WO2014104589A1 - Multi-crystal diamond sintered body using titanium coated diamond powder, and method for manufacturing same - Google Patents

Multi-crystal diamond sintered body using titanium coated diamond powder, and method for manufacturing same Download PDF

Info

Publication number
WO2014104589A1
WO2014104589A1 PCT/KR2013/010751 KR2013010751W WO2014104589A1 WO 2014104589 A1 WO2014104589 A1 WO 2014104589A1 KR 2013010751 W KR2013010751 W KR 2013010751W WO 2014104589 A1 WO2014104589 A1 WO 2014104589A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
polycrystalline diamond
diamond sintered
diamond powder
powder
Prior art date
Application number
PCT/KR2013/010751
Other languages
French (fr)
Korean (ko)
Inventor
전휘수
박희섭
안보경
Original Assignee
일진다이아몬드(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진다이아몬드(주) filed Critical 일진다이아몬드(주)
Publication of WO2014104589A1 publication Critical patent/WO2014104589A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Definitions

  • the present invention relates to a polycrystalline diamond sintered body using titanium coated diamond powder and a method of manufacturing the same, and more particularly, to a polycrystalline diamond sintered body having improved workability and a method of manufacturing the same.
  • PCD polycrystalline diamond
  • HPHT high temperature and high pressure
  • the polycrystalline diamond sintered body is wet-mixed together with a metal binder, and is manufactured at a point when the bonding between the diamond particles is completed under high temperature and high pressure and is crystallographically stable.
  • the polycrystalline diamond sintered body thus made is applied to nonferrous and difficult-to-machine materials.
  • the first method can reduce the content of non-conductive diamond and relatively increase the content of highly conductive metal binder, but adversely affects the most important wear resistance of the polycrystalline diamond sintered body.
  • the second method is to reduce the size of the diamond particles to increase the amount of cobalt (Co) leached out of the WC disc, which is a material assembled together.
  • the polycrystalline diamond sintered body formed of large particles is used for roughing processing, and the polycrystalline diamond sintered body formed of small particles is used for fine surface roughness, thereby reducing the width of the application field.
  • the present invention provides a polycrystalline diamond sintered body and a method of manufacturing the same, which have higher conductivity than existing polycrystalline diamond sintered bodies and are easy for electric discharge machining (processability).
  • the present invention provides a polycrystalline diamond sintered body that can satisfy the processability and product quality simultaneously by minimizing the content of the metal binder and determining the size of the particles to suit the purpose.
  • Polycrystalline diamond sintered body according to the present invention is a cemented carbide layer; And a polycrystalline diamond layer provided on the cemented carbide layer and formed by sintering diamond powder coated with a conductive metal.
  • the conductive metal may be titanium (Ti).
  • the coating film of the conductive metal may be formed to a thickness of 200 to 300nm.
  • the coating film formed by the conductive metal may include a titanium carbide (TiC) component.
  • TiC titanium carbide
  • the polycrystalline diamond layer may further include a metal binder.
  • the metal binder may be cobalt (Co).
  • the polycrystalline diamond sintered body manufacturing method comprises a first step of producing a diamond powder; Coating a conductive metal on the diamond powder; A third step of mixing the coated diamond powder; A fourth step of filtering foreign matter from the mixed diamond powder; A fifth step of performing heat treatment to reduce metal components and remove foreign substances in the diamond powder; And a sixth step of sintering the heat treated diamond powder.
  • the conductive metal may be coated by a sputtering method.
  • the diamond powder may be dried simultaneously with mixing using a dry mixing method.
  • drying and mixing may be performed by a ball mill using a ball made of tungsten carbide (WC) material.
  • WC tungsten carbide
  • the present invention by increasing the conductivity of the polycrystalline diamond sintered body, it is possible to improve the workability due to the electrical discharge machining.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a polycrystalline diamond sintered body according to an embodiment of the present invention.
  • Figure 2 is a photograph of the diamond powder for producing a polycrystalline diamond sintered body according to a comparative example by a scanning electron microscope.
  • FIG. 3 is a photograph of a diamond powder for preparing a polycrystalline diamond sintered body according to the present embodiment with a scanning electron microscope.
  • FIG. 4 is a graph showing the results of the XRD peak of the diamond powder for producing a polycrystalline diamond sintered body according to the present embodiment.
  • FIG. 5 is a graph showing the results of XRD peaks of the polycrystalline diamond sintered body according to the present example and the polycrystalline diamond sintered body according to the comparative example.
  • FIG. 6 is a photograph for each component of a polycrystalline diamond sintered body according to a comparative example by a scanning electron microscope (SEM).
  • FIG. 7 is a photograph for each component of the polycrystalline diamond sintered body according to the present embodiment by a scanning electron microscope (SEM).
  • FIG. 8 is a photograph showing a state of a cut surface according to the electric discharge machining of the polycrystalline diamond sintered body according to the comparative example.
  • FIG. 9 is a photograph showing a state of a cut surface according to the electric discharge machining of the polycrystalline diamond sintered body according to the present embodiment.
  • Polycrystalline diamond sintered body according to the present invention is a cemented carbide layer; And a polycrystalline diamond layer provided on the cemented carbide layer and formed by sintering diamond powder coated with a conductive metal.
  • the polycrystalline diamond sintered body is produced by sintering using a diamond powder and a metal binder on a cemented carbide substrate.
  • Titanium (Ti) may be used as the conductive metal. Titanium metal is one of the hardest materials as ferromagnetic. Other metal materials can be used to fabricate PCDs, but they can adversely affect the wear resistance that is inherent to polycrystalline diamond sintered bodies. In addition, the combination of diamond and Ti produces a material called TiC. TiC is weaker than C (diamond), but has higher electrical conductivity and higher hardness than cobalt (Co), which is mainly used as a metal binder.
  • Co cobalt
  • titanium is used as the conductive metal in the present embodiment, the present invention is not limited thereto. If the metal is ferromagnetic and easily wettable with diamond, it can be used for coating diamond instead of titanium.
  • Ferromagnetic metals include Fe, Ni, Co, Ti, Al, Ag, Au, Mo, and Nb.
  • the above elements are relatively poor in wettability with diamonds, cannot be manufactured as targets, or react with diamonds at high temperatures, thereby degrading product performance or producing manufacturability compared to titanium.
  • diamond powder is manufactured (S10). That is, the particle size of the diamond powder is selected according to the purpose or the use of the product, and the diamond powder according to the selected particle size is prepared.
  • the conductive metal is coated on the prepared diamond powder (S20).
  • titanium (Ti) is used as the conductive metal as described above. Titanium is also coated on the diamond powder by sputtering.
  • the titanium coating film is preferably formed to have a thickness of 200 to 300nm. When the coating film is formed with a thickness of 200 nm or less, it is difficult to obtain sufficient conductivity as desired, and when the coating film is formed with a thickness of 300 nm or more, the manufacturability of the product is deteriorated due to sintering problems.
  • the coated diamond powder is mixed using a dry ball mill method. At this time, the mixture is mixed for 3 hours at 45 rpm, and a ball mill is performed using a tungsten carbide (WC) ball.
  • WC tungsten carbide
  • this dry mixing method is accompanied by a side effect. That is, the diamond powder is dried during dry mixing, and thus, there is no need to perform a separate drying operation or process.
  • the mixed and dried diamond powder is filtered to filter foreign matter (S40).
  • the material to be filtered includes fragments of tungsten carbide or other foreign substances added during the mixing process.
  • the sieve is sieved using a size of 45 ⁇ m.
  • the diamond powder from which the foreign matter is removed is heat-treated (S50).
  • the heat treatment step the metal component contained in the coating layer of the diamond powder is reduced, and other foreign substances are removed.
  • the heat treatment is performed at 800 ⁇ ⁇ , 1.5hr, and vacuum / hydrogen atmosphere.
  • the heat-treated diamond powder is assembled according to the desired shape (S60). Then, the granulated diamond powder is sintered (S70) to form a polycrystalline diamond sintered body. Sintering is about 1500? And 5 Gpa. Sintered polycrystalline diamond powder is completed by polishing.
  • FIG. 2 is a photograph of a diamond powder for preparing a polycrystalline diamond sintered compact according to a comparative example
  • FIG. 3 is a photograph of a diamond powder for manufacturing a polycrystalline diamond sintered compact according to the present embodiment.
  • 4 is a graph showing the results of XRD peaks of diamond powder for producing a polycrystalline diamond sintered body according to the present embodiment.
  • Titanium-coated diamond powder is believed to have a darker color because no charging occurs. Therefore, as shown in FIG. 3, it is determined that the conductivity of the titanium-coated diamond powder without charging is more excellent.
  • Titanium carbide (TiC) is included. Titanium carbide (TiC) is a material generated by the combination of titanium and diamond, it can be seen that the coating film containing tungsten is formed in the diamond powder.
  • FIG. 5 is a graph showing the results of XRD peaks of the polycrystalline diamond sintered body according to the present embodiment and the polycrystalline diamond sintered body according to the comparative example
  • FIG. 6 is a component of the polycrystalline diamond sintered body according to the comparative example by a scanning electron microscope (SEM). It is a star photograph
  • Figure 7 is a photograph of each component of the polycrystalline diamond sintered body according to the present embodiment by a scanning electron microscope (SEM).
  • titanium carbide (TiC) components are also confirmed in a polycrystalline diamond sintered body manufactured at high temperature and high pressure using diamond powder coated with titanium. As described above, titanium is combined with diamond to form titanium carbide. Therefore, unlike the comparative example, the polycrystalline diamond sintered body according to the present example can confirm that there is a coating layer in which titanium and diamond are bonded by checking titanium carbide through XRD.
  • FIGS. 8 and 9 a comparative experiment and a result of the polycrystalline diamond sintered body according to the present example and the polycrystalline diamond sintered body according to the comparative example will be described.
  • 8 is a photograph showing a state of the cut surface of the polycrystalline diamond sintered compact according to the comparative example according to the electrical discharge machining
  • FIG. 9 is a photograph showing a state of the cut surface according to the electrical discharge machining of the polycrystalline diamond sintered compact according to the present embodiment.
  • a polycrystalline diamond sintered body according to the present example was prepared for cutting processing comparison experiments.
  • the polycrystalline diamond sintered body according to the comparative example was prepared in the same manner except for the metal coating.
  • the coating film was formed by the XRD peak described above.
  • the electrical resistance value was measured through a digital multi meter (DMM) tool.
  • DMM equipment is a machine that can measure the electrical resistivity of an object. Since electrical resistivity is the inverse of conductivity (electrical conductivity), the lower the measured value, the better the conductivity can be expected.
  • the resistance of 2.6 ⁇ was measured in the example, while the resistance of 4.1 ⁇ was measured in the comparative example.
  • the conductivity of the polycrystalline diamond sintered body according to the present embodiment is improved as compared with the comparative example.
  • the example shows a cutting speed of 2.30 to 2.34 mm per minute
  • the comparative example shows a cutting speed of 2.15 to 2.17 mm per minute. That is, as described above, in the case of the embodiment, it is determined that the cutting speed is improved by improving the electrical conductivity as compared with the comparative example.
  • the direct damage zone was 19.15 ⁇ m and the indirect damage zone was measured to be 200 ⁇ m.
  • the direct daisy zone was 17.66 ⁇ m and the indirect damage zone was 175 ⁇ m.
  • the damage at the cut surface was further reduced despite the faster cutting speed due to the electric discharge machining.
  • the electrical conductivity is improved, so that the cutting speed due to electric discharge machining is improved, and the quality of the cut surface is improved.
  • Improved cutting speeds and quality of cut surfaces result in improved production speeds, yields and quality.

