WO2014104312A1 - 連結型結晶性無機酸化物微粒子群を含む水および/または有機溶媒分散液、その製造方法、ならびに該連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液 - Google Patents
連結型結晶性無機酸化物微粒子群を含む水および/または有機溶媒分散液、その製造方法、ならびに該連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液 Download PDFInfo
- Publication number
- WO2014104312A1 WO2014104312A1 PCT/JP2013/085141 JP2013085141W WO2014104312A1 WO 2014104312 A1 WO2014104312 A1 WO 2014104312A1 JP 2013085141 W JP2013085141 W JP 2013085141W WO 2014104312 A1 WO2014104312 A1 WO 2014104312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inorganic oxide
- oxide fine
- dispersion
- crystalline inorganic
- fine particles
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
- C01G23/0536—Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/001—Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
Definitions
- the present invention relates to a water and / or organic solvent dispersion containing linked crystalline inorganic oxide fine particles, a method for producing the same, and a coating liquid for an optical substrate containing the linked crystalline inorganic oxide fine particles.
- fillers composed of oxide fine particles containing silicon and metal elements in general, (1) a temperature lower than the crystallization temperature of the oxide by agglomerating silicon dioxide and at least another metal oxide (zirconium oxide, etc.) And a filler (Patent Document 1, Patent Document 2) formed by heat treatment in which silicon dioxide and other metal oxides form an independent amorphous layer, and (2) an average of less than about 100 nm A substantially amorphous cluster comprising non-heavy metal oxide particles (such as silica particles) having a particle size and heavy metal oxides or heavy metal oxide particles (such as zirconium oxide particles) having an average particle size of less than about 100 nm. There is a filler (Patent Document 3) and the like.
- these fillers are obtained by mixing silica sol and zirconium salt aqueous solution, drying it using a spray drier, etc., and firing it, so that it is oxidized with silica fine particles having different properties such as refractive index.
- a zirconium component fine particles was mixed.
- the resulting filler may have unevenness in refractive index and the like.
- the pore volume of the particles and the strength of the particles cannot be adjusted, which makes it difficult to improve transparency, and further requires adhesion to the polymerizable resin. In applications, the adhesiveness is insufficient, and thus the resistance to wear due to the decrease in strength and hardness may be insufficient.
- Patent Document 4 a method for producing a filler (Patent Document 4) in which silica sol, acidic silicic acid solution and zirconium salt aqueous solution are mixed, the mixture is dried using a spray drier, and then fired. Yes. Since the filler thus obtained is an oxide in which the silica component derived from the acidic silicic acid solution and the acidic zirconium component are well mixed, the property is close to the silica fine particles derived from the silica sol (for example, Refractive index). However, since the silica fine particles are mixed, the above-mentioned problems have not been completely solved.
- the present inventors have developed a filler containing crystalline inorganic oxide fine particles made of a zirconium silicate compound in order to solve the above-mentioned problems associated with conventional fillers (Patent Document 5). ). In addition, the present inventors have developed a chain amorphous silica-based fine particle group in which the surface of silica-based fine particles is coated with a complex oxide composed of zirconium, silicon and oxygen, and a method for producing the same (Patent Document). 6).
- the filler described in Patent Document 5 has excellent properties such as strength, hardness, and durability against wear, but depending on the intended use, an organic silicon compound, an organic titanium compound, an organic zirconium compound, etc. It is necessary to treat (or modify) the surface of the inorganic oxide fine particles with an organometallic compound. However, since the inorganic oxide fine particles have a crystalline surface property, it has not always been easy to uniformly treat the surface with the organometallic compound.
- Inorganic oxide fine particles useful for the production of coating solutions for optical substrates suitable for forming coated films (hard coating layer films and cured films such as primer layer films) excellent in (high refractive index) and dispersions thereof The object is to provide (water and / or organic solvent dispersion).
- the present invention provides a coating solution for an optical substrate suitable for forming a coating film (hard film such as a hard coat layer film and a primer layer film) excellent in these characteristics, and a coating film excellent in these characteristics. It aims at providing (hardened film, such as a hard-coat layer film and a primer layer film), and a base material with a coating film (base material with a cured film).
- the gist of the present invention is as follows.
- a dispersion containing a linked crystalline inorganic oxide fine particle group and a dispersion medium The connected crystalline inorganic oxide fine particle group (1) a crystalline inorganic oxide fine particle containing at least one metal element M 2 and silicon selected from the group consisting of titanium, zirconium, niobium, cerium and zinc; (2) A coating material comprising a composite oxide containing at least one metal element M 1 selected from the group consisting of zirconium, aluminum and antimony and covering silicon, and (3) the coating.
