WO2014109215A1 - Construction structure and method for producing same - Google Patents

Construction structure and method for producing same Download PDF

Info

Publication number
WO2014109215A1
WO2014109215A1 PCT/JP2013/084339 JP2013084339W WO2014109215A1 WO 2014109215 A1 WO2014109215 A1 WO 2014109215A1 JP 2013084339 W JP2013084339 W JP 2013084339W WO 2014109215 A1 WO2014109215 A1 WO 2014109215A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
long
building structure
width direction
foam
Prior art date
Application number
PCT/JP2013/084339
Other languages
French (fr)
Japanese (ja)
Inventor
渡邊 二夫
潤 赤井
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to US14/758,534 priority Critical patent/US20150345135A1/en
Priority to CA2897479A priority patent/CA2897479C/en
Publication of WO2014109215A1 publication Critical patent/WO2014109215A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • E04B2/562Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members with fillings between the load-bearing elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/24Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • E04C2/386Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels with a frame of unreconstituted or laminated wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7695Panels with adjustable width

Definitions

  • the present invention relates to a building structure in which a panel is fitted between a plurality of long materials arranged in parallel, and a method for manufacturing the same.
  • a building structure a plurality of long materials (for example, pillars and the like) arranged in the width direction and a hard panel fitted between the long materials so that the longitudinal directions thereof are parallel to each other are provided.
  • a building structure is known (for example, Patent Document 1).
  • the panel is a heat insulating material made of synthetic resin.
  • the present invention provides a building structure that can easily fit a panel between long materials and prevent a gap from being generated between the panel and the long material, and a method for manufacturing the same.
  • the issue is to provide.
  • the building structure according to the present invention includes a plurality of long members arranged in parallel in a second direction orthogonal to the first direction, such that the longitudinal directions thereof are parallel to each other in the first direction, and the long A panel that is fitted between the scale members, and the panel has a plurality of cells that are elongated along a direction orthogonal to the second direction so as to have elasticity in the second direction. It is a foam.
  • the plurality of long members are juxtaposed in the second direction orthogonal to the first direction so that the longitudinal directions of the long members are parallel to each other in the first direction.
  • the panel is a foam having a plurality of cells formed elongated along a direction orthogonal to the second direction, the panel has elasticity in the second direction. Therefore, when the panel compressed in the second direction is released and restored between the long materials (or the panel is fitted between the long materials while being compressed in the second direction), the panel is It is fitted between the long materials while being in close contact with the long material and pressing the long material.
  • the plurality of cells are arranged such that an elastic modulus in the second direction of the panel is smaller than an elastic modulus in the first direction of the panel. It may be configured to be elongated along the direction of 1.
  • the elastic modulus in the second direction of the panel is reduced.
  • the panel since the panel has elasticity in the second direction, the panel is easily compressed in the second direction.
  • the elastic modulus in the first direction of the panel is increased. Accordingly, since the panel has rigidity in the first direction, the panel fitted between the long materials is stably held between the long materials.
  • the manufacturing method of the building structure which concerns on this invention is the some elongate paralleled by the 2nd direction orthogonal to the said 1st direction so that a mutual longitudinal direction may become parallel in a 1st direction.
  • the present invention has an excellent effect that a panel can be easily fitted between long materials, and a gap can be prevented from being generated between the panel and the long material.
  • FIG. 1 shows the principal part front view of the building structure which concerns on one Embodiment of this invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is an overall perspective view of the panel according to the embodiment.
  • FIG. 4 is an enlarged cross-sectional view of a main part taken along line IV-IV in FIG.
  • FIG. 5 shows the principal part perspective view explaining the manufacturing method of the panel which concerns on the same embodiment.
  • FIG. 6 shows the principal part cross-sectional view explaining the manufacturing method of the building structure which concerns on the embodiment.
  • FIG. 7 shows the principal part front view of the building structure which concerns on other embodiment of this invention.
  • FIG. 8 shows the principal part cross-sectional view of the building structure which concerns on further another embodiment of this invention.
  • FIG. 1 shows the principal part front view of the building structure which concerns on one Embodiment of this invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is an overall perspective
  • FIG. 9 shows the principal part cross-sectional view of the building structure which concerns on further another embodiment of this invention.
  • FIG. 10 shows the principal part cross-sectional view of the building structure which concerns on further another embodiment of this invention.
  • FIG. 11 shows an evaluation table of an embodiment according to the present invention.
  • the building structure 1 which concerns on this embodiment is the multiple (it is two figures in FIG.1 and FIG.2) arranged in the width direction so that a mutual longitudinal direction may become parallel.
  • the building structure 1 includes frame members 4 and 4 that are fixed to end portions of the long material 2, and a plate member 5 that is fixed to a side portion of the long material 2.
  • the building structure 1 is a wall.
  • the long material 2 includes support surfaces 21 and 21 that support the panel 3 on both sides in the width direction.
  • the cross-sectional shape of the long material 2 is a rectangular shape.
  • the plurality of long materials 2 are arranged so that the support surfaces 21 face each other.
  • the long material 2 is a pillar, and is arranged so that the longitudinal direction is parallel to the height direction.
  • the panel 3 is formed in a rectangular parallelepiped shape. In the state in which the panel 3 is fitted between the long members 2 and 2, the longitudinal direction of the panel 3 and the longitudinal direction of the long member 2 are parallel, and the width direction of the panel 3 and the width direction of the long member 2. And are parallel.
  • the direction parallel to the longitudinal direction of the long material 2 is referred to as a first direction D1 of each of the building structure 1, the long material 2 and the panel 3, and is parallel to the direction in which the long materials 2 are juxtaposed.
  • the direction is referred to as the second direction D2 of the building structure 1, the long material 2 and the panel 3, and the direction perpendicular to the first direction D1 and the second direction D2 is the building structure 1, long length.
  • Each of the material 2 and the panel 3 is referred to as a third direction D3.
  • the first direction D1 of the panel 3 is the longitudinal direction (vertical direction) of the panel 3
  • the second direction D2 of the panel 3 is the width direction of the panel 3
  • the third direction D3 is the thickness direction of the panel 3.
  • the directions corresponding to the first to third directions D1, D2, and D3 are denoted by D1, D2, and D3, respectively.
  • the panel 3 is formed of a synthetic resin (for example, urethane resin, styrene resin, phenol resin, etc.) and is a foam having elasticity.
  • the panel 3 is a foam having a plurality of cells 31 that are formed in a long direction along a direction orthogonal to the width direction D2 so as to have elasticity in the width direction D2.
  • the panel 3 has elasticity in the second direction D2.
  • more than half of the cells 31 need only be formed long along a direction orthogonal to the second direction D2. That is, in the present invention, as long as the panel 3 has elasticity in the second direction D2, the cells 31 that are elongated along the direction parallel to the second direction D2 may be provided. .
  • the panel 3 is formed so that the elastic modulus in the width direction D2 is smaller than the elastic modulus in the longitudinal direction D1.
  • the panel 3 is formed so that the elastic modulus in the width direction D2 and the elastic modulus in the thickness direction D3 are substantially the same.
  • the panel 3 has a plurality of cells 31 that are elongated along the longitudinal direction D1 in the direction orthogonal to the width direction D2, so that the elastic modulus in the width direction D2 is the same as that in the longitudinal direction D1. It is formed so as to be smaller than the elastic modulus. More specifically, the plurality of cells 31 are arranged with the longest dimension along the longitudinal direction D1, so that the elastic modulus in the width direction D2 and the thickness direction D3 of the panel 3 is the longitudinal direction D1. It is smaller than the elastic modulus.
  • the elastic modulus is a ratio between stress and strain (deformation amount) within the elastic range when the panel 3 is deformed by applying an external force. In other words, the smaller the elastic modulus, the greater the amount of deformation with the same stress (pressure).
  • the dimension W2 in the width direction D2 of the panel 3 that is not elastically deformed is larger than the separation distance W1 between the long materials 2 and 2, the panel 3 is compressed and deformed in the width direction D2 and It is fitted between the two.
  • the dimension W2 in the width direction D2 of the panel 3 that is not elastically deformed is preferably 101% to 115%, more preferably 105% to 110% of the separation distance W1 of the long materials 2 and 2.
  • the panel 3 is a polyurethane foam panel.
  • the configuration of the panel 3 will be described in detail below.
  • the panel 3 is obtained by mixing and reacting a polyol composition containing a polyol compound and water as a foaming agent, and a polyisocyanate component.
  • the panel 3 has a longitudinal direction (longitudinal direction) D1, a width direction D2, and a thickness direction D3.
  • a polyurethane foam panel with the ratio of 10% compression strength S D2 of a 10% compression strength S D1 and the width direction D2 of the foam density is 15 kg / m 3 or less and a vertical direction D1 (S D1 / S D2) is It is set to be 2 or more.
  • the foam density (core density) of the panel 3 is preferably 15 kg / m 3 or less, more preferably 13 kg / m 3 or less, and further preferably 11 kg / m 3 or less.
  • foam density is set within the above range, for example, by adjusting the amount of water as a blowing agent to 20 to 100 parts by weight (with respect to 100 parts by weight of the polyol compound).
  • the foam density is a value measured according to JIS K7222.
  • the foam density of the panel 3 is 15 kg / m 3 or less, it is very low, and the expansion ratio of the panel 3 is high. Therefore, the cell 31 is stretched in the vertical direction D1 and formed in an ellipsoidal shape.
  • the major axis direction of the ellipsoidal cell 31 is parallel to the longitudinal direction D1 of the panel 3, the foam strength in the longitudinal direction D1 of the panel 3 is increased, while the foam strength in the width direction D2 and the thickness direction D3 of the panel 3 is increased.
  • the width direction D2 and the thickness direction D3 of the panel 3 have elasticity (flexibility).
  • the ratio between the 10% compressive strength S D2 of a 10% compression strength S D1 and the width direction D2 in the vertical direction D1 (S D1 / S D2) is 2 or more, are formed.
  • the ratio to S D2 (S D1 / S D2 ) is preferably 3 or more, and more preferably 5 or more.
  • the upper limit of the ratio (S D1 / S D2 ) is not particularly limited, but is about 7, for example.
  • the X% compressive strength is a stress necessary for compressing and deforming the panel 3 by an amount of X%.
  • 10% compression strength S D2 in the width direction D2 of the panel 3 it is preferably 3N / cm 2 or less, more preferably 1N / cm 2 or less, 0.5 N / cm 2 or less Is particularly preferred.
  • the compressed panel 3 is quickly restored. Therefore, when the panel 3 is not damaged or destroyed even if it is compressed 20% in the width direction D2, and is opened after being compressed 20% in the width direction D2, the panel 3 has a dimension of 90 in the width direction D2 before compression. It is preferable to restore to% or more.
  • the foaming direction of the cells 31 is substantially perpendicular to the width direction D2 and the thickness direction D3, respectively.
  • substantially vertical means 90 ° ⁇ 15 °, particularly 90 ° ⁇ 10 °.
  • the “cell foaming direction” means a major axis direction when the shape of each cell 31 is regarded as an ellipsoid, and in particular, a central portion of the panel 3 in the width direction D2 (the vertical direction D1 and the width direction D2). The direction when measured from the center at a portion of about 10% on both sides of the dimension in the longitudinal direction D1 and the dimension in the width direction D2 is assumed.
  • the thermal conductivity ⁇ of the panel 3 is preferably 0.04 W / m ⁇ K or less. Thereby, even if it is the panel 3 reduced in density, sufficient heat insulation performance can be exhibited.
  • the thermal conductivity is a value measured according to JIS A1412-2.
  • the closed cell ratio of panel 3 is preferably 15% or less, and more preferably 0 to 10%. Thus, by increasing the communication rate, excellent dimensional stability can be ensured.
  • the closed cell ratio is a value measured according to ASTM D2856.
  • the panel 3 is obtained by mixing and reacting a polyol composition containing a polyol compound and water as a foaming agent and a polyisocyanate component.
  • the polyol compound has an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, a polyether polyol (A) which is a polymer of alkylene oxide, and a short glycol (B And).
  • the polyether polyol (A) is a polyoxyalkylene polyol obtained by ring-opening addition polymerization of alkylene oxide to an initiator having 2 to 4 active hydrogen atoms.
  • the initiator examples include aliphatic polyhydric alcohols (for example, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, neopentyl Glycols such as glycol, cyclohexylene glycol and cyclohexanedimethanol, triols such as trimethylolpropane and glycerin, tetrafunctional alcohols such as pentaerythritol), aliphatic amines (eg ethylenediamine, propylenediamine, butylenediamine, hexamethylene) Alkylenediamines such as diamine and neopentyldiamine, alkanolamines such as monoethanolamine and diethanolamine), aromatic amines (eg, 2,4-toluenedia) Emissions, 2,6-toluene
  • the polyether polyol (A) has an average number of functional groups of 2 to 4, more preferably 2.5 to 3.5. Further, the polyether polyol (A) preferably has a weight average molecular weight of 3000 to 5000.
  • alkylene oxide examples include ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, styrene oxide, and cyclohexene oxide.
  • ethylene oxide and propylene oxide in combination to cause ring-opening addition polymerization to the initiator.
  • the ratio of ethylene oxide ((ethylene oxide) / (ethylene oxide + propylene oxide)) is preferably 5% to 30%.
  • the hydroxyl value of the polyether polyol (A) is preferably 20 to 100 mgKOH / g, and more preferably 30 to 60 mgKOH / g.
  • the hydroxyl value is less than 20 mgKOH / g, the viscosity ratio of the polyol composition to the polyisocyanate component becomes high, resulting in poor stirring during mixing.
  • it exceeds 100 mgKOH / g it becomes difficult to impart moderate toughness to the obtained polyurethane foam.
  • the hydroxyl value is a value measured according to JIS K1557-1: 2007.
  • Short glycol (B) having a molecular weight of less than 250 includes, for example, ethylene glycol (molecular weight 62), propylene glycol (molecular weight 76), diethylene glycol (molecular weight 106), dipropylene glycol (molecular weight 134), 1,4-butanediol ( Examples include molecular weight 90), 1,3-butanediol (molecular weight 90), 1,6-hexanediol (molecular weight 118), glycerin (molecular weight 92), and tripropylene glycol (molecular weight 192).
  • the molecular weight of the short glycol (B) is preferably 62 to 200 mgKOH / g, and more preferably 90 to 150 mgKOH / g.
  • the polyol compound further contains a polyether polyol (C) which has an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 5000 and is a propylene oxide polymer. It is preferable.
  • the polyether polyol (C) is a polyoxyalkylene polyol obtained by ring-opening addition polymerization of propylene oxide alone to an initiator having 2 to 4 active hydrogen atoms. Examples of the initiator include the aliphatic polyhydric alcohols, aliphatic amines, and aromatic amines described above, and are not particularly limited. As the initiator, glycerin is particularly preferable.
  • the polyol composition used as a raw material contains 10 to 80 parts by weight of the polyether polyol (A) in 100 parts by weight of the polyol compound in order to produce a polyurethane foam panel 3 having a low density and excellent heat insulating performance. It is preferable to contain 10 to 60 parts by weight of the short glycol (B), more preferably 15 to 70 parts by weight of the polyether polyol (A), and more preferably 10 to 50 parts by weight of the short glycol (B).
  • the polyether polyol (C) is contained, the polyether polyol (A) is contained in an amount of 10 to 30 parts by weight, the short glycol (B) is contained in an amount of 10 to 60 parts by weight, and the polyether polyol (C) is contained.
  • polyether polyol A
  • 10 to 50 parts by weight of short glycol B
  • polyether polyol C
  • water is blended as a foaming agent.
  • the blowing agent is preferably water alone, and the blending amount thereof is preferably 20 to 100 parts by weight, more preferably 30 to 90 parts by weight, more preferably 40 to 40 parts by weight based on 100 parts by weight of the polyol compound. More preferably, it is 80 parts by weight.
  • the density of the panel 3 can be reduced by blending a large amount of water.
  • the flame retardant, catalyst and foam stabilizer are usually further added to the polyol composition.
  • various additives such as a coloring agent and antioxidant, may further be mix
  • the flame retardant examples include metal compounds such as organophosphates, halogen-containing compounds, and aluminum hydroxide. Particularly, organophosphates are preferable because they have an effect of reducing the viscosity of the polyol composition.
  • organophosphates are preferable because they have an effect of reducing the viscosity of the polyol composition.
  • organic phosphate esters include halogenated alkyl esters, alkyl phosphate esters, aryl phosphate esters, and phosphonate esters of phosphoric acid.
  • the blending amount of the flame retardant is preferably 10 to 50 parts by weight, more preferably 15 to 40 parts by weight with respect to 100 parts by weight of the polyol compound.
  • the flame retardant in addition to the polyether polyol (A) and the short glycol (B) in the polyol composition, is 20 parts by weight with respect to 100 parts by weight of the polyol compound. It is preferable to contain above.
  • the catalyst is not particularly limited as long as it is a catalyst that accelerates the urethanization reaction, but it is preferable to use a reactive amine catalyst that can react with the isocyanate group of the polyisocyanate component.
  • reactive amine catalysts include N, N-dimethylethanolamine, N, N-dimethylaminoethoxyethanol, N, N, N′-trimethylaminoethylethanolamine, N, N, N ′, N ′.
  • a normal tertiary amine catalyst can also be used, and as such a tertiary amine catalyst, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′— Examples thereof include tetramethylhexamethylenediamine, N, N, N ′, N ′, N ′′ -pentamethyldiethylenetriamine, diazabicycloundecene, N, N-dimethylcyclohexylamine, triethylenediamine, N-methylmorpholine and the like.
  • the compounding amount of the catalyst is preferably 2 to 10 parts by weight, and more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the polyol compound.
  • foam stabilizer examples include, among known foam stabilizers for polyurethane foam, a graft copolymer of polyoxyalkylene glycol, which is a polymer of ethylene oxide or propylene oxide, and polydimethylsiloxane. Silicone foam stabilizers having an oxyethylene group content of 70 to 100 mol% in oxyalkylene are preferably used. Specifically, SH-193, SF-2937F, SF-2938F (manufactured by Toray Dow Corning Silicone), B-8465, B-8467, B-8481 (manufactured by Evonik Degussa Japan), L-6900 (manufactured by Momentive) and the like. The blending amount of the foam stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polyol compound.
  • polyisocyanate compounds such as aromatic, alicyclic and aliphatic polyisocyanates having two or more isocyanate groups are used as the polyisocyanate component which is mixed and reacted with the polyol composition to form the polyurethane foam panel 3.
  • polyisocyanate component which is mixed and reacted with the polyol composition to form the polyurethane foam panel 3.
  • MDI liquid diphenylmethane diisocyanate
  • Liquid MDIs include Crude MDI (c-MDI) (44V-10, 44V-20, etc.
  • polyisocyanate compounds known in the technical field of polyurethane can be used without limitation.
  • Panel 3 preferably has an isocyanate index (NCO Index) of 30 or less, more preferably less than 30, when the polyol composition and the polyisocyanate component are mixed and reacted.
  • NCO Index isocyanate index
  • 20 is mentioned, for example.
  • the isocyanate index is the percentage equivalent of the isocyanate group of the polyisocyanate component to all active hydrogen groups contained in the polyol composition (calculated using water as a blowing agent as a bifunctional active hydrogen compound). (Equivalent ratio of isocyanate groups to 100 equivalents of active hydrogen groups).
  • the manufacturing method of the panel 3 is a manufacturing method of the polyurethane foam panel 3 obtained by making into a raw material the foaming stock solution composition containing the polyol composition containing the polyol compound and water which is a foaming agent, and a polyisocyanate component.
  • a polyol compound has a polyol composition having an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 8000, and a polyether polyol (A) which is a polymer of alkylene oxide, and a molecular weight.
  • a polyol compound containing a short glycol (B) having a water content of less than 250, and containing 20 to 100 parts by weight of water with respect to 100 parts by weight of the polyol compound, the polyol composition and the polyisocyanate component Preferably, the isocyanate index when mixing and reacting with Arbitrariness.
  • the plurality of cells 31 In order for the plurality of cells 31 to be formed along the longitudinal direction D1 of the panel 3 so that the panel 3 has elasticity in the width direction D2, as shown in FIG.
  • an injection step of injecting the foaming stock solution composition with the surface extending along the width direction D2 and the thickness direction D3 as the bottom surface 71, and the foaming stock solution composition after the injection step It is preferable to provide a reaction step.
  • the mixing head 8 has a bottom surface 71 as a surface extending along the width direction D2 and the thickness direction D3 with respect to the mold 7 having the vertical direction D1, the width direction D2, and the thickness direction D3. Then, a foaming stock solution composition containing a polyol composition and a polyisocyanate component is injected (injection step). After injection, the foamed stock solution composition reacts and forms a foam while foaming (swelling) in the longitudinal direction D1 (reaction process). In the reaction step, the mold 7 may be heated as a whole or locally as necessary.
  • the configuration of the building structure 1 according to this embodiment is as described above. Next, a method for manufacturing the building structure 1 according to this embodiment will be described below with reference to FIG.
  • the plurality of long materials 2 and 2 are juxtaposed in the width direction D2 so that the longitudinal direction D1 is parallel.
  • the panel 3 is compressed in the width direction D2. Accordingly, the dimension W2 in the width direction D2 of the panel 3 which is larger than the separation distance W1 between the long materials 2 and 2 is smaller than the separation distance W1 between the long materials 2 and 2.
  • the applied external force is released, so that the panel 3 is restored. Since the panel 3 tries to be further restored by the elastic force even after contacting the support surface 21 of the long material 2, the long material 2 is in close contact with the long material 2 and presses the long material 2. , Fits between the two.
  • the plurality of long members 2 are orthogonal to the first direction D1 such that the longitudinal directions of the plurality of long members 2 are parallel to each other in the first direction D1.
  • Two directions D2 are arranged in parallel.
  • the panel 3 is a foam having a plurality of cells 31 that are elongated along a direction orthogonal to the second direction D2, the panel 3 has elasticity in the second direction D2.
  • the building structure 1 allows the panel 3 to be easily fitted between the long members 2 and 2 and prevents a gap from being generated between the panel 3 and the long member 2. it can.
  • the building structure 1 which concerns on this embodiment, since the several cell 31 is formed elongate along the direction orthogonal to the 2nd direction D2, the elasticity in the 2nd direction D2 of the panel 3 is provided. The rate is reduced. Thereby, since the panel 3 has elasticity in the second direction D2, the panel 3 is easily compressed in the second direction D2.
  • the elastic modulus of the panel 3 in the first direction D1 is large. Become. Thereby, since the panel 3 has rigidity in the first direction D1, the panel 3 fitted between the long materials 2 and 2 is stably held between the long materials 2 and 2. As a result, the panel 3 can stand on its own.
  • the heat insulation performance in the third direction D3 of the panel 3 is improved. It can also be made.
  • this invention is not limited to the structure of above-described embodiment, and is not limited to the above-mentioned effect. It goes without saying that the present invention can be variously modified without departing from the gist of the present invention. For example, it is needless to say that configurations, methods, and the like according to various modifications described below may be arbitrarily selected and employed in the configurations, methods, and the like according to the above-described embodiments.
  • one panel 3 is configured to be fitted between the long materials 2 and 2.
  • the present invention is not limited to such a configuration.
  • a plurality of panels 3 may be arranged in parallel in the first direction D ⁇ b> 1 and fitted between the long members 2 and 2.
  • a plurality of panels 3 may be arranged in parallel in the second direction D2 and fitted between the long materials 2 and 2.
  • the panel 3 when the first direction D ⁇ b> 1 is configured to be the height direction, the panel 3 includes a plurality of cells 31 that are elongated along the first direction D ⁇ b> 1.
  • the elastic modulus in the width direction D2 is formed to be smaller than the elastic modulus in the longitudinal direction D1.
  • adjacent panel end portions 32, 32 abut at positions deviated from between the long materials 2, 2, and the opposite panel end portions 33, 33 are long. It is located between the scale members 2 and 2 and is in contact with the long member 2 and the plate member 5. And the panel 3 receives external force so that the adjacent panel edge parts 32 and 32 are located between the elongate materials 2 and 2, and the panel 3 is compressed in the 2nd direction D2, while the elongate materials 2 and 2 are received. Fit between two.
  • the panel 3 is configured such that the dimension in the first direction D1 is larger than the dimension in the second direction D2.
  • the present invention is not limited to such a configuration.
  • the panel 3 may be formed such that the dimension in the first direction D1 is smaller than the dimension in the second direction D2.
  • the long material 2 is a pillar, and the building structure 1 is a wall.
  • the present invention is not limited to such a configuration.
  • the long material 2 may be a floor joist in which the first direction (longitudinal direction) D1 is a horizontal direction, and the building structure 1 may be a floor.
  • the long material 2 may be a ceiling joist in which the first direction (longitudinal direction) D1 is the horizontal direction, and the building structure 1 may be a ceiling.
  • 1 may be a rafter whose direction (longitudinal direction) D1 is inclined with respect to the vertical direction and the horizontal direction, and the building structure 1 may be a roof.
  • the first to third directions D1, D2, and D3 are not limited to specific directions.
  • the panel 3 is manufactured using the mold 7.
  • the present invention is not limited to such a configuration.
  • a configuration may be employed in which the foaming stock solution composition is spread on a conveyor, and the panel 3 is cut into a rectangular parallelepiped shape so that the vertical direction is the first direction D1.
  • the panel 3 may be provided with a tapered portion 34 that is inclined with respect to the third direction D3 at the end in the second direction D2.
  • the panel 3 is formed by the tapered portion 34 so that the dimension in the second direction D2 is gradually increased.
  • the panel 3 is fitted between the long materials 2 and 2 while being compressed in the second direction D2 by being pressed in the third direction D3.
  • the tapered portion 34 may be provided only at one end of the panel 3.
  • a stop portion 6 that protrudes from the long material 2 in the second direction D2 and stops the panel 3 fitted between the long materials 2 and 2 is provided. It may be configured.
  • the stop portion 6 includes a locking portion 61 that locks the panel 3 fitted between the long members 2 and 2 in the second direction D2, and an inclined portion 62 that is inclined with respect to the third direction D3. ing.
  • the panel 3 is compressed in the second direction D2 by the inclined portion 62 of the stopper 6 when pressed in the third direction D3.
  • the panel 3 is fitted between the long materials 2 and 2 by getting over the stopper 6. Since the panel 3 fitted between the long members 2 and 2 is locked to the stopper 6, it is prevented from coming out between the long members 2 and 2.
  • the panel 3 may be configured such that the surface thereof is covered with a film (for example, a shrink film made of vinyl or the like). According to such a configuration, when the panel 3 is held by an operator or when a plurality of panels 3 are stacked, the panel 3 can be easily handled.
  • a film for example, a shrink film made of vinyl or the like
  • Polyol Compound Polyether Polyol (A) -1 Polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using the trade name “Excenol-820” (manufactured by Asahi Glass Co., Ltd.) with glycerol as an initiator.
  • Weight average molecular weight 4900, hydroxyl value (OHV) 34 mgKOH / g)
  • Short glycol (B) -1: Diethylene glycol (DEG) (molecular weight 106, hydroxyl value (OHV) 1058 mg KOH / g, manufactured by Nacalai Tesque)
  • Polyether polyol (C): trade name “T-3000S” (manufactured by Mitsui Chemicals), polyether polyol obtained by addition polymerization of only propylene oxide using glycerol as an initiator (weight average molecular weight 3000, hydroxyl value 56m
  • the polyurethane foam panel 3 obtained by reacting the foaming stock composition is cut along a cut surface along the longitudinal direction D1 and the width direction D2, and the thickness direction D3 of the panel 3 and the foaming direction of the cells 31 are substantially perpendicular ( 90 °) panel 3 (length D1 dimension: 700 mm, width direction D2 dimension: 400 mm, thickness direction D3 dimension: 60 mm) was manufactured.
  • the results are shown in FIG.
  • GPC device manufactured by Shimadzu Corporation, LC-10A Column: Polymer Laboratories, (PLgel, 5 ⁇ m, 500 ⁇ ), (PLgel, 5 ⁇ m, 100 ⁇ ⁇ ), and (PLgel, 5 ⁇ m, 50 ⁇ ) are connected and used.
  • Flow rate 1.0 ml / min Concentration: 1.0 g / l
  • the foam density was determined according to JIS K 7222.
  • the panels 3 of Examples 1 to 3 have low density, low brittleness, and excellent heat insulation performance in the thickness direction D3. Further, it can be seen that there is a difference in compressive strength between the vertical direction D1 and the horizontal direction D2 and elasticity in the width direction D2, so that the fitting workability is also excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

