WO2014109304A1 - Switching power supply device - Google Patents

Switching power supply device Download PDF

Info

Publication number
WO2014109304A1
WO2014109304A1 PCT/JP2014/050046 JP2014050046W WO2014109304A1 WO 2014109304 A1 WO2014109304 A1 WO 2014109304A1 JP 2014050046 W JP2014050046 W JP 2014050046W WO 2014109304 A1 WO2014109304 A1 WO 2014109304A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
capacitor
voltage
power supply
resistance element
Prior art date
Application number
PCT/JP2014/050046
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 吉實
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to CN201480003339.5A priority Critical patent/CN104838575B/en
Priority to JP2014556408A priority patent/JP5794447B2/en
Publication of WO2014109304A1 publication Critical patent/WO2014109304A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Definitions

  • the present invention relates to a switching power supply device, and more particularly to a switching power supply device in which an input power supply applied to a switching element is intermittent based on a pulse voltage.
  • Patent Document 1 An example of this type of device is disclosed in Patent Document 1.
  • a pulse voltage and a power supply voltage are applied to the base and collector of the emitter follower transistor, respectively.
  • the power supply voltage is interrupted by the pulse voltage, whereby a similar pulse voltage appears at the emitter of the emitter follower transistor.
  • JP 60-134516 A (FIGS. 3 and 4)
  • the harmonics of the pulse voltage cause resonance with the LC circuit formed by the inductor component of the transformer and the stray capacitance of the circuit, and overshoot and undershoot of the pulse voltage. As a result, the waveform characteristics of the output voltage may be deteriorated.
  • a main object of the present invention is to provide a switching power supply device that can improve the waveform characteristics of the output voltage.
  • a switching power supply device (10: reference numeral corresponding to the embodiment; the same applies hereinafter) is connected to a first resistance element (R1) having one terminal to which a pulse voltage is applied and the other terminal of the first resistance element.
  • a second resistive element (R2) having one terminal, a first capacitive element (C1) provided between the other terminal of the second resistive element and the ground, and a first rectifying element connected in parallel with the first resistive element (D1), a second rectifier element (D2) connected in parallel with the second resistor element in a direction opposite to the direction of the first rectifier element, one terminal of the first resistor element, and the other terminal of the second resistor element
  • a switching element (Q1) having a control terminal connected to the second capacitor element (C2 to C3) having one terminal and the other terminal connected thereto, and a control terminal connected to the other terminal of the second resistor element (Q1). , Q2), and AC voltage generated by switching element switching That includes a transformer (16).
  • the second capacitor element includes a second capacitor (C2) and a third capacitor (C3) connected in series with each other.
  • the second capacitor is connected in parallel with the first resistance element
  • the third capacitor is connected in parallel with the second resistance element
  • the resistance value of the second resistance element may be different from the resistance value of the first resistance element.
  • the switching element includes an NPN-type first transistor (Q1) having a collector to which an input power supply is applied, and a PNP-type second transistor having an emitter and a collector connected to the emitter and ground of the first transistor, respectively.
  • Q1 NPN-type first transistor
  • PNP-type second transistor having an emitter and a collector connected to the emitter and ground of the first transistor, respectively.
  • an electrolytic capacitor (C4) having one terminal connected to the emitter of the first transistor and the other terminal connected to the primary coil of the transformer is further provided.
  • the pulse voltage rises, the current flows into the first capacitor element through the second capacitor element.
  • the terminal voltage of the first capacitor element that is, the voltage applied to the control terminal of the switching element rises rapidly.
  • the potential of the second capacitive element rises, the current is supplied to one of the first resistance element and the second resistance element, and the first rectification element and the second rectification element connected in parallel with the other resistance element. Flows into the first capacitive element through one of the rectifying elements.
  • an RC circuit is formed by the resistive element and the first capacitive element through which current is conducted. Overshoot caused by stray capacitance and the inductor component of the transformer is suppressed by the RC circuit thus formed.
  • the pulse voltage falls, the current based on the charge accumulated in the first capacitor element flows backward through the second capacitor element.
  • the terminal voltage of the first capacitor element that is, the voltage applied to the control terminal of the switching element falls abruptly.
  • the potential of the second capacitor element is decreased, the current is supplied to the other resistor element of the first resistor element and the second resistor element, and the first rectifier element and the second resistor element connected in parallel to the one resistor element.
  • the current flows back through one of the rectifying elements.
  • an RC circuit is formed by the first capacitive element and the resistive element that conducts current. Undershoot caused by stray capacitance and the inductor component of the transformer is also suppressed by the RC circuit thus formed.
  • ⁇ Input power is interrupted by such switching elements.
  • a voltage having a waveform close to a rectangular wave is output from the switching element and thus the transformer, and the waveform characteristics of the output voltage are improved.
  • (A) is a waveform diagram showing an example of a change in pulse voltage output from the voltage generation circuit
  • (B) is a waveform diagram showing an example of a change in pulse voltage applied to the base of a transistor
  • (C ) Is a waveform diagram showing an example of a change in pulse voltage appearing at the emitter of the transistor
  • (D) is a waveform diagram showing an example of a change in AC voltage applied to the primary coil of the transformer.
  • (A) is a waveform diagram showing an example of a change in pulse voltage applied to the base of the transistor
  • (B) is a diagram in which capacitors C2 to C3, diodes D1 to D2 and resistors R1 to R2 are omitted from the embodiment of FIG. FIG.
  • FIG. 4C is a waveform diagram showing an example of a change in the base voltage of the transistor in the case
