WO2014109282A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2014109282A1
WO2014109282A1 PCT/JP2014/000009 JP2014000009W WO2014109282A1 WO 2014109282 A1 WO2014109282 A1 WO 2014109282A1 JP 2014000009 W JP2014000009 W JP 2014000009W WO 2014109282 A1 WO2014109282 A1 WO 2014109282A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
filler
solar
protective member
Prior art date
Application number
PCT/JP2014/000009
Other languages
English (en)
French (fr)
Inventor
陽介 石井
蔵本 慶一
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to DE112014000392.1T priority Critical patent/DE112014000392T5/de
Priority to JP2014556401A priority patent/JP6308471B2/ja
Publication of WO2014109282A1 publication Critical patent/WO2014109282A1/ja
Priority to US14/795,956 priority patent/US9634167B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/003Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind solar power driven
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/90Energy harvesting concepts as power supply for auxiliaries' energy consumption, e.g. photovoltaic sun-roof

Definitions

  • the present invention relates to a solar cell module, and more particularly to a solar cell module having a curved surface.
  • Patent Document 1 describes that a solar cell module mounted on a vehicle such as an automobile has a curved structure corresponding to the roof shape of the automobile.
  • the solar cell element may be broken if it is bent below a certain radius of curvature due to the bending strength of the solar cell element.
  • a solar cell module includes a first protective member having a curved surface set to a predetermined radius of curvature in at least a first direction, a first filler disposed on the first protective member, and a first filling A solar cell disposed on the material, a second filler disposed on the solar cell, and a second protective member disposed on the second filler, At least at the end in the second direction perpendicular to the first direction, the end cross section along the first direction has a corrugated shape.
  • the solar cell module having a curved surface it is possible to suppress the cracking of the solar cells.
  • FIG. 3 is a cross-sectional view of the A-A ′ cross section of FIG. 2 viewed in the direction of the arrow.
  • FIG. 3 is a cross-sectional view of the B-B ′ cross section of FIG. 2 viewed in the direction of the arrow.
  • It is a one part perspective view of the solar cell string in embodiment of this invention.
  • It is sectional drawing which shows the manufacturing method of the solar cell module in embodiment of this invention.
  • transforms and curves according to the curved surface of a 1st protection member by the press molding of FIG.
  • FIG. 1 is a diagram illustrating a vehicle including a solar cell module 1.
  • FIG. 2 is a perspective view of the solar cell module 1.
  • 3 is a cross-sectional view of the AA ′ cross section of FIG. 2 as viewed from the direction of the arrow.
  • the vehicle width direction is referred to as a first direction
  • the front-rear direction is referred to as a second direction.
  • the solar cell module 1 includes a first protective member 2, a first filler 3, a plurality of solar cell strings 4, a second filler 5, and a second protective member 6 in this order.
  • the solar cell module 1 is formed in a two-dimensional or three-dimensional curved surface shape according to the outer shape of the roof portion of the vehicle body.
  • the solar cell module 1 is curved from the inside to the outside of the vehicle body.
  • the first protective member 2 is a light receiving surface side protective member
  • the second protective member 6 is a back surface side protective member.
  • the first protective member 2 has a predetermined radius of curvature R1 in at least the first direction according to the curved surface shape of the roof portion of the vehicle body.
  • a predetermined radius of curvature R2 can also be set in the second direction.
  • the curvature radius R1 in the first direction is smaller than the curvature radius R2 in the second direction.
  • the 1st protection member 2 is a transparent board and film which can take in light from the outside.
  • the member which has translucency such as a glass plate, a resin plate, a resin film, can be used.
  • the first filler 3 is a sheet member having a role as an impact buffering material and a function of preventing entry of contaminants, foreign matters, moisture, and the like with respect to the solar cell string 4.
  • the material of the first filler 3 is selected in consideration of heat resistance, adhesiveness, flexibility, moldability, durability, and the like. Since the first filler 3 takes in light from the outside, a transparent filler having as high colorless transparency as possible and transmitting incident light without absorbing or reflecting is used.
