WO2014032323A1 - 液晶显示器 - Google Patents

液晶显示器 Download PDF

Info

Publication number
WO2014032323A1
WO2014032323A1 PCT/CN2012/081059 CN2012081059W WO2014032323A1 WO 2014032323 A1 WO2014032323 A1 WO 2014032323A1 CN 2012081059 W CN2012081059 W CN 2012081059W WO 2014032323 A1 WO2014032323 A1 WO 2014032323A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
liquid crystal
compensation film
refractive index
difference value
Prior art date
Application number
PCT/CN2012/081059
Other languages
English (en)
French (fr)
Inventor
康志聪
海博
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/704,630 priority Critical patent/US9158157B2/en
Publication of WO2014032323A1 publication Critical patent/WO2014032323A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/03Number of plates being 3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/06Two plates on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/12Biaxial compensators

Definitions

  • the present invention relates to a liquid crystal display, and more particularly to a liquid crystal display having a dual optical axis compensation film.
  • liquid crystal displays have gradually become mainstream displays due to the thinness and shortness of liquid crystal displays.
  • various electronic devices on the market such as mobile phones, personal digital assistants, digital cameras, computer screens, laptop screens, etc., almost all adopt liquid crystal display screens as their display screens.
  • the liquid crystal display includes a liquid crystal layer, and changes in the direction of rotation of the liquid crystal molecules in the liquid crystal layer by the electric field applied to the liquid crystal layer, thereby adjusting the transmittance of light passing through the liquid crystal layer.
  • the liquid crystal material has a birefringence characteristic, that is, refractive indices different from each other along the long axis direction of the molecule and the short axis direction of the molecule. Therefore, the linearly polarized incident light passes through different paths of the liquid crystal layer to have different phases in its polarization direction, and thus the color characteristics and transmittance at the oblique viewing angle and at the frontal view may be different.
  • the prior art proposes to add a compensation film to the liquid crystal panel.
  • the compensation film is corrected by compensating for the phase difference of light in different directions, and the birefringence property of the liquid crystal molecules is compensated for symmetry.
  • double-layer compensation film compensation although effective in reducing dark state light leakage and at the same time improving the contrast and sharpness of large viewing angles, is more expensive and is not conducive to cost reduction.
  • single-layer compensation film compensation can effectively reduce the cost, but there is a risk of increased dark light leakage.
  • an object of the present invention is to provide a liquid crystal display using a single-layer compensation film, which adjusts the phase difference value by adjusting the thickness or refractive index of the TAC film, so that the liquid crystal display using the single-layer compensation film can also reduce the dark state.
  • the invention discloses a liquid crystal display comprising a backlight; a first triacetate cellulose base (triacetate) Cellulose, TAC) film; a first polyvinyl alcohol (Polyvinyl) Alcohol, PVA) film; a first phase difference compensation film, which adjusts a thickness of the first phase difference compensation film and adjusts a first corresponding to the light rays in the first direction, the second direction, and the third direction, respectively a refractive index, a second refractive index, and a third refractive index to provide a first phase difference value and a second phase difference value; a second phase difference compensation film that adjusts a thickness of the second phase difference compensation film and Adjusting a fourth refractive index, a fifth refractive index, and a sixth refractive index corresponding to the light rays in the first direction, the second direction, and the third direction, respectively, to provide a third phase difference value; a liquid crystal layer; a second PVA film; and a third TAC film.
  • the liquid crystal layer has a phase delay value determined by (ne-no) ⁇ d, which is between 342.8 and 361.4. Between nm, where ne and no represent the extraordinary refractive index and the ordinary refractive index of the liquid crystal layer, respectively, and d represents the thickness of the liquid crystal layer.
  • the first phase difference value is determined according to the first refractive index, the second refractive index, and the thickness of the first phase difference compensation film.
  • the first phase difference value of the first phase difference compensation film is between 45.6 and 85.8 nm.
  • the second phase difference value is determined according to the first refractive index, the second refractive index, the third refractive index, and a thickness of the first phase difference compensation film.
  • the second phase difference value of the first phase difference compensation film is between 152 and 286 nm.
  • a pretilt angle of liquid crystal molecules of the liquid crystal layer is between 85 and 90 degrees, but does not contain 90 degrees.
  • the third phase difference value is determined according to the fourth refractive index, the fifth refractive index, the sixth refractive index, and the thickness of the second phase difference compensation film.
  • the first phase difference compensation film is a dual optical axis compensation film
  • the second phase difference compensation film is a second TAC film
  • the liquid crystal display further includes a third phase difference compensation film, the first phase difference compensation film is attached to the second phase difference compensation film, and the first phase difference compensation film It is a pair of optical axis compensation films, the second phase difference compensation film is a second TAC film, and the third phase difference compensation film is a fourth TAC film.
  • the third phase difference compensation film adjusts a thickness of the third phase difference compensation film and adjusts the light in the first direction, the second direction, and the a third refractive index, an eighth refractive index, and a ninth refractive index corresponding to the third direction respectively to provide a fourth phase difference value; wherein the liquid crystal display is based on the first phase difference value and the second phase difference The value, the third phase difference value, and the fourth phase difference value control their light leakage.
  • the present invention uses a single dual optical axis compensation film for a liquid crystal display, when the phase retardation value of the liquid crystal layer is 342.8. Nm ⁇ 361.4
  • the first phase of the first phase difference compensation film is used
  • the difference Rob is controlled between 45.6 and 85.8 nm
  • the second phase difference Rthb is controlled at 152 ⁇ 286.
  • the maximum light leakage value of the liquid crystal display in the dark state is smaller than the conventional A liquid crystal display using a single dual optical axis compensation film.
