WO2014109038A1 - 時系列データ処理装置及び方法並びに記憶媒体 - Google Patents

時系列データ処理装置及び方法並びに記憶媒体 Download PDF

Info

Publication number
WO2014109038A1
WO2014109038A1 PCT/JP2013/050337 JP2013050337W WO2014109038A1 WO 2014109038 A1 WO2014109038 A1 WO 2014109038A1 JP 2013050337 W JP2013050337 W JP 2013050337W WO 2014109038 A1 WO2014109038 A1 WO 2014109038A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
series data
measurement
measurement value
arrival
Prior art date
Application number
PCT/JP2013/050337
Other languages
English (en)
French (fr)
Inventor
康郎 國信
恵木 正史
尚宏 鈴木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2014556273A priority Critical patent/JP6002250B2/ja
Priority to PCT/JP2013/050337 priority patent/WO2014109038A1/ja
Priority to US14/428,275 priority patent/US20150234897A1/en
Publication of WO2014109038A1 publication Critical patent/WO2014109038A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2455Query execution
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods

Definitions

  • the present invention relates to a time-series data processing apparatus, a method thereof, and a storage medium, and is applied to a time-series data processing apparatus that processes time-series data that is a series of data transmitted over time from a data source such as a sensor, for example. Therefore, it is suitable.
  • time series data such as operation history and GPS (Global Positioning System) position information is collected from equipment in environments such as mines and tunnels and used for preventive maintenance of railways and construction machinery.
  • GPS Global Positioning System
  • the computer system may not be able to collect time series data even after the measurement time has elapsed. As the cause, it is possible that the device temporarily becomes unable to connect to the network due to movement of the device.
  • Patent Document 1 discloses a technique for retrying a collection process after a preset time has elapsed when collection of time series data has failed in order to suppress missing time series data.
  • Patent Document 2 discloses a technique for notifying a user of a lack of time-series data to be analyzed when analysis of time-series data fails because the failure of time-series data analysis is not repeated.
  • Patent Document 1 there is a problem that the retry of the collection process is repeated in some cases, and an extra load is applied to the system. Further, according to the technique disclosed in Patent Document 2, the time when all the time series data is complete cannot be grasped only by the missing information of the time series data. In particular, similarly to Patent Document 1, there is a problem that an extra load is applied to the system.
  • the present invention has been made in consideration of the above points, and when the time series data necessary for the time series data analysis processing has not been collected, it is possible to prevent an unnecessary load from being generated on the system.
  • a series data processing apparatus and method, and a storage medium are proposed.
  • time-series data processing device that processes time-series data, which is a series of data transmitted with the passage of time from the data source, the time transmitted from the data source.
  • An arrival time giving unit that gives an arrival time, which is a time at which the time series data arrives, to the series data
  • a data arrival determination unit that judges whether or not the requested time series data has arrived
  • each time An arrival time prediction unit that predicts the arrival time of the time-series data determined to have not arrived by the data arrival determination unit based on the arrival time given to the series data is provided.
  • the time-series data processing apparatus transmits a first step of giving an arrival time, which is a time at which the time-series data arrives, to the time-series data transmitted from the data source.
  • a third step for predicting the arrival time is a first step of giving an arrival time, which is a time at which the time-series data arrives, to the time-series data transmitted from the data source.
  • a storage medium storing a computer program to be executed in a time-series data processing device that processes time-series data that is a series of data transmitted with the passage of time from a data source
  • the computer program includes a first step of assigning to the time series data transmitted from the data source an arrival time that is a time at which the time series data has arrived, and arrival of the requested time series data. And a third step of predicting the arrival time of the time-series data determined as non-arrival based on the arrival time given to each of the time-series data.
  • the time series data processing is executed by the time series data processing apparatus.
  • the user of the time-series data can grasp the time when all the time-series data necessary for the processing is gathered. It is possible to prevent users and the like from blindly repeating retry processing for obtaining all of these time series data.
  • reference numeral 1 denotes a computer system according to this embodiment as a whole.
  • the computer system 1 includes at least one time-series data source 2, a time-series data utilization device 3, and a time-series data processing device 4, which are connected to each other via a network 5. Yes.
  • the time series data source 2 is composed of, for example, a temperature sensor, a humidity sensor, a wind speed sensor, or a position sensor.
  • the time-series data source 2 periodically measures temperature, humidity, wind speed, or position, and sends the measured values as time-series data 10 to the time-series data processing device 4.
  • the time-series data utilization device 3 is a computer device provided with information processing resources such as a processor and a memory, and is constituted by a personal computer, for example.
  • an application program (hereinafter simply referred to as a program) such as a browser serving as a data input / output interface with the time series data processing device 4 is mounted on the time series data utilization device 3.
  • the time-series data utilization device 3 issues an analysis query 11 as an analysis request to the time-series data processing device 4 in accordance with an instruction from the user using the browser.
  • the time-series data utilization device 3 accumulates the query result 12 from the time-series data processing device 4 for the analysis query 11 in a storage device and provides it to the user as necessary.
  • the time-series data processing device 4 stores and manages the time-series data 10 transmitted from the time-series data source 2, and the analysis result corresponding to the analysis query 11 from the time-series data utilization device 3 is used as a query result 12 as a time series. It is a server device that transmits to the data utilization device 3. As shown in FIG. 2, the time-series data processing device 4 includes a processor 21, a memory 22, an input / output device 23, and a network interface 24 that are connected to each other via an internal network 20.
  • the processor 21 has a function for controlling the operation of the entire time-series data processing device 4, and is composed of, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit).
  • a CPU Central Processing Unit
  • MPU Micro-Processing Unit
  • the memory 22 is composed of, for example, a semiconductor memory such as a RAM (Random Access Memory Unit), and stores an OS (Operation Program) 25 and other programs, and data such as parameter data and tables used by the program.
  • OS Operating Program
  • a time-series data processing program 26 described later is also stored and held in the memory 22.
  • the input / output device 23 is composed of a data input / output device used in a general computer device.
  • a device selected from an input device such as a keyboard, a mouse, a touch screen, and a pen tablet and an output device such as a display monitor and a printer can be applied.
  • the network interface 24 is an interface circuit for performing data communication with the time-series data source 2 and the time-series data utilization device 3 via the network 5 (FIG. 1), and is appropriate according to the type of the network 5. Things are used. For example, if the network 5 is a LAN (Local Area Network), a NIC (Network Interface Card) is applied as the network interface 24.
  • LAN Local Area Network
  • NIC Network Interface Card
  • FIG. 3 shows a schematic configuration of the time series data 10 output from the time series data source 2.
  • the time-series data 10 includes information on name, measurement time, and measurement value.
  • the name represents the sensor type of the source time-series data source 2
  • the measurement time represents the time when the measurement was performed
  • the measurement value represents the sensor value acquired at that time. Therefore, FIG. 3 is a configuration example of the time-series data 10 in which the measurement value “28.0” acquired by the “temperature sensor” at the measurement time “2012-06-05 0:00” is stored.
  • FIG. 4 shows a schematic configuration of the analysis query 11 transmitted from the time-series data utilization device 3 to the time-series data processing device 4.
  • the analysis query 11 includes information on a selection target (select_objects) and a data acquisition target time range (from_timerange).
  • the selection target represents the time-series data source 2 that requests the transfer of measurement values
  • the data acquisition target time range represents the time range of the measurement values that require transfer. Therefore, FIG. 4 shows a configuration example of the analysis query 11 that requests transfer of measured values acquired by the “temperature sensor” between “2012-06-05 0:00” and “2012-06-05 1:00”. It is.
  • the time-series data processing device 4 is provided with an analysis query 11 in which the time-series data source 2 to be targeted and the data acquisition target time range are specified from the time-series data utilization device 3, and the time-series data processing device 4
  • the time series data 10 that has not arrived is related to the time series data 10
  • a time-series data processing function for predicting the time at which 10 will arrive and notifying the time-series data utilization device 3 of the prediction result is installed.
  • the memory 22 of the time-series data processing device 4 includes a time-series data processing program 26, a data table 27 with arrival time, measurement, as shown in FIG. A time rule table 28 and an arrival time prediction model table 29 are stored.
  • the time-series data processing program 26 is a program for causing the time-series data processing device 4 to exhibit such a time-series data processing function, and collects time-series data 10 periodically transmitted from each time-series data source 2.
  • the data collection unit 30 and a data analysis unit 31 that predicts the arrival time of the unarrived time-series data 10 based on the collected time-series data 10.
  • the data collection unit 30 includes a data reception unit 32, an arrival time addition unit 33, and a data storage unit 34.
  • the data receiving unit 32 is an object having a function of receiving the time series data 10 transmitted from each time series data source 2 in the order of arrival and outputting the received time series data 10 to the arrival time giving unit 33.
  • the arrival time giving unit 33 adds the time when the time-series data processing device 4 received the time-series data 10 to the time-series data 10 given from the data receiving unit 32 as the arrival time.
  • 34 is an object having a function to be output to 34.
  • the data storage unit 34 is an object having a function of registering the time series data 10 given from the arrival time giving unit 33 in the data table 27 with arrival time described later.
  • the data analysis unit 31 includes a query processing unit 35, a data arrival determination unit 36, and an arrival time prediction unit 37.
  • the query processing unit 35 acquires information of the time series data 10 specified in the analysis query 11 from the time series data utilization device 3 from the data table 27 with arrival time, and uses the acquired information as the query result 12 for the time series data. It is an object having a function of transmitting to the utilization device 3.
  • the query processing unit 35 acquires the information of the time series data 10 specified in the analysis query 11 from the data table 27 with arrival time
  • the data arrival determination unit 36 acquires the selection target and data specified in the analysis query 11. Based on the target time range, an object having a function of specifying time-series data 10 to be acquired from the arrival time-added data table 27 with reference to a measurement time rule table 28 described later.
  • the arrival time prediction unit 37 refers to an arrival time prediction model table 29 described later and determines the arrival time of the time series data 10. An object having a function to predict.
  • the arrival time-added data table 27 is a table used for storing and managing the time-series data 10 received by the time-series data processing device 4, and as shown in FIG. 5, a name field 27A, a measurement time field 27B, an arrival time column 27C, and a measured value column 27D.
  • the name field 27A stores the name (sensor type) of the time-series data source 2 that is the transmission source of the received time-series data 10, and the measurement time field 27B stores the corresponding time-series data 10.
  • the measurement time (see FIG. 3) is stored.
  • the arrival time column 27C stores the time when the time-series data processing device 4 received the time-series data 10, and the measurement value column 27D stores the measurement values stored in the time-series data 10 (see FIG. 3). Is stored.
  • the time is “2012-06-05 0:01” and the time series of time series data 10 in which the measured value “101.0” measured by the “pressure sensor” at “2012-06-05 0:00” is stored.
  • the arrival time at the data processing device 4 is “2012-06-05 0:03”, and the measurement value “0.3” measured by the “wind speed sensor” at “2012-06-05 0:00” is stored. It is shown that the arrival time of the time series data 10 to the time series data processing device 4 is “2012-06-05 0:04”.
  • the measurement time rule table 28 is a table for managing the measurement start time and measurement time interval of each time series data source 2, and as shown in FIG. 6, the name column 28A, the measurement start time column 28B, and the measurement time. It is comprised from the space
  • the name column 28A the name (sensor type) of each time series data source 2 is stored, and in the measurement start time column 28B, the corresponding time series data source 2 starts acquiring measurement values (starts measurement). ) Is stored as a preset time.
  • the measurement time interval column 28C a time interval at which the corresponding time series data source 2 acquires a measurement value and transmits the acquired measurement value as the time series data 10 to the time series data processing device 4 is stored.
  • FIG. 6 there are “temperature sensor”, “pressure sensor”, and “wind speed sensor” as the time series data source 2, and among these, the temperature sensor is changed from “2012-06-05 ⁇ 0:00 ”to“ It is shown that the measurement value is set to be transmitted to the time-series data processing device 4 as the time-series data 10 every “10 minutes”.
  • the arrival time prediction model table 29 is a table for managing the calculation formula of the predicted arrival time for each time-series data source 2, and includes a name column 29A and a calculation formula column 29B as shown in FIG. .
  • the name column 29A stores the name of the corresponding time-series data source 2
  • the calculation formula column 29B stores the time-series data 10 that has been set in advance for the corresponding time-series data source 2 and that has arrived late.
  • a calculation formula for calculating the estimated arrival time is stored.
  • the calculation formula is different between the temperature sensor, the wind speed sensor, and the pressure sensor.
  • the following formula is used: It is prescribed as follows.
  • the estimated arrival time of the time series data 10 arriving late is determined as the scheduled time for acquiring the measurement value stored in the time series data 10 (hereinafter referred to as this). Is called the scheduled measurement time) and the average of the past data collection times.
  • the data collection time refers to the time from the measurement time when the time series data source 2 acquires the measurement value until the time series data 10 storing the measurement value arrives at the time series data processing device 4. In the following, this data collection time is also referred to as transfer time as appropriate.
  • FIG. 8 (1-3-1) Data Collection Processing FIG. 8 is executed by the data collection unit 30 of the time series data processing program 26 when the time series data processing device 4 receives the time series data 10 from the time series data source 2. The processing procedure of the data collection processing to be performed is shown. The data collection unit 30 registers the received time-series data 10 in the data table with arrival time 27 according to the processing procedure shown in FIG.
  • the time-series data processing device 4 receives the time-series data 10 from the time-series data source 2
  • the data reception unit 32 of the data collection unit 30 receives the received time-series data 10. Then, the data receiving unit 32 gives the received time series data 10 to the arrival time giving unit 33 (SP1).
  • the arrival time giving unit 33 gives the time when the time series data 10 arrives at the time series data processing device 4 to the time series data 10 given from the data receiving unit 32 as the arrival time, and gives the arrival time.
  • the time series data 10 is given to the data storage unit 34 (SP2). Further, the data storage unit 34 registers the time series data 10 given from the arrival time giving unit 33 in the data table 27 with arrival time (SP3). Thereby, the data collection process in the data collection unit 30 is completed.
  • FIG. 9 is executed by the data analysis unit 31 of the time series data processing program 26 when the time series data processing device 4 receives the analysis query 11 from the time series data utilization device 3. The processing procedure of the data analysis processing to be performed will be shown.
  • the data analysis unit 31 generates a query result 12 corresponding to the received analysis query 11 in accordance with the processing procedure shown in FIG.
  • the query processing unit 35 of the data analysis unit 31 selects the name of the time-series data source 2 to be selected from the received analysis query 11 (hereinafter referred to as the target time-series data source 2) and the data acquisition target time range. Is acquired (SP10).
  • the data analysis unit 31 performs a collaborative process of the query processing unit 35, the data arrival determination unit 36, and the arrival time prediction unit 37, so that the target time-series data source 2 acquires all the data acquired in the data acquisition target time range.
  • a query result 12 including the measured value is created (SP11).
  • the query process part 35 transmits the produced query result 12 to the time series data utilization apparatus 3 (SP12).
  • step SP11 of the data analysis process the query result creation process shown in FIG. 10 is started.
  • the data arrival determination unit 36 displays the measurement start time column in the measurement time rule table 28 (FIG. 6). Based on the measurement start time stored in 28B and the measurement time interval stored in the measurement time interval column 28C, all measurement times within the data acquisition target time range specified in the analysis query 11 are acquired. Is created as an acquisition target measurement time list (not shown) (SP20).
  • the target time series data source 2 specified in the analysis query 11 is “temperature sensor” as shown in FIG. 3, and the data acquisition target time range is “2012-06-05 0:00 to 2012-06-05 1. : 00 ”, referring to the measurement time rule table 28 in FIG. 6, since the measurement time interval of the“ temperature sensor ”is“ 10 minutes ”,“ 2012-06-05 0:00 ”,“ 2012- 06-05 0:10 '', ⁇ 2012-06-05 0:20 '', ⁇ 2012-06-05 0:30 '', ⁇ 2012-06-05 0:40 '', ⁇ 2012-06-05 0:50 ”And“ 2012-06-05 1:00 ”are the acquisition target measurement times. Therefore, the data arrival determination unit 36 creates a list in which these acquisition target measurement times are listed in order of time as an acquisition target measurement time list.
  • the data arrival determination unit 36 selects one of the acquisition target measurement times that is the earliest and unprocessed from the acquisition target measurement times listed in the acquisition target measurement time list (SP21), and arrives at the arrival time.
  • an entry (line) in which the name of the target time-series data source 2 is stored in the name column 27A and the same measurement time as the acquisition target measurement time selected in step SP21 is stored in the measurement time column 27B.