Abstract

The present invention relates to a multi-crystal diamond sintered body using titanium coated diamond powder and to a method for manufacturing same. Specifically, the multi-crystal diamond sintered body according to the present invention includes: a carbide layer; and a multi-crystal diamond layer provided on the carbide layer and formed by sintering diamond powder coated with a conductive metal. According to the present invention, processability is improved while maintaining the quality of an existing product, and thus production efficiency of the product itself can be increased and the yield and the reliability of the product can be improved.

Description

티타늄 코팅 다이아몬드 분말을 이용한 다결정 다이아몬드 소결체 및 그 제조방법Polycrystalline Diamond Sintered Body Using Titanium Coated Diamond Powder and Manufacturing Method Thereof
본 발명은 티타늄 코팅 다이아몬드 분말을 이용한 다결정 다이아몬드 소결체 및 그 제조방법에 관한 것으로서, 보다 상세하게는 가공성이 향상된 다결정 다이아몬드 소결체 및 그 제조방법에 관한 것이다.The present invention relates to a polycrystalline diamond sintered body using titanium coated diamond powder and a method of manufacturing the same, and more particularly, to a polycrystalline diamond sintered body having improved workability and a method of manufacturing the same.
자동차, 항공 산업이 발달함에 따라 고정밀, 고효율(친환경) 가공의 증가로 높은 내마모성을 가진 절삭 공구 소재가 요구되고 있으며, 기존에 쓰이는 전통적인 절삭 공구 소재는 새로운 소재로 대체되면서 성장하고 있다. 대표적인 소재로 다결정 다이아몬드 소결체(PCD, Polycrystalline Diamond)를 들 수 있다. 다결정 다이아몬드 소결체는 다이아몬드 분말을 바탕으로 고온고압(HPHT)상태에서 소결되어 제조된다.As the automotive and aviation industry develops, cutting tool materials with high wear resistance are required due to the increase in high-precision and high-efficiency (environmental) machining, and traditional cutting tool materials used in the past are being replaced by new materials. Representative materials include polycrystalline diamond (PCD). The polycrystalline diamond sintered body is manufactured by sintering under high temperature and high pressure (HPHT) based on diamond powder.
구체적으로 다결정 다이아몬드 소결체는 금속 바인더(binder)와 함께 습식 혼합을 실시하며 고온 고압하에 다이아몬드 입자간의 결합이 완료되고 결정학적으로 안정되는 시점에서 제조가 된다. 이렇게 만들어진 다결정 다이아몬드 소결체는 비철계, 난삭 소재에 적용된다.Specifically, the polycrystalline diamond sintered body is wet-mixed together with a metal binder, and is manufactured at a point when the bonding between the diamond particles is completed under high temperature and high pressure and is crystallographically stable. The polycrystalline diamond sintered body thus made is applied to nonferrous and difficult-to-machine materials.
그러나 이러한 다결정 다이아몬드 소결체를 절삭 공구로 제작하기 위해서는 원하는 규격대로 가공(절단)을 해야만 한다. 다결정 다이아몬드 소결체의 절단에는 방전 가공법(Wire-EDM)이 이용된다. 다만, 방전 가공에 의한 가공성에는 전기가 통하는 전도성이 절대적인 요소로서 기여한다. 다결정 다이아몬드 소결체의 경우 다이아몬드 층과 함께 쓰이는 WC디스크와 결합력 증대를 위해 첨가된 금속 바인더들로 인하여 절단이 이루어진다. 전도성을 띄지 않는 다이아몬드는 방전 가공으로 가공하기에는 많은 어려움이 따른다.However, in order to manufacture such a polycrystalline diamond sintered body as a cutting tool, it must be processed (cut) to a desired standard. The electric discharge machining method (Wire-EDM) is used for cutting the polycrystalline diamond sintered compact. However, the electrical conductivity contributes as an absolute factor to the workability by electric discharge machining. In the case of the polycrystalline diamond sintered body, the cutting is performed due to the WC disk used with the diamond layer and the metal binders added to increase the bonding strength. Diamonds that are not conductive have many difficulties in processing by electrostatic machining.
이러한 문제점을 해결하기 위해서는 다결정 다이아몬드 소결체의 전도성을 높이는 방법이 필요하다. 첫 번째 방법으로는 비전도성을 띄고 있는 다이아몬드 함량를 줄이고 전도성이 높은 금속 바인더의 함량을 상대적으로 높이는 수가 있지만, 다결정 다이아몬드 소결체가 가져야 하는 특성 중 가장 중요한 내마모성에 악영향을 끼친다. 두 번째 방법으로는 다이아몬드 입자의 크기를 줄여 같이 조립되는 재료인 WC 디스크에서 침출되어 올라오는 코발트(Co)의 양을 증가시키는 방법이 있다. 그러나 큰 입자로 형성된 다결정 다이아몬드 소결체의 경우 황삭 가공용으로, 작은 입자로 형성된 다결정 다이아몬드 소결체의 경우 고운 표면 조도용으로 쓰이기 때문에 응용 분야의 폭이 줄어들게 되는 단점이 생긴다.In order to solve this problem, a method of increasing the conductivity of the polycrystalline diamond sintered body is required. The first method can reduce the content of non-conductive diamond and relatively increase the content of highly conductive metal binder, but adversely affects the most important wear resistance of the polycrystalline diamond sintered body. The second method is to reduce the size of the diamond particles to increase the amount of cobalt (Co) leached out of the WC disc, which is a material assembled together. However, the polycrystalline diamond sintered body formed of large particles is used for roughing processing, and the polycrystalline diamond sintered body formed of small particles is used for fine surface roughness, thereby reducing the width of the application field.
본 발명은 기존 다결정 다이아몬드 소결체보다 전도성을 높여 방전 가공(가공성)에 용이한 다결정 다이아몬드 소결체 및 그 제조방법을 제공한다.The present invention provides a polycrystalline diamond sintered body and a method of manufacturing the same, which have higher conductivity than existing polycrystalline diamond sintered bodies and are easy for electric discharge machining (processability).
또한 본 발명은 금속 바인더의 함량은 최소한으로 조성하고, 입자의 크기를 용도에 맞도록 결정함으로써 가공성과 제품 품질을 동시에 충족할 수 있는 다결정 다이아몬드 소결체를 제공한다.In another aspect, the present invention provides a polycrystalline diamond sintered body that can satisfy the processability and product quality simultaneously by minimizing the content of the metal binder and determining the size of the particles to suit the purpose.
