WO2015009077A1 - Method for preparing manganese compound and potassium sulfate from low-purity manganese and potassium inclusion - Google Patents

Method for preparing manganese compound and potassium sulfate from low-purity manganese and potassium inclusion Download PDF

Info

Publication number
WO2015009077A1
WO2015009077A1 PCT/KR2014/006497 KR2014006497W WO2015009077A1 WO 2015009077 A1 WO2015009077 A1 WO 2015009077A1 KR 2014006497 W KR2014006497 W KR 2014006497W WO 2015009077 A1 WO2015009077 A1 WO 2015009077A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
potassium
sulfate
leachate
purity
Prior art date
Application number
PCT/KR2014/006497
Other languages
French (fr)
Korean (ko)
Inventor
김명준
트란탐
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2015009077A1 publication Critical patent/WO2015009077A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/02Preparation of sulfates from alkali metal salts and sulfuric acid or bisulfates; Preparation of bisulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/16Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a method for producing a high purity manganese compound and a high purity potassium sulfate from a low purity manganese and potassium content, and more particularly to a method for producing a high purity manganese compound and a high purity potassium sulfate through one process.
  • Manganese oxide is widely used in the production of a positive electrode, which is one of the components of the secondary battery, and the demand for this is also rapidly increasing.
  • Korean Patent Laid-Open Publication No. 10-2011-76109 discloses a method for the simultaneous production of a valuable metal compound and potassium sulfate from manganese nodules
  • Patent Publication No. 10-2012-93948 discloses MnSO from a low to medium quality MnO 2 ore. 4, and it discloses a method for producing a H 2 O
  • Laid-Open Patent Publication No. 10-2011-111057 discloses a manufacturing method of a crystalline sasanhwasam manganese, lithium-manganese oxide.
  • an object of the present invention is to economically produce high purity manganese compounds (manganese sulfate monohydrate, trimanganese tetraoxide and Electronic Manganese Metal) and high purity potassium sulfate simultaneously from low purity manganese and potassium content in one process.
  • high purity manganese compounds manganese sulfate monohydrate, trimanganese tetraoxide and Electronic Manganese Metal
  • potassium is added through a first solid-liquid separation after adding water to the low purity manganese and potassium content.
  • the sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), the sulfide is 2 to the total molar amount of the first impurity 5 times may be added after dissolving in water to remove the first impurity.
  • the method may further include obtaining a second potassium leachate from which the first impurity is removed through solid-liquid separation after removing the first impurity.
  • It may include the step of obtaining high-purity potassium sulfate by precipitating with potassium sulfate by adding sulfuric acid or sodium sulfate of 0.1 to 3 times the potassium molar ratio to the second potassium leaching solution.
  • the high purity manganese compound includes at least one of manganese sulfate monohydrate (MnSO 4 ⁇ H 2 O), trimanganese tetraoxide (Mn 3 O 4 ), and electronic manganese metal (EMM).
  • Sulfuric acid added to the first solid may be added by dilution in water at a ratio of 0.1 to 3 times the molar content contained in the first solid.
  • calcium hydroxide may be added to pH 4 or more to remove iron in the second impurity.
  • the sulfide may be added at a ratio of 2 to 50 times the total molar amount of the second impurity other than the removed iron to remove the second impurity other than the iron.
  • the preparing of the high purity manganese compound may include obtaining potassium manganese sulfate solution by sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate; Drying the aqueous manganese sulfate solution may comprise the step of preparing a high purity manganese sulfate monohydrate.
  • the potassium hydroxide may be added to pH 6 to pH 9 of the manganese leaching solution under a non-oxidizing atmosphere so that manganese hydroxide is precipitated.
  • the sulfuric acid may be added at a ratio of 0.1 to 3 times the molar content of manganese hydroxide contained in the manganese hydroxide to obtain an aqueous manganese sulfate solution.
  • the preparing of the high purity manganese compound may include obtaining potassium manganese sulfate solution by sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate; It may include the step of producing an electronic manganese metal (EMM) using the electrolytic extraction method of the aqueous manganese sulfate.
  • EMM electronic manganese metal
  • the potassium hydroxide may be added to pH 6 to pH 9 of the manganese leaching solution under a non-oxidizing atmosphere so that manganese hydroxide is precipitated.
  • the sulfuric acid may be added at a ratio of 0.1 to 3 times the molar content of manganese hydroxide contained in the manganese hydroxide to obtain an aqueous manganese sulfate solution.
  • the heat treatment of the manganese hydroxide in an oxidizing atmosphere may include the step of quenching to prepare trimanganese tetraoxide.
  • the potassium hydroxide may be added to pH 6 to pH 9 of the manganese leaching solution under a non-oxidizing atmosphere.
  • the above object in the method for producing potassium sulfate from the low-purity manganese and potassium-containing, in which a potassium is included through the solid-liquid separation after adding water to the low-purity manganese and the potassium-containing Separating the potassium leach solution and the solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. It can be achieved by a method for preparing potassium sulfate from low purity manganese and potassium containing comprising the step of.
  • the above object in the method for producing manganese sulfate monohydrate from low-purity manganese and potassium containing, potassium is included through the solid-liquid separation after adding water to the low-purity manganese and potassium containing Separating the potassium leach solution and the solid; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate; It can be achieved by a method for preparing manganese sulfate monohydrate from a low purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to produce a high purity manganese sulfate monohydrate.
  • EMM Electronic Manganese Metal
  • potassium is added through solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the potassium leach solution and the solid contained; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
  • the aqueous manganese sulfate solution may be achieved by a method of producing EMM (Electronic Manganese Metal) from low-purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using an electrolytic extraction method.
  • the above object in the method for producing trimanganese tetraoxide from a low-purity manganese and potassium-containing, potassium containing potassium through the solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the leachate from the solid; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate;
  • the manganese hydroxide may be achieved by a method of preparing trimanganese tetraoxide from low purity manganese and potassium containing the step of quenching the heat treatment in an oxidizing atmosphere to prepare trimanganese tetraoxide.
  • a high-purity manganese compound (manganese sulfate monohydrate, trimanganese tetraoxide and Electronic Manganese Metal (EMM) and high-purity potassium sulfate) can be economically obtained from a low-purity manganese and potassium-containing material in one process.
  • EMM Electronic Manganese Metal
  • Methods of making are provided.
  • FIG. 1 is a schematic flowchart of preparation of high purity manganese compound and high purity potassium sulfate according to an embodiment of the present invention
  • FIG. 3 is a flowchart of manufacturing a high purity manganese compound according to an embodiment of the present invention.
  • 1 is a schematic flowchart of preparation of high purity manganese compound and high purity potassium sulfate according to an embodiment of the present invention.
  • Sulfide is added to the first potassium leachate separated through the first solid solution separation to remove the first impurity (S130), and sulfuric acid or sodium sulfate is added to prepare high purity potassium sulfate (S140).
  • step S210 Adding sulfuric acid to the first solid separated in step S120 and roasting to convert it to manganese sulfate (S210), and adding sulfide and potassium hydroxide to remove the second impurity to obtain manganese leachate (S220);
  • step S230 Adding potassium hydroxide and sulfuric acid to the manganese leachate (S230), and drying the manganese sulfate solution to obtain a high purity manganese sulfate monohydrate (S240).
  • the potassium hydroxide used in steps S220 and S230 may be used using the first potassium leachate of step S120.
  • the manganese sulfate aqueous solution obtained in step S230 may be prepared by using an electrowinning method (Electrowinning) EMM (Electronic Manganese Metal) (S310).
  • EMM Electro Manganese Metal
  • step S410 the step of precipitating manganese hydroxide using potassium hydroxide in the manganese leachate obtained in step S220 (S410), and drying and quenching the manganese hydroxide to prepare a high-purity trimanganese tetraoxide (S420).
  • the potassium hydroxide of step S410 may also use the first potassium leach solution of step S120.
  • the present invention provides a method for producing potassium sulfate, manganese sulfate monohydrate, EMM and trimanganese tetraoxide from low purity manganese and potassium content through one process.
  • FIG. 2 is a flowchart of high purity potassium sulfate production according to an embodiment of the present invention.