  • the liquid crystal display of the present invention can effectively increase the contrast and sharpness of a large viewing angle (non-horizontal vertical azimuth).
  • Figure 1 is a schematic view showing a first embodiment of a liquid crystal display of the present invention.
  • Figure 2 and Figure 3 show the phase retardation values of the liquid crystal layer at 342.8 nm and 361.4, respectively. Under the condition of nm, the relationship between the third phase difference RthT of the second TAC film and the light leakage value of the liquid crystal molecules at different pretilt angles and different first optical axis compensation films, the first phase difference value Rob and the second phase difference value Rthb Figure.
  • Figure 4 is a schematic illustration of a second embodiment of a liquid crystal display of the present invention.
  • Figure 5 is a schematic view of a third embodiment of the liquid crystal display of the present invention.
  • Figure 6 is a schematic view showing a fourth embodiment of the liquid crystal display of the present invention.
  • Figure 7 is a schematic view showing a fifth embodiment of the liquid crystal display of the present invention.
  • Figure 8 is a schematic view showing a sixth embodiment of the liquid crystal display of the present invention.
  • FIG. 1 is a schematic diagram of a first embodiment of a liquid crystal display device 10 of the present invention.
  • the liquid crystal display 10 includes a liquid crystal layer (LC) A first polarizer 12, a second polarizer 14, and a backlight 18.
  • the backlight 18 is used to generate light, and the liquid crystal layer 16 is made of pressure sensitive adhesive (pressure Visible
  • the adhesive, PSA) 2 is bonded between the first polarizer 12 and the second polarizer 14.
  • the first polarizer 12 and the second polarizer 14 are used to deflect incident light, and the first optical axis of the first polarizer 12 is perpendicular to the second optical axis of the second polarizer 14.
  • the first polarizer 12 comprises a first polyvinyl alcohol (Polyvinyl) Alcohol, PVA) film 121, sandwiched between the first triacetate cellulose base (triacetate)
  • the cellulose, TAC film is between the film 122 and the first phase difference compensation film 123.
  • the second polarizer 14 comprises a second polyvinyl alcohol (Polyvinyl) The Alcohol, PVA film 141 is sandwiched between the second phase difference compensation film 142 and the third TAC film 143.
  • the first phase difference compensation film 123 is a biaxial compensation film
  • the second phase difference compensation film 142 is a second TAC film.
  • the first phase difference compensation film 123 is used to provide a first phase difference value and a second phase difference value
  • the second phase difference compensation film 142 is used to provide a third phase difference value.
  • the angle between the slow axis of the first phase difference compensation film 123 and the absorption axis of the first PVA film 121 is 90 degrees
  • the angle between the slow axis of the second phase difference compensation film 142 and the absorption axis of the second PVA film 141 is 90 degrees. How to determine the first phase difference value, the second phase difference value, and the third phase difference value will be described below.
  • the phase retardation value of the liquid crystal layer, the TAC film compensation phase difference value, and the phase difference value of the biaxial compensation film are all values corresponding to a wavelength equal to 550 nm.
  • FIG. 2 and FIG. 3 respectively show the phase delay values of the liquid crystal layer 16 at 342.8 nm and 361.4.
  • the first phase difference value Rob and the second phase difference value Rthb, the second TAC film A graph of the relationship between the three phase difference values RthT and the light leakage value.
  • the incident light emitted by the backlight 18 is distributed in a Lambertian distribution, and the central luminance is defined as 100 nit.
  • the pretilt angle of the liquid crystal molecules of the liquid crystal layer 16 is between 85 degrees and 90 degrees, but does not contain 90 degrees.
  • the phase retardation value of the liquid crystal layer 16 determined by (ne-no) ⁇ d is between 342.8 and 361.4. Between nm, where ne and no represent the extraordinary refractive index and the ordinary refractive index of the liquid crystal layer 16, respectively, and d represents the thickness of the liquid crystal layer 16.
  • Rthb [( Nxb+ Nyb)/2-Nzb] ⁇ Db
  • RthT [( NxT+ NyT)/2-NzT] ⁇ DT
  • Nxb, Nyb, and Nzb respectively indicate the refractive indices corresponding to the X, Y, and Z axes of the Cartesian coordinate system when the light rays from the backlight 18 pass through the first phase difference compensation film 123, NxT, NyT, and NzT.
  • Db and DT represent the first phase difference compensation film, respectively.
  • the phase retardation value of the liquid crystal layer 16 is 342.8.
  • the phase retardation value of the liquid crystal layer 16 is 342.8.
  • the phase retardation value of the liquid crystal layer 16 is 342.8.
  • the pretilt angle of the liquid crystal molecules is 87 and 89 degrees
  • the phase retardation value of the liquid crystal layer 16 is 342.8.
  • the third phase difference value RthT of the second phase difference compensation film 142 is considered to be 106.2 to 129.8 nm, the liquid crystal display is used. The light leakage value of 10 will be lower.
  • the phase retardation value of the liquid crystal layer 16 is 361.4.
  • the phase retardation value of the liquid crystal layer 16 is 361.4.
  • the first phase difference value Rob and the second phase difference value Rthb of the phase difference compensation film 123 also have a fine-tuned space. That is, when the dark state light leakage value is at least 0.2 nit, the first phase difference value Rob is between 45.6 and 85.8 nm, and the second phase difference value Rthb is between 152 and 286 nm.
  • the phase retardation value in the liquid crystal layer is 352.1 Nm
  • the first phase difference value Ro of the dual optical axis compensation film is 72 nm
  • the second phase difference value Rth is 240 nm
  • the present invention uses the liquid crystal display 10 of the single first phase difference compensation film 123.
  • the phase retardation value of the liquid crystal layer 16 is 342.8. Nm ⁇ 361.4
  • the liquid crystal display 10 can still compensate the first phase difference value of the film 123 according to the first phase difference.
  • the Rob and the second phase difference value Rthb, and the third phase difference value RthT of the second phase difference compensation film 142 suppress light leakage.
  • the second phase difference value Rthb is controlled between 152 and 286 nm, and according to the adjusted second phase
  • the first phase difference compensation film 123 and the second phase difference compensation film 142 of the liquid crystal display 10 of the present invention are not limited to the positions shown in Fig. 1, and other embodiments which can achieve the same effects will be described below.
  • FIG. 4 is a schematic diagram of a second embodiment of the liquid crystal display of the present invention.