본 발명에 따른 다결정 다이아몬드 소결체는 초경층; 및 상기 초경층 상에 구비되고, 전도성 금속으로 코팅된 다이아몬드 분말을 소결하여 형성되는 다결정 다이아몬드층;을 포함한다.Polycrystalline diamond sintered body according to the present invention is a cemented carbide layer; And a polycrystalline diamond layer provided on the cemented carbide layer and formed by sintering diamond powder coated with a conductive metal.
또한 상기 전도성 금속은 티타늄(Ti)일 수 있다.In addition, the conductive metal may be titanium (Ti).
나아가 상기 전도성 금속의 코팅막은 200 내지 300nm의 두께로 형성될 수 있다.Furthermore, the coating film of the conductive metal may be formed to a thickness of 200 to 300nm.
또한 상기 전도성 금속에 의하여 형성되는 코팅막은 티타늄 카바이드(TiC) 성분을 포함할 수 있다.In addition, the coating film formed by the conductive metal may include a titanium carbide (TiC) component.
또한 상기 다결정 다이아몬드층은 금속바인더를 더 포함할 수 있다.In addition, the polycrystalline diamond layer may further include a metal binder.
나아가 상기 금속바인더는 코발트(Co)일 수 있다.Furthermore, the metal binder may be cobalt (Co).
한편, 본 발명에 따른 다결정 다이아몬드 소결체 제조방법은 다이아몬드 분말을 제조하는 제1 단계; 상기 다이아몬드 분말에 전도성 금속을 코팅하는 제2 단계; 상기 코팅된 다이아몬드 분말을 혼합하는 제3 단계; 상기 혼합된 다이아몬드 분말로부터 이물질을 걸러내는 제4 단계; 상기 다이아몬드 분말 중 금속 성분을 환원시키고 이물질 제거를 하기 위하여 열처리를 하는 제5 단계; 및 상기 열처리된 다이아몬드 분말을 소결하는 제6 단계를 포함한다.On the other hand, the polycrystalline diamond sintered body manufacturing method according to the present invention comprises a first step of producing a diamond powder; Coating a conductive metal on the diamond powder; A third step of mixing the coated diamond powder; A fourth step of filtering foreign matter from the mixed diamond powder; A fifth step of performing heat treatment to reduce metal components and remove foreign substances in the diamond powder; And a sixth step of sintering the heat treated diamond powder.
*또한 상기 제2 단계에서는 스퍼터링(sputtering) 방법으로 상기 전도성 금속을 코팅할 수 있다.In addition, in the second step, the conductive metal may be coated by a sputtering method.
또한 상기 제3 단계에서는 건식 혼합법을 이용하여 상기 다이아몬드 분말을 혼합과 동시에 건조시킬 수 있다.In addition, in the third step, the diamond powder may be dried simultaneously with mixing using a dry mixing method.
나아가 상기 제3 단계에서는 텅스텐 카바이드(WC) 재질의 볼을 이용한 볼밀(ball mill)에 의하여 건조 및 혼합이 수행될 수 있다.Furthermore, in the third step, drying and mixing may be performed by a ball mill using a ball made of tungsten carbide (WC) material.
본 발명에 따르면 다결정 다이아몬드 소결체의 전도성을 높임으로서 방전 가공에 따른 가공성을 향상시킬 수 있다.According to the present invention, by increasing the conductivity of the polycrystalline diamond sintered body, it is possible to improve the workability due to the electrical discharge machining.
또한 본 발명에 따르면 가공성 향상에도 불구하고 금속 바인더의 함량 및 다이아몬드 분말의 입자 크기에 영향을 미치지 않음으로서 제품의 품질을 유지할 수 있는 효과가 있다.In addition, according to the present invention, it is possible to maintain the quality of the product by not affecting the content of the metal binder and the particle size of the diamond powder despite improving the workability.
즉, 본 발명에 따르면, 기존 제품의 품질을 유지하면서 가공성을 향상시킴으로써 제품 자체의 생산효율을 증대시키고 수율 및 제품의 신뢰성을 향상시킬 수 있는 효과가 있다.That is, according to the present invention, by improving the processability while maintaining the quality of the existing product has the effect of increasing the production efficiency of the product itself and improve the yield and reliability of the product.
도 1은 본 발명의 일 실시예에 따른 다결정 다이아몬드 소결체의 제조방법을 나타내는 순서도이다.1 is a flowchart illustrating a method of manufacturing a polycrystalline diamond sintered body according to an embodiment of the present invention.
도 2는 비교예에 따른 다결정 다이아몬드 소결체를 제조하기 위한 다이아몬드 분말을 주사전자현미경으로 본 사진이다.Figure 2 is a photograph of the diamond powder for producing a polycrystalline diamond sintered body according to a comparative example by a scanning electron microscope.
도 3은 본 실시예에 따른 다결정 다이아몬드 소결체를 제조하기 위한 다이아몬드 분말을 주사전자현미경으로 본 사진이다.3 is a photograph of a diamond powder for preparing a polycrystalline diamond sintered body according to the present embodiment with a scanning electron microscope.
도 4는 본 실시예에 따른 다결정 다이아몬드 소결체를 제조하기 위한 다이아몬드 분말의 XRD peak의 결과를 나타내는 그래프이다.4 is a graph showing the results of the XRD peak of the diamond powder for producing a polycrystalline diamond sintered body according to the present embodiment.
도 5는 본 실시예에 따른 다결정 다이아몬드 소결체와 비교예에 따른 다결정 다이아몬드 소결체의 XRD peak의 결과를 나타내는 그래프이다.5 is a graph showing the results of XRD peaks of the polycrystalline diamond sintered body according to the present example and the polycrystalline diamond sintered body according to the comparative example.
도 6은 주사전자현미경(SEM)에 의한 비교예에 따른 다결정 다이아몬드 소결체의 각 성분 별 사진이다.6 is a photograph for each component of a polycrystalline diamond sintered body according to a comparative example by a scanning electron microscope (SEM).
도 7은 주사전자현미경(SEM)에 의한 본 실시예에 따른 다결정 다이아몬드 소결체의 각 성분 별 사진이다.7 is a photograph for each component of the polycrystalline diamond sintered body according to the present embodiment by a scanning electron microscope (SEM).
도 8은 비교예에 의한 다결정 다이아몬드 소결체의 방전 가공에 따른 절단면의 상태를 나타내는 사진이다.8 is a photograph showing a state of a cut surface according to the electric discharge machining of the polycrystalline diamond sintered body according to the comparative example.
도 9는 본 실시예에 의한 다결정 다이아몬드 소결체의 방전 가공에 따른 절단면의 상태를 나타내는 사진이다.9 is a photograph showing a state of a cut surface according to the electric discharge machining of the polycrystalline diamond sintered body according to the present embodiment.