  • a transparent filler having as high colorless transparency as possible and transmitting incident light without absorbing or reflecting is used.
  • polyethylene-based olefin resin, ethylene vinyl acetate (EVA), or the like is used.
  • EVA ethylene vinyl acetate
  • silicone resin silicone resin
  • urethane resin acrylic resin
  • epoxy resin epoxy resin
  • the configuration of the solar cell string 4 will be described later.
  • the second filler 5 is a sheet member having the same function as the first filler 3.
  • the second filler 5 may be a filler having the same configuration as that of the first filler 3, or may be a colored filler so as to have appropriate reflectivity.
  • a colored filler having appropriate reflectivity a filler in which an inorganic pigment such as titanium oxide or zinc oxide is added as an additive for coloring the above-mentioned colorless and transparent filler into white is used. be able to.
  • the second protective member 6 is an opaque plate or film, and for example, a laminated film such as a resin film having an aluminum foil therein can also be used. Further, a colorless and transparent sheet may be used as the second protective member 6.
  • the solar cell module 1 includes a plurality of solar cell strings 4 arranged in the first direction and connected in parallel to each other.
  • a plurality of solar cells 10 arranged in the second direction are connected in series by a connecting member 11.
  • Each solar cell string 4 is curved following the shape of the first protective member 2.
  • the solar battery cell 10 includes a photoelectric conversion unit 12, a light receiving surface collecting electrode 13, and a back surface collecting electrode 14.
  • the photoelectric conversion unit 12 receives light such as sunlight and generates photogenerated carriers of holes and electrons.
  • the photoelectric conversion unit 12 includes a substrate of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), indium phosphide (InP), for example.
  • c-Si crystalline silicon
  • GaAs gallium arsenide
  • InP indium phosphide
  • the structure of the photoelectric conversion unit is a pn junction in a broad sense. For example, a heterojunction of an n-type single crystal silicon substrate and amorphous silicon can be used.
  • a transparent conductive film (TCO) composed of a conductive oxide is laminated, and an i-type amorphous silicon layer and an n-type amorphous silicon layer doped with phosphorus (P) or the like on the back side of the substrate, A double-sided power generation structure in which a transparent conductive film is laminated can be obtained.
  • the photoelectric conversion unit 12 may have a structure other than this as long as it has a function of converting light such as sunlight into electricity.
  • a structure including a p-type polycrystalline silicon substrate, an n-type diffusion layer formed on the light-receiving surface side, and an aluminum metal film formed on the back surface side may be used.
  • the light receiving surface collecting electrode 13 and the back surface collecting electrode 14 are connection electrodes, and the connection member 11 is connected thereto.
  • One solar battery cell 10 has three light receiving surface collector electrodes 13 on the light receiving surface and three back surface collector electrodes 14 on the back surface side. Three light receiving surface collecting electrodes 13 are arranged side by side in the first direction and extend in the second direction. The same applies to the back collector electrode 14.
  • the width of the light-receiving surface collecting electrode 13 and the back surface collecting electrode 14 is preferably about 1.5 mm to 3 mm, and the thickness is preferably about 20 ⁇ m to 160 ⁇ m.
  • a plurality of finger electrodes orthogonal to the light receiving surface collecting electrode 13 and the back surface collecting electrode 14 may be formed on the light receiving surface and the back surface of the solar battery cell 10, respectively. It is electrically connected to the collector electrode 14.
  • the connection member 11 is a conductive member that connects adjacent solar cells 10.
  • the connecting member 11 is connected to the three light receiving surface collecting electrodes 13 on the light receiving surface of one solar cell 10 among the adjacent solar cells 10 and 3 on the back surface of the other solar cell 10. Connected to the backside collector electrode 14 of the book.
  • the connection member 11 is connected to the light receiving surface collecting electrode 13 and the back surface collecting electrode 14 through an adhesive.