  • the data arrival determination unit 36 stores the name of the target time-series data source 2 in the name field 27A by the search in step SP22, and stores the same measurement time as the acquisition target measurement time selected in step SP21 in the measurement time field 27B. It is determined whether the stored entry has been detected (SP23).
  • the query processing unit 35 measures the measurement time stored in the measurement time field 27B of the entry detected at that time and the measurement value stored in the measurement value field 27D. Are acquired from the data table 27 with arrival time (SP24), and the acquired measurement time and measurement value are additionally registered in the query result 12 (SP25).
  • the data arrival determination unit 36 determines whether or not the processing after step SP22 has been executed for all acquisition target measurement times listed in the acquisition target measurement time list created in step SP20 (SP28). . If a negative result is obtained in this determination, the process returns to step SP21, and thereafter, the processing after step SP21 is repeated while sequentially switching the acquisition target measurement time selected in step SP21 to another unprocessed acquisition target measurement time. .
  • the arrival time prediction unit 37 calculates the predicted arrival time of the time series data 10 based on the corresponding calculation formula stored in the arrival time prediction model table 29 (SP26). Then, the query processing unit 35 additionally registers the calculated predicted arrival time and the measurement target acquisition measurement time of the measurement value stored in the time series data 10 in the query result 12 (SP27).
  • the query processing unit 35 determines whether or not the processing after step SP21 has been executed for all the acquisition target measurement times listed in the acquisition target measurement time list created in step SP20 (SP28). If a negative result is obtained in this determination, the process returns to step SP21, and thereafter, step SP21 and subsequent steps are repeated while sequentially switching the acquisition target measurement time selected in step SP21 to another unprocessed acquisition target measurement time. Will be returned.
  • step SP28 When a positive result is obtained in the determination of step SP28 by completing execution of the processing after step SP21 for all the acquisition target measurement times listed in the acquisition target measurement time list created in step SP20, data analysis is performed.
  • the unit 31 ends the query result creation process and returns to the data analysis process (FIG. 9).
  • FIG. 11 shows the input / output device 23 of the time-series data utilization device 3 or the time-series data processing device 4 based on the query result 12 created by the data analysis processing described above with reference to FIG. 2) shows a configuration example of the data analysis screen 40 that can be displayed.
  • the data analysis screen 40 includes an analysis range field 41, a query result summary field 42, and a query result detail field 43.
  • the analysis range field 41 is a field for designating the time-series data source 2 that requests the measurement value (selection target of the analysis query 11) and the time range of the measurement value that is requested (data acquisition target time range of the analysis query 11). And includes a search target designation area 50, a search range designation area 51, and a search button 52.
  • the search target designation area 50 the name (sensor type) of each time-series data source 2 is written, and a check box 50A is displayed in association with each name.
  • a check box 50A is displayed in association with each name.
  • by clicking the check box 50A it is possible to select the time-series data source 2 on which the measured value or the like to be displayed in the query result summary field 42 to be described later is selected.
  • a check mark 50B can be displayed in the check box 50A corresponding to the series data source 2 (that is, the clicked check box 50A).
  • the search range designation area 51 is provided with a range start time designation column 51A and a first pull-down button 51B. By selecting the first pull-down button 51B, the search range designation area 51 is selected as the start time of the data acquisition target time range.
  • a first pull-down menu (not shown) in which possible times are posted can be displayed. Then, by selecting a desired time from among the times displayed in the first pull-down menu, the time can be designated as the start time of the data acquisition target time range. At this time, the designated start time Is displayed in the range start time designation column 51A.
  • the search range designation area 51 is provided with a range end time designation column 51C and a second pull-down button 51D.
  • the end time of the data acquisition target time range A second pull-down menu (not shown) in which the selectable time is posted can be displayed. Then, by selecting a desired time from the times displayed in the second pull-down menu, the time can be specified as the end time of the data acquisition target time range. At this time, the specified end time Is displayed in the range end time designation column 51C.
  • the check mark 50B is displayed in the check box 50A associated with the desired time-series data source 2 from the check boxes 50A displayed in the search target specifying area 50, and the search range is specified.
  • the time series data source 2 can cause the time-series data processing device 4 to create a query result 12 in which information such as a measurement value acquired in the data acquisition target time range is stored. It can be displayed in the summary field 42.
  • a query result list 53 including a target column 53A, a measured value column 53B, an arrival state column 53C, and an estimated arrival time column 53D is displayed.
  • the target column 53A of the query result list 53 displays the name of the time series data source 2 specified in the analysis range field 41 as described above, and the measurement value column 53B displays the corresponding time series data. All measured values acquired within the data acquisition target time range corresponding to the source 2 are displayed.
  • the arrival state column 53C it is determined whether or not all the measured values (time series data 10) within the corresponding data acquisition target time range of the corresponding time series data source 2 have arrived at the time series data processing device 4.
  • the information to represent is stored. Specifically, if all the measured values (time-series data 10) within the corresponding data acquisition target time range of the corresponding time-series data source 2 have not arrived at the time-series data processing device 4, “not yet arrived” When the character string “data is present” is displayed in the arrival state column 53C and all the measured values (time-series data 10) have arrived at the time-series data processing device 4, it is said that “all data has been received”. A character string is displayed in the arrival state column 53C.
  • the estimated arrival time column 53D when all the measured values (time series data 10) within the corresponding data acquisition target time range of the corresponding time series data source 2 have not arrived at the time series data processing device 4 ( The estimated arrival time of the non-arrival measurement value (time-series data 10) is displayed in the arrival state column 53C (when the character string “There is non-arrival data” is displayed). Further, when all the measured values (time series data 10) within the corresponding data acquisition target time range of the corresponding time series data source 2 have arrived at the time series data processing device 4 (in the arrival status column 53C, “all data”). When the character string “arrived” is displayed), the character string “NULL” is displayed in the estimated arrival time column 53D.
  • the query result detail field 43 the arrival status of the measurement value (time-series data 10) within the data acquisition target time range to the time-series data processing device 4 is displayed.
  • the query result detail field 43 displays a timeline 54A corresponding to each of the time series data sources 2 specified in the analysis range field 41 as described above, and data for each time series data source 2 is displayed.
  • a bar graph 54B representing which measurement value (time-series data 10) until the acquisition target measurement time has arrived at the time-series data processing device 4 within the acquisition target time range is displayed in the time line 54A.
  • each timeline 54A for each corresponding time-series data source 2, an acquisition target measurement time within the data acquisition target time range in which the corresponding time-series data 10 has already arrived at the time-series data processing device 4 is displayed.
  • the last acquisition target measurement time is displayed as the latest accumulated data time.
  • the arrival time of the time series data 10 that has not arrived at the time series data processing device 4 is determined as the time series data processing device 4. Is predicted and can be presented to the time-series data utilization device 3 and the user, so that the time-series data utilization device 3 and the user can easily obtain the time when all the time-series data necessary for the processing are available. I can grasp it.
  • the time-series data utilization device 3 and the user can be prevented from repeating blindly the retry process for acquiring all the time-series data necessary for the process.
  • time-series data necessary for time-series data analysis processing is not collected, it is possible to prevent an unnecessary load from being generated in the system.
  • the time series data utilization device 3 or the user can perform other data analysis processing without waiting for the time when all the data is gathered. It is possible to make business decisions such as giving priority to the process, and the efficiency of processing and work can be improved.
  • reference numeral 60 denotes a computer system according to the second embodiment as a whole.
  • the time-series data source 2 transfers the time-series data 10 in a batch
  • the time-series data processing device 61 is timed by a method different from that of the first embodiment.
  • the computer system 1 is configured in the same manner as the computer system 1 according to the first embodiment except that the estimated arrival time of the series data 10 is calculated.
  • FIG. 12 in which parts corresponding to those in FIG. 1 are assigned the same reference numerals, shows the configuration of a time-series data processing device 61 according to the second embodiment.
  • the data collection unit 63 of the time series data processing program 62 is provided with a transfer time giving unit 64.
  • the transfer time giving unit 64 transmits the time series data 10 to the time series data processing device 61 for the time series data 10 to which the arrival time outputted from the arrival time giving unit 33 is given. It is an object having a function of assigning the time (hereinafter referred to as transfer time).
  • the data analysis unit 65 of the time-series data processing program 62 is provided with a transfer presence / absence determination unit 66.
  • the transfer presence / absence determination unit 66 refers to a measurement time rule table 67 described later, and the selection target specified in the analysis query 11 received at that time is the transmission source, and the measurement time is specified in the analysis query 11.
  • This is an object having a function of calculating a scheduled transfer time of the time-series data 10 in which measurement values within the data acquisition target time range are stored (hereinafter referred to as a transfer scheduled time).
  • FIG. 13 shows the configuration of the measurement time rule table 67 according to the second embodiment.
  • the measurement time rule table 67 includes a name field 67A, a measurement start time field 67B, a transfer time field 67C, and a measurement time interval field 67D.
  • the name column 67A, the measurement start time column 67B, and the measurement time interval column 67D the name column 28A, the measurement start time column 28B, and the measurement time interval of the measurement time rule table 28 of the first embodiment described above with reference to FIG. Information similar to the information stored in the column 28C is stored.
  • a time corresponding to one day (hereinafter referred to as a time) that is to be transferred to the time-series data processing device 61 as a time when the corresponding time-series data sources 2 should transfer the untransferred time-series data 10 to the time-series data processing device 61 at a time.
  • a time a time corresponding to one day (hereinafter referred to as a time) that is to be transferred to the time-series data processing device 61 as a time when the corresponding time-series data sources 2 should transfer the untransferred time-series data 10 to the time-series data processing device 61 at a time.
  • the measurement start time is “2012-06-05 0:00”
  • the measurement time interval is set to “10 minutes”
  • the time series data 10 It is shown that the default transfer times are set to “8:30”, “12:00”, “14:30”, and “17:00”.
  • FIG. 14 shows the structure of the arrival time prediction model table 68 according to this embodiment.
  • This arrival time prediction model table 68 is a table for managing the calculation formula of the predicted arrival time for each time-series data source 2 in the same manner as the arrival time prediction model table 29 (FIG. 7) according to the first embodiment.
  • it consists of a name field 68A and a calculation formula field 68B.
  • the name column 68A the name (sensor type) of the corresponding time series data source 2 is stored
  • the calculation formula column 68B the arrival time set in advance for the corresponding time series data source 2 is delayed.
  • a calculation formula for calculating the estimated arrival time of the series data 10 is stored.
  • the estimated arrival time of the time series data 10 whose arrival is delayed is determined by the difference between the scheduled transfer time of the time series data 10 and the past transfer time and arrival time (that is, the time series data source 2 is time It is calculated as the sum of the average value of the time from when the series data 10 is transmitted until the time series data 10 arrives at the time series data processing device 61.
  • FIG. 15 shows the structure of the data table 69 with arrival time according to the present embodiment.
  • This time-of-arrival data table 69 is similar to the time-of-arrival data table 27 according to the first embodiment described above with reference to FIG. 15 is a table for storing and managing the data 10, and includes a name field 69A, a measurement time field 69B, a transfer time field 69C, an arrival time field 69D, and a measurement value field 69E, as shown in FIG.
  • the name column 69A, the measurement time column 69B, and the arrival time column 69D the name column 27A, the measurement time column 27B, and the arrival time column 27C of the data table 27 with arrival time according to the first embodiment described above with reference to FIG.
  • the same information as the information stored in each is stored.
  • the transfer time column 69C stores the transfer time of the corresponding time series data
  • the measurement value column 69E stores the corresponding time series data 10 and all other time series data received together with the time series data 10. All the measurement values stored in 10 are stored.
  • the time series data 10 in which the measurement value measured by the “position sensor” at “2012-06-05 0:00” is stored is “2012-06-05 8:30”.
  • the time series data is transferred from the position sensor to the time series data processing device 61, and the arrival time of the time series data 10 at the time series data processing device 61 is “2012-06-05 8:44”. It is shown that the measurement values stored in the series data 10 are “100”, “28”, and “30”, respectively.
  • FIG. 16 is executed by the data collection unit 63 (FIG. 12) of the present embodiment when the time series data processing device 61 receives the time series data 10 from the time series data source 2. The processing procedure of the data collection processing to be performed is shown. The data collection unit 63 registers the received time series data 10 in the data table 15 with arrival time according to the processing procedure shown in FIG.
  • time-series data processing device 61 receives the time-series data 10 from the time-series data source 2, the data collection process shown in FIG. 16 is started, and the data collection unit 63 of the time-series data processing program 62 performs steps.
  • SP30 and step SP31 are executed in the same manner as step SP1 and step SP2 of the data collection processing of the first embodiment described above with reference to FIG.
  • time series data 10 received by the time series data processing device 61 is received by the data receiving unit 32 of the data collection unit 63 (SP30), and an arrival time is given to each of the time series data 10 (SP31). ).
  • the transfer time assigning unit 64 of the data collecting unit 63 applies the time of the measurement time rule table 67 (FIG. 13) to each time series data 10 to which the arrival time given from the arrival time giving unit 33 is given.
  • the transfer time is assigned as the transfer time.
  • the transfer time giving unit 64 for example, the name of the time series data source 2 stored in the time series data 10 is “position sensor”, and the default transfer time of the position sensor is “8: 30 ”,“ 12:00 ”,“ 14:30 ”, and“ 17:00 ”, the measurement time stored in the time series data 10 is“ 17:00 ”to“ 8:30 ”(however,“ 8 : 30 ”is not included),“ 8:30 ”is assigned to the time-series data 10 as the transfer time, and the measurement times stored in the time-series data 10 are“ 8:30 ”to“ In the case of “12:00” (excluding “12:00”), “12:00” is assigned to the time-series data 10 as the transfer time.
  • the transfer time giving unit 64 sets the time series data. “14:30” is assigned as the transfer time for 10 and the measurement time stored in the time-series data 10 is “14:30” to “17:00” (excluding “17:00”) In some cases, “17:00” is assigned to the time-series data 10 as the transfer time.
  • the transfer time giving unit 64 gives each time series data 10 given the transfer time to the data storage unit 34 (SP32).
  • the data storage unit 34 additionally registers each time-series data 10 to which the transfer time given from the transfer time giving unit 64 is given in the data table with arrival time 69 (FIG. 15) (SP33). Thereby, the data collection process in the data collection unit 63 is completed.
  • FIG. 17 shows the data analysis unit 65 (in step SP11 of the data analysis processing described above with reference to FIG. 9 instead of the query result creation processing according to the first embodiment described above with reference to FIG. FIG. 12) shows a processing procedure of query result creation processing according to this embodiment executed by FIG.
  • step SP11 of the data analysis process (FIG. 9)
  • steps SP40 to SP43 are the first implementations. This is executed in the same manner as step SP20 to step SP23 of the query result creation process of the form.
  • an acquisition target measurement time list is created (SP40), and one unprocessed acquisition target measurement time is selected from the acquisition target measurement times posted in the acquisition target measurement time list (SP41).
  • SP41 acquisition target measurement time list
  • SP42 data table with arrival time 69
  • SP43 acquisition target measurement time list
  • step SP44 and subsequent steps are executed in the same manner as step SP24 and subsequent steps in the query result creation process of the first first embodiment. Thereby, the acquisition target measurement time selected in step SP41 and the measurement value acquired at the acquisition target measurement time (measurement time) are additionally registered in the query result (SP44, SP45).
  • the transfer presence / absence determination unit 66 sets the scheduled transfer time of the time series data 10 in which the measurement value at the acquisition target measurement time selected in step SP41 is stored.
  • the transfer scheduled time calculation process to be calculated is executed (SP46).
  • the arrival time prediction unit 37 uses the estimated transfer time calculated in the estimated transfer time calculation process in step SP46, and based on the corresponding calculation formula stored in the arrival time prediction model table 68 (FIG. 14).
  • the predicted arrival time of the time series data 10 in which the measurement value at the acquisition target measurement time selected in step SP41 is stored is calculated (SP47).
