WO2014110944A1 - 机械手和半导体设备 - Google Patents

机械手和半导体设备 Download PDF

Info

Publication number
WO2014110944A1
WO2014110944A1 PCT/CN2013/087937 CN2013087937W WO2014110944A1 WO 2014110944 A1 WO2014110944 A1 WO 2014110944A1 CN 2013087937 W CN2013087937 W CN 2013087937W WO 2014110944 A1 WO2014110944 A1 WO 2014110944A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
bottom plate
robot
base plate
adjustment unit
Prior art date
Application number
PCT/CN2013/087937
Other languages
English (en)
French (fr)
Inventor
郑金果
丁培军
赵梦欣
王厚工
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方微电子基地设备工艺研究中心有限责任公司 filed Critical 北京北方微电子基地设备工艺研究中心有限责任公司
Priority to KR1020157022443A priority Critical patent/KR20150106969A/ko
Publication of WO2014110944A1 publication Critical patent/WO2014110944A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to the field of microelectronics, and in particular to a robot and a semiconductor device. Background technique
  • the requirements for robots used to transfer wafers in semiconductor devices are becoming higher and higher, and conventionally only for one type of wafer.
  • the stability and repeatability of the robot in the process of transmitting other kinds of wafers are increasingly unable to meet the requirements, and the stability of the robot during transmission and the accuracy of repeated positioning directly or indirectly affect the processing quality of the components.
  • the rationality of the robot directly affects the accuracy, stability and safety of the entire equipment.
  • the existing robot mainly uses a software control system to adjust the position of the wafer on the robot.
  • the software control system has great limitations on different types of wafers, so it is difficult to achieve the requirement of repeated positioning.
  • FIG. 1 is a schematic structural view of a robot in the prior art
  • FIG. 2 is a schematic view of the operation of the robot in FIG. 1.
  • the robot includes: a bottom plate 1 and three rubbers disposed on the upper surface of the bottom plate 1.
  • Pad 2 wafer 3 is placed on rubber mat 2, which is used to increase the friction between wafer 3 and the robot.
  • the specific working process of the robot is as follows: The robot transfers the wafer between the transfer module (Transfer Module, TM: 4) and the process module (Process Module, PM) 5 by telescopic and lifting. . In this process, both the transfer module 4 and the process module 5 are in a vacuum state.
  • two sensors (sensors) 6 are disposed between the transmission module 4 and the process module 5 for detecting the position of the wafer 3 on the robot hand during the process of transferring the wafer 3 from the process module 5 to the transport module 4; During the transfer of the wafer 3 from the transport module 4 to the process module 5 by the robot, the sensor 6 does not operate. After the robot transfers the wafer 3 to the process module 5, the wafer 3 is placed on the pedestal 7 in the process module 5 by itself, and the position of the wafer 3 placed on the susceptor 7 can be defined as a transfer. Bit, the process is the release process.
  • the robot is retracted into the transfer module 4, and the wafer 3 is subjected to a series of processes in the process module 5, and after the process is finished, the wafer 3 is returned to the transfer position. At this time, the robot again protrudes into the process module 5 to take out the wafer 3.
  • the wafer 3 In the actual process, after the wafer 3 passes through a series of processes in the process module 5, its position on the susceptor 7 may be offset. Therefore, when the robot reaches the transfer position, the wafer 3 is in the robot. The upper position will be different from the position of the wafer 3 on the robot when the sheet is fed. Before the robot transfers the wafer 3 back to the transport module 4, if the position of the wafer 3 on the robot is not corrected, the wafer 3 may collide with other components while the robot continues to transfer the wafer 3 to other modules. Or the phenomenon of falling off from the robot, which will cause cracking of the wafer 3.
  • the senor 6 can be used to detect the position of the wafer 3 on the robot when the wafer 3 is taken out of the process module 5 by means of the sensor 6, and the signal is fed back to the control unit; the control unit judges that the wafer 3 is at the robot at this time according to the feedback signal. Whether the upper position is different from the position on the robot when the sheet is fed, and if so, the control unit adjusts the position of the wafer 3 to the initial position by adjusting the position of the robot (ie, the preset wafer is placed in the transport module 4) The position of the robot), thereby eliminating the positional deviation of the wafer 3.
  • the wafer can only be adjusted to the initial position by changing the position of the robot, that is, the wafer and the robot are relatively stationary during the adjustment, and the robot changes with respect to its initial position, which makes When the next wafer is transferred from the transfer module to the process module, the position of the robot needs to be reset, and in the process of transferring each wafer, the robot needs to be reset once, so that the transfer time is long and the process efficiency is lowered. And increase the wear of the robot.
  • the robot accelerates or decelerates or wafers during the film transfer process.
  • the rubbing of a component may cause the wafer to fall off from the robot or the position of the robot may change;
  • the present invention provides a robot and a semiconductor device for realizing adjustment of the position of the wafer itself without changing the position of the robot, thereby not only preventing the wafer from falling off from the robot, but also improving process efficiency and low equipment use cost.
  • the present invention provides a robot including a bottom plate, a first adjusting unit, and a second adjusting unit, wherein a wafer carrying area is formed on an upper surface of the bottom plate, and a shape and a size of the wafer carrying area are Corresponding to the wafer to be carried; the first adjusting unit and the second adjusting unit are disposed opposite to each other on the upper surface of the bottom plate, and respectively located outside the two side edges of the wafer carrying area; the first adjusting unit and The second adjustment unit is configured to adjust a position of the wafer placed on the bottom plate such that the wafer is located in the wafer carrying area.