- It is composed of a complex oxide that is the same component as the substance, and is composed of a binding substance that connects adjacent fine particles (1) coated with the coating substance (2), A dispersion comprising linked crystalline inorganic oxide fine particle groups, wherein the dispersion medium is water and / or an organic solvent.
- the metal element M 2 constituting the inorganic oxide fine particles (1) further includes at least one selected from the group consisting of tin, tungsten, antimony and indium.
- the inorganic oxide fine particles (1) are composite oxide fine particles containing the metal element and silicon (the surface of which is not coated with silicon oxide).
- a dispersion liquid comprising the linked crystalline inorganic oxide fine particle group according to any one of the above.
- the inorganic oxide fine particles (1) are obtained by coating the surface of the oxide fine particles or composite oxide fine particles of the metal element with silicon oxide, or the surface of the composite oxide fine particles containing the metal element and silicon.
- the weight of the metal element M 2 and silicon contained in the crystalline inorganic oxide fine particles (1) is converted into the weight of M 2 O x and the weight of SiO 2- (2), respectively, and the coating substance (2)
- the weight ratio ⁇ (M 1 O x + SiO 2- (1)) / (M 2 O x + SiO 2- (2)) ⁇ is in the range of 7/100 to 150/100, according to any one of [1] to [6] above A dispersion containing the above-mentioned linked crystalline inorganic oxide fine particle group.
- the dispersion liquid comprising the linked crystalline inorganic oxide fine particle group according to any one of [1] to [8], wherein the dispersion medium is water.
- the dispersion liquid comprising the linked crystalline inorganic oxide fine particle group according to any one of [1] to [8] above, wherein the dispersion medium is an organic solvent or an organic solvent and water.
- a method for producing a dispersion comprising: (1) Crystalline inorganic oxide fine particles (1) containing at least one metal element M 2 selected from the group consisting of titanium, zirconium, niobium, cerium and zinc and silicon are connected one-dimensionally or two-dimensionally.
- an aqueous dispersion containing the prepared particles (2) To the aqueous dispersion prepared in the step (1), an aqueous alkaline solution containing a compound of at least one metal element M 1 selected from the group consisting of zirconium, aluminum and antimony and an acidic aqueous solution containing silicic acid are added. And (3) a method for producing an aqueous dispersion containing linked crystalline inorganic oxide fine particle groups, comprising the step of (3) hydrothermally treating the aqueous dispersion obtained in the step (2).
- an aqueous dispersion in which the crystalline inorganic oxide fine particles (1) are dispersed without being connected is prepared, the pH of the aqueous dispersion is adjusted to 2 to 6, and / or the crystalline inorganic oxide Zeta potential at the interface between the oxide fine particles (1) and water (however, the amount of water is arbitrarily adjusted so that the content of the crystalline inorganic oxide fine particles (1) in the aqueous dispersion is 0.15% by weight) Is adjusted to ⁇ 30 to ⁇ 70 mV, and the aqueous dispersion is allowed to stand at a temperature of 20 to 40 ° C. for 1 to 5 hours in the aqueous dispersion.
- the crystalline inorganic oxide fine particles (1) contained in the water are one-dimensionally or two-dimensionally coupled and aged, and water containing the linked crystalline inorganic oxide fine particle group according to [12] above A method for producing a dispersion.
- a coating solution for an optical substrate comprising a dispersion containing the linked crystalline inorganic oxide fine particle group described in [10] above.
- the coating liquid for optical substrates according to [16] above which contains a binder component composed of a thermosetting resin or a thermoplastic resin and is a coating liquid for forming a primer layer film.
- the group of connected crystalline inorganic oxide fine particles according to the present invention or a dispersion thereof water and / or organic solvent dispersion
- mechanical strength shock resistance, abrasion resistance
- appearance suitability cloudiness, Interference fringes
- adhesiveness weather resistance, light resistance, crack resistance
- suitable for forming coating films hard film such as hard coat layer and primer layer
- high refractive index high refractive index
- the coating liquid for optical substrates (the coating liquid for forming a hard coat layer and the coating liquid for forming a primer layer film) according to the present invention is used
- mechanical strength (scratch resistance, abrasion resistance) and appearance suitability (Coating, interference fringes), adhesion, weather resistance, light resistance, crack resistance, optical properties (high refractive index), etc.
