WO2014110839A1 - 液晶显示器 - Google Patents

液晶显示器 Download PDF

Info

Publication number
WO2014110839A1
WO2014110839A1 PCT/CN2013/070843 CN2013070843W WO2014110839A1 WO 2014110839 A1 WO2014110839 A1 WO 2014110839A1 CN 2013070843 W CN2013070843 W CN 2013070843W WO 2014110839 A1 WO2014110839 A1 WO 2014110839A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
triacetate
optical axis
liquid crystal
rth1
Prior art date
Application number
PCT/CN2013/070843
Other languages
English (en)
French (fr)
Inventor
康志聪
海博
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/813,456 priority Critical patent/US9645445B2/en
Publication of WO2014110839A1 publication Critical patent/WO2014110839A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to the field of liquid crystal displays, and more particularly to a liquid crystal display having a single layer dual optical axis compensation architecture.
  • the viewing angle of the TFT-LCD is increased, and the contrast of the screen is continuously lowered, resulting in a decrease in the sharpness of the picture.
  • the compensation principle of the compensation film is generally to correct the phase difference generated by the liquid crystal at different viewing angles, so that the birefringence property of the liquid crystal molecules is compensated for symmetry.
  • FIG. 1 is a liquid crystal display using a single-layer biaxial compensation structure in the prior art.
  • the liquid crystal display includes a first triacetate (Triacetyl).
  • TAC layer 100 Cellulose, hereinafter referred to as TAC layer 100, a first polyvinyl alcohol (Poly Vinyl) Alcohol, hereinafter referred to as PVA layer 102, a first biaxial layer 104, a first pressure sensitive adhesive (Pressure Sensitive) Adhesives, hereinafter referred to as PSA) layer 106, a liquid crystal layer 120, a second PSA layer 140, a second TAC layer 142, a second PVA layer 144, and a third TAC layer 146.
  • PSA Pressure Sensitive Adhesives
  • the liquid crystal display uses a double optical axis layer (ie, the first dual optical axis layer 104) for compensation, so it is called a single layer dual optical axis compensation architecture.
  • the serious viewing angle of the dark state is very close to the horizontal viewing angle, that is, the light leakage is concentrated at 20 to 40 degrees, 140 to 160 degrees, and 200 degrees to 220 degrees and 310 degrees to 330 degrees, and the area close to the horizontal viewing angle is easier to be seen by the viewer, so the contrast of the area close to the horizontal viewing angle has the greatest influence on the viewing effect, and the area close to the vertical viewing angle is not easy to be Seeing that the impact on the viewing effect is small.
  • the above phenomenon becomes more conspicuous, so it is necessary to limit the dark state light leakage region to a region near the vertical viewing angle instead of the existing region close to the horizontal viewing angle.
  • FIG. 2 is a liquid crystal display using a double-layer dual optical axis compensation architecture in the prior art.
  • the liquid crystal display includes a first TAC layer 200, a first PVA layer 202, and a first dual optical axis layer 204.
  • the liquid crystal display uses two layers of dual optical axis (ie, the first 204 dual optical axis layer and the second dual optical axis layer 242) for compensation, so it is called a double layer dual optical axis compensation architecture.
  • the single-layer dual-optical-axis compensation architecture of FIG. 1 when used in consideration of cost, it is required to solve the problem that the existing single-layer dual-optical-axis compensation architecture has a serious dark light leakage in a region close to the horizontal viewing angle.
  • the liquid crystal display of the present invention includes a first polarizing plate, a liquid crystal layer and a second polarizing plate.
  • the liquid crystal layer is disposed between the first polarizing plate and the second polarizing plate.
  • a polarizing plate comprising a first triacetate layer, a first polyvinyl alcohol layer, a first double optical axis layer and a first substrate, wherein the first polyvinyl alcohol layer is disposed on the first three
  • the first double optical axis layer is disposed on the first polyvinyl alcohol layer, the first triacetate layer, the first polyvinyl alcohol layer and the first double
  • the optical axis layer is fixed on the first substrate
  • the second polarizing plate comprises a second substrate, a second triacetate layer, a second polyvinyl alcohol layer and a third triacetate.
  • the second polyvinyl alcohol layer is disposed on the second triacetate layer
  • the third triacetate layer is disposed on the second polyvinyl alcohol layer, the third triacetate
  • the cellulose layer, the second polyvinyl alcohol layer and the second triacetate layer are fixed on the second substrate
  • a compensation value Rth1 of the first double optical axis layer and the second triacetate fiber The range of the compensation value Rth2 of the prime layer [Y1, Y2] satisfies the following equation:
  • the compensation value Rth1 of the first dual optical axis layer is a plate phase retardation of the first dual optical axis layer in the thickness direction
  • the compensation value Rth2 of the second triacetyl cellulose layer is the second tertiary acetic acid fiber
  • the phase of the layer in the thickness direction is delayed
  • Y1 is the minimum value of the compensation value Rth2 of the second triacetate layer
  • Y2 is the maximum value of the compensation value Rth2 of the second cellulose triacetate layer.
  • the compensation value Rth1 of the first dual optical axis is selected as a first specific value
  • the minimum value and the maximum value of the compensation value Rth2 of the second triacetate layer are obtained from the above two equations, and the minimum value is
  • the compensation value Rth2 of the second triacetate layer is selected as a second specific value between the maximum values, and the first specific value satisfies the following equation:
  • Rth1 [(Nx1-Ny1)/2-Nz1] ⁇ d1
  • the two directions in which the first two optical axis planes are orthogonal to each other are respectively set as an X axis and a Y axis, and a thickness direction perpendicular to the first double optical axis layer is set to a Z axis, and Nx1 is the first double light.
  • a refractive index of the axial layer in the X direction Ny1 is a refractive index of the first dual optical axis layer in the Y direction
  • Nz1 is a refractive index of the first dual optical axis layer in the Z direction
  • d1 is the first double The thickness of the optical axis layer
  • Rth2 [(Nx2-Ny2)/2-Nz2] ⁇ d2
  • the two directions orthogonal to the plane of the second cellulose triacetate layer are respectively set as the X axis and the Y axis, and the thickness direction of the second cellulose triacetate layer is set to the Z axis, and Nx2 is the second direction.
  • the refractive index of the triacetate layer in the X direction, Ny2 is the refractive index of the second triacetate layer in the Y direction, and Nz2 is the refractive index of the second triacetate layer in the Z direction, d2 is The thickness of the second triacetate layer.
  • the compensation value Rth1 of the first dual optical axis is selected as the first specific value, corresponding to a Ro
  • the Ro satisfies the following equation:
  • the Ro is a planar phase delay of the first dual optical axis.
  • the compensation value Rth1 of the first dual optical axis layer preferably ranges from 180 nm to 280 nm.