  • the first adjusting unit includes a first convex portion protruding from an upper surface of the bottom plate, and the second adjusting unit includes a second convex portion protruding from an upper surface of the bottom plate; and the first Each of the convex portion and the second convex portion includes a calibration surface disposed toward a center line of the wafer carrying region perpendicular to an upper surface of the bottom plate, and a projection profile on the upper surface of the bottom plate The contours of the wafer carrying areas are matched.
  • the alignment surface is inclined with respect to a center line of the wafer carrying area perpendicular to an upper surface of the bottom plate, and a top end of the calibration surface is located outside a bottom end of the calibration surface.
  • the calibration surface is perpendicular to the upper surface of the substrate relative to the wafer carrying area
  • the inclination angle of the center line is greater than or equal to 70° and less than 90°.
  • the calibration surface has a surface roughness of less than 1.6.
  • the first convex portion and the bottom plate are integrally formed, and the second convex portion and the bottom plate are integrally formed.
  • the first convex portion is embedded in the bottom plate, and the second convex portion is embedded in the bottom plate.
  • the robot further includes a supporting unit, the supporting unit includes a first supporting platform and a second supporting platform disposed on an upper surface of the bottom plate, and is configured to support a wafer, wherein the first supporting platform is adjacent to the a first adjusting unit, the second supporting platform is adjacent to the second adjusting unit.
  • the supporting unit further includes a supporting boss disposed on the upper surface of the bottom plate and located at a position close to a center of the wafer carrying area.
  • the present invention also provides a semiconductor device comprising: the above robot.
  • the invention has the following beneficial effects:
  • the manipulator provided by the present invention is provided with a first adjusting unit and a second adjusting unit which are opposite to each other on the outer surface of the bottom surface of the bottom plate and respectively located on the outer side of the edge of the wafer carrying area, and can be automatically adjusted to be placed on the bottom plate when the robot takes the piece.
  • the position of the wafer on top so that the wafer is located in the wafer carrying area, that is, only the position of the wafer relative to the robot needs to be changed without changing the position of the robot, so that the robot does not need to only move the next wafer from the transfer module to the process module. It needs to be reset, which not only shortens the transfer time, improves the process efficiency, but also reduces the wear of the robot.
  • the manipulator provided by the present invention does not need to use a sensor, but only adjusts the position of the wafer automatically by the first adjusting unit and the second adjusting unit, so that the manufacturing cost of the device can be reduced.
  • the semiconductor device provided by the present invention can not only improve the process efficiency but also reduce the manufacturing cost of the device by employing the manipulator provided by the present invention.
  • FIG. 1 is a schematic structural view of a robot in the prior art
  • Figure 2 is a schematic view of the operation of the robot in Figure 1;
  • FIG. 3 is a schematic structural view of a mechanical hand according to Embodiment 1 of the present invention.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • Figure 5 is an enlarged view of the area I in Figure 4.
  • Process Module Process Module (Process Module, cartridge: PM)
  • the robot provided by the embodiment of the invention includes a bottom plate, a first adjusting unit and a second adjusting unit.
  • a wafer carrying area is formed on the upper surface of the substrate, and the shape and size of the wafer carrying area correspond to a wafer to be carried, such as a silicon wafer, a bonded wafer or the like, which is preset to be placed on a robot.
  • the first adjusting unit and the second adjusting unit are disposed opposite to each other on the upper surface of the bottom plate and respectively located outside the two side edges of the wafer carrying area, and the first adjusting unit and the second adjusting unit are used for adjusting the position of the wafer placed on the bottom plate So that the wafer is located in the wafer carrying area.
  • the position of the wafer placed on the bottom plate can be automatically adjusted when the robot takes the sheet,
  • the wafer is placed in the wafer carrying area, that is, only the position of the wafer relative to the robot needs to be changed without changing the position of the robot, so that the robot does not need to be reset only before the next wafer is transferred from the transfer module to the process module, thereby not only shortening Transfer time, improve process efficiency, and reduce the wear of the robot.
  • the manipulator provided by the present invention does not need to use a sensor, but only adjusts the position of the wafer automatically by means of the first adjusting unit and the second adjusting unit, so that the manufacturing cost of the device can be reduced.
  • FIG. 3 is a schematic structural view of a manipulator according to a first embodiment of the present invention
  • FIG. 4 is a cross-sectional view taken along line AA of FIG. 3
  • FIG. 5 is an enlarged view of a region I of FIG. 4, as shown in FIG. 3, FIG. 4 and FIG.
  • the first adjusting unit includes a first convex portion 13 protruding from the upper surface of the bottom plate 11
  • the second adjusting unit includes a second convex portion 14 protruding from the upper surface of the bottom plate 11, as shown in the figure.
  • the first convex portion 13 is disposed on the upper surface of the bottom plate 11 and is located outside the left edge of the wafer carrying area 15;
  • the second convex portion 14 is provided on the upper surface of the bottom plate 11 and located outside the right edge of the wafer carrying region 15 at a position opposite to the first convex portion 13.
  • the first convex portion 13 and the second convex portion 14 each include a calibration surface 131, 141 which is disposed toward a center line of the wafer carrying region 15 perpendicular to the upper surface of the bottom plate 11, that is, the alignment surface 131 and The calibration faces 141 are disposed opposite each other, and the projection profiles of the calibration faces 131, 141 on the upper surface of the bottom plate 11 match the contours of the wafer carrying region 15, as shown in FIG.