- excellent coating film (hard coating layer film and cured film such as primer layer film) be able to.
- the coating film (cured film such as hard coat layer film and primer layer film) and the substrate with coating film (substrate with cured film) according to the present invention are excellent in these properties.
- FIG. 1 shows a group of fine particles contained in an aqueous dispersion (P-1) of linked crystalline inorganic oxide fine particles produced in Example 1 using a scanning electron microscope at an acceleration voltage of 30 kV and a magnification of 250,000 times. SEM image results are shown.
- FIG. 2 shows the major axis direction of the connected crystalline inorganic oxide fine particle group.
- the linked crystalline inorganic oxide fine particle group according to the present invention a dispersion containing the fine particle group (water and / or organic solvent dispersion), a production method thereof, and the linked crystalline inorganic oxide fine particle group
- the coating liquid for optical base materials to be included will be specifically described.
- the water and / or organic solvent dispersion of the linked crystalline inorganic oxide fine particle group according to the present invention is: (1) Crystalline inorganic oxide fine particles containing at least one metal element M 2 selected from the group consisting of titanium, zirconium, niobium, cerium and zinc, and silicon, (2) A coating material comprising a composite oxide containing at least one metal element M 1 selected from the group consisting of zirconium, aluminum and antimony and covering silicon, and (3) the coating.
- a connected crystalline inorganic oxide fine particle group composed of a composite material composed of a composite oxide that is the same component as the material and composed of a binding material that connects adjacent fine particles (1) coated with the coating material (2). Contains.
- Crystalline inorganic oxide fine particles (1) The crystalline inorganic oxide fine particles (1) (referred to herein as “inorganic oxide fine particles (1)", also referred to as “fine particles (1)”.), As the metal element M 2, further tin, tungsten, It may contain at least one selected from the group consisting of antimony and indium.
- the fine particles (1) may contain a small amount of alkali metal elements (sodium, potassium, etc.) in the production process, depending on the production method.
- the fine particles (1) include composite oxide fine particles containing the metal element and silicon, oxide fine particles of the metal element or a surface of the composite oxide fine particles coated with silicon oxide, and the metal element and silicon. In which the surface of the composite oxide fine particles containing is coated with silicon oxide. Examples of these include fine particles of complex oxides of titanium, tin and silicon, and fine particles of zirconium oxide coated with silicon oxide.
- the amount of silicon oxide is in the range of 0.5 to 30% by weight with respect to the weight (100% by weight) of the composite oxide fine particles. Preferably there is.
- the fine particles (1) are crystalline fine particles.
- the fine particles (1) being crystalline means that the crystallite diameter of the fine particles (1) obtained from the X-ray diffraction pattern exceeds 3 nm.
- the crystal structure includes an anatase type, a rutile type, and a brookite type depending on the type of metal element. Since the fine particles (1) are crystalline, the linked crystalline inorganic oxide fine particle group has a high refractive index.
- the average particle diameter of the fine particles (1) is preferably 5 to 100 nm, more preferably 5 to 50 nm.
- the value of the average particle diameter is an average value of the length in the major axis direction of the inorganic oxide fine particles (1) measured based on an image observed with a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the observation conditions are the conditions employed in the examples described later or conditions equivalent thereto.
- the “major axis direction” refers to the direction of the longest axis in one fine particle (1) in the SEM image. If the average particle size is excessively smaller than the above range, the primary particles tend to aggregate, so that the dispersion of the fine particles (1) tends to thicken, and the average particle size is excessively larger than the above range. If it is large, the transparency of the dispersion liquid of the fine particles (1) tends to decrease.
- Examples of the shape of the inorganic oxide fine particles (1) include a spherical shape, a fiber shape, a needle shape, a tube shape, and a sheet shape.
- inorganic oxide fine particles obtained by a conventionally known wet preparation method or dry preparation method can be used.
- As fine particles containing zirconium, core-shell type inorganic oxide fine particles described in JP 2012-056816 A, inorganic oxide fine particles described in JP 2011-037659 A, and the like can be used.
- Coating material (2) and linking material (3) The coating material (2) is made of a complex oxide containing at least one metal element M 1 selected from the group consisting of zirconium, aluminum, and antimony and silicon, and covers the fine particles (1).
- the binding substance (3) is composed of a complex oxide that is the same component as the coating substance (2), and connects the adjacent fine particles (1) coated with the coating substance (2).