  • step SP48 and subsequent steps are executed in the same manner as step SP27 and subsequent steps in the query result creation process (FIG. 10) of the first first embodiment.
  • the data analysis unit 65 will return this query
  • the result creation process ends, and the process returns to the data analysis process (FIG. 9).
  • FIG. 18 shows a specific processing procedure of the scheduled transfer time calculation process executed by the transfer presence / absence determination unit 66 (FIG. 12) in step SP46 of the query result creation process.
  • the transfer presence / absence determination unit 66 starts the scheduled transfer time calculation process shown in FIG. 18, and first, the time series in which the measurement values acquired at the acquisition target measurement time are stored is stored. Of the predetermined transfer times stored in the corresponding transfer time column 67C of the measurement time rule table 67 (FIG. 13) as the scheduled transfer time of the data 10, the acquisition target time that is the target at that time (step of query result creation processing) A default transfer time that is later than the acquisition target time selected in SP41 and closest to the acquisition target time is acquired (SP50).
  • the time series data source 2 specified as the selection target in the analysis query 11 at this time is “position sensor”, and the acquisition target time selected in step SP41 of the query result creation process is “2012-06-05 14: 10 ”, it is later than“ 2012-06-05: 14: 10 ”among the default transfer times stored in the corresponding transfer time column 67C of the measurement time rule table 67, and“ 2012-06 The default transfer time closest to “-05 14:10” is “2012-06-05 14:30”. Therefore, in this case, the transfer presence / absence determining unit 66 acquires “2012-06-05 14:30”.
  • An entry (line) that matches the name and whose transfer time stored in the transfer time column 69C matches the default transfer time acquired in step SP50 is searched (SP51).
  • the transfer presence / absence determination unit 66 determines whether or not such an entry has been detected (SP52).
  • step SP52 to obtain an affirmative result in step SP52 means that the time-series data processing device 61 has received at least one of the time-series data 10 that are collectively transferred at the same transfer time. Therefore, it can be considered that the transfer of the time-series data 10 storing the measurement values acquired at the acquisition target time that is the target at that time is delayed due to some factor. In such a case, it is considered that a part of the time series data 10 is highly likely to be transferred at the next predetermined transfer time.
  • the transfer presence / absence determination unit 66 reads the “next default transfer time” from the measurement time rule table 67 and acquires the read “next default transfer time” at the acquisition target time that is the target at that time.
  • the scheduled transfer time of the time series data 10 in which the measured values are stored is set (SP54). Then, the transfer presence / absence determination unit 66 ends the scheduled transfer time calculation process.
  • the time-series data source 2 to be selected designated in the analysis query 11 is “position sensor”
  • the default transfer time acquired in step SP50 is “2012-06-05 14:30”
  • the arrival time When the attached data table 69 has the contents as shown in FIG. 15, the transfer presence / absence determination unit 66 adds at least two entries respectively corresponding to the time-series data 10 with the arrival time “2012-06-05 14:45”. It can be found on the data table 69 with arrival time. Therefore, in this case, the transfer presence / absence determining unit 66 sets “2012-06-05 17, which is the next default transfer time after“ 2012-06-05 14:30 ”from the corresponding transfer time column 67C of the measurement time rule table 67. : 00 ”is read out, and“ 2012-06-05 17:00 ”is set as the scheduled transfer time of the time-series data 10 in which the measurement value of the acquisition target time targeted at that time is stored.
  • step SP52 obtaining a negative result in step SP52 is that the transfer processing of all the time series data 10 to be collectively transferred at the same transfer time is delayed for some reason, and all of these time series data 10 is time series data. It can be considered that the processor 61 has not yet arrived. In such a case, it is difficult to predict when the time-series data 10 arrives at the time-series data processing device 61.
  • the transfer presence / absence determination unit 66 sets the predetermined transfer time which is the transfer time of the time-series data 10 in which the measurement value acquired at the acquisition target time as a target at that time is stored as the scheduled transfer time ( SP54). Then, the transfer presence / absence determination unit 66 ends the scheduled transfer time calculation process.
  • the time-series data source to be selected designated in the analysis query 11 is “position sensor”
  • the default transfer time acquired in step SP50 is “2012-06-05 17:00”
  • the arrival time is attached.
  • the transfer presence / absence determination unit 66 designates the sensor type stored in the name column 69A as the selection target in the analysis query 11 on the data table with arrival time 69A. It is not possible to find an entry that matches the name of the time-series data source 2 that has been made and the transfer time stored in the transfer time column 69C matches the default transfer time acquired in step SP50. Therefore, in this case, the transfer presence / absence determination unit 66 sets “2012-06-05 17:00” as the scheduled transfer time of the time-series data 10 in which the measurement value of the acquisition target time targeted at that time is stored.
  • the time-series data source 2 collectively transfers the time-series data 10 on time, but the first embodiment
  • the time series data processing device 61 predicts the arrival time of the time series data 10 that has not arrived at the time series data processing device 61, and presents this to the time series data utilization device 3 and the user. Therefore, the time-series data utilization device 3 and the user can easily grasp the time when all the time-series data necessary for the processing are prepared.
  • reference numeral 70 denotes a computer system according to the third embodiment as a whole.
  • This computer system 70 is a factor (hereinafter, referred to as “factor”) that requires time from the time series data source 2 acquiring a measurement value until the time series data 10 storing the measurement value arrives at the time series data processing device 71 This is referred to as a transfer time determining factor), the arrival time of the time-series data 10 is predicted based on the determination result, and the predicted transfer time determining factor and the estimated arrival time are used as the query result 12 (FIG. 1).
  • the computer system 1 is configured in the same manner as the computer system 1 according to the first embodiment except that it is notified to the sequence data utilization device 3 (FIG. 1).
  • the time-series data processing device 71 of the computer system 70 acquires each time series data source specified as a selection target in the analysis query 11 or the like within the data acquisition target time range specified in the analysis query 11 or the like.
  • Each time series data 10 each storing the measurement value acquired at the target measurement time is measured, and the time series data 10 arrives at the time series data processing device 71 after measuring the measurement value stored in the time series data 10.
  • it is divided into a plurality of groups (hereinafter referred to as two groups), and the transfer time determining factor is estimated for each group.
  • a transfer time determining factor for a group having a transfer time that is not so large can be estimated simply as “communication delay”, and a transfer time determining factor for a group having a long transfer time is due to movement of the time-series data source 2. It can be estimated that the time-series data source 2 is a “temporary communication failure” caused by temporarily leaving the communication environment.
  • the time-series data processing device 71 calculates the time when the dispersion between the groups divided as described above becomes the maximum as the factor determination time. Then, the time-series data processing device 71 obtains the measurement values acquired by the time-series data source 2 specified in the analysis query 11 or the like at each acquisition target time within the data acquisition target time range specified in the analysis query 11 or the like. For each time series data 10 that has not yet arrived among the stored time series data 10, by comparing the elapsed time up to the present and the factor determination time, to which group the time series data 10 belongs. Determine.
  • the time series data processing device 71 calculates the average value of the transfer times of the group to which the non-arrival time series data 10 belongs, and the calculated average value is the scheduled measurement time of the measurement value stored in the time series data 10. Is added to the predicted arrival time of the time-series data 10. Further, the time-series data processing device 71 registers the estimated arrival time of the time-series data 10 calculated in this way and the estimated transfer time determination factor of the time-series data 10 in the query result 12 and registers the time-series data utilization device. 3 (FIG. 1).
  • a transfer time determination factor determination unit 74 is provided in the data analysis unit 73 of the time-series data processing program 72.
  • the transfer time determining factor determination unit 74 obtains the measurement values acquired at each acquisition target time within the data acquisition target time range specified by the time series data source 2 specified in the analysis query 11 or the like. It is an object having a function of determining a transfer time determining factor of each time series data 10 stored.
  • the transfer time determination factor determination unit 74 groups the time series data 10 into two groups according to the transfer time, and calculates the above-described factor determination time which is a temporal threshold value between the groups. Based on the factor determination time, the estimation of the transfer time determining factor of the non-arrival time series data 10 and the calculation of the predicted arrival time are performed.
  • FIG. 20 shows the structure of the arrival time prediction model table 75 according to this embodiment.
  • This arrival time prediction model table 75 is a table for managing the calculation formula of the predicted arrival time for each time-series data source 2 in the same manner as the arrival time prediction model table 29 according to the first embodiment described above with reference to FIG. As shown in FIG. 20, it is composed of a name column 75A and a calculation formula column 75B.
  • the name field 75A stores the name (sensor type) of the corresponding time-series data source 2, and the calculation formula field 75B sets a preset time for the corresponding time-series data source 2 when the arrival is delayed.
  • a calculation formula for calculating the estimated arrival time of the series data 10 is stored.
  • the estimated arrival time of the time series data 10 whose arrival has been delayed, the measurement scheduled time of the measurement value stored in the time series data 10, and the data in the group to which the time series data 10 belongs Calculated as the sum of the average values of the collection times (ie transfer times).
  • FIG. 21 is a flowchart of the data analysis processing step SP11 described above with reference to FIG. 9 instead of the query result creation processing according to the first embodiment described above with reference to FIG. The process procedure of the query result creation process by this Embodiment performed is shown.
  • step SP11 of the data analysis process the data analysis unit 73 of the time-series data processing program 72 starts the query result creation process shown in FIG. 21, and steps SP60 to SP63 are executed in the first embodiment. This is executed in the same manner as step SP20 to step SP23 of the query result creation process of the form.
  • an acquisition target measurement time list is created (SP60), and one unprocessed acquisition target measurement time is selected from the acquisition target measurement times posted in the acquisition target measurement time list (SP61).
  • the same name as the target time-series data source 2 is stored in the name column 27A on the data table 27 with arrival time (FIG. 5), and the same time as the acquisition target measurement time selected in step SP61 is the measurement time.
  • An entry (row) stored in the column 27B is searched (SP62), and it is determined whether or not such an entry has been detected (SP63).
  • step SP64 and subsequent steps are executed in the same manner as step SP24 and subsequent steps in the query result creation process of the first first embodiment. Thereby, the acquisition target measurement time selected in step SP61 and the measurement value acquired at the acquisition target measurement time are additionally registered in the query result 12 (SP64, SP65).
  • step SP63 when a negative result is obtained in the determination in step SP63, the data transfer time determination factor of the time-series data 10 in which the measurement value at the acquisition target measurement time selected in step SP61 is stored is determined. Based on the determination result, an estimated arrival time of the time series data 10 is estimated, and a data transfer time determining factor determination process for additionally registering the estimation result and the like in the query result 12 is executed (SP66).
  • the data arrival determination unit 36 determines whether or not the processing after step SP61 has been executed for all acquisition target measurement times listed in the acquisition target measurement time list created in step SP60 (SP67). . If a negative result is obtained in this determination, the process returns to step SP61, and thereafter, step SP61 and subsequent steps are repeated while sequentially switching the acquisition target measurement time selected in step SP61 to another unprocessed acquisition target measurement time. .
  • step SP67 When a positive result is obtained in the determination of step SP67 by completing the processing after step SP61 for all the acquisition target measurement times listed in the acquisition target measurement time list created in step SP60, data analysis is performed.
  • the unit 73 ends the query result creation process and returns to the data analysis process (FIG. 9).
  • FIG. 22 shows a specific processing procedure of the data transfer time determination factor determination process executed in step SP66 of the query result creation process.
  • step SP66 of the query result creation process the data transfer time determination factor determination process shown in FIG. 22 is started.
  • the transfer time determination factor determination unit 74 refers to the data table 27 with arrival time (FIG. 5).
  • a histogram of the transfer time is created (SP70).
  • the histogram has 0 transfer times of 0 minutes to less than 1 minute, 2 transfer times of 2 minutes to less than 3 minutes, and 1 transfer data of 3 minutes to less than 4 minutes. , 7 for less than 8 minutes, 2 for 8 minutes and less than 9 minutes, 0 for others.
  • the transfer time determination factor determination unit 74 calculates a factor determination time T that serves as a reference (threshold value) when the time series data 10 is allocated to either group (SP71). Specifically, when the number of elements in the group with the factor determination time T or less is w1, the average is ⁇ 1, the variance is ⁇ 1, the number of elements in the group larger than the factor determination time T is w2, the average is ⁇ 2, and the variance is ⁇ 2.
  • the transfer time determining factor determination unit 74 calculates the intra-group variance ⁇ i from the arithmetic expression shown in FIG. 24, and calculates the inter-group variance ⁇ o by the arithmetic expression shown in FIG. The time for maximizing the degree of separation ⁇ between groups is calculated as the factor determination time T by the arithmetic expression shown in FIG.
  • the transfer time determination factor determination unit 74 performs such calculation while increasing by 1 minute from 0 minute to 9 minutes, and sets the time when the separation degree ⁇ becomes the maximum value as the factor determination time T.
  • the transfer time determination factor determination unit 74 determines whether or not the transfer time of the target time-series data 10 is larger than the factor determination time T calculated in step SP71 (SP72). Since the time-series data 10 that is the target at this time has not reached the time-series data processing device 71, the transfer time determination factor determination unit 74 determines the scheduled acquisition time of the measurement value stored in the time-series data 10. The process of step SP72 is executed with the value obtained by subtracting (measurement scheduled time) from the current time as the transfer time of the time-series data 10. Also in the following step SP73 and step SP75, the term “transfer time” includes the transfer time calculated in this way.
  • the arrival time prediction unit 37 calculates an average value of transfer times in the group whose transfer time is equal to or less than the factor determination time T. Further, the arrival time prediction unit 37 uses the average value of the calculated transfer times, and according to the corresponding calculation formula stored in the arrival time prediction model table 75 (FIG. 20), the time series data 10 that is the target at that time An estimated arrival time is calculated (SP73).
  • the query processing unit 35 additionally registers the measurement time, estimated arrival time, and transfer time determination factor (for example, communication delay) for the time series data 10 in the query result 12 (SP74). Then, the data analysis unit 73 ends the data transfer time determination factor determination process and returns to the query result creation process (FIG. 21).
  • the transfer time determination factor for example, communication delay
  • the arrival time prediction unit 37 calculates the average value of the transfer times in the group whose transfer time is longer than the factor determination time T. Further, the arrival time prediction unit 37 uses the average value of the calculated transfer times, and calculates the arrival prediction time of the time series data 10 that is the target at that time according to the corresponding calculation formula stored in the arrival time prediction model table 75. Calculate (SP75).
  • the query processing unit 35 additionally registers the measurement time, the estimated arrival time, and the transfer time determining factor (for example, a temporary communication failure) for the time series data 10 in the query result 12 (SP76). Then, the data analysis unit 73 ends the data transfer time determination factor determination process and returns to the query result creation process.
  • the transfer time determining factor for example, a temporary communication failure
  • the transfer time determining factor of the unarrived time series data 10 is determined, and the time series of similar transfer time determining factors is determined. Since the predicted arrival time of the non-arrival time series data 10 is calculated using only the information obtained from the data 10, a more accurate predicted arrival time can be obtained.
  • this computer system 70 in addition to the same effect as the computer system 1 according to the first embodiment, more accurate information (estimated arrival time) can be provided to the time-series data utilization device 3 and the like. An effect can also be obtained.
  • time-series data source 2 is a sensor
  • present invention is not limited to this, and the time-series data source 2 is used.
  • other devices other than sensors that regularly output some data can be widely applied.
  • the time-series data processing devices 4, 61 which process the time-series data 10 that is a series of data transmitted with the passage of time from the time-series data source 2.
  • the case where the memory 22 composed of a RAM or the like is applied as a storage medium for storing the computer program executed in 71 has been described.
  • the present invention is not limited to this, for example, a CD (Compact Disc) Disc-shaped storage media such as DVD (Digital Versatile Disc), BD (Blu-ray Disc), and hard disk, and various other storage media can be widely applied.
  • the present invention is not limited to this and is divided into three or more groups. Also good.
  • the present invention can be widely applied to time-series data processing devices having various configurations for processing time-series data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Recording Measured Values (AREA)
  • Communication Control (AREA)