  • FIG. 8C shows an example of a change in the base voltage of the transistor when the capacitors C2 to C3 and the diodes D1 to D2 are omitted from the embodiment of FIG. It is a waveform diagram.
  • the switching power supply device 10 of this embodiment includes a 24V input power supply (DC voltage source) E1.
  • the negative terminal of the input power supply E1 is connected to the ground, and the positive terminal of the input power supply E1 is connected to the collector of the NPN transistor Q1.
  • the emitter of the transistor Q1 is connected to the emitter of the PNP transistor Q2, and the collector of the transistor Q2 is connected to the ground.
  • the voltage generation circuit 12 includes an NPN transistor Q3 having an emitter connected to the ground.
  • the collector of transistor Q3 is connected to one terminal of resistance element R3, the other terminal of resistance element R3 is connected to the positive terminal of DC power supply E2, and the negative terminal of DC power supply E2 is connected to the ground. Note that the output voltage of the DC power supply E2 is variable in the range of 10V to 18V.
  • the clock generator 14 applies a clock pulse to the base of the transistor Q3.
  • the transistor Q3 is turned on / off in response to the clock pulse, whereby a pulse voltage (rectangular wave voltage) appears at one terminal of the resistance element R3.
  • the pulse voltage indicates an L level when the transistor Q3 is in an on state, and indicates an H level when the transistor Q3 is in an off state.
  • a capacitor C2 and a diode D1 are connected in parallel to the resistor element R1, and a capacitor C3 and a diode D2 are connected in parallel to the resistor element R2.
  • the bases of the transistors Q1 and Q2 are also connected to the ground via the capacitor C1.
  • the emitters of the transistors Q1 and Q2 are connected to the plus terminal of an electric field capacitor C4 that functions as a coupling capacitor.
  • the negative terminal of the electric field capacitor C4 is connected to one terminal of the primary coil L1 that forms the transformer 16 and the other terminal is connected to the ground.
  • the secondary coil L2 forming the transformer 16 one terminal is connected to the output terminal Vout, and the other terminal is connected to the ground.
  • the operational amplifier 18 controls the voltage of the DC power supply E2 based on the secondary voltage of the transformer 16.
  • the secondary voltage of the transformer 16, that is, the AC voltage output from the output terminal Vout is adjusted to a desired value by such feedback control.
  • the current based on the pulse voltage flows into the capacitor C1 through the capacitors C2 and C3 that are more likely to flow (see FIG. 2).
  • the terminal voltage of the capacitor C1 that is, the base voltages of the transistors Q1 and Q2 rapidly increase.
  • the current based on the charge accumulated in the capacitor C1 flows back to the voltage generation circuit 12 through the resistance element R2 and the diode D1 (see FIG. 5).
  • an RC circuit is formed by the resistor element R2 and the capacitor C1.
  • the amount of current flowing through the resistor element R2 due to the discharge of the capacitor C1 depends on the resistance value of the resistor element R2, and the rate of drop of the terminal voltage of the capacitor C1 due to the discharge depends on the capacitance of the capacitor C1.
  • the terminal voltage drop of the capacitor C1 is delayed. As a result, the waveform of the falling terminal voltage is reduced, and undershoot is suppressed.
  • the pulse voltage output from the voltage generation circuit 12 changes as shown in FIG. 6 (A)
  • the base voltages of the transistors Q1 and Q2 are as shown in FIG. 6 (B) or FIG. 7 (A). Change.
  • FIG. 7B shows an example of changes in the base voltages of the transistors Q1 to Q2 when the capacitors C2 to C3, the diodes D1 to D2 and the resistors R1 to R2 are omitted from the circuit shown in FIG.
  • FIG. 7C shows an example of changes in the base voltages of the transistors Q1 to Q2 when the capacitors C2 to C3 and the diodes D1 to D2 are omitted from the circuit shown in FIG.
  • the input power source E1 When the base voltage changes as shown in FIG. 6B or FIG. 7A, the input power source E1 is interrupted, and a similar voltage waveform appears at the emitters of the transistors Q1 and Q2 (see FIG. 6C). ).
  • the emitter voltage is 18V during the period when the base voltage is at the H level, and is 0V when the base voltage is at the L level.
  • the direct current component of the emitter voltage thus generated is eliminated by the electrolytic capacitor C4, whereby an alternating voltage having a maximum amplitude of 9 V is applied to the primary coil L1 of the transformer 16 (see FIG. 6D).
  • An AC voltage corresponding to the transformation ratio of the transformer 16 appears at the secondary coil L2 of the transformer 16 and thus at the output terminal Vout.
  • the switching power supply device 10 of this embodiment has the following effects.
  • an AC voltage waveform corresponding to high-speed switching between L level and H level can be formed at low cost without using a high-speed high-speed operational amplifier.
  • an operational amplifier that is not susceptible to noise is used, noise resistance can be improved.
  • the active passive element is different between the rising time and the falling time of the pulse voltage, the voltage waveform at the rising portion and the voltage waveform at the falling portion can be adjusted independently.
  • the anode of the diode D1 may be connected to one terminal of the resistor element R1
  • the anode of the diode D2 may be connected to the other terminal of the resistor element R2.
  • the resistance value of the resistance element R1 and the resistance value of the resistance element R2 are the same.
  • the resistance values may be different between the resistance elements R1 and R2. This makes it possible to make a difference between the degree of rounding at the rising part of the base voltage and the degree of rounding at the falling part of the base voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A pulse voltage is applied to one terminal of a resistance element (R1). One terminal of a resistance element (R2) is connected to the other terminal of the resistance element (R1). A capacitor (C1) is provided between the other terminal of the resistance element (R2) and ground. A diode (D1) and a capacitor (C2) are connected in parallel with the resistance element (R1), and a diode (D2) and a capacitor (C3) are connected in parallel with the resistance element (R2). The diode (D2) is arranged in the reverse direction with respect to the diode (D1). Transistors (Q1, Q2) have a control terminal connected to the other terminal of the resistance element (R2) to turn an input power supply (E1) on and off. A transformer (16) transforms the AC voltage generated by turning the transistors (Q1, Q2) on and off.

