position of the electronic component to be held in the vertical direction. Further, a mark camera 47 for photographing the circuit board 17 is fixed to the mounting head 22 in a state of facing downward. The suction nozzle 41 is detachable from the mounting head 22 and can be changed according to the size and shape of the electronic component.
 また、装着ヘッド22は、移動装置23によって基台20上の任意の位置に移動する。詳述すると、移動装置23は、装着ヘッド22をX軸方向に移動させるためのX軸方向スライド機構50と、装着ヘッド22をY軸方向に移動させるためのY軸方向スライド機構52とを備える。X軸方向スライド機構50は、X軸方向に移動可能に基台20上に設けられたX軸スライダ54と、駆動源として電磁モータ56とを有している。X軸スライダ54は、電磁モータ56の駆動に基づいてX軸方向の任意の位置に移動する。 Further, the mounting head 22 is moved to an arbitrary position on the base 20 by the moving device 23. More specifically, the moving device 23 includes an X-axis direction slide mechanism 50 for moving the mounting head 22 in the X-axis direction, and a Y-axis direction slide mechanism 52 for moving the mounting head 22 in the Y-axis direction. . The X-axis direction slide mechanism 50 has an X-axis slider 54 provided on the base 20 so as to be movable in the X-axis direction, and an electromagnetic motor 56 as a drive source. The X-axis slider 54 moves to an arbitrary position in the X-axis direction based on driving of the electromagnetic motor 56.
 Y軸方向スライド機構52は、Y軸方向に移動可能にX軸スライダ54の側面に設けられたY軸スライダ58と、駆動源としての電磁モータ60とを有している。Y軸スライダ58は、電磁モータ60の駆動に基づいて、Y軸方向の任意の位置に移動する。そして、装着ヘッド22は、Y軸スライダ58に取り付けらており、移動装置23の駆動にともなって基台20上の任意の位置に移動する。これにより、マークカメラ47は、装着ヘッド22が移動させられることで回路基板17の任意の位置の表面が撮像可能となる。マークカメラ47により撮影された画像データは、画像処理装置71(図3参照)により処理され制御装置80に出力される。また、装着ヘッド22は、Y軸スライダ58にコネクタ48を介して取り付けられワンタッチで着脱可能であり、種類の異なる作業ヘッド、例えば、ディスペンサヘッド等に変更できる。 The Y-axis direction slide mechanism 52 has a Y-axis slider 58 provided on the side surface of the X-axis slider 54 so as to be movable in the Y-axis direction, and an electromagnetic motor 60 as a drive source. The Y-axis slider 58 moves to an arbitrary position in the Y-axis direction based on driving of the electromagnetic motor 60. The mounting head 22 is attached to the Y-axis slider 58 and moves to an arbitrary position on the base 20 as the moving device 23 is driven. Thereby, the mark camera 47 can image the surface of an arbitrary position of the circuit board 17 by moving the mounting head 22. Image data photographed by the mark camera 47 is processed by the image processing device 71 (see FIG. 3) and output to the control device 80. The mounting head 22 is attached to the Y-axis slider 58 via the connector 48 and can be attached and detached with a single touch, and can be changed to a different type of work head, for example, a dispenser head.
 また、基台20は、Y軸方向の各側面部に供給装置15,16が接続されている。各供給装置15,16は、供給する電子部品の不足や電子部品の種類の変更等に対応するべく、基台20に着脱可能とされている。また、基台20には、各供給装置15,16が接続される部分におけるX軸方向の略中央部にパーツカメラ73が各々設けられている。各パーツカメラ73は、上方を向いた状態で固定されており、各供給装置15,16から装着ヘッド22の吸着ノズル41に吸着保持された電子部品を撮像する。パーツカメラ73は、撮影された画像データを画像処理装置71(図3参照)に出力する。画像処理装置71は、処理したデータを制御装置80に出力する。 Further, the base 20 has supply devices 15 and 16 connected to each side surface in the Y-axis direction. Each of the supply devices 15 and 16 can be attached to and detached from the base 20 in order to cope with a shortage of electronic components to be supplied, changes in the types of electronic components, and the like. Further, the base 20 is provided with a parts camera 73 at a substantially central portion in the X-axis direction at a portion to which the supply devices 15 and 16 are connected. Each part camera 73 is fixed in a state of facing upward, and images the electronic components sucked and held by the suction nozzle 41 of the mounting head 22 from each of the supply devices 15 and 16. The parts camera 73 outputs the captured image data to the image processing device 71 (see FIG. 3). The image processing device 71 outputs the processed data to the control device 80.
(装着装置10に適用される通信システム)
 ここで、図3に示すように、本実施形態の装着装置10は、装着装置10の制御装置80と制御装置80以外の部分(各種装置)との間のデータ通信に光無線の多重化通信を用いる。なお、図3に示す装着装置10の構成は、通信システムを適用する場合の一例であり、装着装置10が備える装置の種類や数等に応じて適宜変更する。また、本願の通信システムは、装着装置10に例示される電子部品装着装置の他に、様々な製造ラインにおいて稼働する自動機などに適用可能なシステムである。
(Communication system applied to mounting device 10)
Here, as shown in FIG. 3, the mounting apparatus 10 according to the present embodiment uses optical wireless multiplexed communication for data communication between the control apparatus 80 of the mounting apparatus 10 and parts (various apparatuses) other than the control apparatus 80. Is used. Note that the configuration of the mounting apparatus 10 illustrated in FIG. 3 is an example in the case of applying a communication system, and is appropriately changed according to the type and number of apparatuses provided in the mounting apparatus 10. The communication system of the present application is a system that can be applied to an automatic machine operating in various production lines in addition to the electronic component mounting apparatus exemplified by the mounting apparatus 10.