A construction structure (1) equipped with a plurality of lengthwise members (2) arranged in parallel in a second direction (D2) perpendicular to a first direction (D1) in a manner such that the lengthwise directions thereof are parallel with one another in the first direction (D1), and panels (3) sandwiched between the lengthwise members (2, 2), wherein the panels (3) comprise a foam body having a plurality of cells (31) formed in a lengthwise manner along the direction perpendicular to the second direction (D2), so as to have elasticity in the second direction (D2).

Description

建築構造体及びその製造方法Building structure and manufacturing method thereof
 本発明は、並列される複数の長尺材間にパネルを嵌める建築構造体及びその製造方法に関する。 The present invention relates to a building structure in which a panel is fitted between a plurality of long materials arranged in parallel, and a method for manufacturing the same.
 従来、建築構造体として、互いの長手方向が平行となるように、幅方向で並列される複数の長尺材(例えば、柱等)と、長尺材間に嵌められる硬質のパネルとを備える建築構造体が知られている(例えば、特許文献1)。例えば、パネルは、合成樹脂からなる断熱材である。 2. Description of the Related Art Conventionally, as a building structure, a plurality of long materials (for example, pillars and the like) arranged in the width direction and a hard panel fitted between the long materials so that the longitudinal directions thereof are parallel to each other are provided. A building structure is known (for example, Patent Document 1). For example, the panel is a heat insulating material made of synthetic resin.
 斯かる建築構造体において、パネルの寸法の高い精度が要求される。具体的には、パネルの寸法が僅かでも小さい場合、パネルと長尺材との間に隙間が発生し、反対に、パネルの寸法が僅かでも大きい場合、パネルが長尺材間に嵌められなかったり、無理に嵌められたパネルが損傷したりする。 In such a building structure, high accuracy of panel dimensions is required. Specifically, when the panel dimensions are slightly small, a gap is generated between the panel and the long material. Conversely, when the panel dimensions are slightly large, the panel cannot be fitted between the long materials. Or forcibly fitted panels may be damaged.
日本国特開2003-278290号公報Japanese Unexamined Patent Publication No. 2003-278290
 よって、本発明は、斯かる事情に鑑み、パネルを長尺材間に容易に嵌められると共に、パネルと長尺材との間に隙間が発生することを防止できる建築構造体及びその製造方法を提供することを課題とする。 Therefore, in view of such circumstances, the present invention provides a building structure that can easily fit a panel between long materials and prevent a gap from being generated between the panel and the long material, and a method for manufacturing the same. The issue is to provide.
 本発明に係る建築構造体は、互いの長手方向が第1の方向で平行となるように、前記第1の方向と直交する第2の方向で並列される複数の長尺材と、前記長尺材間に嵌められるパネルとを備え、前記パネルは、前記第2の方向で弾性を有するように、前記第2の方向と直交する方向に沿って長尺に形成される複数のセルを有する発泡体である。 The building structure according to the present invention includes a plurality of long members arranged in parallel in a second direction orthogonal to the first direction, such that the longitudinal directions thereof are parallel to each other in the first direction, and the long A panel that is fitted between the scale members, and the panel has a plurality of cells that are elongated along a direction orthogonal to the second direction so as to have elasticity in the second direction. It is a foam.
 本発明に係る建築構造体によれば、複数の長尺材は、互いの長手方向が第1の方向で平行となるように、第1の方向と直交する第2の方向で並列されている。パネルは、第2の方向と直交する方向に沿って長尺に形成される複数のセルを有する発泡体であるため、第2の方向で弾性を有する。したがって、第2方向で圧縮されたパネルが長尺材間でその圧縮を解除されて復元する(又は、パネルが第2の方向で圧縮されながら長尺材間に嵌められる)ことにより、パネルは、長尺材と密着し且つ長尺材を押圧した状態で長尺材間に嵌められる。 According to the building structure according to the present invention, the plurality of long members are juxtaposed in the second direction orthogonal to the first direction so that the longitudinal directions of the long members are parallel to each other in the first direction. . Since the panel is a foam having a plurality of cells formed elongated along a direction orthogonal to the second direction, the panel has elasticity in the second direction. Therefore, when the panel compressed in the second direction is released and restored between the long materials (or the panel is fitted between the long materials while being compressed in the second direction), the panel is It is fitted between the long materials while being in close contact with the long material and pressing the long material.
 また、本発明に係る建築構造体においては、前記複数のセルは、前記パネルの前記第2の方向における弾性率が前記パネルの前記第1の方向における弾性率よりも小さくなるように、前記第1の方向に沿って長尺に形成される、という構成でもよい。 Further, in the building structure according to the present invention, the plurality of cells are arranged such that an elastic modulus in the second direction of the panel is smaller than an elastic modulus in the first direction of the panel. It may be configured to be elongated along the direction of 1.
 斯かる構成によれば、複数のセルが第2の方向と直交する方向に沿って長尺に形成されるため、パネルの第2の方向における弾性率が小さくなる。これにより、パネルが第2の方向で弾性を有するため、パネルは、第2の方向で圧縮され易い。さらに、該複数のセルが、第2の方向と直交する方向のうち、第1の方向に沿って長尺に形成されるため、パネルの第1の方向における弾性率が大きくなる。これにより、パネルが第1の方向で剛性を有するため、長尺材間に嵌められたパネルは、長尺材間に安定して保持される。 According to such a configuration, since the plurality of cells are formed long along the direction orthogonal to the second direction, the elastic modulus in the second direction of the panel is reduced. Thereby, since the panel has elasticity in the second direction, the panel is easily compressed in the second direction. Further, since the plurality of cells are elongated along the first direction among the directions orthogonal to the second direction, the elastic modulus in the first direction of the panel is increased. Accordingly, since the panel has rigidity in the first direction, the panel fitted between the long materials is stably held between the long materials.
 また、本発明に係る建築構造体の製造方法は、互いの長手方向が第1の方向で平行となるように、前記第1の方向と直交する第2の方向で並列される複数の長尺材に対し、前記第2の方向で弾性を有するように、前記第2の方向と直交する方向に沿って長尺に形成される複数のセルを有する発泡体であるパネルを、前記長尺材間に嵌める。 Moreover, the manufacturing method of the building structure which concerns on this invention is the some elongate paralleled by the 2nd direction orthogonal to the said 1st direction so that a mutual longitudinal direction may become parallel in a 1st direction. A panel which is a foam having a plurality of cells elongated along a direction orthogonal to the second direction so as to have elasticity in the second direction with respect to the material. Fit in between.
 以上の如く、本発明は、パネルを長尺材間に容易に嵌められると共に、パネルと長尺材との間に隙間が発生することを防止できるという優れた効果を奏する。 As described above, the present invention has an excellent effect that a panel can be easily fitted between long materials, and a gap can be prevented from being generated between the panel and the long material.
図1は、本発明の一実施形態に係る建築構造体の要部正面図を示す。FIG. 1: shows the principal part front view of the building structure which concerns on one Embodiment of this invention. 図2は、図1のII-II線における断面図を示す。FIG. 2 is a sectional view taken along line II-II in FIG. 図3は、同実施形態に係るパネルの全体斜視図を示す。FIG. 3 is an overall perspective view of the panel according to the embodiment. 図4は、図3のIV-IV線における要部拡大断面図を示す。FIG. 4 is an enlarged cross-sectional view of a main part taken along line IV-IV in FIG. 図5は、同実施形態に係るパネルの製造方法を説明する要部斜視図を示す。FIG. 5: shows the principal part perspective view explaining the manufacturing method of the panel which concerns on the same embodiment. 図6は、同実施形態に係る建築構造体の製造方法を説明する要部横断面図を示す。FIG. 6: shows the principal part cross-sectional view explaining the manufacturing method of the building structure which concerns on the embodiment. 図7は、本発明の他の実施形態に係る建築構造体の要部正面図を示す。FIG. 7: shows the principal part front view of the building structure which concerns on other embodiment of this invention. 図8は、本発明のさらに他の実施形態に係る建築構造体の要部横断面図を示す。FIG. 8: shows the principal part cross-sectional view of the building structure which concerns on further another embodiment of this invention. 図9は、本発明のさらに他の実施形態に係る建築構造体の要部横断面図を示す。FIG. 9: shows the principal part cross-sectional view of the building structure which concerns on further another embodiment of this invention. 図10は、本発明のさらに他の実施形態に係る建築構造体の要部横断面図を示す。FIG. 10: shows the principal part cross-sectional view of the building structure which concerns on further another embodiment of this invention. 図11は、本発明に係る実施例の評価表を示す。FIG. 11 shows an evaluation table of an embodiment according to the present invention.
 本発明に係る建築構造体における一実施形態が、図1~図6を参酌して、以下に説明される。 DETAILED DESCRIPTION An embodiment of a building structure according to the present invention will be described below with reference to FIGS.
 図1及び図2に示すように、本実施形態に係る建築構造体1は、互いの長手方向が平行となるように、幅方向で並列される複数(図1及び図2において、2つ図示している)の長尺材2と、長尺材2,2間に嵌められるパネル3とを備えている。建築構造体1は、長尺材2の端部に固定される枠材4,4と、長尺材2の側部に固定される板材5とを備えている。本実施形態において、建築構造体1は、壁である。 As shown in FIG.1 and FIG.2, the building structure 1 which concerns on this embodiment is the multiple (it is two figures in FIG.1 and FIG.2) arranged in the width direction so that a mutual longitudinal direction may become parallel. A long material 2 and a panel 3 fitted between the long materials 2 and 2. The building structure 1 includes frame members 4 and 4 that are fixed to end portions of the long material 2, and a plate member 5 that is fixed to a side portion of the long material 2. In the present embodiment, the building structure 1 is a wall.
 長尺材2は、パネル3を支持する支持面21,21を幅方向の両側に備えている。具体的には、長尺材2の断面形状は、矩形状である。複数の長尺材2は、支持面21を互いに対面するようにして配置されている。本実施形態において、長尺材2は、柱であって、長手方向が高さ方向と平行となるように配置されている。 The long material 2 includes support surfaces 21 and 21 that support the panel 3 on both sides in the width direction. Specifically, the cross-sectional shape of the long material 2 is a rectangular shape. The plurality of long materials 2 are arranged so that the support surfaces 21 face each other. In the present embodiment, the long material 2 is a pillar, and is arranged so that the longitudinal direction is parallel to the height direction.
 パネル3は、直方体状に形成されている。パネル3が長尺材2,2間に嵌められた状態においては、パネル3の長手方向と長尺材2の長手方向とが平行であり、パネル3の幅方向と長尺材2の幅方向とが平行である。 The panel 3 is formed in a rectangular parallelepiped shape. In the state in which the panel 3 is fitted between the long members 2 and 2, the longitudinal direction of the panel 3 and the longitudinal direction of the long member 2 are parallel, and the width direction of the panel 3 and the width direction of the long member 2. And are parallel.
 本発明において、長尺材2の長手方向と平行な方向は、建築構造体1、長尺材2及びパネル3のそれぞれ第1の方向D1といい、長尺材2が並列される方向と平行な方向は、建築構造体1、長尺材2及びパネル3のそれぞれ第2の方向D2といい、第1の方向D1及び第2の方向D2と直交する方向は、建築構造体1、長尺材2及びパネル3のそれぞれ第3の方向D3という。 In the present invention, the direction parallel to the longitudinal direction of the long material 2 is referred to as a first direction D1 of each of the building structure 1, the long material 2 and the panel 3, and is parallel to the direction in which the long materials 2 are juxtaposed. The direction is referred to as the second direction D2 of the building structure 1, the long material 2 and the panel 3, and the direction perpendicular to the first direction D1 and the second direction D2 is the building structure 1, long length. Each of the material 2 and the panel 3 is referred to as a third direction D3.
 即ち、本実施形態において、パネル3の第1の方向D1は、パネル3の長手方向(縦方向)であり、パネル3の第2の方向D2は、パネル3の幅方向であり、パネル3の第3の方向D3は、パネル3の厚み方向である。以下、第1~3の方向D1,D2,D3に相当する方向は、それぞれD1,D2,D3の符号を付ける。 That is, in the present embodiment, the first direction D1 of the panel 3 is the longitudinal direction (vertical direction) of the panel 3, the second direction D2 of the panel 3 is the width direction of the panel 3, and The third direction D3 is the thickness direction of the panel 3. Hereinafter, the directions corresponding to the first to third directions D1, D2, and D3 are denoted by D1, D2, and D3, respectively.
 パネル3は、図3及び図4に示すように、合成樹脂(例えば、ウレタン系樹脂、スチレン系樹脂、フェノール系樹脂等)で形成され、弾性を有する発泡体である。具体的には、パネル3は、幅方向D2で弾性を有するように、幅方向D2と直交する方向に沿って長尺に形成される複数のセル31を有する発泡体である。 As shown in FIGS. 3 and 4, the panel 3 is formed of a synthetic resin (for example, urethane resin, styrene resin, phenol resin, etc.) and is a foam having elasticity. Specifically, the panel 3 is a foam having a plurality of cells 31 that are formed in a long direction along a direction orthogonal to the width direction D2 so as to have elasticity in the width direction D2.