  • the width of the connecting member 11 is set to be the same as or slightly larger than that of the light receiving surface collecting electrode 13 and the back surface collecting electrode 14.
  • a thin plate made of a metal conductive material such as copper is used. Instead of a thin plate, a stranded wire can be used.
  • the conductive material in addition to copper, silver, aluminum, nickel, tin, gold, or an alloy thereof can be used.
  • thermosetting resin adhesive such as acrylic, highly flexible polyurethane, or epoxy
  • the adhesive includes conductive particles.
  • conductive particles nickel, silver, nickel with gold coating, copper with tin plating, or the like can be used.
  • An insulating resin adhesive can also be used as the adhesive.
  • one or both of the connecting member 11 and the light receiving surface collector electrode 13 facing each other are made uneven, and a resin is formed between the connection member 11 and the light receiving surface collector electrode 13. The electrical connection is made by appropriately eliminating the above.
  • FIG. 4 is a cross-sectional view of the B-B ′ cross section of FIG. 2 viewed from the direction of the arrow.
  • the B-B ′ cross section is a cross section along the first direction at the end portion of the solar battery cell 10 in the second direction.
  • FIG. 5 is a perspective view of solar cells 10 ⁇ / b> A and 10 ⁇ / b> B adjacent in the second direction in the solar cell module 1.
  • Solar cell 10A, 10B is curving as a whole following the shape of the first protective member 2, as shown in FIGS. Moreover, solar cell 10A, 10B is formed so that the edge part cross sections 40, 41, 43, 44 along a 1st direction may each have a waveform shape in each edge part of a 2nd direction.
  • the end cross section 40 of the solar battery cell 10 ⁇ / b> A is formed with a concave shape (valley) curved from the light receiving surface side to the back surface side at a position where the connection member 11 is arranged, and between the adjacent connection members 11.
  • a convex shape (mountain) that is curved from the back surface side to the light receiving surface side at a position is formed.
  • the end cross section 41 of the solar battery cell 10 ⁇ / b> A has a convex shape that is curved from the back surface side to the light receiving surface side at the position where the connection member 11 is disposed, and the back surface side from the light receiving surface side at a position between the adjacent connection members 11.
  • a concave shape that is curved is formed. That is, in the solar cell 10A, the position where the concave shape is formed and the position where the convex shape is formed are reversed at one end and the other end in the second direction.
  • Solar cell 10B has the same configuration as solar cell 10A. Specifically, the end section 43 of the solar battery cell 10B has the same configuration as the end section 40 of the solar battery cell 10A. The end section 44 of the solar battery cell 10B has the same configuration as the end section 41 of the solar battery cell 10A.
  • These waveform shapes are formed by the solar cells 10A and 10B being curved along the second direction from the light receiving surface side to the back surface side or from the back surface side to the light receiving surface side. This curve is formed so as to be small in the vicinity of the center portion in the second direction of the solar cells 10A and 10B and to be large at the end portion in the second direction.
  • the connecting member 11 connects the back surface collecting electrode 14 of the solar battery cell 10A and the light receiving surface collecting electrode 13 of the solar battery cell 10B. That is, between the solar cells 10A and 10B, the connecting member 11 extends from the back surface side of the solar cell 10A toward the light receiving surface side of the solar cell 10B.
  • a convex shape is formed at a position where the connection member 11 is disposed.
  • the concave shape is formed in the position where the connection member 11 is arrange
  • FIGS. 6 to 10 are cross-sectional views of the solar cell module 1 along the first direction, and the lower side of the drawing is the light receiving surface side. 6 to 8, the solar cell module 1 is shown as having one solar cell string 4 for ease of explanation. 6 to 10, the light receiving surface collecting electrode 13 and the back surface collecting electrode 14 are not shown.
  • the 1st protection member 2, the 1st filler 3, the solar cell string 4, the 2nd filler 5, and the 2nd protection member 6 are laminated
  • the base 20 is a jig having a curved surface that matches the outer shape of the first protective member 2 having a curved surface.