 図3に示すように、制御装置80は、CPU、ROM、RAM等を備えたコンピュータを主体とするコントローラ82と、画像ボード84と、駆動制御ボード85と、I/Oボード86とを備える。コントローラ82は、各ボード84,85,86を介して各装置と通信を行う。各ボード84,85,86は、光無線装置91を介して伝送路95の一端に接続され、伝送路95において光無線による通信が行われる。伝送路95の他端は光無線装置92を介して各種装置(カメラ、モータ、センサ等)に接続されている。例えば、図2に示すように、移動装置23には、制御装置80に接続される光無線装置91の受発光部93に対向して、光無線装置92の受発光部94が設けられている。受発光部94は、光無線装置91側の受発光部93との間で光軸が一致するように移動装置23のX軸スライダ54に固定されている。これにより、受発光部93,94(光無線装置91,92)間で各種情報通信が可能とされている。 As shown in FIG. 3, the control device 80 includes a controller 82 mainly composed of a computer having a CPU, ROM, RAM, and the like, an image board 84, a drive control board 85, and an I / O board 86. The controller 82 communicates with each device via each board 84, 85, 86. Each board 84, 85, 86 is connected to one end of a transmission path 95 via an optical wireless device 91, and optical wireless communication is performed on the transmission path 95. The other end of the transmission path 95 is connected to various devices (camera, motor, sensor, etc.) via the optical wireless device 92. For example, as illustrated in FIG. 2, the moving device 23 is provided with a light emitting / receiving unit 94 of the optical wireless device 92 facing the light emitting / receiving unit 93 of the optical wireless device 91 connected to the control device 80. . The light emitting / receiving unit 94 is fixed to the X-axis slider 54 of the moving device 23 so that the optical axis coincides with the light emitting / receiving unit 93 on the optical wireless device 91 side. Thereby, various information communication is enabled between the light emitting / receiving units 93 and 94 (optical wireless devices 91 and 92).
 図3に示す画像ボード84は、画像データの入出力を制御するボードである。例えば、コントローラ82は、画像ボード84を介して画像処理装置71がマークカメラ47の画像データに対する処理から検出した回路基板17に関する情報(種類・形状等)や回路基板17の基板保持装置32による保持位置の誤差等のカメラ情報を受信する。駆動制御ボード85は、電磁モータに対する動作指令や電磁モータからリアルタイムでフィードバックされる情報等の入出力を制御するボードである。例えば、コントローラ82は、駆動制御ボード85を介して電磁モータ43Aにより取得されるトルク情報や位置情報(吸着ノズル41に保持される電子部品の上下位置)などのサーボ制御情報を受信する。I/Oボード86は、例えば位置検出センサ45の出力信号等の入出力を制御するボードである。これら制御装置80に各装置から入力されるデータは、光無線装置92により多重化された上で光無線信号として伝送路95を伝送される。光無線装置91は、伝送された多重化信号の多重化を解除し個々のデータに分離する処理を行う。光無線装置91は、分離されたデータのうち、画像データを画像ボード84に、サーボ制御情報を駆動制御ボード85に、I/O信号をI/Oボード86に転送する。 The image board 84 shown in FIG. 3 is a board that controls input / output of image data. For example, the controller 82 uses the image board 84 to hold information about the circuit board 17 detected by the image processing apparatus 71 from processing the image data of the mark camera 47 (type, shape, etc.) and hold the circuit board 17 by the board holding device 32. Receive camera information such as position error. The drive control board 85 is a board that controls input / output of operation commands for the electromagnetic motor and information fed back from the electromagnetic motor in real time. For example, the controller 82 receives servo control information such as torque information and position information (vertical position of the electronic component held by the suction nozzle 41) acquired by the electromagnetic motor 43A via the drive control board 85. The I / O board 86 is a board that controls input / output of an output signal of the position detection sensor 45, for example. Data input from these devices to the control device 80 is multiplexed by the optical wireless device 92 and transmitted through the transmission path 95 as an optical wireless signal. The optical wireless device 91 performs a process of demultiplexing the transmitted multiplexed signal and separating it into individual data. Of the separated data, the optical wireless device 91 transfers image data to the image board 84, servo control information to the drive control board 85, and I / O signals to the I / O board 86.
 一方で、コントローラ82は、光無線装置91により受信された各データを処理する。コントローラ82は、例えば処理結果に基づいた電磁モータ43Aに対する制御信号を、駆動制御ボード85を介して光無線装置91に出力する。光無線装置92は、光無線装置91から伝送される制御信号をノズル昇降装置43に転送する。これにより、電磁モータ43Aが制御信号に基づいて動作する。また、コントローラ82は、例えば表示装置13の表示を変更する制御信号をI/Oボード86、光無線装置91,92を介して表示装置13に出力する。このように、制御装置80と制御装置80以外の各装置とで送受信される各種情報は、伝送路95上を多重化されたデータ、例えば時分割多重(TDM)方式のフレームデータとして送受信される。多重化通信は、例えば、データ転送レートが3GBPS、1フレームが8nsec、1フレームのビット数が24ビットである。 On the other hand, the controller 82 processes each data received by the optical wireless device 91. For example, the controller 82 outputs a control signal for the electromagnetic motor 43 </ b> A based on the processing result to the optical wireless device 91 via the drive control board 85. The optical wireless device 92 transfers the control signal transmitted from the optical wireless device 91 to the nozzle lifting / lowering device 43. Thus, the electromagnetic motor 43A operates based on the control signal. For example, the controller 82 outputs a control signal for changing the display of the display device 13 to the display device 13 via the I / O board 86 and the optical wireless devices 91 and 92. As described above, various types of information transmitted and received between the control device 80 and each device other than the control device 80 are transmitted and received as data multiplexed on the transmission path 95, for example, time division multiplexing (TDM) frame data. . In multiplexed communication, for example, the data transfer rate is 3 GBPS, one frame is 8 nsec, and the number of bits of one frame is 24 bits.
 上述した装着装置10では、基板保持装置32に保持された回路基板17に対して装着ヘッド22によって電子部品の装着作業を行う。具体的には、コントローラ82は、搬送装置21を駆動して回路基板17を作業位置まで搬送し、電磁モータ33を停止させて回路基板17を固定的に保持させる。コントローラ82は、移動装置23を駆動して装着ヘッド22を回路基板17上に移動させマークカメラ47により回路基板17を撮像する。この際に、コントローラ82は、画像処理装置71から受信した回路基板17の種類及び回路基板17の保持位置の誤差を判定する。次に、コントローラ82は、基板の種類に対する判定結果に応じた電子部品を有する供給装置15,16を駆動し、該当する電子部品を装着ヘッド22への供給位置に送り出す制御を行う。コントローラ82は、移動装置23を駆動して供給位置の搬送された電子部品を装着ヘッド22の吸着ノズル41により吸着保持させる。 In the mounting device 10 described above, an electronic component is mounted on the circuit board 17 held by the substrate holding device 32 by the mounting head 22. Specifically, the controller 82 drives the transport device 21 to transport the circuit board 17 to the working position, stops the electromagnetic motor 33, and holds the circuit board 17 in a fixed manner. The controller 82 drives the moving device 23 to move the mounting head 22 onto the circuit board 17 and images the circuit board 17 with the mark camera 47. At this time, the controller 82 determines an error in the type of the circuit board 17 and the holding position of the circuit board 17 received from the image processing apparatus 71. Next, the controller 82 drives the supply devices 15 and 16 having electronic components according to the determination result for the type of board, and performs control to send the corresponding electronic components to the supply position to the mounting head 22. The controller 82 drives the moving device 23 to suck and hold the electronic component conveyed at the supply position by the suction nozzle 41 of the mounting head 22.