본 발명에 따른 다결정 다이아몬드 소결체는 초경층; 및 상기 초경층 상에 구비되고, 전도성 금속으로 코팅된 다이아몬드 분말을 소결하여 형성되는 다결정 다이아몬드층;을 포함한다.Polycrystalline diamond sintered body according to the present invention is a cemented carbide layer; And a polycrystalline diamond layer provided on the cemented carbide layer and formed by sintering diamond powder coated with a conductive metal.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다. 특별한 정의나 언급이 없는 경우에 본 설명에 사용하는 방향을 표시하는 용어는 도면에 표시된 상태를 기준으로 한다. 또한 각 실시예를 통하여 동일한 도면부호는 동일한 부재를 가리킨다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Unless otherwise defined or mentioned, terms indicating directions used in the present description are based on the states shown in the drawings. In addition, the same reference numerals throughout the embodiments indicate the same member.
다결정 다이아몬드 소결체는 초경 기판 상에서 다이아몬드 분말과 금속 바인더를 이용하여 소결함으로써 제조된다. 본 발명에 따른 다결정 다이아몬드 소결체는 The polycrystalline diamond sintered body is produced by sintering using a diamond powder and a metal binder on a cemented carbide substrate. Polycrystalline diamond sintered body according to the present invention
일반적인 다결정 다이아몬드 소결체에 비하여 소결에 이용되는 다이아몬드 분말의 표면에 전도성 금속으로 코팅이 된다는 점에서 차이가 있다.Compared with the general polycrystalline diamond sintered body, there is a difference in that the surface of the diamond powder used for sintering is coated with a conductive metal.
이러한 전도성 금속으로는 티타늄(Ti)이 이용될 수 있다. 티타늄 금속은 강자성으로서 매우 단단한 물질 중 하나이다. 다른 금속 물질을 이용하여 PCD로 제작할 수도 있겠지만 다결정 다이아몬드 소결체의 고유 특징인 내마모 성능에 악영향을 미칠 수 있다. 또한 다이아몬드와 Ti의 결합을 통해 TiC라는 물질이 생성된다. TiC는 C(다이아몬드)보다 경도는 약하지만 전기 전도도가 우수하며 금속 바인더로 주로 이용되는 코발트(Co)보다 경도가 높다.Titanium (Ti) may be used as the conductive metal. Titanium metal is one of the hardest materials as ferromagnetic. Other metal materials can be used to fabricate PCDs, but they can adversely affect the wear resistance that is inherent to polycrystalline diamond sintered bodies. In addition, the combination of diamond and Ti produces a material called TiC. TiC is weaker than C (diamond), but has higher electrical conductivity and higher hardness than cobalt (Co), which is mainly used as a metal binder.
즉, 본 실시예에 있어서는 전도성 금속으로서 티타늄을 이용하고 있으나 이에 한정되지는 않는다. 강자성을 띄면서 다이아몬드와의 젖은성이 좋아서 코팅이 되기 쉬운 금속이면 티타늄을 대체하여 다이아몬드의 코팅에 이용될 수 있다. 강자성에 해당되는 금속(대체 금속)으로는 Fe, Ni, Co, Ti, Al, Ag, Au, Mo, Nb 등이 있다. 그러나 위와 같은 원소들은 상대적으로 다이아몬드와의 젖음성(wettability)가 떨어지거나 타겟으로 제조할 수 없거나 다이아몬드와 고온에서 반응하기 때문에 티타늄에 비하여 제품의 성능이 저하되거나 제조성이 떨어지게 된다.In other words, although titanium is used as the conductive metal in the present embodiment, the present invention is not limited thereto. If the metal is ferromagnetic and easily wettable with diamond, it can be used for coating diamond instead of titanium. Ferromagnetic metals (alternative metals) include Fe, Ni, Co, Ti, Al, Ag, Au, Mo, and Nb. However, the above elements are relatively poor in wettability with diamonds, cannot be manufactured as targets, or react with diamonds at high temperatures, thereby degrading product performance or producing manufacturability compared to titanium.
이하에서는 도 1을 참조하여 본 실시예에 따른 다결정 다이아몬드 소결체의 제조방법을 설명한다.Hereinafter, a method of manufacturing a polycrystalline diamond sintered body according to the present embodiment will be described with reference to FIG. 1.
먼저, 본 실시예에 따른 다결정 다이아몬드 소결체를 제조하기 위하여 다이아몬드 분말을 제조한다(S10). 즉, 목적 또는 제품의 용도에 따라 다이아몬드 분말의 입자 크기를 선정하고, 선정된 입자 크기에 따른 다이아몬드 분말을 준비한다. First, in order to manufacture a polycrystalline diamond sintered body according to the present embodiment, diamond powder is manufactured (S10). That is, the particle size of the diamond powder is selected according to the purpose or the use of the product, and the diamond powder according to the selected particle size is prepared.
다음으로 준비된 다이아몬드 분말에 전도성 금속을 코팅한다(S20). 이 때 전도성 금속으로는 앞서 설명한 바와 같이 티타늄(Ti)을 이용한다. 또한 티타늄은 스퍼터링(sputtering) 방법으로 다이아몬드 분말에 코팅된다. 이 때 티타늄 코팅막은 200 내지 300nm의 두께를 갖도록 형성되는 것이 바람직하다. 200nm 이하의 두께로 코팅막이 형성되는 경우에는 목적하는 만큼의 충분한 전도성을 얻기가 어려우며, 300nm 이상의 두께로 코팅막이 형성되는 경우에는 소결의 문제로 제품의 제조성이 떨어지게 된다.Next, the conductive metal is coated on the prepared diamond powder (S20). In this case, titanium (Ti) is used as the conductive metal as described above. Titanium is also coated on the diamond powder by sputtering. At this time, the titanium coating film is preferably formed to have a thickness of 200 to 300nm. When the coating film is formed with a thickness of 200 nm or less, it is difficult to obtain sufficient conductivity as desired, and when the coating film is formed with a thickness of 300 nm or more, the manufacturability of the product is deteriorated due to sintering problems.
*이어서 코팅된 다이아몬드 분말을 혼합한다(S30). 일반적인 다결정 다이아몬드 소결체의 제조시와 같이 습식 볼밀(ball mill)방법을 이용하는 경우에는 코팅된 티타늄이 손상되거나 벗겨질 우려가 있다. 따라서 본 실시예에서는 건식 볼밀(ball mill)방법을 이용하여 코팅된 다이아몬드 분말을 혼합한다. 이 때 45rpm으로 3시간 동안 혼합을 실시하며, 텅스텐 카바이드(WC) 재질의 볼을 이용하여 볼밀을 수행한다. * Then mix the coated diamond powder (S30). In the case of using a wet ball mill method, such as in the manufacture of a general polycrystalline diamond sintered body, there is a fear that the coated titanium may be damaged or peeled off. Therefore, in the present embodiment, the coated diamond powder is mixed using a dry ball mill method. At this time, the mixture is mixed for 3 hours at 45 rpm, and a ball mill is performed using a tungsten carbide (WC) ball.
한편, 이러한 건식 혼합방법에는 부수적인 효과가 동반된다. 즉, 건식 혼합 시 다이아몬드 분말이 건조됨으로써 별도의 건조 작업 또는 공정을 수행할 필요가 없다.On the other hand, this dry mixing method is accompanied by a side effect. That is, the diamond powder is dried during dry mixing, and thus, there is no need to perform a separate drying operation or process.