  • the alignment faces 131, 141 are inclined with respect to the center line of the wafer carrying region 15 perpendicular to the upper surface of the bottom plate 11, and the tips of the alignment faces 131, 141 (the distances of the alignment faces 131, 141 in FIG.
  • One end of the upper surface of the bottom plate 11 is located outside the bottom end (the end of the alignment faces 131, 141 in Fig. 4 that intersects the upper surface of the bottom plate 11), that is, the top end of the alignment surface 131 is located on the left side of the bottom end; the top end of the calibration surface 141 Located on the right side of the bottom end, in other words, the top ends of the alignment faces 131, 141 extend from the upper surface of the bottom plate 11 toward the upper left and upper right directions of Fig. 4, respectively.
  • the calibration faces 131, 141 may be inclined planes or curved surfaces, and preferably, the angle of inclination of the alignment faces 131, 141 with respect to the center line of the wafer carrying region 15 perpendicular to the upper surface of the bottom plate 11 is greater than or equal to 70° and less than 90°. As shown in FIG. 5, the angle of inclination is equal to the angle ct between the calibration faces 131, 141 and the region of the upper surface of the bottom plate 11 that faces away from the calibration faces 131, 141.
  • the position of the wafer placed in the process module does not shift after the process is completed, after the robot receives the wafer from the process module (when the wafer is placed on the robot), the wafer is on the robot The position should be in the wafer carrying area 15 on the substrate 11 (as in the position 1 where the solid line of the wafer is shown in Figure 5); if the position of the wafer placed in the process module is offset after the process is completed Then, after the robot receives the wafer from the process module, the position of the wafer on the robot hand is offset with respect to the wafer carrying area 15 (as shown by the dotted line of the wafer 2 at the position 2).
  • the wafer since a part of the edge of the wafer falls on the calibration surface 141 of the second convex portion 14, since the calibration surface 141 has a specific inclination angle, the wafer will slide down to the wafer along the calibration surface 141 under the action of its own gravity. In the carrying area 15, the wafer is also blocked by the calibration surface 131 on the opposite side of the calibration surface 141, and stops sliding, thereby being first
  • the convex portion 13 and the second convex portion 14 are collectively confined within the wafer carrying region 15, i.e., automatic adjustment of the wafer position is completed.
  • the wafer will slide down into the wafer carrying area 15 under the action of its own gravity.
  • the degree of friction between the wafer and the calibration faces 131, 141 and the speed of sliding into the wafer carrying region 15 can also be adjusted by setting the surface roughness of the calibration faces 131, 141 to avoid wafer alignment.
  • the faces 131, 141 are scratched or collide with the bottom plate 11 or the alignment faces 131, 141 due to the excessively slow slip speed.
  • the surface roughness Ra of the calibration faces 131, 141 is less than or equal to 1.6.
  • the heights of the top ends of the first convex portion 13 and the second convex portion 14 with respect to the upper surface of the bottom plate 11 can be freely set according to specific conditions, and the position of the wafer can be automatically realized as long as the wafer is not damaged. It is adjusted to the inside of the wafer carrying area 15.
  • the first convex portion 13 and the bottom plate 11 are integrally formed, and the second convex portion 14 and the bottom plate 11 are integrally formed.
  • first convex portion 13 and the second convex portion 14 may also be separately provided structures and mounted on the bottom plate 11 by an embedded connection.
  • first convex portion 13 can also be embedded in the bottom plate 11
  • second convex portion 14 can also be embedded in the bottom plate 11.
  • the robot further includes a supporting unit, and the supporting unit includes a first supporting platform 12 and a second supporting platform 16 disposed on the upper surface of the bottom plate 11 for supporting the wafer; wherein the first supporting platform 12 is close to the first adjustment Unit, the second support platform 16 is adjacent to the second adjustment unit, as shown in
  • the first support platform 12 and the second support platform 16 may be disposed at edge positions of the wafer carrying area 15 adjacent to the first adjusting unit and the second adjusting unit, respectively. Moreover, the first support platform
  • first support platform 12 and the upper surface of the second support platform 16 are in the same plane, so that the first support platform 12 and the second support platform 16 can support the wafer more stably.
  • the supporting unit may further include: a supporting boss 17 disposed on the upper surface of the bottom plate 11 and located at a center of the wafer carrying area 15 for supporting the wafer.
  • Branch The number of the support bosses 17 can be set as needed. In the present embodiment, the number of the support bosses 17 is four. In practical applications, the number of the support bosses 17 can be increased or decreased according to actual conditions.
  • the upper surfaces of the first support platform 12, the second support platform 16, and the support boss 17 are in the same plane, so that the first support platform 12, the second support platform 16, and the support boss 17 can support the wafer 15 more stably.
  • the support unit and the bottom plate 11 are integrally formed.
  • the robot provided in the first embodiment of the present invention adjusts the position of the wafer placed on the bottom plate by using the first convex portion and the second convex portion, so that the wafer is located in the wafer carrying region, but the invention is not limited.
  • the first adjustment unit and the second adjustment unit of any other configuration may be employed as long as it can automatically adjust the position of the wafer to the wafer carrying area.
  • a second embodiment of the present invention provides a semiconductor device including: the robot in the first embodiment.
  • the robot in the first embodiment.