 なお、本発明においては、全てのセル31が第2の方向D2と直交する方向に沿って長尺に形成されている必要はなく、パネル3が第2の方向D2で弾性を有するように、例えば半数以上のセル31が第2の方向D2と直交する方向に沿って長尺に形成されていればよい。即ち、本発明においては、パネル3が第2の方向D2で弾性を有するのであれば、第2の方向D2と平行な方向に沿って長尺に形成されるセル31が設けられていてもよい。 In the present invention, it is not necessary for all the cells 31 to be elongated along the direction perpendicular to the second direction D2, and the panel 3 has elasticity in the second direction D2. For example, more than half of the cells 31 need only be formed long along a direction orthogonal to the second direction D2. That is, in the present invention, as long as the panel 3 has elasticity in the second direction D2, the cells 31 that are elongated along the direction parallel to the second direction D2 may be provided. .
 パネル3は、幅方向D2の弾性率が長手方向D1の弾性率よりも小さくなるように、形成されている。そして、パネル3は、幅方向D2の弾性率と厚み方向D3の弾性率とが略同じとなるように、形成されている。 The panel 3 is formed so that the elastic modulus in the width direction D2 is smaller than the elastic modulus in the longitudinal direction D1. The panel 3 is formed so that the elastic modulus in the width direction D2 and the elastic modulus in the thickness direction D3 are substantially the same.
 具体的には、パネル3は、複数のセル31が幅方向D2と直交する方向のうち長手方向D1に沿って長尺に形成されていることで、幅方向D2の弾性率が長手方向D1の弾性率よりも小さくなるように、形成されている。より具体的には、複数のセル31が、一番長い寸法の方向を長手方向D1に沿って配置されていることで、パネル3における幅方向D2及び厚み方向D3の弾性率が、長手方向D1の弾性率よりも小さくなっている。 Specifically, the panel 3 has a plurality of cells 31 that are elongated along the longitudinal direction D1 in the direction orthogonal to the width direction D2, so that the elastic modulus in the width direction D2 is the same as that in the longitudinal direction D1. It is formed so as to be smaller than the elastic modulus. More specifically, the plurality of cells 31 are arranged with the longest dimension along the longitudinal direction D1, so that the elastic modulus in the width direction D2 and the thickness direction D3 of the panel 3 is the longitudinal direction D1. It is smaller than the elastic modulus.
 なお、弾性率は、パネル3に外力を加えて変形させた場合における弾性範囲内での応力と歪み(変形量)との比率である。換言すると、弾性率が小さいほど、同じ応力(圧力)で変形する量が大きくなる。 The elastic modulus is a ratio between stress and strain (deformation amount) within the elastic range when the panel 3 is deformed by applying an external force. In other words, the smaller the elastic modulus, the greater the amount of deformation with the same stress (pressure).
 弾性変形していないパネル3の幅方向D2の寸法W2が、長尺材2,2の離間距離W1よりも大きいため、パネル3は、幅方向D2に圧縮変形した状態で、長尺材2,2間に嵌められている。弾性変形していないパネル3の幅方向D2の寸法W2は、長尺材2,2の離間距離W1の101%~115%であることが好ましく、105%~110%であることがより好ましい。 Since the dimension W2 in the width direction D2 of the panel 3 that is not elastically deformed is larger than the separation distance W1 between the long materials 2 and 2, the panel 3 is compressed and deformed in the width direction D2 and It is fitted between the two. The dimension W2 in the width direction D2 of the panel 3 that is not elastically deformed is preferably 101% to 115%, more preferably 105% to 110% of the separation distance W1 of the long materials 2 and 2.
 本実施形態において、パネル3は、ポリウレタンフォームパネルである。パネル3の構成が以下に詳細に説明される。 In this embodiment, the panel 3 is a polyurethane foam panel. The configuration of the panel 3 will be described in detail below.
 パネル3は、ポリオール化合物と発泡剤である水とを含有するポリオール組成物と、ポリイソシアネート成分とを混合、反応させて得られ、縦方向(長手方向)D1、幅方向D2及び厚み方向D3を有するポリウレタンフォームパネルであって、フォーム密度が15kg/m以下で且つ縦方向D1の10%圧縮強度SD1と幅方向D2の10%圧縮強度SD2との比(SD1/SD2)が2以上となるように、設定されている。 The panel 3 is obtained by mixing and reacting a polyol composition containing a polyol compound and water as a foaming agent, and a polyisocyanate component. The panel 3 has a longitudinal direction (longitudinal direction) D1, a width direction D2, and a thickness direction D3. a polyurethane foam panel with the ratio of 10% compression strength S D2 of a 10% compression strength S D1 and the width direction D2 of the foam density is 15 kg / m 3 or less and a vertical direction D1 (S D1 / S D2) is It is set to be 2 or more.
 パネル3のフォーム密度(コア密度)は、15kg/m以下であることが好ましく、13kg/m以下であることがより好ましく、11kg/m以下であることがさらに好ましい。斯かるフォーム密度は、例えば、発泡剤としての水の量を、20~100重量部(対ポリオール化合物100重量部)に調整することにより、上記範囲内に設定される。ここで、フォーム密度は、JIS K7222に準拠して測定される値である。 The foam density (core density) of the panel 3 is preferably 15 kg / m 3 or less, more preferably 13 kg / m 3 or less, and further preferably 11 kg / m 3 or less. Such foam density is set within the above range, for example, by adjusting the amount of water as a blowing agent to 20 to 100 parts by weight (with respect to 100 parts by weight of the polyol compound). Here, the foam density is a value measured according to JIS K7222.
 パネル3のフォーム密度は、15kg/m以下であるため、非常に低く、パネル3の発泡倍率は、高い。そのため、セル31は、縦方向D1に引き伸ばされ、楕円体状に形成されている。楕円体状のセル31の長径方向がパネル3の縦方向D1と平行になることにより、パネル3の縦方向D1におけるフォーム強度が高くなる一方、パネル3の幅方向D2及び厚み方向D3におけるフォーム強度が低くなり、パネル3の幅方向D2及び厚み方向D3が弾性(柔軟性)を備える。 Since the foam density of the panel 3 is 15 kg / m 3 or less, it is very low, and the expansion ratio of the panel 3 is high. Therefore, the cell 31 is stretched in the vertical direction D1 and formed in an ellipsoidal shape. When the major axis direction of the ellipsoidal cell 31 is parallel to the longitudinal direction D1 of the panel 3, the foam strength in the longitudinal direction D1 of the panel 3 is increased, while the foam strength in the width direction D2 and the thickness direction D3 of the panel 3 is increased. The width direction D2 and the thickness direction D3 of the panel 3 have elasticity (flexibility).
 パネル3は、縦方向D1の10%圧縮強度SD1と幅方向D2の10%圧縮強度SD2との比(SD1/SD2)が2以上となるように、形成されている。長尺材2,2間にパネル3を嵌める作業性と、嵌められたパネル3の自立性とを両立するために、縦方向D1の10%圧縮強度SD1と幅方向D2の10%圧縮強度SD2との比(SD1/SD2)が3以上であることが好ましく、5以上であることがより好ましい。該比(SD1/SD2)の上限は、特に限定されないが、例えば、7程度である。なお、X%圧縮強度は、パネル3をX%の量だけ圧縮変形させるために必要な応力である。 Panel 3, so that the ratio between the 10% compressive strength S D2 of a 10% compression strength S D1 and the width direction D2 in the vertical direction D1 (S D1 / S D2) is 2 or more, are formed. And workability fitting the panel 3 between the long material 2,2, in order to achieve both autonomy fitted panels 3, 10% compressive strength of 10% compression strength S D1 and the width direction D2 of the longitudinal direction D1 The ratio to S D2 (S D1 / S D2 ) is preferably 3 or more, and more preferably 5 or more. The upper limit of the ratio (S D1 / S D2 ) is not particularly limited, but is about 7, for example. The X% compressive strength is a stress necessary for compressing and deforming the panel 3 by an amount of X%.
 長尺材2,2間にパネル3を嵌める作業性を向上させるためには、パネル3を幅方向D2で容易に圧縮できる必要がある。したがって、パネル3の幅方向D2の10%圧縮強度SD2は、3N/cm以下であることが好ましく、1N/cm以下であることがより好ましく、0.5N/cm以下であることが特に好ましい。 In order to improve the workability of fitting the panel 3 between the long materials 2 and 2, the panel 3 needs to be easily compressed in the width direction D2. Thus, 10% compression strength S D2 in the width direction D2 of the panel 3, it is preferably 3N / cm 2 or less, more preferably 1N / cm 2 or less, 0.5 N / cm 2 or less Is particularly preferred.
 また、長尺材2,2間にパネル3を嵌める作業性を向上させるためには、圧縮されたパネル3が速やかに復元することも必要である。したがって、パネル3は、幅方向D2に20%圧縮されても損傷及び破壊することなく、しかも、幅方向D2に20%圧縮された後に開放された場合、圧縮前の幅方向D2の寸法の90%以上に復元することが好ましい。 Also, in order to improve the workability of fitting the panel 3 between the long materials 2 and 2, it is necessary that the compressed panel 3 is quickly restored. Therefore, when the panel 3 is not damaged or destroyed even if it is compressed 20% in the width direction D2, and is opened after being compressed 20% in the width direction D2, the panel 3 has a dimension of 90 in the width direction D2 before compression. It is preferable to restore to% or more.
 パネル3は、セル31の発泡方向が幅方向D2及び厚み方向D3とそれぞれ略垂直であることが好ましい。「略垂直」とは、具体的には、90°±15°を意味し、特には90°±10°を意味するものとする。「セルの発泡方向」とは、個々のセル31の形状を楕円体状とみなしたときの長径方向を意味し、特には、パネル3の幅方向D2の中央部分(縦方向D1及び幅方向D2中心から、縦方向D1の寸法及び幅方向D2の寸法の両側10%程度の部分)で測定したときの方向を指すものとする。 In the panel 3, it is preferable that the foaming direction of the cells 31 is substantially perpendicular to the width direction D2 and the thickness direction D3, respectively. Specifically, “substantially vertical” means 90 ° ± 15 °, particularly 90 ° ± 10 °. The “cell foaming direction” means a major axis direction when the shape of each cell 31 is regarded as an ellipsoid, and in particular, a central portion of the panel 3 in the width direction D2 (the vertical direction D1 and the width direction D2). The direction when measured from the center at a portion of about 10% on both sides of the dimension in the longitudinal direction D1 and the dimension in the width direction D2 is assumed.
 パネル3が断熱材として使用されるため、パネル3の熱伝導率λは、0.04W/m・K以下であることが好ましい。これにより、低密度化されたパネル3であっても、十分な断熱性能を発揮することができる。なお、熱伝導率は、JIS A1412-2に準拠して測定される値である。 Since the panel 3 is used as a heat insulating material, the thermal conductivity λ of the panel 3 is preferably 0.04 W / m · K or less. Thereby, even if it is the panel 3 reduced in density, sufficient heat insulation performance can be exhibited. The thermal conductivity is a value measured according to JIS A1412-2.
 パネル3の独立気泡率は、15%以下であることが好ましく、0~10%であることがより好ましい。このように、連通化率を高くすることにより、優れた寸法安定性を確保することができる。ここで、独立気泡率は、ASTM D2856に準拠して測定される値である。 The closed cell ratio of panel 3 is preferably 15% or less, and more preferably 0 to 10%. Thus, by increasing the communication rate, excellent dimensional stability can be ensured. Here, the closed cell ratio is a value measured according to ASTM D2856.
 上記したように、パネル3は、ポリオール化合物と発泡剤である水とを含有するポリオール組成物と、ポリイソシアネート成分とを混合、反応させて得られる。 As described above, the panel 3 is obtained by mixing and reacting a polyol composition containing a polyol compound and water as a foaming agent and a polyisocyanate component.
 上記ポリオール化合物は、平均官能基数が2~4で且つ重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有する、ことが好ましい。 The polyol compound has an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, a polyether polyol (A) which is a polymer of alkylene oxide, and a short glycol (B And).
 ポリエーテルポリオール(A)は、2~4個の活性水素原子を有する開始剤に、アルキレンオキサイドを開環付加重合させて得られたポリオキシアルキレンポリオールである。 The polyether polyol (A) is a polyoxyalkylene polyol obtained by ring-opening addition polymerization of alkylene oxide to an initiator having 2 to 4 active hydrogen atoms.
 開始剤としては、例えば、脂肪族多価アルコール(例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、シクロヘキシレングリコール、シクロヘキサンジメタノール等のグリコール類、トリメチロールプロパン、グリセリン等のトリオール類、ペンタエリスリトール等の4官能アルコール類)、脂肪族アミン(例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ネオペンチルジアミン等のアルキレンジアミン、モノエタノールアミン、ジエタノールアミン等のアルカノールアミン)、芳香族アミン(例えば、2,4-トルエンジアミン、2,6-トルエンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルメタン、p-フェニレンジアミン、o-フェニレンジアミン、ナフタレンジアミン等)等が挙げられる。これらは、それぞれ1種単独で用いてもよく、また、2種以上併用してもよい。開始剤として、脂肪族アルコールを用いることが好ましく、トリオール類を用いることがより好ましく、グリセリンを用いることが特に好ましい。 Examples of the initiator include aliphatic polyhydric alcohols (for example, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-butanediol, 1,6-hexanediol, neopentyl Glycols such as glycol, cyclohexylene glycol and cyclohexanedimethanol, triols such as trimethylolpropane and glycerin, tetrafunctional alcohols such as pentaerythritol), aliphatic amines (eg ethylenediamine, propylenediamine, butylenediamine, hexamethylene) Alkylenediamines such as diamine and neopentyldiamine, alkanolamines such as monoethanolamine and diethanolamine), aromatic amines (eg, 2,4-toluenedia) Emissions, 2,6-toluene diamine, diethyl toluene diamine, 4,4'-diaminodiphenylmethane, p- phenylenediamine, o- phenylenediamine, naphthalene diamines, etc.) and the like. Each of these may be used alone or in combination of two or more. As the initiator, an aliphatic alcohol is preferably used, a triol is more preferably used, and glycerin is particularly preferably used.