 次に、コントローラ82は、電子部品を保持した装着ヘッド22をパーツカメラ73上に移動させて電子部品の状態を撮像させる。この際に、コントローラ82は、撮像結果に基づいて電子部品の保持位置の誤差を取得する。コントローラ82は、装着ヘッド22を回路基板17上の装着位置に移動させ回路基板17及び電子部品の保持位置誤差に基づいて吸着ノズル41を自転させた後に電子部品を回路基板17に装着させる。 Next, the controller 82 moves the mounting head 22 holding the electronic component onto the parts camera 73 to image the state of the electronic component. At this time, the controller 82 acquires an error in the holding position of the electronic component based on the imaging result. The controller 82 moves the mounting head 22 to the mounting position on the circuit board 17, rotates the suction nozzle 41 based on the holding position error of the circuit board 17 and the electronic component, and then mounts the electronic component on the circuit board 17.
 以下の説明では、上記した多重化通信を用いて電子部品の装着を実施する装着装置10に適用して好適な無線通信システムについて説明する。
 本実施形態の光無線装置91,92は、各受発光部93,94で受光された光の強度の値を送信側にフィードバックして送信側の受発光部93,94の送信出力の値が変更される。詳述すると、図4に示すように、光無線装置91の受発光部93は、送信のための発光素子としてのレーザーダイオード(Laser Diode:LD)93Aと、受光素子のフォトディテクタ(Photo detector:PD)93Bとを備える。また、光無線装置91は、マルチプレクサ(以下、「MUX」という)101と、デマルチプレクサ(以下、「DEMUX」という)102と、トランスインピーダンスアンプ(TIA)回路103と、LD駆動回路104と、AD変換回路105と、制御部106とを備える。なお、光無線装置92は、光無線装置91と同様の構成となっている。図4に示すように、光無線装置92の受発光部94は、送信のための発光素子としてのレーザーダイオード(Laser Diode:LD)94Aと、受光素子のフォトディテクタ(Photo detector:PD)94Bとを備える。また、光無線装置92は、マルチプレクサ(以下、「MUX」という)201と、デマルチプレクサ(以下、「DEMUX」という)202と、トランスインピーダンスアンプ(TIA)回路203と、LD駆動回路204と、AD変換回路205と、制御部206とを備える。以下の説明では主として光無線装置91について説明し、光無線装置92についての説明を適宜省略する。
In the following description, a radio communication system suitable for application to the mounting apparatus 10 that mounts electronic components using the above-described multiplexed communication will be described.
The optical wireless devices 91 and 92 of the present embodiment feed back the intensity values of the light received by the light emitting / receiving units 93 and 94 to the transmitting side so that the transmission output values of the transmitting / receiving units 93 and 94 on the transmitting side are Be changed. More specifically, as shown in FIG. 4, the light receiving / emitting unit 93 of the optical wireless device 91 includes a laser diode (LD) 93A as a light emitting element for transmission and a photo detector (Photo detector: PD) of the light receiving element. ) 93B. The optical wireless device 91 includes a multiplexer (hereinafter referred to as “MUX”) 101, a demultiplexer (hereinafter referred to as “DEMUX”) 102, a transimpedance amplifier (TIA) circuit 103, an LD drive circuit 104, an AD A conversion circuit 105 and a control unit 106 are provided. The optical wireless device 92 has the same configuration as the optical wireless device 91. As shown in FIG. 4, the light emitting / receiving unit 94 of the optical wireless device 92 includes a laser diode (LD) 94A as a light emitting element for transmission and a photo detector (PD) 94B as a light receiving element. Prepare. The optical wireless device 92 includes a multiplexer (hereinafter referred to as “MUX”) 201, a demultiplexer (hereinafter referred to as “DEMUX”) 202, a transimpedance amplifier (TIA) circuit 203, an LD drive circuit 204, an AD A conversion circuit 205 and a control unit 206 are provided. In the following description, the optical wireless device 91 will be mainly described, and the description of the optical wireless device 92 will be omitted as appropriate.
 光無線装置91のPD93Bは、光無線装置92のLD94Aから伝送路95を通じた光無線の無線信号を受信する。PD93Bは、受光される光の強度に応じて変換される電流を電気信号としてTIA回路103に出力する。TIA回路103は、PD93Bから入力される電流信号をパルス信号の電圧信号に変換しDEMUX102に出力する。DEMUX102は、TIA回路103から入力されるパルス信号からビット列のデータ信号を検出し、多重化を解除し個々のデータに分離して制御装置80(図3参照)の各ボード84,85,86に出力する。 The PD 93B of the optical wireless device 91 receives an optical wireless signal from the LD 94A of the optical wireless device 92 through the transmission path 95. The PD 93B outputs a current converted according to the intensity of received light to the TIA circuit 103 as an electric signal. The TIA circuit 103 converts the current signal input from the PD 93 </ b> B into a voltage signal of a pulse signal and outputs it to the DEMUX 102. The DEMUX 102 detects the data signal of the bit string from the pulse signal input from the TIA circuit 103, demultiplexes it, separates it into individual data, and sends it to each board 84, 85, 86 of the control device 80 (see FIG. 3). Output.
 一方、光無線装置91のMUX101は、制御装置80の各ボード84,85,86から入力されるデータ信号を多重化してLD駆動回路104に出力する。LD駆動回路104は、入力信号に基づいてLD93Aに供給する駆動電流を制御する。LD93Aは、LD駆動回路104から供給される駆動電流に基づいた光強度の無線信号を、伝送路95を通じて光無線装置92のPD94Bに向けて送信する。 On the other hand, the MUX 101 of the optical wireless device 91 multiplexes data signals input from the boards 84, 85, 86 of the control device 80 and outputs them to the LD drive circuit 104. The LD drive circuit 104 controls the drive current supplied to the LD 93A based on the input signal. The LD 93 </ b> A transmits a radio signal having a light intensity based on the drive current supplied from the LD drive circuit 104 to the PD 94 </ b> B of the optical radio apparatus 92 through the transmission path 95.