Abstract

提供一种机械手和半导体设备。该机械手包括底板(11)、第一调整单元和第二调整单元,其中,在底板(11)上表面形成有晶片承载区(15),晶片承载区(15)的形状和尺寸与所要承载的晶片相对应;第一调整单元和第二调成单元彼此相对地设置在底板(11)上表面,且分别位于晶片承载区(15)的两侧边缘外侧;第一调整单元和第二调成单元用于调整置于底板(11)上的晶片的位置,以使晶片位于晶片承载区(15)。该机械手不仅可以避免晶片从机械手上脱落,而且还可以提高工艺效率、降低设备的使用成本。

Description

机械手和半导体设备
技术领域
本发明涉及微电子技术领域, 特别涉及一种机械手和半导体设备。 背景技术
随着半导体设备自动化程度的提高以及诸如硅晶片、键合晶片等的晶片 多样化程度的加大,对半导体设备传输晶片所用的机械手的要求也愈来愈 高,传统的只针对一种晶片的机械手在传输其他种类的晶片过程中的稳定性 和重复定位精度越来越无法满足要求,而机械手在传输过程中的稳定性和重 复定位精度的好坏直接或者间接地影响着元件的加工质量。机械手的合理性 直接影响到整个设备的精度、 稳定性和安全性。 另外, 现有的机械手主要是 利用软件控制系统来调整晶片在机械手上的位置,但是软件控制系统对不同 种类的晶片存在很大的局限性, 因此难以达到重复定位的要求。
图 1为现有技术中机械手的结构示意图,图 2为图 1中机械手的工作示 意图, 如图 1和图 2所示, 该机械手包括: 底板 1和设置于底板 1上表面上 的三个橡胶垫 2, 晶片 3放置于橡胶垫 2上, 橡胶垫 2用于增加晶片 3和机 械手之间的摩擦力。 如图 2所示, 机械手的具体工作过程为: 机械手通过伸 缩、升 在传输模块 ( Transfer Module,以下筒称: TM )4与工艺模块 ( Process Module, 筒称: PM ) 5之间传输晶片 3。 在此过程中, 传输模块 4和工艺模 块 5均是真空状态。 而且, 传输模块 4和工艺模块 5之间设置有两个传感器 ( Sensor ) 6,用于在机械手将晶片 3从工艺模块 5传送至传输模块 4的过程 中检测晶片 3在机械手上的位置; 而在机械手将晶片 3从传输模块 4传送至 工艺模块 5的过程中, 传感器 6则不工作。机械手将晶片 3传送至工艺模块 5后, 通过自身升降将晶片 3放置于工艺模块 5中的基座 ( Pedestal)7上, 此 时可定义置于基座 7上的晶片 3的位置为传片位、该过程为放片过程。 然后 机械手缩回到传输模块 4中, 晶片 3在工艺模块 5中需要进行一系列工艺, 待工艺结束后,晶片 3再回到传片位。此时机械手再次伸入到工艺模块 5中, 以取出晶片 3。
在实际工艺过程中, 晶片 3在工艺模块 5中经过一系列工艺过程后,其 在基座 7上的位置可能会发生偏移, 因此, 当机械手到达传片位取片时, 晶 片 3在机械手上的位置将不同于送片时晶片 3在机械手上的位置。在机械手 将晶片 3传回到传输模块 4之前,如果晶片 3在机械手上的位置得不到校正, 则在机械手继续将晶片 3传到其他模块中时可能会出现晶片 3与其他零部件 发生碰撞或从机械手上脱落的现象, 这将导致晶片 3的破裂。 为此, 可以借 助传感器 6在机械手将晶片 3从工艺模块 5中取出时,检测晶片 3在机械手 上的位置, 并将信号反馈到控制单元; 控制单元根据该反馈信号判断此时晶 片 3在机械手上的位置是否不同于送片时其在机械手上的位置, 若是, 则控 制单元通过调整机械手的位置来将晶片 3的位置调节至初始位置(即, 预设 的晶片置于在传输模块 4中的机械手上的位置), 从而消除了晶片 3的位置 偏差。
尽管图 1和图 2所示的机械手在现有工艺中广为应用,但是,其不可避 免地存在如下技术问题:
其一, 由于只能通过改变机械手的位置来将晶片调节至初始位置,也就 是说, 在调整的过程中晶片和机械手是相对静止的, 且机械手相对于其初始 位置发生了改变, 这使得在将下一个晶片自传输模块到工艺模块时, 需要对 机械手的位置进行复位, 且在传输每一个晶片的过程中, 均需对机械手进行 一次复位, 从而使得传片时间较长、 工艺效率降低, 并且增加了机械手的磨 损度。
其二 , 对于翘曲大、 材质软的键合晶片来说, 其在工艺过程中更容易 发生位置的偏移, 并且位置的偏移量会更大。 而且, 由于键合晶片的翘曲也 比较大, 且翘曲又没有任何规律可言, 这使得键合晶片在机械手上的位置也 可能会随着机械手加速或减速运动而发生变动;
其三,由于晶片和机械手之间只是通过橡胶垫来防止晶片与机械手之间 产生相对移动, 而对晶片没有任何的限位, 这使得在传片过程中, 机械手作 加速或减速运动或者晶片与某零部件发生擦碰等情况都可能导致晶片从机 械手上脱落或者在机械手上的位置发生变动;
其四, 传感器造价相对较高, 如果设备中有多个工艺模块存在, 则需要 使用更多的传感器, 这样导致整个设备造价成本较高。 发明内容
本发明提供一种机械手和半导体设备, 用于实现晶片自身位置的调整, 而无需改变机械手的位置, 从而不仅可以避免晶片从机械手上脱落, 而且还 可以提高工艺效率、 低设备的使用成本。
为实现上述目的, 本发明提供了一种机械手, 包括底板、 第一调整单元 和第二调整单元, 其中, 在所述底板上表面形成有晶片承载区, 所述晶片承 载区的形状和尺寸与所要承载的晶片相对应;所述第一调整单元和第二调整 单元彼此相对地设置在所述底板上表面,且分别位于所述晶片承载区的两侧 边缘外侧;所述第一调整单元和所述第二调整单元用于调整置于所述底板上 的晶片的位置, 以使所述晶片位于所述晶片承载区。