  • the preferred range of the optical path length difference of the liquid crystal layer is between 342.8 nm and 361.4 nm.
  • the present invention further provides a liquid crystal display comprising a first polarizing plate, a liquid crystal layer and a second polarizing plate, wherein the liquid crystal layer is disposed on the first polarizing plate and the second polarizing plate.
  • the compensation value Rth1 of the first dual optical axis layer is a plate phase retardation of the first dual optical axis layer in the thickness direction
  • the compensation value Rth2 of the second triacetyl cellulose layer is the second tertiary acetic acid fiber
  • the phase of the layer in the thickness direction is delayed
  • Y1 is the minimum value of the compensation value Rth2 of the second triacetate layer
  • Y2 is the maximum value of the compensation value Rth2 of the second cellulose triacetate layer.
  • the compensation value Rth1 of the first dual optical axis is selected as a first specific value
  • the minimum value and the maximum value of the compensation value Rth2 of the second triacetate layer are obtained from the above two equations, and the minimum value is
  • the compensation value Rth2 of the second triacetate layer is selected as a second specific value between the maximum values, and the first specific value satisfies the following equation:
  • Rth1 [(Nx1-Ny1)/2-Nz1] ⁇ d1
  • the two directions in which the first two optical axis planes are orthogonal to each other are respectively set as an X axis and a Y axis, and a thickness direction perpendicular to the first double optical axis layer is set to a Z axis, and Nx1 is the first double light.
  • a refractive index of the axial layer in the X direction Ny1 is a refractive index of the first dual optical axis layer in the Y direction
  • Nz1 is a refractive index of the first dual optical axis layer in the Z direction
  • d1 is the first double The thickness of the optical axis layer
  • Rth2 [(Nx2-Ny2)/2-Nz2] ⁇ d2
  • the two directions orthogonal to the plane of the second cellulose triacetate layer are respectively set as the X axis and the Y axis, and the thickness direction of the second cellulose triacetate layer is set to the Z axis, and Nx2 is the second direction.
  • the refractive index of the triacetate layer in the X direction, Ny2 is the refractive index of the second triacetate layer in the Y direction, and Nz2 is the refractive index of the second triacetate layer in the Z direction, d2 is The thickness of the second triacetate layer.
  • the compensation value Rth1 of the first dual optical axis is selected as the first specific value, corresponding to a Ro
  • the Ro satisfies the following equation:
  • the Ro is a planar phase delay of the first dual optical axis.
  • the compensation value Rth1 of the first dual optical axis layer preferably ranges from 180 nm to 280 nm.
  • the preferred range of the optical path length difference of the liquid crystal layer is between 342.8 nm and 361.4 nm.
  • a liquid crystal display further includes a first polarizing plate, a liquid crystal layer and a second polarizing plate, wherein the liquid crystal layer is disposed on the first polarizing plate and the second polarizing plate.
  • the first polarizing plate comprises a first triacetate layer, a first polyvinyl alcohol layer, a first double optical axis layer and a first substrate, and the first polyvinyl alcohol layer is disposed On the first triacetate layer, the first dual optical axis layer is disposed on the first polyvinyl alcohol layer, the first triacetate layer, the first polyvinyl alcohol layer And the first dual optical axis layer is fixed on the first substrate, the second polarizing plate comprises a second substrate, a second triacetate layer, a second polyvinyl alcohol layer and a a third triacetate layer, the second polyvinyl alcohol layer is disposed on the second triacetate layer, and the third triacetate layer is disposed on the second polyvinyl alcohol layer
  • the third triacetate layer comprises
  • the compensation value Rth1 of the first dual optical axis layer is a plate phase retardation of the first dual optical axis layer in the thickness direction
  • the compensation value Rth2 of the second triacetyl cellulose layer is the second tertiary acetic acid fiber
  • the plate layer in the thickness direction is retarded in phase
  • Y1 is the minimum value of the compensation value Rth2 of the second triacetate layer
  • Y2 is the maximum value of the compensation value Rth2 of the second triacetate layer.
  • the compensation value Rth1 of the first dual optical axis layer preferably ranges from 180 nm to 280 nm.
  • the preferred range of the optical path length difference of the liquid crystal layer is between 342.8 nm and 361.4 nm.
  • the pretilt angle of the liquid crystal molecules of the liquid crystal layer is preferably in the range of 85 to 90 degrees.
  • the liquid crystal display of the present invention can solve the problem that the single-layer dual optical axis compensation architecture has a serious dark light leakage in a region close to a horizontal viewing angle.
  • 1 is a liquid crystal display using a single-layer dual optical axis compensation architecture in the prior art
  • FIG. 5 is a graph showing the relationship between the dark state light leakage amount and the compensation value of the first dual optical axis layer and the compensation value of the second TAC layer when the optical path length difference of the liquid crystal layer in FIG. 3 is 361.4 nm.
  • FIG. 3 is a liquid crystal display according to an embodiment of the present invention.
  • the liquid crystal display includes a first polarizing plate 30, a liquid crystal layer 320, and a second polarizing plate 34.
  • the liquid crystal layer 320 is disposed between the first polarizing plate 30 and the second polarizing plate 34.
  • the first polarizing plate 30 includes a first TAC layer 300, a first PVA layer 302, a first dual optical axis layer 304, and a first substrate 306.
  • the first PVA layer 302 is disposed on the first TAC layer 300.
  • the first dual optical axis layer 304 is disposed on the first PVA layer 302.
  • the first substrate 306 is a PSA layer, and the first TAC layer 300, the first PVA layer 302 and the first dual optical axis layer 304 are fixed on the first substrate 306.
  • the second polarizing plate 34 includes a second substrate 340, a second TAC layer 342, a second PVA layer 344, and a third TAC layer 346.
  • the second PVA layer 344 is disposed on the second TAC layer 342.
  • the third TAC layer 346 is disposed on the second PVA layer 344.
  • the second substrate 340 is a PSA layer, and the third TAC layer 346, the second PVA layer 344, and the second TAC layer 342 are fixed to the second substrate 340.
  • liquid crystal layer 320 is disposed between the first substrate 306 and the second substrate 340.
  • the liquid crystal display of the present invention uses a double optical axis layer (i.e., the first dual optical axis layer 304), so it is a single layer dual optical axis compensation architecture.
  • the compensation value of the first dual optical axis layer 304 and the compensation value of the second TAC layer 342 are adjusted. Solve the above problem.
  • the slow axis of the first TAC layer 300 is set to 0 degrees
  • the absorption axis of the first PVA layer 302 is set to 90 degrees
  • the slow axis of the first dual optical axis layer 304 is set to At 0 degrees
  • the slow axis of the second TAC layer 342 is set to 90 degrees