- the complex oxide constituting the coating material (2) and the binding material (3) contains a metal element (M 1 O x ) and silicon (SiO 2 ) in a molar ratio ( M 1 O x / SiO 2 ), preferably 5/95 to 98/2, and more preferably 8/92 to 96/4.
- the weights of the metal element M 2 and silicon contained in the crystalline inorganic oxide fine particles (1) are respectively the weight of the oxide M 2 O x and SiO 2 (“SiO 2- ( 2) ”), and the weights of the metal element M 1 and silicon contained in the coating material (2) and the binding material (3) are the weight of the oxide M 1 O x , respectively.
- SiO 2 represented as “SiO 2- (1)” in the following weight ratio formula
- the weight ratio ⁇ (M 1 O x + SiO 2- (1)) / (M 2 O x + SiO 2- (2)) ⁇ is preferably in the range of 7/100 to 150/100, more preferably in the range of 10/100 to 120/100, from the viewpoint of the production method described later.
- the average particle size of the connected crystalline inorganic oxide fine particle group is preferably 10 to 200 nm, more preferably 15 to 150 nm.
- the value of the average particle diameter is an average value of the length in the major axis direction of the linked crystalline inorganic oxide fine particle group measured based on an image observed with a scanning electron microscope (SEM), The observation conditions by SEM are the conditions adopted in the examples described later or conditions equivalent thereto.
- the “major axis direction” refers to the direction of the longest axis in one fine particle group in the SEM image.
- the dispersion liquid according to the present invention is used as, for example, a coating liquid for an optical substrate (a coating liquid for forming a hard coat layer film, a coating liquid for forming a primer layer, which will be described later), the average particle diameter is excessively larger than the above range. If it is small, the desired mechanical strength (abrasion resistance, abrasion resistance) cannot be obtained, and if the average particle diameter is excessively larger than the above range, a poor appearance haze of the coating film occurs.
- the linked crystalline inorganic oxide fine particle group may contain fine particles (1) coated with the coating substance (2) that are not linked, and the amount thereof is, for example, 50% by weight or less, The amount is preferably 10% by weight or less (the total amount of the fine particle group and the fine particles (1) coated with the unconnected coating substance (2) is 100% by weight).
- the refractive index of the linked crystalline inorganic oxide fine particle group is preferably 1.6 to 2.6, and more preferably 1.7 to 2.4.
- the refractive index is excessively smaller than 1.6, an interference fringe defect is caused when the coating liquid for optical substrate is coated on a substrate having a refractive index of 1.56 or more, and the refractive index is excessively larger than 2.6.
- the ratio of the linked crystalline inorganic oxide fine particle group to the binder component must be reduced, it is difficult to obtain desired mechanical strength (abrasion resistance, abrasion resistance) in the coating film.
- the X-ray diffraction crystallite diameter (Scherrer) calculated using the Scherrer formula of the linked crystalline inorganic oxide fine particle group ( The crystallite diameter has a major axis and a minor axis. The crystallite diameter here is the major axis.)
- the crystallite diameter is preferably 5 to 100 nm, more preferably 5 to 50 nm. . If the crystallite diameter is excessively smaller than 5 nm, the refractive index of the linked crystalline inorganic oxide fine particle group decreases due to a decrease in crystallinity, and if the crystallite diameter is excessively larger than 100 nm, Transparency decreases.
- the linked crystalline inorganic oxide fine particle group according to the present invention can be produced (recovered) by removing the dispersion medium from the dispersion liquid of the linked crystalline inorganic oxide fine particle group according to the present invention.
- the dispersion of the linked crystalline inorganic oxide fine particle group according to the present invention contains water and / or an organic solvent as a dispersion medium.
- organic solvent examples include alcohols such as methanol, ethanol, butanol, propanol and isopropyl alcohol, ethers such as ethylene glycol monomethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether, methyl ethyl ketone, and ⁇ -butyrolactone.
- examples include organic compounds selected from ketones.
- the organic solvent dispersion according to the present invention is used for the preparation of a coating liquid for an optical substrate, an organic compound selected from alcohols such as methanol and ethers such as propylene glycol monomethyl ether. At least one is preferred. The reason is that the drying speed of the coating film is relatively fast and it is easy to form a film.
