WO2014104562A1 - Production method for at least one of a manganese compound, potassium sulphate and fertilizer from a low-purity manganese and potassium-containing substance - Google Patents

Production method for at least one of a manganese compound, potassium sulphate and fertilizer from a low-purity manganese and potassium-containing substance Download PDF

Info

Publication number
WO2014104562A1
WO2014104562A1 PCT/KR2013/009872 KR2013009872W WO2014104562A1 WO 2014104562 A1 WO2014104562 A1 WO 2014104562A1 KR 2013009872 W KR2013009872 W KR 2013009872W WO 2014104562 A1 WO2014104562 A1 WO 2014104562A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
potassium
sulfate
solid
leachate
Prior art date
Application number
PCT/KR2013/009872
Other languages
French (fr)
Korean (ko)
Inventor
김명준
트람탐
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2014104562A1 publication Critical patent/WO2014104562A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/06Preparation of sulfates by double decomposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/16Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • C05D1/02Manufacture from potassium chloride or sulfate or double or mixed salts thereof
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • C05F7/005Waste water from industrial processing material neither of agricultural nor of animal origin

Definitions

  • the present invention is a high purity potassium sulfate (K 2 SO 4 ), high purity manganese compounds (manganese sulfate monohydrate (MnSO 4 H 2 O), trimanganese tetraoxide (Mn 3 O 4 ), EMM ( Electronic Managed Metal)) and at least one of manganese and potassium-containing fertilizers in a single process.
  • the secondary battery is composed of a negative electrode, a positive electrode, an electrolyte, and a separator, and manganese oxide is widely used in the manufacture of the positive electrode.
  • the demand for secondary batteries soars, the demand for materials required for manufacturing such secondary batteries is also increasing rapidly.
  • Trivalent manganese tetraoxide (Mn 3 O 4 ) and manganese oxide (III) (Mn 2 O 3 ) may be used as the positive electrode material of the secondary battery.
  • trimanganese tetraoxide (Mn 3 O 4 ) instead of manganese oxide (III) (Mn 2 O 3 ) but now, trivalent manganese tetraoxide (Mn 3 O 4 )
  • Mn 3 O 4 trimanganese tetraoxide
  • manganese sulfate monohydrate (MnSO 4 ⁇ H 2 O, manganese sulphate monohydrate) is the main material of the positive electrode active material used in secondary batteries.
  • manganese sulfate monohydrate used as an electrode material of a secondary battery has a problem that is almost dependent on imports like trimanganese tetraoxide (Mn 3 O 4 ).
  • Prior-A-10-2011-76109 discloses and discloses a method for manufacturing the same time the valuable metals and compounds of potassium sulfate from manganese nodules
  • -A-10-2012-93948 discloses a MnSO from MnO 2 of the medium and low quality ore 4
  • it discloses a method for producing a H 2 O
  • Laid-Open Patent Publication No. 10-2011-111057 discloses a manufacturing method of a crystalline sasanhwasam manganese, lithium-manganese oxide.
  • an object of the present invention is to economically obtain high purity potassium sulfate (K 2 SO 4 ), high purity manganese compounds (manganese sulfate monohydrate (MnSO 4 H 2 O), trimanganese tetraoxide (Mn 3 ) from low purity manganese and potassium content O 4 ), EMM (Electronic Managed Metal) and at least one of manganese and potassium-containing fertilizer in one process.
  • the above object is, according to the present invention, in the process for producing a high purity manganese compound, potassium sulfate and fertilizer from a low purity manganese and potassium content through one process, the first after adding water to the low purity manganese and potassium content Separating the first potassium leachate containing potassium hydroxide and the first solid by solid-liquid separation; Adding a sulfide to the first potassium leachate to remove the first impurity, and adding sulfuric acid or sodium sulfate to prepare high purity potassium sulfate; Obtaining a first manganese leachate by adding at least one of hydrochloric acid and sulfuric acid and a reducing agent to the first solid, and removing a second impurity using sulfide and potassium hydroxide to obtain a second manganese leachate; Preparing high purity trimanganese tetraoxide through pH adjustment using potassium hydroxide in the second manganese leachate; Removing a third impurity by using a s
  • the above object in the method for producing high purity potassium sulfate from low-purity manganese and potassium-containing, comprising adding potassium hydroxide through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the first potassium leach solution and the solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. It can be achieved by a method for preparing potassium sulfate from low purity manganese and potassium containing comprising the step of.
  • the above object in the production method of high purity trimanganese tetraoxide from low-purity manganese and potassium containing, containing potassium hydroxide through the first solid-liquid separation after the addition of water to the low-purity manganese and potassium containing Separating the first potassium leachate from the first solid; Hydrochloric acid diluted at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese Obtaining a first manganese leachate and a second solid by separating solid solution; Removing iron by adjusting the pH of the first manganese leachate to pH3 or more using potassium hydroxide diluted to 1 M or more after obtaining the first manganese leachate; Removing impurities using sulfides and potassium hydroxide to obtain a second manganese leachate; It can be achieved by a high-
  • the above object in the method for producing high purity manganese sulfate monohydrate from low purity manganese and potassium containing, after adding water to the low purity manganese and potassium containing water through the first solid-liquid separation Separating the first potassium leachate and the first solid comprising;
  • a second solid solution by adding hydrochloric acid at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese contained in the first solid Obtaining a first manganese leachate and a second solid through separation; Obtaining a third manganese leach solution by removing impurities using the sulfide in the first manganese leach solution;
  • the method of manufacturing a high purity manganese sulfate monohydrate from the low-purity manganese and potassium containing comprising the step of adjusting the pH of the third manganese leachate using potassium hydrox
  • the above object in the fertilizer manufacturing method from a low-purity manganese and potassium-containing material, after the addition of water to the low-purity manganese and potassium-containing material first containing potassium hydroxide through the first solid-liquid separation Separating the potassium leach solution and the first solid;
  • hydrochloric acid diluted at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese to the first solid Separating the second solid through two-liquid separation;
  • Leaching lead by adding hydrochloric acid and an oxidizing agent diluted to 2M to 5M to the second solid; Separation of the third solid through the third solid-liquid separation, and drying the third solid to obtain a fertilizer containing potassium and manganese can be achieved by a fertilizer manufacturing method from low-purity manganese and potassium containing have.
  • the above object is, according to the present invention, in the method for producing high purity potassium sulfate and high purity trimanganese tetraoxide from low purity manganese and potassium containing, after the addition of water to the low purity manganese and potassium containing the first solid-liquid separation Separating the first potassium leachate containing potassium hydroxide and the first solid through; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate.
  • the above object in the method for producing high-purity potassium sulfate and high-purity manganese sulfate monohydrate from low-purity manganese and potassium-containing, after the addition of water to the low-purity manganese and potassium-containing first liquid-liquid separation Separating the first potassium leachate containing potassium hydroxide from the first solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate.
  • the above object in the production method of high purity potassium sulfate and fertilizer from low-purity manganese and potassium-containing, potassium hydroxide through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the first potassium leachate and the first solid comprising a; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate.
  • the method for producing a high purity manganese compound and potassium sulfate from a low-purity manganese and potassium containing through the first solid-liquid separation after adding water to the low-purity manganese and potassium containing Separating the first potassium leachate and the first solid containing potassium; Adding a sulfide to the first potassium leachate to remove the first impurity, and adding sulfuric acid or sodium sulfate to prepare high purity potassium sulfate; Adding sulfuric acid to the first solid to be converted to manganese sulfate to remove the second impurity using at least one of calcium hydroxide and sulfide, and obtaining manganese leachate through second solid-liquid separation; It can be achieved by a method for producing a high purity manganese compound and potassium sulfate from a low purity manganese and potassium containing comprising the step of preparing a high purity manganese compound from the manganese leaching solution.
  • the above object in the method for producing manganese sulfate monohydrate from low-purity manganese and potassium containing, potassium is included through the solid-liquid separation after adding water to the low-purity manganese and potassium containing Separating the potassium leach solution and the solid; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate; It can be achieved by a method for preparing manganese sulfate monohydrate from a low purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to produce a high purity manganese sulfate monohydrate.
  • EMM Electronic Manganese Metal
  • potassium is added through solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the potassium leach solution and the solid contained; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
  • the aqueous manganese sulfate solution may be achieved by a method of producing EMM (Electronic Manganese Metal) from low-purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using an electrolytic extraction method.
  • the above object in the method for producing trimanganese tetraoxide from a low-purity manganese and potassium-containing, potassium containing potassium through the solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the leachate from the solid; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate;
  • the manganese hydroxide may be achieved by a method of preparing trimanganese tetraoxide from low purity manganese and potassium containing the step of quenching the heat treatment in an oxidizing atmosphere to prepare trimanganese tetraoxide.
  • the above object in the production method of potassium sulfate and manganese sulfate monohydrate from low-purity manganese and potassium containing, adding water to the low-purity manganese and potassium containing potassium through solid-liquid separation Separating the first potassium leachate and the solid contained therein; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate.
  • the above object is, according to the present invention, in the method for producing potassium sulfate and EMM (Electronic Manganese Metal) from low-purity manganese and potassium-containing, water is added to the low-purity manganese and potassium-containing after solid-liquid separation Separating the first potassium leachate and the solid containing potassium through the solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate.
  • EMM Electro Manganese Metal
  • aqueous manganese sulfate solution may be achieved by a method of preparing potassium sulfate and EMM (Electronic Manganese Metal) from low purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using an electrolytic extraction method. .
  • EMM Electronic Manganese Metal
  • potassium is included through the solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the first potassium leachate from the solid and the solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate.
  • the manganese hydroxide may be achieved by a method of preparing potassium sulfate and trimanganese tetraoxide from low-purity manganese and potassium containing, including the step of quenching after heat treatment in an oxidizing atmosphere to prepare trimanganese tetraoxide.
  • a high-purity manganese compound manganese sulfate monohydrate, trimanganese tetraoxide and Electronic Manganese Metal (EMM), high-purity potassium sulfate and fertilizer economically from low-purity manganese and potassium content through one process
  • EMM Electronic Manganese Metal
  • FIG. 1 is a schematic flowchart of a method for preparing a manganese compound, potassium sulfate and fertilizer according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for preparing potassium sulfate in a manganese compound according to the first embodiment of the present invention
  • FIG. 3 is a flowchart of a method for preparing trimanganese tetraoxide in a manganese compound according to the first embodiment of the present invention
  • FIG. 4 is a flowchart of a method for preparing manganese sulfate monohydrate in a manganese compound according to the first embodiment of the present invention
  • FIG. 6 is a schematic flowchart of preparation of high purity manganese compound and high purity potassium sulfate according to the second embodiment of the present invention
  • FIG. 7 is a flowchart of a method for preparing high purity potassium sulfate according to a second embodiment of the present invention.
  • FIG. 8 is a flowchart of a method of manufacturing high purity manganese compound according to a second embodiment of the present invention.
  • FIGS. 6 to 8 illustrate a second embodiment of the present invention.
  • the present invention relates to a preparation method capable of simultaneously and / or respectively manufacturing a manganese compound and potassium sulfate.
  • the method for preparing potassium sulfate from low purity manganese and potassium content is the same.
  • the first and second embodiments differ in the method of preparing manganese compounds and / or fertilizers depending on the reagents added thereafter.
  • FIG. 1 is a schematic diagram of a method for preparing a manganese compound, potassium sulfate and fertilizer according to a first embodiment of the present invention.
  • the method for producing a manganese compound, potassium sulfate and fertilizer according to the present invention by adding water to the low-purity manganese and potassium containing water leaching potassium (S110), the first through the solid-liquid separation
  • the first potassium leaching solution containing potassium and the first solid is separated (S120).
  • Sulfide is added to the first potassium leachate separated through the first solid-liquid separation to remove the first impurity (S130), and sulfuric acid or sodium sulfate is added to precipitate with potassium sulfate to prepare high purity potassium sulfate (S140).
  • At least one of hydrochloric acid and sulfuric acid and a reducing agent are added to the first solid separated through the first solid-liquid separation in S120 to obtain a first manganese leachate (S210), and a second impurity is removed by using a sulfide. Obtaining two manganese leachate (S220).
  • the potassium hydroxide may use potassium hydroxide contained in the first potassium leachate separated in S120.
  • the potassium hydroxide may use potassium hydroxide contained in the first potassium leachate separated in S120.
  • the leaching of lead by adding hydrochloric acid and oxidation to the second solid remaining after the first manganese leachate is obtained through solid-liquid separation of S210 (S410), and then removing manganese and potassium to prepare a fertilizer containing manganese and potassium (S420). do.
  • the preparation of high purity potassium sulfate according to the first embodiment of the present invention will be described in more detail with reference to FIG. 2, and the preparation of the high purity trimanganese tetraoxide according to the first embodiment of the present invention will be described in more detail with reference to FIG. 3.
  • the manufacturing of the high purity manganese sulfate monohydrate according to the first embodiment of the present invention will be described in more detail with reference to FIG. 4, and the fertilizer manufacturing according to the first embodiment of the present invention will be described in more detail with reference to FIG. 5.
  • FIG 2 is a detailed view of a high purity potassium sulfate manufacturing method of the manganese compound according to the first embodiment of the present invention.
  • the low purity manganese and potassium inclusions include low purity manganese and potassium dust or low purity manganese and potassium ore.
  • potassium hydroxide is leached through a reaction as in Scheme 1 below.
  • the water is added in an amount that can be well stirred by adding about 2 to 4 times, preferably 2 to 3 times, and more preferably about 2.5 times by volume ratio of the low purity manganese and potassium containing.
  • the first solid solution separation is performed to separate the first potassium leachate containing the leached potassium hydroxide and the first solid (S120).
  • the first potassium leachate obtained through the first solid-liquid separation of S120 is used in the next step for the production of high purity potassium sulfate, or of the potassium hydroxide used for the production of high purity trimanganese tetraoxide or the production of high purity manganese sulfate monohydrate. It can be used as a material.
  • the first solid obtained through the first solid-liquid separation of S120 may be used as a material for the preparation of high purity trimanganese tetraoxide, or manganese sulfate monohydrate.
  • Sulfide is added to remove the first impurity in the first potassium leachate of S120 to precipitate the first impurity in the form of sulfide (S130).
  • the first impurity includes lead (Pb), nickel (Ni), zinc (Zn), cobalt (Co) or copper (Cu).
  • the sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and is added after dissolving 2 to 5 times the total molar amount of the first impurity in water. Due to the addition of these sulfides, the first impurity precipitates in the form of sulfides (NiS, PbS, ZnS, CoS, CuS).
  • the sulfide slurry is discarded through a second solid-liquid separation to obtain a second potassium leachate from which the first impurity is removed (S131).
  • the second potassium leachate from which the first impurity of S131 is removed is used as a next step for the production of high purity potassium sulfate, or as a material of potassium hydroxide used for the production of high purity trimanganese tetraoxide or the production of high purity manganese sulfate monohydrate. Can be used.
  • the second potassium leachate of S131 is used as a material of potassium hydroxide used for the production of high-purity trimanganese tetraoxide or a high-purity manganese sulfate monohydrate.
  • Potassium sulfate is precipitated by adding sulfuric acid or sodium sulfate to the second potassium leachate (S141).
  • the sulfuric acid or sodium sulfate is added 0.1 to 3 times, preferably 0.5 to 2 times the potassium molar ratio.
  • a third solid-liquid separation may be performed to prepare high purity (more than 99%) potassium sulfate (K 2 SO 4 ) as a solid.
  • FIG 3 is a detailed view of a method for producing trimanganese tetraoxide in the manganese compound according to the first embodiment of the present invention.
  • trimanganese tetraoxide may be manufactured using the first solid material separated at S120 during the preparation of potassium sulfate.
  • At least one of hydrochloric acid and sulfuric acid and a reducing agent are added to the first solid separated in S120 to perform a fourth solid-liquid separation to obtain a first manganese leachate and a second solid (S210).
  • the hydrochloric acid is dissolved in water at a ratio of 2 to 4 times the molar content of manganese contained in the first solid, preferably 2 to 4 times, and added to the first solid.
  • the reducing agent comprises a reagent, coke or sulfur dioxide (SO 2 gas) containing an oxalate group (C 2 O 4 2- ).
  • the reagent containing the oxalate group (C 2 O 4 2- ) includes oxalic acid (H 2 C 2 O 4 2H 2 O) or sodium oxalate (Na 2 C 2 O 4 ).
  • Iron is removed using potassium hydroxide in the first manganese leachate (S211).
  • the potassium hydroxide used may be potassium hydroxide contained in the first potassium leachate of S120 or the second potassium leachate of S131.
  • the potassium hydroxide may be removed by adding so that the pH of the first manganese leachate to pH 3 or more, preferably pH 3 to pH 5.5, the iron is removed in the form of Fe (OH) 3 or FeOOH This reaction is shown in Scheme 5 below.
  • solid-liquid separation may be performed to dispose of the slurry, thereby obtaining manganese leachate from which iron has been removed.
  • Sulfate and potassium hydroxide are added to the manganese leachate from which iron is removed to remove a second impurity to obtain a second manganese leachate (S220).
  • the manganese leaching solution from which iron is removed includes a second impurity such as nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), and such impurities are added to sulfides to form sulfides. Can be removed by precipitation.
  • a second impurity such as nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu)
  • impurities are added to sulfides to form sulfides. Can be removed by precipitation.
  • the sulfide comprises at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), wherein the sulfide is in a ratio of 10 to 50 times the total molar amount of the second impurity, preferably It is added at a ratio of 15 to 45 times, more preferably 30 to 35 times, and the pH of the added sulfide may be adjusted to pH 7 to pH 8, preferably pH 8.
  • the sulfide is added to react for about 10 to 100 minutes, preferably 20 to 80 minutes, more preferably 30 to 60 minutes.
  • potassium hydroxide was added for about 10 to 60 minutes, preferably 10 to 40 minutes, more preferably 20 to 30 minutes so that the pH of the iron-manganese leachate was pH5 to pH6.
  • nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), or copper (Cu) which are impurities other than the iron, are precipitated in the form of sulfides (NiS, PbS, ZnS, CoS, CuS). Can be.
  • the potassium hydroxide may be potassium hydroxide contained in the first potassium leachate of S120 or the second potassium leachate of S131.
  • the sulfide slurry is discarded through solid-liquid separation to obtain a second manganese leachate from which the second impurity is removed.
  • Manganese is precipitated by adjusting pH using potassium hydroxide in the second manganese leachate (S231).
  • the potassium hydroxide solution is diluted to 1 M or more and added to the second manganese leachate to pH 7 to pH 9 in a non-oxidizing atmosphere at a temperature of 60 to 70 to precipitate manganese.
  • the precipitated manganese form includes Mn (OH) 2 .
  • a fifth solid-liquid separation may be performed to obtain manganese oxide precipitated in S231, and the precipitated manganese oxide may further include washing with water in a non-oxidizing atmosphere at a temperature of 60 to 90 (S233). .
  • the washing has the effect of removing other impurities in the manganese oxide.
  • the remaining solution after separating the manganese oxide precipitated through the fifth solid-liquid separation may be used in place of water for potassium precipitation of S110 during the recovery step of the potassium sulfate.
  • Heat-treatment and quenching may be performed on the washed manganese oxide to prepare high purity trimanganese tetraoxide (S235).
  • the washed manganese oxide is dried using a drier and heat-treated at a temperature of 800 to 1100 after drying.
  • Heat treatment is performed using equipment such as rotary kiln incinerator, and the sample is mixed to allow sufficient reaction during the heat treatment. It also includes the step of quenching after the heat treatment.
  • Manganese from which impurities are removed by the heat treatment is reduced to Mn 2 O 3 , and rapidly cooled to oxidize it to Mn 3 O 4 manganese compound. After performing the heat treatment can be cooled to room temperature within a short time. Through this process, high purity trimanganese tetraoxide (Mn 3 O 4 ) that can be used in a secondary battery can be prepared, and the reaction is shown in Schemes 6 and 7.
  • FIG. 4 is a detailed view of a method of preparing manganese sulfate monohydrate in a manganese compound according to a first embodiment of the present invention.
  • manganese sulfate monohydrate may be prepared using the first manganese leachate obtained in S210 during the preparation of the high purity trimanganese tetraoxide. More preferably, manganese sulfate monohydrate can be prepared using the manganese leachate from which iron has been removed through step S211.
  • the third manganese leachate is obtained by removing the third impurity by using sulfide in the first manganese leachate (S310).
  • the third impurity is nickel (Ni), lead (Pb), zinc (Zn), and cobalt (Co). ), Copper (Cu), and the like, and these impurities can be removed by precipitation in the form of sulfides by addition of sulfides.
  • the sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and the sulfide is added after dissolving 2 to 5 times the total molar amount of the third impurity in water. do.
  • PH adjustment is performed using potassium hydroxide in the third manganese leachate to precipitate manganese (S321).
  • Manganese, magnesium, calcium, potassium and the like are dissolved in the third manganese leachate, and it is necessary to selectively precipitate manganese. Accordingly, the potassium hydroxide solution is diluted to 1 M or more and added to the third manganese leachate to pH 7 to pH 9 in a non-oxidizing atmosphere at a temperature of 60 to 70 to precipitate manganese. If the pH is lower than the appropriate pH, the recovery of manganese (Mn) is lowered. If the pH is higher than the pH, precipitation of impurities may occur, thereby lowering the purity of the final product.
  • potassium hydroxide contained in the first potassium leachate of S120 or the second potassium leachate of S131 may be used.
  • the precipitated manganese form includes Mn (OH) 2 .
  • the sixth solid-liquid separation is performed to obtain manganese oxide precipitated in S321 and then washed (S323).
  • the manganese oxide obtained after the sixth solid-liquid separation may further comprise the step of washing with water in a non-oxidizing atmosphere at a temperature of 60 to 90.
  • the washing has the effect of removing other impurities in the manganese oxide.
  • the remaining solution after separating the manganese oxide precipitated through the sixth solid-liquid separation may be used in place of water for potassium precipitation of S110 during the recovery step of the potassium sulfate.
  • the sulfuric acid is added to the manganese oxide obtained after the washing and redissolved (S325).
  • the amount of sulfuric acid added is added at a ratio of 0.5 to 1.5 times the molar content of manganese contained in the manganese oxide, and the reaction is shown in Scheme 8 below.
  • the method may further include neutralizing the solution redissolved by sulfuric acid.
  • Reagents for the neutralization reaction may be used manganese oxide of step S321, the manganese oxide of step S321 is neutralized so that the pH of the re-dissolution solution is pH4 to pH6.
  • the neutralizing solution performs a seventh solid-liquid separation to obtain a fourth manganese leachate (S327).
  • the obtained fourth manganese leachate is crystallized by performing vacuum evaporation to prepare a high purity manganese sulfate monohydrate (S329).
  • the appropriate saturated steam pressure for the vacuum evaporation is 0.57 ⁇ 0.7kgf / cm 2 , preferably 0.6 ⁇ 0.6.5kgf / cm 2 , the vacuum evaporation is carried out at a temperature of 85 to 90.
  • the evaporation point may be lower than 80, thereby producing manganese sulfate pentahydrate (MnSO 4 5H 2 0) instead of manganese sulfate monohydrate (MnSO 4 ⁇ H 2 O).
  • the temperature is higher than the above conditions, the energy efficiency may be lowered, resulting in lower economic efficiency.
  • Figure 5 is a detailed view of the manufacturing method of the fertilizer containing manganese and potassium according to the first embodiment of the present invention.
  • the hydrochloric acid is added by dilution in water at a concentration of 2M to 5M, preferably at a concentration of 2.5M to 3.5M, more preferably 3M.
  • the oxidant comprises hydrogen peroxide (H 2 O 2 ), the hydrogen peroxide is added in a molar ratio of 2 to 10 times with respect to the lead contained in the second solid, preferably 2 to 4 times molar ratio, more preferably Is added in three molar ratios.
  • H 2 O 2 hydrogen peroxide
  • a fertilizer containing potassium and manganese (S420).
  • the content of lead contained in the fertilizer is 0.03% or less and only a very small amount remains.
  • about 4% of manganese, more than 3% of potassium is contained. Because of this, it can be used as a fertilizer by itself or mixed with other fertilizers lacking manganese and / or potassium.
  • potassium hydroxide used in the preparation of high purity trimanganese tetraoxide or high purity manganese sulfate monohydrate is a hydroxide contained in the first potassium leaching liquid or the second potassium leaching liquid produced during the production of high purity potassium sulfate. Potassium can be used.
  • the potassium hydroxide is used to adjust the pH of the manganese leachate, sodium hydroxide (NaOH) may be used for pH control, the cost of sodium hydroxide (NaOH) is not economical because it is expensive.
  • potassium hydroxide used for pH control of manganese leachate may be separately purchased and used, but the hydroxide contained in the first potassium leachate or the second potassium leachate produced during the preparation of high purity potassium sulfate may be used.
  • the cost savings effect can be quite excellent.
  • FIG. 6 is a schematic flowchart of preparation of high purity manganese compound and high purity potassium sulfate according to the second embodiment of the present invention.
  • leaching potassium by adding water to the low-purity manganese and potassium containing (S1110), the first solid-liquid separation Separating the first potassium leaching solution and the first solid containing potassium hydroxide through (S1120).
  • Sulfide is added to the first potassium leachate separated through the first solid-liquid separation to remove the first impurity (S1130), and sulfuric acid or sodium sulfate is added to prepare high-purity potassium sulfate (S1140).
  • step S1210 Adding sulfuric acid to the first solid separated in step S1120 and roasting it to convert it into manganese sulfate (S1210), and adding a sulfide and potassium hydroxide to remove a second impurity to obtain a manganese leachate (S1220) and To obtain the manganese sulfate solution by sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate (S1230), and drying the manganese sulfate solution to obtain a high purity manganese sulfate monohydrate (S1240).
  • the potassium hydroxide used in the steps S1220 and S1230 may be the first potassium leach solution of the step S1120.
  • the manganese sulfate aqueous solution obtained in step S1230 may be prepared by using an electrowinning method (Electrowinning) EMM (Electronic Manganese Metal) (S1310).
  • EMM Electro Manganese Metal
  • step S1410 the step of precipitating manganese hydroxide using potassium hydroxide in the manganese leachate obtained in step S1220 (S1410), and drying and quenching the manganese hydroxide to prepare a high-purity trimanganese tetraoxide (S1420).
  • the potassium hydroxide of step S1410 may also use the first potassium leach solution of step S1120.
  • the present invention provides a method for producing potassium sulfate, manganese sulfate monohydrate, EMM and trimanganese tetraoxide from low purity manganese and potassium content through one process.
  • FIG. 7 is a flowchart of preparation of high purity potassium sulfate according to a second embodiment of the present invention.
  • potassium is leached by adding water to low-purity manganese and potassium-containing materials (S1110).
  • the low-purity manganese and potassium-containing products leach potassium by adding water to low-purity manganese, potassium ore or by-product manganese, potassium dust.
  • potassium hydroxide is leached through a reaction as in Scheme 1 below.
  • the water is added in an amount that can be well stirred by adding about 2 to 4 times, preferably 2 to 3 times, more preferably about 2.5 times, by volume ratio of the low purity manganese and potassium containing.
  • the first solid solution is separated to separate the first potassium leachate containing the leached potassium hydroxide and the first solid (S1120).
  • the first potassium leachate obtained through the first solid-liquid separation of S1120 is used in the next step for the production of high purity potassium sulfate, or of the potassium hydroxide used for the production of high-purity trimanganese tetraoxide or the production of high-purity manganese sulfate monohydrate. It can be used as a material.
  • the first solid obtained through the first solid-liquid separation of S1120 may be used as a material for manufacturing high purity trimanganese tetraoxide, manganese sulfate monohydrate, and EMM which are manganese compounds.
  • a sulfide is added to precipitate the first impurity in the form of sulfide (S1130).
  • the first impurity includes heavy metals such as lead (Pb), nickel (Ni), zinc (Zn), cobalt (Co) or copper (Cu).
  • the sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and is added after dissolving 2 to 5 times the total molar amount of the first impurity in water. Due to the addition of these sulfides, the first impurity precipitates in the form of sulfides (NiS, PbS, ZnS, CoS, CuS).
  • the sulfide slurry is discarded to obtain a second potassium leachate from which the first impurity is removed (S1131).
  • the second potassium leachate from which the first impurity of S1131 is removed is used as a next step for the preparation of high purity potassium sulfate, or as a material of potassium hydroxide used for the production of high purity trimanganese tetraoxide or the preparation of high purity manganese sulfate monohydrate. Can be used.
  • the second potassium leachate of S1131 is used as a material of potassium hydroxide used for the production of high purity trimanganese tetraoxide or high purity manganese sulfate monohydrate. Do.
  • Potassium sulfate is precipitated by adding sulfuric acid or sodium sulfate to the second potassium leachate (S1141).
  • the sulfuric acid or sodium sulfate is added 0.1 to 3 times, preferably 0.5 to 2 times the potassium molar ratio.
  • a third solid-liquid separation may be performed to prepare high purity (more than 99%) potassium sulfate (K 2 SO 4 ) as a solid.
  • sulfuric acid is added and roasted to the first solid obtained in step S1120 of FIG. 7 to be converted into manganese sulfate (S1210).
  • the sulfuric acid to be added is preferably a diluted sulfuric acid, for example, the sulfuric acid in a ratio of 1 to 3 times the molar content of manganese contained in the first solid, preferably in a ratio of 1.5 to 3 times Dilute in water and add.
  • the roasting temperature is 300 to 1000, preferably 500 to 800 roasted to convert the first solid to manganese sulfate, the reaction scheme is as follows.
  • Manganese leachate is obtained by adding a sulfide and potassium hydroxide to manganese sulfate obtained in step S1210 to remove the second impurity (S1220). This step may include more detailed steps as follows.
  • the first manganese leachate is obtained by adding water to the manganese sulfate obtained in step S1210 (S1221).
  • a second manganese leachate from which iron is removed is obtained (S1223).
  • Calcium hydroxide may be added to remove the iron so that the pH of the first manganese leachate is at least pH3, preferably pH3 to pH5.5.
  • the iron is removed in the form of Fe (OH) 3 or FeOOH, the reaction is shown in the following scheme.
  • Sulfide is added to the second manganese leachate from which iron is removed to obtain a third manganese leachate from which impurities other than iron are removed (S1225).
  • the second manganese leachate from which the iron is removed may further include impurities such as nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), and copper (Cu) other than iron. Accordingly, sulfides may be added to the second manganese leachate to precipitate and remove impurities other than iron in the form of sulfides.
  • the sulfide comprises sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S) at least one, the sulfide is a ratio of 2 to 50 times the total molar amount of impurities other than iron, preferably 2 It may be added in a ratio of 10 to 10 times, more preferably in a ratio of 3 to 6 times.
  • the sulfide slurry may be discarded through solid-liquid separation to obtain a third manganese leachate from which impurities other than iron are removed.
  • Potassium hydroxide and sulfuric acid are sequentially added to the third manganese leachate from which the impurities are removed to obtain an aqueous manganese sulfate solution (S1230).
  • This step may include more detailed steps as follows.
  • Potassium hydroxide is added to the third manganese leachate to precipitate into manganese hydroxide (S1231).
  • Manganese leaching liquid obtained in step S1225 is dissolved manganese, magnesium, calcium, potassium, etc., it is necessary to selectively precipitate manganese. Accordingly, the potassium hydroxide solution is diluted to 1 M or more and added to the third manganese leachate to pH 6 to pH 9 at a temperature of 60 to 70 at a temperature of 60 to 70 so that manganese is precipitated in the form of manganese hydroxide (Mn (OH) 2 ). . If the pH is lower than the appropriate pH, the recovery rate of manganese (Mn) is lowered. If the pH is higher than the pH, impurities may be precipitated, which may lower the purity of the final product.
  • the manganese hydroxide may further comprise the step of washing with water in a non-oxidizing atmosphere at a temperature of 60 to 90 (not shown).
  • the washing may also have the effect of further removing other impurities in the manganese hydroxide.
  • Manganese hydroxide precipitated through the solid-liquid separation is obtained and used in the next step, and the solution remaining after obtaining manganese hydroxide may be used in place of water for potassium leaching in step S1110.
  • the method may further include neutralizing the solution redissolved with sulfuric acid (not shown).
  • the reagent for the neutralization reaction may use manganese hydroxide in step S1231, and the manganese hydroxide used for the neutralization reaction may be neutralized such that the pH of the re-dissolution solution is pH4 to pH6.
  • the obtained manganese sulfate aqueous solution may be dried to obtain a high purity manganese sulfate monohydrate (S1240).
  • the drying process may include preparing a high purity manganese sulfate monohydrate by crystallizing the aqueous manganese sulfate solution by performing vacuum evaporation.
  • the appropriate saturated steam pressure for the vacuum evaporation is 0.57 ⁇ 0.7kgf / cm 2 , preferably 0.6 ⁇ 0.6.5kgf / cm 2 , it can be carried out under a temperature of 85 to 90 vacuum evaporation.
  • the evaporation point is lower than 80, and thus, manganese sulfate pentahydrate (MnSO 4 ⁇ 5H 2 O) may be formed instead of the manganese sulfate monohydrate (MnSO 4 ⁇ H 2 O.) Its efficiency is low and economic efficiency can be lowered.
  • the manganese sulfate solution obtained in step S1233 can be used for the preparation of EMM.
  • the manganese sulfate aqueous solution obtained in step S1233 may be manufactured by using an electrowinning method (Electrowinning).
  • step S1231 using the manganese hydroxide obtained in the step S1231 can be produced in high purity trimanganese tetraoxide.
  • the manganese hydroxide obtained in step S1231 may be heat-treated at a temperature of 800 to 1100 after drying using a dryer. Heat treatment is performed by using equipment such as rotary kiln incinerator, and it is well stirred so that the sample can react sufficiently during heat treatment, so that the oxidizing atmosphere can be achieved. In addition, the quenching treatment is performed after the heat treatment. Manganese from which impurities are removed by the heat treatment is reduced to Mn 2 O 3 , and rapid cooling is performed to oxidize it to Mn 3 O 4 manganese compound. After performing the heat treatment can be cooled to room temperature within a short time. Through this, tri- manganese tetraoxide (Mn 3 O 4 ) that can be used in a secondary battery can be obtained with high purity, and the reaction is shown in the following reaction formula.
  • Mn 3 O 4 tri- manganese tetraoxide
  • the concentration of sulfide is as follows.
  • Sulfide is added at a rate of 10 to 50 times the total molar amount of impurities other than iron, preferably at a rate of 15 to 45 times, more preferably at a rate of 30 to 35 times, and the pH of the added sulfide is pH7 To pH8, preferably adjusted to pH8. After the sulfide is added, the reaction may be performed for about 10 to 100 minutes, preferably 20 to 80 minutes, more preferably 30 to 60 minutes.
  • potassium hydroxide is added so that the pH of the iron-containing manganese leachate is pH 5 to pH 6, about 10 minutes to 60 minutes, preferably 10 minutes to 40 minutes, more preferably Can react for 20 to 30 minutes. That is, when pH is adjusted by adding potassium hydroxide after addition of sulfide, impurities such as nickel, lead, zinc, cobalt, and copper, which are impurities other than iron, form sulfides (NiS, PbS, ZnS, CoS, CuS). It can help to settle, and thus be more effective in removing impurities in the form of sulfides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fertilizers (AREA)