其中, 所述第一调整单元包括相对于所述底板上表面凸出的第一凸部, 所述第二调整单元包括相对于所述底板上表面凸出的第二凸部;并且所述第 一凸部和第二凸部各自包括一校准面,所述校准面朝向所述晶片承载区的垂 直于所述底板上表面的中心线设置,且在所述底板上表面上的投影轮廓与所 述晶片承载区的轮廓相匹配。
其中,所述校准面相对于所述晶片承载区的垂直于所述底板上表面的中 心线倾斜, 且所述校准面的顶端位于所述校准面的底端的外侧。
优选的,所述校准面相对于所述晶片承载区的垂直于所述底板上表面的 中心线的倾斜角度大于或者等于 70° 且小于 90° 。
优选的, 所述校准面的表面粗糙度小于 1.6。
优选的,所述第一凸部和所述底板一体成型,所述第二凸部和所述底板 一体成型。
优选的, 所述第一凸部嵌入所述底板, 所述第二凸部嵌入所述底板。 其中,所述机械手还包括支撑单元,所述支撑单元包括设置在所述底板 上表面上的第一支撑平台和第二支撑平台, 用于支撑晶片, 其中, 所述第一 支撑平台靠近所述第一调整单元, 所述第二支撑平台靠近所述第二调整单 元。
优选的,所述支撑单元还包括支撑凸台,所述支撑凸台设置在所述底板 上表面上, 且位于靠近所述晶片承载区的中心的位置处。
为实现上述目的,本发明还提供了一种半导体设备,包括:上述机械手。 本发明具有以下有益效果:
本发明提供的机械手,其通过在底板上表面,且分别位于晶片承载区的 边缘两侧外侧设置有彼此相对的第一调整单元和第二调整单元,可以在机械 手取片时自动调整置于底板上的晶片的位置,以使晶片位于晶片承载区,即, 仅需改变晶片相对于机械手的位置, 而无需改变机械手的位置, 从而机械手 在将下一个晶片自传输模块到工艺模块之前, 无需仅需复位, 进而不仅可以 缩短传片时间、 提高工艺效率, 而且还可以降低机械手的磨损度。 而且, 由 于第一调整单元和第二调整单元可以将晶片限制在晶片承载区内,这可以在 机械手作加速或减速运动或者晶片与某零部件发生擦碰时,避免晶片在机械 手上的位置发生变动以及晶片从机械手上脱落。 另夕卜, 本发明提供的机械手 无需使用传感器,而仅依靠第一调整单元和第二调整单元自动调整晶片的位 置, 从而可以降低设备的制造成本。
本发明提供的半导体设备,其通过采用本发明提供的机械手, 不仅可以 提高工艺效率, 而且还可以降低设备的制造成本。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述 中将变得明显和容易理解, 其中:
图 1为现有技术中机械手的结构示意图;
图 2为图 1中机械手的工作示意图;
图 3为本发明实施例一提供的一种机械手的结构示意图;
图 4为图 3中 A-A向剖视图;
图 5为图 4中 I区域的放大图。
其中:
1、 11 : 底板
2: 橡胶垫
3: 晶片
4: 传输模块 ( Transfer Module, 筒称: TM )
5: 工艺模块 ( Process Module, 筒称: PM )
6: 传感器(Sensor )
7: 基座(Pedestal)
12、 16: 支撑平台
13、 14: 凸部
15: 晶片承载区
17: 支撑凸台
131、 141 : 校准面
: 夹角
具体实施方式 为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对 本发明实施例提供的机械手和半导体设备进行详细描述。
本发明实施例提供的机械手包括底板、 第一调整单元和第二调整单元。 其中, 在底板上表面形成有晶片承载区, 晶片承载区的形状和尺寸与所要承 载的诸如硅片、键合晶片等的晶片相对应, 该晶片承载区是指预设的置于机 械手上的晶片在未发生偏移时所在的标准位置。第一调整单元和第二调整单 元彼此相对地设置在底板上表面, 且分别位于晶片承载区的两侧边缘外侧, 第一调整单元和第二调整单元用于调整置于底板上的晶片的位置,以使晶片 位于晶片承载区。
通过在底板上表面,且分别位于晶片承载区的边缘两侧外侧设置有彼此 相对的第一调整单元和第二调整单元,可以在机械手取片时自动调整置于底 板上的晶片的位置, 以使晶片位于晶片承载区, 即, 仅需改变晶片相对于机 械手的位置, 而无需改变机械手的位置, 从而机械手在将下一个晶片自传输 模块到工艺模块之前, 无需仅需复位, 进而不仅可以缩短传片时间、 提高工 艺效率, 而且还可以降低机械手的磨损度。 而且, 由于第一调整单元和第二 调整单元可以将晶片限制在晶片承载区内,这可以在机械手作加速或减速运 动或者晶片与某零部件发生擦碰时,避免晶片在机械手上的位置发生变动以 及晶片从机械手上脱落。 另夕卜, 本发明提供的机械手无需使用传感器, 而仅 依靠第一调整单元和第二调整单元自动调整晶片的位置,从而可以降低设备 的制造成本。
下面对本发明提供的机械手的一个具体实施例进行详细描述。 具体地, 图 3为本发明实施例一提供的机械手的结构示意图, 图 4为图 3中 A-A向 剖视图, 图 5为图 4中 I区域的放大图, 如图 3、 图 4和图 5所示, 在本实 施例中, 第一调整单元包括相对于底板 11上表面凸出的第一凸部 13, 第二 调整单元包括相对于底板 11上表面凸出的第二凸部 14, 如图 3所示, 第一 凸部 13设置在底板 11上表面上, 且位于晶片承载区 15的左侧边缘外侧; 第二凸部 14设置在底板 11上表面上, 且位于晶片承载区 15的右侧边缘外 侧, 并与第一凸部 13相对的位置处。