  • the absorption axis of the second PVA layer 344 is set to 0 degrees
  • the slow axis of the third TAC layer 346 is set to 90 degrees.
  • the above angle is the PHI angle.
  • FIG. 4 is the liquid crystal layer 320 of FIG. 3 having an optical path length difference ( ⁇ nd) of 342.8 nm (nanometer; In the case of nm), the relationship between the dark state light leakage amount and the compensation value of the first dual optical axis layer 304 and the compensation value of the second TAC layer 342,
  • FIG. 5 is the optical path length difference ( ⁇ nd) of the liquid crystal layer 320 in FIG. At 361.4 nm, the amount of dark state light leakage is related to the compensation value of the first dual optical axis layer 304 and the compensation value of the second TAC layer 342.
  • the invention has been tested to find that the liquid crystal molecules of the liquid crystal layer 320 are at different pretilt angles (pretilt Under the angle), the compensation value of the first dual optical axis layer 304 and the compensation value of the second TAC layer 342 have the same influence on the dark state light leakage, that is, different pretilt angles correspond to specific dark state light leakage values.
  • the range of compensation values is the same.
  • the compensation value of the first dual optical axis layer 304 includes a planar phase delay (planar) Retardation, hereinafter referred to as Ro) and plate phase retardation in the thickness direction (plate) Retardation, hereinafter referred to as Rth1), the compensation value of the second TAC layer 342 is Rth2.
  • Ro planar phase delay
  • plate plate phase retardation in the thickness direction
  • Rth1 plate phase retardation in the thickness direction
  • the present invention obtains a range of the compensation value Rth1 of the first dual optical axis layer 304 and the compensation value Rth2 of the second TAC layer 342 [Y1, Y2] must satisfy the following equations (1) and (2):
  • the compensation value Rth1 of the first dual optical axis layer 304 is selected, and the range of the compensation value Rth2 of the second TAC layer 342 [Y1 can be obtained by using the above equations (1) and (2).
  • Y2] Y1 is the minimum value of the compensation value Rth2 of the second TAC layer 342
  • Y2 is the maximum value of the compensation value Rth2 of the second TAC layer 342, and is obtained from FIG. 4 (or FIG.
  • the Ro value corresponding to the compensation value Rth1 of the optical axis layer 304 can greatly improve the problem of serious dark light leakage in the single-layer dual optical axis compensation architecture in a region close to the horizontal viewing angle, so that the dark light leakage region is concentrated near the vertical viewing angle and concentrated in In the smaller viewing angle range, the amount of light leakage is also significantly reduced.
  • the pretilt angle (pretilt) Angle) between [85 degrees, 90 degrees] and the optical path length difference ( ⁇ nd) of the liquid crystal layer 320 is [342.8 nm, Between 361.4 nm]
  • the preferred range of the compensation value Rth1 of the first dual optical axis layer 304 obtained by the present invention is [180 nm, Between 280 nm]
  • the compensation value Rth1 of the first dual optical axis 304 is selected to be a first specific value between 180 nm and 280 nm
  • the second equation can be obtained from the above equations (1) and (2).
  • the corresponding range of the compensation value Rth2 of the TAC layer 342 [Y1, Y2], from FIG. 4 (or FIG. 5), Ro corresponding to the compensation value Rth1 of the selected first double optical axis layer 304 can be obtained.
  • the compensation value Rth1 of the first dual optical axis layer 304 is selected to be 220 nm (ie, the first specific value is 220 nm), from FIG. 4 (or FIG. 5), it can be obtained that the compensation value Rth1 corresponding to the first dual optical axis 304 is 220 nm, and the Ro is 66 nm, and the second equation (1) and (2) can be obtained.
  • the selection of the above conditions can greatly improve the problem of serious dark light leakage in a single-layer dual-optical-axis compensation architecture in a region close to the horizontal viewing angle, and reduce the amount of light leakage to below 0.2 nit (analog value), so that the dark state leaks light.
  • the full-view contrast of the present invention is also superior to the full-view contrast of the prior art, especially the lowest full-view contrast value is about three times the lowest value of the full-view contrast of the prior art.
  • Rth1 [(Nx1-Ny1)/2-Nz1] ⁇ d1 (3)
  • the two directions in which the planes of the first dual optical axis 304 are orthogonal to each other are respectively set as the X axis and the Y axis, and the thickness direction of the first dual optical axis 304 is set to the Z axis, and Nx1 is the first dual optical axis 304.
  • the refractive index in the X direction, Ny1 is the refractive index of the first dual optical axis 304 in the Y direction
  • Nz1 is the refractive index of the first dual optical axis 304 in the Z direction
  • d1 is the thickness of the first dual optical axis 304.
  • Rth2 [(Nx2-Ny2)/2-Nz2] ⁇ d2 (4)
  • the two directions in which the planes of the second TAC layer 342 are orthogonal to each other are respectively set to the X axis and the Y axis, and the thickness direction of the second TAC layer 342 is set to the Z axis
  • Nx2 is the refractive index of the second TAC layer 342 in the X direction
  • Ny2 is the refractive index of the second TAC layer 342 in the Y direction
  • Nz2 is the refractive index of the second TAC layer 342 in the Z direction
  • d2 is the thickness of the second TAC layer 342.
  • the following three types may be adopted according to the above equations (3) to (5).
  • the method is to achieve Ro of the selected first dual optical axis 304, the compensation value Rth1 of the first dual optical axis 304 and the compensation value Rth2 of the second TAC layer 342: (1) the refractive index Nx1, Nx2 in the fixed X direction.
  • the refractive indices Ny1, Nz2 in the Y direction, the refractive indices Nz1, Nz2 in the Z direction, and the thicknesses d1, d2 are changed to achieve the desired Ro of the first dual optical axis 304, and the compensation value Rth1 of the first dual optical axis 304.
  • the compensation value Rth2 with the second TAC layer 342 (2) the fixed thicknesses d1, d2, the refractive indices Nx1, Nx2 in the X direction, and the refractive indices Ny1, Ny2 in the Y direction, Nz1, Nz2 in the Z direction, to achieve the desired Ro of the first dual optical axis 304, the compensation value Rth1 of the first dual optical axis 304 and the compensation value Rth2 of the second TAC layer 342; (3) simultaneously changing the refractive indices Nx1, Nx2, Y in the X direction
  • the refractive indices Ny1, Nz2, and the refractive indices Nz1, Nz2 in the Z direction and the thicknesses d1, d2 reach the desired Ro of the first dual optical axis 304, the compensation value Rth1 of the first dual optical axis 304, and the second TAC layer.
  • the above compensation value and the optical path length difference ( ⁇ nd) of the liquid crystal layer 32 are values corresponding to a wavelength of 550 nm.
  • the present invention proposes a compensation value range of the compensation film and can be applied to various compensation films.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示器,包括一第一偏光板(30)、一液晶层(320)以及一第二偏光板(34),液晶层设置于第一偏光板与第二偏光板之间,通过调整第一偏光板的一双光轴层(304)的补偿值与第二偏光板的一TAC层(342)的补偿值来解决单层双光轴补偿结构的液晶显示器在接近水平视角的区域暗态漏光严重的问题。