Description

スイッチング電源装置Switching power supply
 この発明は、スイッチング電源装置に関し、特にスイッチング素子に印加される入力電源をパルス電圧に基づいて断続する、スイッチング電源装置に関する。 The present invention relates to a switching power supply device, and more particularly to a switching power supply device in which an input power supply applied to a switching element is intermittent based on a pulse voltage.
 この種の装置の一例が、特許文献1に開示されている。この背景技術によれば、パルス電圧および電源電圧がエミッタフォロワートランジスタのベースおよびコレクタにそれぞれ印加される。電源電圧はパルス電圧によって断続され、これによって同様のパルス電圧がエミッタフォロワートランジスタのエミッタに現れる。 An example of this type of device is disclosed in Patent Document 1. According to this background art, a pulse voltage and a power supply voltage are applied to the base and collector of the emitter follower transistor, respectively. The power supply voltage is interrupted by the pulse voltage, whereby a similar pulse voltage appears at the emitter of the emitter follower transistor.
特開昭60-134516号公報(第3図、第4図)JP 60-134516 A (FIGS. 3 and 4)
 しかし、エミッタフォロワートランジスタの後段にトランスを設けると、パルス電圧の高調波がトランスのインダクタ成分や回路の浮遊容量によって形成されたLC回路との間で共振を引き起こし、パルス電圧のオーバーシュートおよびアンダーシュートによって出力電圧の波形特性が劣化するおそれがある。 However, if a transformer is provided after the emitter follower transistor, the harmonics of the pulse voltage cause resonance with the LC circuit formed by the inductor component of the transformer and the stray capacitance of the circuit, and overshoot and undershoot of the pulse voltage. As a result, the waveform characteristics of the output voltage may be deteriorated.
 それゆえに、この発明の主たる目的は、出力電圧の波形特性を改善することができる、スイッチング電源装置を提供することである。 Therefore, a main object of the present invention is to provide a switching power supply device that can improve the waveform characteristics of the output voltage.
 この発明に従うスイッチング電源装置(10:実施例で相当する参照符号。以下同じ)は、パルス電圧が印加される一方端子を有する第1抵抗素子(R1)、第1抵抗素子の他方端子と接続された一方端子を有する第2抵抗素子(R2)、第2抵抗素子の他方端子とグランドとの間に設けられた第1容量素子(C1)、第1抵抗素子と並列接続された第1整流素子(D1)、第1整流素子の方向と逆の方向を向いて第2抵抗素子と並列接続された第2整流素子(D2)、第1抵抗素子の一方端子および第2抵抗素子の他方端子とそれぞれ接続された一方端子および他方端子を有する第2容量素子(C2~C3)、第2抵抗素子の他方端子と接続された制御端子を有して入力電源(E1)を断続するスイッチング素子(Q1, Q2)、およびスイッチング素子の断続によって生成された交流電圧を変圧するトランス(16)を備える。 A switching power supply device according to the present invention (10: reference numeral corresponding to the embodiment; the same applies hereinafter) is connected to a first resistance element (R1) having one terminal to which a pulse voltage is applied and the other terminal of the first resistance element. A second resistive element (R2) having one terminal, a first capacitive element (C1) provided between the other terminal of the second resistive element and the ground, and a first rectifying element connected in parallel with the first resistive element (D1), a second rectifier element (D2) connected in parallel with the second resistor element in a direction opposite to the direction of the first rectifier element, one terminal of the first resistor element, and the other terminal of the second resistor element A switching element (Q1) having a control terminal connected to the second capacitor element (C2 to C3) having one terminal and the other terminal connected thereto, and a control terminal connected to the other terminal of the second resistor element (Q1). , Q2), and AC voltage generated by switching element switching That includes a transformer (16).
 好ましくは、第2容量素子は互いに直列接続された第2コンデンサ(C2)および第3コンデンサ(C3)を含む。 Preferably, the second capacitor element includes a second capacitor (C2) and a third capacitor (C3) connected in series with each other.
 さらに好ましくは、第2コンデンサは第1抵抗素子と並列接続され、第3コンデンサは第2抵抗素子と並列接続される。 More preferably, the second capacitor is connected in parallel with the first resistance element, and the third capacitor is connected in parallel with the second resistance element.
 第2抵抗素子の抵抗値は第1抵抗素子の抵抗値と相違してもよい。 The resistance value of the second resistance element may be different from the resistance value of the first resistance element.
 好ましくは、スイッチング素子は、入力電源が印加されるコレクタを有するNPN型の第1トランジスタ(Q1)、および第1トランジスタのエミッタおよびグランドとそれぞれ接続されたエミッタおよびコレクタを有するPNP型の第2トランジスタ(Q2)を含む。 Preferably, the switching element includes an NPN-type first transistor (Q1) having a collector to which an input power supply is applied, and a PNP-type second transistor having an emitter and a collector connected to the emitter and ground of the first transistor, respectively. Includes (Q2).
 さらに好ましくは、第1トランジスタのエミッタと接続された一方端子およびトランスの一次コイルと接続された他方端子を有する電解コンデンサ(C4)がさらに備えられる。 More preferably, an electrolytic capacitor (C4) having one terminal connected to the emitter of the first transistor and the other terminal connected to the primary coil of the transformer is further provided.
 パルス電圧の立ち上がり時、電流は第2容量素子を経て第1容量素子に流れ込む。これによって、第1容量素子の端子電圧つまりスイッチング素子の制御端子への印加電圧が急激に立ち上がる。第2容量素子の電位が上昇すると、電流は、第1抵抗素子および第2抵抗素子のうち一方の抵抗素子と、他方の抵抗素子と並列接続されている、第1整流素子および第2整流素子のうちいずれか一方の整流素子とを経て第1容量素子に流れ込む。このとき、電流が導通する抵抗素子と第1容量素子とによってRC回路が形成される。浮遊容量やトランスのインダクタ成分に起因するオーバーシュートは、こうして形成されたRC回路によって抑制される。 When the pulse voltage rises, the current flows into the first capacitor element through the second capacitor element. As a result, the terminal voltage of the first capacitor element, that is, the voltage applied to the control terminal of the switching element rises rapidly. When the potential of the second capacitive element rises, the current is supplied to one of the first resistance element and the second resistance element, and the first rectification element and the second rectification element connected in parallel with the other resistance element. Flows into the first capacitive element through one of the rectifying elements. At this time, an RC circuit is formed by the resistive element and the first capacitive element through which current is conducted. Overshoot caused by stray capacitance and the inductor component of the transformer is suppressed by the RC circuit thus formed.