  • the low-purity manganese and potassium-containing products leach potassium by adding water to low-purity manganese, potassium ore or by-product manganese, potassium dust.
  • potassium hydroxide is leached through a reaction as in Scheme 1 below.
  • the water is added in an amount that can be well stirred by adding about 2 to 4 times, preferably 2 to 3 times, more preferably about 2.5 times, by volume ratio of the low purity manganese and potassium containing.
  • the first solid solution separation is performed to separate the first potassium leachate containing the leached potassium hydroxide and the first solid (S120).
  • the first potassium leachate obtained through the first solid-liquid separation of S120 is used in the next step for the production of high purity potassium sulfate, or of the potassium hydroxide used for the production of high purity trimanganese tetraoxide or the production of high purity manganese sulfate monohydrate. It can be used as a material.
  • the first solid obtained through the first solid-liquid separation of S120 may be used as a material for manufacturing high purity trimanganese tetraoxide, manganese sulfate monohydrate, and EMM which are manganese compounds.
  • Sulfide is added to remove the first impurity in the first potassium leachate of S120 to precipitate the first impurity in the form of sulfide (S130).
  • the first impurity includes heavy metals such as lead (Pb), nickel (Ni), zinc (Zn), cobalt (Co) or copper (Cu).
  • the sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and is added after dissolving 2 to 5 times the total molar amount of the first impurity in water. Due to the addition of these sulfides, the first impurity precipitates in the form of sulfides (NiS, PbS, ZnS, CoS, CuS).
  • the sulfide slurry is discarded through a second solid-liquid separation to obtain a second potassium leachate from which the first impurity is removed (S131).
  • the second potassium leachate from which the first impurity of S131 is removed is used as a next step for the preparation of high purity potassium sulfate, or as a material of potassium hydroxide used for the production of high purity trimanganese tetraoxide or the preparation of high purity manganese sulfate monohydrate. Can be used.
  • the second potassium leachate of S131 is used as a material of potassium hydroxide used for the production of high-purity trimanganese tetraoxide or a high-purity manganese sulfate monohydrate.
  • Potassium sulfate is precipitated by adding sulfuric acid or sodium sulfate to the second potassium leachate (S141).
  • the sulfuric acid is added 0.1 to 3 times, preferably 0.5 to 2 times the potassium molar ratio.
  • a third solid-liquid separation may be performed to prepare high purity (more than 99%) potassium sulfate (K 2 SO 4 ) as a solid.
  • FIG. 3 is a flowchart of manufacturing high-purity manganese sulfate monohydrate according to an embodiment of the present invention.
  • sulfuric acid is added to the first solid obtained in step S120 of FIG. 2 to be roasted and converted to manganese sulfate (S210).
  • the sulfuric acid to be added is preferably a diluted sulfuric acid, for example, the sulfuric acid in a ratio of 1 to 3 times the molar content of manganese contained in the first solid, preferably in a ratio of 1.5 to 3 times Dilute in water and add.
  • the roasting temperature is roasted to 300 °C to 1000 °C, preferably 500 °C to 800 °C by converting the first solid to manganese sulfate, the reaction scheme is as follows.
  • Manganese leachate is obtained by adding sulfide and potassium hydroxide to manganese sulfate obtained in step S210 to remove the second impurity (S220).
  • This step may include more detailed steps as follows.
  • the first manganese leachate is obtained by adding water to the manganese sulfate obtained in step S210 (S221).
  • a second manganese leachate from which iron is removed is obtained (S223).
  • Calcium hydroxide may be added to remove the iron so that the pH of the first manganese leachate is at least pH4, preferably pH4 to pH5.
  • the iron is removed in the form of Fe (OH) 3 or FeOOH, the reaction is shown in the following scheme.
  • Sulfide is added to the second manganese leachate from which iron is removed to obtain a third manganese leachate from which impurities other than iron are removed (S225).
  • the second manganese leachate from which the iron is removed may further include impurities such as nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), and copper (Cu) other than iron. Accordingly, sulfides may be added to the second manganese leachate to precipitate and remove impurities other than iron in the form of sulfides.
  • the sulfide comprises sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S) at least one, the sulfide is a ratio of 2 to 50 times the total molar amount of impurities other than iron, preferably 2 It may be added in a ratio of 10 to 10 times, more preferably in a ratio of 3 to 6 times.
  • the sulfide slurry may be discarded through solid-liquid separation to obtain a third manganese leachate from which impurities other than iron are removed.
  • Potassium hydroxide and sulfuric acid are sequentially added to the third manganese leachate from which the impurities are removed to obtain an aqueous manganese sulfate solution (S230).
  • This step may include more detailed steps as follows.
  • Potassium hydroxide is added to the third manganese leachate to precipitate into manganese hydroxide (S231).
  • Manganese leaching liquid obtained in step S225 is dissolved manganese, magnesium, calcium, potassium, etc., it is necessary to selectively precipitate manganese. Accordingly, the potassium hydroxide solution is diluted to 1 M or more, and added to the third manganese leachate at a temperature of 60 ° C. to 70 ° C. to a pH 6 to pH 9 to precipitate manganese in the form of manganese hydroxide (Mn (OH) 2 ). Be sure to If the pH is lower than the appropriate pH, the recovery of manganese (Mn) is lowered. If the pH is higher than the pH, impurities may be precipitated.
  • the manganese hydroxide may further comprise the step of washing with water in a non-oxidizing atmosphere at a temperature of 60 °C to 90 °C (not shown).
  • the washing may also have the effect of further removing other impurities in the manganese hydroxide.
  • Manganese hydroxide precipitated through the solid-liquid separation is obtained and used in the next step, the solution remaining after obtaining manganese hydroxide may be used in place of water for potassium leaching in step S110.
  • the method may further include neutralizing the solution redissolved with sulfuric acid (not shown).
  • the reagent for the neutralization reaction may use manganese hydroxide in step S231, and the manganese hydroxide used for the neutralization reaction may be neutralized such that the pH of the re-dissolution solution is pH4 to pH6.
  • the obtained manganese sulfate aqueous solution may be dried to obtain a high purity manganese sulfate monohydrate (S240).
  • the drying process may include preparing a high purity manganese sulfate monohydrate by crystallizing the aqueous manganese sulfate solution by performing vacuum evaporation.
  • the appropriate saturated steam pressure for the vacuum evaporation is 0.57 ⁇ 0.7kgf / cm 2 , preferably 0.6 ⁇ 0.6.5kgf / cm 2 , it can be carried out under a temperature of 85 to 90 °C vacuum evaporation.
  • the evaporation point may be lower than 80 ° C., thereby producing manganese sulfate pentahydrate (MnSO 4 ⁇ 5H 2 O) instead of manganese sulfate monohydrate (MnSO 4 ⁇ H 2 O).
  • the edge efficiency may be lowered, thereby lowering the economic efficiency.
  • the manganese sulfate solution obtained in step S233 may be used in the manufacture of EMM.
  • the manganese sulfate aqueous solution obtained in step S233 may be prepared by using an electrowinning method (Electrowinning).
  • the manganese hydroxide obtained in the step S231 can be produced in high purity three manganese tetraoxide.
  • the manganese hydroxide obtained in step S231 may be heat-treated at a temperature of 800 ° C. to 1100 ° C. after drying using a dryer. Heat treatment is performed by using equipment such as rotary kiln incinerator, and it is well stirred so that the sample can react sufficiently during heat treatment, so that the oxidizing atmosphere can be achieved. In addition, the quenching treatment is performed after the heat treatment. Manganese from which impurities are removed by the heat treatment is reduced to Mn 2 O 3 , and rapid cooling is performed to oxidize it to Mn 3 O 4 manganese compound. After performing the heat treatment can be cooled to room temperature within a short time. Through this, tri- manganese tetraoxide (Mn 3 O 4 ) that can be used in a secondary battery can be obtained with high purity, and the reaction is shown in the following reaction formula.
  • Mn 3 O 4 tri- manganese tetraoxide
  • the concentration of sulfide is as follows.
  • Sulfide is added at a rate of 10 to 50 times the total molar amount of impurities other than iron, preferably at a rate of 15 to 45 times, more preferably at a rate of 30 to 35 times, and the pH of the added sulfide is pH7 To pH8, preferably adjusted to pH8. After the sulfide is added, the reaction may be performed for about 10 to 100 minutes, preferably 20 to 80 minutes, more preferably 30 to 60 minutes.
  • potassium hydroxide is added so that the pH of the iron-containing manganese leachate is pH 5 to pH 6, about 10 minutes to 60 minutes, preferably 10 minutes to 40 minutes, more preferably Can react for 20 to 30 minutes. That is, when pH is adjusted by adding potassium hydroxide after addition of sulfide, impurities such as nickel, lead, zinc, cobalt, and copper, which are impurities other than iron, form sulfides (NiS, PbS, ZnS, CoS, CuS). It can help to settle, and thus be more effective in removing impurities in the form of sulfides.
  • the method for producing manganese compounds and potassium sulfate from the low purity manganese and potassium content of the present invention can be used for the production of secondary batteries such as portable electronic devices.