 ポリエーテルポリオール(A)は、平均官能基数が2~4であって、2.5~3.5であることがより好ましい。さらに、ポリエーテルポリオール(A)は、重量平均分子量が3000~5000であることがより好ましい。 The polyether polyol (A) has an average number of functional groups of 2 to 4, more preferably 2.5 to 3.5. Further, the polyether polyol (A) preferably has a weight average molecular weight of 3000 to 5000.
 アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、1,2-ブチレンオキサイド、2,3-ブチレンオキサイド、スチレンオキサイド、シクロヘキセンオキサイド等が挙げられる。これらの中でも、エチレンオキサイド及びプロピレンオキサイドを併用して、前記開始剤に開環付加重合させることが好ましい。その際、エチレンオキサイドの比率((エチレンオキサイド)/(エチレンオキサイド+プロピレンオキサイド))を5%~30%とすることが好ましい。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, styrene oxide, and cyclohexene oxide. Among these, it is preferable to use ethylene oxide and propylene oxide in combination to cause ring-opening addition polymerization to the initiator. At that time, the ratio of ethylene oxide ((ethylene oxide) / (ethylene oxide + propylene oxide)) is preferably 5% to 30%.
 ポリエーテルポリオール(A)の水酸基価は、20~100mgKOH/gであることが好ましく、30~60mgKOH/gであることがより好ましい。該水酸基価が20mgKOH/g未満である場合、ポリイソシアネート成分に対するポリオール組成物の粘度比が高くなり、混合時の撹拌不良が生じる。反対に、100mgKOH/gを超える場合、得られたポリウレタンフォームに適度な靱性を付与することが難しくなる。水酸基価は、JIS K1557-1:2007に準拠して測定される値である。 The hydroxyl value of the polyether polyol (A) is preferably 20 to 100 mgKOH / g, and more preferably 30 to 60 mgKOH / g. When the hydroxyl value is less than 20 mgKOH / g, the viscosity ratio of the polyol composition to the polyisocyanate component becomes high, resulting in poor stirring during mixing. On the other hand, when it exceeds 100 mgKOH / g, it becomes difficult to impart moderate toughness to the obtained polyurethane foam. The hydroxyl value is a value measured according to JIS K1557-1: 2007.
 分子量が250未満であるショートグリコール(B)は、例えば、エチレングリコール(分子量62)、プロピレングリコール(分子量76)、ジエチレングリコール(分子量106)、ジプロピレングリコール(分子量134)、1,4-ブタンジオール(分子量90)、1,3-ブタンジオール(分子量90)、1,6-ヘキサンジオール(分子量118)、グリセリン(分子量92)、トリプロピレングリコール(分子量192)等が挙げられる。これらの中でも、フォームの樹脂強度をより確実に高めるためには、ジエチレングリコール、ジプロピレングリコール及びグリセリンが好ましく、ジエチレングリコールが特に好ましい。ショートグリコール(B)の分子量は、62~200mgKOH/gであることが好ましく、90~150mgKOH/gであることがより好ましい。 Short glycol (B) having a molecular weight of less than 250 includes, for example, ethylene glycol (molecular weight 62), propylene glycol (molecular weight 76), diethylene glycol (molecular weight 106), dipropylene glycol (molecular weight 134), 1,4-butanediol ( Examples include molecular weight 90), 1,3-butanediol (molecular weight 90), 1,6-hexanediol (molecular weight 118), glycerin (molecular weight 92), and tripropylene glycol (molecular weight 192). Of these, diethylene glycol, dipropylene glycol and glycerin are preferable, and diethylene glycol is particularly preferable in order to increase the resin strength of the foam more reliably. The molecular weight of the short glycol (B) is preferably 62 to 200 mgKOH / g, and more preferably 90 to 150 mgKOH / g.
 原料として使用するポリオール組成物においては、ポリオール化合物として、さらに平均官能基数が2~4、重量平均分子量が3000~5000であって、プロピレンオキサイドの重合体であるポリエーテルポリオール(C)を含有することが好ましい。ポリエーテルポリオール(C)は、2~4個の活性水素原子を有する開始剤に、プロピレンオキサイドのみを開環付加重合させて得られたポリオキシアルキレンポリオールである。開始剤としては、上述した脂肪族多価アルコール、脂肪族アミン、芳香族アミン等が挙げられ、特に限定されない。開始剤として、グリセリンが特に好ましい。 In the polyol composition used as a raw material, the polyol compound further contains a polyether polyol (C) which has an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 5000 and is a propylene oxide polymer. It is preferable. The polyether polyol (C) is a polyoxyalkylene polyol obtained by ring-opening addition polymerization of propylene oxide alone to an initiator having 2 to 4 active hydrogen atoms. Examples of the initiator include the aliphatic polyhydric alcohols, aliphatic amines, and aromatic amines described above, and are not particularly limited. As the initiator, glycerin is particularly preferable.
 原料として使用するポリオール組成物では、低密度化しつつ断熱性能に優れたポリウレタンフォームパネル3を製造するために、ポリオール化合物100重量部中、ポリエーテルポリオール(A)を10~80重量部含有し、ショートグリコール(B)を10~60重量部含有することが好ましく、ポリエーテルポリオール(A)を15~70重量部含有し、ショートグリコール(B)を10~50重量部含有することがより好ましい。また、ポリエーテルポリオール(C)を含有する場合、ポリエーテルポリオール(A)を10~30重量部含有し、ショートグリコール(B)を10~60重量部含有し、且つポリエーテルポリオール(C)を30~70重量部含有することが好ましく、さらに、ポリエーテルポリオール(A)を15~25重量部含有し、ショートグリコール(B)を10~50重量部含有し、且つポリエーテルポリオール(C)を40~60重量部含有することがより好ましい。 The polyol composition used as a raw material contains 10 to 80 parts by weight of the polyether polyol (A) in 100 parts by weight of the polyol compound in order to produce a polyurethane foam panel 3 having a low density and excellent heat insulating performance. It is preferable to contain 10 to 60 parts by weight of the short glycol (B), more preferably 15 to 70 parts by weight of the polyether polyol (A), and more preferably 10 to 50 parts by weight of the short glycol (B). When the polyether polyol (C) is contained, the polyether polyol (A) is contained in an amount of 10 to 30 parts by weight, the short glycol (B) is contained in an amount of 10 to 60 parts by weight, and the polyether polyol (C) is contained. It is preferable to contain 30 to 70 parts by weight, 15 to 25 parts by weight of polyether polyol (A), 10 to 50 parts by weight of short glycol (B), and polyether polyol (C). More preferably, it is contained in an amount of 40 to 60 parts by weight.
 上記ポリオール組成物には、発泡剤として水が配合される。発泡剤は、水単独であることが好ましく、その配合量は、ポリオール化合物100重量部に対して20~100重量部であることが好ましく、30~90重量部であることがより好ましく、40~80重量部であることがさらに好ましい。このように水を多量に配合することで、パネル3の低密度化を図ることができる。 In the polyol composition, water is blended as a foaming agent. The blowing agent is preferably water alone, and the blending amount thereof is preferably 20 to 100 parts by weight, more preferably 30 to 90 parts by weight, more preferably 40 to 40 parts by weight based on 100 parts by weight of the polyol compound. More preferably, it is 80 parts by weight. Thus, the density of the panel 3 can be reduced by blending a large amount of water.
 上記ポリオール組成物には、通常、難燃剤、触媒及び整泡剤がさらに配合される。また、上記ポリオール組成物には、着色剤及び酸化防止剤等の各種添加剤がさらに配合されてもよい。 The flame retardant, catalyst and foam stabilizer are usually further added to the polyol composition. Moreover, various additives, such as a coloring agent and antioxidant, may further be mix | blended with the said polyol composition.
 難燃剤としては、有機リン酸エステル類、ハロゲン含有化合物、水酸化アルミニウム等の金属化合物が挙げられ、特に、有機リン酸エステル類がポリオール組成物の粘度低下効果を有するので好ましい。有機リン酸エステルとしては、リン酸のハロゲン化アルキルエステル、アルキルリン酸エステル、アリールリン酸エステル、ホスホン酸エステル等が挙げられる。具体的には、トリス(クロロプロピル)ホスフェート(TMCPP、大八化学製)、トリブトキシエチルホスフェート(TBEP)、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、クレジルジフェニルホスフェート等が挙げられる。難燃剤の配合量は、ポリオール化合物100重量部に対して10~50重量部であることが好ましく、15~40重量部であることがより好ましい。特に、フォームの脆性悪化を防止するために、ポリオール組成物中、前記ポリエーテルポリオール(A)及び前記ショートグリコール(B)に加えて、ポリオール化合物100重量部に対して、難燃剤を20重量部以上含有することが好ましい。 Examples of the flame retardant include metal compounds such as organophosphates, halogen-containing compounds, and aluminum hydroxide. Particularly, organophosphates are preferable because they have an effect of reducing the viscosity of the polyol composition. Examples of the organic phosphate esters include halogenated alkyl esters, alkyl phosphate esters, aryl phosphate esters, and phosphonate esters of phosphoric acid. Specific examples include tris (chloropropyl) phosphate (TMCPP, manufactured by Daihachi Chemical), tributoxyethyl phosphate (TBEP), tributyl phosphate, triethyl phosphate, trimethyl phosphate, cresyl diphenyl phosphate, and the like. The blending amount of the flame retardant is preferably 10 to 50 parts by weight, more preferably 15 to 40 parts by weight with respect to 100 parts by weight of the polyol compound. In particular, in order to prevent deterioration of the brittleness of the foam, in addition to the polyether polyol (A) and the short glycol (B) in the polyol composition, the flame retardant is 20 parts by weight with respect to 100 parts by weight of the polyol compound. It is preferable to contain above.
 触媒としては、ウレタン化反応を促進する触媒であれば特に限定されないが、ポリイソシアネート成分のイソシアネート基と反応することができる反応性のアミン触媒を用いることが好ましい。そのような反応性のアミン触媒としては、N,N-ジメチルエタノールアミン、N,N-ジメチルアミノエトキシエタノール、N,N,N’-トリメチルアミノエチルエタノールアミン、N,N,N’,N’-テトラメチル-2-ヒドロキシプロピレンジアミン、N-ヒドロキシエチルモルホリン、N-メチル-N-ヒドロキシエチルピペラジン、N,N-ジメチルプロピレンジアミン等が挙げられる。 The catalyst is not particularly limited as long as it is a catalyst that accelerates the urethanization reaction, but it is preferable to use a reactive amine catalyst that can react with the isocyanate group of the polyisocyanate component. Such reactive amine catalysts include N, N-dimethylethanolamine, N, N-dimethylaminoethoxyethanol, N, N, N′-trimethylaminoethylethanolamine, N, N, N ′, N ′. -Tetramethyl-2-hydroxypropylenediamine, N-hydroxyethylmorpholine, N-methyl-N-hydroxyethylpiperazine, N, N-dimethylpropylenediamine and the like.
 なお、通常の第3級アミン触媒を用いることもでき、そのような第3級アミン触媒としては、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N,N’,N’,N”-ペンタメチルジエチレントリアミン、ジアザビシクロウンデセン、N,N-ジメチルシクロヘキシルアミン、トリエチレンジアミン、N-メチルモルホリン等が挙げられる。 In addition, a normal tertiary amine catalyst can also be used, and as such a tertiary amine catalyst, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′— Examples thereof include tetramethylhexamethylenediamine, N, N, N ′, N ′, N ″ -pentamethyldiethylenetriamine, diazabicycloundecene, N, N-dimethylcyclohexylamine, triethylenediamine, N-methylmorpholine and the like.
 触媒の配合量は、ポリオール化合物100重量部に対して2~10重量部であることが好ましく、3~8重量部であることがより好ましい。 The compounding amount of the catalyst is preferably 2 to 10 parts by weight, and more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the polyol compound.
 整泡剤としては、公知のポリウレタンフォーム用の整泡剤の中から、例えば、エチレンオキサイド又はプロピレンオキサイドの重合体であるポリオキシアルキレングリコールとポリジメチルシロキサンとのグラフト共重合体が挙げられ、ポリオキシアルキレン中のオキシエチレン基含有率が70~100モル%のシリコーン整泡剤が好ましく用いられ、具体的には、SH-193、SF-2937F、SF-2938F(東レダウコーニングシリコーン社製)、B-8465、B-8467、B-8481(エボニックデグサジャパン社製)、L-6900(モメンティブ社製)等が挙げられる。整泡剤の配合量は、ポリオール化合物100重量部に対して1~10重量部であることが好ましい。 Examples of the foam stabilizer include, among known foam stabilizers for polyurethane foam, a graft copolymer of polyoxyalkylene glycol, which is a polymer of ethylene oxide or propylene oxide, and polydimethylsiloxane. Silicone foam stabilizers having an oxyethylene group content of 70 to 100 mol% in oxyalkylene are preferably used. Specifically, SH-193, SF-2937F, SF-2938F (manufactured by Toray Dow Corning Silicone), B-8465, B-8467, B-8481 (manufactured by Evonik Degussa Japan), L-6900 (manufactured by Momentive) and the like. The blending amount of the foam stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polyol compound.
 上記ポリオール組成物と混合、反応させてポリウレタンフォームパネル3を形成するポリイソシアネート成分としては、イソシアネート基を2個以上有する芳香族系、脂環族系、脂肪族系等の各種ポリイソシアネート化合物を用いることができる。取扱の容易さ、反応の速さ、得られるポリウレタンフォームの物理特性が優れていること、及び低コストであること等から、液状ジフェニルメタンジイソシアネート(MDI)を用いることが好ましい。液状MDIとしては、クルードMDI(c-MDI)(44V-10,44V-20等(住化バイエルウレタン社製)、ミリオネートMR-200(日本ポリウレタン工業))、ウレトンイミン含有MDI(ミリオネートMTL:日本ポリウレタン工業製)等が挙げられる。液状MDIに加えて、他のポリイソシアネート化合物を併用してもよく、併用するポリイソシアネート化合物としては、ポリウレタンの技術分野において公知のポリイソシアネート化合物が限定なく使用可能である。 Various polyisocyanate compounds such as aromatic, alicyclic and aliphatic polyisocyanates having two or more isocyanate groups are used as the polyisocyanate component which is mixed and reacted with the polyol composition to form the polyurethane foam panel 3. be able to. It is preferable to use liquid diphenylmethane diisocyanate (MDI) from the viewpoint of ease of handling, speed of reaction, excellent physical properties of the resulting polyurethane foam, and low cost. Liquid MDIs include Crude MDI (c-MDI) (44V-10, 44V-20, etc. (manufactured by Sumika Bayer Urethane Co., Ltd.), Millionate MR-200 (Nippon Polyurethane Industry)), uretonimine-containing MDI (Millionate MTL: Nippon Polyurethane) (Made by industry) etc. are mentioned. In addition to liquid MDI, other polyisocyanate compounds may be used in combination. As the polyisocyanate compound to be used together, polyisocyanate compounds known in the technical field of polyurethane can be used without limitation.