혼합 및 건조된 다이아몬드 분말은 이물질을 걸러내기 위하여 거르기 작업을 수행한다(S40). 이 때 걸러지는 물질로는 혼합 과정에서 첨가된 텅스텐 카바이드의 파편 또는 기타 이물질이 해당된다. 본 실시예에서는 45㎛ 크기의 체(Sieve)를 이용하여 체질을 한다.The mixed and dried diamond powder is filtered to filter foreign matter (S40). At this time, the material to be filtered includes fragments of tungsten carbide or other foreign substances added during the mixing process. In this embodiment, the sieve is sieved using a size of 45 μm.
다음으로 이물질이 제거된 다이아몬드 분말을 열처리 한다(S50). 열처리 단계를 통하여 다이아몬드 분말의 코팅층에 함유된 금속 성분을 환원시키고, 기타 이물질을 제거한다. 열처리 단계에서는 800?, 1.5hr 및 진공/수소 분위기에서 열처리를 수행한다.Next, the diamond powder from which the foreign matter is removed is heat-treated (S50). Through the heat treatment step, the metal component contained in the coating layer of the diamond powder is reduced, and other foreign substances are removed. In the heat treatment step, the heat treatment is performed at 800 占 폚, 1.5hr, and vacuum / hydrogen atmosphere.
다음으로 소결을 하기 위한 전 단계로서, 열처리된 다이아몬드 분말을 목적하는 형상에 따라 조립한다(S60). 이어서 조립된 다이아몬드 분말을 소결(S70)하여 다결정 다이아몬드 소결체의 형상으로 형성한다. 소결은 약 1500? 및 5Gpa의 조건 하에서 수행된다. 소결된 다결정 다이아몬드 분말은 연마과정을 통하여 완성된다.Next, as a previous step for sintering, the heat-treated diamond powder is assembled according to the desired shape (S60). Then, the granulated diamond powder is sintered (S70) to form a polycrystalline diamond sintered body. Sintering is about 1500? And 5 Gpa. Sintered polycrystalline diamond powder is completed by polishing.
도 2 내지 도 4를 참조하여 상기와 같은 제조방법에 의한 경우 다이아몬드 분말에 티타늄 코팅층이 형성되었는지의 여부에 대하여 확인한다. 도 2는 비교예에 따른 다결정 다이아몬드 소결체를 제조하기 위한 다이아몬드 분말을 주사전자현미경으로 본 사진이고, 도 3은 본 실시예에 따른 다결정 다이아몬드 소결체를 제조하기 위한 다이아몬드 분말을 주사전자현미경으로 본 사진이며, 도 4는 본 실시예에 따른 다결정 다이아몬드 소결체를 제조하기 위한 다이아몬드 분말의 XRD peak의 결과를 나타내는 그래프이다.With reference to Figures 2 to 4 it is checked whether the titanium coating layer is formed on the diamond powder by the manufacturing method as described above. FIG. 2 is a photograph of a diamond powder for preparing a polycrystalline diamond sintered compact according to a comparative example, and FIG. 3 is a photograph of a diamond powder for manufacturing a polycrystalline diamond sintered compact according to the present embodiment. 4 is a graph showing the results of XRD peaks of diamond powder for producing a polycrystalline diamond sintered body according to the present embodiment.
도 2 및 도 3에 도시된 바와 같이 티타늄 코팅된 다이아몬드 분말에서 더 어두운 색을 띠고 있다. 티타늄이 코팅된 다이아몬드 분말에서는 차징(charging)이 일어나지 않기 때문에 더 어두운 색을 띠는 것으로 판단된다. 따라서 도 3에 도시된 바와 같이 차징이 일어나지 않는 티타늄 코팅 다이아몬드 분말의 전도성이 더 우수할 것으로 판단된다.It is darker in the titanium coated diamond powder as shown in FIGS. 2 and 3. Titanium-coated diamond powder is believed to have a darker color because no charging occurs. Therefore, as shown in FIG. 3, it is determined that the conductivity of the titanium-coated diamond powder without charging is more excellent.
한편, 도 4에 도시된 바와 같이 티타늄 코팅된 다이아몬드 분말의 XRD peak를 보면 티타늄 카바이드(TiC)가 포함되어 있다는 것을 알 수 있다. 티타늄 카바이드(TiC)는 티타늄과 다이아몬드의 결합에 의하여 발생하는 물질로서 다이아몬드 분말에 텅스텐이 함유된 코팅막이 형성되어 있다는 것을 확인할 수 있다.On the other hand, looking at the XRD peak of the titanium coated diamond powder as shown in Figure 4 it can be seen that the titanium carbide (TiC) is included. Titanium carbide (TiC) is a material generated by the combination of titanium and diamond, it can be seen that the coating film containing tungsten is formed in the diamond powder.
도 5 내지 도 7을 참조하여 본 실시예에 따른 다결정 다이아몬드 소결체와 비교예에 따른 다결정 다이아몬드 소결체의 성분에 대하여 비교한다. 도 5는 본 실시예에 따른 다결정 다이아몬드 소결체와 비교예에 따른 다결정 다이아몬드 소결체의 XRD peak의 결과를 나타내는 그래프이고, 도 6은 주사전자현미경(SEM)에 의한 비교예에 따른 다결정 다이아몬드 소결체의 각 성분 별 사진이며, 도 7은 주사전자현미경(SEM)에 의한 본 실시예에 따른 다결정 다이아몬드 소결체의 각 성분 별 사진이다.5 to 7, the components of the polycrystalline diamond sintered body according to the present example and the polycrystalline diamond sintered body according to the comparative example are compared. 5 is a graph showing the results of XRD peaks of the polycrystalline diamond sintered body according to the present embodiment and the polycrystalline diamond sintered body according to the comparative example, and FIG. 6 is a component of the polycrystalline diamond sintered body according to the comparative example by a scanning electron microscope (SEM). It is a star photograph, Figure 7 is a photograph of each component of the polycrystalline diamond sintered body according to the present embodiment by a scanning electron microscope (SEM).
도 5에 도시된 바와 같이 티타늄으로 코팅된 다이아몬드 분말을 이용하여 고온고압으로 제조된 다결정 다이아몬드 소결체에서도 티타늄 카바이드(TiC) 성분이 확인된다. 이는 앞서 설명한 바와 같이 티타늄은 다이아몬드와 결합되어 티타늄 카바이드가 형성된다. 따라서 비교예와는 달리 본 실시예에 따른 다결정 다이아몬드 소결체는 XRD를 통하여 티타늄 카바이드를 확인함으로써 티타늄과 다이아몬드가 결합한 코팅층이 존재하는 것을 확인할 수 있다.As shown in FIG. 5, titanium carbide (TiC) components are also confirmed in a polycrystalline diamond sintered body manufactured at high temperature and high pressure using diamond powder coated with titanium. As described above, titanium is combined with diamond to form titanium carbide. Therefore, unlike the comparative example, the polycrystalline diamond sintered body according to the present example can confirm that there is a coating layer in which titanium and diamond are bonded by checking titanium carbide through XRD.
이는 도 6 및 도 7의 주사전자현미경 사진으로부터도 확인할 수 있다. 도 6에 도시된 바와 같이 금속 코팅을 하지 않은 다결정 다이아몬드 소결체의 경우 Ti 성분이 확인되지 않았으나, 도 7에 도시된 바와 같이 티타늄 코팅이 된 다결정 다이아몬드 소결체의 경우에는 다이아몬드 분말의 외형을 따라 티타늄(Ti) 성분이 결합구조를 형성하고 있다는 것을 확인할 수 있다.This can also be confirmed from the scanning electron micrographs of FIGS. 6 and 7. In the case of the polycrystalline diamond sintered body not coated with a metal as shown in FIG. 6, the Ti component was not confirmed, but in the case of the polycrystalline diamond sintered body coated with titanium as shown in FIG. It can be seen that the component forms a bonding structure.