  • the first polarizer 22 of the liquid crystal display 20 sequentially includes a first TAC film 122 , a first PVA film 121 , and a second phase difference compensation film 142 from the light incident side to the light exit side.
  • the two polarizers 24 sequentially include a first phase difference compensation film 123, a second PVA film 141, and a third TAC film 143 from the light incident side to the light exit side.
  • the second phase difference compensation film 142 is a second TAC film
  • the first phase difference compensation film 123 is a double optical axis compensation film.
  • FIG. 5 is a schematic diagram of a third embodiment of the liquid crystal display of the present invention.
  • the first polarizer 32 of the liquid crystal display 30 sequentially includes a first TAC film 122 and a first PVA film 121 from the light entering side to the light emitting side, and the second polarizer 14 is self-into the light side.
  • the second phase difference compensation film 142, the first phase difference compensation film 123, the second PVA film 141, and the third TAC film 143 are sequentially included on the light exit side.
  • the first phase difference compensation film 123 is a dual optical axis compensation film
  • the second phase difference compensation film 142 is a second TAC film.
  • the angle between the slow axis of the first phase difference compensation film 123 and the second phase difference compensation film 142 and the absorption axis of the second PVA film 141 is 90 degrees.
  • FIG. 6 is a schematic diagram of a fourth embodiment of the liquid crystal display of the present invention.
  • the first polarizer 42 of the liquid crystal display 40 sequentially includes the first TAC film 122, the first PVA film 121, the first phase difference compensation film 123, and the first side from the light incident side to the light exit side.
  • the second phase difference compensation film 142 and the second polarizer 44 sequentially include the second PVA film 141 and the third TAC film 143 from the light incident side to the light exit side.
  • the first phase difference compensation film 123 is a dual optical axis compensation film
  • the second phase difference compensation film 142 is a second TAC film.
  • the angle between the slow axis of the first phase difference compensation film 123 and the second phase difference compensation film 142 and the absorption axis of the first PVA film 121 is 90 degrees.
  • FIG. 7 is a schematic diagram of a fifth embodiment of the liquid crystal display of the present invention.
  • the first polarizer 52 of the liquid crystal display 50 sequentially includes the first TAC film 122, the first PVA film 121, and the third phase difference compensation film 124 from the light incident side to the light exit side.
  • the second polarizer 14 sequentially includes a second phase difference compensation film 142, a first phase difference compensation film 123, a second PVA film 141, and a third TAC film 143 from the light incident side to the light exit side.
  • the first phase difference compensation film 123 is a dual optical axis compensation film
  • the second phase difference compensation film 142 is a second TAC film
  • the third phase difference compensation film 124 is a fourth TAC film.
  • the angle between the slow axis of the first phase difference compensation film 123 and the second phase difference compensation film 142 and the absorption axis of the second PVA film 141 is 90 degrees.
  • the third phase difference compensation film 124 provides a fourth phase difference by adjusting the thickness of the third phase difference compensation film 124 and adjusting the refractive index of the light of the backlight 18 on the X, Y, and Z axes of the Cartesian coordinate system. The value is RthT'.
  • the liquid crystal display 50 controls the light leakage according to the first phase difference value Rob, the second phase difference value Rthb, the third phase difference value RthT, and the fourth phase difference value RthT'.
  • the third phase difference value RthT provided by the second phase difference compensation film 142 of the liquid crystal display 50 of FIG. 7 and the fourth phase difference provided by the third phase difference compensation film 124 are compared to the liquid crystal display 10 of FIG.
  • the sum of the values RthT' is equal to the third phase difference value RthT provided by the second phase difference compensation film 142 of FIG.
  • FIG. 8 is a schematic diagram of a sixth embodiment of the liquid crystal display 10 of the present invention.
  • the first polarizer 62 of the liquid crystal display 60 sequentially includes the first TAC film 122, the first PVA film 121, the first phase difference compensation film 123, and the first side from the light incident side to the light exit side.
  • the second polarizer 14 sequentially includes a third phase difference compensation film 124, a second PVA film 141, and a third TAC film 143 from the light incident side to the light exit side.
  • the first phase difference compensation film 123 is a dual optical axis compensation film
  • the second phase difference compensation film 142 is a second TAC film
  • the third phase difference compensation film 124 is a fourth TAC film.
  • the angle between the slow axis of the first phase difference compensation film 123 and the second phase difference compensation film 142 and the absorption axis of the second PVA film 141 is 90 degrees.
  • the third phase difference compensation film 124 provides a fourth phase difference by adjusting the thickness of the third phase difference compensation film 124 and adjusting the refractive index of the light of the backlight 18 on the X, Y, and Z axes of the Cartesian coordinate system. The value is RthT'.
  • the liquid crystal display 50 controls the light leakage according to the first phase difference value Rob, the second phase difference value Rthb, the third phase difference value RthT, and the fourth phase difference value RthT'.
  • the third phase difference value RthT provided by the second phase difference compensation film 142 of the liquid crystal display 50 of FIG. 8 and the fourth phase difference provided by the third phase difference compensation film 124 are compared to the liquid crystal display 10 of FIG.
  • the sum of the values RthT' is equal to the third phase difference value RthT provided by the second phase difference compensation film 142 of FIG.
  • the liquid crystal displays 20, 30, 40, 50, 60 shown in FIG. 4 to FIG. 8 are similar to the liquid crystal display 10 of FIG. 1 by adjusting the first phase difference value Rob, the second phase difference value Rthb, and the third phase difference value.
  • the RthT and the fourth phase difference RthT' control the light leakage thereof, and the adjustment range thereof is similar to the range described in the liquid crystal display 10 of FIG. 1, and will not be further described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示器(10),其从入光侧至出光侧依序包括:背光源(18)、第一TAC膜(122)、第一PVA膜(121)、双光轴补偿膜(123)、液晶层(16)、第二TAC膜(141)、第二PVA膜(142)以及第三TAC膜(143)。该双光轴补偿膜(123)通过调整厚度以及调整光线在第一、第二以及第三方向分别对应第一折射率、第二折射率以及第三折射率以提供第一相位差值及第二相位差值。第二TAC膜(141)通过调整厚度以及调整光线在第一、第二以及第三方向分别对应第四折射率、第五折射率以及第六折射率以提供第三相位差值。液晶显示器依据第一相位差值、第二相位差值以及第三相位差值控制其漏光。