 パネル3は、ポリオール組成物とポリイソシアネート成分とを混合、反応させる際のイソシアネート指数(NCO Index)を30以下に設定することが好ましく、30未満に設定することがより好ましい。イソシアネート指数の下限としては、例えば20が挙げられる。イソシアネート指数を前記範囲内とすることにより、低密度であって、且つ優れた弾性及び断熱性能を備えたポリウレタンフォームパネル3とすることができる。ここで、イソシアネート指数とは、ポリオール組成物に含まれる全ての活性水素基(発泡剤としての水を2官能活性水素化合物として計算)に対するポリイソシアネート成分のイソシアネート基の当量比を百分率で表したもの(活性水素基100当量に対するイソシアネート基の当量比)を意味する。 Panel 3 preferably has an isocyanate index (NCO Index) of 30 or less, more preferably less than 30, when the polyol composition and the polyisocyanate component are mixed and reacted. As a minimum of an isocyanate index, 20 is mentioned, for example. By setting the isocyanate index within the above range, the polyurethane foam panel 3 having low density and excellent elasticity and heat insulation performance can be obtained. Here, the isocyanate index is the percentage equivalent of the isocyanate group of the polyisocyanate component to all active hydrogen groups contained in the polyol composition (calculated using water as a blowing agent as a bifunctional active hydrogen compound). (Equivalent ratio of isocyanate groups to 100 equivalents of active hydrogen groups).
 パネル3の製造方法は、ポリオール化合物と発泡剤である水とを含有するポリオール組成物と、ポリイソシアネート成分と、を含有する発泡原液組成物を原料として得られるポリウレタンフォームパネル3の製造方法であって、斯かるポリオール化合物は、例えば、ポリオール組成物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有するポリオール化合物を含有し、ポリオール化合物100重量部に対して、水を20~100重量部含有するものであり、ポリオール組成物とポリイソシアネート成分とを混合、反応させる際のイソシアネート指数が30未満であることが好ましい。そして、パネル3が幅方向D2で弾性を有するように、複数のセル31がパネル3の縦方向D1に沿って長尺に形成されるためには、図5に示すように、縦方向D1、幅方向D2及び厚み方向D3を有するモールド7に対し、幅方向D2及び厚み方向D3に沿って延びる面を底面71として、発泡原液組成物を注入する注入工程と、注入工程後に前記発泡原液組成物を反応させる反応工程と、を備えることが好ましい。 The manufacturing method of the panel 3 is a manufacturing method of the polyurethane foam panel 3 obtained by making into a raw material the foaming stock solution composition containing the polyol composition containing the polyol compound and water which is a foaming agent, and a polyisocyanate component. Thus, for example, such a polyol compound has a polyol composition having an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 8000, and a polyether polyol (A) which is a polymer of alkylene oxide, and a molecular weight. A polyol compound containing a short glycol (B) having a water content of less than 250, and containing 20 to 100 parts by weight of water with respect to 100 parts by weight of the polyol compound, the polyol composition and the polyisocyanate component Preferably, the isocyanate index when mixing and reacting with Arbitrariness. In order for the plurality of cells 31 to be formed along the longitudinal direction D1 of the panel 3 so that the panel 3 has elasticity in the width direction D2, as shown in FIG. With respect to the mold 7 having the width direction D2 and the thickness direction D3, an injection step of injecting the foaming stock solution composition with the surface extending along the width direction D2 and the thickness direction D3 as the bottom surface 71, and the foaming stock solution composition after the injection step It is preferable to provide a reaction step.
 具体的には、パネル3の製造方法では、縦方向D1、幅方向D2及び厚み方向D3を有するモールド7に対し、幅方向D2及び厚み方向D3に沿って延びる面を底面71として、ミキシングヘッド8から、ポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を注入する(注入工程)。注入後、発泡原液組成物は、反応しつつ、縦方向D1に発泡しながら(膨らみながら)、フォームを形成する(反応工程)。上記反応工程では、必要に応じて、モールド7を全体的に、あるいは局所的に、加温してもよい。 Specifically, in the manufacturing method of the panel 3, the mixing head 8 has a bottom surface 71 as a surface extending along the width direction D2 and the thickness direction D3 with respect to the mold 7 having the vertical direction D1, the width direction D2, and the thickness direction D3. Then, a foaming stock solution composition containing a polyol composition and a polyisocyanate component is injected (injection step). After injection, the foamed stock solution composition reacts and forms a foam while foaming (swelling) in the longitudinal direction D1 (reaction process). In the reaction step, the mold 7 may be heated as a whole or locally as necessary.
 本実施形態に係る建築構造体1の構成は、以上の通りであり、次に、本実施形態に係る建築構造体1の製造方法が、図6を参酌して以下に説明される。 The configuration of the building structure 1 according to this embodiment is as described above. Next, a method for manufacturing the building structure 1 according to this embodiment will be described below with reference to FIG.
 図6に示すように、複数の長尺材2,2は、長手方向D1が平行となるように、幅方向D2で並列されている。外力がパネル3に加えられることにより、パネル3が幅方向D2で圧縮される。これにより、長尺材2,2の離間距離W1より大きいパネル3の幅方向D2における寸法W2は、長尺材2,2の離間距離W1より小さくなる。 As shown in FIG. 6, the plurality of long materials 2 and 2 are juxtaposed in the width direction D2 so that the longitudinal direction D1 is parallel. By applying an external force to the panel 3, the panel 3 is compressed in the width direction D2. Accordingly, the dimension W2 in the width direction D2 of the panel 3 which is larger than the separation distance W1 between the long materials 2 and 2 is smaller than the separation distance W1 between the long materials 2 and 2.
 幅方向D2で圧縮されたパネル3が長尺材2,2間に位置された後、加えられた外力が解除されることにより、パネル3が復元する。パネル3は、長尺材2の支持面21に当接した後も、弾性力によりさらに復元しようとするため、長尺材2と密着し且つ長尺材2を押圧する状態で長尺材2,2間に嵌まる。 After the panel 3 compressed in the width direction D2 is positioned between the long materials 2 and 2, the applied external force is released, so that the panel 3 is restored. Since the panel 3 tries to be further restored by the elastic force even after contacting the support surface 21 of the long material 2, the long material 2 is in close contact with the long material 2 and presses the long material 2. , Fits between the two.
 以上より、本実施形態に係る建築構造体1によれば、複数の長尺材2は、互いの長手方向が第1の方向D1で平行となるように、第1の方向D1と直交する第2の方向D2で並列されている。パネル3は、第2の方向D2と直交する方向に沿って長尺に形成される複数のセル31を有する発泡体であるため、第2の方向D2で弾性を有する。 As described above, according to the building structure 1 according to the present embodiment, the plurality of long members 2 are orthogonal to the first direction D1 such that the longitudinal directions of the plurality of long members 2 are parallel to each other in the first direction D1. Two directions D2 are arranged in parallel. Since the panel 3 is a foam having a plurality of cells 31 that are elongated along a direction orthogonal to the second direction D2, the panel 3 has elasticity in the second direction D2.
 したがって、第2の方向D2で圧縮されたパネル3が長尺材2,2間でその圧縮を解除されて復元することにより、パネル3は、長尺材2と密着し且つ長尺材2を押圧した状態で長尺材2,2間に嵌められる。このように、本実施形態に係る建築構造体1は、パネル3を長尺材2,2間に容易に嵌められると共に、パネル3と長尺材2との間に隙間が発生することを防止できる。 Therefore, when the panel 3 compressed in the second direction D2 is decompressed and restored between the long members 2 and 2, the panel 3 is in close contact with the long member 2 and the long member 2 is attached. It fits between the long materials 2 and 2 in the pressed state. As described above, the building structure 1 according to this embodiment allows the panel 3 to be easily fitted between the long members 2 and 2 and prevents a gap from being generated between the panel 3 and the long member 2. it can.
 また、本実施形態に係る建築構造体1によれば、複数のセル31が第2の方向D2と直交する方向に沿って長尺に形成されるため、パネル3の第2の方向D2における弾性率が小さくなる。これにより、パネル3が第2の方向D2で弾性を有するため、パネル3は、第2の方向D2で圧縮され易い。 Moreover, according to the building structure 1 which concerns on this embodiment, since the several cell 31 is formed elongate along the direction orthogonal to the 2nd direction D2, the elasticity in the 2nd direction D2 of the panel 3 is provided. The rate is reduced. Thereby, since the panel 3 has elasticity in the second direction D2, the panel 3 is easily compressed in the second direction D2.
 さらに、該複数のセル31が、第2の方向D2と直交する方向のうち、第1の方向D1に沿って長尺に形成されるため、パネル3の第1の方向D1における弾性率が大きくなる。これにより、パネル3が第1の方向D1で剛性を有するため、長尺材2,2間に嵌められたパネル3は、長尺材2,2間に安定して保持される。結果、パネル3は、自立できる。 Further, since the plurality of cells 31 are formed along the first direction D1 out of the directions orthogonal to the second direction D2, the elastic modulus of the panel 3 in the first direction D1 is large. Become. Thereby, since the panel 3 has rigidity in the first direction D1, the panel 3 fitted between the long materials 2 and 2 is stably held between the long materials 2 and 2. As a result, the panel 3 can stand on its own.
 しかも、該複数のセル31が、第2の方向D2と直交する方向のうち、第1の方向D1に沿って長尺に形成されるため、パネル3の第3の方向D3における断熱性能を向上させることもできる。 In addition, since the plurality of cells 31 are elongated along the first direction D1 among the directions orthogonal to the second direction D2, the heat insulation performance in the third direction D3 of the panel 3 is improved. It can also be made.
 なお、本発明は、上記した実施形態の構成に限定されるものではなく、また、上記した作用効果に限定されるものではない。本発明は、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。 In addition, this invention is not limited to the structure of above-described embodiment, and is not limited to the above-mentioned effect. It goes without saying that the present invention can be variously modified without departing from the gist of the present invention. For example, it is needless to say that configurations, methods, and the like according to various modifications described below may be arbitrarily selected and employed in the configurations, methods, and the like according to the above-described embodiments.
 上記実施形態に係る建築構造体1においては、パネル3は、長尺材2,2間に1つ嵌められる、という構成である。しかしながら、本発明は、斯かる構成に限られない。例えば、本発明においては、図7に示すように、パネル3は、第1の方向D1に複数並列されて、長尺材2,2間に嵌められる、という構成でもよく、また、図8に示すように、パネル3は、第2の方向D2に複数並列されて、長尺材2,2間に嵌められる、という構成でもよい。 In the building structure 1 according to the above embodiment, one panel 3 is configured to be fitted between the long materials 2 and 2. However, the present invention is not limited to such a configuration. For example, in the present invention, as shown in FIG. 7, a plurality of panels 3 may be arranged in parallel in the first direction D <b> 1 and fitted between the long members 2 and 2. As shown, a plurality of panels 3 may be arranged in parallel in the second direction D2 and fitted between the long materials 2 and 2.
 図7に示す建築構造体1においては、第1の方向D1が高さ方向となるように構成された場合、パネル3は、複数のセル31が第1の方向D1に沿って長尺に形成されることで、幅方向D2の弾性率が長手方向D1の弾性率よりも小さくなるように、形成されることが好ましい。これにより、パネル3が第1の方向D1で剛性を有するため、長尺材2,2間に嵌められたパネル3は、自立できるだけでなく、上に配置されるパネル3を下から安定して支持できる。 In the building structure 1 shown in FIG. 7, when the first direction D <b> 1 is configured to be the height direction, the panel 3 includes a plurality of cells 31 that are elongated along the first direction D <b> 1. Thus, it is preferable that the elastic modulus in the width direction D2 is formed to be smaller than the elastic modulus in the longitudinal direction D1. Thereby, since the panel 3 has rigidity in the first direction D1, the panel 3 fitted between the long materials 2 and 2 can not only stand alone, but also the panel 3 arranged on the upper side can be stably provided from below. I can support it.
 図8に示す建築構造体1においては、隣接するパネル端部32,32は、長尺材2,2間から外れた位置で当接し、該反対側のパネル端部33,33は、それぞれ長尺材2,2間に位置し、長尺材2及び板材5に当接している。そして、隣接するパネル端部32,32が長尺材2,2間に位置するように、パネル3が外力を受けることにより、パネル3が第2の方向D2で圧縮されながら長尺材2,2間に嵌められる。 In the building structure 1 shown in FIG. 8, adjacent panel end portions 32, 32 abut at positions deviated from between the long materials 2, 2, and the opposite panel end portions 33, 33 are long. It is located between the scale members 2 and 2 and is in contact with the long member 2 and the plate member 5. And the panel 3 receives external force so that the adjacent panel edge parts 32 and 32 are located between the elongate materials 2 and 2, and the panel 3 is compressed in the 2nd direction D2, while the elongate materials 2 and 2 are received. Fit between two.
 また、上記実施形態に係る建築構造体1においては、パネル3は、第1の方向D1の寸法が第2の方向D2の寸法よりも大きくなるように、形成されている、という構成である。しかしながら、本発明は、斯かる構成に限られない。例えば、本発明においては、図7に示すように、パネル3は、第1の方向D1の寸法が第2の方向D2の寸法よりも小さくなるように、形成されている、という構成でもよい。 Moreover, in the building structure 1 according to the above-described embodiment, the panel 3 is configured such that the dimension in the first direction D1 is larger than the dimension in the second direction D2. However, the present invention is not limited to such a configuration. For example, in the present invention, as shown in FIG. 7, the panel 3 may be formed such that the dimension in the first direction D1 is smaller than the dimension in the second direction D2.