- the dispersion according to the present invention is an organic solvent dispersion
- a small amount of water for example, 0.5 to 5% by weight with respect to 100% by weight of the total dispersion medium
- the dispersion medium for example, 0.5 to 5% by weight with respect to 100% by weight of the total dispersion medium
- the content of the linked crystalline inorganic oxide fine particle group in the dispersion according to the present invention varies depending on the use of the dispersion, the type of the dispersion medium, and the like. %. If the organic solvent dispersion according to the present invention is used as a coating liquid for an optical substrate (a coating liquid for forming a hard coat layer film, a coating liquid for forming a primer layer film, etc.) described later, the linked crystalline inorganic oxidation
- the content of the fine particle group is preferably 10 to 40% by weight (the total amount of the dispersion is 100% by weight).
- the aqueous dispersion containing the linked crystalline inorganic oxide fine particle group according to the present invention is preferably produced by a production method having the following steps (1) to (3).
- Step (1) In the step (1), an aqueous dispersion containing particles in which the crystalline inorganic oxide fine particles (1) are connected one-dimensionally or two-dimensionally is prepared.
- an aqueous dispersion containing particles in which the crystalline inorganic oxide fine particles (1) are connected for example, first, the aqueous dispersion in which the crystalline inorganic oxide fine particles (1) are dispersed without being connected.
- a liquid (its pH is, for example, about 8 to 11) is prepared.
- the crystalline inorganic oxide fine particles (1) may be dispersed in water to prepare the aqueous dispersion, or the crystalline inorganic oxide fine particles (1) may be prepared. It may be produced in the form of an aqueous dispersion.
- the adjacent fine particles (1) are quasi-connected.
- This pH adjustment can be performed, for example, by bringing the aqueous dispersion into contact with a cation exchange resin.
- the zeta potential at the interface between the crystalline inorganic oxide fine particles (1) and water at this time (provided that the concentration of the fine particles (1) in the aqueous dispersion is 0.15 wt%, Zeta potential in an aqueous dispersion, and when the concentration is not 0.15% by weight, the zeta potential in an aqueous dispersion prepared by increasing or decreasing the amount of water to be 0.15% by weight Is preferably ⁇ 30 to ⁇ 70 mV, more preferably ⁇ 40 to ⁇ 70 mV.
- the crystalline inorganic oxide fine particles tend to aggregate three-dimensionally, and when it is excessively larger than ⁇ 70 mV, the repulsive force of the crystalline inorganic oxide fine particles tends to increase. .
- the particles are quasi-connected means a state in which the particles are connected by electrostatic attraction, not a state in which the particles are connected by a covalent bond. Further, the particles are not three-dimensionally connected, that is, a so-called aggregated state, but one-dimensionally or two-dimensionally connected.
- the crystalline fine particles have fewer surface OH groups than the amorphous fine particles, it is considered that a hydrophilic group is imparted to the surface of the fine particles by a surface treatment agent when taking a connected structure. There is a possibility that the possibility of causing aggregation of the crystalline fine particles is increased.
- the fine particles (1) are pseudo-connected by adjusting the pH of the aqueous dispersion of the crystalline inorganic oxide fine particles (1), such aggregation does not occur. .
- step (1) preferably, the pH of the aqueous dispersion is adjusted to 2 to 6 and / or the zeta potential at the interface between the crystalline inorganic oxide fine particles (1) and water is adjusted to ⁇ 30 to ⁇ 70 mV.
- the aqueous dispersion is allowed to stand for 0.5 to 5 hours (more preferably 1 to 2 hours) under a temperature condition of 20 to 40 ° C.
- the solid component in the aqueous dispersion is aged, that is, the pseudo-connection between the fine particles (1) is further strengthened, and the pH of the aqueous dispersion is increased in the step (2). Connection can be maintained.
- the aqueous dispersion is preferably stirred.
- Step (2) In the step (2), the aqueous dispersion obtained in the step (1) contains an alkaline aqueous solution containing a compound of at least one metal element M 1 selected from the group consisting of zirconium, aluminum and antimony, and an acid containing silicic acid. Add aqueous solution.
- step (2) first, a step of adjusting the pH of the aqueous dispersion obtained in step (1) to 7 to 11 (hereinafter also referred to as “step (2a)”) is performed.
- This pH adjustment can be performed, for example, by adding an aqueous solution of an alkali metal hydroxide (eg, sodium hydroxide, potassium hydroxide) to the aqueous dispersion obtained in the step (1).
- an alkali metal hydroxide eg, sodium hydroxide, potassium hydroxide
- the aqueous dispersion whose pH is adjusted to 7 to 11 in the step (2a) is heated to 70 to 95 ° C., and then an alkaline aqueous solution of a specific metal compound and an acidic aqueous solution containing silicic acid are added to the aqueous dispersion. .