Description

液晶显示器 技术领域
本发明涉及一种液晶显示器,尤指一种具有双光轴补偿膜的液晶显示器。
背景技术
近年来,由于液晶显示器轻薄短小的特性,已经使液晶显示器逐渐成为主流的显示器。目前市场上各种电子装置,如移动电话、个人数字助理、数字相机、计算机屏幕、笔记本电脑屏幕等,几乎都采用液晶显示屏幕作为其显示屏幕。
液晶显示器包括设置有液晶层,通过施加于该液晶层的电场变化,改变该液晶层中液晶分子的转动方向,进而调整通过该液晶层的光的透射率。液晶材料具有双折射的特性,亦即沿着分子长轴方向和分子短轴方向的折射率彼此不同。因此,线偏振入射光经过液晶层的不同路径从而在其偏振方向上具有不同的相位,因而偏斜视角处以及正视处的色彩特性和透射率会有所不同。
因为液晶层中液晶分子的双折射率会随观察角度变化发生改变,所以随着液晶显示器的观察角度增大,画面的对比度不断降低,画面的清晰度下降。为了在一定视角内能大幅度提高画面的对比度,并有效降低暗态画面的漏光,现有技术是提出在液晶面板上附加补偿膜。该补偿膜是通过补偿不同方向的光的相位差来进行修正,让液晶分子的双折射性质得到对称性的补偿。
然而,采用双层补偿膜补偿,虽然能有效的减少暗态漏光并同时提高大视角的对比度和清晰度,但是它的价格比较昂贵,不利于降低成本。而采用单层补偿膜补偿可以有效的降低成本,但是存在暗态漏光增加的风险。
技术问题
因此本发明的目的是提供一种使用单层补偿膜的液晶显示器,其通过调整TAC膜的厚度或是折射率来调整其相位差值,使得使用单层补偿膜的液晶显示器也能减少暗态漏光的问题。
技术解决方案
本发明揭露一种液晶显示器,所述种液晶显示器包含一背光源;一第一三醋酸纤维素酯片基(triacetate cellulose,TAC)膜;一第一聚乙烯醇(Polyvinyl Alcohol,PVA)膜;一第一相位差补偿膜,其通过调整所述第一相位差补偿膜的厚度以及调整所述光线在第一方向、第二方向以及第三方向分别所对应的第一折射率、第二折射率以及第三折射率以提供一第一相位差值以及一第二相位差值;一第二相位差补偿膜,其通过调整所述第二相位差补偿膜的厚度以及调整所述光线在所述第一方向、所述第二方向以及所述第三方向分别所对应的第四折射率、第五折射率以及第六折射率以提供一第三相位差值;一液晶层;一第二PVA膜;以及一第三TAC膜。所述液晶显示器依据所述第一相位差值、所述第二相位差值以及所述第三相位差值控制其漏光。
根据本发明的一实施例,所述液晶层由(ne-no)×d决定的相位延迟值,是介于342.8~361.4 nm之间,其中ne和no分别表示所述液晶层的非寻常光折射率和寻常光折射率,d表示所述液晶层厚度。
根据本发明的一实施例,所述第一相位差值是依据所述第一折射率、所述第二折射率和所述第一相位差补偿膜的厚度决定。
根据本发明的一实施例,所述第一相位差补偿膜的第一相位差值是介于45.6~85.8 nm之间。
根据本发明的一实施例,所述第二相位差值是依据所述第一折射率、所述第二折射率、所述第三折射率和所述第一相位差补偿膜的厚度决定。
根据本发明的一实施例,所述第一相位差补偿膜的第二相位差值是介于152~286 nm之间。
根据本发明的一实施例,所述液晶层的液晶分子的预倾角(pretilt angle)介于85~90度之间,但不包含90度。
根据本发明的一实施例,所述第三相位差值是依据所述第四折射率、所述第五折射率、所述第六折射率和所述第二相位差补偿膜的厚度决定。
根据本发明的一实施例,所述第二相位差补偿膜的第三相位差值是介于Y1 nm~Y2 nm之间,其中Y1=0.0052854x2-3.15264x+502.64以及Y2=-0.0064882x2+1.85x+57.78,x表示所述第二相位差值。
根据本发明的一实施例,所述第一相位差补偿膜是一双光轴补偿膜,所述第二相位差补偿膜是一第二TAC膜。
根据本发明的一实施例,所述液晶显示器另包含一第三相位差补偿膜,所述第一相位差补偿膜贴合于所述第二相位差补偿膜,所述第一相位差补偿膜是一双光轴补偿膜,所述第二相位差补偿膜是一第二TAC膜,所述第三相位差补偿膜是一第四TAC膜。
根据本发明的一实施例,所述第三相位差补偿膜,其通过调整所述第三相位差补偿膜的厚度以及调整所述光线在所述第一方向、所述第二方向以及所述第三方向分别所对应的第七折射率、第八折射率以及第九折射率以提供一第四相位差值;其中所述液晶显示器依据所述第一相位差值、所述第二相位差值、所述第三相位差值以及所述第四相位差值控制其漏光。
有益效果
相较于现有技术,本发明使用单一双光轴补偿膜的液晶显示器,当液晶层的相位延迟值在342.8 nm~361.4 nm(波长=550nm对应的相位延迟值)之间且液晶层的液晶分子的预倾角在85~90度之间(但不包含90度)时,只要将第一相位差补偿膜的第一相位差值Rob控制在45.6~85.8nm之间,且第二相位差值Rthb控制在152~286 nm之间,且所述第二相位差补偿膜的第三相位差值是介于Y1 nm~Y2 nm之间,其中Y1=0.0052854x2-3.15264x+502.64以及Y2=-0.0064882x2+1.85x+57.78,x表示所述第二相位差值,则液晶显示器在-暗态的最大漏光值会小于传统使用单一双光轴补偿膜的液晶显示器。此外,本发明的液晶显示器可以有效的增加大视角(非水平垂直方位角)的对比度和清晰度。
附图说明
图1是本发明液晶显示器的第一实施例的示意图。
图2和图3分别绘示液晶层的相位延迟值在342.8 nm以及361.4 nm的条件下,液晶分子在不同预倾角和不同双光轴补偿膜的第一相位差值Rob和第二相位差值Rthb时,第二TAC膜的第三相位差值RthT与漏光值的关系图。
图4是本发明液晶显示器的第二实施例的示意图。
图5是本发明液晶显示器的第三实施例的示意图。
图6是本发明液晶显示器的第四实施例的示意图。
图7是本发明液晶显示器的第五实施例的示意图。