 例えば、光無線装置91から光無線装置92に向けたデータ転送では、制御装置80(駆動制御ボード85)から出力される電磁モータ43A(図3参照)に対する制御情報が、MUX101で多重化されLD駆動回路104を介してLD93AからPD94Bに送信される。光無線装置92では、PD94B及びTIA回路203を介してDEMUX202に入力された信号から多重化を解除して制御情報が検出される。ノズル昇降装置43(図3参照)は、DEMUX202において検出された制御情報が入力されその制御情報に基づいて電磁モータ43Aが制御される。 For example, in data transfer from the optical wireless device 91 to the optical wireless device 92, control information for the electromagnetic motor 43A (see FIG. 3) output from the control device 80 (drive control board 85) is multiplexed by the MUX 101 and the LD. The data is transmitted from the LD 93A to the PD 94B via the drive circuit 104. The optical wireless device 92 detects the control information by demultiplexing the signal input to the DEMUX 202 via the PD 94B and the TIA circuit 203. Control information detected by the DEMUX 202 is input to the nozzle lifting device 43 (see FIG. 3), and the electromagnetic motor 43A is controlled based on the control information.
 ここで、このような装着装置10の通信システムでは、様々な要因によって受発光部93,94の間の光強度が変動する。例えば、光無線装置91のLD93Aと光無線装置92のLD94Aとに同一規格のレーザーダイオードを用いたとしても、素子の劣化や温度特性のような素子固有の特性等によって各LD93A,94Aの送信出力の値が異なる場合がある。 Here, in such a communication system of the mounting device 10, the light intensity between the light emitting and receiving units 93 and 94 varies depending on various factors. For example, even if laser diodes of the same standard are used for the LD 93A of the optical wireless device 91 and the LD 94A of the optical wireless device 92, the transmission output of each LD 93A, 94A due to element-specific characteristics such as element degradation and temperature characteristics May have different values.
 また、装着装置10は、図2に示すように受発光部93(光無線装置91)が装着装置10に対して固定されている一方で、受発光部94(光無線装置92)がX軸方向に可動する移動装置23に設けられている。このような光無線通信を行う受発光部93,94の一方が他方に対して相対的に変位する装着装置10では、移動装置23の可動にともなって受発光部93,94間の距離、即ち、伝送路95の距離が変動する。伝送路95の変動にともない各受発光部93,94(PD93B,94B)で受光される光の強度が変動する。LD93A,94Aから出力されるレーザ光は、光源からの距離に応じて広がった領域に拡散、例えば、ガウシアンビームのTEM00モードのような光源から対照的な波面に拡散する。このため、PD93B,94Bで受光される光の強度は、仮に伝送路95中(例えば、空気中)の減衰が生じなくとも伝送路95の距離に比例して減少する。 Further, as shown in FIG. 2, the mounting device 10 has a light emitting / receiving unit 93 (optical wireless device 91) fixed to the mounting device 10, while a light receiving / emitting unit 94 (optical wireless device 92) is mounted on the X axis. The moving device 23 is movable in the direction. In the mounting device 10 in which one of the light emitting / receiving units 93 and 94 that performs such optical wireless communication is relatively displaced with respect to the other, the distance between the light emitting / receiving units 93 and 94 as the moving device 23 moves, that is, The distance of the transmission path 95 varies. As the transmission path 95 varies, the intensity of light received by each of the light emitting / receiving units 93 and 94 (PD93B and 94B) varies. The laser beams output from the LDs 93A and 94A are diffused in a region spread according to the distance from the light source, for example, from a light source such as a TEM00 mode of a Gaussian beam to a contrasting wavefront. For this reason, the intensity of light received by the PDs 93B and 94B decreases in proportion to the distance of the transmission path 95 even if attenuation in the transmission path 95 (for example, in the air) does not occur.
 上記したような様々な要因によって光の強度に変動が生じると、伝送されるデータの誤りの増大や伝送路95の切断等が生じる。そこで、本実施形態の光無線装置91,92は、PD93B,94Bで受光された光の強度を送信側にフィードバックしてLD93A,94Aの送信出力を変更する。 If the light intensity fluctuates due to various factors as described above, errors in transmitted data increase, the transmission path 95 is disconnected, and the like. Therefore, the optical wireless devices 91 and 92 according to the present embodiment feed back the intensity of light received by the PDs 93B and 94B to the transmission side to change the transmission output of the LDs 93A and 94A.
 図4に示すように、光無線装置91のTIA回路103は、PD93Bから入力される電流信号に基づいた受信信号強度(RSSI)をAD変換回路105に出力する。AD変換回路105は、TIA回路103から入力されるRSSIに基づいた光強度情報OIをMUX101に出力する。TIA回路103は、例えば、受信信号強度に応じた電圧信号をAD変換回路105に出力する。AD変換回路105は、例えば、複数のコンパレータを備え、各コンパレータにはRSSIの電圧値が分圧して入力される。各コンパレータでは、分圧された電圧値と基準電圧とが比較され、比較結果の複数のビット値が光強度情報OIとしてMUX101に出力される。つまり、光強度情報OIは、RSSIの大きさを表すビット値が設定される。なお、光無線装置91には、AD変換回路105の各コンパレータの出力端子に接続される複数のLED108が設けられており、各LED108がRSSIの電圧値の大きさに応じて点灯する。これにより、使用者は、光無線装置91で受信される無線信号(光強度)のRSSIの大きさがLED108の点灯から確認できる。 As shown in FIG. 4, the TIA circuit 103 of the optical wireless device 91 outputs the received signal strength (RSSI) based on the current signal input from the PD 93 </ b> B to the AD conversion circuit 105. The AD conversion circuit 105 outputs light intensity information OI based on RSSI input from the TIA circuit 103 to the MUX 101. For example, the TIA circuit 103 outputs a voltage signal corresponding to the received signal strength to the AD conversion circuit 105. The AD conversion circuit 105 includes, for example, a plurality of comparators, and a voltage value of RSSI is divided and input to each comparator. In each comparator, the divided voltage value and the reference voltage are compared, and a plurality of bit values of the comparison result are output to the MUX 101 as the light intensity information OI. That is, the light intensity information OI is set with a bit value representing the RSSI size. The optical wireless device 91 is provided with a plurality of LEDs 108 connected to the output terminals of the comparators of the AD conversion circuit 105, and the LEDs 108 are turned on according to the magnitude of the RSSI voltage value. Thereby, the user can confirm the magnitude of the RSSI of the wireless signal (light intensity) received by the optical wireless device 91 from the lighting of the LED 108.