Abstract

The present invention relates to a method for preparing high-purity manganese compounds and high-purity potassium sulfate from a low-purity manganese and potassium inclusion. The method for preparing high-purity manganese compounds and high-purity potassium sulfate from a low-purity manganese and potassium inclusion according to the present invention comprises the steps of: adding water to a low-purity manganese and potassium inclusion, and then separating a first potassium leachate containing potassium and a first solid through a first solid-liquid separation process; adding potassium sulfide to the first potassium leachate to remove a first impurity, and preparing high-purity potassium sulfate using sulfuric acid; adding sulfuric acid to the first solid, roasting the mixture to convert the mixture into manganese sulfate, removing a second impurity using at least one of calcium hydroxide and sulfide, and then obtaining a manganese leachate through a second solid-liquid separation process; and preparing high-purity manganese compounds from the manganese leachate. Thus, the high-purity manganese compounds (manganese sulfate monohydrate, manganese tetroxide, and electronic manganese metal (EMM)) and high-purity potassium sulfate can be simultaneously produced from the low-purity manganese and potassium inclusion in an economical manner.

Description

저순도 망간 및 칼륨 함유물로부터 망간화합물 및 황산칼륨의 제조방법Process for preparing manganese compounds and potassium sulfate from low purity manganese and potassium content
본 발명은 저순도 망간 및 칼륨 함유물로부터 고순도 망간화합물 및 고순도 황산칼륨의 제조방법에 관한 것으로서, 보다 상세하게는 상기 고순도 망간화합물 및 고순도 황산칼륨의 하나의 프로세스를 통하여 제조하는 방법에 대한 것이다.The present invention relates to a method for producing a high purity manganese compound and a high purity potassium sulfate from a low purity manganese and potassium content, and more particularly to a method for producing a high purity manganese compound and a high purity potassium sulfate through one process.
휴대용 전자기기의 수요가 급증하고 기술이 발전함에 따라 이차전지에 대한 요구가 증가하고 있다. 이러한 이차전지의 구성요소 중의 하나인 양극의 제조에 망간산화물이 많이 이용되고 있어, 이에 대한 수요 역시 급증하고 있는 실정이다.As the demand for portable electronic devices soars and technology advances, the demand for secondary batteries is increasing. Manganese oxide is widely used in the production of a positive electrode, which is one of the components of the secondary battery, and the demand for this is also rapidly increasing.
그러나 망간산화물의 경우 대부분 수입에 의존하고 있어 이차전지의 제조에 비경제적인 문제점이 존재한다.However, most of the manganese oxides depend on imports, so there is an uneconomic problem in manufacturing secondary batteries.
종래 공개특허공보 제10-2011-76109호는 망간단괴로부터 유가금속 화합물 및 황산칼륨의 동시 제조방법에 대하여 개시하고 있고, 공개특허공보 제10-2012-93948호는 중저품질의 MnO2광석으로부터 MnSO4·H2O 를 제조하는 방법에 대하여 개시하고 있고, 공개특허공보 제10-2011-111057호는 결정성의 사산화삼망간, 리튬망간산화물의 제조방법에 대하여 개시하고 있다.Korean Patent Laid-Open Publication No. 10-2011-76109 discloses a method for the simultaneous production of a valuable metal compound and potassium sulfate from manganese nodules, and Patent Publication No. 10-2012-93948 discloses MnSO from a low to medium quality MnO 2 ore. 4, and it discloses a method for producing a H 2 O, Laid-Open Patent Publication No. 10-2011-111057 discloses a manufacturing method of a crystalline sasanhwasam manganese, lithium-manganese oxide.
그러나 종래 특허공개공보들에서 개시하고 있는 기술은 망간 및 칼륨함유물로부터 고순도 황산칼륨 및 고순도 망간화합물을 하나의 프로세스를 통하여 제조하는 방법에 대하여는 개시하고 있지 않다.However, the technique disclosed in the prior patent publications does not disclose a method for producing high purity potassium sulfate and high purity manganese compounds from manganese and potassium containing in one process.
따라서, 본 발명의 목적은 하나의 프로세스를 통하여 경제적으로 저순도 망간 및 칼륨 함유물로부터 고순도 망간화합물(황산망간일수화물, 사산화삼망가니즈 및 EMM(Electronic Manganese Metal) 및 고순도 황산칼륨을 동시에 제조하는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to economically produce high purity manganese compounds (manganese sulfate monohydrate, trimanganese tetraoxide and Electronic Manganese Metal) and high purity potassium sulfate simultaneously from low purity manganese and potassium content in one process. To provide.
상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 제1고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 제1고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고, 황산 또는 황산나트륨을 첨가하여 고순도 황산칼륨을 제조하는 단계와; 상기 제1고체에 황산을 첨가하여 배소시켜 황산망간으로 변환시킨 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 제2불순물을 제거하고, 제2고액분리를 통하여 망간침출액을 획득하는 단계와; 상기 망간침출액으로부터 고순도 망간화합물을 제조하는 단계를 포함하는 고순도 망간 화합물 및 황산칼륨의 제조방법에 의하여 달성될 수 있다.According to the present invention, in the method for preparing a high purity manganese compound and potassium sulfate from a low purity manganese and potassium content, potassium is added through a first solid-liquid separation after adding water to the low purity manganese and potassium content. Separating the first potassium leach solution and the first solid included; Adding a sulfide to the first potassium leachate to remove the first impurity, and adding sulfuric acid or sodium sulfate to prepare high purity potassium sulfate; Adding sulfuric acid to the first solid to be converted to manganese sulfate to remove the second impurity using at least one of calcium hydroxide and sulfide, and obtaining manganese leachate through second solid-liquid separation; It can be achieved by a method for producing a high purity manganese compound and potassium sulfate comprising the step of preparing a high purity manganese compound from the manganese leaching solution.
상기 고순도 황산칼륨 제조단계에서, 상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, 상기 황화물은 상기 제1불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 상기 제1불순물을 제거하는 단계를 포함할 수 있다.In the high purity potassium sulfate manufacturing step, the sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), the sulfide is 2 to the total molar amount of the first impurity 5 times may be added after dissolving in water to remove the first impurity.
상기 고순도 황산칼륨 제조단계에서, 상기 제1 불순물 제거 후 고액분리를 통하여 상기 제1불순물이 제거된 제2칼륨침출액을 획득하는 단계를 더 포함할 수 있다.In the preparing of high purity potassium sulfate, the method may further include obtaining a second potassium leachate from which the first impurity is removed through solid-liquid separation after removing the first impurity.
상기 제2칼륨침출액에 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계를 포함할 수 있다.It may include the step of obtaining high-purity potassium sulfate by precipitating with potassium sulfate by adding sulfuric acid or sodium sulfate of 0.1 to 3 times the potassium molar ratio to the second potassium leaching solution.
상기 고순도 망간 화합물은 황산망간일수화물(MnSO4·H2O), 사산화삼망가니즈(Mn3O4) 및 EMM(electronic manganese metal) 중 적어도 어느 하나를 포함한다.The high purity manganese compound includes at least one of manganese sulfate monohydrate (MnSO 4 · H 2 O), trimanganese tetraoxide (Mn 3 O 4 ), and electronic manganese metal (EMM).
상기 제1고체에 첨가되는 황산은 상기 제1고체에 포함된 몰 함량의 0.1 내지 3배의 비율로 물에 희석하여 첨가될 수 있다.Sulfuric acid added to the first solid may be added by dilution in water at a ratio of 0.1 to 3 times the molar content contained in the first solid.
상기 황산망간을 물에 용해한 후에 pH 4 이상이 되도록 수산화칼슘을 첨가하여 상기 제2불순물 중 철을 제거할 수 있다.After dissolving the manganese sulfate in water, calcium hydroxide may be added to pH 4 or more to remove iron in the second impurity.
상기 황화물은, 상기 제거된 철 이외의 제2불순물 전체 몰량의 2 내지 50배의 비율로 첨가하여 상기 철 이외의 제2불순물을 제거할 수 있다.The sulfide may be added at a ratio of 2 to 50 times the total molar amount of the second impurity other than the removed iron to remove the second impurity other than the iron.
상기 고순도 망간화합물을 제조하는 단계는, 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와; 상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함할 수 있다.The preparing of the high purity manganese compound may include obtaining potassium manganese sulfate solution by sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate; Drying the aqueous manganese sulfate solution may comprise the step of preparing a high purity manganese sulfate monohydrate.
상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가하여 수산화망간이 침전되도록 할 수 있다.The potassium hydroxide may be added to pH 6 to pH 9 of the manganese leaching solution under a non-oxidizing atmosphere so that manganese hydroxide is precipitated.
상기 황산은, 상기 수산화망간에 포함된 망간 몰 함량의 0.1 내지 3배의 비율로 첨가하여 황산망간수용액을 획득할 수 있다.The sulfuric acid may be added at a ratio of 0.1 to 3 times the molar content of manganese hydroxide contained in the manganese hydroxide to obtain an aqueous manganese sulfate solution.
상기 고순도 망간화합물을 제조하는 단계는, 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와; 상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함할 수 있다.The preparing of the high purity manganese compound may include obtaining potassium manganese sulfate solution by sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate; It may include the step of producing an electronic manganese metal (EMM) using the electrolytic extraction method of the aqueous manganese sulfate.
상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가하여 수산화망간이 침전되도록 할 수 있다.The potassium hydroxide may be added to pH 6 to pH 9 of the manganese leaching solution under a non-oxidizing atmosphere so that manganese hydroxide is precipitated.