图8是本发明液晶显示器的第六实施例的示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施之特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」、「水平」、「垂直」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参阅图1,图1是本发明液晶显示器10的第一实施例的示意图。液晶显示器10包含一液晶层(LC cell)16、一第一偏光片(polarizer)12、一第二偏光片14以及一背光源18。背光源18是用来产生光线,而液晶层16是利用压敏胶(pressure sensitive adhesive,PSA)2黏合在第一偏光片12与第二偏光片14之间。第一偏光片12与第二偏光片14是用来偏折入射光,且第一偏光片12的第一光轴垂直于第二偏光片14的第二光轴。
第一偏光片12包含一第一聚乙烯醇(Polyvinyl Alcohol,PVA)膜121,夹在第一三醋酸纤维素酯片基(triacetate cellulose,TAC)膜122和第一相位差补偿膜123之间。第二偏光片14包含一第二聚乙烯醇(Polyvinyl Alcohol,PVA)膜141,夹在第二相位差补偿膜142和第三TAC膜143之间。在本实施例中,第一相位差补偿膜123是双光轴(Biaxial)补偿膜,第二相位差补偿膜142是第二TAC膜。第一相位差补偿膜123用来提供一第一相位差值和第二相位差值,第二相位差补偿膜142则用来提供一第三相位差值。而第一相位差补偿膜123的慢轴与第一PVA膜121的吸收轴的夹角呈90度,第二相位差补偿膜142的慢轴与第二PVA膜141的吸收轴的夹角呈90度。以下将说明如何决定第一相位差值、第二相位差值以及第三相位差值。在以下实施例中,液晶层的相位延迟值,TAC膜补偿相位差值和双轴补偿膜的相位差值均为波长等于550nm对应的值。
请参阅图2和图3,图2和图3分别绘示液晶层16的相位延迟值在342.8 nm以及361.4 nm(波长=550nm对应的相位延迟值)的条件下,液晶分子在不同预倾角和不同双光轴补偿膜的第一相位差值Rob和第二相位差值Rthb时,第二TAC膜的第三相位差值RthT与漏光值的关系图。在本实施例中,背光源18射出的入射光分布为朗伯分布,中央亮度定义为100nit。,液晶层16的液晶分子的预倾角(pretilt angle)则在85度~90度之间,但不包含90度。液晶层16由(ne-no)×d决定的相位延迟值,是介于342.8~361.4 nm之间,其中ne和no分别表示液晶层16的非寻常光折射率和寻常光折射率,d表示液晶层16的厚度。
在图2和图3中,Rob表示第一相位差补偿膜123在X-Y平面的第一相位差值,Rthb表示第一相位差补偿膜123在Z轴方向的第二相位差值,RthT表示第二相位差补偿膜142在Z轴方向的第三相位差值,而Rob、Rthb、RthT是以下列方程式所决定:
Rob=(Nxb- Nyb)×Db
Rthb=[( Nxb+ Nyb)/2-Nzb] ×Db
RthT=[( NxT+ NyT)/2-NzT] ×DT;
其中Nxb、Nyb、Nzb分别表示源自背光源18的光线在通过第一相位差补偿膜123时,在笛卡尔坐标系的X、Y、Z轴上所对应的折射率,NxT、NyT、NzT分别表示源自背光源18的光线在通过第二相位差补偿膜142时,在笛卡尔坐标系的X、Y、Z轴上所对应的折射率,Db和DT分别表示第一相位差补偿膜123和第二相位差补偿膜142的厚度。
如图2的线段A1、A2所示,液晶层16的相位延迟值在342.8 nm且液晶分子的预倾角为85度时,第一相位差补偿膜123的第一相位差值Rob和第二相位差值Rthb的值Rob,Rthb=72,240nm的条件下,液晶显示器10的漏光值会比在Rob,Rthb=84,280nm还要低。如图2的线段A3、A4所示,液晶层16的相位延迟值在342.8 nm且液晶分子的预倾角为85度时,第一相位差补偿膜123的第一相位差值Rob和第二相位差值Rthb的值Rob,Rthb=60,200nm的条件下,液晶显示器10的漏光值会比在Rob,Rthb=48,160nm还要低。
如图2的线段A5、A6、A9、A10所示,液晶层16的相位延迟值在342.8 nm且液晶分子的预倾角为87和89度时,第一相位差补偿膜123的第一相位差值Rob和第二相位差值Rthb的比值Rob,Rthb=72,240nm的条件下,液晶显示器10的漏光值会比在Rob,Rthb=84,280nm还要低。如图2的线段A7、A8、A11、A12所示,液晶层16的相位延迟值在342.8 nm且液晶分子的预倾角为87和89度时,第一相位差补偿膜123的第一相位差值Rob和第二相位差值Rthb的比值Rob,Rthb=60,200nm的条件下,液晶显示器10的漏光值会比在Rob,Rthb=,48,160nm还要低,优选地,在一并考虑第二相位差补偿膜142的第三相位差值RthT在106.2~129.8nm的时候,液晶显示器10的漏光值会更低。
请参阅图3,如图3的线段C1、C2、C5、C6、C9、C10所示,液晶层16的相位延迟值在361.4 nm且液晶分子的预倾角为85、87和89度时,第一相位差补偿膜123的第一相位差值Rob和第二相位差值Rthb的值Rob,Rthb=72,240nm的条件下,液晶显示器10的漏光值会比在Rob,Rthb=,84,280nm还要低。如图3的线段C3、C4、C7、C8、C11、C12所示,液晶层16的相位延迟值在361.4 nm且液晶分子的预倾角为85、87和89度时,第一相位差补偿膜123的第一相位差值Rob和第二相位差值Rthb的比值Rob,Rthb=60,200的条件下,液晶显示器10的漏光值会比在Rob,Rthb=,48,160还要低。
从图2~图3的内容中,即使第一相位差补偿膜123的第一相位差值Rob的范围位于48和84nm之间和第二相位差值Rthb的范围位于160和280nm之间,第一相位差补偿膜123的第一相位差值Rob和第二相位差值Rthb还有微调的空间。也就是说,当暗态漏光值最小为0.2nit时,第一相位差值Rob位于45.6和85.8nm之间,第二相位差值Rthb位于152和286nm之间。为了确保暗态漏光小于0.2nit,基于第一相位差值Rob位于45.6和85.8nm之间,第二相位差值Rthb位于152和286nm之间的前提下,其所对应的第二相位差补偿膜142的第三相位差值RthT介于Y1 nm~Y2 nm之间,其中Y1=0.0052854x2-3.15264x+502.64以及Y2=-0.0064882x2+1.85x+57.78,x表示第二相位差值Rthb。