而且, 第一凸部 13和第二凸部 14各自包括一校准面 131、 141 , 校准 面 131、 141朝向晶片承载区 15的垂直于底板 11上表面的中心线设置, 即, 校准面 131与校准面 141彼此相对设置, 并且, 校准面 131、 141在底板 11 上表面上的投影轮廓与晶片承载区 15的轮廓相匹配, 如图 3所示。 并且, 如图 4所示, 校准面 131、 141相对于晶片承载区 15的垂直于底板 11上表 面的中心线倾斜, 且校准面 131、 141的顶端(图 4中校准面 131、 141的远 离底板 11上表面的一端)位于底端 (图 4中校准面 131、 141的与底板 11 上表面相交的一端)的外侧, 即: 校准面 131的顶端位于底端的左侧; 校准 面 141的顶端位于底端的右侧, 换言之, 校准面 131、 141的顶端自底板 11 上表面分别朝向图 4的左上和右上的方向延伸。 校准面 131、 141可以为倾 斜的平面或者曲面, 并且优选的, 校准面 131、 141相对于晶片承载区 15的 垂直于底板 11上表面的中心线的倾斜角度大于或者等于 70° 且小于 90° , 如图 5所示, 该倾斜角度等于校准面 131、 141与底板 11上表面的背离校准 面 131、 141的区域之间的夹角 ct。
在实际应用中,若置于工艺模块内的晶片的位置在完成工艺之后未发生 偏移,则当机械手从工艺模块中接到晶片(此时晶片被置于机械手上)之后, 晶片在机械手上的位置应该是在底板 11上的晶片承载区 15内(如图 5中所 示的实线的晶片所在的位置 1处); 若置于工艺模块内的晶片的位置在完成 工艺之后发生偏移, 则当机械手从工艺模块中接到晶片之后, 晶片在机械手 上的位置会相对于晶片承载区 15发生偏移 (如图 5中所示的虚线的晶片所 在的位置 2处), 在这种情况下, 由于晶片的一部分边缘落在第二凸部 14 的校准面 141上, 由于该校准面 141具有特定的倾斜角度, 因此晶片会在自 身重力的作用下, 沿着校准面 141滑落至晶片承载区 15内, 此时晶片还会 受到位于校准面 141对侧的校准面 131的阻挡而停止继续滑动,从而被第一 凸部 13和第二凸部 14共同限制在晶片承载区 15内, 即完成了对晶片位置 的自动调整。 同理, 若晶片一部分边缘落在校准面 131上, 或者同时落在校 准面 131、 141上时, 晶片均会在自身重力的作用下, 滑落至晶片承载区 15 内。
在实际应用中, 还可以通过设定校准面 131、 141的表面粗糙度来调节 晶片与校准面 131、 141之间的摩擦程度, 以及向晶片承载区 15内滑落的速 度, 以避免晶片被校准面 131、 141划伤或因滑落速度过快而与底板 11或校 准面 131、 141发生冲撞。 优选的, 校准面 131、 141的表面粗糙度 Ra小于 或等于 1.6。
另外, 第一凸部 13和第二凸部 14的顶端相对于底板 11上表面的高度 可以根据具体情况自由设定, 只要在保证晶片不会被损坏的前提下, 能够实 现对晶片的位置自动调整至晶片承载区 15内即可。
本实施例中, 优选地, 第一凸部 13和底板 11一体成型, 第二凸部 14 和底板 11一体成型。
在实际应用中,可选地, 第一凸部 13和第二凸部 14还可以为单独设置 的结构, 并通过嵌入式连接方式安装于底板 11上。 具体地, 第一凸部 13还 可嵌入底板 11 , 第二凸部 14还可嵌入底板 11。
本实施例中, 机械手还包括支撑单元, 支撑单元包括设置在底板 11上 表面上的第一支撑平台 12和第二支撑平台 16, 用于支撑晶片; 其中, 第一 支撑平台 12靠近第一调整单元, 第二支撑平台 16靠近第二调整单元, 如图
3所示, 第一支撑平台 12和第二支撑平台 16可以设置在晶片承载区 15的 分别靠近第一调整单元和第二调整单元的边缘位置处。 而且, 第一支撑平台
12和第二支撑平台 16的上表面处于同一平面, 以便于第一支撑平台 12和 第二支撑平台 16能够更加稳定地支撑晶片。
进一步地, 支撑单元还可以包括: 支撑凸台 17, 支撑凸台 17设置在底 板 11上表面上, 且位于晶片承载区 15的中心的位置处, 用于支撑晶片。 支 撑凸台 17的数量可以根据需要进行设置, 本实施例中, 支撑凸台 17的数量 为四个, 在实际应用中可才艮据实际情况增加或者减小支撑凸台 17的数量。 第一支撑平台 12、 第二支撑平台 16和支撑凸台 17的上表面处于同一平面, 以便于第一支撑平台 12、 第二支撑平台 16和支撑凸台 17能够更加稳定的 支撑晶片 15。
优选地, 上述支撑单元和底板 11一体成型。
需要说明的是,本发明实施例一提供的机械手是借助第一凸部和第二凸 部来实现调整置于底板上的晶片的位置, 以使晶片位于晶片承载区, 但是本 发明并不局限于此, 在实际应用中, 还可以采用其他任意结构的第一调整单 元和第二调整单元, 只要其能够自动将晶片的位置调整至晶片承载区内即 可。
本发明实施例二提供了一种半导体设备,该半导体设备包括: 上述实施 例一中的机械手。对机械手的具体描述可参见上述实施例一,此处不再赘述。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示 例性实施方式, 然而本发明并不局限于此。对于本领域内的普通技术人员而 言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和改进, 这 些变型和改进也视为本发明的保护范围。