Abstract

The present invention concerns a method in which a single process is used in order to produce at least one out of high-purity potassium sulphate (K2SO4), a high-purity manganese compound (manganese sulphate monohydrate (MnSO4·H2O), trimanganese tetraoxide (Mn3O4) or EMM (Electronic Manganese Metal)) and a manganese- and potassium-containing fertiliser from a low-purity manganese- and potassium-containing substance. To elaborate, the present invention concerns a method for respectively producing high-purity potassium sulphate, a high-purity manganese compound and a manure from a low-purity manganese- and potassium-containing substance. Also, the invention concerns a method in which a single process is used in order to simultaneously produce high-purity potassium sulphate and a high-purity manganese compound from a low-purity manganese- and potassium-containing substance. Also, the invention concerns a method in which a single process is used in order to simultaneously produce high-purity potassium sulphate and fertilizer from a low-purity manganese- and potassium-containing substance.

Description

저순도 망간 및 칼륨 함유물로부터 망간화합물, 황산칼륨 및 비료 중 적어도 어느 하나의 제조방법Method for producing at least one of manganese compounds, potassium sulfate and fertilizer from low purity manganese and potassium content
본 발명은 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨(K2SO4), 고순도 망간화합물(황산망간일수화물(MnSO4·H2O), 사산화삼망가니즈(Mn3O4), EMM(Electronic Managese Metal)) 및 망간과 칼륨을 함유하는 비료중 적어도 어느 하나를 하나의 프로세스로 제조하는 방법에 대한 것이다. The present invention is a high purity potassium sulfate (K 2 SO 4 ), high purity manganese compounds (manganese sulfate monohydrate (MnSO 4 H 2 O), trimanganese tetraoxide (Mn 3 O 4 ), EMM ( Electronic Managed Metal)) and at least one of manganese and potassium-containing fertilizers in a single process.
휴대용 전자기기에 대한 기술발전에 따라 이차전지에 대한 요구가 증가하고 있다. 이차전지는 음극, 양극, 전해액 및 분리막으로 구성되는데, 상기 양극의 제조에 망간산화물이 많이 이용되고 있다. 이차전지의 수요 급증에 따라 이러한 이차전지 제조에 필요한 재료에 대한 수요 역시 급증하고 있는 실정이다.With the development of technology for portable electronic devices, the demand for secondary batteries is increasing. The secondary battery is composed of a negative electrode, a positive electrode, an electrolyte, and a separator, and manganese oxide is widely used in the manufacture of the positive electrode. As the demand for secondary batteries soars, the demand for materials required for manufacturing such secondary batteries is also increasing rapidly.
이차전지의 정극재료로 사산화삼망가니즈(Mn3O4), 산화망가니즈(III)(Mn2O3)가 사용될 수 있다. 그러나 최근 이차전지의 제조원가 절감을 위하여 산화망가니즈(III)(Mn2O3)를 대신하여 사산화삼망가니즈(Mn3O4)를 사용하는 추세이나, 현재 사산화삼망가니즈(Mn3O4)는 대부분 수입에 의존하고 있는 문제점이 있다. Trivalent manganese tetraoxide (Mn 3 O 4 ) and manganese oxide (III) (Mn 2 O 3 ) may be used as the positive electrode material of the secondary battery. Recently, however, in order to reduce manufacturing costs of secondary batteries, the trend is to use trimanganese tetraoxide (Mn 3 O 4 ) instead of manganese oxide (III) (Mn 2 O 3 ), but now, trivalent manganese tetraoxide (Mn 3 O 4 ) There is a problem that depends mostly on income.
또한 황산망간일수화물(MnSO4·H2O, manganese sulphate monohydrate)은 이차 전지에 사용되는 양극활물질의 주재료가 된다. 그러나 이차전지의 전극재료로 이용되는 황산망간일수화물은 사산화삼망가니즈(Mn3O4)와 마찬가지로 현재 거의 수입에 의존하고 있는 문제점이 있다. In addition, manganese sulfate monohydrate (MnSO 4 · H 2 O, manganese sulphate monohydrate) is the main material of the positive electrode active material used in secondary batteries. However, manganese sulfate monohydrate used as an electrode material of a secondary battery has a problem that is almost dependent on imports like trimanganese tetraoxide (Mn 3 O 4 ).
종래 공개특허공보 제10-2011-76109호는 망간단괴로부터 유가금속 화합물 및 황산칼륨의 동시 제조방법에 대하여 개시하고 있고, 공개특허공보 제10-2012-93948호는 중저품질의 MnO2광석으로부터 MnSO4·H2O 를 제조하는 방법에 대하여 개시하고 있고, 공개특허공보 제10-2011-111057호는 결정성의 사산화삼망간, 리튬망간산화물의 제조방법에 대하여 개시하고 있다.Prior-A-10-2011-76109 discloses and discloses a method for manufacturing the same time the valuable metals and compounds of potassium sulfate from manganese nodules,-A-10-2012-93948 discloses a MnSO from MnO 2 of the medium and low quality ore 4, and it discloses a method for producing a H 2 O, Laid-Open Patent Publication No. 10-2011-111057 discloses a manufacturing method of a crystalline sasanhwasam manganese, lithium-manganese oxide.
그러나 종래 특허공개공보에서 개시하고 있는 기술은 망간 및 칼륨 함유물로부터 고순도 황산칼륨(K2SO4), 고순도 망간화합물, 및/또는 비료를 하나의 프로세스를 통하여 제조하는 방법에 대하여는 개시하고 있지 않다. However, the technique disclosed in the prior patent publication does not disclose a method for preparing high purity potassium sulfate (K 2 SO 4 ), high purity manganese compounds, and / or fertilizers from manganese and potassium containing in one process. .
따라서, 본 발명의 목적은 경제적으로 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨(K2SO4), 고순도 망간화합물(황산망간일수화물(MnSO4·H2O), 사산화삼망가니즈(Mn3O4), EMM(Electronic Managese Metal)) 및 망간과 칼륨을 함유하는 비료중 적어도 어느 하나를 하나의 프로세스로 제조하는 방법을 제공하는 것이다. Accordingly, an object of the present invention is to economically obtain high purity potassium sulfate (K 2 SO 4 ), high purity manganese compounds (manganese sulfate monohydrate (MnSO 4 H 2 O), trimanganese tetraoxide (Mn 3 ) from low purity manganese and potassium content O 4 ), EMM (Electronic Managed Metal) and at least one of manganese and potassium-containing fertilizer in one process.
즉, 본 발명의 목적은, 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨, 고순도 망간 화합물, 비료 각각을 제조하는 방법을 제공하는 것이다. That is, it is an object of the present invention to provide a method for producing high purity potassium sulfate, high purity manganese compounds, and fertilizers, respectively, from low purity manganese and potassium containing materials.
또한, 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 망간 화합물을 동시에 하나의 프로세스로 제조하는 방법을 제공하는 것이다.It is also to provide a method for simultaneously producing a high purity potassium sulfate and a high purity manganese compound from a low purity manganese and potassium content in one process.
또한, 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 비료를 동시에 하나의 프로세스로 제조하는 방법을 제공하는 것이다.It is also to provide a method for producing high purity potassium sulfate and fertilizer from low purity manganese and potassium content simultaneously in one process.
상기 목적은, 본 발명에 따라, 하나의 프로세스를 통하여 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고, 황산 또는 황산나트륨을 첨가하여 고순도 황산칼륨을 제조하는 단계와; 상기 제1 고체에 염산 및 황산 중 적어도 어느 하나와 환원제를 첨가하여 제1망간 침출액을 획득하고 황화물 및 수산화칼륨을 이용하여 제2불순물을 제거하여 제2망간 침출액을 획득하는 단계와; 상기 제2망간 침출액에 수산화칼륨을 이용하여 pH조절을 통하여 고순도 사산화삼망가니즈를 제조하는 단계와; 상기 제1망간 침출액에 황화물을 이용하여 제3불순물을 제거하여 제3망간 침출액을 획득하는 단계와; 상기 제3망간침출액에 수산화칼륨을 이용하여 pH조절을 수행한 후 황산을 첨가하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법에 의하여 달성될 수 있다. The above object is, according to the present invention, in the process for producing a high purity manganese compound, potassium sulfate and fertilizer from a low purity manganese and potassium content through one process, the first after adding water to the low purity manganese and potassium content Separating the first potassium leachate containing potassium hydroxide and the first solid by solid-liquid separation; Adding a sulfide to the first potassium leachate to remove the first impurity, and adding sulfuric acid or sodium sulfate to prepare high purity potassium sulfate; Obtaining a first manganese leachate by adding at least one of hydrochloric acid and sulfuric acid and a reducing agent to the first solid, and removing a second impurity using sulfide and potassium hydroxide to obtain a second manganese leachate; Preparing high purity trimanganese tetraoxide through pH adjustment using potassium hydroxide in the second manganese leachate; Removing a third impurity by using a sulfide in the first manganese leachate to obtain a third manganese leachate; PH adjustment using potassium hydroxide to the third manganese leachate may be achieved by a method of preparing a high purity manganese compound, potassium sulfate and fertilizer comprising the step of preparing a high purity manganese sulfate monohydrate by adding sulfuric acid. .
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; 고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨의 제조방법에 의하여 달성될 수 있다. In addition, the above object, according to the present invention, in the method for producing high purity potassium sulfate from low-purity manganese and potassium-containing, comprising adding potassium hydroxide through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the first potassium leach solution and the solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. It can be achieved by a method for preparing potassium sulfate from low purity manganese and potassium containing comprising the step of.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1 고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로 희석된 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제1망간 침출액과 제2고체를 획득하는 단계와; 상기 제1망간 침출액의 획득 후에 1M이상으로 희석된 수산화칼륨을 이용하여 상기 제1망간 침출액의 pH를 pH3이상으로 조절하여 철을 제거하는 단계와; 황화물 및 수산화칼륨을 이용하여 불순물을 제거하여 제2망간 침출액을 획득하는 단계와; 상기 제2망간 침출액에 수산화칼륨을 이용하여 pH조절을 통하여 고순도 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법에 의하여 달성될 수 있다. In addition, the above object, according to the present invention, in the production method of high purity trimanganese tetraoxide from low-purity manganese and potassium containing, containing potassium hydroxide through the first solid-liquid separation after the addition of water to the low-purity manganese and potassium containing Separating the first potassium leachate from the first solid; Hydrochloric acid diluted at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese Obtaining a first manganese leachate and a second solid by separating solid solution; Removing iron by adjusting the pH of the first manganese leachate to pH3 or more using potassium hydroxide diluted to 1 M or more after obtaining the first manganese leachate; Removing impurities using sulfides and potassium hydroxide to obtain a second manganese leachate; It can be achieved by a high-purity trimanganese tetraoxide production method from low-purity manganese and potassium containing a step of preparing a high-purity trimanganese tetraoxide through the pH control using potassium hydroxide in the second manganese leachate.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1 고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율의 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제1망간 침출액과 제2고체를 획득하는 단계와; 상기 제1망간 침출액에 황화물을 이용하여 불순물을 제거하여 제3망간 침출액을 획득하는 단계와; 상기 제3망간침출액에 수산화칼륨을 이용하여 pH조절을 수행한 후 황산을 첨가하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법에 의하여 달성될 수 있다.In addition, the above object, according to the present invention, in the method for producing high purity manganese sulfate monohydrate from low purity manganese and potassium containing, after adding water to the low purity manganese and potassium containing water through the first solid-liquid separation Separating the first potassium leachate and the first solid comprising; A second solid solution by adding hydrochloric acid at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese contained in the first solid Obtaining a first manganese leachate and a second solid through separation; Obtaining a third manganese leach solution by removing impurities using the sulfide in the first manganese leach solution; By the method of manufacturing a high purity manganese sulfate monohydrate from the low-purity manganese and potassium containing comprising the step of adjusting the pH of the third manganese leachate using potassium hydroxide to produce a high purity manganese sulfate monohydrate by adding sulfuric acid Can be achieved.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 비료 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로 희석된 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제2고체를 분리하는 단계와; 상기 제2고체에 2M 내지 5M으로 희석된 염산 및 산화제를 첨가하여 납을 침출시키는 단계와; 제3고액분리를 통하여 제3고체를 분리하고, 상기 제3고체를 건조하여 칼륨 및 망간을 함유하는 비료를 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 비료 제조방법에 의하여 달성될 수 있다. In addition, the above object, according to the present invention, in the fertilizer manufacturing method from a low-purity manganese and potassium-containing material, after the addition of water to the low-purity manganese and potassium-containing material first containing potassium hydroxide through the first solid-liquid separation Separating the potassium leach solution and the first solid; By adding hydrochloric acid diluted at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese to the first solid, Separating the second solid through two-liquid separation; Leaching lead by adding hydrochloric acid and an oxidizing agent diluted to 2M to 5M to the second solid; Separation of the third solid through the third solid-liquid separation, and drying the third solid to obtain a fertilizer containing potassium and manganese can be achieved by a fertilizer manufacturing method from low-purity manganese and potassium containing have.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 사산화삼망가니즈의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; 고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와; 상기 제1 고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로 희석된 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제1망간 침출액과 제2고체를 획득하는 단계와; 상기 제1망간 침출액의 획득 후에 1M이상으로 희석된 수산화칼륨을 이용하여 상기 제1망간 침출액의 pH를 pH3이상으로 조절하여 철을 제거하는 단계와; 황화물 및 수산화칼륨을 이용하여 불순물을 제거하여 제2망간 침출액을 획득하는 단계와; 상기 제2망간 침출액에 수산화칼륨을 이용하여 pH조절을 통하여 고순도 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 사산화삼망가니즈의 제조방법에 의하여 달성될 수 있다.In addition, the above object is, according to the present invention, in the method for producing high purity potassium sulfate and high purity trimanganese tetraoxide from low purity manganese and potassium containing, after the addition of water to the low purity manganese and potassium containing the first solid-liquid separation Separating the first potassium leachate containing potassium hydroxide and the first solid through; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step; Hydrochloric acid diluted at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese Obtaining a first manganese leachate and a second solid by separating solid solution; Removing iron by adjusting the pH of the first manganese leachate to pH3 or more using potassium hydroxide diluted to 1 M or more after obtaining the first manganese leachate; Removing impurities using sulfides and potassium hydroxide to obtain a second manganese leachate; It can be achieved by a method of producing high purity potassium sulfate and high purity trimanganese tetraoxide from the low-purity manganese and potassium content comprising the step of preparing a high purity trimanganese tetraoxide through pH adjustment using potassium hydroxide in the second manganese leachate have.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 황산망간일수화물의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; 고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와; 상기 제1 고체에 염산 및 황산 중 적어도 어느 하나와 환원제를 첨가하여 제1망간 침출액을 획득하는 단계와; 상기 제1 고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율의 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제1망간 침출액과 제2고체를 획득하는 단계와; 상기 제1망간 침출액에 황화물을 이용하여 불순물을 제거하여 제3망간 침출액을 획득하는 단계와; 상기 제3망간침출액에 수산화칼륨을 이용하여 pH조절을 수행한 후 황산을 첨가하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 황산망간일수화물의 제조방법에 의하여 달성될 수 있다. In addition, the above object, according to the present invention, in the method for producing high-purity potassium sulfate and high-purity manganese sulfate monohydrate from low-purity manganese and potassium-containing, after the addition of water to the low-purity manganese and potassium-containing first liquid-liquid separation Separating the first potassium leachate containing potassium hydroxide from the first solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step; Adding at least one of hydrochloric acid and sulfuric acid and a reducing agent to the first solid to obtain a first manganese leachate; A second solid solution by adding hydrochloric acid at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese contained in the first solid Obtaining a first manganese leachate and a second solid through separation; Obtaining a third manganese leach solution by removing impurities using the sulfide in the first manganese leach solution; High purity potassium sulfate and high purity manganese sulfate monohydrate from low purity manganese sulfate and potassium containing comprising the step of adjusting the pH of the third manganese leachate using potassium hydroxide to produce a high purity manganese sulfate monohydrate by adding sulfuric acid It can be achieved by the manufacturing method of.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 비료의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; 고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와; 상기 제1고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로 희석된 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제2고체를 분리하는 단계와; 상기 제2고체에 2M 내지 5M으로 희석된 염산 및 산화제를 첨가하여 납을 침출시키는 단계와; 제3고액분리를 통하여 제3고체를 분리하고, 상기 제3고체를 건조하여 칼륨 및 망간을 함유하는 비료를 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 비료의 제조방법에 의하여 달성될 수 있다.In addition, the above object, according to the present invention, in the production method of high purity potassium sulfate and fertilizer from low-purity manganese and potassium-containing, potassium hydroxide through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the first potassium leachate and the first solid comprising a; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step; By adding hydrochloric acid diluted at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese to the first solid, Separating the second solid through two-liquid separation; Leaching lead by adding hydrochloric acid and an oxidizing agent diluted to 2M to 5M to the second solid; Separation of the third solid through a third solid-liquid separation, and drying the third solid to obtain a fertilizer containing potassium and manganese, a method of producing high purity potassium sulfate and fertilizer from potassium containing manganese Can be achieved by.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 제1고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고, 황산 또는 황산나트륨을 첨가하여 고순도 황산칼륨을 제조하는 단계와; 상기 제1고체에 황산을 첨가하여 배소시켜 황산망간으로 변환시킨 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 제2불순물을 제거하고, 제2고액분리를 통하여 망간침출액을 획득하는 단계와; 상기 망간침출액으로부터 고순도 망간화합물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법에 의하여 달성될 수 있다.In addition, according to the present invention, in the method for producing a high purity manganese compound and potassium sulfate from a low-purity manganese and potassium containing, through the first solid-liquid separation after adding water to the low-purity manganese and potassium containing Separating the first potassium leachate and the first solid containing potassium; Adding a sulfide to the first potassium leachate to remove the first impurity, and adding sulfuric acid or sodium sulfate to prepare high purity potassium sulfate; Adding sulfuric acid to the first solid to be converted to manganese sulfate to remove the second impurity using at least one of calcium hydroxide and sulfide, and obtaining manganese leachate through second solid-liquid separation; It can be achieved by a method for producing a high purity manganese compound and potassium sulfate from a low purity manganese and potassium containing comprising the step of preparing a high purity manganese compound from the manganese leaching solution.