Description

液晶显示器 技术领域
本发明涉及液晶显示器领域,特别是涉及一种单层双光轴补偿架构的液晶显示器。
背景技术
随着薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display; TFT-LCD)的观察角度增大,画面的对比度不断降低,导致画面的清晰度下降,这是因为液晶层中液晶分子的双折射率随观察角度变化发生改变的结果,采用宽视角补偿膜进行补偿则可以有效降低暗态画面的漏光,进而能在一定视角内能大幅度提高画面的对比度。补偿膜的补偿原理一般是将液晶在不同视角产生的相位差进行修正,让液晶分子的双折射性质得到对称性的补偿。
针对不同的液晶显示模式,使用的补偿膜也不同,大尺寸液晶显示器使用的补偿膜大多是针对垂直排列(Vertial Alignment; VA)显示模式。请参阅图1,图1为现有技术中使用单层双光轴(biaxial)补偿架构的液晶显示器,液晶显示器包括一第一三醋酸纤维素(Triacetyl Cellulose,以下称TAC)层100、一第一聚乙烯醇(Poly Vinyl Alcohol,以下称PVA)层102、一第一双光轴(biaxial)层104、一第一压敏胶(Pressure Sensitive Adhesives,以下称PSA)层106、一液晶层120、一第二PSA层140、一第二TAC层142、一第二PVA层144以及一第三TAC层146。所述液晶显示器使用一层双光轴层(即第一双光轴层104)作补偿,故称为单层双光轴补偿架构。
根据测试可知,采用图1所示的单层双光轴补偿架构时,暗态漏光严重的视角很接近水平视角,亦即漏光集中在20度至40度、140度至160度、200度至220度及310度至至330度之间,而接近水平视角的区域较容易被观看者看到,所以接近水平视角的区域的对比度对观看效果的影响最大,接近垂直视角的区域因为不容易被看到,对观看效果的影响较小。随着液晶显示器尺寸的增大,上述现象会更加明显,所以有必要把暗态漏光区域限定在接近垂直视角的区域附近,而非现有接近水平视角的区域。
请参阅图2,图2为现有技术中使用双层双光轴补偿架构的液晶显示器,液晶显示器包括一第一TAC层200、一第一PVA层202、一第一双光轴层204、一第一PSA层206、一液晶层220、一第二PSA层240、一第二双光轴层242、一第二PVA层244以及一第三TAC层246。所述液晶显示器使用两层双光轴层(即第一204双光轴层与第二双光轴层242)作补偿,故称为双层双光轴补偿架构。采用图2所示的双层双光轴补偿架构时,暗态漏光严重的视角在水平视角与垂直视角中间,虽然相对于图1的单层双光轴补偿架构略有改善,然而其成本昂贵,且改善效果有限。
因此在考虑成本而使用图1的单层双光轴补偿架构时,需要对现有单层双光轴补偿架构在接近水平视角的区域暗态漏光严重的问题提出解决方法。
技术问题
本发明的目的在于提供一种液晶显示器,其能解决现有单层双光轴补偿架构在接近水平视角的区域暗态漏光严重的问题。
技术解决方案
本发明提供的一种液晶显示器包括一第一偏光板、一液晶层以及一第二偏光板,所述液晶层设置于所述第一偏光板与所述第二偏光板之间,所述第一偏光板包括一第一三醋酸纤维素层、一第一聚乙烯醇层、一第一双光轴层以及一第一基材,所述第一聚乙烯醇层设置于所述第一三醋酸纤维素层上,所述第一双光轴层设置于所述第一聚乙烯醇层上,所述第一三醋酸纤维素层、所述第一聚乙烯醇层与所述第一双光轴层固定于所述第一基材上,所述第二偏光板包括一第二基材、一第二三醋酸纤维素层、一第二聚乙烯醇层以及一第三三醋酸纤维素层,所述第二聚乙烯醇层设置于所述第二三醋酸纤维素层上,所述第三三醋酸纤维素层设置于所述第二聚乙烯醇层上,所述第三三醋酸纤维素层、所述第二聚乙烯醇层与所述第二三醋酸纤维素层固定于所述第二基材上,其中对于波长=550纳米且所述液晶层的液晶分子的预倾角的范围在85度至90度之间时,所述第一双光轴层的一补偿值Rth1与所述第二三醋酸纤维素层的一补偿值Rth2的范围[Y1, Y2]满足下列方程式:
Y1=-0.002107×(Rth1)2–0.01686×(Rth1)+ 206.5
Y2=-0.006137×(Rth1)2+1.703×(Rth1)+75.16
所述第一双光轴层的补偿值Rth1为所述第一双光轴层在厚度方向的板相位延迟,所述第二三醋酸纤维素层的补偿值Rth2为所述第二三醋酸纤维素层在厚度方向的板相位延迟,Y1为所述第二三醋酸纤维素层的补偿值Rth2的最小值,Y2为所述第二三醋酸纤维素层的补偿值Rth2的最大值,将所述第一双光轴层的补偿值Rth1选定为一第一特定值时,从上述两方程式得到所述第二三醋酸纤维素层的补偿值Rth2的最小值与最大值,从最小值与最大值之间将所述第二三醋酸纤维素层的补偿值Rth2选定为一第二特定值,所述第一特定值满足下列方程式:
Rth1 =[(Nx1-Ny1)/2-Nz1]×d1
所述第一双光轴层平面彼此正交的两个方向分别设为X轴及Y轴,垂直于所述第一双光轴层厚度方向设为Z轴,Nx1为所述第一双光轴层在X方向的折射率,Ny1为所述第一双光轴层在Y方向的折射率,Nz1为所述第一双光轴层在Z方向的折射率,d1为所述第一双光轴层的厚度,
所述第二特定值满足下列方程式:
Rth2 =[(Nx2-Ny2)/2-Nz2]×d2
所述第二三醋酸纤维素层平面彼此正交的两个方向分别设为X轴及Y轴,垂直于所述第二三醋酸纤维素层厚度方向设为Z轴,Nx2为所述第二三醋酸纤维素层在X方向的折射率,Ny2为所述第二三醋酸纤维素层在Y方向的折射率,Nz2为所述第二三醋酸纤维素层在Z方向的折射率,d2为所述第二三醋酸纤维素层的厚度。
在本发明的液晶显示器中,所述第一双光轴层的补偿值Rth1选定为所述第一特定值时,对应至一Ro,所述Ro满足下列方程式:
Ro=(Nx1-Ny1)×d1
所述Ro为所述第一双光轴层的平面相位延迟。
在本发明的液晶显示器中,所述第一双光轴层的补偿值Rth1的较佳范围在180纳米至280纳米之间。
在本发明的液晶显示器中,所述液晶层的光程长度差的较佳范围在342.8纳米至361.4纳米之间。