 光無線装置92のDEMUX202は、TIA回路203から入力されるビット列から光強度情報OIを検出し制御部206に出力する。制御部206は、入力された光強度情報OIに基づいてLD駆動回路204からLD94Aに供給される駆動電流の大きさを変更する。例えば、制御部206は、光無線装置91のPD93Bで受光される光の強度が低下した値を示す光強度情報OIがフィードバック処理された場合に、LD駆動回路204に対してLD94Aに対する駆動電流を大きくする制御を実行する。これにより、受信側で実際に受光される光の強度に応じて送信側の送信出力が調整でき、伝送路95における伝送データの誤りの増大や伝送路95の切断が防止できる。 The DEMUX 202 of the optical wireless device 92 detects the light intensity information OI from the bit string input from the TIA circuit 203 and outputs it to the control unit 206. The control unit 206 changes the magnitude of the drive current supplied from the LD drive circuit 204 to the LD 94A based on the input light intensity information OI. For example, when the light intensity information OI indicating the value where the intensity of light received by the PD 93B of the optical wireless device 91 is reduced is feedback-processed, the control unit 206 supplies a drive current for the LD 94A to the LD drive circuit 204. Execute the control to increase. Thereby, the transmission output on the transmission side can be adjusted according to the intensity of light actually received on the reception side, and an increase in transmission data errors in the transmission path 95 and a disconnection of the transmission path 95 can be prevented.
 また、光強度情報OIには、LD93A,94Aの送信出力を増大させる大きさの上限を示すビット値が設定されている。詳述すると、制御部206は、光強度情報OIのビット値に基づいてLD駆動回路204を段階的に制御する。例えば、光強度情報OIが8ビットであれば、256通りの制御情報に基づいて駆動電流が制御できる。しかしながら、例えばPD93Bで受光される光の強度が低下するのにともなって駆動電流を増大させる制御情報を無制限に光強度情報OIに対して設定すると、LD94Aの送信出力が不必要に増大することとなる。例えば、使用者が作業中に誤って手で伝送路95を遮りPD93Bで受光される光強度がほぼゼロとなると、LD94Aの送信出力が無制限に増大して光強度が作業者にとって危険となるレベルにまで大きくなる恐れがある。また、不要な電力が消費される。そこで、光強度情報OIにLD94Aの送信出力を増大させる上限を示すビット値を付加することで、制御部206において駆動電流を増大させる量を制限でき、光強度を制限すると共に不要な消費電力が低減できる。なお、光強度情報OIに設定される上限を示すビット値は、伝送路95の最大距離(この場合、移動装置23がX軸方向の端部まで移動した距離)等に基づいて設定することができる。また、例えば、上記したLED108がすべて消灯した場合をLD94Aの送信出力を制限する条件に設定することで、LED108の点灯によって、使用者に対してRSSIの低下と送信出力を制限する制御が実施されたことを報知できる。 In the light intensity information OI, a bit value indicating the upper limit of the size for increasing the transmission output of the LD 93A, 94A is set. More specifically, the control unit 206 controls the LD drive circuit 204 step by step based on the bit value of the light intensity information OI. For example, if the light intensity information OI is 8 bits, the drive current can be controlled based on 256 kinds of control information. However, for example, if the control information for increasing the drive current is set for the light intensity information OI as the intensity of light received by the PD 93B decreases, the transmission output of the LD 94A increases unnecessarily. Become. For example, when the user accidentally interrupts the transmission path 95 during work and the light intensity received by the PD 93B becomes almost zero, the transmission output of the LD 94A increases without limit, and the light intensity becomes dangerous for the worker. There is a risk of becoming bigger. Also, unnecessary power is consumed. Therefore, by adding a bit value indicating an upper limit for increasing the transmission output of the LD 94A to the light intensity information OI, the amount of increase in drive current in the control unit 206 can be limited, and the light intensity is limited and unnecessary power consumption is reduced. Can be reduced. The bit value indicating the upper limit set in the light intensity information OI can be set based on the maximum distance of the transmission path 95 (in this case, the distance that the moving device 23 has moved to the end in the X-axis direction) or the like. it can. In addition, for example, by setting the conditions for limiting the transmission output of the LD94A when the above-described LEDs 108 are all extinguished, the control of limiting the RSSI reduction and the transmission output to the user is performed by turning on the LEDs 108. Can be notified.
 また、MUX101,201及びDEMUX102,202の間の多重化通信は、時分割多重方式のフレームデータが送受信されている。例えば、MUX101は、各ボード84,85,86からのデータ転送レートと伝送路95のデータ転送レートと変換を実行する速度変換回路(図示略)が設けられている。MUX101は、AD変換回路105から入力される光強度情報OIを速度変換回路により付加されるフレームのダミーデータに設定して伝送する。あるいは、MUX101は、例えば、フレームデータのビット列のうち、データが定義されていないビット値に光強度情報OIを設定して伝送してもよい。これにより、光無線装置91,92の間で送受信されるデータ伝送に対する影響を少なくしてフィードバック処理が実行できる。なお、光無線装置91,92は、伝送路95とは別に光強度情報OIをフィードバックする無線回線を備える構成としてもよい。 Also, in multiplexed communication between the MUXs 101 and 201 and the DEMUXs 102 and 202, time division multiplexing frame data is transmitted and received. For example, the MUX 101 is provided with a speed conversion circuit (not shown) that performs conversion between the data transfer rate from each of the boards 84, 85, 86 and the data transfer rate of the transmission path 95. The MUX 101 transmits the light intensity information OI input from the AD conversion circuit 105 by setting it as dummy data of the frame added by the speed conversion circuit. Alternatively, for example, the MUX 101 may set and transmit the light intensity information OI to a bit value for which data is not defined in a bit string of frame data. As a result, the feedback process can be executed with less influence on data transmission between the optical wireless devices 91 and 92. The optical wireless devices 91 and 92 may include a wireless line that feeds back the light intensity information OI separately from the transmission path 95.
 また、TIA回路103,203は、PD93B,94Bからの入力毎にRSSIを出力する構成となっている。これにより、PD93B,94Bで受光される光の強度の変動に対する追従性を高めることができる。なお、TIA回路103,203は、所定の時間間隔でRSSIの平均値を算出して出力する構成としてもよい。これにより、光の強度の変動に対する追従性を高めつつ、他の回路(MUX101等)におけるフィードバック処理に係る処理負荷が低減できる。 Further, the TIA circuits 103 and 203 are configured to output RSSI for each input from the PD 93B and 94B. Thereby, the followability with respect to the fluctuation | variation of the intensity | strength of light received by PD93B and 94B can be improved. The TIA circuits 103 and 203 may be configured to calculate and output an average RSSI value at a predetermined time interval. Thereby, the processing load concerning the feedback process in other circuits (MUX101 etc.) can be reduced, improving the followability with respect to the fluctuation | variation of the intensity | strength of light.