도 8 및 도 9를 참조하여 본 실시예에 따른 다결정 다이아몬드 소결체와 비교예에 따른 다결정 다이아몬드 소결체의 비교 실험 및 그 결과를 설명한다. 도 8은 비교예에 의한 다결정 다이아몬드 소결체의 방전 가공에 따른 절단면의 상태를 나타내는 사진이고, 도 9는 본 실시예에 의한 다결정 다이아몬드 소결체의 방전 가공에 따른 절단면의 상태를 나타내는 사진이다.Referring to FIGS. 8 and 9, a comparative experiment and a result of the polycrystalline diamond sintered body according to the present example and the polycrystalline diamond sintered body according to the comparative example will be described. 8 is a photograph showing a state of the cut surface of the polycrystalline diamond sintered compact according to the comparative example according to the electrical discharge machining, and FIG. 9 is a photograph showing a state of the cut surface according to the electrical discharge machining of the polycrystalline diamond sintered compact according to the present embodiment.
절단 가공 비교 실험을 위하여 본 실시예에 따른 다결정 다이아몬드 소결체를 제조하였다. 비교예에 따른 다결정 다이아몬드 소결체의 경우에는 금속 코팅을 제외하고 동일한 방법으로 제조하였다. 본 실시예에 따른 다결정 다이아몬드 소결체는 앞서 설명한 XRD peak로 코팅막이 형성되어 있다는 것을 확인하였다.A polycrystalline diamond sintered body according to the present example was prepared for cutting processing comparison experiments. The polycrystalline diamond sintered body according to the comparative example was prepared in the same manner except for the metal coating. In the polycrystalline diamond sintered body according to the present example, it was confirmed that the coating film was formed by the XRD peak described above.
먼저 DMM(Digital Multi Meter)툴을 통하여 전기 저항값을 측정하였다. DMM 장비는 물체의 전기 저항도(?) 값을 측정할 수 있는 기계이다. 전기 저항도는 전도율(전기 전도도)의 역수이므로, 측정된 값이 낮을수록 전도율이 좋은 제품으로 예상할 수 있다. 실시예와 비교예에 따른 다결정 다이아몬드 소결체를 각각 1cm 간격을 두고 전기 저항값을 측정한 결과 실시예의 경우 2.6Ω의 저항이 측정된 반면, 비교예의 경우 4.1Ω의 저항이 측정되었다. 이러한 결과로 보아 본 실시예에 따른 다결정 다이아몬드 소결체의 전도성이 비교예에 비하여 향상되었음을 알 수 있다.First, the electrical resistance value was measured through a digital multi meter (DMM) tool. DMM equipment is a machine that can measure the electrical resistivity of an object. Since electrical resistivity is the inverse of conductivity (electrical conductivity), the lower the measured value, the better the conductivity can be expected. As a result of measuring the electrical resistance values of the polycrystalline diamond sintered bodies according to the examples and the comparative examples at 1 cm intervals, the resistance of 2.6 Ω was measured in the example, while the resistance of 4.1 Ω was measured in the comparative example. As a result, it can be seen that the conductivity of the polycrystalline diamond sintered body according to the present embodiment is improved as compared with the comparative example.
다음으로 방전 가공 실험을 수행하였다. 방전 가공 실험은 EDM-wire 장비를 이용하여 수행하였으며, 그 수행 결과를 아래의 표 1에 도시하였다.Next, an electric discharge machining experiment was performed. The discharge machining experiment was performed using EDM-wire equipment, and the results are shown in Table 1 below.
Figure PCTKR2013010751-appb-I000001
Figure PCTKR2013010751-appb-I000001
위의 표 1과 같이 실시예의 경우 분당 2.30 내지 2.34mm의 절단 속도를 보이고 있으며, 비교예의 경우 분당 2.15 내지 2.17mm의 절단 속도를 보인다. 즉 앞서 설명한 바와 같이 실시예의 경우 비교예에 비하여 전기 전도성이 향상됨으로써 절단 속가 향상된 것으로 판단된다.As shown in Table 1, the example shows a cutting speed of 2.30 to 2.34 mm per minute, and the comparative example shows a cutting speed of 2.15 to 2.17 mm per minute. That is, as described above, in the case of the embodiment, it is determined that the cutting speed is improved by improving the electrical conductivity as compared with the comparative example.
한편, 비교예의 경우 직접적인 데미지 존이 19.15 μm 이고, 간접적인 데미지 존이 200 μm인 것으로 측정되었다. 반면, 실시예의 경우 직접적인 데이지 존이 17.66 μm 이고, 간접적인 데미지 존이 175 μm인 것으로 측정되었다. 이는 도 8 및 도 9에서도 확인할 수 있는 바와 같이 실시예의 경우 방전 가공에 의한 절단 속도가 빠름에도 불구하고 절단면에서의 데미지는 더 줄어들었다.On the other hand, in the comparative example, the direct damage zone was 19.15 μm and the indirect damage zone was measured to be 200 μm. In contrast, in the case of the example, the direct daisy zone was 17.66 μm and the indirect damage zone was 175 μm. As can be seen in FIGS. 8 and 9, in the case of the embodiment, the damage at the cut surface was further reduced despite the faster cutting speed due to the electric discharge machining.
즉, 이와 같이 본 발명에 따른 다결정 다이아몬드 소결체의 경우에는 전기 전도도가 향상됨으로써 방전 가공에 따른 절단 속도가 향상되고, 절단면의 품질이 향상된다. 절단 속도와 절단면의 품질이 향상됨으로써 제품의 생산 속도, 수율 및 품질이 향상되는 결과를 얻을 수 있다.That is, in the polycrystalline diamond sintered body according to the present invention as described above, the electrical conductivity is improved, so that the cutting speed due to electric discharge machining is improved, and the quality of the cut surface is improved. Improved cutting speeds and quality of cut surfaces result in improved production speeds, yields and quality.
이상 본 발명의 바람직한 실시예에 대하여 설명하였으나, 본 발명의 기술적 사상이 상술한 바람직한 실시예에 한정되는 것은 아니며, 특허청구범위에 구체화된 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양한 다결정 다이아몬드 소결체 및 그 제조방법으로 구현될 수 있다.Although the preferred embodiments of the present invention have been described above, the technical spirit of the present invention is not limited to the above-described preferred embodiments, and various polycrystalline diamond sintered bodies and within the scope not departing from the technical spirit of the present invention specified in the claims and It can be implemented by the manufacturing method.