 パルス電圧の立ち下がり時、第1容量素子に蓄積された電荷に基づく電流は、第2容量素子を経て逆流する。これによって、第1容量素子の端子電圧つまりスイッチング素子の制御端子への印加電圧が急激に立ち下がる。第2容量素子の電位が減少すると、電流は、第1抵抗素子および第2抵抗素子のうち前記他方の抵抗素子と、前記一方の抵抗素子と並列接続されている、第1整流素子および第2整流素子のうちいずれか一方の整流素子とを経て逆流する。このとき、第1容量素子と電流が導通する抵抗素子とによってRC回路が形成される。浮遊容量やトランスのインダクタ成分に起因するアンダーシュートもまた、こうして形成されたRC回路によって抑制される。 When the pulse voltage falls, the current based on the charge accumulated in the first capacitor element flows backward through the second capacitor element. As a result, the terminal voltage of the first capacitor element, that is, the voltage applied to the control terminal of the switching element falls abruptly. When the potential of the second capacitor element is decreased, the current is supplied to the other resistor element of the first resistor element and the second resistor element, and the first rectifier element and the second resistor element connected in parallel to the one resistor element. The current flows back through one of the rectifying elements. At this time, an RC circuit is formed by the first capacitive element and the resistive element that conducts current. Undershoot caused by stray capacitance and the inductor component of the transformer is also suppressed by the RC circuit thus formed.
 入力電源は、このようなスイッチング素子によって断続される。この結果、矩形波に近い波形を示す電圧がスイッチング素子ひいてはトランスから出力され、出力電圧の波形特性が改善される。 ∙ Input power is interrupted by such switching elements. As a result, a voltage having a waveform close to a rectangular wave is output from the switching element and thus the transformer, and the waveform characteristics of the output voltage are improved.
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この発明の一実施例の構成を示す回路図である。It is a circuit diagram which shows the structure of one Example of this invention. パルス電圧が立ち上がり始めた時点の電流経路を示す図解図である。It is an illustration figure which shows the electric current path | route at the time of a pulse voltage starting to rise. パルス電圧が立ち上がった後の電流経路を示す図解図である。It is an illustration figure which shows the electric current path | route after a pulse voltage rises. パルス電圧が立ち下がり始めた時点の電流経路を示す図解図である。It is an illustration figure which shows the electric current path | route at the time of a pulse voltage beginning to fall. パルス電圧が立ち下がった後の電流経路を示す図解図である。It is an illustration figure which shows the electric current path after a pulse voltage falls. (A)は電圧発生回路から出力されるパルス電圧の変化の一例を示す波形図であり、(B)はトランジスタのベースに印加されるパルス電圧の変化の一例を示す波形図であり、(C)はトランジスタのエミッタに現れるパルス電圧の変化の一例を示す波形図であり、(D)はトランスの一次コイルに印加される交流電圧の変化の一例を示す波形図である。(A) is a waveform diagram showing an example of a change in pulse voltage output from the voltage generation circuit, (B) is a waveform diagram showing an example of a change in pulse voltage applied to the base of a transistor, (C ) Is a waveform diagram showing an example of a change in pulse voltage appearing at the emitter of the transistor, and (D) is a waveform diagram showing an example of a change in AC voltage applied to the primary coil of the transformer. (A)はトランジスタのベースに印加されるパルス電圧の変化の一例を示す波形図であり、(B)は図1実施例からコンデンサC2~C3,ダイオードD1~D2および抵抗R1~R2を省いた場合のトランジスタのベース電圧の変化の一例を示す波形図であり、(C)は図1実施例からコンデンサC2~C3およびダイオードD1~D2を省いた場合のトランジスタのベース電圧の変化の一例を示す波形図である。(A) is a waveform diagram showing an example of a change in pulse voltage applied to the base of the transistor, and (B) is a diagram in which capacitors C2 to C3, diodes D1 to D2 and resistors R1 to R2 are omitted from the embodiment of FIG. FIG. 4C is a waveform diagram showing an example of a change in the base voltage of the transistor in the case, and FIG. 8C shows an example of a change in the base voltage of the transistor when the capacitors C2 to C3 and the diodes D1 to D2 are omitted from the embodiment of FIG. It is a waveform diagram.
 図1を参照して、この実施例のスイッチング電源装置10は、24Vの入力電源(直流電圧源)E1を含む。入力電源E1のマイナス端子はグランドと接続され、入力電源E1のプラス端子はNPN型のトランジスタQ1のコレクタと接続される。トランジスタQ1のエミッタはPNP型トランジスタQ2のエミッタと接続され、トランジスタQ2のコレクタはグランドと接続される。 Referring to FIG. 1, the switching power supply device 10 of this embodiment includes a 24V input power supply (DC voltage source) E1. The negative terminal of the input power supply E1 is connected to the ground, and the positive terminal of the input power supply E1 is connected to the collector of the NPN transistor Q1. The emitter of the transistor Q1 is connected to the emitter of the PNP transistor Q2, and the collector of the transistor Q2 is connected to the ground.
 電圧発生回路12は、グランドと接続されたエミッタを有するNPN型のトランジスタQ3を含む。トランジスタQ3のコレクタは抵抗素子R3の一方端子と接続され、抵抗素子R3の他方端子は直流電源E2のプラス端子と接続され、そして直流電源E2のマイナス端子はグランドと接続される。なお、直流電源E2の出力電圧は、10V~18Vの範囲で可変である。  The voltage generation circuit 12 includes an NPN transistor Q3 having an emitter connected to the ground. The collector of transistor Q3 is connected to one terminal of resistance element R3, the other terminal of resistance element R3 is connected to the positive terminal of DC power supply E2, and the negative terminal of DC power supply E2 is connected to the ground. Note that the output voltage of the DC power supply E2 is variable in the range of 10V to 18V. *
 クロック発生器14は、クロックパルスをトランジスタQ3のベースに印加する。トランジスタQ3はクロックパルスに応答してオン/オフされ、これによって抵抗素子R3の一方端子にパルス電圧(矩形波電圧)が現れる。パルス電圧は、トランジスタQ3がオン状態のときにLレベルを示し、トランジスタQ3がオフ状態のときにHレベルを示す。 The clock generator 14 applies a clock pulse to the base of the transistor Q3. The transistor Q3 is turned on / off in response to the clock pulse, whereby a pulse voltage (rectangular wave voltage) appears at one terminal of the resistance element R3. The pulse voltage indicates an L level when the transistor Q3 is in an on state, and indicates an H level when the transistor Q3 is in an off state.