 また、制御部106,206は、CPUなどのプロセッサで構成せずに、FPGA(Field Programmable Gate Array)などのプログラム可能なロジックデバイスで構成してもよい。また、LD駆動回路104,204は、LD93A,94Aの駆動電流を変更する可変抵抗回路を備えてもよい。この可変抵抗回路は、例えば、制御部106,206から入力される光強度情報OI(ビット値)に基づいて直列に接続された複数の抵抗素子の接続が選択され合成抵抗値が変更されることによって出力される駆動電流が変更される構成とする。可変抵抗回路の複数の抵抗素子は、LD93A,94Aの駆動電流の値がLD93A,94Aの規定の範囲内で段階的に変更可能な抵抗値の抵抗素子が選択可能に接続されている。このような構成では、光強度情報OIのフィードバック処理に光無線の通信を用いるとともに、制御部106,206及びLD駆動回路104,204におけるフィードバック処理をハードウェアで処理することによって、光強度の変動に対する追従性を高めることができる。一例として、移動装置23がX軸方向の両端の最大距離(例えば、2.5m)を数secで移動する場合に、受光から駆動電流の変更までを数μsecオーダーで処理でき、追従性を十分に高めることができる。 Further, the control units 106 and 206 may be configured by programmable logic devices such as FPGA (Field Programmable Gate Gate Array) without being configured by a processor such as a CPU. Further, the LD drive circuits 104 and 204 may include variable resistance circuits that change the drive currents of the LDs 93A and 94A. In this variable resistance circuit, for example, the connection of a plurality of resistance elements connected in series is selected based on the light intensity information OI (bit value) input from the control units 106 and 206, and the combined resistance value is changed. The driving current output is changed. The plurality of resistance elements of the variable resistance circuit are connected so that selectable resistance elements having resistance values that can be changed stepwise within the prescribed range of the LD93A and 94A drive current values of the LD93A and 94A. In such a configuration, optical wireless communication is used for the feedback processing of the light intensity information OI, and the feedback processing in the control units 106 and 206 and the LD drive circuits 104 and 204 is processed by hardware, thereby changing the light intensity. The followability to can be improved. As an example, when the moving device 23 moves the maximum distance (for example, 2.5 m) at both ends in the X-axis direction in a few seconds, the process from the light reception to the change of the drive current can be processed in the order of several μsec, and the followability is sufficient. Can be increased.
 以上、詳細に説明した本実施形態によれば以下の効果を奏する。
 本実施形態の装着装置10では、各PD93B,94Bで受光された光の強度がTIA回路103,203により受信信号強度(RSSI)として検出されAD変換回路105,205から光強度情報OIとして送信側の光無線装置92,91に送信される。送信側の光無線装置92,91では、制御部206,106が光強度情報OIに基づいてLD駆動回路204,104のLD94A,93Aに対して供給する駆動電流の大きさを制御する。これにより、光強度情報OIが光無線の通信を用いて迅速にフィードバック処理され、LD94A,93Aの送信出力が変更されることによって、LD94A,93Aの送信出力の変動に対する追従性の向上を図った光無線通信システムが構築できる。
As mentioned above, according to this embodiment described in detail, there exist the following effects.
In the mounting apparatus 10 of the present embodiment, the intensity of light received by the PDs 93B and 94B is detected as received signal intensity (RSSI) by the TIA circuits 103 and 203, and transmitted from the AD conversion circuits 105 and 205 as light intensity information OI. Are transmitted to the optical wireless devices 92 and 91. In the optical wireless devices 92 and 91 on the transmission side, the control units 206 and 106 control the magnitude of the drive current supplied to the LDs 94A and 93A of the LD drive circuits 204 and 104 based on the light intensity information OI. As a result, the optical intensity information OI is quickly feedback-processed using optical wireless communication, and the transmission output of the LD 94A, 93A is changed, thereby improving the followability to the fluctuation of the transmission output of the LD 94A, 93A. An optical wireless communication system can be constructed.
 なお、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、上記実施形態では、光無線による通信を例に説明したが、本願はこれに限定されるものではなく、赤外線や可視光などの他に様々な電磁波を用いた無線通信にも適用できる。このような構成であっても、無線通信の発信機器の特性や伝送路の距離に応じて無線電波の減衰等が生じるため、本願発明を適用することで上記した効果と同様の効果を得ることができる。
 また、上記実施形態では多重化された無線通信を例に説明したが、本願はこれに限定されるものではく、多重化を用いない無線通信に本願発明を適用してもよい。
In addition, this invention is not limited to said embodiment, It cannot be overemphasized that various improvement and change are possible within the range which does not deviate from the meaning of this invention.
For example, in the above embodiment, communication by optical wireless has been described as an example. However, the present application is not limited to this, and can be applied to wireless communication using various electromagnetic waves in addition to infrared rays and visible light. Even with such a configuration, attenuation of wireless radio waves or the like occurs according to the characteristics of the transmission device of wireless communication or the distance of the transmission path, so that the same effect as described above can be obtained by applying the present invention. Can do.
In the above embodiment, multiplexed wireless communication has been described as an example. However, the present application is not limited to this, and the present invention may be applied to wireless communication that does not use multiplexing.
 また、上記実施形態において、伝送路95の切断等により、LD93A,94Aの受信信号強度(RSSI)がゼロあるいはゼロに近い値となった場合に、光無線装置91,92を停止する構成や使用者にその旨を知らせる警報を発する構成としてもよい。これにより、例えば、機器同士の接触により受発光部93,94の光軸がずれ伝送路95が切断された場合に、使用者が受発光部93,94の向きを修正して装着装置10を起動する等の適切な対応ができる。 Further, in the above embodiment, when the received signal strength (RSSI) of the LD 93A, 94A becomes zero or a value close to zero due to the disconnection of the transmission path 95 or the like, the configuration or use of stopping the optical wireless devices 91, 92 It is good also as a structure which issues the warning which notifies that to a person. Thereby, for example, when the optical axis of the light emitting / receiving units 93 and 94 is shifted due to contact between the devices and the transmission path 95 is cut, the user corrects the direction of the light emitting / receiving units 93 and 94 to change the mounting device 10. Appropriate responses such as starting up can be performed.