为解决上述问题,本发明另外提供一种液晶显示器包括一第一偏光板、一液晶层以及一第二偏光板,所述液晶层设置于所述第一偏光板与所述第二偏光板之间,所述第一偏光板包括一第一三醋酸纤维素层、一第一聚乙烯醇层、一第一双光轴层以及一第一基材,所述第一聚乙烯醇层设置于所述第一三醋酸纤维素层上,所述第一双光轴层设置于所述第一聚乙烯醇层上,所述第一三醋酸纤维素层、所述第一聚乙烯醇层与所述第一双光轴层固定于所述第一基材上,所述第二偏光板包括一第二基材、一第二三醋酸纤维素层、一第二聚乙烯醇层以及一第三三醋酸纤维素层,所述第二聚乙烯醇层设置于所述第二三醋酸纤维素层上,所述第三三醋酸纤维素层设置于所述第二聚乙烯醇层上,所述第三三醋酸纤维素层、所述第二聚乙烯醇层与所述第二三醋酸纤维素层固定于所述第二基材上,对于波长=550纳米时,所述第一双光轴层的一补偿值Rth1与所述第二三醋酸纤维素层的一补偿值Rth2的范围[Y1, Y2]满足下列方程式:
Y1=-0.002107×(Rth1)2–0.01686×(Rth1)+ 206.5
Y2=-0.006137×(Rth1)2+1.703×(Rth1)+75.16
所述第一双光轴层的补偿值Rth1为所述第一双光轴层在厚度方向的板相位延迟,所述第二三醋酸纤维素层的补偿值Rth2为所述第二三醋酸纤维素层在厚度方向的板相位延迟,Y1为所述第二三醋酸纤维素层的补偿值Rth2的最小值,Y2为所述第二三醋酸纤维素层的补偿值Rth2的最大值,将所述第一双光轴层的补偿值Rth1选定为一第一特定值时,从上述两方程式得到所述第二三醋酸纤维素层的补偿值Rth2的最小值与最大值,从最小值与最大值之间将所述第二三醋酸纤维素层的补偿值Rth2选定为一第二特定值,所述第一特定值满足下列方程式:
Rth1 =[(Nx1-Ny1)/2-Nz1]×d1
所述第一双光轴层平面彼此正交的两个方向分别设为X轴及Y轴,垂直于所述第一双光轴层厚度方向设为Z轴,Nx1为所述第一双光轴层在X方向的折射率,Ny1为所述第一双光轴层在Y方向的折射率,Nz1为所述第一双光轴层在Z方向的折射率,d1为所述第一双光轴层的厚度,
所述第二特定值满足下列方程式:
Rth2 =[(Nx2-Ny2)/2-Nz2]×d2
所述第二三醋酸纤维素层平面彼此正交的两个方向分别设为X轴及Y轴,垂直于所述第二三醋酸纤维素层厚度方向设为Z轴,Nx2为所述第二三醋酸纤维素层在X方向的折射率,Ny2为所述第二三醋酸纤维素层在Y方向的折射率,Nz2为所述第二三醋酸纤维素层在Z方向的折射率,d2为所述第二三醋酸纤维素层的厚度。
在本发明的液晶显示器中,所述第一双光轴层的补偿值Rth1选定为所述第一特定值时,对应至一Ro,所述Ro满足下列方程式:
Ro=(Nx1-Ny1)×d1
所述Ro为所述第一双光轴层的平面相位延迟。
在本发明的液晶显示器中,所述第一双光轴层的补偿值Rth1的较佳范围在180纳米至280纳米之间。
在本发明的液晶显示器中,所述液晶层的光程长度差的较佳范围在342.8纳米至361.4纳米之间。
为解决上述问题,本发明另外提供的一种液晶显示器包括一第一偏光板、一液晶层以及一第二偏光板,所述液晶层设置于所述第一偏光板与所述第二偏光板之间,所述第一偏光板包括一第一三醋酸纤维素层、一第一聚乙烯醇层、一第一双光轴层以及一第一基材,所述第一聚乙烯醇层设置于所述第一三醋酸纤维素层上,所述第一双光轴层设置于所述第一聚乙烯醇层上,所述第一三醋酸纤维素层、所述第一聚乙烯醇层与所述第一双光轴层固定于所述第一基材上,所述第二偏光板包括一第二基材、一第二三醋酸纤维素层、一第二聚乙烯醇层以及一第三三醋酸纤维素层,所述第二聚乙烯醇层设置于所述第二三醋酸纤维素层上,所述第三三醋酸纤维素层设置于所述第二聚乙烯醇层上,所述第三三醋酸纤维素层、所述第二聚乙烯醇层与所述第二三醋酸纤维素层固定于所述第二基材上,对于波长=550纳米时,所述第一双光轴层的一补偿值Rth1与所述第二三醋酸纤维素层的一补偿值Rth2的范围[Y1, Y2]满足下列方程式:
Y1=-0.002107×(Rth1)2–0.01686×(Rth1)+ 206.5
Y2=-0.006137×(Rth1)2+1.703×(Rth1)+75.16
所述第一双光轴层的补偿值Rth1为所述第一双光轴层在厚度方向的板相位延迟,所述第二三醋酸纤维素层的补偿值Rth2为所述第二三醋酸纤维素层在厚度方向的板相位延迟,Y1为所述第二三醋酸纤维素层的补偿值Rth2的最小值,Y2为所述第二三醋酸纤维素层的补偿值Rth2的最大值。
在本发明的液晶显示器中,所述第一双光轴层的补偿值Rth1的较佳范围在180纳米至280纳米之间。
在本发明的液晶显示器中,所述液晶层的光程长度差的较佳范围在342.8纳米至361.4纳米之间。
在本发明的液晶显示器中,所述液晶层的液晶分子的预倾角的较佳范围在85度至90度之间。
有益效果
相较于现有的液晶显示器,本发明的液晶显示器能解决单层双光轴补偿架构在接近水平视角的区域暗态漏光严重的问题。
附图说明
图1为现有技术中使用单层双光轴补偿架构的液晶显示器;
图2为现有技术中使用双层双光轴补偿架构的液晶显示器;
图3为根据本发明实施例的液晶显示器;
图4为图3中的液晶层在光程长度差为342.8纳米时,暗态漏光量与第一双光轴层的补偿值及第二TAC层的补偿值的关系;以及
图5为图3中的液晶层在光程长度差为361.4纳米时,暗态漏光量与第一双光轴层的补偿值及第二TAC层的补偿值的关系。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
请参阅图3,图3为根据本发明实施例的液晶显示器。
液晶显示器包括一第一偏光板30、一液晶层320以及一第二偏光板34。液晶层320设置于第一偏光板30与第二偏光板34之间。
第一偏光板30包括一第一TAC层300、一第一PVA层302、一第一双光轴层304以及一第一基材306。第一PVA层302设置于第一TAC层300上。第一双光轴层304设置于第一PVA层302上。第一基材306为一PSA层,第一TAC层300、第一PVA层302与第一双光轴层304固定于第一基材306上。
第二偏光板34包括一第二基材340、一第二TAC层342、一第二PVA层344以及一第三TAC层346。第二PVA层344设置于第二TAC层342上。第三TAC层346设置于第二PVA层344上。第二基材340为一PSA层,第三TAC层346、第二PVA层344与第二TAC层342固定于第二基材340上。
更明确地说,液晶层320设置于第一基材306与第二基材340之间。