Claims (10)

  1. 초경층; 및Cemented carbide layer; And
    상기 초경층 상에 구비되고, 전도성 금속으로 코팅된 다이아몬드 분말을 소결하여 형성되는 다결정 다이아몬드층;을 포함하는 다결정 다이아몬드 소결체.And a polycrystalline diamond layer provided on the cemented carbide layer and formed by sintering diamond powder coated with a conductive metal.
  2. 제1항에 있어서,The method of claim 1,
    상기 전도성 금속은 티타늄(Ti)인 다결정 다이아몬드 소결체.The conductive metal is titanium (Ti) polycrystalline diamond sintered body.
  3. 제2항에 있어서,The method of claim 2,
    상기 전도성 금속의 코팅막은 200 내지 300nm의 두께로 형성되는 다결정 다이아몬드 소결체.The coating film of the conductive metal is a polycrystalline diamond sintered body formed to a thickness of 200 to 300nm.
  4. 제2항에 있어서,The method of claim 2,
    상기 전도성 금속에 의하여 형성되는 코팅막은 티타늄 카바이드(TiC) 성분을 포함하는 다결정 다이아몬드 소결체.The coating film formed by the conductive metal is a polycrystalline diamond sintered body containing a titanium carbide (TiC) component.
  5. 제1항에 있어서,The method of claim 1,
    상기 다결정 다이아몬드층은 금속바인더를 더 포함하는 다결정 다이아몬드 소결체.The polycrystalline diamond layer further comprises a metal binder.
  6. 제5항에 있어서,The method of claim 5,
    상기 금속바인더는 코발트(Co)인 다결정 다이아몬드 소결체.The metal binder is cobalt (Co) polycrystalline diamond sintered body.
  7. 다이아몬드 분말을 제조하는 제1 단계;A first step of preparing diamond powder;
    상기 다이아몬드 분말에 전도성 금속을 코팅하는 제2 단계;Coating a conductive metal on the diamond powder;
    상기 코팅된 다이아몬드 분말을 혼합하는 제3 단계;A third step of mixing the coated diamond powder;
    상기 혼합된 다이아몬드 분말로부터 이물질을 걸러내는 제4 단계;A fourth step of filtering foreign matter from the mixed diamond powder;
    상기 다이아몬드 분말 중 금속 성분을 환원시키고 이물질 제거를 하기 위하여 열처리를 하는 제5 단계; 및A fifth step of performing heat treatment to reduce metal components and remove foreign substances in the diamond powder; And
    상기 열처리된 다이아몬드 분말을 소결하는 제6 단계를 포함하는 다결정 다이아몬드 소결체 제조방법.And a sixth step of sintering the heat treated diamond powder.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제2 단계에서는 스퍼터링(sputtering) 방법으로 상기 전도성 금속을 코팅하는 다결정 다이아몬드 소결체 제조방법.In the second step, the polycrystalline diamond sintered body manufacturing method of coating the conductive metal by the sputtering method.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제3 단계에서는 건식 혼합법을 이용하여 상기 다이아몬드 분말을 혼합과 동시에 건조시키는 다결정 다이아몬드 소결체 제조방법.In the third step, a method for producing a polycrystalline diamond sintered body by drying the diamond powder at the same time by mixing using a dry mixing method.
  10. 제9항에 있어서,The method of claim 9,
    상기 제3 단계에서는 텅스텐 카바이드(WC) 재질의 볼을 이용한 볼밀(ball mill)에 의하여 건조 및 혼합이 수행되는 다결정 다이아몬드 소결체 제조방법.In the third step, the method of manufacturing a polycrystalline diamond sintered body is dried and mixed by a ball mill (ball mill) using a ball of tungsten carbide (WC) material.
PCT/KR2013/010751 2012-12-28 2013-11-26 Multi-crystal diamond sintered body using titanium coated diamond powder, and method for manufacturing same WO2014104589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0157053 2012-12-28
KR1020120157053A KR101443762B1 (en) 2012-12-28 2012-12-28 Poly crystalline diamond sintered with Ti coated diamond particles and the manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014104589A1 true WO2014104589A1 (en) 2014-07-03