 また、上記実施形態においては、長尺材2は、柱であって、建築構造体1は、壁である、という構成である。しかしながら、本発明は、斯かる構成に限られない。例えば、本発明においては、長尺材2は、第1の方向(長手方向)D1が水平方向である床根太であって、建築構造体1は、床である、という構成でもよく、また、長尺材2は、第1の方向(長手方向)D1が水平方向である天井根太であって、建築構造体1は、天井である、という構成でもよく、さらに、長尺材2は、第1の方向(長手方向)D1が鉛直方向及び水平方向に対して傾斜する方向である垂木であって、建築構造体1は、屋根である、という構成でもよい。要するに、本発明においては、第1~第3の方向D1,D2,D3は、特定の方向に限定されない。 In the above embodiment, the long material 2 is a pillar, and the building structure 1 is a wall. However, the present invention is not limited to such a configuration. For example, in the present invention, the long material 2 may be a floor joist in which the first direction (longitudinal direction) D1 is a horizontal direction, and the building structure 1 may be a floor. The long material 2 may be a ceiling joist in which the first direction (longitudinal direction) D1 is the horizontal direction, and the building structure 1 may be a ceiling. 1 may be a rafter whose direction (longitudinal direction) D1 is inclined with respect to the vertical direction and the horizontal direction, and the building structure 1 may be a roof. In short, in the present invention, the first to third directions D1, D2, and D3 are not limited to specific directions.
 また、上記実施形態においては、パネル3は、モールド7を用いて製造される、という構成である。しかしながら、本発明は、斯かる構成に限られない。例えば、本発明においては、コンベア上に発泡原液組成物を散布し、鉛直方向が第1の方向D1となるようにパネル3が直方体状に裁断される、という構成でもよい。 In the above embodiment, the panel 3 is manufactured using the mold 7. However, the present invention is not limited to such a configuration. For example, in the present invention, a configuration may be employed in which the foaming stock solution composition is spread on a conveyor, and the panel 3 is cut into a rectangular parallelepiped shape so that the vertical direction is the first direction D1.
 また、本発明においては、図9に示すように、パネル3は、第2の方向D2における端部に、第3の方向D3に対して傾斜するテーパ部34を備える、という構成でもよい。斯かるパネル3は、テーパ部34により、第2の方向D2における寸法が次第に大きくなるように、形成されている。斯かるパネル3は、第3の方向D3で押されることにより、第2の方向D2で圧縮されながら長尺材2,2間に嵌められる。なお、テーパ部34は、パネル3の一方の端部のみに設けられてもよい。 In the present invention, as shown in FIG. 9, the panel 3 may be provided with a tapered portion 34 that is inclined with respect to the third direction D3 at the end in the second direction D2. The panel 3 is formed by the tapered portion 34 so that the dimension in the second direction D2 is gradually increased. The panel 3 is fitted between the long materials 2 and 2 while being compressed in the second direction D2 by being pressed in the third direction D3. The tapered portion 34 may be provided only at one end of the panel 3.
 また、本発明においては、図10に示すように、長尺材2から第2の方向D2に突出し且つ長尺材2,2間に嵌められたパネル3を止める止め部6が設けられる、という構成でもよい。止め部6は、長尺材2,2間に嵌められたパネル3を第2の方向D2で係止する係止部61と、第3の方向D3に対して傾斜する傾斜部62とを備えている。 Further, in the present invention, as shown in FIG. 10, a stop portion 6 that protrudes from the long material 2 in the second direction D2 and stops the panel 3 fitted between the long materials 2 and 2 is provided. It may be configured. The stop portion 6 includes a locking portion 61 that locks the panel 3 fitted between the long members 2 and 2 in the second direction D2, and an inclined portion 62 that is inclined with respect to the third direction D3. ing.
 斯かる構成によれば、パネル3は、第3の方向D3で押圧されることで、止め部6の傾斜部62により、第2の方向D2で圧縮される。パネル3は、止め部6を乗り越えることで、長尺材2,2間に嵌められる。長尺材2,2間に嵌められたパネル3は、止め部6に係止されるため、長尺材2,2間から抜け出ることを防止される。 According to such a configuration, the panel 3 is compressed in the second direction D2 by the inclined portion 62 of the stopper 6 when pressed in the third direction D3. The panel 3 is fitted between the long materials 2 and 2 by getting over the stopper 6. Since the panel 3 fitted between the long members 2 and 2 is locked to the stopper 6, it is prevented from coming out between the long members 2 and 2.
 また、本発明においては、パネル3は、表面にフィルム(例えば、ビニールからなるシュリンクフィルム等)で覆われる、という構成でもよい。斯かる構成によれば、パネル3が作業者に持たれる際、又は、複数のパネル3が積まれている際に、パネル3の取り扱いが容易になる。 In the present invention, the panel 3 may be configured such that the surface thereof is covered with a film (for example, a shrink film made of vinyl or the like). According to such a configuration, when the panel 3 is held by an operator or when a plurality of panels 3 are stacked, the panel 3 can be easily handled.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<ポリオール組成物の調製>
 ウレタンフォームパネル3の原料として、図11に示すような配合にてポリオール組成物を調製した。図11に示す各成分の詳細は、以下の通りである。
<Preparation of polyol composition>
As a raw material of the urethane foam panel 3, a polyol composition was prepared by blending as shown in FIG. Details of each component shown in FIG. 11 are as follows.
(1)ポリオール化合物
 ポリエーテルポリオール(A)-1:商品名「エクセノール-820」(旭硝子社製)、開始剤をグリセリンとして、エチレンオキサイド及びプロピレンオキサイドを付加重合して得られたポリエーテルポリオール(重量平均分子量4900、水酸基価(OHV)=34mgKOH/g)
 ポリエーテルポリオール(A)-2:商品名「エクセノール-850」(旭硝子社製)、開始剤をグリセリンとして、エチレンオキサイド及びプロピレンオキサイドを付加重合して得られたポリエーテルポリオール(重量平均分子量7000、水酸基価(OHV)=25mgKOH/g)
 ショートグリコール(B)-1:ジエチレングリコール(DEG)(分子量106、水酸基価(OHV)=1058mgKOH/g、ナカライテスク社製)
 ポリエーテルポリオール(C):商品名「T-3000S」(三井化学社製)、開始剤をグリセリンとして、プロピレンオキサイドのみを付加重合して得られたポリエーテルポリオール(重量平均分子量3000、水酸基価=56mgKOH/g)
(1) Polyol Compound Polyether Polyol (A) -1: Polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using the trade name “Excenol-820” (manufactured by Asahi Glass Co., Ltd.) with glycerol as an initiator. Weight average molecular weight 4900, hydroxyl value (OHV) = 34 mgKOH / g)
Polyether polyol (A) -2: trade name “Exenol-850” (manufactured by Asahi Glass Co., Ltd.), polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using glycerol as an initiator (weight average molecular weight 7000, Hydroxyl value (OHV) = 25 mgKOH / g)
Short glycol (B) -1: Diethylene glycol (DEG) (molecular weight 106, hydroxyl value (OHV) = 1058 mg KOH / g, manufactured by Nacalai Tesque)
Polyether polyol (C): trade name “T-3000S” (manufactured by Mitsui Chemicals), polyether polyol obtained by addition polymerization of only propylene oxide using glycerol as an initiator (weight average molecular weight 3000, hydroxyl value = 56mgKOH / g)
(2)難燃剤
 商品名「TMCPP」(大八化学社製)
(3)整泡剤
 整泡剤-1:シリコーン系ノニオン界面活性剤、商品名「SF-2938F」(東レダウコーニングシリコーン社製)
(4)触媒
 触媒-1:第3級アミン触媒、商品名「TOYOCAT-ET」(東ソー社製)
 触媒-2:N,N-ジメチルアミノエトキシエタノール、商品名「カオーNo.26」
(花王社製)
(2) Flame retardant Product name “TMCPP” (Daihachi Chemical Co., Ltd.)
(3) Foam stabilizer Foam stabilizer-1: silicone-based nonionic surfactant, trade name “SF-2938F” (manufactured by Toray Dow Corning Silicone)
(4) Catalyst Catalyst-1: Tertiary amine catalyst, trade name “TOYOCAT-ET” (manufactured by Tosoh Corporation)
Catalyst-2: N, N-dimethylaminoethoxyethanol, trade name “Kaoh No. 26”
(Made by Kao)
<パネル評価>
 実施例1~3
 図11に示す配合で調整したポリオール組成物とポリイソシアネート成分(c-MDI(住化バイエルウレタン社製「スミジュール44V-10」、NCO%:31%)を用い、イソシアネート指数(NCO Index)は図11に記載)に調整した発泡原液組成物を、図5に示すモールド7(縦方向D1の寸法:900mm、幅方向D2の寸法:500mm、厚み方向D3の寸法:500mm)の底面71にミキシングヘッド8から注入した。その後、発泡原液組成物を反応させて得られたポリウレタンフォームパネル3を縦方向D1及び幅方向D2に沿う切断面で裁断し、パネル3の厚み方向D3とセル31の発泡方向とが略垂直(90°)であるパネル3(縦方向D1の寸法:700mm、幅方向D2の寸法:400mm、厚み方向D3の寸法:60mm)を製造した。結果を図11に示す。
<Panel evaluation>
Examples 1 to 3
Using a polyol composition and a polyisocyanate component (c-MDI (“Sumidur 44V-10” manufactured by Sumika Bayer Urethane Co., Ltd., NCO%: 31%) adjusted with the formulation shown in FIG. 11, the isocyanate index (NCO Index) is The foaming stock composition prepared in FIG. 11) is mixed with the bottom surface 71 of the mold 7 shown in FIG. 5 (dimension in the longitudinal direction D1: 900 mm, dimension in the width direction D2: 500 mm, dimension in the thickness direction D3: 500 mm). Injection from the head 8. Thereafter, the polyurethane foam panel 3 obtained by reacting the foaming stock composition is cut along a cut surface along the longitudinal direction D1 and the width direction D2, and the thickness direction D3 of the panel 3 and the foaming direction of the cells 31 are substantially perpendicular ( 90 °) panel 3 (length D1 dimension: 700 mm, width direction D2 dimension: 400 mm, thickness direction D3 dimension: 60 mm) was manufactured. The results are shown in FIG.
 <重量平均分子量>
 重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィ)にて測定し、標準ポリスチレンにより換算した。
 GPC装置:島津製作所製、LC-10A
 カラム:Polymer Laboratories社製、(PLgel、5μm、500Å)、(PLgel、5μm、100Å)、及び(PLgel、5μm、50Å)の3つのカラムを連結して使用
 流量:1.0ml/min
 濃度:1.0g/l
 注入量:40μl
 カラム温度:40℃
 溶離液:テトラヒドロフラン
<Weight average molecular weight>
The weight average molecular weight was measured by GPC (gel permeation chromatography) and converted by standard polystyrene.
GPC device: manufactured by Shimadzu Corporation, LC-10A
Column: Polymer Laboratories, (PLgel, 5 μm, 500 Å), (PLgel, 5 μm, 100 及 び), and (PLgel, 5 μm, 50 Å) are connected and used. Flow rate: 1.0 ml / min
Concentration: 1.0 g / l
Injection volume: 40 μl
Column temperature: 40 ° C
Eluent: Tetrahydrofuran
<フォーム密度>
 フォーム密度については、JIS K 7222に準拠し求めた。
<Foam density>
The foam density was determined according to JIS K 7222.
<熱伝導率>
 JIS A9526(建築物断熱用吹付け硬質ウレタンフォーム)に基づき、JIS A1412-2(熱絶縁材の熱抵抗及び熱伝導率の測定方法-第2部:熱流計法)(HFM法)に準拠して、パネル3の厚み方向D3での熱伝導率を測定した。
<Thermal conductivity>
Based on JIS A9526 (Blowing rigid urethane foam for thermal insulation of buildings), it conforms to JIS A1412-2 (Measurement method of thermal resistance and thermal conductivity of thermal insulation materials-Part 2: Heat flow meter method) (HFM method). The thermal conductivity in the thickness direction D3 of the panel 3 was measured.
<10%圧縮強度>
 上記方法にて製造したポリウレタンフォームパネル3(縦方向D1の寸法:700mm、幅方向D2の寸法:400mm、厚み方向D3の寸法:60mm)の中央部分(縦方向D1及び幅方向D2中心から、縦方向D1の寸法及び幅方向D2の寸法の両側10%程度の部分)から、50mm角の立方体をフォーム試料として切り出し、AUTOGRAPH AG-X plus(島津製作所社製)を使用して、圧縮速度5mm/minの条件で10%圧縮強度を測定した。
<10% compressive strength>
From the center part (vertical direction D1 and width direction D2 center) of the polyurethane foam panel 3 (size in the vertical direction D1: 700 mm, dimension in the width direction D2: 400 mm, dimension in the thickness direction D3: 60 mm) manufactured by the above method A 50 mm square cube is cut out as a foam sample from the dimension of the dimension in the direction D1 and the dimension in the width direction D2, and compressed using an AUTOGRAPH AG-X plus (manufactured by Shimadzu Corporation). 10% compressive strength was measured under the condition of min.
<所定形状へポリウレタンフォームパネルの嵌め込み作業性>
 幅方向D2の寸法が400mmであるパネル3で、幅方向D2に5%圧縮して、離間距離が380mmの長尺材2,2間に容易に嵌めることが可能であれば、所定幅に対して融通ありということでパネル3の嵌め込み作業性が良好(図11においては「○」)と判断した。
<Workability of inserting polyurethane foam panels into the specified shape>
If the panel 3 having a width direction D2 dimension of 400 mm is compressed 5% in the width direction D2 and can be easily fitted between the long materials 2 and 2 having a separation distance of 380 mm, Therefore, it was determined that the workability of fitting the panel 3 was good (“◯” in FIG. 11).
 図11の結果から、実施例1~3のパネル3は、低密度であって、脆性が小さく、且つ厚み方向D3にて、優れた断熱性能を備えることが分かる。また、縦方向D1と横方向D2との間で圧縮強度に差があり、且つ幅方向D2に弾性を有するため、嵌め込み作業性にも優れることが分かる。 11 that the panels 3 of Examples 1 to 3 have low density, low brittleness, and excellent heat insulation performance in the thickness direction D3. Further, it can be seen that there is a difference in compressive strength between the vertical direction D1 and the horizontal direction D2 and elasticity in the width direction D2, so that the fitting workability is also excellent.
 1…建築構造体、2…長尺材、3…パネル、4…枠材、5…板材、6…止め部、7…モールド、8…ミキシングヘッド、21…支持面、31…セル、32…パネル端部、33…パネル端部、34…テーパ部、61…係止部、62…傾斜部、71…底面、D1…第1の方向、D2…第2の方向、D3…第3の方向 DESCRIPTION OF SYMBOLS 1 ... Building structure, 2 ... Long material, 3 ... Panel, 4 ... Frame material, 5 ... Board material, 6 ... Stop part, 7 ... Mold, 8 ... Mixing head, 21 ... Support surface, 31 ... Cell, 32 ... Panel end, 33 ... Panel end, 34 ... Tapered portion, 61 ... Locking portion, 62 ... Inclined portion, 71 ... Bottom surface, D1 ... First direction, D2 ... Second direction, D3 ... Third direction