本发明之液晶显示器使用一层双光轴层(即第一双光轴层304),故为单层双光轴补偿架构。本发明为了改善现有技术中接近水平视角的区域暗态漏光严重的问题,经过不断的测试与实验后,通过调整第一双光轴层304的补偿值与第二TAC层342的补偿值来解决上述问题。图3中各层设定如下:第一TAC层300的慢轴设定为0度,第一PVA层302的吸收轴设定为90度,第一双光轴层304的慢轴设定为0度,第二TAC层342的慢轴设定为90度,第二PVA层344的吸收轴设定为0度,第三TAC层346的慢轴设定为90度。上述角度为PHI角度。
请参阅图4以及图5,图4为图3中的液晶层320在光程长度差(Δnd)为342.8纳米(nanometer; nm)时,暗态漏光量与第一双光轴层304的补偿值及第二TAC层342的补偿值的关系,图5为图3中的液晶层320在光程长度差(Δnd)为361.4纳米时,暗态漏光量与第一双光轴层304的补偿值及第二TAC层342的补偿值的关系。本发明经过测试后得知液晶层320的液晶分子在不同预倾角(pretilt angle)下,第一双光轴层304的补偿值及第二TAC层342的补偿值对暗态漏光的影响趋势是一致的,也就是说,不同预倾角在特定的暗态漏光值对应的补偿值范围是一样的。
上述第一双光轴层304的补偿值包括平面相位延迟(planar retardation,以下称为Ro)以及厚度方向的板相位延迟(plate retardation,以下称为Rth1),第二TAC层342的补偿值为Rth2。上述补偿值为本领域技术人员所熟知,此不多加赘述。
根据不断的测试,本发明得到第一双光轴层304的补偿值Rth1与第二TAC层342的补偿值Rth2的范围[Y1, Y2]需满足下列方程式(1)与(2):
Y1=-0.002107×(Rth1)2–0.01686×(Rth1)+ 206.5 (1)
Y2=-0.006137×(Rth1)2+1.703×(Rth1)+75.16 (2)
举例来说,当预倾角(pretilt angle)在[85度, 90度]之间时,选定一个第一双光轴层304的补偿值Rth1,可以利用上述方程式(1)与(2)得到第二TAC层342的补偿值Rth2的范围[Y1, Y2],Y1为第二TAC层342的补偿值Rth2的最小值,Y2为第二TAC层342的补偿值Rth2的最大值,并从图4(或图5)得到与选定的第一双光轴层304的补偿值Rth1值对应的Ro,能大幅改善单层双光轴补偿架构在接近水平视角的区域暗态漏光严重的问题,使暗态漏光的区域集中在垂直视角附近且集中在较小的视角范围内,漏光量也明显降低。
以下将描述本发明经过测试后得到的较佳实施例,于该较佳实施例中,预倾角(pretilt angle)在[85度, 90度]之间且液晶层320的光程长度差(Δnd)在[342.8纳米, 361.4纳米]之间时,本发明经过测试得到第一双光轴层304的补偿值Rth1的较佳范围为[180纳米, 280纳米]之间,将第一双光轴层304的补偿值Rth1选定为180纳米至280纳米之间的一第一特定值之后,从上述方程式(1)与(2)可以得到第二TAC层342的补偿值Rth2的对应范围[Y1, Y2],从图4(或图5)可以得到与选定的第一双光轴层304的补偿值Rth1对应的Ro。
举例来说,选择液晶层32的光程长度差(Δnd)为352.1纳米且预倾角为89度时,选定第一双光轴层304的补偿值Rth1为220纳米(即第一特定值为220纳米),从图4(或图5)可以得到与第一双光轴层304的补偿值Rth1为220纳米对应的Ro为66纳米,从上述方程式(1)与(2)可以得到第二TAC层342的补偿值Rth2的范围[Y1, Y2]≒[100.81纳米, 152.79纳米],从最小值与最大值之间将第二TAC层342的补偿值Rth2选定为一第二特定值(例如选定第二特定值为118纳米),本发明的液晶显示装置根据上述条件的选定能大幅改善单层双光轴补偿架构在接近水平视角的区域暗态漏光严重的问题,将漏光量降低至0.2尼特(nit)以下(模拟值),使暗态漏光的区域集中在垂直视角附近且集中在较小的视角范围内,漏光量也明显降低。此外,本发明的全视角对比度也优于现有技术的全视角对比度,尤其是全视角对比度最低值约为现有技术的全视角对比度最低值的三倍。
上述第一特定值满足下列方程式(3):
Rth1 =[(Nx1-Ny1)/2-Nz1]×d1 (3)
第一双光轴层304平面彼此正交的两个方向分别设为X轴及Y轴,垂直于第一双光轴层304厚度方向设为Z轴,Nx1为第一双光轴层304在X方向的折射率,Ny1为第一双光轴层304在Y方向的折射率,Nz1为第一双光轴层304在Z方向的折射率,d1为第一双光轴层304的厚度。
此外,第二特定值满足下列方程式(4):
Rth2 =[(Nx2-Ny2)/2-Nz2]×d2 (4)
第二TAC层342平面彼此正交的两个方向分别设为X轴及Y轴,垂直于第二TAC层342厚度方向设为Z轴,Nx2为第二TAC层342在X方向的折射率,Ny2为第二TAC层342在Y方向的折射率,Nz2为第二TAC层342在Z方向的折射率,d2为第二TAC层342的厚度。
如上所述,第一双光轴层304的补偿值Rth1选定为第一特定值时,对应至一Ro(如图4或图5所示),第一双光轴层304的Ro满足下列方程式(5):
Ro=(Nx1-Ny1)×d1 (5)
选定第一双光轴层304的Ro、第一双光轴层304的补偿值Rth1与第二TAC层342的补偿值Rth2之后,可以根据上述方程式(3)至(5)通过下列三种方式来达到选定的第一双光轴层304的Ro、第一双光轴层304的补偿值Rth1与第二TAC层342的补偿值Rth2:(1)固定X方向的折射率Nx1、Nx2、Y方向的折射率Ny1、Ny2、Z方向的折射率Nz1、Nz2,改变厚度d1、d2来达到所需的第一双光轴层304的Ro、第一双光轴层304的补偿值Rth1与第二TAC层342的补偿值Rth2;(2)固定厚度d1、d2,X方向的折射率Nx1、Nx2、Y方向的折射率Ny1、Ny2、Z方向的折射率Nz1、Nz2来达到所需的第一双光轴层304的Ro、第一双光轴层304的补偿值Rth1与第二TAC层342的补偿值Rth2;(3)同时改变X方向的折射率Nx1、Nx2、Y方向的折射率Ny1、Ny2、Z方向的折射率Nz1、Nz2与厚度d1、d2来达到所需的第一双光轴层304的Ro、第一双光轴层304的补偿值Rth1与第二TAC层342的补偿值Rth2。
以上补偿值及液晶层32的光程长度差(Δnd)均为波长為550纳米时对应的值,本发明提出补偿膜的补偿值范围,且能运用在各种补偿膜。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (12)