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 황산망간일수화물의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와; 상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산망간일수화물의 제조방법에 의하여 달성될 수 있다.In addition, the above object, according to the present invention, in the method for producing manganese sulfate monohydrate from low-purity manganese and potassium containing, potassium is included through the solid-liquid separation after adding water to the low-purity manganese and potassium containing Separating the potassium leach solution and the solid; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate; It can be achieved by a method for preparing manganese sulfate monohydrate from a low purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to produce a high purity manganese sulfate monohydrate.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 EMM(Electronic Manganese Metal)의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와; 상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 EMM(Electronic Manganese Metal)의 제조방법에 의하여 달성될 수 있다. In addition, according to the present invention, in the method for producing EMM (Electronic Manganese Metal) from low-purity manganese and potassium-containing, potassium is added through solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the potassium leach solution and the solid contained; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate; The aqueous manganese sulfate solution may be achieved by a method of producing EMM (Electronic Manganese Metal) from low-purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using an electrolytic extraction method.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 사산화삼망가니즈의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와; 상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 사산화삼망가니즈의 제조방법에 의하여 달성될 수 있다. In addition, the above object, according to the present invention, in the method for producing trimanganese tetraoxide from a low-purity manganese and potassium-containing, potassium containing potassium through the solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the leachate from the solid; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate; The manganese hydroxide may be achieved by a method of preparing trimanganese tetraoxide from low purity manganese and potassium containing the step of quenching the heat treatment in an oxidizing atmosphere to prepare trimanganese tetraoxide.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 황산망간일수화물의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; 고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와; 상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨의 제조방법에 의하여 달성될 수 있다. In addition, the above object, according to the present invention, in the production method of potassium sulfate and manganese sulfate monohydrate from low-purity manganese and potassium containing, adding water to the low-purity manganese and potassium containing potassium through solid-liquid separation Separating the first potassium leachate and the solid contained therein; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate; It can be achieved by a method for producing potassium sulfate from a low purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to produce a high purity manganese sulfate monohydrate.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 EMM(Electronic Manganese Metal)의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; 고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와; 상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 EMM(Electronic Manganese Metal)의 제조방법에 의하여 달성될 수 있다.In addition, the above object is, according to the present invention, in the method for producing potassium sulfate and EMM (Electronic Manganese Metal) from low-purity manganese and potassium-containing, water is added to the low-purity manganese and potassium-containing after solid-liquid separation Separating the first potassium leachate and the solid containing potassium through the solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate; The aqueous manganese sulfate solution may be achieved by a method of preparing potassium sulfate and EMM (Electronic Manganese Metal) from low purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using an electrolytic extraction method. .
또한, 상기 목적은 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 사산화삼망가니즈의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; 고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와; 상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 사산화삼망가니즈의 제조방법에 의하여 달성될 수 있다.In addition, according to the present invention, in the method for producing potassium sulfate and trimanganese tetraoxide from low-purity manganese and potassium-containing, potassium is included through the solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the first potassium leachate from the solid and the solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate; The manganese hydroxide may be achieved by a method of preparing potassium sulfate and trimanganese tetraoxide from low-purity manganese and potassium containing, including the step of quenching after heat treatment in an oxidizing atmosphere to prepare trimanganese tetraoxide.
이상 설명한 바와 같이, 본 발명에 따르면, 하나의 프로세스를 통하여 경제적으로 저순도 망간 및 칼륨 함유물로부터 고순도 망간화합물(황산망간일수화물, 사산화삼망가니즈 및 EMM(Electronic Manganese Metal), 고순도 황산칼륨 및 비료를 동시에/또는 각각 제조하는 방법이 제공된다. As described above, according to the present invention, a high-purity manganese compound (manganese sulfate monohydrate, trimanganese tetraoxide and Electronic Manganese Metal (EMM), high-purity potassium sulfate and fertilizer economically from low-purity manganese and potassium content through one process) Methods of simultaneously and / or separately preparing are provided.
도 1은 본 발명의 제1실시예에 따른 망간화합물, 황산칼륨 및 비료의 제조방법의 개략적인 플로우차트이고,1 is a schematic flowchart of a method for preparing a manganese compound, potassium sulfate and fertilizer according to a first embodiment of the present invention,
도 2는 본 발명의 제1실시예에 따른 망간화합물 중 황산칼륨 제조방법의 플로우차트이고, 2 is a flowchart of a method for preparing potassium sulfate in a manganese compound according to the first embodiment of the present invention,
도 3은 본 발명의 제1실시예에 따른 망간화합물 중 사산화삼망가니즈의 제조방법의 플로우차트이고,3 is a flowchart of a method for preparing trimanganese tetraoxide in a manganese compound according to the first embodiment of the present invention,
도 4는 본 발명의 제1실시예에 따른 망간화합물 중 황산망간일수화물의 제조방법의 플로우차트이고,4 is a flowchart of a method for preparing manganese sulfate monohydrate in a manganese compound according to the first embodiment of the present invention;
도 5는 본 발명의 제1실시예에 따른 비료의 제조방법의 플로우차트이고,5 is a flowchart of a manufacturing method of fertilizer according to the first embodiment of the present invention,
도 6은 본 발명의 제2실시예에 따른 고순도 망간화합물 및 고순도 황산칼륨 제조의 개략적인 플로우차트이고,6 is a schematic flowchart of preparation of high purity manganese compound and high purity potassium sulfate according to the second embodiment of the present invention,
도 7은 본 발명의 제2실시예에 따른 고순도 황산칼륨 제조방법의 플로우차트이고,7 is a flowchart of a method for preparing high purity potassium sulfate according to a second embodiment of the present invention,
도 8은 본 발명의 제2실시예에 따른 고순도 망간화합물 제조방법의 플로우차트이다.8 is a flowchart of a method of manufacturing high purity manganese compound according to a second embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도 1 내지 도 5는 본 발명의 제1실시예에 따른 망간화합물, 황산칼륨 및 비료의 동시에 모두/또는 각각 제조할 수 있는 제조방법에 대한 것이고, 도 6 내지 도 8은 본 발명의 제2실시예에 따른 망간화합물 및 황산칼륨의 동시에 모두/또는 각각 제조할 수 있는 제조방법에 대한 것이다. 1 to 5 illustrate a manufacturing method capable of simultaneously and / or respectively manufacturing manganese compounds, potassium sulfate, and fertilizers according to the first embodiment of the present invention, and FIGS. 6 to 8 illustrate a second embodiment of the present invention. The present invention relates to a preparation method capable of simultaneously and / or respectively manufacturing a manganese compound and potassium sulfate.
본 발명에 따른 제1실시예 및 제2실시예에서 저순도 망간 및 칼륨 함유물로부터 황산칼륨을 제조하는 방법은 동일하다. 그러나, 상기 제1실시예 및 제2실시예는 그 이후의 첨가되는 시약에 따라 망간화합물 및/또는 비료의 제조방법이 상이하다. In the first and second embodiments according to the present invention, the method for preparing potassium sulfate from low purity manganese and potassium content is the same. However, the first and second embodiments differ in the method of preparing manganese compounds and / or fertilizers depending on the reagents added thereafter.
이하에서 제1실시예에 대하여 설명한 후, 제2실시예를 설명하도록 한다.Hereinafter, the first embodiment will be described, and then the second embodiment will be described.
제1 실시예First embodiment
도 1은 본 발명의 제1실시예에 따른 망간화합물, 황산칼륨 및 비료의 제조방법의 개략적인 도식도이다. 1 is a schematic diagram of a method for preparing a manganese compound, potassium sulfate and fertilizer according to a first embodiment of the present invention.
도 1에서 보는 바와 같이, 본 발명에 따른 망간화합물, 황산칼륨 및 비료의 제조방법은, 저순도 망간 및 칼륨 함유물에 물을 첨가하여 칼륨을 침출하고(S110), 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리한다(S120). As shown in Figure 1, the method for producing a manganese compound, potassium sulfate and fertilizer according to the present invention, by adding water to the low-purity manganese and potassium containing water leaching potassium (S110), the first through the solid-liquid separation The first potassium leaching solution containing potassium and the first solid is separated (S120).
상기 제1고액분리를 통하여 분리된 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고(S130), 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시킴으로써 고순도 황산칼륨을 제조한다(S140). Sulfide is added to the first potassium leachate separated through the first solid-liquid separation to remove the first impurity (S130), and sulfuric acid or sodium sulfate is added to precipitate with potassium sulfate to prepare high purity potassium sulfate (S140).
상기 S120에서 제1고액분리를 통하여 분리된 상기 제1고체에 염산 및 황산 중 적어도 어느 하나와 환원제를 첨가하여 제1망간 침출액을 획득하고(S210), 황화물을 이용하여 제2불순물을 제거하여 제2망간 침출액을 획득한다(S220). At least one of hydrochloric acid and sulfuric acid and a reducing agent are added to the first solid separated through the first solid-liquid separation in S120 to obtain a first manganese leachate (S210), and a second impurity is removed by using a sulfide. Obtaining two manganese leachate (S220).
상기S220의 제2망간 침출액에 수산화칼륨을 이용하여 pH조절을 통하여 고순도 사산화삼망가니즈를 제조한다(S230). 이때 상기 수산화칼륨은 상기 S120에서 분리한 제1칼륨침출액에 포함된 수산화칼륨을 이용할 수 있다. Using pure potassium hydroxide in the second manganese leachate of S220 to prepare a high purity trimanganese tetraoxide through the pH control (S230). In this case, the potassium hydroxide may use potassium hydroxide contained in the first potassium leachate separated in S120.
상기 S220의 제2망간 침출액에 수산화칼륨을 이용하여 pH조절을 수행한 후 황산을 첨가하여 고순도 황산망간일수화물을 제조한다(S310). 이때 상기 수산화칼륨은 상기 S120에서 분리한 제1칼륨침출액에 포함된 수산화칼륨을 이용할 수 있다. After adjusting pH using potassium hydroxide in the second manganese leachate of S220, sulfuric acid is added to prepare high-purity manganese sulfate monohydrate (S310). In this case, the potassium hydroxide may use potassium hydroxide contained in the first potassium leachate separated in S120.
상기 S210의 고액분리를 통하여 상기 제1망간 침출액 획득 후 남은 제2고체에 염산 및 산화를 첨가하여 납을 침출하고(S410), 납 침출액을 제거 후 망간 및 칼륨이 함유된 비료를 제조(S420)한다.The leaching of lead by adding hydrochloric acid and oxidation to the second solid remaining after the first manganese leachate is obtained through solid-liquid separation of S210 (S410), and then removing manganese and potassium to prepare a fertilizer containing manganese and potassium (S420). do.
상기 본 발명의 제1실시예에 따른 고순도 황산칼륨의 제조는 도 2를 통하여 더욱 상세히 설명하고, 상기 본 발명의 제1실시예에 따른 고순도 사산화삼망가니즈의 제조는 도 3을 통하여 더욱 상세히 설명하고, 상기 본 발명의 제1실시예에 따른 고순도 황산망간일수화물의 제조는 도 4를 통하여 더욱 상세히 설명하고, 상기 본 발명의 제1실시예에 따른 비료 제조는 도 5를 통하여 더욱 상세히 설명한다.The preparation of high purity potassium sulfate according to the first embodiment of the present invention will be described in more detail with reference to FIG. 2, and the preparation of the high purity trimanganese tetraoxide according to the first embodiment of the present invention will be described in more detail with reference to FIG. 3. The manufacturing of the high purity manganese sulfate monohydrate according to the first embodiment of the present invention will be described in more detail with reference to FIG. 4, and the fertilizer manufacturing according to the first embodiment of the present invention will be described in more detail with reference to FIG. 5.
도 2는 본 발명의 제1실시예에 따른 망간화합물 중 고순도 황산칼륨 제조방법의 상세도이다. 도 2를 참조하면, 저순도 망간 및 칼륨 함유물에 물을 첨가하여 칼륨을 침출한다(S110). 상기 저순도 망간 및 칼륨 함유물은 저순도 망간 및 칼륨 더스트 또는 저순도 망간 및 칼륨 광석을 포함한다.Figure 2 is a detailed view of a high purity potassium sulfate manufacturing method of the manganese compound according to the first embodiment of the present invention. Referring to Figure 2, by adding water to the low-purity manganese and potassium containing leaching potassium (S110). The low purity manganese and potassium inclusions include low purity manganese and potassium dust or low purity manganese and potassium ore.
상기 저순도 망간 및 칼륨 함유물에 물을 첨가하면 하기 반응식 1과 같은 반응을 통하여 수산화칼륨이 침출된다. 상기 물은 상기 저순도 망간 및 칼륨 함유물의 부피비로 약 2 내지 4배, 바람직하게는 2 내지 3배, 더욱 바람직하게 2.5배 정도를 첨가하는 것으로 교반이 잘 될 수 있는 정도의 양을 첨가한다. When water is added to the low-purity manganese and potassium-containing compounds, potassium hydroxide is leached through a reaction as in Scheme 1 below. The water is added in an amount that can be well stirred by adding about 2 to 4 times, preferably 2 to 3 times, and more preferably about 2.5 times by volume ratio of the low purity manganese and potassium containing.
[반응식 1]Scheme 1
K2O + H2O = 2KOHK 2 O + H 2 O = 2 KOH
제1고액분리를 수행하여 상기 침출된 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리한다(S120).The first solid solution separation is performed to separate the first potassium leachate containing the leached potassium hydroxide and the first solid (S120).
상기 S120의 제1고액분리를 통하여 획득된 제1칼륨침출액은 고순도 황산칼륨의 제조를 위한 다음단계에 이용되거나, 또는 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용될 수 있다.The first potassium leachate obtained through the first solid-liquid separation of S120 is used in the next step for the production of high purity potassium sulfate, or of the potassium hydroxide used for the production of high purity trimanganese tetraoxide or the production of high purity manganese sulfate monohydrate. It can be used as a material.
또한 상기 S120의 제1고액분리를 통하여 획득된 제1고체는 고순도 사산화삼망가니즈, 또는 황산망간일수화물의 제조를 위한 재료로 이용될 수 있다.In addition, the first solid obtained through the first solid-liquid separation of S120 may be used as a material for the preparation of high purity trimanganese tetraoxide, or manganese sulfate monohydrate.
상기 S120의 제1칼륨침출액 중 제1불순물을 제거하기 위하여 황화물을 첨가하여 제1불순물을 황화물 형태로 침전시킨다(S130).Sulfide is added to remove the first impurity in the first potassium leachate of S120 to precipitate the first impurity in the form of sulfide (S130).
상기 제1불순물에는 납(Pb), 니켈(Ni), 아연(Zn), 코발트(Co) 또는 구리(Cu)를 포함한다.The first impurity includes lead (Pb), nickel (Ni), zinc (Zn), cobalt (Co) or copper (Cu).
상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, 상기 제1불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가한다. 이러한 황화물의 첨가로 인하여 제1불순물은 황화물의 형태(NiS, PbS, ZnS, CoS, CuS)로 침전된다. The sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and is added after dissolving 2 to 5 times the total molar amount of the first impurity in water. Due to the addition of these sulfides, the first impurity precipitates in the form of sulfides (NiS, PbS, ZnS, CoS, CuS).
제2고액분리를 통하여 상기 황화물 슬러리는 폐기하여 제1불순물이 제거된 제2칼륨침출액을 획득한다(S131). 상기 S131의 제1불순물이 제거된 제2칼륨침출액은 고순도 황산칼륨의 제조를 위한 다음 단계에 이용되거나, 또는 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용될 수 있다. 상기 S120의 제1칼륨침출액보다 S131의 제2칼륨침출액이 불순물이 제거되었기에 제2칼륨침출액이 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용되는 것이 바람직하다.The sulfide slurry is discarded through a second solid-liquid separation to obtain a second potassium leachate from which the first impurity is removed (S131). The second potassium leachate from which the first impurity of S131 is removed is used as a next step for the production of high purity potassium sulfate, or as a material of potassium hydroxide used for the production of high purity trimanganese tetraoxide or the production of high purity manganese sulfate monohydrate. Can be used. Since the impurities of the second potassium leachate of S131 are removed from the first potassium leachate of S120, it is preferable that the second potassium leachate is used as a material of potassium hydroxide used for the production of high-purity trimanganese tetraoxide or a high-purity manganese sulfate monohydrate. Do.
상기 제2칼륨침출액에 황산 또는 황산나트륨을 첨가하여 황산칼륨을 침전시킨다(S141). 상기 황산 또는 황산나트륨은 칼륨 몰비의 0.1 내지 3배, 바람직하게 0.5 내지 2배를 첨가한다.Potassium sulfate is precipitated by adding sulfuric acid or sodium sulfate to the second potassium leachate (S141). The sulfuric acid or sodium sulfate is added 0.1 to 3 times, preferably 0.5 to 2 times the potassium molar ratio.
상기 황산 첨가에 의한 반응은 하기 반응식 2와 같다.The reaction by adding sulfuric acid is shown in Scheme 2 below.
[반응식 2]Scheme 2
2KOH + H2SO4 = K2SO4 + 2H2O2KOH + H 2 SO 4 = K 2 SO 4 + 2H 2 O
상기 황산칼륨이 침전되면 제3고액분리를 수행하여 고체의 고순도(99% 이상) 황산칼륨(K2SO4)을 제조할 수 있다.When the potassium sulfate precipitates, a third solid-liquid separation may be performed to prepare high purity (more than 99%) potassium sulfate (K 2 SO 4 ) as a solid.
도 3은 본 발명의 제1실시예에 따른 망간화합물 중 사산화삼망가니즈의 제조방법의 상세도이다.3 is a detailed view of a method for producing trimanganese tetraoxide in the manganese compound according to the first embodiment of the present invention.
도 3을 참조하면, 상기 황산칼륨의 제조단계 중 S120에서 분리된 상기 제1고체를 재료로 사산화삼망가니즈를 제조할 수 있다.Referring to FIG. 3, trimanganese tetraoxide may be manufactured using the first solid material separated at S120 during the preparation of potassium sulfate.
상기 S120에서 분리된 상기 제1고체에 염산 및 황산 중 적어도 어느 하나와 환원제를 첨가하여 제4고액분리를 수행하여 제1망간침출액 및 제2고체를 획득한다(S210).At least one of hydrochloric acid and sulfuric acid and a reducing agent are added to the first solid separated in S120 to perform a fourth solid-liquid separation to obtain a first manganese leachate and a second solid (S210).
상기 염산은 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로, 바람직하게는 2 내지 4배의 비율로 물에 용해하여 상기 제1고체에 첨가한다. 상기 환원제는 옥살레이트기(C2O4 2-)를 포함하는 시약, 코크스 또는 아황산가스(SO2 gas)를 포함한다. 상기 옥살레이트기(C2O4 2-)를 포함하는 시약은, 옥살산(H2C2O4 2H2O) 또는 옥살산나트륨(Na2C2O4)을 포함한다. 환원제로서 옥살산(H2C2O4 2H2O)을 이용하면, 상기 제1고체에 포함된 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해하여 상기 제1고체에 첨가한다. 상기 염산 및 황산 중 적어도 어느 하나와 환원제의 첨가로 인하여 상기 제1고체에 포함된 망간은 하기 반응식3과 같은 반응을 통하여 염화망간으로 침출된다. The hydrochloric acid is dissolved in water at a ratio of 2 to 4 times the molar content of manganese contained in the first solid, preferably 2 to 4 times, and added to the first solid. The reducing agent comprises a reagent, coke or sulfur dioxide (SO 2 gas) containing an oxalate group (C 2 O 4 2- ). The reagent containing the oxalate group (C 2 O 4 2- ) includes oxalic acid (H 2 C 2 O 4 2H 2 O) or sodium oxalate (Na 2 C 2 O 4 ). When oxalic acid (H 2 C 2 O 4 2H 2 O) is used as a reducing agent, it is dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese contained in the first solid and added to the first solid. Due to the addition of at least one of hydrochloric acid and sulfuric acid and a reducing agent, manganese contained in the first solid is leached into manganese chloride through a reaction as in Scheme 3 below.