 抵抗素子R3の一方端子は、互いに直列接続された抵抗素子R1およびR2を介してトランジスタQ1およびQ2のベース(=制御端子)と接続される。抵抗素子R1にはコンデンサC2およびダイオードD1が並列接続され、抵抗素子R2にはコンデンサC3およびダイオードD2が並列接続される。トランジスタQ1およびQ2のベースはまた、コンデンサC1を介してグランドと接続される。 One terminal of the resistance element R3 is connected to the bases (= control terminals) of the transistors Q1 and Q2 via the resistance elements R1 and R2 connected in series with each other. A capacitor C2 and a diode D1 are connected in parallel to the resistor element R1, and a capacitor C3 and a diode D2 are connected in parallel to the resistor element R2. The bases of the transistors Q1 and Q2 are also connected to the ground via the capacitor C1.
 ここで、ダイオードD1のカソードは抵抗素子R1の一方端子(=抵抗素子R3の一方端子)と接続される一方、ダイオードD2のカソードは抵抗素子R2の他方端子(=トランジスタQ1およびQ2のベース)と接続される。つまり、ダイオードD1およびD2は互いに逆方向を向いて配置される。 Here, the cathode of the diode D1 is connected to one terminal of the resistance element R1 (= one terminal of the resistance element R3), while the cathode of the diode D2 is connected to the other terminal of the resistance element R2 (= the bases of the transistors Q1 and Q2). Connected. That is, the diodes D1 and D2 are arranged in opposite directions.
 トランジスタQ1およびQ2のエミッタは、カップリングコンデンサとして機能する電界コンデンサC4のプラス端子と接続される。電界コンデンサC4のマイナス端子は、トランス16を形成しかつ他方端子がグランドと接続された一次コイルL1の一方端子と接続される。トランス16を形成する二次コイルL2については、一方端子が出力端子Voutと接続され、他方端子がグランドと接続される。 The emitters of the transistors Q1 and Q2 are connected to the plus terminal of an electric field capacitor C4 that functions as a coupling capacitor. The negative terminal of the electric field capacitor C4 is connected to one terminal of the primary coil L1 that forms the transformer 16 and the other terminal is connected to the ground. Regarding the secondary coil L2 forming the transformer 16, one terminal is connected to the output terminal Vout, and the other terminal is connected to the ground.
 オペアンプ18は、トランス16の二次電圧に基づいて、直流電源E2の電圧を制御する。トランス16の二次電圧つまり出力端子Voutから出力される交流電圧は、このようなフィードバック制御によって所望の値に調整される。 The operational amplifier 18 controls the voltage of the DC power supply E2 based on the secondary voltage of the transformer 16. The secondary voltage of the transformer 16, that is, the AC voltage output from the output terminal Vout is adjusted to a desired value by such feedback control.
 抵抗素子R3の一方端に現れたパルス電圧の立ち上がり時、パルス電圧に基づく電流は、より流れやすいコンデンサC2およびC3を経て、コンデンサC1に流れ込む(図2参照)。この結果、コンデンサC1の端子電圧つまりトランジスタQ1およびQ2のベース電圧が急激に増大する。 At the rise of the pulse voltage appearing at one end of the resistance element R3, the current based on the pulse voltage flows into the capacitor C1 through the capacitors C2 and C3 that are more likely to flow (see FIG. 2). As a result, the terminal voltage of the capacitor C1, that is, the base voltages of the transistors Q1 and Q2 rapidly increase.
 コンデンサC2およびC3の電位が上昇すると、パルス電圧に基づく電流は、抵抗素子R1およびダイオードD2を経てコンデンサC1に流れ込む(図3参照)。このとき、抵抗素子R1とコンデンサC1とによってRC回路が形成される。抵抗素子R1を流れる電流の量は抵抗素子R1の抵抗値に依存し、電流の流れ込みによるコンデンサC1の端子電圧の上昇速度はコンデンサC1の容量に依存する。 When the potentials of the capacitors C2 and C3 rise, a current based on the pulse voltage flows into the capacitor C1 through the resistance element R1 and the diode D2 (see FIG. 3). At this time, an RC circuit is formed by the resistor element R1 and the capacitor C1. The amount of current flowing through the resistance element R1 depends on the resistance value of the resistance element R1, and the rising speed of the terminal voltage of the capacitor C1 due to the current flow depends on the capacitance of the capacitor C1.
 したがって、抵抗素子R1の抵抗値が増大するほど、或いはコンデンサC1の容量が増大するほど、コンデンサC1の端子電圧の上昇が遅れる。この結果、立ち上がる端子電圧の波形がなまり、オーバーシュートが抑制される。 Therefore, as the resistance value of the resistance element R1 increases or as the capacitance of the capacitor C1 increases, the increase in the terminal voltage of the capacitor C1 is delayed. As a result, the waveform of the rising terminal voltage is reduced, and overshoot is suppressed.
 抵抗素子R3の一方端に現れたパルス電圧の立ち下がり時は、コンデンサC1~C3に蓄積された電荷に基づく電流が電圧発生回路12に逆流する(図4参照)。この結果、コンデンサC1の端子電圧つまりトランジスタQ1およびQ2のベース電圧が急激に減少する。 When the pulse voltage that appears at one end of the resistance element R3 falls, the current based on the charges accumulated in the capacitors C1 to C3 flows backward to the voltage generation circuit 12 (see FIG. 4). As a result, the terminal voltage of the capacitor C1, that is, the base voltages of the transistors Q1 and Q2 are rapidly reduced.
 逆流した電流に基づいてコンデンサC2およびC3の電位が減少すると、コンデンサC1に蓄積された電荷に基づく電流は、抵抗素子R2およびダイオードD1を経て電圧発生回路12に逆流する(図5参照)。このとき、抵抗素子R2とコンデンサC1とによってRC回路が形成される。上述と同様、コンデンサC1の放電によって抵抗素子R2を流れる電流の量は抵抗素子R2の抵抗値に依存し、放電によるコンデンサC1の端子電圧の降下速度はコンデンサC1の容量に依存する。 When the potentials of the capacitors C2 and C3 decrease based on the backflowed current, the current based on the charge accumulated in the capacitor C1 flows back to the voltage generation circuit 12 through the resistance element R2 and the diode D1 (see FIG. 5). At this time, an RC circuit is formed by the resistor element R2 and the capacitor C1. As described above, the amount of current flowing through the resistor element R2 due to the discharge of the capacitor C1 depends on the resistance value of the resistor element R2, and the rate of drop of the terminal voltage of the capacitor C1 due to the discharge depends on the capacitance of the capacitor C1.