  1. 一种液晶显示器,包括一第一偏光板、一液晶层以及一第二偏光板,所述液晶层设置于所述第一偏光板与所述第二偏光板之间,所述第一偏光板包括一第一三醋酸纤维素层、一第一聚乙烯醇层、一第一双光轴层以及一第一基材,所述第一聚乙烯醇层设置于所述第一三醋酸纤维素层上,所述第一双光轴层设置于所述第一聚乙烯醇层上,所述第一三醋酸纤维素层、所述第一聚乙烯醇层与所述第一双光轴层固定于所述第一基材上,所述第二偏光板包括一第二基材、一第二三醋酸纤维素层、一第二聚乙烯醇层以及一第三三醋酸纤维素层,所述第二聚乙烯醇层设置于所述第二三醋酸纤维素层上,所述第三三醋酸纤维素层设置于所述第二聚乙烯醇层上,所述第三三醋酸纤维素层、所述第二聚乙烯醇层与所述第二三醋酸纤维素层固定于所述第二基材上,其中对于波长=550纳米且所述液晶层的液晶分子的预倾角的范围在85度至90度之间时,所述第一双光轴层的一补偿值Rth1与所述第二三醋酸纤维素层的一补偿值Rth2的范围[Y1, Y2]满足下列方程式(1)与(2):
    Y1=-0.002107×(Rth1)2–0.01686×(Rth1)+ 206.5 (1)
    Y2=-0.006137×(Rth1)2+1.703×(Rth1)+75.16 (2)
    其中所述第一双光轴层的补偿值Rth1为所述第一双光轴层在厚度方向的板相位延迟,所述第二三醋酸纤维素层的补偿值Rth2为所述第二三醋酸纤维素层在厚度方向的板相位延迟,Y1为所述第二三醋酸纤维素层的补偿值Rth2的最小值,Y2为所述第二三醋酸纤维素层的补偿值Rth2的最大值,
    将所述第一双光轴层的补偿值Rth1选定为一第一特定值时,从所述方程式(1)与(2)得到所述第二三醋酸纤维素层的补偿值Rth2的最小值与最大值,从最小值与最大值之间将所述第二三醋酸纤维素层的补偿值Rth2选定为一第二特定值,所述第一特定值满足下列方程式(3):
    Rth1 =[(Nx1-Ny1)/2-Nz1]×d1 (3)
    所述第一双光轴层平面彼此正交的两个方向分别设为X轴及Y轴,垂直于所述第一双光轴层厚度方向设为Z轴,Nx1为所述第一双光轴层在X方向的折射率,Ny1为所述第一双光轴层在Y方向的折射率,Nz1为所述第一双光轴层在Z方向的折射率,d1为所述第一双光轴层的厚度,
    所述第二特定值满足下列方程式(4):
    Rth2 =[(Nx2-Ny2)/2-Nz2]×d2 (4)
    所述第二三醋酸纤维素层平面彼此正交的两个方向分别设为X轴及Y轴,垂直于所述第二三醋酸纤维素层厚度方向设为Z轴,Nx2为所述第二三醋酸纤维素层在X方向的折射率,Ny2为所述第二三醋酸纤维素层在Y方向的折射率,Nz2为所述第二三醋酸纤维素层在Z方向的折射率,d2为所述第二三醋酸纤维素层的厚度。
  2. 根据权利要求1所述的液晶显示器,其中所述第一双光轴层的补偿值Rth1选定为所述第一特定值时,对应至一Ro,所述Ro满足下列方程式(5):
    Ro=(Nx1-Ny1)×d1 (5)
    所述Ro为所述第一双光轴层的平面相位延迟。
  3. 根据权利要求2所述的液晶显示器,其中所述第一双光轴层的补偿值Rth1的较佳范围在180纳米至280纳米之间。
  4. 根据权利要求1所述的液晶显示器,其中所述液晶层的光程长度差的较佳范围在342.8纳米至361.4纳米之间。
  5. 一种液晶显示器,包括一第一偏光板、一液晶层以及一第二偏光板,所述液晶层设置于所述第一偏光板与所述第二偏光板之间,所述第一偏光板包括一第一三醋酸纤维素层、一第一聚乙烯醇层、一第一双光轴层以及一第一基材,所述第一聚乙烯醇层设置于所述第一三醋酸纤维素层上,所述第一双光轴层设置于所述第一聚乙烯醇层上,所述第一三醋酸纤维素层、所述第一聚乙烯醇层与所述第一双光轴层固定于所述第一基材上,所述第二偏光板包括一第二基材、一第二三醋酸纤维素层、一第二聚乙烯醇层以及一第三三醋酸纤维素层,所述第二聚乙烯醇层设置于所述第二三醋酸纤维素层上,所述第三三醋酸纤维素层设置于所述第二聚乙烯醇层上,所述第三三醋酸纤维素层、所述第二聚乙烯醇层与所述第二三醋酸纤维素层固定于所述第二基材上,其中对于波长=550纳米时,所述第一双光轴层的一补偿值Rth1与所述第二三醋酸纤维素层的一补偿值Rth2的范围[Y1, Y2]满足下列方程式(1)与(2):
    Y1=-0.002107×(Rth1)2–0.01686×(Rth1)+ 206.5 (1)
    Y2=-0.006137×(Rth1)2+1.703×(Rth1)+75.16 (2)
    其中所述第一双光轴层的补偿值Rth1为所述第一双光轴层在厚度方向的板相位延迟,所述第二三醋酸纤维素层的补偿值Rth2为所述第二三醋酸纤维素层在厚度方向的板相位延迟,Y1为所述第二三醋酸纤维素层的补偿值Rth2的最小值,Y2为所述第二三醋酸纤维素层的补偿值Rth2的最大值,
    将所述第一双光轴层的补偿值Rth1选定为一第一特定值时,从所述方程式(1)与(2)得到所述第二三醋酸纤维素层的补偿值Rth2的最小值与最大值,从最小值与最大值之间将所述第二三醋酸纤维素层的补偿值Rth2选定为一第二特定值,所述第一特定值满足下列方程式(3):
    Rth1 =[(Nx1-Ny1)/2-Nz1]×d1 (3)
    所述第一双光轴层平面彼此正交的两个方向分别设为X轴及Y轴,垂直于所述第一双光轴层厚度方向设为Z轴,Nx1为所述第一双光轴层在X方向的折射率,Ny1为所述第一双光轴层在Y方向的折射率,Nz1为所述第一双光轴层在Z方向的折射率,d1为所述第一双光轴层的厚度,
    所述第二特定值满足下列方程式(4):
    Rth2 =[(Nx2-Ny2)/2-Nz2]×d2 (4)
    所述第二三醋酸纤维素层平面彼此正交的两个方向分别设为X轴及Y轴,垂直于所述第二三醋酸纤维素层厚度方向设为Z轴,Nx2为所述第二三醋酸纤维素层在X方向的折射率,Ny2为所述第二三醋酸纤维素层在Y方向的折射率,Nz2为所述第二三醋酸纤维素层在Z方向的折射率,d2为所述第二三醋酸纤维素层的厚度。
  6. 根据权利要求5所述的液晶显示器,其中所述第一双光轴层的补偿值Rth1选定为所述第一特定值时,对应至一Ro,所述Ro满足下列方程式(5):
    Ro=(Nx1-Ny1)×d1 (5)
    所述Ro为所述第一双光轴层的平面相位延迟。
  7. 根据权利要求6所述的液晶显示器,其中所述第一双光轴层的补偿值Rth1的较佳范围在180纳米至280纳米之间。
  8. 根据权利要求5所述的液晶显示器,其中所述液晶层的光程长度差的较佳范围在342.8纳米至361.4纳米之间。
  9. 一种液晶显示器,包括一第一偏光板、一液晶层以及一第二偏光板,所述液晶层设置于所述第一偏光板与所述第二偏光板之间,所述第一偏光板包括一第一三醋酸纤维素层、一第一聚乙烯醇层、一第一双光轴层以及一第一基材,所述第一聚乙烯醇层设置于所述第一三醋酸纤维素层上,所述第一双光轴层设置于所述第一聚乙烯醇层上,所述第一三醋酸纤维素层、所述第一聚乙烯醇层与所述第一双光轴层固定于所述第一基材上,所述第二偏光板包括一第二基材、一第二三醋酸纤维素层、一第二聚乙烯醇层以及一第三三醋酸纤维素层,所述第二聚乙烯醇层设置于所述第二三醋酸纤维素层上,所述第三三醋酸纤维素层设置于所述第二聚乙烯醇层上,所述第三三醋酸纤维素层、所述第二聚乙烯醇层与所述第二三醋酸纤维素层固定于所述第二基材上,其中对于波长=550纳米时,所述第一双光轴层的一补偿值Rth1与所述第二三醋酸纤维素层的一补偿值Rth2的范围[Y1, Y2]满足下列方程式(1)与(2):
    Y1=-0.002107×(Rth1)2–0.01686×(Rth1)+ 206.5 (1)
    Y2=-0.006137×(Rth1)2+1.703×(Rth1)+75.16 (2)
    其中所述第一双光轴层的补偿值Rth1为所述第一双光轴层在厚度方向的板相位延迟,所述第二三醋酸纤维素层的补偿值Rth2为所述第二三醋酸纤维素层在厚度方向的板相位延迟,Y1为所述第二三醋酸纤维素层的补偿值Rth2的最小值,Y2为所述第二三醋酸纤维素层的补偿值Rth2的最大值。
  10. 根据权利要求9所述的液晶显示器,其中所述第一双光轴层的补偿值Rth1的较佳范围在180纳米至280纳米之间。
  11. 根据权利要求9所述的液晶显示器,其中所述液晶层的光程长度差的较佳范围在342.8纳米至361.4纳米之间。
  12. 根据权利要求9所述的液晶显示器,其中所述液晶层的液晶分子的预倾角的较佳范围在85度至90度之间。
PCT/CN2013/070843 2013-01-18 2013-01-22 液晶显示器 WO2014110839A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/813,456 US9645445B2 (en) 2013-01-18 2013-01-22 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310019475.0 2013-01-18
CN201310019475.0A CN103091902B (zh) 2013-01-18 2013-01-18 液晶显示器