Abstract

【課題】 時系列データ解析処理に必要な時系列データが収集されていない場合に、システムに余計な負荷が発生するのを未然に防止する。 【解決手段】 時系列データ処理装置が、データソースから送信されてきた時系列データに対して、当該時系列データが到着した時刻である到着時刻を付与し、時系列データ処理装置が、要求された時系列データの到着の有無を判定し、時系列データ処理装置が、各時系列データに付与された到着時刻に基づいて、未到着と判定した時系列データの到着時刻を予測するようにした。

Description

時系列データ処理装置及び方法並びに記憶媒体
 本発明は、時系列データ処理装置及びその方法並びに記憶媒体に関し、例えばセンサ等のデータソースから時間経過に伴って送信される一連のデータである時系列データを処理する時系列データ処理装置に適用して好適なものである。
 近年、各種センサが定期的に取得する計測値を時系列データとして計算機システムに取り込み、利活用する取り組みが始まっている。また、センサの低価格化により、その適応範囲が広がっており、様々な環境にある機器から時系列データを収集できるようになってきている。例えば、鉱山やトンネルなどの環境にある機器から稼動履歴やGPS(Global Positioning System)位置情報などの時系列データを収集し、鉄道や建設機械の予防保守に活用するケースが出てきている。
 上述のような機器から時系列データを収集する際、計測時刻経過後も、計算機システムが時系列データを収集できない場合がある。その原因としては、機器が移動することにより、一時的にネットワークに接続不可になるといったことが挙げられる。
 そのため、時系列データが一部欠落したり、遅れて収集されたりする場合があり、このような時系列データを対象に含む解析処理を計算機システムが実行できないといった問題が生じている。そこで、データ欠落や遅延の問題に対処した時系列データ処理システムがいくつか提案されている。
 例えば、特許文献1では、時系列データの欠落を抑制するため、時系列データの収集に失敗した場合、予め設定された時間が経過した後に、収集処理をリトライする技術が開示されている。また、特許文献2では、時系列データ解析の失敗を繰り返さないため、時系列データの解析に失敗した場合に、解析対象の時系列データの欠落を利用者に通知する技術が開示されている。
国際公開第2011/158372号パンフレット 特開平10‐243366号公報
 ところが特許文献1に開示された技術によると、場合によっては収集処理のリトライが繰り返されることとなり、システムに余計な負荷がかかるという問題があった。また特許文献2に開示された技術によると、時系列データの欠落情報だけでは、全時系列データの揃う時刻を把握できないため、時系列データの収集結果を何度も確認することになり、結果的に特許文献1と同様に、システムに余計な負荷がかかるといった問題がある。
 本発明は以上の点を考慮してなされたもので、時系列データ解析処理に必要な時系列データが収集されていない場合においてもシステムに余計な負荷が発生するのを未然に防止し得る時系列データ処理装置及び方法並びに記憶媒体を提案しようとするものである。
 かかる課題を解決するため本発明においては、データソースから時間経過に伴って送信される一連のデータである時系列データを処理する時系列データ処理装置において、前記データソースから送信されてきた前記時系列データに対して、当該時系列データが到着した時刻である到着時刻を付与する到着時刻付与部と、要求された前記時系列データの到着の有無を判定するデータ到着判定部と、各前記時系列データに付与された前記到着時刻に基づいて、前記データ到着判定部により未到着と判定された前記時系列データの前記到着時刻を予測する到着時刻予測部とを設けるようにした。
 また本発明においては、データソースから時間経過に伴って送信される一連のデータである時系列データを処理する時系列データ処理装置において実行される時系列データ処理方法において、前記時系列データ処理装置が、前記データソースから送信されてきた前記時系列データに対して、当該時系列データが到着した時刻である到着時刻を付与する第1のステップと、前記時系列データ処理装置が、要求された前記時系列データの到着の有無を判定する第2のステップと、前記時系列データ処理装置が、各前記時系列データに付与された前記到着時刻に基づいて、未到着と判定した前記時系列データの前記到着時刻を予測する第3のステップとを設けるようにした。
 さらに本発明においては、データソースから時間経過に伴って送信される一連のデータである時系列データを処理する時系列データ処理装置において実行されるコンピュータプログラムが格納された記憶媒体であって、前記コンピュータプログラムは、前記データソースから送信されてきた前記時系列データに対して、当該時系列データが到着した時刻である到着時刻を付与する第1のステップと、要求された前記時系列データの到着の有無を判定する第2のステップと、各前記時系列データに付与された前記到着時刻に基づいて、未到着と判定した前記時系列データの前記到着時刻を予測する第3のステップとを備える時系列データ処理を前記時系列データ処理装置に実行させるようにした。
 この結果、本発明の時系列データ処理装置、時系列データ処理方法及び記憶媒体によれば、時系列データの利用者等が処理に必要なすべての時系列データが揃う時刻を把握できるため、当該利用者等が、これらすべての時系列データを得るためのリトライ処理等を盲目的に繰り返すのを未然に防止することができる。
 本発明によれば、時系列データ解析処理に必要な時系列データが収集されていない場合においてもシステムに余計な負荷が発生するのを未然に防止することができる。
第1~第3の実施の形態による計算機システムの概略構成を示すブロック図である。 第1の実施の形態による時系列データ処理装置の構成を示すブロック図である。 時系列データの概略構成を示す概念図である。 解析クエリの概略構成を示す概念図である。 第1の実施の形態による到着時刻付きデータテーブルの構成を示す概念図である。 第1の実施の形態による計測時刻ルールテーブルの構成を示す概念図である。 第1の実施の形態による到着時刻予測モデルテーブルの構成を示す概念図である。 第1の実施の形態によるデータ収集処理の処理手順を示すフローチャートである。 第1の実施の形態によるデータ解析処理の処理手順を示すフローチャートである。 第1の実施の形態によるクエリ結果作成処理の処理手順を示すフローチャートである。 データ解析画面の概略構成例を示す略線図である。 第2の実施の形態による時系列データ処理装置の構成を示すブロック図である。 第2の実施の形態による計測時刻ルールテーブルの構成を示す概念図である。 第2の実施の形態による到着時刻予測モデルテーブルの構成を示す概念図である。 第2の実施の形態による到着時刻付きデータテーブルの構成を示す概念図である。 第2の実施の形態によるデータ収集処理の処理手順を示すフローチャートである。 第2の実施の形態によるクエリ結果作成処理の処理手順を示すフローチャートである。 転送予定時刻算出処理の処理手順を示すフローチャートである。 第3の実施の形態による時系列データ処理装置の構成を示すブロック図である。 第3の実施の形態による到着時刻予測モデルテーブルの構成を示す概念図である。 第3の実施の形態によるクエリ結果作成処理の処理手順を示すフローチャートである。 データ転送時間決定要因判定処理の処理手順を示すフローチャートである。 転送時間のヒストグラムの作成例を示す図表である。 グループ内分散を算出する演算式を示す図表である。 グループ間分散を算出する演算式を表す図表である。 グループ間の分離度を算出する演算式を表す図表である。
 以下図面について、本発明の一実施の形態を詳述する。
(1)第1の実施の形態
(1-1)本実施の形態による計算機システムの構成
 図1において、1は全体として本実施の形態による計算機システムを示す。この計算機システム1は、少なくとも1つ以上の時系列データソース2と、時系列データ利用装置3及び時系列データ処理装置4とを備え、これらがネットワーク5を介して相互に接続されて構成されている。
 時系列データソース2は、例えば温度センサ、湿度センサ、風速センサ又は位置センサなどから構成される。時系列データソース2は、温度、湿度、風速又は位置を定期的に測定し、計測値を時系列データ10として時系列データ処理装置4に送出する。
 時系列データ利用装置3は、プロセッサ及びメモリ等の情報処理資源を備えるコンピュータ装置であり、例えばパーソナルコンピュータから構成される。時系列データ利用装置3には、例えば、時系列データ処理装置4との間でのデータ入出力インターフェースとなるブラウザなどのアプリケーションプログラム(以下、これを単にプログラムと呼ぶ)が実装される。
 そして時系列データ利用装置3は、かかるブラウザを用いたユーザからの指示に従って、時系列データ処理装置4に対して解析要求としての解析クエリ11を発行する。また時系列データ利用装置3は、当該解析クエリ11に対する時系列データ処理装置4からのクエリ結果12を記憶装置に蓄積し、必要に応じてユーザに提供する。
 時系列データ処理装置4は、時系列データソース2から送信される時系列データ10を記憶及び管理し、時系列データ利用装置3からの解析クエリ11に応じた解析結果をクエリ結果12として時系列データ利用装置3に送信するサーバ装置である。この時系列データ処理装置4は、図2に示すように、内部ネットワーク20を介して相互に接続されたプロセッサ21、メモリ22、入出力装置23及びネットワークインタフェース24を備えて構成される。
 プロセッサ21は、時系列データ処理装置4全体の動作制御を司る機能を有し、例えばCPU(Central Processing Unit)又はMPU(Micro-Processing Unit)から構成される。プロセッサ21がメモリ22に格納されたプログラムを実行することにより、時系列データ処理装置4全体として後述のような各種処理を実行する。
 メモリ22は、例えばRAM(Random Access Memory Unit)などの半導体メモリから構成され、OS(Operation Program)25や、他のプログラムと、プログラムが使用するパラメータデータ及びテーブル等のデータとが格納される。後述する時系列データ処理プログラム26もこのメモリ22に格納されて保持される。
 入出力装置23は、一般的なコンピュータ装置で使用されるデータ入出力デバイスから構成される。例えば、入出力装置23として、キーボード、マウス、タッチスクリーン、ペンタブレット等の入力デバイス、及び表示モニタ、プリンタ等の出力デバイスから選択したデバイスを適用することができる。
 ネットワークインタフェース24は、ネットワーク5(図1)を介して時系列データソース2や時系列データ利用装置3との間でデータ通信を行うためのインターフェース回路であり、ネットワーク5の種類に応じて適切なものが用いられる。例えば、ネットワーク5がLAN(Local Area Network)であれば、ネットワークインタフェース24としてNIC(Network Interface Card)が適用される。
 なお時系列データソース2から出力される時系列データ10の概略構成を図3に示す。この図3に示すように、時系列データ10は、名前、計測時刻及び計測値の各情報を含む。名前は、送信元の時系列データソース2のセンサ種別を表し、計測時刻は計測を行った時刻、計測値はそのとき取得したセンサ値をそれぞれ表す。従って、図3は、「温度センサ」が「2012-06-05 0:00」の計測時刻に取得した「28.0」という計測値が格納された時系列データ10の構成例である。
 また時系列データ利用装置3から時系列データ処理装置4に送信される解析クエリ11の概略構成を図4に示す。この図4からも明らかなように、解析クエリ11は、選択対象(select_objects)及びデータ取得対象時刻範囲(from_timerange)の各情報を含む。選択対象は、計測値の転送を要求する時系列データソース2を表し、データ取得対象時刻範囲は、転送を要求する計測値の時間的範囲を表す。従って、図4は、「温度センサ」が「2012-06-05 0:00」~「2012-06-05 1:00」の間に取得した計測値の転送を要求する解析クエリ11の構成例である。
(1-2)本実施の形態による時系列データ処理方式
 次に、本実施の形態による時系列データ処理装置4に搭載された時系列データ処理機能について説明する。時系列データ処理装置4には、対象とすべき時系列データソース2及びデータ取得対象時刻範囲が指定された解析クエリ11が時系列データ利用装置3から与えられた場合であって、当該時系列データソース2から当該データ取得対象時刻範囲内の計測時刻に取得した計測値が格納された時系列データ10がすべて到着していない場合に、到着していない時系列データ10については当該時系列データ10が到着するであろう時刻を予測し、予測結果を時系列データ利用装置3に通知する時系列データ処理機能が搭載されている。
 このような時系列データ処理機能を実現するための手段として、時系列データ処理装置4のメモリ22には、図2に示すように、時系列データ処理プログラム26、到着時刻付きデータテーブル27、計測時刻ルールテーブル28及び到着時刻予測モデルテーブル29が格納されている。
 時系列データ処理プログラム26は、かかる時系列データ処理機能を時系列データ処理装置4に発揮させるためのプログラムであり、各時系列データソース2から定期的に送信される時系列データ10を収集するデータ収集部30と、収集した時系列データ10に基づいて未到着の時系列データ10の到着時刻を予測するデータ解析部31とから構成される。
 データ収集部30は、データ受付け部32、到着時刻付与部33及びデータ蓄積部34から構成される。データ受付け部32は、各時系列データソース2から送信される時系列データ10を到着順に受け付け、受け付けた時系列データ10を到着時刻付与部33に出力する機能を有するオブジェクトである。
 また到着時刻付与部33は、データ受付け部32から与えられた時系列データ10に対して、当該時系列データ10を時系列データ処理装置4が受信した時刻を到着時刻として付加してデータ蓄積部34に出力する機能を有するオブジェクトである。さらにデータ蓄積部34は、到着時刻付与部33から与えられた時系列データ10を、後述する到着時刻付きデータテーブル27に登録する機能を有するオブジェクトである。
 またデータ解析部31は、クエリ処理部35、データ到着判定部36及び到着時刻予測部37から構成される。クエリ処理部35は、時系列データ利用装置3からの解析クエリ11において指定された時系列データ10の情報を到着時刻付きデータテーブル27から取得し、取得した情報をクエリ結果12として当該時系列データ利用装置3に送信する機能を有するオブジェクトである。
 またデータ到着判定部36は、クエリ処理部35が解析クエリ11において指定された時系列データ10の情報を到着時刻付きデータテーブル27から取得するに際して、解析クエリ11において指定された選択対象及びデータ取得対象時刻範囲に基づき、後述する計測時刻ルールテーブル28を参照して、到着時刻付きデータテーブル27から取得すべき時系列データ10を特定する機能を有するオブジェクトである。
 さらに到着時刻予測部37は、データ到着判定部36により特定された時系列データ10が未到着である場合に、後述する到着時刻予測モデルテーブル29を参照して、その時系列データ10の到着時刻を予測する機能を有するオブジェクトである。
 一方、到着時刻付きデータテーブル27は、時系列データ処理装置4が受信した時系列データ10を記憶管理するために利用されるテーブルであり、図5に示すように、名前欄27A、計測時刻欄27B、到着時刻欄27C及び計測値欄27Dから構成される。
 そして名前欄27Aには、受信した時系列データ10の送信元の時系列データソース2の名前(センサ種別)が格納され、計測時刻欄27Bには、対応する時系列データ10に格納されていた計測時刻(図3参照)が格納される。また到着時刻欄27Cには、その時系列データ10を時系列データ処理装置4が受信した時刻が格納され、計測値欄27Dには、その時系列データ10に格納されていた計測値(図3参照)が格納される。
 従って、図5の場合、例えば「温度センサ」が「2012-06-05 0:00」に計測した「28.2」という計測値が格納された時系列データ10の時系列データ処理装置4への到着時刻は「2012-06-05 0:01」であり、「圧力センサ」が「2012-06-05 0:00」に計測した「101.0」という計測値が格納された時系列データ10の時系列データ処理装置4への到着時刻は「2012-06-05 0:03」であり、「風速センサ」が「2012-06-05 0:00」に計測した「0.3」という計測値が格納された時系列データ10の時系列データ処理装置4への到着時刻は「2012-06-05 0:04」であることが示されている。
 また計測時刻ルールテーブル28は、各時系列データソース2の計測開始時刻及び計測時刻間隔を管理するためのテーブルであり、図6に示すように、名前欄28A、計測開始時刻欄28B及び計測時刻間隔欄28Cから構成される。
 そして名前欄28Aには、各時系列データソース2の名前(センサ種別)がそれぞれ格納され、計測開始時刻欄28Bには、対応する時系列データソース2が計測値の取得を開始(計測を開始)する時刻として予め設定された時刻が格納される。また計測時刻間隔欄28Cには、対応する時系列データソース2が計測値を取得し、取得した計測値を時系列データ10として時系列データ処理装置4に送信する時間間隔が格納される。
 従って、図6には、時系列データソース2として「温度センサ」、「圧力センサ」及び「風速センサ」が存在し、このうち温度センサについては、「2012-06-05 0:00」から「10分」ごとに計測値を時系列データ10として時系列データ処理装置4に送信するよう設定されていることが示されている。
 また到着時刻予測モデルテーブル29は、時系列データソース2ごとの予測到着時刻の算出式を管理するためのテーブルであり、図7に示すように、名前欄29A及び算出式欄29Bから構成される。そして名前欄29Aには、対応する時系列データソース2の名前が格納され、算出式欄29Bには、対応する時系列データソース2について予め設定された、到着が遅れている時系列データ10の到着予測時刻を算出するための算出式が格納される。
 本実施の形態の場合、かかる算出式は、温度センサ及び風速センサと、圧力センサとで異なっており、例えば温度センサ及び風力センサについては、次式
Figure JPOXMLDOC01-appb-M000001
のように規定されている。
 つまり本実施の形態の場合、温度センサ及び風力センサについては、到着が遅れている時系列データ10の到着予測時刻を、その時系列データ10に格納された計測値を取得する予定時刻(以下、これを計測予定時刻と呼ぶ)と、過去のデータ収集時間の平均値との和として算出する。なお、データ収集時間とは、時系列データソース2が計測値を取得した計測時刻から、当該計測値が格納された時系列データ10が時系列データ処理装置4に到着するまでの時間をいう。以下においては、適宜、このデータ収集時間を転送時間とも呼ぶ。
(1-3)時系列データ処理機能に関する各種処理
 次に、かかる時系列データ処理機能に関連して時系列データ処理装置4において実行される各種処理の処理手順について説明する。なお、以下においては、各種処理の処理手順を「……部」(つまりオブジェクト)として説明するが、実際上は、そのオブジェクトに基づいてその処理をプロセッサ21(図2)が実行することは言うまでもない。
(1-3-1)データ収集処理
 図8は、時系列データソース2からの時系列データ10を時系列データ処理装置4が受信した場合に時系列データ処理プログラム26のデータ収集部30において実行されるデータ収集処理の処理手順を示す。データ収集部30は、この図8に示す処理手順に従って、受信した時系列データ10を到着時刻付きデータテーブル27に登録する。
 実際上、時系列データソース2からの時系列データ10を時系列データ処理装置4が受信すると、受信した時系列データ10をデータ収集部30のデータ受付け部32が受け付ける。そしてデータ受付け部32は、受け付けた時系列データ10を到着時刻付与部33に与える(SP1)。
 また到着時刻付与部33は、データ受付け部32から与えられた時系列データ10に対して当該時系列データ10が時系列データ処理装置4に到着した時刻を到着時刻として付与し、到着時刻を付与した時系列データ10をデータ蓄積部34に与える(SP2)。さらにデータ蓄積部34は、到着時刻付与部33から与えられた時系列データ10を到着時刻付きデータテーブル27に登録する(SP3)。これによりデータ収集部30におけるこのデータ収集処理が終了する。
(1-3-2)データ解析処理
 図9は、時系列データ利用装置3からの解析クエリ11を時系列データ処理装置4が受信した場合に時系列データ処理プログラム26のデータ解析部31において実行されるデータ解析処理の処理手順を示す。データ解析部31は、この図9に示す処理手順に従って、受信した解析クエリ11に応じたクエリ結果12を生成して時系列データ利用装置3に送信する。
 実際上、データ解析部31のクエリ処理部35は、受信した解析クエリ11から選択対象の時系列データソース2(以下、これを対象時系列データソース2と呼ぶ)の名前及びデータ取得対象時刻範囲を取得する(SP10)。