  • Each member other than the first protective member 2 is pressure-molded in accordance with the shape of the first protective member 2 after being laminated. Therefore, at this time, each member other than the first protective member 2 has a flat shape.
  • the first filler 3 is a flexible sheet member, the first filler 3 is arranged while being curved following the curved surface of the first protective member 2.
  • an elastic body 21 for pressure molding is disposed on the second protective member 6.
  • an airtight rubber sheet or the like can be used as the elastic body 21, an airtight rubber sheet or the like.
  • the laminated body and the elastic body 21 are accommodated in a frame body 22 for pressure molding, and the pressure between the base 20 and the elastic body 21 is reduced by a pressure reducing device 23.
  • the elastic body 21 bends toward the light receiving surface side by the atmospheric pressure P 0 and presses each member against the first protection member 2 on the base 20.
  • this pressure molding each member is deformed and curved following the curved surface of the first protective member 2.
  • an arbitrary corrugated shape is formed in the solar battery cell 10 by heating a predetermined portion.
  • the irregular shape can be formed at an arbitrary position by heating a predetermined portion of the first filler 3 or the second filler 5 and adjusting the hardness of each filler.
  • a method of heating a predetermined portion of the first filler 3 can be realized by providing a heater inside the base 20.
  • a method for heating a predetermined portion of the second filler 5 can be realized by providing a heater inside the elastic body 21.
  • FIG. 9 shows a waveform having a concave shape curved from the light receiving surface side to the back surface side at a position where the connecting member 11 is arranged, and a convex shape curved from the back surface side to the light receiving surface side at a position between the adjacent connecting members 11. It is a figure which shows the method of forming a shape.
  • FIG. 10 has a convex shape curved from the back surface side to the light receiving surface side at the position where the connection member 11 is arranged, and from the light receiving surface side to the back surface side at a position between the adjacent connection members 11.
  • the temperature T3 of the first filler 3 between the adjacent connecting members 11 is set higher than the other portions as shown in the upper part of FIG. 9B.
  • This can be realized by using a base 20 including a plurality of heaters extending along the second direction at positions corresponding to adjacent connecting members 11. Thereby, the hardness of the 1st filler 3 between the adjacent connection members 11 falls, and it becomes easy to deform
  • the region X between the adjacent connection members 11 of the solar battery cell 10 is curved from the back surface side toward the light receiving surface side.
  • the first filler 3, the solar cell string 4, the second filler 5, and the second protective member 6 are the first. It is bent following the shape of the protective member 2. Since the hardness of the first filler 3 between the connecting members 11 is lower than the hardness of the first filler 3 in the vicinity of the connecting member 11, the first filler 3 between the connecting members 11 is pressed by the elastic body 21. It is pushed out toward the connecting member 11.
  • the first filler 3 in the vicinity of the connection member 11 has a high hardness, it hardly deforms even when pressed by the elastic body 21. Therefore, the region X is curved from the back surface side to the light receiving surface side by being pressed by the elastic body 21.
  • the waveform shape shown in FIG. 9 can also be formed by raising the temperature T5 of the second filler 5 in the vicinity of the connecting member 11 higher than the other parts, as shown in the lower part of FIG. 9B. it can.
  • This can be realized by incorporating a plurality of heaters extending along the second direction at positions corresponding to the connection member 11 of the elastic body 21.
  • the hardness of the first filler 3 is adjusted to be higher than the hardness of the second filler 5 in the vicinity of the connection member 11.
  • the temperature T3 of the first filler 3 in the vicinity of the connecting member 11 is set higher than the other portions, or the temperature T5 of the second filler 5 between the adjacent connecting members 11 is set. Make it higher than other parts. Thereby, the waveform shape of FIG. 10 can be formed for the same reason as FIG.
  • the end cross section along the first direction has a waveform shape at least at the end in the second direction.
  • the corrugated shape of the end section at the position where the connection member 11 is arranged becomes a valley.