Claims (3)

  1.  互いの長手方向が第1の方向で平行となるように、前記第1の方向と直交する第2の方向で並列される複数の長尺材と、
     前記長尺材間に嵌められるパネルとを備え、
     前記パネルは、前記第2の方向で弾性を有するように、前記第2の方向と直交する方向に沿って長尺に形成される複数のセルを有する発泡体である建築構造体。
    A plurality of long materials arranged in parallel in a second direction orthogonal to the first direction, such that their longitudinal directions are parallel to each other in the first direction;
    A panel fitted between the long members,
    The said structure is a building structure which is a foam which has a some cell formed in elongate along the direction orthogonal to the said 2nd direction so that it may have elasticity in the said 2nd direction.
  2.  前記複数のセルは、前記パネルの前記第2の方向における弾性率が前記パネルの前記第1の方向における弾性率よりも小さくなるように、前記第1の方向に沿って長尺に形成される請求項1に記載の建築構造体。 The plurality of cells are formed long along the first direction so that an elastic modulus of the panel in the second direction is smaller than an elastic modulus of the panel in the first direction. The building structure according to claim 1.
  3.  互いの長手方向が第1の方向で平行となるように、前記第1の方向と直交する第2の方向で並列される複数の長尺材に対し、
     前記第2の方向で弾性を有するように、前記第2の方向と直交する方向に沿って長尺に形成される複数のセルを有する発泡体であるパネルを、前記長尺材間に嵌める建築構造体の製造方法。
    For a plurality of long materials arranged in parallel in a second direction orthogonal to the first direction so that their longitudinal directions are parallel to each other in the first direction,
    A construction in which a panel, which is a foam having a plurality of cells formed in a long direction along a direction orthogonal to the second direction so as to have elasticity in the second direction, is fitted between the long materials. Manufacturing method of structure.
PCT/JP2013/084339 2013-01-09 2013-12-20 Construction structure and method for producing same WO2014109215A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/758,534 US20150345135A1 (en) 2013-01-09 2013-12-20 Construction structure and method for producing same
CA2897479A CA2897479C (en) 2013-01-09 2013-12-20 Construction structure and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013001984A JP5615389B2 (en) 2013-01-09 2013-01-09 Building structure and manufacturing method thereof
JP2013-001984 2013-01-09