만약 환원제로서 코크스(Coke) 또는 아황산가스를 이용할 경우에는, 상기 제1고체에 코크스(Coke) 또는 아황산가스를 이용한 배소과정을 통하여 환원을 수행하고 상기 염산을 첨가하여 염화망간으로 침출한다. 코크스의 환원작용으로 인한 반응은 하기 반응식 4와 같다.If coke or sulfurous acid gas is used as a reducing agent, reduction is performed through roasting using coke or sulfurous acid gas to the first solid, and the hydrochloric acid is added to leach the manganese chloride. The reaction due to the reduction of coke is shown in Scheme 4 below.
[반응식 3]Scheme 3
MnO + 2HCl = MnCl2 + 2H+ MnO + 2HCl = MnCl 2 + 2H +
Mn2O3 + 2HCl = MnCl2 + MnO2 + H2OMn 2 O 3 + 2HCl = MnCl 2 + MnO 2 + H 2 O
MnO2 + 2HCl + H2C2O4 = MnCl2 + 2H2O + 2CO2 MnO 2 + 2HCl + H 2 C 2 O 4 = MnCl 2 + 2H 2 O + 2CO 2
Mn3O4 + 6HCl + H2C2O4 = 3MnCl2 + 4H2O + 2CO2 Mn 3 O 4 + 6HCl + H 2 C 2 O 4 = 3MnCl 2 + 4H 2 O + 2CO 2
[반응식 4]Scheme 4
Mn2O3 + C = CO + 2MnOMn 2 O 3 + C = CO + 2 MnO
CO + 1/2O2 = CO2 CO + 1 / 2O 2 = CO 2
상기 제1망간침출액에 수산화칼륨을 이용하여 철을 제거한다(S211).Iron is removed using potassium hydroxide in the first manganese leachate (S211).
상기 이용되는 수산화칼륨은 상기 S120의 제1칼륨침출액 또는 S131의 제2칼륨침출액에 포함되어 있는 수산화칼륨을 이용할 수 있다. 상기 수산화칼륨은 상기 제1망간침출액의 pH가 pH3이상이 되도록, 바람직하게는 pH3 내지 pH5.5가 되도록 첨가하여 철을 제거할 수 있으며, 제거되는 철은 Fe(OH)3 또는 FeOOH형으로 제거되며, 이 반응은 하기 반응식 5와 같다. The potassium hydroxide used may be potassium hydroxide contained in the first potassium leachate of S120 or the second potassium leachate of S131. The potassium hydroxide may be removed by adding so that the pH of the first manganese leachate to pH 3 or more, preferably pH 3 to pH 5.5, the iron is removed in the form of Fe (OH) 3 or FeOOH This reaction is shown in Scheme 5 below.
[반응식 5] Scheme 5
FeCl2 + 2KOH = Fe(OH)2 + 2KClFeCl 2 + 2KOH = Fe (OH) 2 + 2KCl
FeCl3 + 3KOH = Fe(OH)3 + 3KClFeCl 3 + 3KOH = Fe (OH) 3 + 3KCl
상기 수산화칼륨의 첨가로 인하여 철이 침전되면 고액분리를 수행하여 슬러리는 폐기하고, 철이 제거된 망간침출액을 획득할 수 있다.When iron precipitates due to the addition of potassium hydroxide, solid-liquid separation may be performed to dispose of the slurry, thereby obtaining manganese leachate from which iron has been removed.
상기 철이 제거된 망간침출액에 황화물 및 수산화칼륨을 첨가하여 제2불순물을 제거하여 제2망간침출액을 획득한다(S220).Sulfate and potassium hydroxide are added to the manganese leachate from which iron is removed to remove a second impurity to obtain a second manganese leachate (S220).
상기 철이 제거된 망간침출액에는 니켈(Ni), 납(Pb), 아연(Zn), 코발트(Co), 구리(Cu) 등의 제2불순물을 포함하고, 이러한 불순물은 황화물을 첨가하여 황화물의 형태로 침전하여 제거할 수 있다.The manganese leaching solution from which iron is removed includes a second impurity such as nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), and such impurities are added to sulfides to form sulfides. Can be removed by precipitation.
상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, 상기 황화물은 상기 제2불순물 전체 몰량의 10 내지 50배의 비율, 바람직하게는 15 내지 45배의 비율, 더욱 바람직하게 30 내지 35배의 비율로 첨가되며, 상기 첨가되는 황화물의 pH는 pH7 내지 pH8, 바람직하게 pH8로 조정된 것을 이용될 수 있다. 상기 황화물을 첨가하여 약 10분 내지 100분, 바람직하게 20분 내지 80분, 더욱 바람직하게 30분 내지 60분 동안 반응시킨다.The sulfide comprises at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), wherein the sulfide is in a ratio of 10 to 50 times the total molar amount of the second impurity, preferably It is added at a ratio of 15 to 45 times, more preferably 30 to 35 times, and the pH of the added sulfide may be adjusted to pH 7 to pH 8, preferably pH 8. The sulfide is added to react for about 10 to 100 minutes, preferably 20 to 80 minutes, more preferably 30 to 60 minutes.
상기 황화물을 첨가하여 반응을 시킨 뒤, 수산화칼륨을 상기 철이 제거된 망간침출액의 pH가 pH5 내지 pH6이 되도록 약 10 내지 60분, 바람직하게는 10 내지 40분, 더욱 바람직하게는 20 내지 30분 동안 반응시키면, 상기 철 이외의 불순물인 니켈(Ni), 납(Pb), 아연(Zn), 코발트(Co) 또는 구리(Cu)은 황화물의 형태(NiS, PbS, ZnS, CoS, CuS)로 침전될 수 있다.After reacting by adding the sulfide, potassium hydroxide was added for about 10 to 60 minutes, preferably 10 to 40 minutes, more preferably 20 to 30 minutes so that the pH of the iron-manganese leachate was pH5 to pH6. When reacting, nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), or copper (Cu), which are impurities other than the iron, are precipitated in the form of sulfides (NiS, PbS, ZnS, CoS, CuS). Can be.
여기에서 상기 수산화칼륨은 상기 S120의 제1칼륨침출액 또는 상기S131의 제2칼륨침출액에 포함되어 있는 수산화칼륨을 이용할 수 있다.The potassium hydroxide may be potassium hydroxide contained in the first potassium leachate of S120 or the second potassium leachate of S131.
상기 황화물 및 수산화칼륨의 첨가로 인하여 제2불순물이 황화물 형태로 침전되면 고액분리를 통하여 황화물 슬러리는 폐기하고, 제2불순물이 제거된 제2망간침출액을 획득한다.When the second impurity precipitates in the form of sulfide due to the addition of the sulfide and potassium hydroxide, the sulfide slurry is discarded through solid-liquid separation to obtain a second manganese leachate from which the second impurity is removed.
상기 제2망간침출액에 수산화칼륨을 이용하여 pH 조절을 통하여 망간을 침전한다(S231).Manganese is precipitated by adjusting pH using potassium hydroxide in the second manganese leachate (S231).
S230단계에서 획득된 제2망간침출액에는 망간, 마그네슘, 칼슘, 칼륨 등이 용해되어 있어 망간을 선택적으로 침전시킬 필요가 있다. 이에 따라 수산화칼륨 용액을 1M이상으로 희석하여 60 내지 70의 온도에서 비산화 분위기에서 상기 제2망간침출액에 pH 7 내지 pH9가 되도록 첨가하여 망간을 침전시킨다.Manganese, magnesium, calcium, potassium, etc. are dissolved in the second manganese leachate obtained in step S230 it is necessary to selectively precipitate manganese. Accordingly, the potassium hydroxide solution is diluted to 1 M or more and added to the second manganese leachate to pH 7 to pH 9 in a non-oxidizing atmosphere at a temperature of 60 to 70 to precipitate manganese.
상기 적정 pH보다 낮으면 망간(Mn)의 회수율은 낮아지며 상기 pH보다 높은 경우 불순물의 침전이 발생하게 되어 최종산물의 순도가 저하될 수 있다.If the pH is lower than the appropriate pH, the recovery of manganese (Mn) is lowered. If the pH is higher than the pH, precipitation of impurities may occur, thereby lowering the purity of the final product.
상기 침전된 망간의 형태는 Mn(OH)2를 포함한다.The precipitated manganese form includes Mn (OH) 2 .
제5고액분리를 수행하여 상기 S231에서 침전된 망간산화물을 획득하고, 상기 침전된 망간 산화물은 60 내지 90의 온도에서 비산화분위기에서 물을 이용하여 세척하는 단계를 더 포함할 수 있다(S233). 상기 세척을 통하여 망간산화물 중 기타의 불순물이 제거되는 효과를 가진다. A fifth solid-liquid separation may be performed to obtain manganese oxide precipitated in S231, and the precipitated manganese oxide may further include washing with water in a non-oxidizing atmosphere at a temperature of 60 to 90 (S233). . The washing has the effect of removing other impurities in the manganese oxide.
상기 제5고액분리를 통하여 침전된 망간산화물을 분리하고 남은 용액은 상기 황산칼륨의 회수 단계 중 S110의 칼륨 침전을 위한 물 대신에 사용될 수도 있다.The remaining solution after separating the manganese oxide precipitated through the fifth solid-liquid separation may be used in place of water for potassium precipitation of S110 during the recovery step of the potassium sulfate.
상기 세척된 망간산화물에 열처리 및 급냉을 수행하여 고순도 사산화삼망가니즈를 제조할 수 있다(S235). Heat-treatment and quenching may be performed on the washed manganese oxide to prepare high purity trimanganese tetraoxide (S235).
상기 세척된 망간산화물은 건조기를 이용하여 건조하고 건조 후 800 내지 1100의 온도에서 열처리를 수행한다. 로타리킬른 소각로와 같은 장비를 사용하여 열처리를 하며 열처리시 시료가 충분히 반응 할 수 있도록 섞어 주어 산화분위기가 이루어질 수 있도록 한다. 또한 상기 열처리 후 급냉하는 단계를 포함한다. 상기 열처리에 의하여 불순물이 제거된 망간은 Mn2O3로 환원되어 있으며, 이를 Mn3O4망간화합물로 산화시키기 위하여 급속 냉각한다. 상기 열처리를 수행한 후 빠른 시간 내에 실온으로 냉각시킬 수 있다. 이를 통하여 이차전지에 이용될 수 있는 고순도의 사산화삼망가니즈(Mn3O4)를 제조할 수 있으며 이 반응은 하기 반응식 6, 7 과 같다. The washed manganese oxide is dried using a drier and heat-treated at a temperature of 800 to 1100 after drying. Heat treatment is performed using equipment such as rotary kiln incinerator, and the sample is mixed to allow sufficient reaction during the heat treatment. It also includes the step of quenching after the heat treatment. Manganese from which impurities are removed by the heat treatment is reduced to Mn 2 O 3 , and rapidly cooled to oxidize it to Mn 3 O 4 manganese compound. After performing the heat treatment can be cooled to room temperature within a short time. Through this process, high purity trimanganese tetraoxide (Mn 3 O 4 ) that can be used in a secondary battery can be prepared, and the reaction is shown in Schemes 6 and 7.
[반응식 6] Scheme 6
2Mn(OH)2 + 1/2O2 Mn2O3 + 2H2O 2Mn (OH) 2 + 1 / 2O 2 Mn 2 O 3 + 2H 2 O
[반응식 7] Scheme 7
MnO + Mn2O3 = Mn3O4 MnO + Mn 2 O 3 = Mn 3 O 4
도 4는 본 발명의 제1실시예에 따른 망간화합물 중 황산망간일수화물의 제조방법의 상세도이다.4 is a detailed view of a method of preparing manganese sulfate monohydrate in a manganese compound according to a first embodiment of the present invention.
도 4를 참조하면, 상기 고순도 사산화삼망가니즈의 제조단계 중 S210에서 획득한 제1망간침출액을 이용하여 황산망간일수화물을 제조할 수 있다. 더욱 바람직하게는 상기 S211단계를 통하여 철이 제거된 망간침출액을 이용하여 황산망간일수화물을 제조할 수 있다.Referring to FIG. 4, manganese sulfate monohydrate may be prepared using the first manganese leachate obtained in S210 during the preparation of the high purity trimanganese tetraoxide. More preferably, manganese sulfate monohydrate can be prepared using the manganese leachate from which iron has been removed through step S211.
상기 제1망간침출액에 황화물을 이용하여 제3불순물을 제거하여 제3망간침출액을 획득한다(S310).상기 제3불순물은 니켈(Ni), 납(Pb), 아연(Zn), 코발트(Co), 구리(Cu) 등을 포함하고, 이러한 불순물은 황화물을 첨가하여 황화물의 형태로 침전하여 제거할 수 있다. The third manganese leachate is obtained by removing the third impurity by using sulfide in the first manganese leachate (S310). The third impurity is nickel (Ni), lead (Pb), zinc (Zn), and cobalt (Co). ), Copper (Cu), and the like, and these impurities can be removed by precipitation in the form of sulfides by addition of sulfides.
상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, 상기 황화물은 상기 제3불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가한다.The sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and the sulfide is added after dissolving 2 to 5 times the total molar amount of the third impurity in water. do.
상기 제3불순물이 황화물 형태로 침전되면 고액분리를 수행하여 황화물 슬러리는 폐기하고 제3불순물이 제거된 제3망간침출액을 획득한다.When the third impurity is precipitated in the form of sulfide, solid-liquid separation is performed to discard the sulfide slurry and to obtain a third manganese leachate from which the third impurity is removed.
상기 제3망간침출액에 수산화칼륨을 이용하여 pH조절을 수행하여 망간을 침전시킨다(S321).PH adjustment is performed using potassium hydroxide in the third manganese leachate to precipitate manganese (S321).
상기 제3망간침출액에는 망간, 마그네슘, 칼슘, 칼륨 등이 용해되어 있어 망간을 선택적으로 침전시킬 필요가 있다. 이에 따라 수산화칼륨 용액을 1M이상으로 희석하여 60 내지 70의 온도에서 비산화 분위기에서 상기 제3 망간침출액에 pH 7 내지 pH9가 되도록 첨가하여 망간을 침전시킨다. 상기 적정 pH보다 낮으면 망간(Mn)의 회수율은 낮아지며 상기 pH보다 높은 경우 불순물의 침전이 발생하게 되어 최종산물의 순도가 저하될 수 있다.Manganese, magnesium, calcium, potassium and the like are dissolved in the third manganese leachate, and it is necessary to selectively precipitate manganese. Accordingly, the potassium hydroxide solution is diluted to 1 M or more and added to the third manganese leachate to pH 7 to pH 9 in a non-oxidizing atmosphere at a temperature of 60 to 70 to precipitate manganese. If the pH is lower than the appropriate pH, the recovery of manganese (Mn) is lowered. If the pH is higher than the pH, precipitation of impurities may occur, thereby lowering the purity of the final product.
상기 수산화칼륨은, 상기 S120의 제1칼륨침출액 또는 S131의 제2칼륨침출액에 포함되어 있는 수산화칼륨을 이용할 수 있다.As the potassium hydroxide, potassium hydroxide contained in the first potassium leachate of S120 or the second potassium leachate of S131 may be used.
상기 침전된 망간의 형태는 Mn(OH)2를 포함한다.The precipitated manganese form includes Mn (OH) 2 .
제6고액분리를 수행하여 상기 S321에서 침전된 망간산화물을 획득한 후 세척을 수행한다(S323).The sixth solid-liquid separation is performed to obtain manganese oxide precipitated in S321 and then washed (S323).
상기 제6고액분리 후 획득된 망간산화물은 60 내지 90의 온도에서 비산화분위기에서 물을 이용하여 세척하는 단계를 더 포함할 수 있다. 상기 세척을 통하여 망간산화물 중 기타의 불순물이 제거되는 효과를 가진다. The manganese oxide obtained after the sixth solid-liquid separation may further comprise the step of washing with water in a non-oxidizing atmosphere at a temperature of 60 to 90. The washing has the effect of removing other impurities in the manganese oxide.
상기 제6고액분리를 통하여 침전된 망간산화물을 분리하고 남은 용액은 상기 황산칼륨의 회수 단계 중 S110의 칼륨 침전을 위한 물 대신에 사용될 수도 있다.The remaining solution after separating the manganese oxide precipitated through the sixth solid-liquid separation may be used in place of water for potassium precipitation of S110 during the recovery step of the potassium sulfate.
상기 세척 후 획득한 망간산화물에 황산을 첨가하여 재용해한다(S325).The sulfuric acid is added to the manganese oxide obtained after the washing and redissolved (S325).
상기 첨가되는 황산의 양은 상기 망간산화물에 포함된 망간 몰 함량의 0.5 내지 1.5배의 비율로 첨가하며, 이 반응은 하기 반응식 8과 같다. The amount of sulfuric acid added is added at a ratio of 0.5 to 1.5 times the molar content of manganese contained in the manganese oxide, and the reaction is shown in Scheme 8 below.
[반응식 8] Scheme 8
MnO + H2SO4 = MnSO4 + H2O MnO + H 2 SO 4 = MnSO 4 + H 2 O
Mn2O3 + H2SO4 = MnSO4 + MnO2 + H2O Mn 2 O 3 + H 2 SO 4 = MnSO 4 + MnO 2 + H 2 O
상기 황산에 의하여 재용해된 용액을 중화하는 단계를 더 포함할 수 있다. The method may further include neutralizing the solution redissolved by sulfuric acid.
상기 중화반응을 위한 시약은 S321단계의 망간산화물을 이용할 수 있으며, 상기 S321단계의 망간산화물은 상기 재용해액의 pH가 pH4 내지 pH6이 되도록 중화시킨다. Reagents for the neutralization reaction may be used manganese oxide of step S321, the manganese oxide of step S321 is neutralized so that the pH of the re-dissolution solution is pH4 to pH6.
상기 중화용액은 제7고액분리를 수행하여 제4망간침출액을 획득한다(S327). The neutralizing solution performs a seventh solid-liquid separation to obtain a fourth manganese leachate (S327).
또한, 상기 획득된 제4망간침출액은 진공 증발을 수행하여 결정화함으로써 고순도 황산망간일수화물을 제조한다(S329). In addition, the obtained fourth manganese leachate is crystallized by performing vacuum evaporation to prepare a high purity manganese sulfate monohydrate (S329).
상기 진공증발을 위한 적정 포화증기압은 0.57~0.7kgf/cm2, 바람직하게는 0.6~0.6.5kgf/cm2이고, 온도 85 내지 90하에서 진공증발을 수행한다. 상기 온도조건보다 낮을 경우 증발점이 80보다 낮아져 황산망간 일수화물(MnSO4·H2O)이 아닌 황산망간오수화물(MnSO4 5H20)이 생성될 수 있다. 또한 상기 온도 조건보다 높을 경우 에너지 효율이 떨어져 경제성이 낮아질 수 있다. The appropriate saturated steam pressure for the vacuum evaporation is 0.57 ~ 0.7kgf / cm 2 , preferably 0.6 ~ 0.6.5kgf / cm 2 , the vacuum evaporation is carried out at a temperature of 85 to 90. When the temperature is lower than the evaporation point, the evaporation point may be lower than 80, thereby producing manganese sulfate pentahydrate (MnSO 4 5H 2 0) instead of manganese sulfate monohydrate (MnSO 4 · H 2 O). In addition, when the temperature is higher than the above conditions, the energy efficiency may be lowered, resulting in lower economic efficiency.
도 5는 본 발명의 제1실시예에 따른 망간 및 칼륨을 함유하는 비료의 제조방법의 상세도이다.Figure 5 is a detailed view of the manufacturing method of the fertilizer containing manganese and potassium according to the first embodiment of the present invention.
상기 도 3의 S210단계에서 획득한 제2고체에 염산 및 산화제를 첨가하여 납을 침출한다(S410). 상기 염산은 2M 내지 5M의 농도로 물에 희석하여 첨가되고, 바람직하게는 2.5M 내지 3.5M, 더욱 바람직하게는 3M의 농도로 희석하여 첨가된다. Leaching lead by adding hydrochloric acid and an oxidizing agent to the second solid obtained in step S210 of FIG. 3 (S410). The hydrochloric acid is added by dilution in water at a concentration of 2M to 5M, preferably at a concentration of 2.5M to 3.5M, more preferably 3M.
상기 산화제는 과산화수소(H2O2)를 포함하고, 상기 과산화수소는 상기 제2고체에 포함된 납에 대하여 2 내지 10배의 몰비로 첨가되고, 바람직하게는 2 내지 4배의 몰비, 더욱 바람직하게는 3배의 몰비로 첨가된다. The oxidant comprises hydrogen peroxide (H 2 O 2 ), the hydrogen peroxide is added in a molar ratio of 2 to 10 times with respect to the lead contained in the second solid, preferably 2 to 4 times molar ratio, more preferably Is added in three molar ratios.
상기 염산 및 산화제의 첨가에 의하여 납이 침출되면, 제8고액분리를 수행하여 납이 침출된 액은 제거하고, 제3고체를 획득한다(S411). When lead is leached by the addition of the hydrochloric acid and the oxidizing agent, the eight solid solution separation is performed to remove the lead leached liquid, thereby obtaining a third solid (S411).
상기 제3고체를 건조하여 칼륨 및 망간이 함유된 비료가 제조된다(S420). 상기 비료에 포함된 납의 함량은 0.03% 이하로 아주 극소량만 잔존하게 된다. 상기 비료에 함유된 망간 및 칼륨의 함량을 알려진 방법에 의하여 측정한 결과, 망간은 약 4%, 칼륨은 3% 이상이 포함되어 있다. 이로 인하여, 그 자체로 충분히 비료로 이용될 수 있거나 또는 망간 및/또는 칼륨이 부족한 다른 비료와 혼합하여 사용될 수도 있다. Drying the third solid to prepare a fertilizer containing potassium and manganese (S420). The content of lead contained in the fertilizer is 0.03% or less and only a very small amount remains. As a result of measuring the content of manganese and potassium contained in the fertilizer by a known method, about 4% of manganese, more than 3% of potassium is contained. Because of this, it can be used as a fertilizer by itself or mixed with other fertilizers lacking manganese and / or potassium.
이와 같이 본 발명에 따르면, 고순도 사산화삼망가니즈 또는 고순도 황산망간 일수화물의 제조단계에 이용되는 수산화칼륨은, 고순도 황산칼륨의 제조 단계 중에 생성되는 제1칼륨침출액 또는 제2칼륨침출액에 포함되어 있는 수산화칼륨을 이용할 수 있다. 상기 수산화칼륨은 망간침출액의 pH 조절에 이용되는 것으로서, pH조절을 위하여 수산화나트륨(NaOH)이 이용될 수 있는데, 수산화나트륨(NaOH)의 원가가 고가이어서 경제적이지 못하다. 따라서, 본 발명에 따르면 망간침출액의 pH조절에 이용되는 수산화칼륨을 별도로 구입하여 첨가하여 사용할 수 도 있으나, 고순도 황산칼륨의 제조 단계 중에 생성되는 제1칼륨침출액 또는 제2칼륨침출액에 포함되어 있는 수산화칼륨을 이용하는 경우에는 원가절감의 효과가 상당히 탁월한 효과를 누릴 수 있다. As described above, according to the present invention, potassium hydroxide used in the preparation of high purity trimanganese tetraoxide or high purity manganese sulfate monohydrate is a hydroxide contained in the first potassium leaching liquid or the second potassium leaching liquid produced during the production of high purity potassium sulfate. Potassium can be used. The potassium hydroxide is used to adjust the pH of the manganese leachate, sodium hydroxide (NaOH) may be used for pH control, the cost of sodium hydroxide (NaOH) is not economical because it is expensive. Therefore, according to the present invention, potassium hydroxide used for pH control of manganese leachate may be separately purchased and used, but the hydroxide contained in the first potassium leachate or the second potassium leachate produced during the preparation of high purity potassium sulfate may be used. When using potassium, the cost savings effect can be quite excellent.
제2실시예Second embodiment
도 6은 본 발명의 제2실시예에 따른 고순도 망간화합물 및 고순도 황산칼륨 제조의 개략적인 플로우차트이다. 6 is a schematic flowchart of preparation of high purity manganese compound and high purity potassium sulfate according to the second embodiment of the present invention.
도 6에서 보는 바와 같이, 본 발명의 제2실시예에 따른 망간화합물 및 황산칼륨의 제조방법은, 저순도 망간 및 칼륨 함유물에 물을 첨가하여 칼륨을 침출하고(S1110), 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리한다(S1120). As shown in Figure 6, in the method for producing a manganese compound and potassium sulfate according to a second embodiment of the present invention, leaching potassium by adding water to the low-purity manganese and potassium containing (S1110), the first solid-liquid separation Separating the first potassium leaching solution and the first solid containing potassium hydroxide through (S1120).
상기 제1고액분리를 통하여 분리된 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고(S1130), 황산 또는 황산나트륨을 첨가하여 고순도 황산칼륨을 제조한다(S1140). Sulfide is added to the first potassium leachate separated through the first solid-liquid separation to remove the first impurity (S1130), and sulfuric acid or sodium sulfate is added to prepare high-purity potassium sulfate (S1140).
상기 S1120단계에서 분리된 제1고체에 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계(S1210)와, 황화물 및 수산화칼륨을 첨가하여 제2불순물을 제거하여 망간침출액을 획득하는 단계(S1220)와, 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계(S1230)와, 상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 획득하는 단계(S1240)를 포함한다. Adding sulfuric acid to the first solid separated in step S1120 and roasting it to convert it into manganese sulfate (S1210), and adding a sulfide and potassium hydroxide to remove a second impurity to obtain a manganese leachate (S1220) and To obtain the manganese sulfate solution by sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate (S1230), and drying the manganese sulfate solution to obtain a high purity manganese sulfate monohydrate (S1240).