 また、上記実施形態において、光無線装置91,92は、TIA回路103,203とAD変換回路105,205との各々の間に対数変換回路を設けた構成としてもよい。例えば、TIA回路103,203から出力されるRSSIの電圧値の最大値と最小値との比率(ダイナミックレンジ)が大きい場合には、AD変換回路105,205から出力される光強度情報OIに必要なビット幅が増大し、光強度情報OIを伝送するのに必要なデータ量が増大する場合がある。そのため、TIA回路103,203とAD変換回路105,205との間に対数変換回路を設けてRSSIを対数変換することで、光強度情報OIに必要なビット幅が圧縮できデータ量が削減できる。 In the above embodiment, the optical wireless devices 91 and 92 may have a configuration in which a logarithmic conversion circuit is provided between each of the TIA circuits 103 and 203 and the AD conversion circuits 105 and 205. For example, when the ratio (dynamic range) between the maximum value and the minimum value of the RSSI voltage value output from the TIA circuits 103 and 203 is large, the light intensity information OI output from the AD conversion circuits 105 and 205 is necessary. The bit width increases and the amount of data required to transmit the light intensity information OI may increase. Therefore, by providing a logarithmic conversion circuit between the TIA circuits 103 and 203 and the AD conversion circuits 105 and 205 and performing logarithmic conversion of RSSI, the bit width necessary for the light intensity information OI can be compressed and the amount of data can be reduced.
 また、光無線装置91,92は、伝送路95の切断によりデータの再送を要求する場合に、再送要求に比べて光強度情報OIを優先して送信する構成としてもよい。これにより、伝送路95の切断が発生した場合に、LD93A,94Aの送信出力を増加させた後にデータの再送が実行されることによって、データの再処理がより確実に実行できる。 The optical wireless devices 91 and 92 may be configured to transmit the optical intensity information OI with priority over the retransmission request when requesting retransmission of data by disconnecting the transmission path 95. As a result, when the transmission path 95 is disconnected, the data re-transmission is executed after increasing the transmission output of the LD 93A, 94A, so that the data re-processing can be executed more reliably.
 また、光無線装置91,92は、伝送路95の切断が一定時間継続した場合に、フィードバックを実施する側のLD93A,94Aの送信出力を増大させて光強度情報OIを送信する構成としてもよい。これにより、光強度情報OIをより確実に送信することができる。 The optical wireless devices 91 and 92 may be configured to transmit the light intensity information OI by increasing the transmission output of the LDs 93A and 94A on the feedback side when the transmission path 95 is disconnected for a certain time. . Thereby, the light intensity information OI can be transmitted more reliably.
 また、上記実施形態では、光無線装置91,92の一方(光無線装置92)を可動部(移動装置23)に設けたが、両方の光無線装置91,92を固定する、あるいは両装置が可動する構成としてもよい。 In the above embodiment, one of the optical wireless devices 91 and 92 (optical wireless device 92) is provided in the movable part (moving device 23). However, both optical wireless devices 91 and 92 are fixed, or both devices are It is good also as a structure which can move.
 また、上記実施形態の装着装置10の構成は一例であり、適宜変更する。例えば装着装置10は、一対の光無線装置91,92を備えたが2以上の複数個を備える構成としてもよい。また、例えば、装置本体11に対して着脱可能な移動装置23を複数備えた構成としてもよい。また、例えば、コンベアベルト31を複数個(複数レーン)備えた構成としてもよい。また、例えば、複数の装着装置10を搬送方向に駆動連結した構成としてもよい。 Further, the configuration of the mounting device 10 of the above embodiment is an example, and is changed as appropriate. For example, the mounting device 10 includes the pair of optical wireless devices 91 and 92, but may include two or more. For example, it is good also as a structure provided with two or more moving apparatuses 23 which can be attached or detached with respect to the apparatus main body 11. FIG. For example, it is good also as a structure provided with multiple conveyor belts 31 (plural lanes). Further, for example, a configuration in which a plurality of mounting devices 10 are drivingly connected in the transport direction may be employed.
 なお、特許請求の範囲の用語との対応関係は以下の通りである。
 装着装置10は、電子部品装着装置の一例として、受発光部93は、第1伝送部の一例として、LD駆動回路104は、駆動部の一例として、光無線装置91は、第1無線装置の一例として、LD93AからPD94Bへの光無線信号は、第1無線信号の一例として、受発光部94は、第2伝送部の一例として、TIA203及びAD変換回路205は、検出部の一例として、光無線装置92は、第2無線装置の一例として、LD94A及びPD93Bは、フィードバック手段の一例として、制御部106は、処理部の一例として、MUX101,201及びDEMUX102,202は、フィードバック手段が備える第1伝送部及び第2伝送部の多重化装置の一例として、移動装置23は、可動部の一例として挙げられる。
The correspondence with the terms in the claims is as follows.
The mounting device 10 is an example of an electronic component mounting device, the light emitting / receiving unit 93 is an example of a first transmission unit, the LD driving circuit 104 is an example of a driving unit, and the optical wireless device 91 is an example of the first wireless device. As an example, the optical wireless signal from the LD 93A to the PD 94B is an example of the first wireless signal, the light emitting / receiving unit 94 is an example of the second transmission unit, the TIA 203 and the AD conversion circuit 205 are the optical detectors. The wireless device 92 is an example of a second wireless device, the LD 94A and the PD 93B are examples of a feedback unit, the control unit 106 is an example of a processing unit, and the MUXs 101 and 201 and the DEMUXs 102 and 202 are first included in the feedback unit. As an example of the multiplexing device of the transmission unit and the second transmission unit, the moving device 23 is an example of a movable unit.
10 装着装置、91,92 光無線装置、93,94 受発光部、93A,94A LD、93B,94B PD、101,201 MUX、102,202 DEMUX、103,203 TIA回路、104,204 LD駆動回路、105,205 AD変換回路、106,206 制御部。 10 mounting device, 91, 92 optical wireless device, 93, 94 light emitting / receiving unit, 93A, 94A LD, 93B, 94B PD, 101, 201 MUX, 102, 202 DEMUX, 103, 203 TIA circuit, 104, 204 LD drive circuit 105, 205 AD conversion circuit, 106, 206 control unit.

Claims (5)

  1.  供給される駆動電流に基づいて第1無線信号を送信する第1伝送部と、前記第1伝送部に前記駆動電流を供給する駆動部とを備える第1無線装置と、
     前記第1伝送部から送信される前記第1無線信号を受信する第2伝送部と、前記第2伝送部において受信された前記第1無線信号の信号強度を検出する検出部とを備える第2無線装置と、
     前記第2無線装置の前記検出部において検出された前記信号強度を、前記第2無線装置から前記第1無線装置に第2無線信号として送信するフィードバック手段と、を有し、
     前記第1無線装置は、前記フィードバック手段により受信した前記信号強度に基づいて前記駆動部が前記第1伝送部に供給する前記駆動電流の大きさを変更する処理部を備えることを特徴とする無線通信システム。
    A first wireless device comprising: a first transmission unit that transmits a first wireless signal based on a supplied drive current; and a drive unit that supplies the drive current to the first transmission unit;
    A second transmission unit that receives the first radio signal transmitted from the first transmission unit; and a detection unit that detects a signal strength of the first radio signal received by the second transmission unit. A wireless device;
    Feedback means for transmitting the signal strength detected by the detection unit of the second wireless device as a second wireless signal from the second wireless device to the first wireless device;
    The first radio apparatus includes a processing unit that changes a magnitude of the drive current that the drive unit supplies to the first transmission unit based on the signal strength received by the feedback unit. Communications system.