Publications (1)

Publication Number Publication Date
WO2014109215A1 true WO2014109215A1 (en) 2014-07-17

Family

ID=51166873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084339 WO2014109215A1 (en) 2013-01-09 2013-12-20 Construction structure and method for producing same

Country Status (6)

Country Link
US (1) US20150345135A1 (en)
JP (1) JP5615389B2 (en)
KR (1) KR20150086538A (en)
CA (1) CA2897479C (en)
TW (1) TWI510698B (en)
WO (1) WO2014109215A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE538486C2 (en) 2014-10-02 2016-08-02 Paralox Ab Wall element, wall section constructed of said wall element and method for building said wall section
US10787816B1 (en) * 2019-04-18 2020-09-29 Spray Foam Distributors of NE Inc. Spray foam insulation vent
JP7464368B2 (en) 2019-10-02 2024-04-09 ニチハ株式会社 Thermal insulation construction and thermal insulation construction method
WO2022046766A1 (en) * 2020-08-25 2022-03-03 Ses Foam, Llc Process for making low density spray polyurethane foam for insulation, sound abatement, and air sealing of building enclosures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169887A (en) * 1996-12-06 1998-06-26 Daicel Chem Ind Ltd Heat insulation material
JP2001301078A (en) * 2000-04-20 2001-10-30 Sekisui Chem Co Ltd Polyolefinic resin composite foam, and vehicular member and shock absorbing member consisting of the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111069A (en) * 1962-08-13 1963-11-19 Allied Chem Paving joint construction
US3231439A (en) * 1962-11-27 1966-01-25 Allied Chem Dimensional stabilization of foam panels
US3825465A (en) * 1972-03-24 1974-07-23 R Stock Three dimensional reticulated structure
US5250579A (en) * 1992-09-28 1993-10-05 The Dow Chemical Company Cellular polymer containing perforated cell windows and a process for the preparation thereof
DE19649829A1 (en) * 1996-12-02 1998-06-04 Bayer Ag Flexible polyurethane foams and a process for their production
US5846462A (en) * 1997-05-16 1998-12-08 Thompson; Edward J. Method and apparatus for making high compression structural foam
US6643389B1 (en) * 2000-03-28 2003-11-04 Stmicroelectronics, Inc. Narrow array capacitive fingerprint imager
CA2436573A1 (en) * 2001-02-02 2002-08-15 Dow Global Technologies Inc. Building panel having at least two panel domains of different average compressive strength
US6841584B2 (en) * 2002-03-18 2005-01-11 University Of Southern California Reinforced phenolic foam
US9000061B2 (en) * 2006-03-21 2015-04-07 Honeywell International Inc. Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (HFCO-1233zd)
EP2362831B1 (en) * 2008-10-20 2017-03-29 Acell Industries Limited Composite product with surface effect
EP2514780B1 (en) * 2009-12-18 2015-02-11 Asahi Glass Company, Limited Process for production of rigid open-cell foam
EP3358103A1 (en) * 2010-03-08 2018-08-08 Kuraray Co., Ltd. Sound insulation floor structure and sound insulation floor component as well as method for reducing floor impact sound
JP5860709B2 (en) * 2011-07-14 2016-02-16 東洋ゴム工業株式会社 Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
US20140148524A1 (en) * 2011-07-19 2014-05-29 Toyo Tire & Rubber Co., Ltd. Polyurethane foam panel and production method for polyurethane foam panel
WO2013011773A1 (en) * 2011-07-19 2013-01-24 東洋ゴム工業株式会社 Polyurethane foam panel and method for producing same
EP2795015A1 (en) * 2011-12-22 2014-10-29 Rockwool International A/S Insulating element for the insulation of flat roofs
JP5710654B2 (en) * 2013-01-09 2015-04-30 東洋ゴム工業株式会社 Polyurethane foam panels
JP5710653B2 (en) * 2013-01-09 2015-04-30 東洋ゴム工業株式会社 Polyurethane foam panels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169887A (en) * 1996-12-06 1998-06-26 Daicel Chem Ind Ltd Heat insulation material
JP2001301078A (en) * 2000-04-20 2001-10-30 Sekisui Chem Co Ltd Polyolefinic resin composite foam, and vehicular member and shock absorbing member consisting of the same

Also Published As

Publication number Publication date
TW201441453A (en) 2014-11-01
JP5615389B2 (en) 2014-10-29
KR20150086538A (en) 2015-07-28
CA2897479C (en) 2016-09-20
CA2897479A1 (en) 2014-07-17
JP2014134002A (en) 2014-07-24
TWI510698B (en) 2015-12-01
US20150345135A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP5860709B2 (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
CN108290997B (en) Method for producing rigid polyurethane foams
JP5615389B2 (en) Building structure and manufacturing method thereof
TWI491633B (en) Polyurethane foam board
WO2013058341A1 (en) Method for producing rigid foam synthetic resin
US20140148524A1 (en) Polyurethane foam panel and production method for polyurethane foam panel
JP2015004011A (en) Method for producing rigid polyurethane foam
WO2013011773A1 (en) Polyurethane foam panel and method for producing same
TWI503338B (en) Polyurethane foam board
JP5314169B2 (en) Polyurethane foam panel and manufacturing method thereof
JP2012107214A (en) Method for producing rigid foamed synthetic resin
JP2013185154A (en) Polyurethane foam panel
JP5969252B2 (en) Rigid polyurethane foam panel
JP5403898B2 (en) Polyol composition for spray foamed rigid polyurethane foam and method for producing spray foamed rigid polyurethane foam
JP5300242B2 (en) Polyol composition for rigid polyurethane foam and method for producing spray foamed rigid polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157016397

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14758534

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2897479

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870552

Country of ref document: EP

Kind code of ref document: A1