 続いて、データ解析部31は、クエリ処理部35、データ到着判定部36及び到着時刻予測部37の協働処理により、その対象時系列データソース2がそのデータ取得対象時刻範囲において取得したすべての計測値を含むクエリ結果12を作成する(SP11)。そして、クエリ処理部35は、作成したクエリ結果12を時系列データ利用装置3に送信する(SP12)。これによりデータ解析部31におけるこのデータ解析処理が終了する。
 なお、かかるデータ解析処理のステップSP11においてクエリ処理部35、データ到着判定部36及び到着時刻予測部37により実行されるクエリ結果作成処理の具体的な処理内容を図10に示す。
 データ解析処理(図9)のステップSP11に進むと、この図10に示すクエリ結果作成処理が開始され、まず、データ到着判定部36が、計測時刻ルールテーブル28(図6)の計測開始時刻欄28Bに格納された計測開始時刻と、計測時刻間隔欄28Cに格納された計測時刻間隔とに基づいて、解析クエリ11において指定されたデータ取得対象時刻範囲内のすべての計測時刻を取得対象計測時刻として掲載した取得対象計測時刻リスト(図示せず)を作成する(SP20)。
 例えば、解析クエリ11において指定された対象時系列データソース2が図3のように「温度センサ」であり、データ取得対象時刻範囲が「2012-06-05 0:00~2012-06-05 1:00」であった場合、図6の計測時刻ルールテーブル28を参照すると「温度センサ」の計測時刻間隔が「10分」であるため、「2012-06-05 0:00」、「2012-06-05 0:10」、「2012-06-05 0:20」、「2012-06-05 0:30」、「2012-06-05 0:40」、「2012-06-05 0:50」及び「2012-06-05 1:00」が取得対象計測時刻である。よってデータ到着判定部36は、これらの取得対象計測時刻を時刻順に列挙したリストを取得対象計測時刻リストとして作成する。
 続いて、データ到着判定部36が、取得対象計測時刻リストに掲載された取得対象計測時刻の中から最も時刻が早く、かつ未処理の取得対象計測時刻を1つ選択し(SP21)、到着時刻付きデータテーブル27上で、対象時系列データソース2の名前が名前欄27Aに格納され、かつステップSP21において選択した取得対象計測時刻と同じ計測時刻が計測時刻欄27Bに格納されているエントリ(行)を検索する(SP22)。
 またデータ到着判定部36は、ステップSP22の検索により、対象時系列データソース2の名前が名前欄27Aに格納され、かつステップSP21において選択した取得対象計測時刻と同じ計測時刻が計測時刻欄27Bに格納されているエントリを検出できたか否かを判断する(SP23)。
 そしてこの判断で肯定結果が得られた場合には、クエリ処理部35が、そのとき検出したエントリの計測時刻欄27Bに格納されている計測時刻と、計測値欄27Dに格納されている計測値とを到着時刻付きデータテーブル27から取得し(SP24)、取得したこれら計測時刻及び計測値をクエリ結果12に追加登録する(SP25)。
 この後、データ到着判定部36が、ステップSP20において作成された取得対象計測時刻リストに掲載されたすべての取得対象計測時刻についてステップSP22以降の処理を実行し終えたか否かを判断する(SP28)。そしてこの判断で否定結果を得た場合には、ステップSP21に戻り、この後、ステップSP21において選択する取得対象計測時刻を順次他の未処理の取得対象計測時刻に切り替えながら、ステップSP21以降を繰り返す。
 これに対して、ステップSP23の判断で否定結果が得られた場合、対応する取得対象計測時刻に取得された計測値が格納された時系列データ10が未だ時系列データ処理装置4に到着していないと考えられる。かくして、このとき到着時刻予測部37が、到着時刻予測モデルテーブル29に格納されている対応する算出式に基づいてその時系列データ10の到着予測時刻を算出する(SP26)。そして、算出された到着予測時刻と、その時系列データ10に格納されている計測値の取得対象計測時刻とをクエリ処理部35がクエリ結果12に追加登録する(SP27)。
 この後、クエリ処理部35が、ステップSP20において作成された取得対象計測時刻リストに掲載されたすべての取得対象計測時刻についてステップSP21以降の処理を実行し終えたか否かを判断する(SP28)。そしてこの判断で否定結果を得た場合には、ステップSP21に戻り、この後、ステップSP21において選択する取得対象計測時刻を順次他の未処理の取得対象計測時刻に切り替えながら、ステップSP21以降が繰り返えされる。
 そして、やがてステップSP20において作成された取得対象計測時刻リストに掲載されたすべての取得対象計測時刻についてステップSP21以降の処理を実行し終えることによりステップSP28の判断で肯定結果が得られると、データ解析部31は、このクエリ結果作成処理を終了し、データ解析処理(図9)に戻る。
(1-4)データ解析画面
 図11は、図9について上述したデータ解析処理により作成されたクエリ結果12に基づいて時系列データ利用装置3又は時系列データ処理装置4の入出力装置23(図2)に表示させ得るデータ解析画面40の構成例を示す。このデータ解析画面40は、解析範囲フィールド41、クエリ結果概要フィールド42及びクエリ結果詳細フィールド43から構成される。
 解析範囲フィールド41は、計測値を要求する時系列データソース2(解析クエリ11の選択対象)及び要求する計測値の時間的範囲(解析クエリ11のデータ取得対象時刻範囲)を指定するためのフィールドであり、検索対象指定領域50、検索範囲指定領域51及び検索ボタン52から構成される。
 そして検索対象指定領域50には、各時系列データソース2の名前(センサ種別)がそれぞれ表記され、これら名前とそれぞれ対応付けてチェックボックス50Aが表示される。そして検索対象指定領域50では、チェックボックス50Aをクリックすることによって、後述するクエリ結果概要フィールド42に計測値等を表示させるべき時系列データソース2を選択することができ、このとき選択された時系列データソース2と対応するチェックボックス50A(つまりクリックされたチェックボックス50A)内にチェックマーク50Bを表示させることができる。
 また検索範囲指定領域51には、範囲開始時刻指定欄51A及び第1のプルダウンボタン51Bが設けられており、第1のプルダウンボタン51Bをクリックすることにより、データ取得対象時刻範囲の開始時刻として選択可能な時刻が掲載された第1のプルダウンメニュー(図示せず)を表示させることができる。そして、その第1のプルダウンメニューに表示された時刻の中から所望する時刻を選択することによって、その時刻をデータ取得対象時刻範囲の開始時刻として指定することができ、このとき指定された開始時刻が範囲開始時刻指定欄51Aに表示される。
 同様に、検索範囲指定領域51には、範囲終了時刻指定欄51C及び第2のプルダウンボタン51Dが設けられており、第2のプルダウンボタン51Dをクリックすることにより、データ取得対象時刻範囲の終了時刻として選択可能な時刻が掲載された第2のプルダウンメニュー(図示せず)を表示させることができる。そして、その第2のプルダウンメニューに表示された時刻の中から所望する時刻を選択することによって、その時刻をデータ取得対象時刻範囲の終了時刻として指定することができ、このとき指定された終了時刻が範囲終了時刻指定欄51Cに表示される。
 そしてデータ解析画面40では、検索対象指定領域50に表示されたチェックボックス50Aの中から所望する時系列データソース2と対応付けられたチェックボックス50A内にチェックマーク50Bを表示させると共に、検索範囲指定領域51内の範囲開始時刻指定欄51A内及び範囲終了時刻指定欄51C内にそれぞれデータ取得対象時刻範囲の開始時刻又は終了時刻を表示させた後に検索ボタン52をクリックすることによって、その時系列データソース2がそのデータ取得対象時刻範囲に取得した計測値等の情報が格納されたクエリ結果12を時系列データ処理装置4に作成させることができ、このクエリ結果12の内容を後述のようにクエリ結果概要フィールド42内に表示させ得るようになされている。
 実際上、クエリ結果概要フィールド42には、対象欄53A、計測値欄53B、到着状態欄53C及び到着予測時刻欄53Dから構成されるクエリ結果一覧53が表示される。
 そしてクエリ結果一覧53の対象欄53Aには、上述のように解析範囲フィールド41において指定された時系列データソース2の名前がそれぞれ表示されると共に、計測値欄53Bには、対応する時系列データソース2が対応するデータ取得対象時刻範囲内に取得したすべての計測値がそれぞれ表示される。
 また到着状態欄53Cには、対応する時系列データソース2の対応するデータ取得対象時刻範囲内におけるすべての計測値(時系列データ10)が時系列データ処理装置4に到着しているか否かを表す情報が格納される。具体的に、対応する時系列データソース2の対応するデータ取得対象時刻範囲内におけるすべての計測値(時系列データ10)が時系列データ処理装置4に到着していない場合には、「未到着データあり」という文字列が到着状態欄53C内に表示され、かかるすべての計測値(時系列データ10)が時系列データ処理装置4に到着している場合には、「全データ到着済み」という文字列が到着状態欄53C内に表示される。
 さらに到着予測時刻欄53Dには、対応する時系列データソース2の対応するデータ取得対象時刻範囲内におけるすべての計測値(時系列データ10)が時系列データ処理装置4に到着していない場合(到着状態欄53Cに「未到着データあり」という文字列が表示されている場合)に、未到着の計測値(時系列データ10)の到着予測時刻が表示される。また対応する時系列データソース2の対応するデータ取得対象時刻範囲内におけるすべての計測値(時系列データ10)が時系列データ処理装置4に到着している場合(到着状態欄53Cに「全データ到着済み」という文字列が表示されている場合)には、「NULL」という文字列が到着予測時刻欄53Dに表示される。
 他方、クエリ結果詳細フィールド43には、データ取得対象時刻範囲内の計測値(時系列データ10)の時系列データ処理装置4への到着状況が表示される。具体的に、クエリ結果詳細フィールド43には、上述のように解析範囲フィールド41において指定された時系列データソース2にそれぞれ対応させてタイムライン54Aが表示され、これら時系列データソース2ごとにデータ取得対象時刻範囲内においてどの取得対象計測時刻までの計測値(時系列データ10)が時系列データ処理装置4に到着しているかを表す棒グラフ54Bがそのタイムライン54A内に表示される。
 また各タイムライン54Aの右側には、それぞれ対応する時系列データソース2について、既に対応する時系列データ10が時系列データ処理装置4に到着しているデータ取得対象時刻範囲内の取得対象計測時刻のうちの最後の取得対象計測時刻が蓄積データ最新時刻として表示される。
(1-5)本実施の形態の効果
 以上のように本実施の形態による計算機システム1では、時系列データ処理装置4に未到着の時系列データ10の到着時刻を当該時系列データ処理装置4が予測し、これを時系列データ利用装置3やユーザに提示し得るようになされているため、時系列データ利用装置3やユーザが、処理に必要なすべての時系列データが揃う時刻を容易に把握することができる。
 かくするにつき、本計算機システム1によれば、時系列データ利用装置3やユーザが、処理に必要なすべての時系列データを取得するためのリトライ処理等を盲目的に繰り返すのを未然に防止することができ、かくして時系列データ解析処理に必要な時系列データが収集されていない場合においてもシステムに余計な負荷が発生するのを未然に防止することができる。
 また本計算機システム1では、処理に必要なすべての時系列データが揃う時刻を容易に把握できるため、時系列データ利用装置3やユーザが、全データが揃う時刻を待たずに他のデータ分析処理を優先するなどの業務判断を行うことが可能となり、処理や作業の効率を向上させることができる。
(2)第2の実施の形態
(2-1)本実施の形態による計算機システムの構成
 図1において、60は全体として第2の実施の形態による計算機システムを示す。この計算機システム60は、時系列データソース2が時系列データ10を定刻に一括して転送する点と、これに伴い時系列データ処理装置61において、第1の実施の形態とは異なる方法で時系列データ10の到着予測時刻を算出する点とを除いて第1の実施の形態による計算機システム1と同様に構成されている。
 図1との対応部分に同一符号を付して示す図12は、第2の実施の形態による時系列データ処理装置61の構成を示す。この図12に示すように、本時系列データ処理装置61の場合、時系列データ処理プログラム62のデータ収集部63には、転送時刻付与部64が設けられている。転送時刻付与部64は、到着時刻付与部33から出力される到着時刻が付与された時系列データ10に対して、当該時系列データ10を時系列データソース2が時系列データ処理装置61に送信した時刻(以下、これを転送時刻と呼ぶ)を付与する機能を有するオブジェクトである。
 また時系列データ処理装置61の場合、時系列データ処理プログラム62のデータ解析部65には、転送有無判定部66が設けられている。転送有無判定部66は、後述する計測時刻ルールテーブル67を参照して、そのとき受信した解析クエリ11において指定された選択対象が送信元であり、かつ、計測時刻が当該解析クエリ11において指定されたデータ取得対象時刻範囲内である計測値が格納された時系列データ10の予定された転送時刻(以下、これを転送予定時刻と呼ぶ)を算出する機能を有するオブジェクトである。
 図13は、第2の実施の形態による計測時刻ルールテーブル67の構成を示す。この図13からも明らかなように、この計測時刻ルールテーブル67は、名前欄67A、計測開始時刻欄67B、転送時刻欄67C及び計測時刻間隔欄67Dから構成される。
 そして名前欄67A、計測開始時刻欄67B及び計測時刻間隔欄67Dには、図6について上述した第1の実施の形態の計測時刻ルールテーブル28の名前欄28A、計測開始時刻欄28B及び計測時刻間隔欄28Cにそれぞれ格納される情報と同様の情報が格納される。
 また転送時刻欄67Cには、対応する時系列データソース2が未転送の時系列データ10を一括して時系列データ処理装置61に転送すべき時刻として予め定められた1日分の時刻(以下、これらをそれぞれ既定転送時刻と呼ぶ)がすべて格納される。
 従って、図13の例の場合、「位置センサ」については、計測開始時刻が「2012-06-05 0:00」であり、計測時間間隔が「10分」に設定され、時系列データ10の既定転送時刻が「8:30」、「12:00」、「14:30」及び「17:00」に設定されていることが示されている。
 一方、図14は、本実施の形態による到着時刻予測モデルテーブル68の構成を示す。この到着時刻予測モデルテーブル68は、第1の実施の形態による到着時刻予測モデルテーブル29(図7)と同様に、時系列データソース2ごとの予測到着時刻の算出式を管理するためのテーブルであり、図14に示すように、名前欄68A及び算出式欄68Bから構成される。そして名前欄68Aには、対応する時系列データソース2の名前(センサ種別)が格納され、算出式欄68Bには、対応する時系列データソース2について予め設定された、到着が遅れている時系列データ10の到着予測時刻を算出するための算出式が格納される。
 本実施の形態の場合、かかる算出式は、次式
Figure JPOXMLDOC01-appb-M000002
のように規定されている。
 つまり本実施の形態では、到着が遅れている時系列データ10の到着予測時刻を、その時系列データ10の転送予定時刻と、過去の転送時刻及び到着時刻の差(つまり時系列データソース2が時系列データ10を送信してから当該時系列データ10が時系列データ処理装置61に到着するまでの時間)の平均値との和として算出する。
 他方、図15は、本実施の形態による到着時刻付きデータテーブル69の構成を示す。この到着時刻付きデータテーブル69は、図5について上述した第1の実施の形態による到着時刻付きデータテーブル27と同様に、時系列データ処理装置61が受信した各時系列データソース2からの時系列データ10を記憶管理するためのテーブルであり、図15に示すように、名前欄69A、計測時刻欄69B、転送時刻欄69C、到着時刻欄69D及び計測値欄69Eから構成される。
 そして名前欄69A、計測時刻欄69B及び到着時刻欄69Dには、それぞれ図5について上述した第1の実施の形態による到着時刻付きデータテーブル27の名前欄27A、計測時刻欄27B及び到着時刻欄27Cに格納される情報と同様の情報がそれぞれ格納される。また転送時刻欄69Cには、対応する時系列データ10の転送時刻が格納され、計測値欄69Eには、対応する時系列データ10及び当該時系列データ10と共に受信したすべての他の時系列データ10にそれぞれ格納されていた計測値がすべて格納される。
 従って、図15では、例えば「位置センサ」が「2012-06-05 0:00」に測定した計測値が格納された時系列データ10は、「2012-06-05 8:30」に当該「位置センサ」から時系列データ処理装置61に転送され、その時系列データ10の時系列データ処理装置61への到着時刻が「2012-06-05 8:44」であり、このとき取得した複数の時系列データ10にそれぞれ格納された計測値がそれぞれ「100」、「28」及び「30」であったことが示されている。
(2-2)データ収集処理
 図16は、時系列データソース2からの時系列データ10を時系列データ処理装置61が受信した場合に本実施の形態のデータ収集部63(図12)において実行されるデータ収集処理の処理手順を示す。データ収集部63は、この図16に示す処理手順に従って、受信した時系列データ10を到着時刻付きデータテーブル15に登録する。
 実際上、時系列データソース2からの時系列データ10を時系列データ処理装置61が受信すると、この図16に示すデータ収集処理が開始され、時系列データ処理プログラム62のデータ収集部63によりステップSP30及びステップSP31が図8について上述した第1の実施の形態のデータ収集処理のステップSP1及びステップSP2と同様に実行される。
 これにより時系列データ処理装置61が受信した1又は複数の時系列データ10がデータ収集部63のデータ受付け部32により受け付けられ(SP30)、その時系列データ10にそれぞれ到着時刻が付与される(SP31)。
 続いて、データ収集部63の転送時刻付与部64が、そのとき到着時刻付与部33から与えられる到着時刻が付与された各時系列データ10に対して、計測時刻ルールテーブル67(図13)の対応する転送時刻欄67Cに格納された既定転送時刻のうち、その時系列データ10に格納された計測時刻よりも後の時刻で、かつ、当該計測時刻に最も近い既定転送時刻を転送時刻として付与する。
 具体的に、転送時刻付与部64は、例えば時系列データ10に格納された時系列データソース2の名前が「位置センサ」であり、図13のように位置センサの既定転送時刻が「8:30」、「12:00」、「14:30」及び「17:00」である場合、その時系列データ10に格納された計測時刻が「17:00」~「8:30」(ただし「8:30」は含まず)である場合には、その時系列データ10に対して転送時刻として「8:30」を付与し、その時系列データ10に格納された計測時刻が「8:30」~「12:00」(ただし「12:00」は含まず)である場合には、その時系列データ10に対して転送時刻として「12:00」を付与する。また転送時刻付与部64は、その時系列データ10に格納された計測時刻が「12:00」~「14:30」(ただし「14:30」は含まず)である場合には、その時系列データ10に対して転送時刻として「14:30」を付与し、その時系列データ10に格納された計測時刻が「14:30」~「17:00」(ただし「17:00」は含まず)である場合には、その時系列データ10に対して転送時刻として「17:00」を付与する。
 そして転送時刻付与部64は、この後、転送時刻を付与した各時系列データ10をそれぞれデータ蓄積部34に与える(SP32)。
 またデータ蓄積部34は、転送時刻付与部64から与えられる転送時刻が付与された各時系列データ10を、それぞれ到着時刻付きデータテーブル69(図15)に追加登録する(SP33)。これによりデータ収集部63におけるこのデータ収集処理が終了する。
(2-3)クエリ結果作成処理
 図17は、図10について上述した第1の実施の形態によるクエリ結果作成処理に代えて、図9について上述したデータ解析処理のステップSP11においてデータ解析部65(図12)により実行される本実施の形態によるクエリ結果作成処理の処理手順を示す。
 本実施の形態の場合、データ解析部65は、データ解析処理(図9)のステップSP11に進むと、この図17に示すクエリ結果作成処理を開始し、ステップSP40~ステップSP43が第1の実施の形態のクエリ結果作成処理のステップSP20~ステップSP23と同様に実行される。
 これにより、取得対象計測時刻リストが作成され(SP40)、その取得対象計測時刻リストに掲載された取得対象計測時刻の中から1つの未処理の取得対象計測時刻が選択される(SP41)。また、この後、到着時刻付きデータテーブル69(図15)上で、対象時系列データソース3と同じ名前が名前欄69Aに格納され、かつステップSP41において選択した取得対象計測時刻と同じ計測時刻が計測時刻欄69Bに格納されているエントリ(行)が検索され(SP42)、そのようなエントリを検出できたか否かが判断される(SP43)。