상기 S1220단계, S1230단계에 사용되는 수산화칼륨은 상기 S1120단계의 제1칼륨침출액을 이용하여도 무방하다. The potassium hydroxide used in the steps S1220 and S1230 may be the first potassium leach solution of the step S1120.
또한, 상기 S1230단계에서 획득한 황산망간수용액을 전해채취방법(Electrowinning)을 이용하여 EMM(Electronic Manganese Metal)을 제조할 수 있다(S1310). In addition, the manganese sulfate aqueous solution obtained in step S1230 may be prepared by using an electrowinning method (Electrowinning) EMM (Electronic Manganese Metal) (S1310).
또한, 상기 S1220단계에서 획득한 망간침출액에 수산화칼륨을 이용하여 수산화망간을 침전하는 단계(S1410)와, 상기 수산화망간을 건조 및 급냉하여 고순도 사산화삼망가니즈를 제조하는 단계(S1420)를 포함한다. 상기 S1410단계의 수산화칼륨은 역시 상기 S1120단계의 제1칼륨침출액을 이용하여도 무방하다. In addition, the step of precipitating manganese hydroxide using potassium hydroxide in the manganese leachate obtained in step S1220 (S1410), and drying and quenching the manganese hydroxide to prepare a high-purity trimanganese tetraoxide (S1420). The potassium hydroxide of step S1410 may also use the first potassium leach solution of step S1120.
이를 통하여 본 발명은 저순도 망간 및 칼륨 함유물로부터 황산칼륨, 황산망간일수화물, EMM 및 사산화삼망가니즈를 하나의 프로세스를 통하여 제조할 수 있는 방법을 제공한다. Through this, the present invention provides a method for producing potassium sulfate, manganese sulfate monohydrate, EMM and trimanganese tetraoxide from low purity manganese and potassium content through one process.
이하, 각 화합물의 제조프로세스를 도 7 및 도 8을 통하여 더욱 상세히 설명하도록 한다. Hereinafter, the preparation process of each compound will be described in more detail with reference to FIGS. 7 and 8.
도 7은 본 발명의 제2 실시예에 따른 고순도 황산칼륨 제조의 플로우차트이다. 7 is a flowchart of preparation of high purity potassium sulfate according to a second embodiment of the present invention.
도 7을 참조하면, 저순도 망간 및 칼륨 함유물에 물을 첨가하여 칼륨을 침출한다(S1110). 상기 저순도 망간 및 칼륨 함유물은 저순도 망간, 칼륨 광석이나 부산물인 망간, 칼륨 더스트에 물을 첨가하여 칼륨을 침출시킨다. Referring to FIG. 7, potassium is leached by adding water to low-purity manganese and potassium-containing materials (S1110). The low-purity manganese and potassium-containing products leach potassium by adding water to low-purity manganese, potassium ore or by-product manganese, potassium dust.
상기 저순도 망간 및 칼륨 함유물에 물을 첨가하면 하기 반응식 1과 같은 반응을 통하여 수산화칼륨이 침출된다. 상기 물은 상기 저순도 망간 및 칼륨 함유물의 부피비로 약 2 내지 4배, 바람직하게는 2 내지 3배, 더욱 바람직하게2.5배 정도를 첨가하는 것으로 교반이 잘 될 수 있는 정도의 양을 첨가한다. When water is added to the low-purity manganese and potassium-containing compounds, potassium hydroxide is leached through a reaction as in Scheme 1 below. The water is added in an amount that can be well stirred by adding about 2 to 4 times, preferably 2 to 3 times, more preferably about 2.5 times, by volume ratio of the low purity manganese and potassium containing.
[반응식 1] Scheme 1
K2O + H2O = 2KOH K 2 O + H 2 O = 2 KOH
제1고액분리를 수행하여 상기 침출된 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리한다(S1120). The first solid solution is separated to separate the first potassium leachate containing the leached potassium hydroxide and the first solid (S1120).
상기 S1120의 제1고액분리를 통하여 획득된 제1칼륨침출액은 고순도 황산칼륨의 제조를 위한 다음단계에 이용되거나, 또는 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용될 수 있다. The first potassium leachate obtained through the first solid-liquid separation of S1120 is used in the next step for the production of high purity potassium sulfate, or of the potassium hydroxide used for the production of high-purity trimanganese tetraoxide or the production of high-purity manganese sulfate monohydrate. It can be used as a material.
또한 상기 S1120의 제1고액분리를 통하여 획득된 제1고체는 망간화합물인 고순도 사산화삼망가니즈, 황산망간일수화물, EMM의 제조를 위한 재료로 이용될 수 있다. In addition, the first solid obtained through the first solid-liquid separation of S1120 may be used as a material for manufacturing high purity trimanganese tetraoxide, manganese sulfate monohydrate, and EMM which are manganese compounds.
상기 S1120의 제1칼륨침출액 중 제1불순물을 제거하기 위하여 황화물을 첨가하여 제1불순물을 황화물 형태로 침전시킨다(S1130). In order to remove the first impurity in the first potassium leachate of S1120, a sulfide is added to precipitate the first impurity in the form of sulfide (S1130).
상기 제1불순물에는 납(Pb), 니켈(Ni), 아연(Zn), 코발트(Co) 또는 구리(Cu) 등의 중금속을 포함한다. The first impurity includes heavy metals such as lead (Pb), nickel (Ni), zinc (Zn), cobalt (Co) or copper (Cu).
상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, 상기 제1불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가한다. 이러한 황화물의 첨가로 인하여 제1불순물은 황화물의 형태(NiS, PbS, ZnS, CoS, CuS)로 침전된다. The sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and is added after dissolving 2 to 5 times the total molar amount of the first impurity in water. Due to the addition of these sulfides, the first impurity precipitates in the form of sulfides (NiS, PbS, ZnS, CoS, CuS).
제2고액분리를 통하여 상기 황화물 슬러리는 폐기하여 제1불순물이 제거된 제2칼륨침출액을 획득한다(S1131). 상기 S1131의 제1불순물이 제거된 제2칼륨침출액은 고순도 황산칼륨의 제조를 위한 다음단계에 이용되거나, 또는 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용될 수 있다. 상기 S1120의 제1칼륨침출액보다 S1131의 제2칼륨침출액이 불순물이 제거되었기에 제2칼륨침출액이 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용되는 것이 바람직하다. Through the second solid-liquid separation, the sulfide slurry is discarded to obtain a second potassium leachate from which the first impurity is removed (S1131). The second potassium leachate from which the first impurity of S1131 is removed is used as a next step for the preparation of high purity potassium sulfate, or as a material of potassium hydroxide used for the production of high purity trimanganese tetraoxide or the preparation of high purity manganese sulfate monohydrate. Can be used. Since the impurities of the second potassium leachate of S1131 are removed from the first potassium leachate of S1120, it is preferable that the second potassium leachate is used as a material of potassium hydroxide used for the production of high purity trimanganese tetraoxide or high purity manganese sulfate monohydrate. Do.
상기 제2칼륨침출액에 황산 또는 황산나트륨을 첨가하여 황산칼륨을 침전시킨다(S1141). 상기 황산 또는 황산나트륨은 칼륨 몰비의 0.1 내지 3배, 바람직하게 0.5 내지 2배를 첨가한다. Potassium sulfate is precipitated by adding sulfuric acid or sodium sulfate to the second potassium leachate (S1141). The sulfuric acid or sodium sulfate is added 0.1 to 3 times, preferably 0.5 to 2 times the potassium molar ratio.
상기 황산 첨가에 의한 반응은 하기 반응식 2와 같다. The reaction by adding sulfuric acid is shown in Scheme 2 below.
[반응식 2] Scheme 2
2KOH + H2SO4 = K2SO4 + 2H2O 2KOH + H 2 SO 4 = K 2 SO 4 + 2H 2 O
2KOH + Na2SO4 = K2SO4 + 2H2O 2KOH + Na 2 SO 4 = K 2 SO 4 + 2H 2 O
상기 황산칼륨이 침전되면 제3고액분리를 수행하여 고체의 고순도(99% 이상) 황산칼륨(K2SO4)을 제조할 수 있다.When the potassium sulfate precipitates, a third solid-liquid separation may be performed to prepare high purity (more than 99%) potassium sulfate (K 2 SO 4 ) as a solid.
도 8은 본 발명의 제2실시예에 따른 고순도 황산망간일수화물 제조의 플로우차트이다.8 is a flowchart of manufacturing high purity manganese sulfate monohydrate according to the second embodiment of the present invention.
도 8을 참조하면, 도 7의 S1120단계에서 획득한 제1고체에 황산을 첨가하여 배소시켜 황산망간으로 변환시킨다(S1210). 상기 첨가되는 황산은 희석된 황산을 사용하는 것이 바람직한데, 예를 들어 상기 황산은 상기 제1고체에 포함된 망간 몰 함량의 1 내지 3배의 비율로, 바람직하게는 1.5 내지 3배의 비율로 물에 희석하여 첨가된다. 상기 배소온도는 300 내지 1000, 바람직하게는 500 내지 800로 배소하여 상기 제1고체를 황산망간으로 변환시키며 반응식은 하기와 같다.Referring to FIG. 8, sulfuric acid is added and roasted to the first solid obtained in step S1120 of FIG. 7 to be converted into manganese sulfate (S1210). The sulfuric acid to be added is preferably a diluted sulfuric acid, for example, the sulfuric acid in a ratio of 1 to 3 times the molar content of manganese contained in the first solid, preferably in a ratio of 1.5 to 3 times Dilute in water and add. The roasting temperature is 300 to 1000, preferably 500 to 800 roasted to convert the first solid to manganese sulfate, the reaction scheme is as follows.
[반응식 3] Scheme 3
MnO + H2SO4 = MnSO4 + H2OMnO + H 2 SO 4 = MnSO 4 + H 2 O
Mn2O3 + H2SO4 = MnSO4 + MnO2 + H2OMn 2 O 3 + H 2 SO 4 = MnSO 4 + MnO 2 + H 2 O
상기 S1210단계에서 획득한 황산망간에 황화물 및 수산화칼륨을 첨가하여 제2불순물을 제거하여 망간침출액을 획득한다(S1220). 본 단계는 하기와 같이 더욱 상세한 단계를 포함할 수 있다.Manganese leachate is obtained by adding a sulfide and potassium hydroxide to manganese sulfate obtained in step S1210 to remove the second impurity (S1220). This step may include more detailed steps as follows.
상기 S1210단계에서 획득한 황산망간에 물을 첨가하여 제1망간침출액을 획득한다(S1221).The first manganese leachate is obtained by adding water to the manganese sulfate obtained in step S1210 (S1221).
상기 제1망간침출액에 수산화칼슘(Ca(OH)2)을 이용하여 철이 제거된 제2망간침출액을 획득한다(S1223). 상기 제1망간침출액의 pH가 적어도 pH3이상, 바람직하게는 pH3 내지 pH5.5가 되도록 수산화칼슘을 첨가하여 철이 제거되도록 할 수 있다. 이때 제거되는 철은 Fe(OH)3또는 FeOOH의 형태로 제거되며, 본 반응은 하기 반응식과 같다.Using calcium hydroxide (Ca (OH) 2 ) as the first manganese leachate, a second manganese leachate from which iron is removed is obtained (S1223). Calcium hydroxide may be added to remove the iron so that the pH of the first manganese leachate is at least pH3, preferably pH3 to pH5.5. At this time, the iron is removed in the form of Fe (OH) 3 or FeOOH, the reaction is shown in the following scheme.
[반응식 4]Scheme 4
Fe2(SO4)3 + 3Ca(OH)2 = 2Fe(OH)3 + 3CaSO4 Fe 2 (SO 4 ) 3 + 3Ca (OH) 2 = 2Fe (OH) 3 + 3CaSO 4
상기 철이 제거된 제2망간침출액에 황화물을 첨가하여 철 이외의 불순물이 제거된 제3망간침출액을 획득한다(S1225).Sulfide is added to the second manganese leachate from which iron is removed to obtain a third manganese leachate from which impurities other than iron are removed (S1225).
상기 철이 제거된 제2망간침출액에는 철 이외의 켈(Ni), 납(Pb), 아연(Zn), 코발트(Co), 구리(Cu) 등의 불순물을 더 포함할 수 있다. 이에 따라, 상기 제2망간침출액에 황화물을 첨가하여 철 이외의 불순물을 황화물의 형태로 침전하여 제거할 수 있다.The second manganese leachate from which the iron is removed may further include impurities such as nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), and copper (Cu) other than iron. Accordingly, sulfides may be added to the second manganese leachate to precipitate and remove impurities other than iron in the form of sulfides.
상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S)적어도 어느 하나를 포함하고, 상기 황화물은 철 이외의 불순물 전체 몰량의 2 내지 50배의 비율 바람직하게는 2 내지 10배의 비율로, 더욱 바람직하게는 3 내지 6배의 비율로 첨가 할 수 있다.The sulfide comprises sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S) at least one, the sulfide is a ratio of 2 to 50 times the total molar amount of impurities other than iron, preferably 2 It may be added in a ratio of 10 to 10 times, more preferably in a ratio of 3 to 6 times.
상기 황화물의 첨가로 철 이외의 불순물이 황화물의 형태로 침전되면, 고액분리를 통하여 황화물 슬러리는 폐기하고, 상기 철 이외의 불순물이 제거된 제3망간침출액을 획득할 수 있다.When impurities other than iron are precipitated in the form of sulfide by addition of the sulfide, the sulfide slurry may be discarded through solid-liquid separation to obtain a third manganese leachate from which impurities other than iron are removed.
상기 불순물이 제거된 제3망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득한다(S1230). 본 단계는 하기와 같이 더욱 상세한 단계를 포함할 수 있다.Potassium hydroxide and sulfuric acid are sequentially added to the third manganese leachate from which the impurities are removed to obtain an aqueous manganese sulfate solution (S1230). This step may include more detailed steps as follows.
상기 제3망간침출액에 수산화칼륨을 첨가하여 수산화망간으로 침전시킨다(S1231).Potassium hydroxide is added to the third manganese leachate to precipitate into manganese hydroxide (S1231).
상기 S1225단계에서 획득한 망간침출액에는 망간, 마그네슘, 칼슘, 칼륨 등이 용해되어 있어 망간을 선택적으로 침전시킬 필요가 있다. 이에 따라 수산화칼륨 용액을 1M이상으로 희석하여 60 내지 70의 온도에서 비산화분위 하에 상기 제3망간침출액에 pH6 내지 pH9되도록 첨가하여 망간이 수산화망간(Mn(OH)2)의 형태로 침전되도록 한다. 상기 적정 pH보다 낮으면 망간(Mn)의 회수율이 낮아지고, 상기 pH보다 더 높으면 불순물의 침전이 발생할 수 있기에 최종산물의 순도가 저하될 수 있다.Manganese leaching liquid obtained in step S1225 is dissolved manganese, magnesium, calcium, potassium, etc., it is necessary to selectively precipitate manganese. Accordingly, the potassium hydroxide solution is diluted to 1 M or more and added to the third manganese leachate to pH 6 to pH 9 at a temperature of 60 to 70 at a temperature of 60 to 70 so that manganese is precipitated in the form of manganese hydroxide (Mn (OH) 2 ). . If the pH is lower than the appropriate pH, the recovery rate of manganese (Mn) is lowered. If the pH is higher than the pH, impurities may be precipitated, which may lower the purity of the final product.
상기 망간이 수산화망간의 형태로 침전되면, 고액분리를 수행하여 수산화망간을 획득한다.When the manganese precipitates in the form of manganese hydroxide, solid-liquid separation is performed to obtain manganese hydroxide.
이 때, 상기 수산화망간을 60 내지 90의 온도에서 비산화분위기에서 물을 이용하여 세척하는 단계를(미도시) 더 포함할 수 있다. 상기 세척을 통하여 수산화망간 중 기타 불순물이 더 제거되는 효과를 누릴 수도 있다.At this time, the manganese hydroxide may further comprise the step of washing with water in a non-oxidizing atmosphere at a temperature of 60 to 90 (not shown). The washing may also have the effect of further removing other impurities in the manganese hydroxide.
상기 고액분리를 통하여 침전된 수산화망간은 획득하여 다음 단계에 이용하고, 수산화망간 수득 후 남은 용액은 S1110단계의 칼륨 침출을 위한 물 대신에 이용될 수도 있다.Manganese hydroxide precipitated through the solid-liquid separation is obtained and used in the next step, and the solution remaining after obtaining manganese hydroxide may be used in place of water for potassium leaching in step S1110.
상기 수산화망간에 황산을 첨가하여 황산망간수용액을 획득한다(S1233). 즉, 상기 수산화망간에 황산을 첨가하여 재용해하는 것이다. 상기 첨가되는 황산의 양은 상기 수산화망간에 포함된 망간 몰 함량의 0.1 내지 3배의 비율로, 바람직하게는 0.5 내지 1.5배의 비율로 첨가되며, 이 반응은 하기 반응식과 같다.By adding sulfuric acid to the manganese hydroxide to obtain a manganese sulfate solution (S1233). That is, redissolved by adding sulfuric acid to the manganese hydroxide. The amount of sulfuric acid added is added in a ratio of 0.1 to 3 times the molar content of manganese hydroxide contained in the manganese hydroxide, preferably in a ratio of 0.5 to 1.5 times, the reaction is shown in the following scheme.
[반응식 5]Scheme 5
Mn(OH)2 + H2SO4 = MnSO4 + 2H2OMn (OH) 2 + H 2 SO 4 = MnSO 4 + 2H 2 O
상기 황산에 의하여 재용해된 용액을 중화시키는 단계(미도시)를 더 포함할 수도 있다. 상기 중화반응을 위한 시약은 S1231단계의 수산화망간을 이용할 수 있으며, 중화반응을 위하여 사용되는 수산화망간은 상기 재용해액의 pH가 pH4 내지 pH6이 되도록 중화시킬 수 있다.The method may further include neutralizing the solution redissolved with sulfuric acid (not shown). The reagent for the neutralization reaction may use manganese hydroxide in step S1231, and the manganese hydroxide used for the neutralization reaction may be neutralized such that the pH of the re-dissolution solution is pH4 to pH6.
상기 획득한 황산망간수용액을 건조하여 고순도 황산망간일수화물을 획득할 수 있다(S1240).The obtained manganese sulfate aqueous solution may be dried to obtain a high purity manganese sulfate monohydrate (S1240).
상기 건조 공정은, 상기 황산망간수용액을 진공 증발을 수행하여 결정화함으로써 고순도 황산망간일수화물로 제조하는 것을 포함할 수 있다.The drying process may include preparing a high purity manganese sulfate monohydrate by crystallizing the aqueous manganese sulfate solution by performing vacuum evaporation.
상기 진공증발을 위한 적정 포화증기압은 0.57~0.7kgf/cm2, 바람직하게는 0.6~0.6.5kgf/cm2이고, 온도 85 내지 90하에서 진공증발을 수행할 수 있다. 상기 온도조건보다 낮을 경우 증발점이 80보다 낮아져 황산망간 일수화물(MnSO4·H2O)이 아닌 황산망간오수화물(MnSO4·5H2O이 생성될 수 있다. 또한 상기 온도 조건보다 높을 경우 에지 효율이 떨어져 경제성이 낮아질 수 있다.The appropriate saturated steam pressure for the vacuum evaporation is 0.57 ~ 0.7kgf / cm 2 , preferably 0.6 ~ 0.6.5kgf / cm 2 , it can be carried out under a temperature of 85 to 90 vacuum evaporation. When the temperature is lower than the evaporation point, the evaporation point is lower than 80, and thus, manganese sulfate pentahydrate (MnSO 4 · 5H 2 O) may be formed instead of the manganese sulfate monohydrate (MnSO 4 · H 2 O.) Its efficiency is low and economic efficiency can be lowered.
따라서, 본 공정을 통하여 고순도의 황산망간일수화물이 제조될 수 있다.Therefore, high purity manganese sulfate monohydrate can be prepared through this process.
한편, 상기 S1233단계에서 획득한 황산망간수용액은 EMM의 제조에도 이용될 수 있다.On the other hand, the manganese sulfate solution obtained in step S1233 can be used for the preparation of EMM.
상기 S1233단계에서 획득한 황산망간수용액을 전해채취방법(Electrowinning)을 이용함으로써 EMM(Electronic Manganese Metal)을 제조할 수 있다.The manganese sulfate aqueous solution obtained in step S1233 may be manufactured by using an electrowinning method (Electrowinning).
한편, 상기 S1231단계에서 획득한 수산화망간을 이용하여 사산화삼망가니즈를 고순도로 제조할 수 있다.On the other hand, using the manganese hydroxide obtained in the step S1231 can be produced in high purity trimanganese tetraoxide.
상기 S1231단계에서 획득한 수산화망간은 건조기를 이용하여 건조를 수행한 후 800 내지 1100의 온도에서 열처리를 수행할 수 있다. 로타리킬른 소각로 등과 같은 장비를 이용하여 열처리를 수행하며, 열처리 수행 중 시료가 충분히 반응할 수 있도록 교반을 잘 하여 산화분위기가 이루어질 수 있도록 한다. 또한, 상기 열처리를 수행한 후 급냉 처리를 수행한다. 상기 열처리에 의하여 불순물이 제거된 망간은 Mn2O3으로 환원되어 있으며, 이를 Mn3O4 망간 화합물로 산화시키기 위하여 급속 냉각을 수행한다. 상기 열처리를 수행한 후 빠른 시간 내에 실온으로 냉각시킬 수 있다. 이를 통하여 이차전지에 이용될 수 있는 사산화삼망가니즈(Mn3O4)를 고순도로 획득할 수 있으며, 이 반응은 하기 반응식과 같다. The manganese hydroxide obtained in step S1231 may be heat-treated at a temperature of 800 to 1100 after drying using a dryer. Heat treatment is performed by using equipment such as rotary kiln incinerator, and it is well stirred so that the sample can react sufficiently during heat treatment, so that the oxidizing atmosphere can be achieved. In addition, the quenching treatment is performed after the heat treatment. Manganese from which impurities are removed by the heat treatment is reduced to Mn 2 O 3 , and rapid cooling is performed to oxidize it to Mn 3 O 4 manganese compound. After performing the heat treatment can be cooled to room temperature within a short time. Through this, tri- manganese tetraoxide (Mn 3 O 4 ) that can be used in a secondary battery can be obtained with high purity, and the reaction is shown in the following reaction formula.
[반응식 6]Scheme 6
2Mn(OH)2 + 1/2O2 Mn2O3 + 2H2O2Mn (OH) 2 + 1 / 2O 2 Mn 2 O 3 + 2H 2 O
[반응식 7] Scheme 7
MnO + Mn2O3 = Mn3O4 MnO + Mn 2 O 3 = Mn 3 O 4
한편, 사산화삼망가니즈의 제조의 경우, S1225단계의 황화물 제거 단계를 적용할 때 황화물의 첨가 농도는 하기와 같다. On the other hand, in the case of the production of trimanganese tetraoxide, when the sulfide removal step of step S1225 is applied, the concentration of sulfide is as follows.
황화물을 철 이외의 불순물 전체 몰량의 10 내지 50배의 비율로, 바람직하게는 15 내지 45배의 비율로, 더욱 바람직하게는 30 내지 35배의 비율로 첨가시키고, 상기 첨가되는 황화물의 pH는 pH7 내지 pH8, 바람직하게는 pH8로 조정된 것을 이용할 수 있다. 상기 황화물을 첨가한 후 약 10분 내지 100분, 바람직하게는 20분 내지 80분, 더욱 바람직하게는 30분 내지 60분 동안 반응시킬 수 있다. Sulfide is added at a rate of 10 to 50 times the total molar amount of impurities other than iron, preferably at a rate of 15 to 45 times, more preferably at a rate of 30 to 35 times, and the pH of the added sulfide is pH7 To pH8, preferably adjusted to pH8. After the sulfide is added, the reaction may be performed for about 10 to 100 minutes, preferably 20 to 80 minutes, more preferably 30 to 60 minutes.
또한, 상기 황화물을 첨가하여 반응한 후, 추가적으로 수산화칼륨을 상기 철이 제거된 망간침출액의 pH가 pH5 내지 pH6이 되도록 첨가하여 약 10분 내지 60분, 바람직하게는 10분 내지 40분, 더욱 바람직하게는 20 내지 30분 동안 반응을 시킬 수 있다. 즉, 황화물을 첨가한 후 추가적으로 수산화칼륨을 첨가하여 pH조절을 수행하면, 철 이외의 불순물인 니켈, 납, 아연, 코발트, 구리 등과 같은 불순물이 황화물의 형태(NiS, PbS, ZnS, CoS, CuS)로 침전되는데 도움을 주어 황화물 형태로 된 불순물의 제거에 더욱 효과적일 수 있다.Further, after the sulfide is added and reacted, additionally potassium hydroxide is added so that the pH of the iron-containing manganese leachate is pH 5 to pH 6, about 10 minutes to 60 minutes, preferably 10 minutes to 40 minutes, more preferably Can react for 20 to 30 minutes. That is, when pH is adjusted by adding potassium hydroxide after addition of sulfide, impurities such as nickel, lead, zinc, cobalt, and copper, which are impurities other than iron, form sulfides (NiS, PbS, ZnS, CoS, CuS). It can help to settle, and thus be more effective in removing impurities in the form of sulfides.
비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.Although some embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that modifications may be made to the embodiment without departing from the spirit or spirit of the invention. . It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (62)