 したがって、抵抗素子R2の抵抗値が増大するほど、或いはコンデンサC1の容量が増大するほど、コンデンサC1の端子電圧の降下が遅れる。この結果、立ち下がる端子電圧の波形がなまり、アンダーシュートが抑制される。 Therefore, as the resistance value of the resistance element R2 increases or the capacitance of the capacitor C1 increases, the terminal voltage drop of the capacitor C1 is delayed. As a result, the waveform of the falling terminal voltage is reduced, and undershoot is suppressed.
 この結果、電圧発生回路12から出力されたパルス電圧が図6(A)に示すように変化したとき、トランジスタQ1およびQ2のベース電圧は図6(B)または図7(A)に示すように変化する。図6(B)または図7(A)によれば、ベース電圧の波形は、急激に立ち上がった後にHレベルの近傍でなまるとともに、急激に立ち下がった後にLレベル(=0V)の近傍でなまる。 As a result, when the pulse voltage output from the voltage generation circuit 12 changes as shown in FIG. 6 (A), the base voltages of the transistors Q1 and Q2 are as shown in FIG. 6 (B) or FIG. 7 (A). Change. According to FIG. 6 (B) or FIG. 7 (A), the waveform of the base voltage becomes sharp in the vicinity of the H level after suddenly rising, and in the vicinity of the L level (= 0 V) after sharply falling. Namaru.
 参考までに、図1に示す回路からコンデンサC2~C3,ダイオードD1~D2および抵抗R1~R2を省いた場合のトランジスタQ1~Q2のベース電圧の変化の一例を図7(B)に示す。また、図1に示す回路からコンデンサC2~C3およびダイオードD1~D2を省いた場合のトランジスタQ1~Q2のベース電圧の変化の一例を図7(C)に示す。 For reference, FIG. 7B shows an example of changes in the base voltages of the transistors Q1 to Q2 when the capacitors C2 to C3, the diodes D1 to D2 and the resistors R1 to R2 are omitted from the circuit shown in FIG. FIG. 7C shows an example of changes in the base voltages of the transistors Q1 to Q2 when the capacitors C2 to C3 and the diodes D1 to D2 are omitted from the circuit shown in FIG.
 図7(B)によれば、RC回路が存在しないためにオーバーシュートおよびアンダーシュートがベース電圧の波形に現れる。また、図7(C)によれば、RC回路の時定数に依存してベース電圧の波形がなまる。 According to FIG. 7B, since there is no RC circuit, overshoot and undershoot appear in the waveform of the base voltage. Further, according to FIG. 7C, the waveform of the base voltage is rounded depending on the time constant of the RC circuit.
 ベース電圧が図6(B)または図7(A)に示すように変化することで入力電源E1が断続し、トランジスタQ1およびQ2のエミッタにも同様の電圧波形が現れる(図6(C)参照)。エミッタ電圧は、ベース電圧がHレベルを示す期間において18Vを示し、ベース電圧がLレベルを示す期間において0Vを示す。 When the base voltage changes as shown in FIG. 6B or FIG. 7A, the input power source E1 is interrupted, and a similar voltage waveform appears at the emitters of the transistors Q1 and Q2 (see FIG. 6C). ). The emitter voltage is 18V during the period when the base voltage is at the H level, and is 0V when the base voltage is at the L level.
 こうして生成されたエミッタ電圧の直流成分は電解コンデンサC4によって排除され、これによって最大振幅が9Vの交流電圧がトランス16の一次コイルL1に印加される(図6(D)参照)。トランス16の二次コイルL2ひいては出力端子Voutには、トランス16の変圧比に応じた交流電圧が現れる。 The direct current component of the emitter voltage thus generated is eliminated by the electrolytic capacitor C4, whereby an alternating voltage having a maximum amplitude of 9 V is applied to the primary coil L1 of the transformer 16 (see FIG. 6D). An AC voltage corresponding to the transformation ratio of the transformer 16 appears at the secondary coil L2 of the transformer 16 and thus at the output terminal Vout.
 以上のように構成することで、この実施例のスイッチング電源装置10は次のような効果を奏する。 With the configuration as described above, the switching power supply device 10 of this embodiment has the following effects.
 つまり、高コストの高速オペアンプを使用せずに、低コストでLレベルとHレベルとの間の高速切り換えに対応した交流電圧波形を形成する事ができる。また、ノイズに弱いオペアンプを使用していない為、耐ノイズ性も高めることができる。さらに、プリント基板のパターンの引き回しも不要となり、高速オペアンプ時に課題となっていたパターン引き回しによる基板設計効率の低下も回避できる。また、アクティブとなる受動素子がパルス電圧の立ち上がり時と立ち下がり時とで相違するため、立ち上がり部分の電圧波形と立ち下がり部分の電圧波形とを独立して調整することができる。 That is, an AC voltage waveform corresponding to high-speed switching between L level and H level can be formed at low cost without using a high-speed high-speed operational amplifier. In addition, since an operational amplifier that is not susceptible to noise is used, noise resistance can be improved. Further, it is not necessary to route the pattern of the printed circuit board, and it is possible to avoid the decrease in the substrate design efficiency due to the pattern routing, which has been a problem in the high-speed operational amplifier. Further, since the active passive element is different between the rising time and the falling time of the pulse voltage, the voltage waveform at the rising portion and the voltage waveform at the falling portion can be adjusted independently.
 なお、この実施例では、ダイオードD1のカソードが抵抗素子R1の一方端子(=抵抗素子R3の一方端子)と接続され、ダイオードD2のカソードが抵抗素子R2の他方端子(=トランジスタQ1およびQ2のベース)と接続される。しかし、これに代えて、ダイオードD1のアノードを抵抗素子R1の一方端子と接続し、ダイオードD2のアノードを抵抗素子R2の他方端子と接続するようにしてもよい。 In this embodiment, the cathode of the diode D1 is connected to one terminal of the resistance element R1 (= one terminal of the resistance element R3), and the cathode of the diode D2 is the other terminal of the resistance element R2 (= the bases of the transistors Q1 and Q2). ). However, instead of this, the anode of the diode D1 may be connected to one terminal of the resistor element R1, and the anode of the diode D2 may be connected to the other terminal of the resistor element R2.
 また、この実施例では、抵抗素子R1の抵抗値および抵抗素子R2の抵抗値は互いに一致する。しかし、抵抗素子R1およびR2の間で抵抗値を異ならせるようにしてもよい。これによって、ベース電圧の立ち上がり部分のなまり具合とベース電圧の立ち下がり部分のなまり具合との間で違いを設けることができる。 In this embodiment, the resistance value of the resistance element R1 and the resistance value of the resistance element R2 are the same. However, the resistance values may be different between the resistance elements R1 and R2. This makes it possible to make a difference between the degree of rounding at the rising part of the base voltage and the degree of rounding at the falling part of the base voltage.
 10 …スイッチング電源装置
 12 …電圧発生回路
 16 …トランス
 18 …オペアンプ
DESCRIPTION OF SYMBOLS 10 ... Switching power supply device 12 ... Voltage generation circuit 16 ... Transformer 18 ... Operational amplifier