  • the solar cell module mounted on the vehicle has been described.
  • the present invention is not limited to this, and is suitably applied to a solar cell module having a curved surface set to a predetermined radius of curvature in at least one direction.
  • the first protective member 2 on the light receiving surface side has a curved surface and other members are deformed following the shape of the first protective member 2, but the back surface side protective member has a curved surface. Other members may be deformed following the shape of the protective member on the back side.
  • the hardness of the first filler 3 and the second filler 5 is changed in order to form a corrugated shape in the solar battery cell 10, but the present invention is not limited to this.
  • the shape of the 1st filler 3 and the 2nd filler 5 is made into a waveform shape beforehand, and the photovoltaic cell 10 is pressed by pressing the photovoltaic cell 10 with the 1st filler 3 and the 2nd filler 5.
  • a wave shape may be formed.
  • the present invention can be used for a solar cell module having a curved surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュール(1)は、少なくとも第1方向において所定の曲率半径に設定された曲面を有する第1保護部材(2)と、第1保護部材(2)の上に配置される第1充填材(3)と、第1充填材(3)の上に第1方向に配置され互いに並列接続された複数の太陽電池ストリング(4)と、太陽電池ストリング(4)の上に配置される第2充填材(5)と、第2充填材(5)の上に配置される第2保護部材(6)とを備える。太陽電池ストリング(4)は、第2方向に複数配置された太陽電池セル(10)が直列に接続されたものである。太陽電池セル(10)は、少なくとも第1方向に沿った端部断面(40)が波形形状を有する。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに係り、特に曲面を有する太陽電池モジュールに関する。
 車両等に太陽電池モジュールを設置する場合には、車両の車体の3次元形状に合わせた曲面を有することが望まれる。
 例えば、特許文献1には、自動車等の車両に搭載される太陽電池モジュールとして、自動車のルーフ形状に対応した曲面構造とすることが述べられている。ここでは、太陽電池素子の曲げ強度の関係からある曲率半径以下に曲げると太陽電池素子が割れる恐れがあることを指摘している。
特開平1-196181号公報
 曲面を有する太陽電池モジュールにおいて、太陽電池セルの割れを抑制することが望まれる。
 本発明に係る太陽電池モジュールは、少なくとも第1方向において所定の曲率半径に設定された曲面を有する第1保護部材と、第1保護部材の上に配置される第1充填材と、第1充填材の上に配置される太陽電池セルと、太陽電池セルの上に配置される第2充填材と、第2充填材の上に配置される第2保護部材と、を備え、太陽電池セルは、少なくとも第1方向とは垂直な第2方向の端部において、第1方向に沿った端部断面が波形形状を有している。
 本発明によれば、曲面を有する太陽電池モジュールにおいて、太陽電池セルの割れを抑制することができる。
本発明の実施の形態の太陽電池モジュールが搭載される車両を示す図である。 本発明の実施の形態における太陽電池モジュールの斜視図である。 図2のA-A’断面を矢印の方向に見た断面図である。 図2のB-B’断面を矢印の方向に見た断面図である。 本発明の実施の形態における太陽電池ストリングの一部の斜視図である。 本発明の実施の形態における太陽電池モジュールの製造方法を示す断面図である。 本発明の実施の形態における太陽電池モジュールの製造方法において、加圧成型を示す図である。 図7の加圧成型によって各部材が第1保護部材の曲面に倣ってそれぞれ変形、湾曲することを示す図である。 本発明の実施の形態の太陽電池モジュールにおいて、太陽電池セルに波形形状を形成する方法を示す図である。 図9と逆の方向の湾曲を有する波形形状を形成する方法を示す図である。
 以下に図面を用いて、本発明の実施の形態を詳細に説明する。以下で述べる材質、厚さ、寸法、太陽電池セルの数等は説明のための例示であって、太陽電池モジュールの仕様に応じ、適宜変更が可能である。以下では、全ての図面において対応する要素には同一の符号を付し、重複する説明を省略する。
 (太陽電池モジュール1の構成)
 図1は、太陽電池モジュール1を備えた車両を示す図である。図2は、太陽電池モジュール1の斜視図である。図3は、図2のA-A’断面を矢印の方向から見た断面図である。以下では、車幅方向を第1方向、前後方向を第2方向と呼ぶ。
 太陽電池モジュール1は、第1保護部材2と、第1充填材3と、複数の太陽電池ストリング4と、第2充填材5と、第2保護部材6とをこの順に備える。太陽電池モジュール1は、車体のルーフ部の外形形状に合せて、2次元または3次元曲面形状に形成されている。太陽電池モジュール1は、車体内側から外側に向かって湾曲している。第1保護部材2は受光面側の保護部材であり、第2保護部材6は裏面側の保護部材である。
 第1保護部材2は、車体のルーフ部の曲面形状に合わせて少なくとも第1方向に所定の曲率半径R1を有する。第2方向にも所定の曲率半径R2を設定することができる。ここでは、第1方向の曲率半径R1は、第2方向の曲率半径R2よりも小さい。第1保護部材2は、外部から光を取り入れることができる透明な板体、フィルムである。第1保護部材2としては、ガラス板、樹脂板、樹脂フィルム等の透光性を有する部材を用いることができる。
 第1充填材3は、太陽電池ストリング4に対し、衝撃の緩衝材としての役割と、汚染物質、異物、水分等の侵入を防ぐ機能等を有するシート部材である。第1充填材3は、耐熱性、接着性、柔軟性、成形性、耐久性等を考慮して材質が選定される。第1充填材3は外部からの光を取り入れるため、できるだけ高い無色透明性を有し、入射した光を吸収したり反射することなく透過させる透明充填材が用いられる。例えば、ポリエチレン系のオレフィン樹脂やエチレンビニルアセテート(EVA)等が用いられる。EVA以外には、EEA、PVB、シリコーン系樹脂、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂等を用いることもできる。
 太陽電池ストリング4の構成については後述する。
 第2充填材5は、第1充填材3と同様の機能を有するシート部材である。第2充填材5は、第1充填材3と同様の構成の充填材を用いてもよいし、適当な反射性を有するように有色の充填材を用いてもよい。適当な反射性を有する有色の充填材としては、上記の無色透明性を有する充填材に、白色に着色するための添加材として、酸化チタンや酸化亜鉛等の無機顔料が添加されたものを用いることができる。
 第2保護部材6は、不透明な板体やフィルムで、例えば、アルミ箔を内部に有する樹脂フィルム等の積層フィルムを用いることもできる。また、第2保護部材6として、無色透明なシートを用いてもよい。
 (太陽電池ストリング4の構成)
 太陽電池モジュール1は、第1方向に配置され、互いに並列接続された複数の太陽電池ストリング4を備える。太陽電池ストリング4は、第2方向に複数配置された太陽電池セル10が接続部材11により直列に接続されたものである。各太陽電池ストリング4は、第1保護部材2の形状に倣って湾曲している。
 太陽電池セル10は、光電変換部12と受光面集電極13と裏面集電極14とを備える。
 光電変換部12は、太陽光等の光を受光することで正孔および電子の光生成キャリアを生成する。光電変換部12は、例えば、結晶性シリコン(c-Si)、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体材料の基板を有する。光電変換部の構造は、広義のpn接合である。例えば、n型単結晶シリコン基板と非晶質シリコンのヘテロ接合を用いることができる。この場合、受光面側の基板上に、i型非晶質シリコン層と、ボロン(B)等がドープされたp型非晶質シリコン層と、酸化インジウム(In23)の透光性導電酸化物で構成される透明導電膜(TCO)を積層し、基板の裏面側に、i型非晶質シリコン層と、燐(P)等がドープされたn型非晶質シリコン層と、透明導電膜を積層する両面発電型の構造とできる。
 光電変換部12は、太陽光等の光を電気に変換する機能を有すれば、これ以外の構造であってもよい。例えば、p型多結晶シリコン基板と、その受光面側に形成されたn型拡散層と、その裏面側に形成されたアルミニウム金属膜とを備える構造であってもよい。
 受光面集電極13、裏面集電極14は、接続用電極であり、接続部材11が接続される。1つの太陽電池セル10は、受光面に3本の受光面集電極13と、裏面側に3本の裏面集電極14を有する。受光面集電極13は、第1方向に3本並んで配置されており、第2方向に延びている。裏面集電極14も同様である。受光面集電極13、裏面集電極14の幅としては1.5mmから3mm程度が好ましく、厚さは20μmから160μm程度が好ましい。また、太陽電池セル10の受光面および裏面には、それぞれ受光面集電極13、裏面集電極14に直交する複数のフィンガ電極が形成されていてもよく、フィンガ電極は受光面集電極13、裏面集電極14と電気的に接続される。