  1. 저순도 망간 및 칼륨 함유물로부터 망간화합물, 황산칼륨 및 비료의 제조방법에 있어서, In the process for producing manganese compounds, potassium sulfate and fertilizer from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; Separating the first potassium leachate containing potassium hydroxide and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고, 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 제조하는 단계와; Adding a sulfide to the first potassium leachate to remove the first impurity, and adding sulfuric acid or sodium sulfate to precipitate with potassium sulfate to prepare high purity potassium sulfate;
    상기 제1 고체에 염산 및 황산 중 적어도 어느 하나와 환원제를 첨가하여 제1망간 침출액을 획득하고 황화물 및 수산화칼륨을 이용하여 제2불순물을 제거하여 제2망간 침출액을 획득하는 단계와; Obtaining a first manganese leachate by adding at least one of hydrochloric acid and sulfuric acid and a reducing agent to the first solid, and removing a second impurity using sulfide and potassium hydroxide to obtain a second manganese leachate;
    상기 제2망간 침출액에 수산화칼륨을 이용하여 pH조절을 통하여 고순도 사산화삼망가니즈를 제조하는 단계와; Preparing high purity trimanganese tetraoxide through pH adjustment using potassium hydroxide in the second manganese leachate;
    상기 제1망간 침출액에 황화물을 이용하여 제3불순물을 제거하여 제3망간 침출액을 획득하는 단계와; Removing a third impurity by using a sulfide in the first manganese leachate to obtain a third manganese leachate;
    상기 제3망간침출액에 수산화칼륨을 이용하여 pH조절을 수행한 후 황산을 첨가하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.A method of producing a high purity manganese compound, potassium sulfate and fertilizer comprising the step of preparing a high purity manganese sulfate monohydrate by performing a pH adjustment to the third manganese leachate using potassium hydroxide.
  2. 제1항에 있어서, The method of claim 1,
    상기 고순도 황산칼륨 제조단계에서, In the high purity potassium sulfate manufacturing step,
    상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 제1불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 제1불순물을 제거하는 단계를 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.The sulfide is a high-purity manganese compound, potassium sulfate and fertilizer manufacturing method comprising the step of removing the first impurity by dissolving 2 to 5 times the total molar amount of the first impurity in water.
  3. 제2항에 있어서, The method of claim 2,
    상기 고순도 황산칼륨 제조단계는,The high purity potassium sulfate manufacturing step,
    제1 불순물 제거 후 제2고액분리를 수행하여 황화물 슬러리는 폐기하고 제1불순물이 제거된 제2칼륨침출액을 획득하는 단계와; Performing a second solid-liquid separation after removing the first impurity to discard the sulfide slurry and to obtain a second potassium leachate from which the first impurity is removed;
    상기 제2칼륨침출액에 황산 또는 황산나트륨을 칼륨 몰비의 0.1 내지 3배의 양으로 첨가하여 황산칼륨으로 침전시킨 후 제3고액분리를 수행하여 고순도 황산칼륨을 제조하는 단계를 더 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.High purity manganese compound further comprising the steps of preparing a high purity potassium sulfate by adding sulfuric acid or sodium sulfate in the second potassium leachate in an amount of 0.1 to 3 times the potassium molar ratio to precipitate with potassium sulfate and then performing a third solid-liquid separation; Method for preparing potassium sulfate and fertilizers.
  4. 제3항에 있어서, The method of claim 3,
    상기 제1망간 침출액의 획득은,Obtaining the first manganese leachate,
    상기 염산을 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율 및 상기 환원제를 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해하여 상기 제1고체에 첨가하여 제4고액분리를 수행하여 상기 제1망간 침출액과 제2고체를 획득하는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.The hydrochloric acid is dissolved in water at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and the reducing agent is 0.5 to 2 times the molar content of the manganese, and added to the first solid. 4 to obtain a high-purity manganese compound, potassium sulfate and fertilizer to obtain the first manganese leachate and the second solid by performing solid-liquid separation.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 환원제는 옥살레이트기(C2O4 2-)를 포함하는 시약, 코크스 또는 아황산가스(SO2 gas)를 포함하는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.The reducing agent is a high purity manganese compound, potassium sulfate and fertilizer manufacturing method comprising a reagent containing a oxalate group (C 2 O 4 2- ), coke or sulfur dioxide (SO 2 gas).
  6. 제5항에 있어서, The method of claim 5,
    상기 제1망간 침출액의 획득 후에 1M이상으로 희석된 수산화칼륨을 이용하여 상기 제1망간 침출액의 pH를 pH3이상으로 조절하여 철을 제거하는 단계를 더 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.Preparation of high-purity manganese compounds, potassium sulfate and fertilizer further comprising the step of removing iron by adjusting the pH of the first manganese leachate to pH3 or more using potassium hydroxide diluted to 1M or more after the first manganese leachate is obtained Way.
  7. 제6항에 있어서, The method of claim 6,
    상기 제2망간 침출액을 획득단계의 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide in the step of obtaining the second manganese leachate comprises at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 제2불순물 전체 몰량의 10 내지 50배를 첨가하여 제2불순물을 제거하는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.The sulfide is a method for producing a high purity manganese compound, potassium sulfate and fertilizer to remove the second impurity by adding 10 to 50 times the total molar amount of the second impurity.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 황화물 첨가 후 상기 제1망간침출액의 pH가 pH5 내지 pH6이 되도록 수산화칼륨을 첨가하는 단계를 더 포함하는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.And adding potassium hydroxide so that the pH of the first manganese leachate is pH 5 to pH 6 after the sulfide addition.
  9. 제8항에 있어서, The method of claim 8,
    상기 고순도 사산화삼망가니즈의 제조단계는, The manufacturing step of the high purity trimanganese tetraoxide,
    상기 수산화칼륨을 이용하여 상기 제2망간침출액의 pH가 pH7 내지 pH9가 되도록 조절하여 망간을 침전하는 단계와; Precipitating manganese by adjusting the pH of the second manganese leachate to pH 7 to pH 9 using the potassium hydroxide;
    제5고액분리를 수행 후 70 내지 100의 물을 이용하여 세척하는 단계와; Washing with water of 70 to 100 after performing the fifth solid-liquid separation;
    800 내지 1100의 열 처리하는 단계와; Thermal treatment of 800 to 1100;
    상기 열처리 후 급냉하여 고순도 사산화삼망가니즈를 제조하는 단계를 더 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.Method of producing a high purity manganese compound, potassium sulfate and fertilizer further comprising the step of quenching after the heat treatment to produce a high purity trimanganese tetraoxide.
  10. 제6항, 제8항 및 제9항 중 어느 한 항에 있어서, The method according to any one of claims 6, 8 and 9,
    상기 수산화칼륨은, 상기 제1칼륨침출액 또는 상기 제2칼륨침출액에 포함된 수산화칼륨을 이용하는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.The potassium hydroxide is a high purity manganese compound, potassium sulfate and fertilizer manufacturing method using potassium hydroxide contained in the first potassium leaching solution or the second potassium leaching solution.
  11. 제3항에 있어서, The method of claim 3,
    상기 제3망간침출액의 획득을 위하여 사용되는 황화물은, 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide used for obtaining the third manganese leachate includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 제3불순물 전체 몰량의 2 내지 5배를 첨가하여 제3불순물을 제거하는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.The sulfide is a method for producing a high purity manganese compound, potassium sulfate and fertilizer to remove the third impurity by adding 2 to 5 times the total molar amount of the third impurity.
  12. 제11항에 있어서, The method of claim 11,
    상기 고순도 황산망간 일수화물의 제조단계는, The manufacturing step of the high purity manganese sulfate monohydrate,
    상기 수산화칼륨을 이용하여 상기 제3망간침출액의 pH가 pH7 내지 pH9가 되도록 조절하여 망간을 침전하는 단계와; Precipitating manganese by adjusting the pH of the third manganese leachate to pH 7 to pH 9 using the potassium hydroxide;
    제6고액분리 후 60 내지 100의 물을 이용하여 세척하는 단계를 더 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.Method for producing a high-purity manganese compound, potassium sulfate and fertilizer further comprising the step of washing with water of 60 to 100 after the sixth solid-liquid separation.
  13. 제12항에 있어서, The method of claim 12,
    상기 고순도 황산망간 일수화물의 제조단계는,The manufacturing step of the high purity manganese sulfate monohydrate,
    상기 황산을 상기 망간의 몰 함량의 0.5 내지 1.5비율로 첨가하는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법. Method for producing a high-purity manganese compound, potassium sulfate and fertilizer is the sulfuric acid is added at a ratio of 0.5 to 1.5 of the molar content of manganese.
  14. 제13항에 있어서, The method of claim 13,
    상기 고순도 황산망간일수화물의 제조단계는,The manufacturing step of the high purity manganese sulfate monohydrate,
    상기 황산 첨가 후 상기 망간침전단계에서 획득되는 망간산화물을을 첨가하여 중화하는 단계와;Neutralizing the sulfuric acid by adding manganese oxide obtained in the manganese precipitation step;
    제7고액분리를 통하여 제4망간 침출액을 획득하는 단계와; Obtaining a fourth manganese leachate through a seventh solid-liquid separation;
    상기 제4망간침출액을 진공 증발을 수행하여 고순도 황산망간일수화물을 제조하는 단계를 더 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.Method of producing a high purity manganese compound, potassium sulfate and fertilizer further comprising the step of performing a vacuum evaporation of the fourth manganese leachate to prepare a high purity manganese sulfate monohydrate.
  15. 제12항에 있어서, The method of claim 12,
    상기 수산화칼륨은, 상기 제1칼륨침출액 또는 상기 제2칼륨침출액에 포함된 수산화칼륨을 이용하는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.The potassium hydroxide is a high purity manganese compound, potassium sulfate and fertilizer manufacturing method using potassium hydroxide contained in the first potassium leaching solution or the second potassium leaching solution.
  16. 제4항에 있어서,The method of claim 4, wherein
    상기 제2고체에 2M 내지 5M로 희석된 염산 및 산화제를 첨가하여 상기 제2고체에 포함된 납을 침출시키는 단계와;Leaching lead contained in the second solid by adding hydrochloric acid and an oxidizing agent diluted to 2 M to 5 M in the second solid;
    제8고액분리와 건조를 수행하여 망간 및 칼륨을 포함하는 비료를 제조하는 단계를 더 포함하는 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.Method for producing a high-purity manganese compound, potassium sulfate and fertilizer further comprising the step of preparing a fertilizer containing manganese and potassium by performing a solid-liquid separation and drying.
  17. 제16항에 있어서,The method of claim 16,
    상기 산화제는 과산화수소를 포함하고,The oxidant comprises hydrogen peroxide,
    상기 과산화수소는 상기 납에 대하여 2 내지 10배의 몰비로 첨가되는 것인 고순도 망간 화합물, 황산칼륨 및 비료의 제조방법.The hydrogen peroxide is a high purity manganese compound, potassium sulfate and fertilizer manufacturing method is added in a molar ratio of 2 to 10 times with respect to the lead.
  18. 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨의 제조방법에 있어서,In the process for producing high purity potassium sulfate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 고체를 분리하는 단계와;Separating water from the first potassium leachate containing potassium hydroxide and a solid through first solid-liquid separation after adding water to the low purity manganese and potassium contents;
    상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와;Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities;
    고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨의 제조방법.After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. A method for producing potassium sulfate from low purity manganese and potassium containing comprising the step of.
  19. 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법에 있어서,In the method for producing high purity trimanganese tetraoxide from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와;Separating the first potassium leachate containing potassium hydroxide and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1 고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로 희석된 염산 및 황산 중 어느 하나와 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제1망간 침출액과 제2고체를 획득하는 단계와;Any one of hydrochloric acid and sulfuric acid diluted in a ratio of 2 to 4 times the molar content of manganese contained in the first solid in the first solid and dissolved in water at a ratio of 0.5 to 2 times the molar content of the manganese Adding a reducing agent to obtain a first manganese leachate and a second solid by separating the second solid solution;
    상기 제1망간 침출액의 획득 후에 1M이상으로 희석된 수산화칼륨을 이용하여 상기 제1망간 침출액의 pH를 pH3이상으로 조절하여 철을 제거하는 단계와;Removing iron by adjusting the pH of the first manganese leachate to pH3 or more using potassium hydroxide diluted to 1 M or more after obtaining the first manganese leachate;
    황화물 및 수산화칼륨을 이용하여 불순물을 제거하여 제2망간 침출액을 획득하는 단계와;Removing impurities using sulfides and potassium hydroxide to obtain a second manganese leachate;
    상기 제2망간 침출액에 수산화칼륨을 이용하여 pH조절을 통하여 고순도 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법.Method for producing high purity trimanganese tetraoxide from low-purity manganese and potassium containing comprising the step of preparing a high-purity trimanganese tetraoxide through pH adjustment using potassium hydroxide in the second manganese leachate.
  20. 제19항에 있어서, The method of claim 19,
    상기 환원제는 옥살레이트기(C2O4 2-)를 포함하는 시약, 코크스 또는 아황산가스(SO2 gas)를 포함하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법.The reducing agent is a high purity trimanganese tetraoxide production method from a low-purity manganese and potassium containing a oxalate group (C 2 O 4 2- ) containing a coke or sulfur dioxide (SO 2 gas).
  21. 제20항에 있어서, The method of claim 20,
    상기 제2망간 침출액을 획득단계의 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide in the step of obtaining the second manganese leachate comprises at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 제2불순물 전체 몰량의 10 내지 50배를 첨가하여 상기 불순물을 제거하고,The sulfide is added to 10 to 50 times the total molar amount of the second impurity to remove the impurities,
    상기 수산화칼륨은, 상기 황화물 첨가 후 상기 제1망간침출액의 pH가 pH5 내지 pH6이 되도록 첨가되는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법.The potassium hydroxide is a high-purity manganese tetraoxide production method from the low-purity manganese and potassium is added so that the pH of the first manganese leachate after the sulfide addition is pH5 to pH6.
  22. 제21항에 있어서, The method of claim 21,
    상기 고순도 사산화삼망가니즈의 제조단계는,The manufacturing step of the high purity trimanganese tetraoxide,
    상기 수산화칼륨을 이용하여 상기 제2망간침출액의 pH가 pH7 내지 pH9가 되도록 조절하여 망간을 침전하는 단계와;Precipitating manganese by adjusting the pH of the second manganese leachate to pH 7 to pH 9 using the potassium hydroxide;
    제5고액분리를 수행 후 70 내지 100의 물을 이용하여 세척하는 단계와;Washing with water of 70 to 100 after performing the fifth solid-liquid separation;
    800 내지 1100의 열 처리하는 단계와;Thermal treatment of 800 to 1100;
    상기 열처리 후 급냉하여 고순도 사산화삼망가니즈를 제조하는 단계를 더 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법.Method of producing high purity trimanganese tetraoxide from low-purity manganese and potassium containing further comprising the step of quenching after the heat treatment to produce a high purity tri-manganese tetraoxide.
  23. 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법에 있어서,In the process for producing high purity manganese sulfate monohydrate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와;Separating the first potassium leachate containing potassium hydroxide and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1 고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율의 염산 및 황산 중 어느 하나와 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제1망간 침출액과 제2고체를 획득하는 단계와;A reducing agent dissolved in water at any one of hydrochloric acid and sulfuric acid in a ratio of 2 to 4 times the molar content of manganese contained in the first solid and 0.5 to 2 times the molar content of manganese in the first solid. Adding to obtain a first manganese leachate and a second solid through a second solid solution separation;
    상기 제1망간 침출액에 황화물을 이용하여 불순물을 제거하여 제3망간 침출액을 획득하는 단계와;Obtaining a third manganese leach solution by removing impurities using the sulfide in the first manganese leach solution;
    상기 제3망간침출액에 수산화칼륨을 이용하여 pH조절을 수행한 후 황산을 첨가하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법.A method of producing high purity manganese sulfate monohydrate from low purity manganese sulfate and potassium containing the step of adjusting the pH using potassium hydroxide in the third manganese leachate to produce high purity manganese sulfate monohydrate by adding sulfuric acid.
  24. 제23항에 있어서, The method of claim 23,
    상기 제3망간침출액의 획득을 위하여 사용되는 황화물은, 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide used for obtaining the third manganese leachate includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 상기 불순물 전체 몰량의 2 내지 5배를 첨가하여 제3불순물을 제거하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법.The sulfide is added to 2 to 5 times the total molar amount of the impurity to remove the third impurity is a high-purity manganese sulfate monohydrate manufacturing method from a low purity manganese and potassium containing.
  25. 제24항에 있어서, The method of claim 24,
    상기 고순도 황산망간 일수화물의 제조단계에서,In the manufacturing step of the high purity manganese sulfate monohydrate,
    상기 수산화칼륨은 상기 제3망간침출액의 pH가 pH7 내지 pH9가 되도록 조절하여 망간을 침전시키고, The potassium hydroxide is adjusted to the pH of the third manganese leachate to pH7 to pH9 to precipitate manganese,
    상기 황산은 상기 망간의 몰 함량의 0.5 내지 1.5 비율로 첨가하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법.The sulfuric acid is a high-purity manganese sulfate monohydrate manufacturing method from a low-purity manganese and potassium containing is added at a ratio of 0.5 to 1.5 of the molar content of manganese.
  26. 제25항에 있어서, The method of claim 25,
    상기 고순도 황산망간일수화물의 제조단계는,The manufacturing step of the high purity manganese sulfate monohydrate,
    상기 황산 첨가 후 상기 망간침전단계에서 획득되는 망간산화물을을 첨가하여 중화하는 단계와;Neutralizing the sulfuric acid by adding manganese oxide obtained in the manganese precipitation step;
    고액분리를 통하여 제4망간 침출액을 획득하는 단계와; Obtaining a fourth manganese leachate through solid-liquid separation;
    상기 제4망간침출액을 진공 증발을 수행하여 고순도 황산망간일수화물을 제조하는 단계를 더 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법.A method of producing high purity manganese sulfate monohydrate from low purity manganese and potassium containing further comprising the step of vacuum evaporating the fourth manganese leachate to produce a high purity manganese sulfate monohydrate.
  27. 저순도 망간 및 칼륨 함유물로부터 비료 제조방법에 있어서,In the fertilizer manufacturing method from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와;Separating the first potassium leachate containing potassium hydroxide and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로 희석된 염산 및 황산 중 어느 하나와 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제2고체를 분리하는 단계와;Any one of hydrochloric acid and sulfuric acid diluted in a ratio of 2 to 4 times the molar content of manganese contained in the first solid in the first solid and dissolved in water at a ratio of 0.5 to 2 times the molar content of the manganese Separating the second solid through the second solid-liquid separation by adding a reducing agent;
    상기 제2고체에 2M 내지 5M으로 희석된 염산 및 산화제를 첨가하여 납을 침출시키는 단계와;Leaching lead by adding hydrochloric acid and an oxidizing agent diluted to 2M to 5M to the second solid;
    제3고액분리를 통하여 제3고체를 분리하고, 상기 제3고체를 건조하여 칼륨 및 망간을 함유하는 비료를 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 비료 제조방법.Separating the third solid through a third solid-liquid separation, and drying the third solid to obtain a fertilizer containing potassium and manganese fertilizer manufacturing method from low-purity manganese and potassium containing.
  28. 제27항에 있어서,The method of claim 27,
    상기 납 침출단계에서, 상기 산화제는 과산화수소를 포함하고,In the lead leaching step, the oxidant comprises hydrogen peroxide,
    상기 과산화수소는 상기 납에 대하여 2 내지 10배의 몰비로 첨가되는 것인 저순도 망간 및 칼륨 함유물로부터 비료 제조방법.The hydrogen peroxide is a fertilizer manufacturing method from a low-purity manganese and potassium containing is added in a molar ratio of 2 to 10 times with respect to the lead.
  29. 제28항에 있어서,The method of claim 28,
    상기 환원제는 옥살레이트기(C2O4 2-)를 포함하는 시약, 코크스 또는 아황산가스(SO2 gas)를 포함하는 것인 저순도 망간 및 칼륨 함유물로부터 비료 제조방법. The reducing agent is a fertilizer manufacturing method from low-purity manganese and potassium containing a reagent containing oxalate group (C 2 O 4 2- ), coke or sulfur dioxide (SO 2 gas).
  30. 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 사산화삼망가니즈의 제조방법에 있어서, In the production method of high purity potassium sulfate and high purity trimanganese tetraoxide from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와; Separating the first potassium leachate containing potassium hydroxide and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities;
    고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step;
    상기 제1 고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로 희석된 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제1망간 침출액과 제2고체를 획득하는 단계와; Hydrochloric acid diluted at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese Obtaining a first manganese leachate and a second solid by separating solid solution;
    상기 제1망간 침출액의 획득 후에 1M이상으로 희석된 수산화칼륨을 이용하여 상기 제1망간 침출액의 pH를 pH3이상으로 조절하여 철을 제거하는 단계와; Removing iron by adjusting the pH of the first manganese leachate to pH3 or more using potassium hydroxide diluted to 1 M or more after obtaining the first manganese leachate;
    황화물 및 수산화칼륨을 이용하여 불순물을 제거하여 제2망간 침출액을 획득하는 단계와; Removing impurities using sulfides and potassium hydroxide to obtain a second manganese leachate;
    상기 제2망간 침출액에 수산화칼륨을 이용하여 pH조절을 통하여 고순도 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 사산화삼망가니즈의 제조방법. A method for producing high purity potassium sulfate and high purity trimanganate tetraoxide from low purity manganese tetrachloride and potassium content comprising the step of preparing a high purity trimanganese tetraoxide through pH adjustment using potassium hydroxide in the second manganese leachate.