상기 황산은, 상기 수산화망간에 포함된 망간 몰 함량의 0.1 내지 3배의 비율로 첨가하여 황산망간수용액을 획득할 수 있다.The sulfuric acid may be added at a ratio of 0.1 to 3 times the molar content of manganese hydroxide contained in the manganese hydroxide to obtain an aqueous manganese sulfate solution.
상기 고순도 망간화합물을 제조하는 단계는, 상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와; 상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함할 수 있다.The step of preparing a high purity manganese compound, the step of precipitating to manganese hydroxide using potassium hydroxide in the manganese leaching solution; The heat treatment of the manganese hydroxide in an oxidizing atmosphere may include the step of quenching to prepare trimanganese tetraoxide.
상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가할 수 있다.The potassium hydroxide may be added to pH 6 to pH 9 of the manganese leaching solution under a non-oxidizing atmosphere.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 황산칼륨의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 고체를 분리하는 단계와; 상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와; 고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨의 제조방법에 의하여 달성될 수 있다.In addition, the above object, according to the present invention, in the method for producing potassium sulfate from the low-purity manganese and potassium-containing, in which a potassium is included through the solid-liquid separation after adding water to the low-purity manganese and the potassium-containing Separating the potassium leach solution and the solid; Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities; After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. It can be achieved by a method for preparing potassium sulfate from low purity manganese and potassium containing comprising the step of.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 황산망간일수화물의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와; 상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산망간일수화물의 제조방법에 의하여 달성될 수 있다.In addition, the above object, according to the present invention, in the method for producing manganese sulfate monohydrate from low-purity manganese and potassium containing, potassium is included through the solid-liquid separation after adding water to the low-purity manganese and potassium containing Separating the potassium leach solution and the solid; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate; It can be achieved by a method for preparing manganese sulfate monohydrate from a low purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to produce a high purity manganese sulfate monohydrate.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 EMM(Electronic Manganese Metal)의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와; 상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 EMM(Electronic Manganese Metal)의 제조방법에 의하여 달성될 수 있다.In addition, according to the present invention, in the method for producing EMM (Electronic Manganese Metal) from low-purity manganese and potassium-containing, potassium is added through solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the potassium leach solution and the solid contained; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate; The aqueous manganese sulfate solution may be achieved by a method of producing EMM (Electronic Manganese Metal) from low-purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using an electrolytic extraction method.
또한, 상기 목적은, 본 발명에 따라, 저순도 망간 및 칼륨 함유물로부터 사산화삼망가니즈의 제조방법에 있어서, 저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와; 상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와; 상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와; 상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와; 상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 사산화삼망가니즈의 제조방법에 의하여 달성될 수 있다.In addition, the above object, according to the present invention, in the method for producing trimanganese tetraoxide from a low-purity manganese and potassium-containing, potassium containing potassium through the solid-liquid separation after adding water to the low-purity manganese and potassium-containing Separating the leachate from the solid; Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid; Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate; Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate; The manganese hydroxide may be achieved by a method of preparing trimanganese tetraoxide from low purity manganese and potassium containing the step of quenching the heat treatment in an oxidizing atmosphere to prepare trimanganese tetraoxide.
이상 설명한 바와 같이, 본 발명에 따르면, 하나의 프로세스를 통하여 경제적으로 저순도 망간 및 칼륨 함유물로부터 고순도 망간화합물(황산망간일수화물, 사산화삼망가니즈 및 EMM(Electronic Manganese Metal) 및 고순도 황산칼륨을 동시에 제조하는 방법이 제공된다. As described above, according to the present invention, a high-purity manganese compound (manganese sulfate monohydrate, trimanganese tetraoxide and Electronic Manganese Metal (EMM) and high-purity potassium sulfate) can be economically obtained from a low-purity manganese and potassium-containing material in one process. Methods of making are provided.
도 1은 본 발명의 일 실시예에 따른 고순도 망간화합물 및 고순도 황산칼륨 제조의 개략적인 플로우차트이고,1 is a schematic flowchart of preparation of high purity manganese compound and high purity potassium sulfate according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 고순도 황산칼륨 제조의 플로우차트이고,2 is a flowchart of the preparation of high purity potassium sulfate according to an embodiment of the present invention,
도 3은 본 발명의 일 실시예에 따른 고순도 망간화합물 제조의 플로우차트이다.3 is a flowchart of manufacturing a high purity manganese compound according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙이도록 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In order to clearly describe the present invention, parts irrelevant to the description are omitted, and like reference numerals designate like elements throughout the specification.
도 1은 본 발명의 일 실시예에 따른 고순도 망간화합물 및 고순도 황산칼륨 제조의 개략적인 플로우차트이다.1 is a schematic flowchart of preparation of high purity manganese compound and high purity potassium sulfate according to an embodiment of the present invention.
도 1에서 보는 바와 같이, 본 발명에 따른 망간화합물 및 황산칼륨의 제조방법은, 저순도 망간 및 칼륨 함유물에 물을 첨가하여 칼륨을 침출하고(S110), 제1고액분리를 통하여 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리한다(S120).As shown in Figure 1, in the method for producing a manganese compound and potassium sulfate according to the present invention, by adding water to the low-purity manganese and potassium containing water leaching potassium (S110), the first hydroxide through the solid solution separation Separating the first potassium leaching solution and the first solid containing (S120).
상기 제1고액분리를 통하여 분리된 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고(S130), 황산 또는 황산나트륨을 첨가하여 고순도 황산칼륨을 제조한다(S140).Sulfide is added to the first potassium leachate separated through the first solid solution separation to remove the first impurity (S130), and sulfuric acid or sodium sulfate is added to prepare high purity potassium sulfate (S140).
상기 S120단계에서 분리된 제1고체에 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계(S210)와, 황화물 및 수산화칼륨을 첨가하여 제2불순물을 제거하여 망간침출액을 획득하는 단계(S220)와, 상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계(S230)와, 상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 획득하는 단계(S240)를 포함한다.Adding sulfuric acid to the first solid separated in step S120 and roasting to convert it to manganese sulfate (S210), and adding sulfide and potassium hydroxide to remove the second impurity to obtain manganese leachate (S220); To obtain a manganese sulfate solution by sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate (S230), and drying the manganese sulfate solution to obtain a high purity manganese sulfate monohydrate (S240).
상기 S220단계, S230단계에 사용되는 수산화칼륨은 상기 S120단계의 제1칼륨침출액을 이용하여도 무방하다. The potassium hydroxide used in steps S220 and S230 may be used using the first potassium leachate of step S120.
또한, 상기 S230단계에서 획득한 황산망간수용액을 전해채취방법(Electrowinning)을 이용하여 EMM(Electronic Manganese Metal)을 제조할 수 있다(S310).In addition, the manganese sulfate aqueous solution obtained in step S230 may be prepared by using an electrowinning method (Electrowinning) EMM (Electronic Manganese Metal) (S310).
또한, 상기 S220단계에서 획득한 망간침출액에 수산화칼륨을 이용하여 수산화망간을 침전하는 단계(S410)와, 상기 수산화망간을 건조 및 급냉하여 고순도 사산화삼망가니즈를 제조하는 단계(S420)를 포함한다.In addition, the step of precipitating manganese hydroxide using potassium hydroxide in the manganese leachate obtained in step S220 (S410), and drying and quenching the manganese hydroxide to prepare a high-purity trimanganese tetraoxide (S420).
상기 S410단계의 수산화칼륨은 역시 상기 S120단계의 제1칼륨침출액을 이용하여도 무방하다.The potassium hydroxide of step S410 may also use the first potassium leach solution of step S120.
이를 통하여 본 발명은 저순도 망간 및 칼륨 함유물로부터 황산칼륨, 황산망간일수화물, EMM 및 사산화삼망가니즈를 하나의 프로세스를 통하여 제조할 수 있는 방법을 제공한다.Through this, the present invention provides a method for producing potassium sulfate, manganese sulfate monohydrate, EMM and trimanganese tetraoxide from low purity manganese and potassium content through one process.