Claims (6)

  1.  パルス電圧が印加される一方端子を有する第1抵抗素子、
     前記第1抵抗素子の他方端子と接続された一方端子を有する第2抵抗素子、
     前記第2抵抗素子の他方端子とグランドとの間に設けられた第1容量素子、
     前記第1抵抗素子と並列接続された第1整流素子、
     前記第1整流素子の方向と逆の方向を向いて前記第2抵抗素子と並列接続された第2整流素子、
     前記第1抵抗素子の一方端子および前記第2抵抗素子の他方端子とそれぞれ接続された一方端子および他方端子を有する第2容量素子、
     前記第2抵抗素子の他方端子と接続された制御端子を有して入力電源を断続するスイッチング素子、および
     前記スイッチング素子の断続によって生成された交流電圧を変圧するトランスを備える、スイッチング電源装置。
    A first resistance element having one terminal to which a pulse voltage is applied;
    A second resistance element having one terminal connected to the other terminal of the first resistance element;
    A first capacitive element provided between the other terminal of the second resistive element and the ground;
    A first rectifying element connected in parallel with the first resistance element;
    A second rectifying element connected in parallel with the second resistance element in a direction opposite to the direction of the first rectifying element;
    A second capacitor element having one terminal and the other terminal connected to one terminal of the first resistor element and the other terminal of the second resistor element, respectively;
    A switching power supply device comprising: a switching element that has a control terminal connected to the other terminal of the second resistance element and that interrupts an input power supply; and a transformer that transforms an AC voltage generated by the interruption of the switching element.
  2.  前記第2容量素子は互いに直列接続された第2コンデンサおよび第3コンデンサを含む、請求項1記載のスイッチング電源装置。 The switching power supply device according to claim 1, wherein the second capacitor element includes a second capacitor and a third capacitor connected in series with each other.
  3.  前記第2コンデンサは前記第1抵抗素子と並列接続され、
     前記第3コンデンサは前記第2抵抗素子と並列接続される、請求項2記載のスイッチング電源装置。
    The second capacitor is connected in parallel with the first resistive element;
    The switching power supply device according to claim 2, wherein the third capacitor is connected in parallel with the second resistance element.
  4.  前記第2抵抗素子の抵抗値は前記第1抵抗素子の抵抗値と相違する、請求項1ないし3のいずれかに記載のスイッチング電源装置。 4. The switching power supply device according to claim 1, wherein a resistance value of the second resistance element is different from a resistance value of the first resistance element.
  5.  前記スイッチング素子は、前記入力電源が印加されるコレクタを有するNPN型の第1トランジスタ、および前記第1トランジスタのエミッタおよびグランドとそれぞれ接続されたエミッタおよびコレクタを有するPNP型の第2トランジスタを含む、請求項1ないし4のいずれかに記載のスイッチング電源装置。 The switching element includes an NPN-type first transistor having a collector to which the input power is applied, and a PNP-type second transistor having an emitter and a collector connected to the emitter and ground of the first transistor, respectively. The switching power supply device according to claim 1.
  6.  前記第1トランジスタのエミッタと接続された一方端子および前記トランスの一次コイルと接続された他方端子を有する電解コンデンサをさらに備える、請求項5記載のスイッチング電源装置。 The switching power supply device according to claim 5, further comprising an electrolytic capacitor having one terminal connected to the emitter of the first transistor and the other terminal connected to a primary coil of the transformer.
PCT/JP2014/050046 2013-01-09 2014-01-07 Switching power supply device WO2014109304A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480003339.5A CN104838575B (en) 2013-01-09 2014-01-07 Switching power unit
JP2014556408A JP5794447B2 (en) 2013-01-09 2014-01-07 Switching power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013002061 2013-01-09
JP2013-002061 2013-01-09