 そしてステップSP43の判断で肯定結果が得られた場合、ステップSP44以降が第1の第1の実施の形態のクエリ結果作成処理のステップSP24以降と同様に実行される。これによりステップSP41において選択された取得対象計測時刻と、当該取得対象計測時刻(計測時刻)に取得された計測値とがクエリ結果に追加登録される(SP44,SP45)。
 これに対して、ステップSP43の判断で否定結果が得られた場合、転送有無判定部66が、ステップSP41において選択した取得対象計測時刻における計測値が格納された時系列データ10の転送予定時刻を算出する転送予定時刻算出処理を実行する(SP46)。
 次いで、到着時刻予測部37が、ステップSP46の転送予定時刻算出処理において算出された転送予定時刻を利用し、到着時刻予測モデルテーブル68(図14)に格納された対応する算出式に基づいて、ステップSP41において選択した取得対象計測時刻における計測値が格納された時系列データ10の到着予測時刻を算出する(SP47)。
 この後、ステップSP48以降が第1の第1の実施の形態のクエリ結果作成処理(図10)のステップSP27以降と同様に実行される。そして、やがて取得対象計測時刻リストに掲載されたすべての取得対象計測時刻についてステップSP41以降の処理を実行し終えることによりステップSP49の判断で肯定結果が得られると、データ解析部65は、このクエリ結果作成処理を終了し、データ解析処理(図9)に戻る。
 図18は、かかるクエリ結果作成処理のステップSP46において転送有無判定部66(図12)により実行される転送予定時刻算出処理の具体的な処理手順を示す。
 クエリ結果作成処理がステップSP46に進むと、転送有無判定部66が、この図18に示す転送予定時刻算出処理を開始し、まず、取得対象計測時刻に取得された計測値が格納された時系列データ10の転送予定時刻として、計測時刻ルールテーブル67(図13)の対応する転送時刻欄67Cに格納されている既定転送時刻のうち、そのとき対象としている取得対象時刻(クエリ結果作成処理のステップSP41において選択した取得対象計測時刻)よりも遅く、かつ、当該取得対象時刻に最も近い既定転送時刻を取得する(SP50)。
 例えば、このときの解析クエリ11において選択対象として指定された時系列データソース2が「位置センサ」であり、クエリ結果作成処理のステップSP41において選択した取得対象時刻が「2012-06-05 14:10」であった場合、計測時刻ルールテーブル67の対応する転送時刻欄67Cに格納されている既定転送時刻の中で、「2012-06-05 14:10」よりも遅く、かつ「2012-06-05 14:10」に最も近い既定転送時刻は「2012-06-05 14:30」である。よって、この場合に転送有無判定部66は、この「2012-06-05 14:30」を取得することになる。
 続いて、転送有無判定部66は、到着時刻付きデータテーブル69(図15)上で、名前欄69Aに格納されたセンサ種別がかかる解析クエリ11において選択対象として指定された時系列データソース2の名前と一致し、かつ転送時刻欄69Cに格納された転送時刻がステップSP50において取得した既定転送時刻と一致するエントリ(行)を検索する(SP51)。そして転送有無判定部66は、この後、そのようなエントリを検出できたか否かを判断する(SP52)。
 ここで、このステップSP52において肯定結果を得ることは、同じ転送時刻に一括転送された時系列データ10の少なくとも1つを時系列データ処理装置61が受信していることを意味する。従って、そのとき対象としている取得対象時刻に取得された計測値が格納された時系列データ10の転送が何らかの要因により遅れていると考えることができる。そして、このような場合、かかる一部の時系列データ10は、次の既定転送時刻に転送される可能性が高いと考えられる。
 かくして、このとき転送有無判定部66は、かかる「次の既定転送時刻」を計測時刻ルールテーブル67から読み出し、読み出した「次の既定転送時刻」を、そのとき対象としている取得対象時刻に取得された計測値が格納されている時系列データ10の転送予定時刻とする(SP54)。そして転送有無判定部66は、この後、この転送予定時刻算出処理を終了する。
 例えば、解析クエリ11において指定された選択対象の時系列データソース2が「位置センサ」であり、ステップSP50において取得した既定転送時刻が「2012-06-05 14:30」であり、かつ到着時刻付きデータテーブル69が図15のような内容であった場合、転送有無判定部66は、到着時刻が「2012-06-05 14:45」の時系列データ10にそれぞれ対応する少なくとも2つのエントリを到着時刻付きデータテーブル69上で発見することができる。よって、この場合、転送有無判定部66は、計測時刻ルールテーブル67の対応する転送時刻欄67Cから「2012-06-05 14:30」の次の既定転送時刻である「2012-06-05 17:00」を読み出し、「2012-06-05 17:00」をそのとき対象としている取得対象時刻の計測値が格納された時系列データ10の転送予定時刻とする。
 これに対して、ステップSP52において否定結果を得ることは、同じ転送時刻に一括転送すべきすべての時系列データ10の転送処理が何らかの要因により遅れ、これらの時系列データ10のすべてが時系列データ処理装置61に未だ到着していないと考えることができる。そして、このような場合、その時系列データ10がいつ時系列データ処理装置61に到着するかを予測することは難しい。
 かくして、このとき転送有無判定部66は、そのとき対象としている取得対象時刻に取得された計測値が格納されている時系列データ10の転送時刻であった既定転送時刻を転送予定時刻とする(SP54)。そして転送有無判定部66は、この後、この転送予定時刻算出処理を終了する。
 例えば、解析クエリ11において指定された選択対象の時系列データソースが「位置センサ」であり、ステップSP50において取得した既定転送時刻が「2012-06-05 17:00」であり、かつ到着時刻付きデータテーブル69が図15のような内容であった場合、転送有無判定部66は、到着時刻付きデータテーブル69上で、名前欄69Aに格納されたセンサ種別がかかる解析クエリ11において選択対象として指定された時系列データソース2の名前と一致し、かつ転送時刻欄69Cに格納された転送時刻がステップSP50において取得した既定転送時刻と一致するエントリを発見することができない。よって、この場合、転送有無判定部66は、「2012-06-05 17:00」をそのとき対象としている取得対象時刻の計測値が格納された時系列データ10の転送予定時刻とする。
(2-4)本実施の形態の効果
 以上のように本実施の形態の計算機システム60では、時系列データソース2が時系列データ10を定刻に一括して転送するものの、第1の実施の形態の計算機システム1と同様に、時系列データ処理装置61に未到着の時系列データ10の到着時刻を当該時系列データ処理装置61が予測し、これを時系列データ利用装置3やユーザに提示し得るようになされているため、時系列データ利用装置3やユーザが、処理に必要なすべての時系列データが揃う時刻を容易に把握することができる。
 かくするにつき、本計算機システム60によれば、時系列データソース2が時系列データ10を定刻に一括して転送するシステム構成である場合にも、第1の実施の形態と同様の効果を得ることができる。
(3)第3の実施の形態
(3-1)本実施の形態による計算機システムの構成
 図1において、70は全体として第3の実施の形態による計算機システムを示す。この計算機システム70は、時系列データソース2が計測値を取得してから当該計測値が格納された時系列データ10が時系列データ処理装置71に到着するまでの時間を要した要因(以下、これを転送時間決定要因と呼ぶ)を判定し、判定結果に基づいて当該時系列データ10の到着時刻を予測し、予測した転送時間決定要因及び到着予測時刻をクエリ結果12(図1)として時系列データ利用装置3(図1)に通知する点を除いて第1の実施の形態による計算機システム1と同様に構成されている。
 実際上、本計算機システム70の時系列データ処理装置71は、解析クエリ11等において選択対象として指定された時系列データソースが当該解析クエリ11等において指定されたデータ取得対象時刻範囲内の各取得対象計測時刻において取得した計測値がそれぞれ格納された各時系列データ10を、その時系列データ10に格納された計測値を計測してから当該時系列データ10が時系列データ処理装置71に到着するまでに要した時間(転送時間)に応じて複数のグループ(以下、2つのグループとする)に分け、グループごとに転送時間決定要因を推定する。
 例えば、転送時間がそれほど大きくないグループの転送時間決定要因としては、単なる「通信遅延」と推定することができ、転送時間が大きいグループの転送時間決定要因としては、時系列データソース2の移動により時系列データソース2が通信環境から一時的に離脱した等に起因する「一時的な通信障害」であると推定することができる。
 また時系列データ処理装置71は、上述のように分けたグループ間の分散が最大となる時間を要因判定時間として算出する。そして、時系列データ処理装置71は、解析クエリ11等において指定された時系列データソース2が当該解析クエリ11等において指定されたデータ取得対象時刻範囲内の各取得対象時刻に取得した計測値がそれぞれ格納された時系列データ10のうちの未だ到着していない時系列データ10について、現在までの経過時間と要因判定時間とを比較することにより、当該時系列データ10がどちらのグループに属するかを判定する。
 そして時系列データ処理装置71は、かかる未到着の時系列データ10が属するグループの転送時間の平均値を算出し、算出した平均値をその時系列データ10に格納されている計測値の計測予定時刻に加算することにより当該時系列データ10の到着予測時刻を算出する。また時系列データ処理装置71は、このようにして算出したその時系列データ10の到着予測時刻と、推定したその時系列データ10の転送時間決定要因とをクエリ結果12に登録して時系列データ利用装置3(図1)に送信する。
 以上のような時系列データ処理装置71の時系列データ処理機能を実現するための手段として、本実施の形態による時系列データ処理装置71には、図2との対応部分に同一符号を付した図19に示すように、時系列データ処理プログラム72のデータ解析部73に転送時間決定要因判定部74が設けられている。
 転送時間決定要因判定部74は、解析クエリ11等において指定された時系列データソース2が当該解析クエリ11等において指定されたデータ取得対象時刻範囲内の各取得対象時刻に取得した計測値がそれぞれ格納された各時系列データ10の転送時間決定要因を判定する機能を有するオブジェクトである。
 この転送時間決定要因判定部74により、かかる各時系列データ10が転送時間に応じて2つのグループにグループ分けされると共に、グループ間の時間的閾値である上述の要因判定時間が算出され、この要因判定時間に基づいて、未到着の時系列データ10の転送時間決定要因の推定及び到着予測時間の算出が行われる。
 図20は、本実施の形態による到着時刻予測モデルテーブル75の構成を示す。この到着時刻予測モデルテーブル75は、図7について上述した第1の実施の形態による到着時刻予測モデルテーブル29と同様に、時系列データソース2ごとの予測到着時刻の算出式を管理するためのテーブルであり、図20に示すように、名前欄75A及び算出式欄75Bから構成される。
 そして名前欄75Aには、対応する時系列データソース2の名前(センサ種別)が格納され、算出式欄75Bには、対応する時系列データソース2について予め設定された、到着が遅れている時系列データ10の到着予測時刻を算出するための算出式が格納される。
 本実施の形態の場合、かかる算出式は、次式
Figure JPOXMLDOC01-appb-M000003
のように規定されている。
 つまり本実施の形態においては、到着が遅れている時系列データ10の到着予測時刻を、その時系列データ10に格納された計測値の計測予定時刻と、当該時系列データ10が属するグループ内のデータ収集時間(つまり転送時間)の平均値の和として算出する。
(3-2)本実施の形態によるクエリ結果作成処理
 図21は、図10について上述した第1の実施の形態によるクエリ結果作成処理に代えて、図9について上述したデータ解析処理のステップSP11において実行される本実施の形態によるクエリ結果作成処理の処理手順を示す。
 データ解析処理(図9)のステップSP11に進むと、時系列データ処理プログラム72のデータ解析部73によりこの図21に示すクエリ結果作成処理が開始され、ステップSP60~ステップSP63が第1の実施の形態のクエリ結果作成処理のステップSP20~ステップSP23と同様に実行される。
 これにより、取得対象計測時刻リストが作成され(SP60)、その取得対象計測時刻リストに掲載された取得対象計測時刻の中から1つの未処理の取得対象計測時刻が選択される(SP61)。また、この後、到着時刻付きデータテーブル27(図5)上で対象時系列データソース2と同じ名前が名前欄27Aに格納され、かつステップSP61において選択した取得対象計測時刻と同じ時刻が計測時刻欄27Bに格納されているエントリ(行)が検索され(SP62)、そのようなエントリを検出できたか否かが判断される(SP63)。
 そしてステップSP63の判断で肯定結果が得られた場合、ステップSP64以降が第1の第1の実施の形態のクエリ結果作成処理のステップSP24以降と同様に実行される。これによりステップSP61において選択された取得対象計測時刻と、当該取得対象計測時刻に取得された計測値とがクエリ結果12に追加登録される(SP64,SP65)。
 これに対して、ステップSP63の判断で否定結果が得られた場合、ステップSP61において選択した取得対象計測時刻における計測値が格納された時系列データ10のデータ転送時間決定要因を判定すると共に、その判定結果に基づいて、当該時系列データ10の到着予測時間を推定し、推定結果等をクエリ結果12に追加登録するデータ転送時間決定要因判定処理が実行される(SP66)。
 この後、データ到着判定部36が、ステップSP60において作成された取得対象計測時刻リストに掲載されたすべての取得対象計測時刻についてステップSP61以降の処理を実行し終えたか否かを判断する(SP67)。そしてこの判断で否定結果を得た場合には、ステップSP61に戻り、この後、ステップSP61において選択する取得対象計測時刻を順次他の未処理の取得対象計測時刻に切り替えながら、ステップSP61以降を繰り返す。
 そして、やがてステップSP60において作成された取得対象計測時刻リストに掲載されたすべての取得対象計測時刻についてステップSP61以降の処理を実行し終えることによりステップSP67の判断で肯定結果が得られると、データ解析部73は、このクエリ結果作成処理を終了し、データ解析処理(図9)に戻る。
 図22は、かかるクエリ結果作成処理のステップSP66において実行されるデータ転送時間決定要因判定処理の具体的な処理手順を示す。
 クエリ結果作成処理のステップSP66に進むと、この図22に示すデータ転送時間決定要因判定処理が開始され、まず、転送時間決定要因判定部74が、到着時刻付きデータテーブル27(図5)を参照して、転送時間のヒストグラムを作成する(SP70)。
 例えば、解析クエリ11において指定された選択対象の時系列データソース2の名前(センサ種別)が「温度センサ」であり、転送時間のヒストグラムを0~9分の区間において1分刻みで作成する場合、かかるヒストグラムは、図23に示すように、転送時間が0分以上1分未満のものは0個、2分以上3分未満のものは2個、3分以上4分未満のものは1個、7分以上8分未満のものは2個、8分以上9分未満のものが2個、それ以外のものは0個となる。
 続いて、転送時間決定要因判定部74が、時系列データ10をどちらかのグループに振り分ける際の基準(閾値)となる要因判定時間Tを算出する(SP71)。具体的には、要因判定時間T以下のグループの要素数をw1、平均をμ1、分散をσ1、要因判定時間Tよりも大きいグループの要素数をw2、平均をμ2、分散をσ2とした場合、転送時間決定要因判定部74は、グループ内分散σiを図24に示す演算式より算出すると共に、グループ間分散σoを図25に示す演算式により算出し、算出したこれらグループ内分散σi及びグループ間分散σoを用いて図26に示す演算式により、グループ間の分離度λを最大化する時間を要因判定時間Tとして算出する。
 例えば、図23のヒストグラムを「5分以下」及び「5分よりも大きい」の2つのグループに分ける場合、「5分以下」のグループの要素数は3、平均μ1は2.3、分散σ1は0.22であり、「5分よりも大きい」グループの要素数は3、平均μ2は7.7、分散σ2は0.22となる。従って、この場合のグループ内分散σiは図24に示す(4)式より0.048、グループ間分散σoは図25に示す(5)式より7.29とそれぞれ算出され、この結果、分離度λは図26に示す(6)式より151.8と算出される。転送時間決定要因判定部74は、このような演算を0分から9分まで、1分ずつ増加しながら行い、分離度λが最大値となる時間を要因判定時間Tとする。
 次いで、転送時間決定要因判定部74が、そのとき対象としている時系列データ10の転送時間がステップSP71において算出した要因判定時間Tよりも大きいか否かを判断する(SP72)。なお、このとき対象としている時系列データ10は、時系列データ処理装置71に未到達であるため、転送時間決定要因判定部74は、その時系列データ10に格納されている計測値の取得予定時刻(計測予定時刻)を現在時刻から引いた値を当該時系列データ10の転送時間としてステップSP72の処理を実行する。以下のステップSP73及びステップSP75においても、「転送時間」という用語には、このようにして算出された転送時間を含むものとする。
 そして、この判断で否定結果を得た場合には、到着時刻予測部37が、転送時間が要因判定時間T以下のグループ内における転送時間の平均値を算出する。また到着時刻予測部37は、算出した転送時間の平均値を利用して、到着時刻予測モデルテーブル75(図20)に格納された対応する算出式に従って、そのとき対象としている時系列データ10の到着予測時間を算出する(SP73)。
 この後、クエリ処理部35が、その時系列データ10についての計測時刻、到着予測時刻及び転送時間決定要因(例えば通信遅延)をクエリ結果12に追加登録する(SP74)。そしてデータ解析部73は、この後、このデータ転送時間決定要因判定処理を終了し、クエリ結果作成処理(図21)に戻る。
 これに対してステップSP72の判断で否定結果が得られた場合、到着時刻予測部37が、転送時間が要因判定時間Tよりも大きいグループ内における転送時間の平均値を算出する。また到着時刻予測部37は、算出した転送時間の平均値を利用して、到着時刻予測モデルテーブル75に格納された対応する算出式に従って、そのとき対象としている時系列データ10の到着予測時間を算出する(SP75)。
 この後、クエリ処理部35が、その時系列データ10についての計測時刻、到着予測時刻及び転送時間決定要因(例えば一時的な通信障害)をクエリ結果12に追加登録する(SP76)。そしてデータ解析部73は、この後、このデータ転送時間決定要因判定処理を終了し、クエリ結果作成処理に戻る。
(3-3)本実施の形態の効果
 以上のように本実施の形態による計算機システム70では、未到着の時系列データ10の転送時間決定要因を判定し、同様の転送時間決定要因の時系列データ10から得られた情報のみを用いて未到着の時系列データ10の到着予測時刻を算出するようにしているため、より精度の高い到着予測時刻を得ることができる。
 従って、本計算機システム70によれば、第1の実施の形態による計算機システム1と同様の効果に加えて、より精度の高い情報(到着予測時刻)を時系列データ利用装置3等に提供できるという効果をも得ることができる。
(4)他の実施の形態
 なお上述の第1~第3実施の形態においては、時系列データソース2がセンサである場合について述べたが、本発明はこれに限らず、時系列データソース2としては、定期的に何らかのデータを出力するセンサ以外の他の機器を広く適用することができる。
 また上述の第1~第3の実施の形態においては、時系列データソース2から時間経過に伴って送信される一連のデータである時系列データ10を処理する時系列データ処理装置4,61,71において実行されるコンピュータプログラムを格納しておく記憶媒体としてRAM等から構成されるメモリ22を適用するようにした場合について述べたが、本発明はこれに限らず、例えばCD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blu-ray Disc)、ハードディスクなどのディスク状記憶媒体や、この他種々の記憶媒体を広く適用することができる。
 さらに上述の第3の実施の形態においては、時系列データ10を転送時間に応じて2つのグループに分ける場合について述べたが、本発明はこれに限らず、3以上のグループに分けるようにしても良い。
 本発明は、時系列データを処理する種々の構成の時系列データ処理装置に広く適用することができる。
 1,60,70……計算機システム、2……時系列データソース、3……時系列データ利用装置、4,61,71……時系列データ処理装置、10……時系列データ、11……解析クエリ、12……クエリ結果、21……プロセッサ、22……メモリ、26,62,72……時系列データ処理プログラム、27,69……到着時刻付きデータテーブル、28,67……計測時刻ルールテーブル、29,68,75……到着時刻予測モデルテーブル、30,63……データ収集部、31,65,73……データ解析部、40……データ解析画面。