  31. 제30항에 있어서, The method of claim 30,
    상기 환원제는 옥살레이트기(C2O4 2-)를 포함하는 시약, 코크스 또는 아황산가스(SO2 gas)를 포함하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법. The reducing agent is a high purity trimanganese tetraoxide production method from a low-purity manganese and potassium containing a oxalate group (C 2 O 4 2- ) containing a coke or sulfur dioxide (SO 2 gas).
  32. 제31항에 있어서, The method of claim 31, wherein
    상기 제2망간 침출액을 획득단계의 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide in the step of obtaining the second manganese leachate comprises at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 제2불순물 전체 몰량의 10 내지 50배를 첨가하여 상기 불순물을 제거하고, The sulfide is added to 10 to 50 times the total molar amount of the second impurity to remove the impurities,
    상기 수산화칼륨은, 상기 황화물 첨가 후 상기 제1망간침출액의 pH가 pH5 내지 pH6이 되도록 첨가되는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법. The potassium hydroxide is a high-purity manganese tetraoxide production method from the low-purity manganese and potassium is added so that the pH of the first manganese leachate after the sulfide addition is pH5 to pH6.
  33. 제32항에 있어서, 33. The method of claim 32,
    상기 고순도 사산화삼망가니즈의 제조단계는, The manufacturing step of the high purity trimanganese tetraoxide,
    상기 수산화칼륨을 이용하여 상기 제2망간침출액의 pH가 pH7 내지 pH9가 되도록 조절하여 망간을 침전하는 단계와;Precipitating manganese by adjusting the pH of the second manganese leachate to pH 7 to pH 9 using the potassium hydroxide;
    제5고액분리를 수행 후 70 내지 100의 물을 이용하여 세척하는 단계와;Washing with water of 70 to 100 after performing the fifth solid-liquid separation;
    800 내지 1100의 열 처리하는 단계와;Thermal treatment of 800 to 1100;
    상기 열처리 후 급냉하여 고순도 사산화삼망가니즈를 제조하는 단계를 더 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 사산화삼망가니즈 제조방법.Method of producing high purity trimanganese tetraoxide from low-purity manganese and potassium containing further comprising the step of quenching after the heat treatment to produce a high purity tri-manganese tetraoxide.
  34. 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 황산망간일수화물의 제조방법에 있어서,In the process for producing high purity potassium sulfate and high purity manganese sulfate monohydrate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와;Separating the first potassium leachate containing potassium hydroxide and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와;Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities;
    고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와;After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step;
    상기 제1 고체에 염산 및 황산 중 적어도 어느 하나와 환원제를 첨가하여 제1망간 침출액을 획득하는 단계와;Adding at least one of hydrochloric acid and sulfuric acid and a reducing agent to the first solid to obtain a first manganese leachate;
    상기 제1 고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율의 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제1망간 침출액과 제2고체를 획득하는 단계와;A second solid solution by adding hydrochloric acid at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese contained in the first solid Obtaining a first manganese leachate and a second solid through separation;
    상기 제1망간 침출액에 황화물을 이용하여 불순물을 제거하여 제3망간 침출액을 획득하는 단계와;Obtaining a third manganese leach solution by removing impurities using the sulfide in the first manganese leach solution;
    상기 제3망간침출액에 수산화칼륨을 이용하여 pH조절을 수행한 후 황산을 첨가하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 고순도 황산망간일수화물의 제조방법.High purity potassium sulfate and high purity manganese sulfate monohydrate from low purity manganese sulfate and potassium content comprising the step of adjusting the pH of the third manganese leachate using potassium hydroxide to produce a high purity manganese sulfate monohydrate by adding sulfuric acid Manufacturing method.
  35. 제34항에 있어서, The method of claim 34, wherein
    상기 제3망간침출액의 획득을 위하여 사용되는 황화물은, 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide used for obtaining the third manganese leachate includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 상기 불순물 전체 몰량의 2 내지 5배를 첨가하여 제3불순물을 제거하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법.The sulfide is added to 2 to 5 times the total molar amount of the impurity to remove the third impurity is a high-purity manganese sulfate monohydrate manufacturing method from a low purity manganese and potassium containing.
  36. 제35항에 있어서, 36. The method of claim 35 wherein
    상기 고순도 황산망간 일수화물의 제조단계에서,In the manufacturing step of the high purity manganese sulfate monohydrate,
    상기 수산화칼륨은 상기 제3망간침출액의 pH가 pH7 내지 pH9가 되도록 조절하여 망간을 침전시키고, The potassium hydroxide is adjusted to the pH of the third manganese leachate to pH7 to pH9 to precipitate manganese,
    상기 황산은 상기 망간의 몰 함량의 0.5 내지 1.5 비율로 첨가하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법.The sulfuric acid is a high-purity manganese sulfate monohydrate manufacturing method from a low-purity manganese and potassium containing is added at a ratio of 0.5 to 1.5 of the molar content of manganese.
  37. 제36항에 있어서, The method of claim 36,
    상기 고순도 황산망간일수화물의 제조단계는,The manufacturing step of the high purity manganese sulfate monohydrate,
    상기 황산 첨가 후 상기 망간침전단계에서 획득되는 망간산화물을을 첨가하여 중화하는 단계와;Neutralizing the sulfuric acid by adding manganese oxide obtained in the manganese precipitation step;
    고액분리를 통하여 제4망간 침출액을 획득하는 단계와; Obtaining a fourth manganese leachate through solid-liquid separation;
    상기 제4망간침출액을 진공 증발을 수행하여 고순도 황산망간일수화물을 제조하는 단계를 더 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산망간일수화물 제조방법.A method of producing high purity manganese sulfate monohydrate from low purity manganese and potassium containing further comprising the step of vacuum evaporating the fourth manganese leachate to produce a high purity manganese sulfate monohydrate.
  38. 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 비료의 제조방법에 있어서,In the process for producing high purity potassium sulfate and fertilizer from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가 후 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리하는 단계와;Separating the first potassium leachate containing potassium hydroxide and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와;Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities;
    고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와;After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step;
    상기 제1고체에 상기 제1고체에 포함된 망간의 몰 함량의 2 내지 4배의 비율로 희석된 염산 및 상기 망간의 몰 함량의 0.5 내지 2배의 비율로 물에 용해된 환원제를 첨가하여 제2고액분리를 통하여 제2고체를 분리하는 단계와;By adding hydrochloric acid diluted at a ratio of 2 to 4 times the molar content of manganese contained in the first solid and a reducing agent dissolved in water at a ratio of 0.5 to 2 times the molar content of manganese to the first solid, Separating the second solid through two-liquid separation;
    상기 제2고체에 2M 내지 5M으로 희석된 염산 및 산화제를 첨가하여 납을 침출시키는 단계와;Leaching lead by adding hydrochloric acid and an oxidizing agent diluted to 2M to 5M to the second solid;
    제3고액분리를 통하여 제3고체를 분리하고, 상기 제3고체를 건조하여 칼륨 및 망간을 함유하는 비료를 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 황산칼륨 및 비료의 제조방법.Separation of the third solid through a third solid-liquid separation, and drying the third solid to obtain a fertilizer containing potassium and manganese, a method of producing high purity potassium sulfate and fertilizer from potassium containing manganese .
  39. 제38항에 있어서,The method of claim 38,
    상기 납 침출단계에서, 상기 산화제는 과산화수소를 포함하고,In the lead leaching step, the oxidant comprises hydrogen peroxide,
    상기 과산화수소는 상기 납에 대하여 2 내지 10배의 몰비로 첨가되는 것인 저순도 망간 및 칼륨 함유물로부터 비료 제조방법.The hydrogen peroxide is a fertilizer manufacturing method from a low-purity manganese and potassium containing is added in a molar ratio of 2 to 10 times with respect to the lead.
  40. 제39항에 있어서,The method of claim 39,
    상기 환원제는 옥살레이트기(C2O4 2-)를 포함하는 시약, 코크스 또는 아황산가스(SO2 gas)를 포함하는 것인 저순도 망간 및 칼륨 함유물로부터 비료 제조방법.The reducing agent is a fertilizer manufacturing method from low-purity manganese and potassium containing a reagent containing oxalate group (C 2 O 4 2- ), coke or sulfur dioxide (SO 2 gas).
  41. 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법에 있어서,In the method for producing a high purity manganese compound and potassium sulfate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 제1고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 제1고체를 분리하는 단계와;Separating water from the first potassium leachate containing potassium and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고, 황산 또는 황산나트륨을 첨가하여 고순도 황산칼륨을 제조하는 단계와;Adding a sulfide to the first potassium leachate to remove the first impurity, and adding sulfuric acid or sodium sulfate to prepare high purity potassium sulfate;
    상기 제1고체에 황산을 첨가하여 배소시켜 황산망간으로 변환시킨 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 제2불순물을 제거하고, 제2고액분리를 통하여 망간침출액을 획득하는 단계와;Adding sulfuric acid to the first solid to be converted to manganese sulfate to remove the second impurity using at least one of calcium hydroxide and sulfide, and obtaining manganese leachate through second solid-liquid separation;
    상기 망간침출액으로부터 고순도 망간화합물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.A method for producing a high purity manganese compound and potassium sulfate from a low purity manganese and potassium containing comprising the step of preparing a high purity manganese compound from the manganese leaching solution.
  42. 제40항에 있어서,The method of claim 40,
    상기 고순도 황산칼륨 제조단계에서,In the high purity potassium sulfate manufacturing step,
    상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 상기 제1불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 상기 제1불순물을 제거하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The sulfide is dissolved in water 2 to 5 times the total molar amount of the first impurity to remove the first impurity comprising the step of removing the high purity manganese compound and potassium sulfate from the potassium containing.
  43. 제42항에 있어서,The method of claim 42, wherein
    상기 고순도 황산칼륨 제조단계에서,In the high purity potassium sulfate manufacturing step,
    상기 제1 불순물 제거 후 고액분리를 통하여 상기 제1불순물이 제거된 제2칼륨침출액을 획득하는 단계를 더 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.A method of preparing a high purity manganese compound and potassium sulfate from low purity manganese and potassium containing further comprising the step of obtaining a second potassium leachate from which the first impurity is removed through solid-liquid separation after the removal of the first impurity.
  44. 제43항에 있어서,The method of claim 43,
    상기 제2칼륨침출액에 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The high purity manganese compound and potassium sulfate from the low purity manganese and potassium content comprising the step of obtaining potassium sulfate by adding sulfuric acid or sodium sulfate of 0.1 to 3 times the potassium molar ratio to the second potassium leachate to obtain high purity potassium sulfate Manufacturing method.
  45. 제44항에 있어서,The method of claim 44,
    상기 고순도 망간 화합물은 황산망간일수화물(MnSO4 ·H2O), 사산화삼망가니즈(Mn3O4) 및 EMM(electronic manganese metal) 중 적어도 어느 하나를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The high purity manganese compound is high purity from a low purity manganese and potassium containing at least one of manganese sulfate monohydrate (MnSO 4 · H 2 O), trimanganese tetraoxide (Mn 3 O 4 ) and EMM (electronic manganese metal) Method for preparing manganese compound and potassium sulfate.
  46. 제45항에 있어서,The method of claim 45,
    상기 망간침출액 획득단계에서 ,상기 제1고체에 첨가되는 황산은 상기 제1고체에 포함된 몰 함량의 0.1 내지 3배의 비율로 물에 희석하여 첨가되는 것인 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법. In the step of obtaining the manganese leachate, sulfuric acid added to the first solid is a low-purity manganese and potassium containing dilution in water at a ratio of 0.1 to 3 times the molar content contained in the first solid Method for producing high purity manganese compound and potassium sulfate from
  47. 제46항에 있어서,47. The method of claim 46 wherein
    상기 황산망간을 물에 용해한 후에 pH 4 이상이 되도록 수산화칼슘을 첨가하여 상기 제2불순물 중 철을 제거하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.A method for producing a high purity manganese compound and potassium sulfate from the low purity manganese and potassium content, wherein the manganese sulfate is dissolved in water to remove calcium from the second impurity by adding calcium hydroxide to pH 4 or higher.
  48. 제47항에 있어서,The method of claim 47,
    상기 황화물은, 상기 제거된 철 이외의 제2불순물 전체 몰량의 2 내지 50배의 비율로 첨가하여 상기 철 이외의 제2불순물을 제거하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The sulfide is added to a ratio of 2 to 50 times the total molar amount of the second impurity other than the iron removed to remove the second impurity other than the iron, high purity manganese compound and sulfuric acid from the low purity manganese and potassium content Method of preparing potassium.
  49. 제48항에 있어서,The method of claim 48,
    상기 고순도 망간화합물을 제조하는 단계는,Preparing the high purity manganese compound,
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.Method of producing a high-purity manganese compound and potassium sulfate from the low-purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to prepare a high purity manganese sulfate monohydrate.
  50. 제49항에 있어서,The method of claim 49,
    상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가하여 수산화망간이 침전되도록 하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The potassium hydroxide is added to the pH 6 to pH 9 of the manganese leachate in a non-oxidizing atmosphere to precipitate the manganese hydroxide precipitate method of the high purity manganese compound and potassium sulfate from the manganese hydroxide containing potassium.
  51. 제50항에 있어서,51. The method of claim 50,
    상기 황산은, 상기 수산화망간에 포함된 망간 몰 함량의 0.1 내지 3배의 비율로 첨가하여 황산망간수용액을 획득하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The sulfuric acid is a method of producing a high purity manganese compound and potassium sulfate from a low-purity manganese and potassium content to obtain an aqueous solution of manganese sulfate by adding at a ratio of 0.1 to 3 times the manganese molar content of the manganese hydroxide.
  52. 제48항에 있어서,The method of claim 48,
    상기 고순도 망간화합물을 제조하는 단계는,Preparing the high purity manganese compound,
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.Method for producing a high purity manganese compound and potassium sulfate from the low-purity manganese and potassium containing comprising the step of producing an electronic manganese metal (EMM) using the aqueous solution of manganese sulfate.
  53. 제52항에 있어서,The method of claim 52, wherein
    상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가하여 수산화망간이 침전되도록 하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The potassium hydroxide is added to the pH 6 to pH 9 of the manganese leachate in a non-oxidizing atmosphere to precipitate the manganese hydroxide precipitate method of the high purity manganese compound and potassium sulfate from the manganese hydroxide containing potassium.
  54. 제53항에 있어서,The method of claim 53,
    상기 황산은, 상기 수산화망간에 포함된 망간 몰 함량의 0.1 내지 3배의 비율로 첨가하여 황산망간수용액을 획득하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The sulfuric acid is a method of producing a high purity manganese compound and potassium sulfate from a low-purity manganese and potassium content to obtain an aqueous solution of manganese sulfate by adding at a ratio of 0.1 to 3 times the manganese molar content of the manganese hydroxide.
  55. 제48항에 있어서,The method of claim 48,
    상기 고순도 망간화합물을 제조하는 단계는,Preparing the high purity manganese compound,
    상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와;Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate;
    상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.Method of producing a high-purity manganese compound and potassium sulfate from low-purity manganese and potassium containing comprising the step of quenching the manganese hydroxide in an oxidizing atmosphere and then quenched.
  56. 제55항에 있어서,The method of claim 55,
    상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The potassium hydroxide is added to the pH 6 to pH 9 of the manganese leaching solution under a non-oxidizing atmosphere of the high purity manganese compound and potassium sulfate from a low purity manganese and potassium containing.
  57. 저순도 망간 및 칼륨 함유물로부터 황산망간일수화물의 제조방법에 있어서,In the process for producing manganese sulfate monohydrate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와;Separating the potassium leachate and the solid containing potassium through solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산망간일수화물의 제조방법.Method of producing a manganese sulfate monohydrate from a low-purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to produce a high purity manganese sulfate monohydrate.
  58. 저순도 망간 및 칼륨 함유물로부터 EMM(Electronic Manganese Metal)의 제조방법에 있어서,In the manufacturing method of EMM (Electronic Manganese Metal) from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와;Separating the potassium leachate and the solid containing potassium through solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 EMM(Electronic Manganese Metal)의 제조방법.The manufacturing method of the electronic manganese metal (EMM) from low-purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using the electrolytic extraction method of the aqueous manganese sulfate.
  59. 저순도 망간 및 칼륨 함유물로부터 사산화삼망가니즈의 제조방법에 있어서,In the process for producing trimanganese tetraoxide from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와;Separating the potassium leachate and the solid containing potassium through solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와;Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate;
    상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 사산화삼망가니즈의 제조방법.A method for producing trimanganese tetraoxide from low-purity manganese and potassium containing the step of quenching the manganese hydroxide in an oxidizing atmosphere and then quenching.
  60. 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 황산망간일수화물의 제조방법에 있어서,In the process for producing potassium sulfate and manganese sulfate monohydrate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 고체를 분리하는 단계와;Separating water from the first potassium leachate containing potassium and solids through solid-liquid separation after adding water to the low-purity manganese and potassium-containing materials;
    상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와;Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities;
    고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와;After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨의 제조방법.Drying the aqueous solution of manganese sulfate to prepare a high purity manganese sulfate monohydrate.
  61. 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 EMM(Electronic Manganese Metal)의 제조방법에 있어서,In the process for producing potassium sulfate and EMM (Electronic Manganese Metal) from low purity manganese and potassium content,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 고체를 분리하는 단계와;Separating water from the first potassium leachate containing potassium and solids through solid-liquid separation after adding water to the low-purity manganese and potassium-containing materials;
    상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와;Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities;
    고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와;After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 EMM(Electronic Manganese Metal)의 제조방법.The method for producing potassium sulfate and EMM (Electronic Manganese Metal) from low-purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using the electrolytic extraction method of the aqueous manganese sulfate.
  62. 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 사산화삼망가니즈의 제조방법에 있어서,In the production method of potassium sulfate and trimanganese tetraoxide from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 고체를 분리하는 단계와;Separating water from the first potassium leachate containing potassium and solids through solid-liquid separation after adding water to the low-purity manganese and potassium-containing materials;
    상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와;Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities;
    고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계와;After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. Making a step;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와;Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate;
    상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨 및 사산화삼망가니즈의 제조방법.A method for producing potassium sulfate and trimanganese tetraoxide from low-purity manganese and potassium containing comprising the step of quenching the manganese hydroxide in an oxidizing atmosphere and then quenching.
PCT/KR2013/009872 2012-12-24 2013-11-04 Production method for at least one of a manganese compound, potassium sulphate and fertilizer from a low-purity manganese and potassium-containing substance WO2014104562A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0152466 2012-12-24
KR20120152466 2012-12-24
KR1020130053108A KR101395581B1 (en) 2012-12-24 2013-05-10 Process for producing manganese compound, potassium sulfate and fertilizer from material comprising potassium and manganese
KR10-2013-0053108 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014104562A1 true WO2014104562A1 (en) 2014-07-03