Claims

权 利 要 求 书
1、 一种机械手, 其特征在于, 包括底板、 第一调整单元和第二调整单 元, 其中, 在所述底板上表面形成有晶片承载区, 所述晶片承载区的形状和 尺寸与所要承载的晶片相对应;所述第一调整单元和第二调整单元彼此相对 地设置在所述底板上表面, 且分别位于所述晶片承载区的两侧边缘外侧; 所述第一调整单元和所述第二调整单元用于调整置于所述底板上的晶 片的位置, 以使所述晶片位于所述晶片承载区。
2、 根据权利要求 1所述的机械手, 其特征在于, 所述第一调整单元包 括相对于所述底板上表面凸出的第一凸部,所述第二调整单元包括相对于所 述底板上表面凸出的第二凸部; 并且
所述第一凸部和第二凸部各自包括一校准面,所述校准面朝向所述晶片 承载区的垂直于所述底板上表面的中心线设置,且在所述底板上表面上的投 影轮廓与所述晶片承载区的轮廓相匹配。
3、 根据权利要求 2所述的机械手, 其特征在于, 所述校准面相对于所 述晶片承载区的垂直于所述底板上表面的中心线倾斜,且所述校准面的顶端 位于所述校准面的底端的外侧。
4、 根据权利要求 3所述的机械手, 其特征在于, 所述校准面相对于所 述晶片承载区的垂直于所述底板上表面的中心线的倾斜角度大于或者等于 70° 且小于 90° 。
5、 根据权利要求 3所述的机械手, 其特征在于, 所述校准面的表面粗 糙度小于或等于 1.6。
6、 根据权利要求 2所述的机械手, 其特征在于, 所述第一凸部和所述 底板一体成型, 所述第二凸部和所述底板一体成型。
7、 根据权利要求 2所述的机械手, 其特征在于, 所述第一凸部嵌入所 述底板, 所述第二凸部嵌入所述底板。
8、 根据权利要求 1所述的机械手, 其特征在于, 所述机械手还包括支 撑单元,所述支撑单元包括设置在所述底板上表面上的第一支撑平台和第二 支撑平台,用于支撑晶片,其中,所述第一支撑平台靠近所述第一调整单元, 所述第二支撑平台靠近所述第二调整单元。
9、 根据权利要求 8所述的机械手, 其特征在于, 所述支撑单元还包括 支撑凸台, 所述支撑凸台设置在所述底板上表面上, 且位于靠近所述晶片承 载区的中心的位置处。
10、 一种半导体设备, 其特征在于, 包括: 权利要求 1至 9任一所述的 机械手。
PCT/CN2013/087937 2013-01-21 2013-11-27 机械手和半导体设备 WO2014110944A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157022443A KR20150106969A (ko) 2013-01-21 2013-11-27 매니퓰레이터 및 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310022780.5 2013-01-21
CN201310022780.5A CN103943545A (zh) 2013-01-21 2013-01-21 机械手和半导体设备