Claims (15)

  1.  データソースから時間経過に伴って送信される一連のデータである時系列データを処理する時系列データ処理装置であって、
     前記データソースから送信されてきた前記時系列データに対して、当該時系列データが到着した時刻である到着時刻を付与する到着時刻付与部と、
     要求された前記時系列データの到着の有無を判定するデータ到着判定部と、
     各前記時系列データに付与された前記到着時刻に基づいて、前記データ到着判定部により未到着と判定された前記時系列データの前記到着時刻を予測する到着時刻予測部と
     を備えることを特徴とする時系列データ処理装置。
  2.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記データ到着判定部は、
     前記データソースが前記計測値を取得する時間間隔である計測時間間隔と、前記データソースが前記計測値の取得を開始する計測開始時刻とを予め保持し、
     当該計測時間間隔及び当該計測開始時刻と、到着済みの各前記時系列データにそれぞれ格納されていた前記計測時刻とに基づいて、要求された前記時系列データの到着の有無を判定する
     ことを特徴とする請求項1に記載の時系列データ処理装置。
  3.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記到着時刻予測部は、
     到着済みの各前記時系列データにそれぞれ格納された計測時刻と、各前記時系列データにそれぞれ付与された前記到着時刻とに基づいて、前記データソースが前記計測値を取得してから当該計測値が到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項1に記載の時系列データ処理装置。
  4.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを、予め定められた転送時刻に一括して前記時系列データ処理装置に送信し、
     前記データソースが前記時系列データを一括して送信する前記転送時刻を予め保持し、前記データソースから送信されてきた前記時系列データに対して対応する前記転送時刻を付与する転送時刻付与部を備え、
     前記到着時刻予測部は、
     各前記時系列データにそれぞれ付与された前記到着時刻及び前記転送時刻に基づいて、前記データソースが前記時系列データを送信してから当該時系列データが到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項1に記載の時系列データ処理装置。
  5.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記データソースが前記計測値を取得してから当該計測値が格納された前記時系列データが前記時系列データ処理装置に到着するまでの時間を要した要因である転送時間決定要因を判定する転送時間決定要因判定部を備え、
     前記転送時間決定要因判定部は、
     到着済みの各前記時系列データを前記転送時間決定要因に応じて複数のグループに分ける場合に、前記データ到着判定部により未到着と判定された前記時系列データがいずれのグループに属するかを判定し、
     前記到着時刻予測部は、
     未到着と判定された前記時系列データが属すると判定したグループに属する到着済みの各前記時系列データにそれぞれ格納された計測時刻と、当該時系列データにそれぞれ付与された前記到着時刻とに基づいて、当該グループについて、前記データソースが前記計測値を取得してから当該計測値が到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項1に記載の時系列データ処理装置。
  6.  データソースから時間経過に伴って送信される一連のデータである時系列データを処理する時系列データ処理装置において実行される時系列データ処理方法であって、
     前記時系列データ処理装置が、前記データソースから送信されてきた前記時系列データに対して、当該時系列データが到着した時刻である到着時刻を付与する第1のステップと、
     前記時系列データ処理装置が、要求された前記時系列データの到着の有無を判定する第2のステップと、
     前記時系列データ処理装置が、各前記時系列データに付与された前記到着時刻に基づいて、未到着と判定した前記時系列データの前記到着時刻を予測する第3のステップと
     を備えることを特徴とする時系列データ処理方法。
  7.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記時系列データ処理装置は、
     前記データソースが前記計測値を取得する時間間隔である計測時間間隔と、前記データソースが前記計測値の取得を開始する計測開始時刻とを予め保持し、
     前記第3のステップにおいて、前記時系列データ処理装置は、
     当該計測時間間隔及び当該計測開始時刻と、到着済みの各前記時系列データにそれぞれ格納されていた前記計測時刻とに基づいて、要求された前記時系列データの到着の有無を判定する
     ことを特徴とする請求項6に記載の時系列データ処理方法。
  8.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記第3のステップにおいて、前記時系列データ処理装置は、
     到着済みの各前記時系列データにそれぞれ格納された計測時刻と、各前記時系列データにそれぞれ付与された前記到着時刻とに基づいて、前記データソースが前記計測値を取得してから当該計測値が到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項6に記載の時系列データ処理方法。
  9.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを、予め定められた転送時刻に一括して前記時系列データ処理装置に送信し、
     前記時系列データ処理装置は、
     前記データソースが前記時系列データを一括して送信する前記転送時刻を予め保持し、前記データソースから送信されてきた前記時系列データに対して対応する前記転送時刻を付与し、
     前記第3のステップにおいて、前記時系列データ処理装置は、
     各前記時系列データにそれぞれ付与された前記到着時刻及び前記転送時刻に基づいて、前記データソースが前記時系列データを送信してから当該時系列データが到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項6に記載の時系列データ処理方法。
  10.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記第3のステップにおいて、前記時系列データ処理装置は、
     前記データソースが前記計測値を取得してから当該計測値が格納された前記時系列データが前記時系列データ処理装置に到着するまでの時間を要した要因である転送時間決定要因を判定し、
     到着済みの各前記時系列データを前記転送時間決定要因に応じて複数のグループに分ける場合に、前記データ到着判定部により未到着と判定された前記時系列データがいずれのグループに属するかを判定し、
     未到着と判定された前記時系列データが属すると判定したグループに属する到着済みの各前記時系列データにそれぞれ格納された計測時刻と、当該時系列データにそれぞれ付与された前記到着時刻とに基づいて、当該グループについて、前記データソースが前記計測値を取得してから当該計測値が到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項6に記載の時系列データ処理方法。
  11.  データソースから時間経過に伴って送信される一連のデータである時系列データを処理する時系列データ処理装置において実行されるコンピュータプログラムが格納された記憶媒体であって、
     前記コンピュータプログラムは、
     前記データソースから送信されてきた前記時系列データに対して、当該時系列データが到着した時刻である到着時刻を付与する第1のステップと、
     要求された前記時系列データの到着の有無を判定する第2のステップと、
     各前記時系列データに付与された前記到着時刻に基づいて、未到着と判定した前記時系列データの前記到着時刻を予測する第3のステップと
     を備える時系列データ処理を前記時系列データ処理装置に実行させる
     ことを特徴とする記憶媒体。
  12.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記時系列データ処理装置は、
     前記データソースが前記計測値を取得する時間間隔である計測時間間隔と、前記データソースが前記計測値の取得を開始する計測開始時刻とを予め保持し、
     前記第3のステップにおいて、前記時系列データ処理装置は、
     当該計測時間間隔及び当該計測開始時刻と、到着済みの各前記時系列データにそれぞれ格納されていた前記計測時刻とに基づいて、要求された前記時系列データの到着の有無を判定する
     ことを特徴とする請求項11に記載の記憶媒体。
  13.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記第3のステップにおいて、前記時系列データ処理装置は、
     到着済みの各前記時系列データにそれぞれ格納された計測時刻と、各前記時系列データにそれぞれ付与された前記到着時刻とに基づいて、前記データソースが前記計測値を取得してから当該計測値が到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項11に記載の記憶媒体。
  14.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを、予め定められた転送時刻に一括して前記時系列データ処理装置に送信し、
     前記時系列データ処理装置は、
     前記データソースが前記時系列データを一括して送信する前記転送時刻を予め保持し、前記データソースから送信されてきた前記時系列データに対して対応する前記転送時刻を付与し、
     前記第3のステップにおいて、前記時系列データ処理装置は、
     各前記時系列データにそれぞれ付与された前記到着時刻及び前記転送時刻に基づいて、前記データソースが前記時系列データを送信してから当該時系列データが到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項11に記載の記憶媒体。
  15.  前記データソースは、
     定期的に計測値を取得し、取得した前記計測値及び当該計測値を取得した計測時刻を格納した前記時系列データを前記時系列データ処理装置に送信し、
     前記第3のステップにおいて、前記時系列データ処理装置は、
     前記データソースが前記計測値を取得してから当該計測値が格納された前記時系列データが前記時系列データ処理装置に到着するまでの時間を要した要因である転送時間決定要因を判定し、
     到着済みの各前記時系列データを前記転送時間決定要因に応じて複数のグループに分ける場合に、前記データ到着判定部により未到着と判定された前記時系列データがいずれのグループに属するかを判定し、
     未到着と判定された前記時系列データが属すると判定したグループに属する到着済みの各前記時系列データにそれぞれ格納された計測時刻と、当該時系列データにそれぞれ付与された前記到着時刻とに基づいて、当該グループについて、前記データソースが前記計測値を取得してから当該計測値が到着するまでの時間の平均値を算出し、
     算出した前記平均値に基づいて、要求された未到着の前記時系列データの到着時刻を予測する
     ことを特徴とする請求項11に記載の記憶媒体。
PCT/JP2013/050337 2013-01-10 2013-01-10 時系列データ処理装置及び方法並びに記憶媒体 WO2014109038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014556273A JP6002250B2 (ja) 2013-01-10 2013-01-10 時系列データ処理装置及び方法並びに記憶媒体
PCT/JP2013/050337 WO2014109038A1 (ja) 2013-01-10 2013-01-10 時系列データ処理装置及び方法並びに記憶媒体
US14/428,275 US20150234897A1 (en) 2013-01-10 2013-01-10 Time series data processing apparatus and method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050337 WO2014109038A1 (ja) 2013-01-10 2013-01-10 時系列データ処理装置及び方法並びに記憶媒体