  2.  前記フィードバック手段は、前記第2無線信号を送信する前記第2伝送部と前記第2無線信号を受信する前記第1伝送部とを備え、前記第1及び第2伝送部は、各々、多重化された光無線の双方向通信を行う多重化装置であり、前記第2伝送部から前記第1伝送部に向けた前記光無線の通信に前記信号強度を含む前記第2無線信号が多重化されることを特徴とする請求項1に記載の無線通信システム。 The feedback means includes the second transmission unit for transmitting the second radio signal and the first transmission unit for receiving the second radio signal, and the first and second transmission units are multiplexed. A multiplexing device for performing two-way optical wireless communication, wherein the second wireless signal including the signal strength is multiplexed in the optical wireless communication from the second transmission unit to the first transmission unit. The wireless communication system according to claim 1.
  3.  前記第1及び第2無線装置の少なくとも一方を、他方に対して前記光無線の光軸を保持しつつ相対的に変位させる可動部を備えることを特徴とする請求項2に記載の無線通信システム。 3. The wireless communication system according to claim 2, further comprising a movable unit that displaces at least one of the first and second wireless devices relative to the other while holding an optical axis of the optical wireless. .
  4.  前記フィードバック手段は、前記信号強度の情報に加えて、前記処理部が前記駆動部の前記駆動電流を増大させる処理を制限する制限情報を含めて前記第2無線信号として送信することを特徴とする請求項1乃至請求項3のいずれかに記載の無線通信システム。 The feedback means includes, in addition to the signal strength information, the processing unit transmits as the second radio signal including restriction information for limiting a process of increasing the driving current of the driving unit. The radio | wireless communications system in any one of Claims 1 thru | or 3.
  5.  電子部品の基板への装着作業に係るデータの伝送を請求項1乃至請求項4のいずれかに記載の無線通信システムにより伝送する電子部品装着装置。 5. An electronic component mounting apparatus for transmitting data related to mounting work of electronic components on a substrate using the wireless communication system according to claim 1.
PCT/JP2013/050766 2013-01-17 2013-01-17 Wireless communication system, and electronic component mounting device WO2014112064A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/050766 WO2014112064A1 (en) 2013-01-17 2013-01-17 Wireless communication system, and electronic component mounting device
JP2014557235A JP6189336B2 (en) 2013-01-17 2013-01-17 Wireless communication system and electronic component mounting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050766 WO2014112064A1 (en) 2013-01-17 2013-01-17 Wireless communication system, and electronic component mounting device

Publications (1)

Publication Number Publication Date
WO2014112064A1 true WO2014112064A1 (en) 2014-07-24

Family

ID=51209188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050766 WO2014112064A1 (en) 2013-01-17 2013-01-17 Wireless communication system, and electronic component mounting device

Country Status (2)

Country Link
JP (1) JP6189336B2 (en)
WO (1) WO2014112064A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016051533A1 (en) * 2014-09-30 2017-07-13 富士機械製造株式会社 Component mounting equipment
US10615767B2 (en) 2017-05-02 2020-04-07 Hanon Systems EMC-filter
CN114391227A (en) * 2019-09-20 2022-04-22 软银股份有限公司 Mobile body, program, and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993199A (en) * 1995-09-26 1997-04-04 Nec Shizuoka Ltd Optical transmission reception level adjustment circuit
JPH09252193A (en) * 1996-03-15 1997-09-22 Fuji Mach Mfg Co Ltd Apparatus for supplying electronic component
WO2007098411A2 (en) * 2006-02-17 2007-08-30 Standard Microsystems Corporation Transmission network having an optical receiver that utilizes dual power pins and a single status pin to lower power consumption, lower manufacturing cost, and increase transmission efficiency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993199A (en) * 1995-09-26 1997-04-04 Nec Shizuoka Ltd Optical transmission reception level adjustment circuit
JPH09252193A (en) * 1996-03-15 1997-09-22 Fuji Mach Mfg Co Ltd Apparatus for supplying electronic component
WO2007098411A2 (en) * 2006-02-17 2007-08-30 Standard Microsystems Corporation Transmission network having an optical receiver that utilizes dual power pins and a single status pin to lower power consumption, lower manufacturing cost, and increase transmission efficiency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016051533A1 (en) * 2014-09-30 2017-07-13 富士機械製造株式会社 Component mounting equipment
US10615767B2 (en) 2017-05-02 2020-04-07 Hanon Systems EMC-filter
CN114391227A (en) * 2019-09-20 2022-04-22 软银股份有限公司 Mobile body, program, and control method

Also Published As

Publication number Publication date
JP6189336B2 (en) 2017-08-30
JPWO2014112064A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6189336B2 (en) Wireless communication system and electronic component mounting apparatus
JPWO2014049815A1 (en) Drive device
JP6343199B2 (en) COMMUNICATION SYSTEM, MOUNTING DEVICE, AND COMMUNICATION DATA PROCESSING METHOD
US10205554B2 (en) Multiplex communication system and work machine
JP6587658B2 (en) Optical wireless communication system and electronic component mounting apparatus
EP2964007B1 (en) Communication system and electronic component mounting device
JP5989776B2 (en) Electrical equipment
JP6680545B2 (en) Work execution device and visible light communication system
US9346625B2 (en) Work system for substrates and working machine
WO2014091577A1 (en) Optical communication device and electronic component mounting device
JP5931918B2 (en) Multiplex communication system, transmission device, reception device, and processing device for electronic component mounting device
JP6131315B2 (en) Communication system and electronic component mounting apparatus
JP6438793B2 (en) Multiplex communication equipment
JP6095768B2 (en) Database, database construction method, communication apparatus, and electronic component mounting apparatus
JP6267709B2 (en) Multiplexing communication system for mounting machine and mounting machine
WO2014049679A1 (en) Chip mounter and device
JP5989787B2 (en) Communication system, electronic component mounting apparatus, and error processing method of communication system
WO2013084330A1 (en) Optical wireless system, imaging device, and control device
JP7189351B2 (en) lighting unit
CN112602385B (en) Control program inspection device
JPWO2013084330A1 (en) Optical wireless system, imaging device, and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872069

Country of ref document: EP

Kind code of ref document: A1