Publications (1)

Publication Number Publication Date
WO2014110944A1 true WO2014110944A1 (zh) 2014-07-24

Family

ID=51191151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087937 WO2014110944A1 (zh) 2013-01-21 2013-11-27 机械手和半导体设备

Country Status (4)

Country Link
KR (1) KR20150106969A (zh)
CN (1) CN103943545A (zh)
TW (1) TW201429648A (zh)
WO (1) WO2014110944A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158040B2 (en) * 2018-06-29 2021-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method for identifying robot arm responsible for wafer scratch
CN111376284A (zh) * 2018-12-29 2020-07-07 江苏鲁汶仪器有限公司 机械手及其机械手指
CN111660309A (zh) * 2020-06-05 2020-09-15 中国科学院微电子研究所 一种用于转移晶圆的机器臂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223252A (ja) * 2000-02-07 2001-08-17 Assist Japan Kk ロボットの吸着レスハンド
CN202307835U (zh) * 2011-11-14 2012-07-04 沈阳拓荆科技有限公司 真空机械手晶圆托盘
CN202678300U (zh) * 2011-06-28 2013-01-16 清华大学 一种利用弹簧夹子的晶圆夹持装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8141926B2 (en) * 2008-02-06 2012-03-27 Ulvac, Inc. Robot hand for substrate transfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223252A (ja) * 2000-02-07 2001-08-17 Assist Japan Kk ロボットの吸着レスハンド
CN202678300U (zh) * 2011-06-28 2013-01-16 清华大学 一种利用弹簧夹子的晶圆夹持装置
CN202307835U (zh) * 2011-11-14 2012-07-04 沈阳拓荆科技有限公司 真空机械手晶圆托盘

Also Published As

Publication number Publication date
KR20150106969A (ko) 2015-09-22
CN103943545A (zh) 2014-07-23
TW201429648A (zh) 2014-08-01

Similar Documents

Publication Publication Date Title
TWI636858B (zh) Substrate transfer robot and substrate processing system
KR101490558B1 (ko) 반송 로봇
TWI617403B (zh) Substrate transfer robot and substrate processing system
WO2018090574A1 (zh) 传片装置、工艺腔室、机械手、半导体装置和传片方法
TW202143381A (zh) 用於提供末端執行器的設備、系統及方法
WO2007097147A1 (ja) 搬送装置及び搬送方法
WO2023125158A1 (zh) 半导体工艺设备及其晶圆传输系统
US20060157998A1 (en) Contamination-free edge gripping mechanism and method for loading/unloading and transferring flat objects
US20180114714A1 (en) Substrate processing apparatus and method of manufacture using the same
JP6368376B2 (ja) ウエハ搬送方法及び装置
JPWO2007088927A1 (ja) 基板交換装置及び基板処理装置並びに基板検査装置
WO2014110944A1 (zh) 机械手和半导体设备
JP2022176247A (ja) ウエハ位置決め装置
KR102493387B1 (ko) 얼라이너 장치 및 방법들
KR20120033226A (ko) 기판 반송 장치, 기판 반송 방법 및 그 기판 반송 방법을 실행시키기 위한 프로그램을 기록한 기록 매체
WO2016074173A1 (zh) 基板校准方法与装置
KR20190020461A (ko) 기판 반송 장치
JP2003338531A (ja) 半導体ウエハの搬送装置および熱処理装置
KR20160002345A (ko) 기판 이송 아암 및 이를 포함하는 기판 이송 장치
JPH02174244A (ja) ウェハキャリア用治具枠およびウェハ移換装置
JP6422317B2 (ja) 小型製造装置
KR102160231B1 (ko) 다중 기판 이송로봇
CN113314448B (zh) 半导体传输设备及其控制方法
CN210378984U (zh) 温控输送装置
WO2022097754A1 (ja) 産業用ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157022443

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13871674

Country of ref document: EP

Kind code of ref document: A1