 接続部材11は、隣接する太陽電池セル10を接続する導電性部材である。接続部材11は、隣接する太陽電池セル10のうち、一方の太陽電池セル10の受光面上の3本の受光面集電極13に接続されるとともに、他方の太陽電池セル10の裏面上の3本の裏面集電極14に接続される。接続部材11と、受光面集電極13、裏面集電極14とは、接着剤を介して接続される。接続部材11の幅は、受光面集電極13、裏面集電極14と同じかやや大きめに設定される。接続部材11としては、銅等の金属導電性材料で構成される薄板が用いられる。薄板に代えて撚り線状のものを用いることもできる。導電性材料としては、銅の他に、銀、アルミニウム、ニッケル、錫、金、あるいはこれらの合金を用いることができる。
 接着剤としては、アクリル系、柔軟性の高いポリウレタン系、あるいはエポキシ系等の熱硬化性樹脂接着剤を用いることができる。接着剤には、導電性粒子が含まれる。導電性粒子としては、ニッケル、銀、金コート付ニッケル、錫メッキ付銅等を用いることができる。接着剤として、絶縁性の樹脂接着剤を用いることもできる。例えば、太陽電池セル10の受光面の場合、接続部材11または受光面集電極13の互いに対向する面のいずれか一方または双方を凹凸化して、接続部材11と受光面集電極13の間から樹脂を適当に排除して電気的接続を取るようにする。
 (太陽電池セルの形状)
 図4は、図2のB-B’断面を矢印の方向から見た断面図である。B-B’断面は、太陽電池セル10の第2方向の端部において第1方向に沿った断面である。図5は、太陽電池モジュール1において、第2方向に隣接する太陽電池セル10A、10Bの斜視図である。
 太陽電池セル10A、10Bは、図4,5に示すように、第1保護部材2の形状に倣って全体的に湾曲している。また、太陽電池セル10A,10Bは、第2方向の各端部において、第1方向に沿った端部断面40,41,43,44がそれぞれ波形形状を有するように形成されている。具体的には、太陽電池セル10Aの端部断面40は、接続部材11が配置される位置に受光面側から裏面側に湾曲した凹形状(谷)が形成され、隣接する接続部材11間の位置で裏面側から受光面側に湾曲した凸形状(山)が形成されている。太陽電池セル10Aの端部断面41は、接続部材11が配置される位置に裏面側から受光面側に湾曲した凸形状が形成され、隣接する接続部材11間の位置で受光面側から裏面側に湾曲した凹形状が形成されている。すなわち、太陽電池セル10Aでは、第2方向における一方の端部と他方の端部とでは、凹形状が形成される位置と凸形状が形成される位置とが逆になっている。
 太陽電池セル10Bは、太陽電池セル10Aと同一の構成である。具体的には、太陽電池セル10Bの端部断面43は、太陽電池セル10Aの端部断面40と同一の構成である。また、太陽電池セル10Bの端部断面44は、太陽電池セル10Aの端部断面41と同一の構成である。
 これらの波形形状は、太陽電池セル10A、10Bが第2方向に沿って受光面側から裏面側または裏面側から受光面側に湾曲することにより形成されている。この湾曲は、太陽電池セル10A,10Bの第2方向の中央部近傍で小さく、第2方向の端部で大きくなるよう形成されている。
 接続部材11は、太陽電池セル10Aの裏面集電極14と太陽電池セル10Bの受光面集電極13とを接続している。すなわち、太陽電池セル10A,10B間では、接続部材11が太陽電池セル10Aの裏面側から太陽電池セル10Bの受光面側に向かって延びる。ここで、太陽電池セル10Aの太陽電池セル10Bに面する端部断面41においては、接続部材11が配置される位置に凸形状が形成されている。また、太陽電池セル10Bの太陽電池セル10Aに面する端部断面44においては、接続部材11が配置される位置に凹形状が形成されている。
 (太陽電池モジュール1の製造方法)
 次に図6から図10を用いて、太陽電池モジュール1の製造方法を説明する。なお、図6~図10は、太陽電池モジュール1の第1方向に沿った断面図であり、紙面下側を受光面側とする。なお、図6~図8では、説明を容易にするため、太陽電池モジュール1が1つの太陽電池ストリング4を有するものとして示している。また、図6~図10では、受光面集電極13、裏面集電極14の図示を省略した。
 図6に示すように、基台20の上に、第1保護部材2、第1充填材3、太陽電池ストリング4、第2充填材5、第2保護部材6がこの順番に積層される。基台20は、曲面を有する第1保護部材2の外形に合わせた曲面を有する治具である。第1保護部材2以外の各部材は、積層後、第1保護部材2の形状に合わせて加圧成型される。したがって、この時点では、第1保護部材2以外の各部材は平坦な形状をしている。ただし、第1充填材3は柔軟性を有するシート部材であるので、第1保護部材2の曲面に倣って湾曲しながら配置される。
 次に、加圧成型について、図7、図8を用いて説明する。基台20の上に各部材を積層後、第2保護部材6上に加圧成型用の弾性体21を配置する。弾性体21としては、気密性のあるラバーシート等を用いることができる。積層体および弾性体21を加圧成形のための枠体22に収納し、減圧装置23で基台20と弾性体21の間を減圧する。これにより、図8に示すように、大気圧P0によって弾性体21が受光面側に向かって撓み、基台20上の第1保護部材2に対して各部材を押し付ける。この加圧成型によって、各部材が第1保護部材2の曲面に倣ってそれぞれ変形、湾曲する。なお、減圧法を用いず、弾性体21を直接受光面側に向かって押圧してもよい。
 加圧成型する際に、所定の部分を加熱することにより、太陽電池セル10に任意の波形形状を形成する。具体的には、第1充填材3または第2充填材5の所定の部分を加熱し、各充填材の硬度を調整することにより、任意の位置に凹凸形状を形成することができる。第1充填材3の所定の部分を加熱する方法としては、基台20内部にヒータを設けることにより実現できる。また、第2充填材5の所定の部分を加熱する方法としては、弾性体21内部にヒータを設けることにより実現できる。
 波形形状の形成方法について、図9、図10を用いて説明する。図9は、接続部材11が配置される位置で受光面側から裏面側に湾曲した凹形状となり、隣接する接続部材11の間の位置で裏面側から受光面側に湾曲した凸形状となる波形形状を形成する方法を示す図である。図10は、図9とは逆に、接続部材11が配置される位置で裏面側から受光面側に湾曲した凸形状となり、隣接する接続部材11の間の位置で受光面側から裏面側に湾曲する凹形状となる波形形状を形成する方法を示す図である。図9、図10において、(a)では第1方向に沿った太陽電池モジュール1の断面図を示し、(b)では第1充填材3、第2充填材5の第1方向に沿った位置における温度T3、T5を示している。なお、図9、図10は、(a)において説明を容易にするため各部材の湾曲を省略している。
 図9に示す波形形状を形成する場合、図9(b)の上段に示すように、隣接する接続部材11間の第1充填材3の温度T3を他の部分よりも高くする。これは、隣接する接続部材11間に対応する位置に、第2方向に沿って延びる複数のヒータを備える基台20を用いることにより実現できる。これにより、隣接する接続部材11間の第1充填材3の硬度が低下し、変形しやすくなる。このとき、第2充填材5の硬度は、隣接する接続部材11間の第1充填材3の硬度よりも高くなるように調整する。
 このような状態で、加圧処理を行うと、太陽電池セル10の隣接する接続部材11間の領域Xは、裏面側から受光面側に向かって湾曲する。具体的には、弾性体21により各部材が第1保護部材2に対して押圧されるため、第1充填材3、太陽電池ストリング4、第2充填材5および第2保護部材6は第1保護部材2の形状に倣って湾曲されていく。接続部材11間の第1充填材3の硬度は、接続部材11近傍の第1充填材3の硬度よりも低いため、弾性体21に押圧されると接続部材11間の第1充填材3が接続部材11方向に向かって押し出される。これに対し、接続部材11近傍の第1充填材3の硬度は高いため、弾性体21に押圧されてもほとんど変形しない。そのため、領域Xは、弾性体21に押圧されることにより裏面側から受光面側に湾曲する。
 また、図9に示す波形形状は、図9(b)の下段に示すように、接続部材11近傍の第2充填材5の温度T5を他の部分よりも高くすることによっても形成することができる。これは、弾性体21の接続部材11に対応する位置に、第2方向に沿って延びる複数のヒータを内蔵させることにより実現可能である。このとき、第1充填材3の硬度は、接続部材11近傍の第2充填材5の硬度よりも高くなるように調整する。
 このような状態で、加圧処理を行うと、接続部材11近傍の第2充填材5が接続部材11間に向かって押し出されるのに対し、接続部材11間の第2充填材5はほとんど変形しないため、太陽電池セル10の接続部材11近傍の領域が裏面側から受光面側に向かって湾曲する。
 図10に示す波形形状を形成する場合、接続部材11近傍の第1充填材3の温度T3を他の部分よりも高くするか、隣接する接続部材11間の第2充填材5の温度T5を他の部分よりも高くする。これにより、図9と同一の理由により、図10の波形形状を形成することができる。
 上記のように、太陽電池モジュール1の太陽電池セル10は、少なくとも第2方向の端部において第1方向に沿った端部断面が波形形状を有している。これにより、第1保護部材2の曲面形状に倣って変形させた際に、変形により生じる応力を波形形状により吸収できるため、太陽電池セル10の割れを抑制することができる。
 また、太陽電池モジュール1の隣接する太陽電池セル10A,10Bは、太陽電池セル10Aの太陽電池セル10Bに面する端部において、接続部材11が配置される位置における端部断面の波形形状が山となるとき、太陽電池セル10Bの太陽電池セル10Aに面する端部において、接続部材11が配置される位置における端部断面の波形形状が谷となる。これにより、太陽電池セル10Aの裏面側から太陽電池セル10Bの受光面に延びる接続部材11の変形を小さくすることができ、接続部材11に余計な応力がかかることを抑制できる。そのため、太陽電池モジュール1の信頼性がさらに向上する。
 (変形例)
 実施形態では、車両に搭載される太陽電池モジュールについて説明したが、本発明はこれに限られず、少なくとも一方向において所定の曲率半径に設定された曲面を有する太陽電池モジュールに好適に適用される。
 実施形態では、受光面側の第1保護部材2が曲面を有する構成とし、他の部材を第1保護部材2の形状に倣って変形させているが、裏面側の保護部材が曲面を有する構成とし、他の部材を裏面側の保護部材の形状に倣って変形させてもよい。
 本実施形態では、太陽電池セル10に波形形状を形成するために、第1充填材3、第2充填材5の硬度を変化させているが、本発明はこれに限られない。例えば、第1充填材3、第2充填材5の形状を予め波形形状にしておき、第1充填材3と第2充填材5とで、太陽電池セル10を押圧することにより太陽電池セル10に波形形状を形成してもよい。
 本発明は、曲面を有する太陽電池モジュールに利用できる。
 1 太陽電池モジュール、2 第1保護部材、3 第1充填材、4 太陽電池ストリング、5 第2充填材、6 第2保護部材、10,10A,10B 太陽電池セル、11 接続部材、12 光電変換部、13 受光面集電極、14 裏面集電極、20 基台、21 弾性体、22 枠体、23 減圧装置、40,41,43,44 端部断面。