이하, 각 화합물의 제조프로세스를 도 2 내지 도 5를 통하여 더욱 상세히 설명하도록 한다.Hereinafter, the preparation process of each compound will be described in more detail with reference to FIGS. 2 to 5.
도 2는 본 발명의 일 실시예에 따른 고순도 황산칼륨 제조의 플로우차트이다.Figure 2 is a flowchart of high purity potassium sulfate production according to an embodiment of the present invention.
도 2를 참조하면, 저순도 망간 및 칼륨 함유물에 물을 첨가하여 칼륨을 침출한다(S110). 상기 저순도 망간 및 칼륨 함유물은 저순도 망간, 칼륨 광석이나 부산물인 망간, 칼륨 더스트에 물을 첨가하여 칼륨을 침출시킨다.Referring to Figure 2, by adding water to the low-purity manganese and potassium containing leaching potassium (S110). The low-purity manganese and potassium-containing products leach potassium by adding water to low-purity manganese, potassium ore or by-product manganese, potassium dust.
상기 저순도 망간 및 칼륨 함유물에 물을 첨가하면 하기 반응식 1과 같은 반응을 통하여 수산화칼륨이 침출된다. 상기 물은 상기 저순도 망간 및 칼륨 함유물의 부피비로 약 2 내지 4배, 바람직하게는 2 내지 3배, 더욱 바람직하게2.5배 정도를 첨가하는 것으로 교반이 잘 될 수 있는 정도의 양을 첨가한다. When water is added to the low-purity manganese and potassium-containing compounds, potassium hydroxide is leached through a reaction as in Scheme 1 below. The water is added in an amount that can be well stirred by adding about 2 to 4 times, preferably 2 to 3 times, more preferably about 2.5 times, by volume ratio of the low purity manganese and potassium containing.
[반응식 1]Scheme 1
K2O + H2O = 2KOHK 2 O + H 2 O = 2 KOH
제1고액분리를 수행하여 상기 침출된 수산화칼륨을 포함하는 제1칼륨침출액과 제1고체를 분리한다(S120).The first solid solution separation is performed to separate the first potassium leachate containing the leached potassium hydroxide and the first solid (S120).
상기 S120의 제1고액분리를 통하여 획득된 제1칼륨침출액은 고순도 황산칼륨의 제조를 위한 다음단계에 이용되거나, 또는 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용될 수 있다.The first potassium leachate obtained through the first solid-liquid separation of S120 is used in the next step for the production of high purity potassium sulfate, or of the potassium hydroxide used for the production of high purity trimanganese tetraoxide or the production of high purity manganese sulfate monohydrate. It can be used as a material.
또한 상기 S120의 제1고액분리를 통하여 획득된 제1고체는 망간화합물인 고순도 사산화삼망가니즈, 황산망간일수화물, EMM의 제조를 위한 재료로 이용될 수 있다.In addition, the first solid obtained through the first solid-liquid separation of S120 may be used as a material for manufacturing high purity trimanganese tetraoxide, manganese sulfate monohydrate, and EMM which are manganese compounds.
상기 S120의 제1칼륨침출액 중 제1불순물을 제거하기 위하여 황화물을 첨가하여 제1불순물을 황화물 형태로 침전시킨다(S130).Sulfide is added to remove the first impurity in the first potassium leachate of S120 to precipitate the first impurity in the form of sulfide (S130).
상기 제1불순물에는 납(Pb), 니켈(Ni), 아연(Zn), 코발트(Co) 또는 구리(Cu) 등의 중금속을 포함한다.The first impurity includes heavy metals such as lead (Pb), nickel (Ni), zinc (Zn), cobalt (Co) or copper (Cu).
상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, 상기 제1불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가한다. 이러한 황화물의 첨가로 인하여 제1불순물은 황화물의 형태(NiS, PbS, ZnS, CoS, CuS)로 침전된다. The sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S), and is added after dissolving 2 to 5 times the total molar amount of the first impurity in water. Due to the addition of these sulfides, the first impurity precipitates in the form of sulfides (NiS, PbS, ZnS, CoS, CuS).
제2고액분리를 통하여 상기 황화물 슬러리는 폐기하여 제1불순물이 제거된 제2칼륨침출액을 획득한다(S131). 상기 S131의 제1불순물이 제거된 제2칼륨침출액은 고순도 황산칼륨의 제조를 위한 다음단계에 이용되거나, 또는 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용될 수 있다. 상기 S120의 제1칼륨침출액보다 S131의 제2칼륨침출액이 불순물이 제거되었기에 제2칼륨침출액이 고순도 사산화삼망가니즈의 제조 또는 고순도 황산망간일수화물의 제조에 이용되는 수산화칼륨의 재료로 이용되는 것이 바람직하다.The sulfide slurry is discarded through a second solid-liquid separation to obtain a second potassium leachate from which the first impurity is removed (S131). The second potassium leachate from which the first impurity of S131 is removed is used as a next step for the preparation of high purity potassium sulfate, or as a material of potassium hydroxide used for the production of high purity trimanganese tetraoxide or the preparation of high purity manganese sulfate monohydrate. Can be used. Since the impurities of the second potassium leachate of S131 are removed from the first potassium leachate of S120, it is preferable that the second potassium leachate is used as a material of potassium hydroxide used for the production of high-purity trimanganese tetraoxide or a high-purity manganese sulfate monohydrate. Do.
상기 제2칼륨침출액에 황산 또는 황산나트륨을 첨가하여 황산칼륨을 침전시킨다(S141). 상기 황산은 칼륨 몰비의 0.1 내지 3배, 바람직하게 0.5 내지 2배를 첨가한다.Potassium sulfate is precipitated by adding sulfuric acid or sodium sulfate to the second potassium leachate (S141). The sulfuric acid is added 0.1 to 3 times, preferably 0.5 to 2 times the potassium molar ratio.
상기 황산 첨가에 의한 반응은 하기 반응식 2와 같다.The reaction by adding sulfuric acid is shown in Scheme 2 below.
[반응식 2]Scheme 2
2KOH + H2SO4 = K2SO4↓ + 2H2O2KOH + H 2 SO 4 = K 2 SO 4 ↓ + 2H 2 O
2KOH + Na2SO4 = K2SO4↓ + 2H2O2KOH + Na 2 SO 4 = K 2 SO 4 ↓ + 2H 2 O
상기 황산칼륨이 침전되면 제3고액분리를 수행하여 고체의 고순도(99% 이상) 황산칼륨(K2SO4)을 제조할 수 있다.When the potassium sulfate precipitates, a third solid-liquid separation may be performed to prepare high purity (more than 99%) potassium sulfate (K 2 SO 4 ) as a solid.
도 3은 본 발명의 일 실시예에 따른 고순도 황산망간일수화물 제조의 플로우차트이다.3 is a flowchart of manufacturing high-purity manganese sulfate monohydrate according to an embodiment of the present invention.
도 3을 참조하면, 도 2의 S120단계에서 획득한 제1고체에 황산을 첨가하여 배소시켜 황산망간으로 변환시킨다(S210). 상기 첨가되는 황산은 희석된 황산을 사용하는 것이 바람직한데, 예를 들어 상기 황산은 상기 제1고체에 포함된 망간 몰 함량의 1 내지 3배의 비율로, 바람직하게는 1.5 내지 3배의 비율로 물에 희석하여 첨가된다. 상기 배소온도는 300℃ 내지 1000℃, 바람직하게는 500℃ 내지 800℃로 배소하여 상기 제1고체를 황산망간으로 변환시키며 반응식은 하기와 같다.Referring to FIG. 3, sulfuric acid is added to the first solid obtained in step S120 of FIG. 2 to be roasted and converted to manganese sulfate (S210). The sulfuric acid to be added is preferably a diluted sulfuric acid, for example, the sulfuric acid in a ratio of 1 to 3 times the molar content of manganese contained in the first solid, preferably in a ratio of 1.5 to 3 times Dilute in water and add. The roasting temperature is roasted to 300 ℃ to 1000 ℃, preferably 500 ℃ to 800 ℃ by converting the first solid to manganese sulfate, the reaction scheme is as follows.
[반응식 3] Scheme 3
MnO + H2SO4 = MnSO4 + H2OMnO + H 2 SO 4 = MnSO 4 + H 2 O
Mn2O3 + H2SO4 = MnSO4 + MnO2 + H2OMn 2 O 3 + H 2 SO 4 = MnSO 4 + MnO 2 + H 2 O
상기 S210단계에서 획득한 황산망간에 황화물 및 수산화칼륨을 첨가하여 제2불순물을 제거하여 망간침출액을 획득한다(S220). 본 단계는 하기와 같이 더욱 상세한 단계를 포함할 수 있다.Manganese leachate is obtained by adding sulfide and potassium hydroxide to manganese sulfate obtained in step S210 to remove the second impurity (S220). This step may include more detailed steps as follows.
상기 S210단계에서 획득한 황산망간에 물을 첨가하여 제1망간침출액을 획득한다(S221).The first manganese leachate is obtained by adding water to the manganese sulfate obtained in step S210 (S221).
상기 제1망간침출액에 수산화칼슘(Ca(OH)2)을 이용하여 철이 제거된 제2망간침출액을 획득한다(S223). 상기 제1망간침출액의 pH가 적어도 pH4가 되도록, 바람직하게는 pH4 내지 pH5가 되도록 수산화칼슘을 첨가하여 철이 제거되도록 할 수 있다. 이때 제거되는 철은 Fe(OH)3또는 FeOOH의 형태로 제거되며, 본 반응은 하기 반응식과 같다.Using calcium hydroxide (Ca (OH) 2 ) as the first manganese leachate, a second manganese leachate from which iron is removed is obtained (S223). Calcium hydroxide may be added to remove the iron so that the pH of the first manganese leachate is at least pH4, preferably pH4 to pH5. At this time, the iron is removed in the form of Fe (OH) 3 or FeOOH, the reaction is shown in the following scheme.
[반응식 4]Scheme 4
Fe2(SO4)3 + 3Ca(OH)2 = 2Fe(OH)3 + 3CaSO4 Fe 2 (SO 4 ) 3 + 3Ca (OH) 2 = 2Fe (OH) 3 + 3CaSO 4
상기 철이 제거된 제2망간침출액에 황화물을 첨가하여 철 이외의 불순물이 제거된 제3망간침출액을 획득한다(S225).Sulfide is added to the second manganese leachate from which iron is removed to obtain a third manganese leachate from which impurities other than iron are removed (S225).
상기 철이 제거된 제2망간침출액에는 철 이외의 켈(Ni), 납(Pb), 아연(Zn), 코발트(Co), 구리(Cu) 등의 불순물을 더 포함할 수 있다. 이에 따라, 상기 제2망간침출액에 황화물을 첨가하여 철 이외의 불순물을 황화물의 형태로 침전하여 제거할 수 있다.The second manganese leachate from which the iron is removed may further include impurities such as nickel (Ni), lead (Pb), zinc (Zn), cobalt (Co), and copper (Cu) other than iron. Accordingly, sulfides may be added to the second manganese leachate to precipitate and remove impurities other than iron in the form of sulfides.
상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S)적어도 어느 하나를 포함하고, 상기 황화물은 철 이외의 불순물 전체 몰량의 2 내지 50배의 비율 바람직하게는 2 내지 10배의 비율로, 더욱 바람직하게는 3 내지 6배의 비율로 첨가 할 수 있다.The sulfide comprises sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S) at least one, the sulfide is a ratio of 2 to 50 times the total molar amount of impurities other than iron, preferably 2 It may be added in a ratio of 10 to 10 times, more preferably in a ratio of 3 to 6 times.
상기 황화물의 첨가로 철 이외의 불순물이 황화물의 형태로 침전되면, 고액분리를 통하여 황화물 슬러리는 폐기하고, 상기 철 이외의 불순물이 제거된 제3망간침출액을 획득할 수 있다.When impurities other than iron are precipitated in the form of sulfide by addition of the sulfide, the sulfide slurry may be discarded through solid-liquid separation to obtain a third manganese leachate from which impurities other than iron are removed.