由于传统使用单一双光轴补偿膜的液晶显示器,在液晶层的相位延迟值在352.1 nm,且双光轴补偿膜的第一相位差值Ro是72nm,且第二相位差值Rth是240nm,且第二TAC膜的第三相位差值Rth是35.4nm的条件下,在φ=200-400,φ=1400-1600,φ=2000-2200, φ=3100-3300会出现暗态漏光,其中φ表示在X-Y平面上,X轴与液晶分子光轴的投影之间的角度。相比之下,本发明使用单一第一相位差补偿膜123的液晶显示器10,经实验之后,液晶层16的相位延迟值在342.8 nm~361.4 nm之间且液晶层16的液晶分子的预倾角在85~90度之间(但不包含90度)的情形下,液晶显示器10仍然可以依据第一相位差补偿膜123的第一相位差值Rob和第二相位差值Rthb,以及第二相位差补偿膜142的第三相位差值RthT抑制漏光。也就是说,只要将第一相位差补偿膜123的第一相位差值Rob控制在45.6和85.8nm之间,第二相位差值Rthb控制在152和286nm之间,同时依据调整后第二相位差值Rthb,进一步地调整第二相位差补偿膜142的第三相位差值RthT,使第三相位差值RthT位于Y1 nm~Y2 nm之间,其中Y1=0.0052854x2-3.15264x+502.64以及Y2=-0.0064882x2+1.85x+57.78,x表示第二相位差值Rthb,液晶显示器10的暗态漏光值会小于传统使用单一双光轴补偿膜的液晶显示器。
本发明液晶显示器10的第一相位差补偿膜123与第二相位差补偿膜142不限于图1所示的位置,以下将说明其它可达同样效果的实施例。
请参阅图4,图4是本发明液晶显示器的第二实施例的示意图。不同于图1,在图4中,液晶显示器20的第一偏光片22自入光侧到出光侧依序包含第一TAC膜122、第一PVA膜121以及第二相位差补偿膜142,第二偏光片24自入光侧到出光侧依序包含第一相位差补偿膜123、第二PVA膜141及第三TAC膜143。第二相位差补偿膜142是第二TAC膜,第一相位差补偿膜123是双光轴补偿膜。
请参阅图5,图5是本发明液晶显示器的第三实施例的示意图。不同于图1,在图5中,液晶显示器30的第一偏光片32自入光侧到出光侧依序包含第一TAC膜122以及第一PVA膜121,第二偏光片14自入光侧到出光侧依序包含第二相位差补偿膜142、第一相位差补偿膜123、第二PVA膜141及第三TAC膜143。在本实施例中,第一相位差补偿膜123是双光轴补偿膜,第二相位差补偿膜142是第二TAC膜。而第一相位差补偿膜123与第二相位差补偿膜142的慢轴与第二PVA膜141的吸收轴的夹角呈90度。
请参阅图6,图6是本发明液晶显示器的第四实施例的示意图。不同于图5,在图6中,液晶显示器40的第一偏光片42自入光侧到出光侧依序包含第一TAC膜122、第一PVA膜121、第一相位差补偿膜123以及第二相位差补偿膜142,第二偏光片44自入光侧到出光侧依序包含第二PVA膜141及第三TAC膜143。在本实施例中,第一相位差补偿膜123是双光轴补偿膜,第二相位差补偿膜142是第二TAC膜。而第一相位差补偿膜123与第二相位差补偿膜142的慢轴与第一PVA膜121的吸收轴的夹角呈90度。
请参阅图7,图7是本发明液晶显示器的第五实施例的示意图。不同于图5,在图7中,液晶显示器50的第一偏光片52自入光侧到出光侧依序包含第一TAC膜122、第一PVA膜121以及第三相位差补偿膜124。第二偏光片14自入光侧到出光侧依序包含第二相位差补偿膜142、第一相位差补偿膜123、第二PVA膜141及第三TAC膜143。在本实施例中,第一相位差补偿膜123是双光轴补偿膜,第二相位差补偿膜142是第二TAC膜,第三相位差补偿膜124是第四TAC膜。而第一相位差补偿膜123与第二相位差补偿膜142的慢轴与第二PVA膜141的吸收轴的夹角呈90度。第三相位差补偿膜124通过调整第三相位差补偿膜124的厚度以及调整背光源18的光线在笛卡尔坐标系的X、Y、Z轴上所对应的折射率以提供一第四相位差值RthT’。液晶显示器50依据第一相位差值Rob、第二相位差值Rthb、第三相位差值RthT以及第四相位差值RthT’控制其漏光。请注意,相比于图1的液晶显示器10,图7液晶显示器50的第二相位差补偿膜142所提供的第三相位差值RthT以及第三相位差补偿膜124所提供的第四相位差值RthT’的总合等于图1的第二相位差补偿膜142所提供的第三相位差值RthT。
请参阅图8,图8是本发明液晶显示器10的第六实施例的示意图。不同于图7,在图8中,液晶显示器60的第一偏光片62自入光侧到出光侧依序包含第一TAC膜122、第一PVA膜121、第一相位差补偿膜123以及第二相位差补偿膜142。第二偏光片14自入光侧到出光侧依序包含第三相位差补偿膜124、第二PVA膜141及第三TAC膜143。在本实施例中,第一相位差补偿膜123是双光轴补偿膜,第二相位差补偿膜142是第二TAC膜,第三相位差补偿膜124是第四TAC膜。而第一相位差补偿膜123与第二相位差补偿膜142的慢轴与第二PVA膜141的吸收轴的夹角呈90度。第三相位差补偿膜124通过调整第三相位差补偿膜124的厚度以及调整背光源18的光线在笛卡尔坐标系的X、Y、Z轴上所对应的折射率以提供一第四相位差值RthT’。液晶显示器50依据第一相位差值Rob、第二相位差值Rthb、第三相位差值RthT以及第四相位差值RthT’控制其漏光。请注意,相比于图1的液晶显示器10,图8液晶显示器50的第二相位差补偿膜142所提供的第三相位差值RthT以及第三相位差补偿膜124所提供的第四相位差值RthT’的总合等于图1的第二相位差补偿膜142所提供的第三相位差值RthT。
图4~图8所绘示的液晶显示器20、30、40、50、60类似于图1的液晶显示器10,通过调整第一相位差值Rob、第二相位差值Rthb、第三相位差值RthT以及第四相位差值RthT’控制其漏光,其调整范围与图1的液晶显示器10所述范围类似,在此不另赘述。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (12)