Claims (5)

  1.  少なくとも第1方向において所定の曲率半径に設定された曲面を有する第1保護部材と、
     前記第1保護部材の上に配置される第1充填材と、
     前記第1充填材の上に配置される太陽電池セルと、
     前記太陽電池セルの上に配置される第2充填材と、
     前記第2充填材の上に配置される第2保護部材と、
     を備え、
     前記太陽電池セルは、少なくとも前記第1方向とは垂直な第2方向の端部において、前記第1方向に沿った端部断面が波形形状を有している、太陽電池モジュール。
  2.  請求項1に記載の太陽電池モジュールにおいて、
     前記太陽電池セルは、前記第1保護部材の曲面に応じて湾曲している、太陽電池モジュール。
  3.  請求項1または2に記載の太陽電池モジュールにおいて、
     前記太陽電池セルは、
     光電変換部と、
     前記光電変換部の上に設けられる電極と、
     前記電極に接続され前記第2方向に延びる接続部材と、
     を有し、
     前記端部断面の波形形状の山または谷が、前記接続部材が配置される位置に対応する、太陽電池モジュール。
  4.  請求項3に記載の太陽電池モジュールにおいて、
     前記第1充填材の上に複数の太陽電池セルが前記接続部材により相互に接続されて配置され、
     隣接する太陽電池セルが互いに向かい合う端部において、一方側の太陽電池セルの前記接続部材が配置される位置における端部断面の波形形状が谷となるとき、他方側の太陽電池セルの前記接続部材が配置される位置における端部断面の波形形状が山となる、太陽電池モジュール。
  5.  請求項3または4に記載の太陽電池モジュールにおいて、
     前記第1保護部材は、前記第2方向においても所定の曲率半径に設定されており、
     前記第1方向の曲率半径は、前記第2方向の曲率半径よりも小さい、太陽電池モジュール。
PCT/JP2014/000009 2013-01-10 2014-01-06 太陽電池モジュール WO2014109282A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014000392.1T DE112014000392T5 (de) 2013-01-10 2014-01-06 Solarzellenmodul
JP2014556401A JP6308471B2 (ja) 2013-01-10 2014-01-06 太陽電池モジュール
US14/795,956 US9634167B2 (en) 2013-01-10 2015-07-10 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013003010 2013-01-10
JP2013-003010 2013-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/795,956 Continuation US9634167B2 (en) 2013-01-10 2015-07-10 Solar cell module