Family

ID=51021588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010751 WO2014104589A1 (en) 2012-12-28 2013-11-26 Multi-crystal diamond sintered body using titanium coated diamond powder, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101443762B1 (en)
WO (1) WO2014104589A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912397A (en) * 1995-06-23 1997-01-14 Osaka Diamond Ind Co Ltd Sintered hard film coated member and its production
KR100568971B1 (en) * 2004-01-13 2006-04-07 일진다이아몬드(주) Method of sintering body having high hardness
JP2009508798A (en) * 2005-09-15 2009-03-05 ダイヤモンド イノベーションズ、インク. Sintered polycrystalline diamond material with ultrafine structure
JP2009091179A (en) * 2007-10-05 2009-04-30 Mitsubishi Materials Corp Diamond base sintered body having multilayer integral structure having conductive layer region and non-conductive layer region
KR20090107082A (en) * 2007-02-05 2009-10-12 엘리먼트 씩스 (프로덕션) (피티와이) 리미티드 Polycrystalline diamond pcd materials
KR20110091112A (en) * 2010-02-05 2011-08-11 신한다이아몬드공업 주식회사 Diamond-hard matal composite powder and manufacturing method of diamond-tool using the composite powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912397A (en) * 1995-06-23 1997-01-14 Osaka Diamond Ind Co Ltd Sintered hard film coated member and its production
KR100568971B1 (en) * 2004-01-13 2006-04-07 일진다이아몬드(주) Method of sintering body having high hardness
JP2009508798A (en) * 2005-09-15 2009-03-05 ダイヤモンド イノベーションズ、インク. Sintered polycrystalline diamond material with ultrafine structure
KR20090107082A (en) * 2007-02-05 2009-10-12 엘리먼트 씩스 (프로덕션) (피티와이) 리미티드 Polycrystalline diamond pcd materials
JP2009091179A (en) * 2007-10-05 2009-04-30 Mitsubishi Materials Corp Diamond base sintered body having multilayer integral structure having conductive layer region and non-conductive layer region
KR20110091112A (en) * 2010-02-05 2011-08-11 신한다이아몬드공업 주식회사 Diamond-hard matal composite powder and manufacturing method of diamond-tool using the composite powder

Also Published As

Publication number Publication date
KR20140092474A (en) 2014-07-24
KR101443762B1 (en) 2014-09-30

Similar Documents

Publication Publication Date Title
CA2264317C (en) Susceptor for semiconductor manufacturing equipment and process for producing the same
CN102224276B (en) Sputtering target and process for producing same
KR101248969B1 (en) Mixture of molten alumina-zirconia grains
WO2017179828A1 (en) Polycrystalline cubic boron nitride and method for preparing same
SE530944C2 (en) Notch
US5518974A (en) Densely sintered, tabular ceramic parts of aluminum oxide having improved thermal shock resistance
WO2014104589A1 (en) Multi-crystal diamond sintered body using titanium coated diamond powder, and method for manufacturing same
CN102528166B (en) Grinding type fretsaw
CN104599840B (en) The conductive paste composition of outer electrode and the laminated ceramic electronic component and its manufacture method using said composition
CN110823656A (en) Preparation method of tungsten carbide mosaic sample
WO2015119408A1 (en) Polycrystalline diamond compact provided with multiple polycrystalline diamond sintered bodies and method for producing polycrystalline diamond compact
CN111465713A (en) Sputtering target and sputtering target
KR102655140B1 (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of producing composite sintered body
WO2015099305A1 (en) Ti-based sintered alloy having improved thermal shock resistance and cutting tool using same
Sun et al. Microstructure and mechanical properties of Fe-ZTA cermet prepared by vacuum hot-pressed sintering
EP2923351A1 (en) Method for bonding zircon substrates
JP2003080413A (en) Surface covered cemented carbide made miniature drill with tip cutting blade surface to display excellent chipping resistance in high speed drilling work
JP2001038721A (en) Cutting jig
JP2002179459A (en) Low thermal expansion ceramic material and member for exposure device
EP3133048A1 (en) Graphite-copper composite electrode material and electrode for electrical discharge machining using said material
WO2012043964A1 (en) Preparation method of cmp pad conditioner using amorphous metal
WO2014104588A1 (en) Polycrystalline diamond sintered compact and method for manufacturing same
WO2020111658A1 (en) Cutting insert for difficult-to-cut materials
JP3291562B2 (en) Miniature drill made of cemented carbide with high strength
WO2021172428A1 (en) Oxide sputtering target, and production method for oxide sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868396

Country of ref document: EP

Kind code of ref document: A1