  1. 一种液晶显示器,其包含一背光源用来发出光线,所述液晶显示器包括:
    一第一三醋酸纤维素酯片基(triacetate cellulose,TAC)膜;
    一第一聚乙烯醇(Polyvinyl Alcohol,PVA)膜;
    一第一相位差补偿膜,其通过调整所述第一相位差补偿膜的厚度以及调整所述光线在第一方向、第二方向以及第三方向分别所对应的第一折射率、第二折射率以及第三折射率以提供一第一相位差值以及一第二相位差值;
    一液晶层;
    一第二相位差补偿膜,其通过调整所述第二相位差补偿膜的厚度以及调整所述光线在所述第一方向、所述第二方向以及所述第三方向分别所对应的第四折射率、第五折射率以及第六折射率以提供一第三相位差值;
    一第二PVA膜;以及
    一第三TAC膜,
    其中所述液晶显示器依据所述第一相位差值、所述第二相位差值以及所述第三相位差值控制其暗态大视角漏光。
  2. 如权利要求1所述的液晶显示器,其中所述液晶层由(ne-no)×d决定的相位延迟值,是介于342.8~361.4 nm之间,其中ne和no分别表示所述液晶层的非寻常光折射率和寻常光折射率,d表示所述液晶层厚度。
  3. 如权利要求1所述的液晶显示器,其中所述第一相位差值是依据所述第一折射率、所述第二折射率和所述第一相位差补偿膜的厚度决定。
  4. 如权利要求2所述的液晶显示器,其中所述第一相位差补偿膜的第一相位差值是介于45.6~85.8 nm之间。
  5. 如权利要求1所述的液晶显示器,其中所述第二相位差值是依据所述第一折射率、所述第二折射率、所述第三折射率和所述第一相位差补偿膜的厚度决定。
  6. 如权利要求5所述的液晶显示器,其中所述第一相位差补偿膜的第二相位差值是介于152~286 nm之间。
  7. 如权利要求1所述的液晶显示器,其中所述液晶层的液晶分子的预倾角(pretilt angle)介于85~90度之间,但不包含90度。
  8. 如权利要求1所述的液晶显示器,其中所述第三相位差值是依据所述第四折射率、所述第五折射率、所述第六折射率和所述第二相位差补偿膜的厚度决定。
  9. 如权利要求8所述的液晶显示器,其中所述第二相位差补偿膜的第三相位差值是介于Y1 nm~Y2 nm之间,其中Y1=0.0052854x2-3.15264x+502.64以及Y2=-0.0064882x2+1.85x+57.78,x表示所述第二相位差值。
  10. 如权利要求1所述的液晶显示器,其中所述第一相位差补偿膜是一双光轴补偿膜,所述第二相位差补偿膜是一第二TAC膜。
  11. 如权利要求1所述的液晶显示器,其另包含一第三相位差补偿膜,所述第一相位差补偿膜贴合于所述第二相位差补偿膜,所述第一相位差补偿膜是一双光轴补偿膜,所述第二相位差补偿膜是一第二TAC膜,所述第三相位差补偿膜是一第四TAC膜。
  12. 如权利要求1所述的液晶显示器,其中所述第三相位差补偿膜,其通过调整所述第三相位差补偿膜的厚度以及调整所述光线在所述第一方向、所述第二方向以及所述第三方向分别所对应的第七折射率、第八折射率以及第九折射率以提供一第四相位差值;其中所述液晶显示器依据所述第一相位差值、所述第二相位差值、所述第三相位差值以及所述第四相位差值控制其漏光。
PCT/CN2012/081059 2012-09-03 2012-09-06 液晶显示器 WO2014032323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/704,630 US9158157B2 (en) 2012-09-03 2012-09-06 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210321347.7 2012-09-03
CN201210321347.7A CN102866537B (zh) 2012-09-03 2012-09-03 液晶显示器