Publications (1)

Publication Number Publication Date
WO2014109304A1 true WO2014109304A1 (en) 2014-07-17

Family

ID=51166952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050046 WO2014109304A1 (en) 2013-01-09 2014-01-07 Switching power supply device

Country Status (3)

Country Link
JP (1) JP5794447B2 (en)
CN (1) CN104838575B (en)
WO (1) WO2014109304A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319850A (en) * 2001-04-23 2002-10-31 Yokogawa Electric Corp Multi-point signal output device
JP2010045924A (en) * 2008-08-13 2010-02-25 Sinfonia Technology Co Ltd Switch circuit in inverter, and inverter apparatus
JP2010252568A (en) * 2009-04-17 2010-11-04 Hitachi Ltd Drive circuit of semiconductor element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134516A (en) * 1983-12-21 1985-07-17 Matsushita Electric Ind Co Ltd Pulse amplifier circuit
CN1008868B (en) * 1987-06-12 1990-07-18 邮电部武汉通信电源厂 Dual transformer phase-shifting driving circuit used in transistorized adverser power transistor
KR100297340B1 (en) * 1997-11-18 2001-10-26 이형도 Asymmetry flyback converter
KR101261944B1 (en) * 2010-09-17 2013-05-09 기아자동차주식회사 Inverter control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319850A (en) * 2001-04-23 2002-10-31 Yokogawa Electric Corp Multi-point signal output device
JP2010045924A (en) * 2008-08-13 2010-02-25 Sinfonia Technology Co Ltd Switch circuit in inverter, and inverter apparatus
JP2010252568A (en) * 2009-04-17 2010-11-04 Hitachi Ltd Drive circuit of semiconductor element

Also Published As

Publication number Publication date
JPWO2014109304A1 (en) 2017-01-19
CN104838575A (en) 2015-08-12
JP5794447B2 (en) 2015-10-14
CN104838575B (en) 2017-06-16

Similar Documents

Publication Publication Date Title
CN110999053B (en) Adjustable power supply device for supplying power to power switch control device
US9468048B2 (en) Input current regulator, driving method thereof, and disable circuit thereof
JP2010075037A (en) Switching power supply circuit
JP2005522177A (en) Line frequency switching regulator
JP5794447B2 (en) Switching power supply
KR20130014977A (en) Signal transfer circuit
WO2007055265A1 (en) Power source device
JP5513037B2 (en) Switching power supply
JPH11122924A (en) Self-oscillating switching power supply
JP2012253900A (en) Switching power supply device and led lighting apparatus using the same
CN220570463U (en) Load adjustable circuit, power supply circuit, circuit board and electronic equipment
JP2004519190A (en) Switching power supply
JP7208068B2 (en) pulse signal generator
JP2000270550A (en) Switching power source circuit
JP2016152628A (en) Switching power supply
JP5474684B2 (en) Drive control circuit, control device, switching power supply device, and control method
US7492612B2 (en) High-voltage generator
JP2006034071A (en) Switching supply circuit
KR102079400B1 (en) Output signal controller apparatus of op amplifier
TWI496395B (en) Power factor improving circuit and method and a offline converter with the power factor improving circuit
JP6575075B2 (en) Switching power supply
JP5829970B2 (en) Step-down voltage converter
US8054659B2 (en) Power supply with reduced switching losses by blocking a feedback comparator's control signal
JPH069583Y2 (en) Constant voltage power supply circuit
JP6520181B2 (en) Power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14738015

Country of ref document: EP

Kind code of ref document: A1