Publications (1)

Publication Number Publication Date
WO2014110839A1 true WO2014110839A1 (zh) 2014-07-24

Family

ID=48204667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070843 WO2014110839A1 (zh) 2013-01-18 2013-01-22 液晶显示器

Country Status (3)

Country Link
US (1) US9645445B2 (zh)
CN (1) CN103091902B (zh)
WO (1) WO2014110839A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267994B (zh) * 2013-05-22 2015-06-17 深圳市华星光电技术有限公司 一种偏光器件、液晶显示装置及其制造方法
CN104298004A (zh) * 2014-11-05 2015-01-21 深圳市华星光电技术有限公司 液晶面板补偿架构及液晶显示装置
CN104536204A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器
CN104977641B (zh) * 2015-08-07 2018-01-19 京东方科技集团股份有限公司 增亮膜、背光模组和显示装置
CN105334672A (zh) * 2015-12-08 2016-02-17 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法
CN105629582B (zh) 2016-03-30 2019-08-02 京东方科技集团股份有限公司 显示基板、液晶显示面板及显示装置
TWI602700B (zh) * 2016-12-29 2017-10-21 住華科技股份有限公司 偏光板及包含其之顯示裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054695A1 (ja) * 2004-11-19 2006-05-26 Zeon Corporation 液晶表示装置
JP2008225283A (ja) * 2007-03-15 2008-09-25 Nippon Zeon Co Ltd 偏光板及び液晶表示装置
CN102854661A (zh) * 2012-10-10 2013-01-02 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置
CN102866537A (zh) * 2012-09-03 2013-01-09 深圳市华星光电技术有限公司 液晶显示器
CN102879954A (zh) * 2012-10-10 2013-01-16 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070091229A1 (en) * 2005-06-09 2007-04-26 Jang Soo J Vertically aligned liquid crystal display
JP2007099824A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 環状オレフィン系樹脂フィルム、偏光板および液晶表示装置
JP5508702B2 (ja) * 2008-02-20 2014-06-04 富士フイルム株式会社 液晶表示装置
BR112012022067B1 (pt) 2010-03-03 2022-01-04 Cps Technology Holdings Llc Grade para uma bateria e métodos para fabricação da mesma
US20140098328A1 (en) 2012-10-10 2014-04-10 Shenzhen China Star Optoelectronics Technology Co., Ltd. VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
US20140098329A1 (en) 2012-10-10 2014-04-10 Shenzhen China Star Optoelectronics Technology Co., Ltd. VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054695A1 (ja) * 2004-11-19 2006-05-26 Zeon Corporation 液晶表示装置
JP2008225283A (ja) * 2007-03-15 2008-09-25 Nippon Zeon Co Ltd 偏光板及び液晶表示装置
CN102866537A (zh) * 2012-09-03 2013-01-09 深圳市华星光电技术有限公司 液晶显示器
CN102854661A (zh) * 2012-10-10 2013-01-02 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置
CN102879954A (zh) * 2012-10-10 2013-01-16 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置

Also Published As

Publication number Publication date
CN103091902A (zh) 2013-05-08
CN103091902B (zh) 2015-09-09
US9645445B2 (en) 2017-05-09
US20150309369A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
WO2014110839A1 (zh) 液晶显示器
US8736799B2 (en) Optical compensation films and method for reducing dark-state light leakage of vertical alignment liquid crystal displays
WO2009120009A1 (ko) 시야각 보상필름 일체형 편광판 및 이를 포함하는 ips-lcd
WO2010110549A2 (en) A coupled polarizing plate set and in-plane switching mode liquid crystal display including the same
WO2012008802A2 (ko) 시야각 및 색 특성이 우수한 ecb-lcd
WO2013174040A1 (zh) 液晶显示面板及其应用的显示装置
WO2014067197A1 (zh) 液晶显示面板及其应用的显示装置
WO2014032323A1 (zh) 液晶显示器
WO2014029140A1 (zh) 光学补偿结构及显示装置
WO2013174020A1 (zh) 液晶显示面板及其应用的显示装置
WO2013181869A1 (zh) 一种液晶显示面板及其制备工艺和显示器
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
US9535287B2 (en) Liquid crystal panel compensation structure and liquid crystal display apparatus
WO2016101339A1 (zh) 液晶显示器
WO2010128780A2 (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
CN103869534B (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
WO2016065659A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2013029241A1 (zh) 液晶显示面板及其应用的显示装置
WO2014043943A1 (zh) 一种光学补偿膜及减弱va液晶显示器暗态漏光的方法
WO2016101338A1 (zh) 液晶显示器
WO2013033934A1 (zh) 三维显示面板及其制造方法
WO2013163826A1 (zh) 液晶显示面板及3d影像系统
WO2013174012A1 (zh) 液晶显示面板及其应用的显示装置
WO2016065660A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2014029139A1 (zh) 光学补偿结构及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13813456

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871842

Country of ref document: EP

Kind code of ref document: A1