Publications (1)

Publication Number Publication Date
WO2014109038A1 true WO2014109038A1 (ja) 2014-07-17

Family

ID=51166708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050337 WO2014109038A1 (ja) 2013-01-10 2013-01-10 時系列データ処理装置及び方法並びに記憶媒体

Country Status (3)

Country Link
US (1) US20150234897A1 (ja)
JP (1) JP6002250B2 (ja)
WO (1) WO2014109038A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508881A (ja) * 2015-01-29 2018-03-29 シグナルエフエックス インコーポレイテッド 計測されたソフトウェアから受信されるデータストリームのリアルタイム処理
JP2019139736A (ja) * 2018-02-08 2019-08-22 パナソニックIpマネジメント株式会社 データ分析方法、データ分析装置及びデータ分析プログラム
US20210264275A1 (en) * 2017-10-30 2021-08-26 DoorDash, Inc. System for dynamic estimated time of arrival predictive updates
US11709661B2 (en) 2014-12-19 2023-07-25 Splunk Inc. Representing result data streams based on execution of data stream language programs

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560521B1 (ko) * 2014-06-05 2015-10-14 길영준 혈압을 실시간으로 모니터링하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
JP6733222B2 (ja) * 2016-03-04 2020-07-29 富士通株式会社 情報処理装置、コンテンツ管理方法及びコンテンツ管理プログラム
US11726979B2 (en) 2016-09-13 2023-08-15 Oracle International Corporation Determining a chronological order of transactions executed in relation to an object stored in a storage system
US10733159B2 (en) 2016-09-14 2020-08-04 Oracle International Corporation Maintaining immutable data and mutable metadata in a storage system
US10860534B2 (en) 2016-10-27 2020-12-08 Oracle International Corporation Executing a conditional command on an object stored in a storage system
US10191936B2 (en) 2016-10-31 2019-01-29 Oracle International Corporation Two-tier storage protocol for committing changes in a storage system
US10275177B2 (en) 2016-10-31 2019-04-30 Oracle International Corporation Data layout schemas for seamless data migration
US10180863B2 (en) 2016-10-31 2019-01-15 Oracle International Corporation Determining system information based on object mutation events
US10169081B2 (en) 2016-10-31 2019-01-01 Oracle International Corporation Use of concurrent time bucket generations for scalable scheduling of operations in a computer system
US10956051B2 (en) 2016-10-31 2021-03-23 Oracle International Corporation Data-packed storage containers for streamlined access and migration
CN112507251B (zh) * 2021-02-04 2021-05-28 浙江所托瑞安科技集团有限公司 一种数据处理方法及装置、服务器、计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163644A (ja) * 1989-11-21 1991-07-15 Fuji Xerox Co Ltd ファイル転送装置
JP2000172329A (ja) * 1998-12-04 2000-06-23 Toshiba Corp プロセスデータ収集方法
JP2001325123A (ja) * 2000-05-12 2001-11-22 Fujitsu Ltd 稼動監視装置及びその装置での処理をコンピュータに行なわせるためのプログラムを格納した記憶媒体並びにその装置に監視される被監視装置
JP2004086367A (ja) * 2002-08-23 2004-03-18 Toshiba Corp プラントネットワーク健全性診断装置とその方法
WO2011158372A1 (ja) * 2010-06-18 2011-12-22 三菱電機株式会社 データ処理装置及びデータ処理方法及びプログラム
WO2012020456A1 (ja) * 2010-08-11 2012-02-16 株式会社日立製作所 時系列データ処理装置及びその方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358931B2 (en) * 2002-12-18 2013-01-22 Siepmann James P System and method for precise, accurate and stable optical timing information definition including internally self-consistent substantially jitter free timing reference
JP5642155B2 (ja) * 2009-04-16 2014-12-17 コーニンクレッカ フィリップス エヌ ヴェ ネットワークにおいて通信するための方法
GB0912082D0 (en) * 2009-07-10 2009-08-19 Ubisense Ltd Lacation sysstem
JP2012003494A (ja) * 2010-06-16 2012-01-05 Sony Corp 情報処理装置、情報処理方法及びプログラム
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163644A (ja) * 1989-11-21 1991-07-15 Fuji Xerox Co Ltd ファイル転送装置
JP2000172329A (ja) * 1998-12-04 2000-06-23 Toshiba Corp プロセスデータ収集方法
JP2001325123A (ja) * 2000-05-12 2001-11-22 Fujitsu Ltd 稼動監視装置及びその装置での処理をコンピュータに行なわせるためのプログラムを格納した記憶媒体並びにその装置に監視される被監視装置
JP2004086367A (ja) * 2002-08-23 2004-03-18 Toshiba Corp プラントネットワーク健全性診断装置とその方法
WO2011158372A1 (ja) * 2010-06-18 2011-12-22 三菱電機株式会社 データ処理装置及びデータ処理方法及びプログラム
WO2012020456A1 (ja) * 2010-08-11 2012-02-16 株式会社日立製作所 時系列データ処理装置及びその方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709661B2 (en) 2014-12-19 2023-07-25 Splunk Inc. Representing result data streams based on execution of data stream language programs
US11733982B1 (en) 2014-12-19 2023-08-22 Splunk Inc. Dynamically changing input data streams processed by data stream language programs
JP2018508881A (ja) * 2015-01-29 2018-03-29 シグナルエフエックス インコーポレイテッド 計測されたソフトウェアから受信されるデータストリームのリアルタイム処理
JP2020205055A (ja) * 2015-01-29 2020-12-24 スプランク インコーポレイテッド 計測手段が組み込まれたソフトウェアから受信されるデータストリームのリアルタイム処理
US11194697B2 (en) 2015-01-29 2021-12-07 Splunk Inc. Real-time processing of data streams received from instrumented software
JP7121075B2 (ja) 2015-01-29 2022-08-17 スプランク インコーポレイテッド 計測手段が組み込まれたソフトウェアから受信されるデータストリームのリアルタイム処理
US20210264275A1 (en) * 2017-10-30 2021-08-26 DoorDash, Inc. System for dynamic estimated time of arrival predictive updates
US11755906B2 (en) * 2017-10-30 2023-09-12 DoorDash, Inc. System for dynamic estimated time of arrival predictive updates
JP2019139736A (ja) * 2018-02-08 2019-08-22 パナソニックIpマネジメント株式会社 データ分析方法、データ分析装置及びデータ分析プログラム
JP7149499B2 (ja) 2018-02-08 2022-10-07 パナソニックIpマネジメント株式会社 データ分析方法、データ分析装置及びデータ分析プログラム

Also Published As

Publication number Publication date
JP6002250B2 (ja) 2016-10-05
JPWO2014109038A1 (ja) 2017-01-19
US20150234897A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP6002250B2 (ja) 時系列データ処理装置及び方法並びに記憶媒体
WO2015092920A1 (ja) 性能予測方法、性能予測システム及びプログラム
US8117386B2 (en) Management method of performance history and a management system of performance history
JP5546686B2 (ja) 監視システム、及び監視方法
CN104981742B (zh) 分发装置、分发系统以及分发方法
JP6191691B2 (ja) 異常検出装置、制御方法、及びプログラム
JP2014134987A (ja) 情報処理システム監視装置、監視方法、及び監視プログラム
JPWO2012025977A1 (ja) スケジュール管理方法及びスケジュール管理サーバ
WO2017092582A1 (zh) 一种数据处理方法和装置
US9576061B2 (en) Information processing system and data update control method
MX2014007025A (es) Metodo y sistema para medir y mejorar la eficiencia de campañas de medios sociales.
JP5471178B2 (ja) キャッシュ制御装置、キャッシュ制御システム、キャッシュ制御方法及びキャッシュ制御プログラム
JP2007128122A (ja) 稼働性能データ収集開始時刻決定方法
JP2015018540A (ja) 現在データおよび過去データをクライアントに提供するためのサーバシステム
JPWO2015198425A1 (ja) 建物管理装置、広域管理システム、データ取得方法、及びプログラム
JP6607963B2 (ja) 集計されたメトリクスの測定値のデータストア
US11844002B2 (en) Environmental information management system
US20090217282A1 (en) Predicting cpu availability for short to medium time frames on time shared systems
JP2010140340A (ja) 履歴時刻補正方法、プログラムおよび履歴時刻補正装置
US20150019271A1 (en) Estimating wait time for an establishment
US20130262529A1 (en) Information processing system and processing method for use therewith
JP2009252050A (ja) サーバ負荷管理システム、サーバ負荷管理方法、サーバ負荷管理プログラム
JP6842502B2 (ja) 障害解析支援システム、障害解析支援方法、及び、コンピュータプログラム
JP2010210245A (ja) データ類似度計算方法、システム、およびプログラム
JP2020149282A (ja) データ予測装置、データ予測方法、及びデータ予測プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556273

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428275

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870627

Country of ref document: EP

Kind code of ref document: A1