상기 불순물이 제거된 제3망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득한다(S230). 본 단계는 하기와 같이 더욱 상세한 단계를 포함할 수 있다.Potassium hydroxide and sulfuric acid are sequentially added to the third manganese leachate from which the impurities are removed to obtain an aqueous manganese sulfate solution (S230). This step may include more detailed steps as follows.
상기 제3망간침출액에 수산화칼륨을 첨가하여 수산화망간으로 침전시킨다(S231).Potassium hydroxide is added to the third manganese leachate to precipitate into manganese hydroxide (S231).
상기 S225단계에서 획득한 망간침출액에는 망간, 마그네슘, 칼슘, 칼륨 등이 용해되어 있어 망간을 선택적으로 침전시킬 필요가 있다. 이에 따라 수산화칼륨 용액을 1M이상으로 희석하여 60℃ 내지 70℃의 온도에서 비산화분위 하에 상기 제3망간침출액에 pH6 내지 pH9되도록 첨가하여 망간이 수산화망간(Mn(OH)2)의 형태로 침전되도록 한다. 상기 적정 pH보다 낮으면 망간(Mn)의 회수율이 낮아지고, 상기 pH보다 더 높으면 불순물의 침전이 발생할 수 있기에 최종산물의 순도가 저하될 수 있다.Manganese leaching liquid obtained in step S225 is dissolved manganese, magnesium, calcium, potassium, etc., it is necessary to selectively precipitate manganese. Accordingly, the potassium hydroxide solution is diluted to 1 M or more, and added to the third manganese leachate at a temperature of 60 ° C. to 70 ° C. to a pH 6 to pH 9 to precipitate manganese in the form of manganese hydroxide (Mn (OH) 2 ). Be sure to If the pH is lower than the appropriate pH, the recovery of manganese (Mn) is lowered. If the pH is higher than the pH, impurities may be precipitated.
상기 망간이 수산화망간의 형태로 침전되면, 고액분리를 수행하여 수산화망간을 획득한다.When the manganese precipitates in the form of manganese hydroxide, solid-liquid separation is performed to obtain manganese hydroxide.
이 때, 상기 수산화망간을 60℃ 내지 90℃의 온도에서 비산화분위기에서 물을 이용하여 세척하는 단계를(미도시) 더 포함할 수 있다. 상기 세척을 통하여 수산화망간 중 기타 불순물이 더 제거되는 효과를 누릴 수도 있다.At this time, the manganese hydroxide may further comprise the step of washing with water in a non-oxidizing atmosphere at a temperature of 60 ℃ to 90 ℃ (not shown). The washing may also have the effect of further removing other impurities in the manganese hydroxide.
상기 고액분리를 통하여 침전된 수산화망간은 획득하여 다음 단계에 이용하고, 수산화망간 수득 후 남은 용액은 S110단계의 칼륨 침출을 위한 물 대신에 이용될 수도 있다.Manganese hydroxide precipitated through the solid-liquid separation is obtained and used in the next step, the solution remaining after obtaining manganese hydroxide may be used in place of water for potassium leaching in step S110.
상기 수산화망간에 황산을 첨가하여 황산망간수용액을 획득한다(S233). 즉, 상기 수산화망간에 황산을 첨가하여 재용해하는 것이다. 상기 첨가되는 황산의 양은 상기 수산화망간에 포함된 망간 몰 함량의 0.1 내지 3배의 비율로, 바람직하게는 0.5 내지 1.5배의 비율로 첨가되며, 이 반응은 하기 반응식과 같다.By adding sulfuric acid to the manganese hydroxide to obtain a manganese sulfate solution (S233). That is, redissolved by adding sulfuric acid to the manganese hydroxide. The amount of sulfuric acid added is added in a ratio of 0.1 to 3 times the molar content of manganese hydroxide contained in the manganese hydroxide, preferably in a ratio of 0.5 to 1.5 times, the reaction is shown in the following scheme.
[반응식 5]Scheme 5
Mn(OH)2 + H2SO4 = MnSO4 + 2H2OMn (OH) 2 + H 2 SO 4 = MnSO 4 + 2H 2 O
상기 황산에 의하여 재용해된 용액을 중화시키는 단계(미도시)를 더 포함할 수도 있다. 상기 중화반응을 위한 시약은 S231단계의 수산화망간을 이용할 수 있으며, 중화반응을 위하여 사용되는 수산화망간은 상기 재용해액의 pH가 pH4 내지 pH6이 되도록 중화시킬 수 있다.The method may further include neutralizing the solution redissolved with sulfuric acid (not shown). The reagent for the neutralization reaction may use manganese hydroxide in step S231, and the manganese hydroxide used for the neutralization reaction may be neutralized such that the pH of the re-dissolution solution is pH4 to pH6.
상기 획득한 황산망간수용액을 건조하여 고순도 황산망간일수화물을 획득할 수 있다(S240).The obtained manganese sulfate aqueous solution may be dried to obtain a high purity manganese sulfate monohydrate (S240).
상기 건조 공정은, 상기 황산망간수용액을 진공 증발을 수행하여 결정화함으로써 고순도 황산망간일수화물로 제조하는 것을 포함할 수 있다.The drying process may include preparing a high purity manganese sulfate monohydrate by crystallizing the aqueous manganese sulfate solution by performing vacuum evaporation.
상기 진공증발을 위한 적정 포화증기압은 0.57∼0.7kgf/cm2, 바람직하게는 0.6∼0.6.5kgf/cm2이고, 온도 85 내지 90℃하에서 진공증발을 수행할 수 있다. 상기 온도조건보다 낮을 경우 증발점이 80℃보다 낮아져 황산망간 일수화물(MnSO4·H2O)이 아닌 황산망간오수화물(MnSO4·5H2O)이 생성될 수 있다. 또한 상기 온도 조건보다 높을 경우 에지 효율이 떨어져 경제성이 낮아질 수 있다.The appropriate saturated steam pressure for the vacuum evaporation is 0.57 ~ 0.7kgf / cm 2 , preferably 0.6 ~ 0.6.5kgf / cm 2 , it can be carried out under a temperature of 85 to 90 ℃ vacuum evaporation. When the temperature is lower than the evaporation point, the evaporation point may be lower than 80 ° C., thereby producing manganese sulfate pentahydrate (MnSO 4 · 5H 2 O) instead of manganese sulfate monohydrate (MnSO 4 · H 2 O). In addition, when the temperature is higher than the temperature condition, the edge efficiency may be lowered, thereby lowering the economic efficiency.
따라서, 본 공정을 통하여 고순도의 황산망간일수화물이 제조될 수 있다.Therefore, high purity manganese sulfate monohydrate can be prepared through this process.
한편, 상기 S233단계에서 획득한 황산망간수용액은 EMM의 제조에도 이용될 수 있다.On the other hand, the manganese sulfate solution obtained in step S233 may be used in the manufacture of EMM.
상기 S233단계에서 획득한 황산망간수용액을 전해채취방법(Electrowinning)을 이용함으로써 EMM(Electronic Manganese Metal)을 제조할 수 있다.The manganese sulfate aqueous solution obtained in step S233 may be prepared by using an electrowinning method (Electrowinning).
한편, 상기 S231단계에서 획득한 수산화망간을 이용하여 사산화삼망가니즈를 고순도로 제조할 수 있다.On the other hand, using the manganese hydroxide obtained in the step S231 can be produced in high purity three manganese tetraoxide.
상기 S231단계에서 획득한 수산화망간은 건조기를 이용하여 건조를 수행한 후 800℃ 내지 1100℃의 온도에서 열처리를 수행할 수 있다. 로타리킬른 소각로 등과 같은 장비를 이용하여 열처리를 수행하며, 열처리 수행 중 시료가 충분히 반응할 수 있도록 교반을 잘 하여 산화분위기가 이루어질 수 있도록 한다. 또한, 상기 열처리를 수행한 후 급냉 처리를 수행한다. 상기 열처리에 의하여 불순물이 제거된 망간은 Mn2O3으로 환원되어 있으며, 이를 Mn3O4 망간 화합물로 산화시키기 위하여 급속 냉각을 수행한다. 상기 열처리를 수행한 후 빠른 시간 내에 실온으로 냉각시킬 수 있다. 이를 통하여 이차전지에 이용될 수 있는 사산화삼망가니즈(Mn3O4)를 고순도로 획득할 수 있으며, 이 반응은 하기 반응식과 같다.The manganese hydroxide obtained in step S231 may be heat-treated at a temperature of 800 ° C. to 1100 ° C. after drying using a dryer. Heat treatment is performed by using equipment such as rotary kiln incinerator, and it is well stirred so that the sample can react sufficiently during heat treatment, so that the oxidizing atmosphere can be achieved. In addition, the quenching treatment is performed after the heat treatment. Manganese from which impurities are removed by the heat treatment is reduced to Mn 2 O 3 , and rapid cooling is performed to oxidize it to Mn 3 O 4 manganese compound. After performing the heat treatment can be cooled to room temperature within a short time. Through this, tri- manganese tetraoxide (Mn 3 O 4 ) that can be used in a secondary battery can be obtained with high purity, and the reaction is shown in the following reaction formula.
[반응식 6]Scheme 6
2Mn(OH)2 + 1/2O2 → Mn2O3 + 2H2O2Mn (OH) 2 + 1 / 2O 2 → Mn 2 O 3 + 2H 2 O
[반응식 7]Scheme 7
MnO + Mn2O3 = Mn3O4 MnO + Mn 2 O 3 = Mn 3 O 4
한편, 사산화삼망가니즈의 제조의 경우, S225단계의 황화물 제거 단계를 적용할 때 황화물의 첨가 농도는 하기와 같다.On the other hand, in the case of the production of trimanganese tetraoxide, when the sulfide removal step of step S225 is applied, the concentration of sulfide is as follows.
황화물을 철 이외의 불순물 전체 몰량의 10 내지 50배의 비율로, 바람직하게는 15 내지 45배의 비율로, 더욱 바람직하게는 30 내지 35배의 비율로 첨가시키고, 상기 첨가되는 황화물의 pH는 pH7 내지 pH8, 바람직하게는 pH8로 조정된 것을 이용할 수 있다. 상기 황화물을 첨가한 후 약 10분 내지 100분, 바람직하게는 20분 내지 80분, 더욱 바람직하게는 30분 내지 60분 동안 반응시킬 수 있다.Sulfide is added at a rate of 10 to 50 times the total molar amount of impurities other than iron, preferably at a rate of 15 to 45 times, more preferably at a rate of 30 to 35 times, and the pH of the added sulfide is pH7 To pH8, preferably adjusted to pH8. After the sulfide is added, the reaction may be performed for about 10 to 100 minutes, preferably 20 to 80 minutes, more preferably 30 to 60 minutes.
또한, 상기 황화물을 첨가하여 반응한 후, 추가적으로 수산화칼륨을 상기 철이 제거된 망간침출액의 pH가 pH5 내지 pH6이 되도록 첨가하여 약 10분 내지 60분, 바람직하게는 10분 내지 40분, 더욱 바람직하게는 20 내지 30분 동안 반응을 시킬 수 있다. 즉, 황화물을 첨가한 후 추가적으로 수산화칼륨을 첨가하여 pH조절을 수행하면, 철 이외의 불순물인 니켈, 납, 아연, 코발트, 구리 등과 같은 불순물이 황화물의 형태(NiS, PbS, ZnS, CoS, CuS)로 침전되는데 도움을 주어 황화물 형태로 된 불순물의 제거에 더욱 효과적일 수 있다.Further, after the sulfide is added and reacted, additionally potassium hydroxide is added so that the pH of the iron-containing manganese leachate is pH 5 to pH 6, about 10 minutes to 60 minutes, preferably 10 minutes to 40 minutes, more preferably Can react for 20 to 30 minutes. That is, when pH is adjusted by adding potassium hydroxide after addition of sulfide, impurities such as nickel, lead, zinc, cobalt, and copper, which are impurities other than iron, form sulfides (NiS, PbS, ZnS, CoS, CuS). It can help to settle, and thus be more effective in removing impurities in the form of sulfides.
비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.Although some embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that modifications may be made to the embodiment without departing from the spirit or spirit of the invention. . It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
본 발명의 저순도 망간 및 칼륨 함유물로부터 망간화합물 및 황산칼륨의 제조방법은 휴대용 전자기기등의 이차전지 제조에 이용이 가능하다.The method for producing manganese compounds and potassium sulfate from the low purity manganese and potassium content of the present invention can be used for the production of secondary batteries such as portable electronic devices.