Publications (1)

Publication Number Publication Date
WO2014032323A1 true WO2014032323A1 (zh) 2014-03-06

Family

ID=47445490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081059 WO2014032323A1 (zh) 2012-09-03 2012-09-06 液晶显示器

Country Status (3)

Country Link
US (1) US9158157B2 (zh)
CN (1) CN102866537B (zh)
WO (1) WO2014032323A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091902B (zh) * 2013-01-18 2015-09-09 深圳市华星光电技术有限公司 液晶显示器
CN103869534B (zh) * 2014-04-04 2016-08-17 深圳市华星光电技术有限公司 用于液晶面板的单层双轴补偿架构及液晶显示装置
US20150378199A1 (en) * 2014-06-25 2015-12-31 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display and optical compensation method applied in liquid crystal display
CN104298004A (zh) 2014-11-05 2015-01-21 深圳市华星光电技术有限公司 液晶面板补偿架构及液晶显示装置
CN104536205A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器
CN104536204A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器
CN117480443A (zh) * 2022-05-27 2024-01-30 京东方科技集团股份有限公司 液晶显示面板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487340A (zh) * 2002-03-08 2004-04-07 ���չ�˾ 液晶显示器件
CN101140386A (zh) * 2006-09-05 2008-03-12 奇美电子股份有限公司 液晶显示装置
US20110080546A1 (en) * 2009-10-06 2011-04-07 Wintek Corporation Liquid crystal display
CN102096241A (zh) * 2009-12-11 2011-06-15 乐金显示有限公司 蓝相模式液晶显示器件及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972816B2 (en) * 2003-11-12 2005-12-06 Optimax Technology Corporation Retardation device for a liquid crystal display
JP5129682B2 (ja) * 2008-08-04 2013-01-30 スタンレー電気株式会社 液晶表示素子
JP5301927B2 (ja) * 2008-09-01 2013-09-25 スタンレー電気株式会社 液晶表示素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487340A (zh) * 2002-03-08 2004-04-07 ���չ�˾ 液晶显示器件
CN101140386A (zh) * 2006-09-05 2008-03-12 奇美电子股份有限公司 液晶显示装置
US20110080546A1 (en) * 2009-10-06 2011-04-07 Wintek Corporation Liquid crystal display
CN102096241A (zh) * 2009-12-11 2011-06-15 乐金显示有限公司 蓝相模式液晶显示器件及其制造方法

Also Published As

Publication number Publication date
US20150177550A1 (en) 2015-06-25
US9158157B2 (en) 2015-10-13
CN102866537B (zh) 2016-03-30
CN102866537A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2014032323A1 (zh) 液晶显示器
WO2019114099A1 (zh) 一种液晶显示面板及液晶显示器
CN102854660B (zh) 一种使用光学补偿膜减弱va液晶显示器暗态漏光的方法
JP2003262869A (ja) 液晶表示装置
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
WO2014067197A1 (zh) 液晶显示面板及其应用的显示装置
WO2014056245A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
WO2013174019A1 (zh) 液晶显示面板及其应用的显示装置
JP5193135B2 (ja) 高次波長板を含むマイクロディスプレイ・パネルのコントラスト補償
WO2014110839A1 (zh) 液晶显示器
WO2019135535A1 (ko) 액정 표시 장치 및 이의 제조방법
US20090002609A1 (en) Liquid crystal display device
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
WO2016101339A1 (zh) 液晶显示器
WO2016070450A1 (zh) 液晶面板补偿架构及液晶显示装置
CN102854659B (zh) 一种使用光学补偿膜减弱va液晶显示器暗态漏光的方法
WO2015149379A1 (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
WO2016101338A1 (zh) 液晶显示器
WO2016065659A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2014107886A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
WO2013174012A1 (zh) 液晶显示面板及其应用的显示装置
WO2015196503A1 (zh) 液晶显示器及其光学补偿方法
WO2014056246A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
US7868979B2 (en) Liquid crystal display device
US20140192300A1 (en) Compensation System for Liquid Crystal Panel and Liquid Crystal Display Device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13704630

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883597

Country of ref document: EP

Kind code of ref document: A1