Publications (1)

Publication Number Publication Date
WO2014109282A1 true WO2014109282A1 (ja) 2014-07-17

Family

ID=51166933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000009 WO2014109282A1 (ja) 2013-01-10 2014-01-06 太陽電池モジュール

Country Status (4)

Country Link
US (1) US9634167B2 (ja)
JP (1) JP6308471B2 (ja)
DE (1) DE112014000392T5 (ja)
WO (1) WO2014109282A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104309A (zh) * 2014-07-31 2014-10-15 苏州强明光电有限公司 太阳能汽车电源
JP2015211154A (ja) * 2014-04-28 2015-11-24 パナソニックIpマネジメント株式会社 光起電力装置、それを用いた太陽電池構造体および太陽電池構造体の製造方法
JP2019533408A (ja) * 2017-05-12 2019-11-14 フレックス,リミテッド 車両用ソーラールーフ用板葺式アレイモジュール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160068338A (ko) * 2014-12-05 2016-06-15 현대자동차주식회사 차량용 차체 일체형 태양전지
US20190077254A1 (en) * 2017-09-12 2019-03-14 II Robert E. Stanley Renewable energy powering system
CN107634114A (zh) * 2017-09-19 2018-01-26 北京世纪华晟新能源科技有限公司 一种专用于建筑物屋顶的波形太阳能光电瓦片
US20240038914A1 (en) * 2022-07-31 2024-02-01 Aptera Motors Corp. Light emitting curved laminated panel and combined light emitting solar panel and method of manufacture thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201667A (ja) * 1984-03-27 1985-10-12 Agency Of Ind Science & Technol 光発電装置の製造方法
JPH01196181A (ja) * 1988-02-01 1989-08-07 Nippon Sheet Glass Co Ltd 曲面太陽電池モジュールの製造方法
JPH0992867A (ja) * 1995-09-27 1997-04-04 Asahi Glass Co Ltd 太陽電池モジュールの製造方法
WO2010087460A1 (ja) * 2009-01-29 2010-08-05 京セラ株式会社 太陽電池モジュールおよびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291761B1 (en) * 1998-12-28 2001-09-18 Canon Kabushiki Kaisha Solar cell module, production method and installation method therefor and photovoltaic power generation system
ITMI20040253A1 (it) * 2004-02-16 2004-05-16 Curvet S P A Modulo fotovoltaico curvo processo produttivo e relativa vetrara isolante termicamente ed acusticamente
US20090272841A1 (en) * 2008-05-05 2009-11-05 Sinsabaugh Steven L Albedo-derived airship power system
JP5306380B2 (ja) 2009-01-29 2013-10-02 京セラ株式会社 太陽電池モジュールおよびその製造方法
US9012763B2 (en) * 2009-03-13 2015-04-21 Sunlight Photonics Inc. Stretchable photovoltaic devices and carriers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201667A (ja) * 1984-03-27 1985-10-12 Agency Of Ind Science & Technol 光発電装置の製造方法
JPH01196181A (ja) * 1988-02-01 1989-08-07 Nippon Sheet Glass Co Ltd 曲面太陽電池モジュールの製造方法
JPH0992867A (ja) * 1995-09-27 1997-04-04 Asahi Glass Co Ltd 太陽電池モジュールの製造方法
WO2010087460A1 (ja) * 2009-01-29 2010-08-05 京セラ株式会社 太陽電池モジュールおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211154A (ja) * 2014-04-28 2015-11-24 パナソニックIpマネジメント株式会社 光起電力装置、それを用いた太陽電池構造体および太陽電池構造体の製造方法
CN104104309A (zh) * 2014-07-31 2014-10-15 苏州强明光电有限公司 太阳能汽车电源
JP2019533408A (ja) * 2017-05-12 2019-11-14 フレックス,リミテッド 車両用ソーラールーフ用板葺式アレイモジュール

Also Published As

Publication number Publication date
US20150318422A1 (en) 2015-11-05
US9634167B2 (en) 2017-04-25
JPWO2014109282A1 (ja) 2017-01-19
DE112014000392T5 (de) 2015-09-17
JP6308471B2 (ja) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6308471B2 (ja) 太陽電池モジュール
JP6265135B2 (ja) 太陽電池モジュールの製造方法
CN111615752B (zh) 太阳能电池模块
US10276733B2 (en) Solar cell and solar cell module
JP5879537B2 (ja) 太陽電池パネル、太陽電池モジュールおよび太陽電池モジュールの製造方法
JP4860652B2 (ja) 太陽電池モジュールおよびその製造方法
EP2043164A2 (en) Solar cell module
JP5306353B2 (ja) 太陽電池モジュール
JP2010016246A (ja) 太陽電池モジュール及びその製造方法
WO2013137204A1 (ja) 太陽電池モジュール
US9373738B2 (en) Solar module
JP6249369B2 (ja) 太陽電池モジュールの配線材、太陽電池モジュール、及び太陽電池モジュールの製造方法
JP5988154B2 (ja) 車載用太陽電池モジュール
JP6700976B2 (ja) 太陽電池モジュールおよび太陽電池装置
JP6504365B2 (ja) 太陽電池モジュール
WO2015008455A1 (ja) 太陽電池モジュール
JP7482708B2 (ja) 太陽電池セル及び太陽電池モジュール
JP6156718B2 (ja) 太陽電池パネル
JP2012064789A (ja) 太陽電池モジュール
JPWO2013121561A1 (ja) 太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120140003921

Country of ref document: DE

Ref document number: 112014000392

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14738335

Country of ref document: EP

Kind code of ref document: A1