Claims (20)

  1. 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법에 있어서,In the method for producing a high purity manganese compound and potassium sulfate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 제1고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 제1고체를 분리하는 단계와;Separating water from the first potassium leachate containing potassium and the first solid through the first solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 제1칼륨침출액에 황화물을 첨가하여 제1불순물을 제거하고, 황산 또는 황산나트륨을 첨가하여 고순도 황산칼륨을 제조하는 단계와;Adding a sulfide to the first potassium leachate to remove the first impurity, and adding sulfuric acid or sodium sulfate to prepare high purity potassium sulfate;
    상기 제1고체에 황산을 첨가하여 배소시켜 황산망간으로 변환시킨 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 제2불순물을 제거하고, 제2고액분리를 통하여 망간침출액을 획득하는 단계와;Adding sulfuric acid to the first solid to be converted to manganese sulfate to remove the second impurity using at least one of calcium hydroxide and sulfide, and obtaining manganese leachate through second solid-liquid separation;
    상기 망간침출액으로부터 고순도 망간화합물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.A method for producing a high purity manganese compound and potassium sulfate from a low purity manganese and potassium containing comprising the step of preparing a high purity manganese compound from the manganese leaching solution.
  2. 제1항에 있어서,The method of claim 1,
    상기 고순도 황산칼륨 제조단계에서,In the high purity potassium sulfate manufacturing step,
    상기 황화물은 황화나트륨(Na2S), 황화칼슘(CaS) 및 황화수소(H2S) 적어도 어느 하나를 포함하고, The sulfide includes at least one of sodium sulfide (Na 2 S), calcium sulfide (CaS) and hydrogen sulfide (H 2 S),
    상기 황화물은 상기 제1불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 상기 제1불순물을 제거하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The sulfide is dissolved in water 2 to 5 times the total molar amount of the first impurity to remove the first impurity comprising the step of removing the high purity manganese compound and potassium sulfate from the potassium containing.
  3. 제2항에 있어서,The method of claim 2,
    상기 고순도 황산칼륨 제조단계에서,In the high purity potassium sulfate manufacturing step,
    상기 제1 불순물 제거 후 고액분리를 통하여 상기 제1불순물이 제거된 제2칼륨침출액을 획득하는 단계를 더 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.A method of preparing a high purity manganese compound and potassium sulfate from low purity manganese and potassium containing further comprising the step of obtaining a second potassium leachate from which the first impurity is removed through solid-liquid separation after the removal of the first impurity.
  4. 제3항에 있어서,The method of claim 3,
    상기 제2칼륨침출액에 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.A high purity manganese compound and potassium sulfate from the low purity manganese and potassium content comprising the step of obtaining a high purity potassium sulfate by adding sulfuric acid or sodium sulfate of 0.1 to 3 times the potassium molar ratio to the second potassium leachate to obtain high purity potassium sulfate Manufacturing method.
  5. 제1항에 있어서,The method of claim 1,
    상기 고순도 망간 화합물은 황산망간일수화물(MnSO4·H2O), 사산화삼망가니즈(Mn3O4) 및 EMM(electronic manganese metal) 중 적어도 어느 하나를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The high purity manganese compound is high purity from a low purity manganese and potassium containing at least one of manganese sulfate monohydrate (MnSO 4 · H 2 O), trimanganese tetraoxide (Mn 3 O 4 ) and EMM (electronic manganese metal) Method for preparing manganese compound and potassium sulfate.
  6. 제5항에 있어서,The method of claim 5,
    상기 망간침출액 획득단계에서 ,상기 제1고체에 첨가되는 황산은 상기 제1고체에 포함된 몰 함량의 0.1 내지 3배의 비율로 물에 희석하여 첨가되는 것인 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법. In the step of obtaining the manganese leachate, sulfuric acid added to the first solid is a low-purity manganese and potassium containing dilution in water at a ratio of 0.1 to 3 times the molar content contained in the first solid Method for producing high purity manganese compound and potassium sulfate from
  7. 제6항에 있어서,The method of claim 6,
    상기 황산망간을 물에 용해한 후에 pH 4 이상이 되도록 수산화칼슘을 첨가하여 상기 제2불순물 중 철을 제거하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.A method for producing a high purity manganese compound and potassium sulfate from the low purity manganese and potassium content, wherein the manganese sulfate is dissolved in water to remove calcium from the second impurity by adding calcium hydroxide to pH 4 or higher.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 황화물은, 상기 제거된 철 이외의 제2불순물 전체 몰량의 2 내지 50배의 비율로 첨가하여 상기 철 이외의 제2불순물을 제거하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The sulfide is added to a ratio of 2 to 50 times the total molar amount of the second impurity other than the iron removed to remove the second impurity other than the iron, high purity manganese compound and sulfuric acid from the low purity manganese and potassium content Method of preparing potassium.
  9. 제8항에 있어서,The method of claim 8,
    상기 고순도 망간화합물을 제조하는 단계는,Preparing the high purity manganese compound,
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.Method of producing a high purity manganese compound and potassium sulfate from the low-purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to produce a high purity manganese sulfate monohydrate.
  10. 제9항에 있어서,The method of claim 9,
    상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가하여 수산화망간이 침전되도록 하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The potassium hydroxide is added to the pH 6 to pH 9 of the manganese leachate in a non-oxidizing atmosphere to precipitate the manganese hydroxide precipitate method of the high purity manganese compound and potassium sulfate from the manganese hydroxide containing potassium.
  11. 제10항에 있어서,The method of claim 10,
    상기 황산은, 상기 수산화망간에 포함된 망간 몰 함량의 0.1 내지 3배의 비율로 첨가하여 황산망간수용액을 획득하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The sulfuric acid is a method of producing a high purity manganese compound and potassium sulfate from a low-purity manganese and potassium content to obtain an aqueous solution of manganese sulfate by adding at a ratio of 0.1 to 3 times the manganese molar content contained in the manganese hydroxide.
  12. 제8항에 있어서,The method of claim 8,
    상기 고순도 망간화합물을 제조하는 단계는,Preparing the high purity manganese compound,
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.Method for producing a high purity manganese compound and potassium sulfate from the low-purity manganese and potassium containing comprising the step of producing an electronic manganese metal (EMM) using the aqueous solution of manganese sulfate.
  13. 제12항에 있어서,The method of claim 12,
    상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가하여 수산화망간이 침전되도록 하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The potassium hydroxide is added to the pH 6 to pH 9 of the manganese leachate in a non-oxidizing atmosphere to precipitate the manganese hydroxide precipitate method of the high purity manganese compound and potassium sulfate from the manganese hydroxide containing potassium.
  14. 제13항에 있어서,The method of claim 13,
    상기 황산은, 상기 수산화망간에 포함된 망간 몰 함량의 0.1 내지 3배의 비율로 첨가하여 황산망간수용액을 획득하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The sulfuric acid is a method of producing a high purity manganese compound and potassium sulfate from a low-purity manganese and potassium content to obtain an aqueous solution of manganese sulfate by adding at a ratio of 0.1 to 3 times the manganese molar content contained in the manganese hydroxide.
  15. 제8항에 있어서,The method of claim 8,
    상기 고순도 망간화합물을 제조하는 단계는,Preparing the high purity manganese compound,
    상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와;Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate;
    상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.Method of producing a high purity manganese compound and potassium sulfate from low-purity manganese and potassium containing comprising the step of quenching the manganese hydroxide in an oxidizing atmosphere and then quenched.
  16. 제15항에 있어서,The method of claim 15,
    상기 수산화칼륨은 비산화분위기 하에 상기 망간침출액의 pH6 내지 pH9가 되도록 첨가하는 것인 저순도 망간 및 칼륨 함유물로부터 고순도 망간 화합물 및 황산칼륨의 제조방법.The potassium hydroxide is added to the pH 6 to pH 9 of the manganese leaching solution under a non-oxidizing atmosphere of a high purity manganese compound and potassium sulfate from a low purity manganese and potassium containing.
  17. 저순도 망간 및 칼륨 함유물로부터 황산칼륨의 제조방법에 있어서,In the process for producing potassium sulfate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 제1칼륨침출액과 고체를 분리하는 단계와;Separating water from the first potassium leachate containing potassium and solids through solid-liquid separation after adding water to the low-purity manganese and potassium-containing materials;
    상기 제1칼륨침출액에 황화물을 불순물 전체 몰량의 2 내지 5배를 물에 용해한 후 첨가하여 불순물을 제거하는 단계와;Dissolving sulfide in the first potassium leachate by adding 2 to 5 times the total molar amount of impurities in water and then removing impurities;
    고액분리를 통하여 상기 불순물이 제거된 제2칼륨침출액을 획득 한 후 상기 제2칼륨침출액에 포함되어 있는 칼륨 몰비의 0.1 내지 3배의 황산 또는 황산나트륨을 첨가하여 황산칼륨으로 침전시켜 고순도 황산칼륨을 획득하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산칼륨의 제조방법.After obtaining the second potassium leaching solution from which the impurities have been removed through solid-liquid separation, high purity potassium sulfate is obtained by adding 0.1 to 3 times sulfuric acid or sodium sulfate of potassium molar ratio contained in the second potassium leaching solution and precipitating with potassium sulfate. A method for producing potassium sulfate from low purity manganese and potassium containing comprising the step of.
  18. 저순도 망간 및 칼륨 함유물로부터 황산망간일수화물의 제조방법에 있어서,In the process for producing manganese sulfate monohydrate from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와;Separating the potassium leachate and the solid containing potassium through solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 건조하여 고순도 황산망간일수화물을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 황산망간일수화물의 제조방법.Method of producing a manganese sulfate monohydrate from a low purity manganese and potassium containing comprising drying the aqueous manganese sulfate solution to produce a high purity manganese sulfate monohydrate.
  19. 저순도 망간 및 칼륨 함유물로부터 EMM(Electronic Manganese Metal)의 제조방법에 있어서,In the manufacturing method of EMM (Electronic Manganese Metal) from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와;Separating the potassium leachate and the solid containing potassium through solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨 및 황산을 순차적으로 첨가하여 황산망간수용액을 획득하는 단계와;Sequentially adding potassium hydroxide and sulfuric acid to the manganese leachate to obtain an aqueous manganese sulfate;
    상기 황산망간수용액을 전해채취방법을 이용하여 EMM(electronic manganese metal)을 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 EMM(Electronic Manganese Metal)의 제조방법.The manufacturing method of the electronic manganese metal (EMM) from low-purity manganese and potassium containing the step of producing an electronic manganese metal (EMM) using the electrolytic extraction method of the aqueous manganese sulfate.
  20. 저순도 망간 및 칼륨 함유물로부터 사산화삼망가니즈의 제조방법에 있어서,In the process for producing trimanganese tetraoxide from low purity manganese and potassium containing,
    저순도 망간 및 칼륨 함유물에 물을 첨가한 후 고액분리를 통하여 칼륨이 포함되는 칼륨침출액과 고체를 분리하는 단계와;Separating the potassium leachate and the solid containing potassium through solid-liquid separation after adding water to the low-purity manganese and potassium-containing contents;
    상기 고체를 황산을 첨가하여 배소시켜 황산망간으로 변환시키는 단계와;Converting the solid into manganese sulfate by roasting with the addition of sulfuric acid;
    상기 황산망간을 물에 용해한 후 수산화칼슘 및 황화물 중 적어도 어느 하나를 이용하여 불순물을 제거하여 망간침출액을 획득하는 단계와;Dissolving the manganese sulfate in water and then removing impurities using at least one of calcium hydroxide and sulfide to obtain a manganese leachate;
    상기 망간침출액에 수산화칼륨을 이용하여 수산화망간으로 침전시키는 단계와;Precipitating manganese hydroxide using potassium hydroxide in the manganese leachate;
    상기 수산화망간을 산화분위기에서 열처리한 후 급냉하여 사산화삼망가니즈를 제조하는 단계를 포함하는 저순도 망간 및 칼륨 함유물로부터 사산화삼망가니즈의 제조방법.A method for producing trimanganese tetraoxide from low-purity manganese and potassium containing the step of quenching the manganese hydroxide in an oxidizing atmosphere and then quenching.
PCT/KR2014/006497 2013-07-18 2014-07-17 Method for preparing manganese compound and potassium sulfate from low-purity manganese and potassium inclusion WO2015009077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130084689A KR101519861B1 (en) 2013-07-18 2013-07-18 Process for producing manganese compound and potassium sulfate from material comprising potassium and manganese
KR10-2013-0084689 2013-07-18