Family

ID=50894245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009872 WO2014104562A1 (en) 2012-12-24 2013-11-04 Production method for at least one of a manganese compound, potassium sulphate and fertilizer from a low-purity manganese and potassium-containing substance

Country Status (2)

Country Link
KR (1) KR101395581B1 (en)
WO (1) WO2014104562A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162872B (en) * 2021-12-31 2023-06-09 湖南烯富环保科技有限公司 Method for preparing battery-grade manganese sulfate from manganese oxide ore

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147948A (en) * 1991-12-03 1993-06-15 Mitsui Toatsu Chem Inc Production of manganese sulfate
KR20030028006A (en) * 2001-09-27 2003-04-08 문상우 A process for producing manganese sulfate
KR20120093948A (en) * 2009-10-10 2012-08-23 구이쩌우 레드스타 디벨로핑 코포레이션 리미티드 Method for preparing manganese sulfate monohydrate by desulfurizing fume with middle-low grade manganese dioxide ore
KR20120099119A (en) * 2010-03-31 2012-09-06 구이쩌우 레드스타 디벨로핑 코포레이션 리미티드 Method for preparing manganese sulfate monohydrate
KR20120120378A (en) * 2010-03-29 2012-11-01 베이징 맥스퀸 테크놀로지 컴퍼니 리미티드 Method for preparing manganese sulfate monohydrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147948A (en) * 1991-12-03 1993-06-15 Mitsui Toatsu Chem Inc Production of manganese sulfate
KR20030028006A (en) * 2001-09-27 2003-04-08 문상우 A process for producing manganese sulfate
KR20120093948A (en) * 2009-10-10 2012-08-23 구이쩌우 레드스타 디벨로핑 코포레이션 리미티드 Method for preparing manganese sulfate monohydrate by desulfurizing fume with middle-low grade manganese dioxide ore
KR20120120378A (en) * 2010-03-29 2012-11-01 베이징 맥스퀸 테크놀로지 컴퍼니 리미티드 Method for preparing manganese sulfate monohydrate
KR20120099119A (en) * 2010-03-31 2012-09-06 구이쩌우 레드스타 디벨로핑 코포레이션 리미티드 Method for preparing manganese sulfate monohydrate

Also Published As

Publication number Publication date
KR101395581B1 (en) 2014-05-16

Similar Documents

Publication Publication Date Title
WO2013165071A1 (en) Method for producing high-purity manganese sulfate monohydrate and high-purity manganese sulfate monohydrate produced by the method
WO2013165148A1 (en) Method for producing high-purity trimanganese tetraoxide and high-purity trimanganese tetraoxide produced by the method
EP3535429B1 (en) Process for the recovery of lithium
WO2012081897A2 (en) Method for enrichment-recovering ferronickel from raw material containing nickel, method for recovering nickel from enriched ferronickel, and method for recycling solution containing iron produced from same
KR101542747B1 (en) Method for producing high purity manganese sulphate monohydrate and high purity manganese sulphate monohydrate produced thereby
WO2018117771A1 (en) Method for recovering nickel and cobalt from nickel, iron, and cobalt-containing raw material
WO2014104562A1 (en) Production method for at least one of a manganese compound, potassium sulphate and fertilizer from a low-purity manganese and potassium-containing substance
CN113957264A (en) Method for preparing nickel sulfate from low grade nickel matte
CA1124035A (en) Production of lead monoxide from lead sulfate with acidic ammonia acetate
US3529957A (en) Production of elemental sulphur and iron from iron sulphides
KR102493104B1 (en) Manufacturing method for secondary battery material from black mass
WO2023158008A1 (en) Solvent extraction method using two-stage extraction for separating and recovering nickel, cobalt, and manganese
WO2023243827A1 (en) Method for producing aqueous solution containing nickel or cobalt
US7399454B2 (en) Metallurgical dust reclamation process
WO2021172688A1 (en) Methods for manufacturing positive electrode active material precursor material and positive electrode active material for secondary lithium battery, and positive electrode active material for secondary lithium battery manufactured thereby
WO2012081896A2 (en) Method for recovering nickel from raw material containing nickel
WO2010074516A2 (en) Method for preparing high purity zinc oxide using secondary dust
WO2024034754A1 (en) Method for recycling secondary battery material
WO2023146340A1 (en) Method for preparing lithium hydroxide by using lithium sulfate and barium oxide
WO2015009077A1 (en) Method for preparing manganese compound and potassium sulfate from low-purity manganese and potassium inclusion
CN109796049B (en) Method for preparing iron oxide red by using iron slag precipitated by zinc hydrometallurgy goethite method
WO2022220477A1 (en) Method for producing lithium-concentrated solution with high recovery rate, and method for producing lithium compound using same
WO2023204326A1 (en) Solvent extraction method for separation and recovery of nickel, cobalt, manganese, and zinc
WO2023182562A1 (en) Valuable metal recovery method using solvent extraction from zinc and copper waste material
KR20150050632A (en) Method for producing high purity manganese sulphate monohydrate from byproduct of manganese steel alloy smelting furnace and electric furnace and high purity manganese sulphate monohydrate produced thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868092

Country of ref document: EP

Kind code of ref document: A1