Publications (1)

Publication Number Publication Date
WO2015009077A1 true WO2015009077A1 (en) 2015-01-22

Family

ID=52346453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006497 WO2015009077A1 (en) 2013-07-18 2014-07-17 Method for preparing manganese compound and potassium sulfate from low-purity manganese and potassium inclusion

Country Status (2)

Country Link
KR (1) KR101519861B1 (en)
WO (1) WO2015009077A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000013629A (en) * 1998-08-11 2000-03-06 윤대근 Preparing method for purified manganese salt
JP2003272629A (en) * 2002-03-19 2003-09-26 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
KR20100002046A (en) * 2008-06-25 2010-01-06 동부정밀화학 주식회사 Method of recovering a compound comprizing manganese from dust of electronic furnace
JP2013076109A (en) * 2011-09-29 2013-04-25 Jx Nippon Mining & Metals Corp Method for producing metal manganese by electrowinning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000013629A (en) * 1998-08-11 2000-03-06 윤대근 Preparing method for purified manganese salt
JP2003272629A (en) * 2002-03-19 2003-09-26 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
KR20100002046A (en) * 2008-06-25 2010-01-06 동부정밀화학 주식회사 Method of recovering a compound comprizing manganese from dust of electronic furnace
JP2013076109A (en) * 2011-09-29 2013-04-25 Jx Nippon Mining & Metals Corp Method for producing metal manganese by electrowinning

Also Published As

Publication number Publication date
KR101519861B1 (en) 2015-05-13
KR20150010136A (en) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2020116795A1 (en) Method for producing lithium hydroxide from lithium concentrate by mixing and roasting lithium concentrate with sodium sulfate
WO2013165071A1 (en) Method for producing high-purity manganese sulfate monohydrate and high-purity manganese sulfate monohydrate produced by the method
WO2013165148A1 (en) Method for producing high-purity trimanganese tetraoxide and high-purity trimanganese tetraoxide produced by the method
US20220045375A1 (en) Processing method of positive electrode active substance waste of lithium ion secondary battery
WO2023191414A1 (en) Method for preparing secondary battery material from black mass
US20190292629A1 (en) Process for the recovery of lithium
WO2022055272A1 (en) Method for recovering cathode material
WO2021256732A1 (en) Method for recovering active metal of lithium secondary battery
WO2023158008A1 (en) Solvent extraction method using two-stage extraction for separating and recovering nickel, cobalt, and manganese
WO2019151666A1 (en) Method for separately preparing iron oxide and alkali earth metal chloride from iron-containing mixed metal chloride aqueous solution
WO2015009077A1 (en) Method for preparing manganese compound and potassium sulfate from low-purity manganese and potassium inclusion
WO2013042897A2 (en) Method for selectively separating calcium and magnesium from a solution containing calcium and magnesium, calcium oxalate and magnesium oxalate obtained by the method, and calcium oxide and magnesium oxide obtained from said oxalates
WO2024034754A1 (en) Method for recycling secondary battery material
WO2015080326A1 (en) Method for pretreating copper-containing molybdenite
KR101440789B1 (en) Process for producing manganese compound from material comprising potassium and manganese
JP2023100197A (en) Method for recovering metal from lithium-ion battery waste
KR101763549B1 (en) Method and arrangement of separating arsenic from starting materials
WO2023128042A1 (en) Hydrometallurgical method for recovering nickel sulfate
KR101395581B1 (en) Process for producing manganese compound, potassium sulfate and fertilizer from material comprising potassium and manganese
WO2023211260A1 (en) Method for producing manganese(ii) sulfate monohydrate from by-product of zinc refining process
WO2024039055A1 (en) Method for producing nickel sulfate
KR20150050632A (en) Method for producing high purity manganese sulphate monohydrate from byproduct of manganese steel alloy smelting furnace and electric furnace and high purity manganese sulphate monohydrate produced thereby
WO2023195565A1 (en) Solvent extraction method for selectively recovering nickel, cobalt and manganese
WO2023234608A1 (en) Method for producing high quality refined iron oxide from iron oxide which is by-product of zinc smelting process
WO2023132124A1 (en) Method for recovering metal from lithium-ion battery waste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826849

Country of ref document: EP

Kind code of ref document: A1