- the alkaline aqueous solution of the specific metal compound is an alkaline aqueous solution containing a compound of at least one metal element selected from the group consisting of zirconium, aluminum and antimony.
- the alkaline aqueous solution preferably contains 0.3 to 20% by weight of the metal element based on its oxide conversion standard.
- Examples of the acidic aqueous solution containing silicic acid include those obtained by treating a silicate aqueous solution such as an alkali metal silicate or an organic base silicate with a cation exchange resin and removing the alkali. It is done.
- Examples of these silicates include alkali metal silicates such as sodium silicate (water glass) and potassium silicate, and silicates of organic bases such as quaternary ammonium silicate.
- a solution obtained by diluting water glass (sodium silicate) with water and then treating it with a cation exchange resin is preferable.
- the pH is in the range of 2 to 4, preferably 2 to 3, and the silicon component content is 0.5 to 5% by weight, preferably 0.8 to 4.8, based on the SiO 2 equivalent. Those in the weight percent range are preferred.
- the pH is excessively lower than 2
- the amount of the cation exchange resin required for the treatment and the treatment time are unnecessarily increased, which is not economical
- the pH is excessively higher than 4
- the degree of alkali is low
- the stability of the silicic acid solution is deteriorated.
- the content is excessively less than 0.5% by weight, it is difficult to economically obtain the inorganic oxide fine particles, and if the content is excessively higher than 5% by weight, a silicate solution The stability becomes worse.
- the molar ratio (M 1 O x / SiO 2 ) is preferably slowly added to the aqueous dispersion obtained in the step (2a) at a ratio of 5/95 to 98/2, more preferably 8/92 to 96/4.
- the molar ratio is excessively smaller than 5/95, it becomes difficult to obtain a crystalline inorganic oxide fine particle group.
- the alkaline aqueous solution and the silicic acid liquid are used. While the solution is added to the aqueous dispersion obtained in the step (2a), the mixed solution becomes unstable and the crystalline inorganic oxide fine particles (1) are aggregated.
- these addition amounts to the aqueous dispersion obtained in the step (2a) are based on the weight of the metal element M 2 and silicon contained in the crystalline inorganic oxide fine particles (1), and the respective oxides ( Converted to the weight of M 2 O x and SiO 2 (represented as “SiO 2- (2)” in the following weight ratio formula)), it is contained in the metal element M 1 contained in the alkaline aqueous solution and the silicic acid solution.
- the weight ratio ⁇ (M 1 O x + SiO 2- (1)) / (M 2 O x + SiO 2- (2)) ⁇ is preferably 7/100 to 150/100, more preferably 10/100 to 120/100. is there.
- the molar ratio is excessively smaller than 7/100, it becomes difficult to obtain a crystalline inorganic oxide fine particle group.
- the alkaline aqueous solution and the silicic acid liquid are used. While the solution is added to the aqueous dispersion obtained in the step (2a), the mixed solution becomes unstable and the crystalline inorganic oxide fine particles (1) are aggregated.
- the aqueous dispersion obtained in the step (2a) is heated to a temperature of 70 to 95 ° C., preferably 80 to 90 ° C. before adding the alkaline aqueous solution and the silicic acid solution.
- a temperature is within the above range, the hydrolysis reaction between the metal compound (eg, zirconium compound) in the alkaline aqueous solution and the silicic acid in the silicic acid solution can proceed.
- the temperature is excessively low, the hydrolysis reaction proceeds slowly, and when the temperature is excessively high, evaporation of water in the aqueous dispersion proceeds.
- the alkaline aqueous solution and the silicic acid solution added to the aqueous dispersion obtained in the step (2a) may be heated or room temperature.
- the addition of the alkaline aqueous solution and the silicic acid solution is preferably carried out slowly over 4 to 24 hours at the same time, although it varies depending on the amount and concentration of these.
- Step (3) In step (3), the aqueous dispersion obtained in step (2) is hydrothermally treated.
- the hydrothermal treatment is preferably performed in a pressure-resistant and heat-resistant container, and more preferably in a stainless steel autoclave.
- the hydrothermal treatment is preferably performed under a temperature condition of 130 to 250 ° C., more preferably 150 to 200 ° C., preferably 10 to 100 hours, more preferably 12 to 40 hours.
- hydrolysis reaction between a specific metal compound (eg, zirconium compound) in the alkaline aqueous solution added to the aqueous dispersion in the step (3) and silicic acid in the acidic aqueous solution
- the partial hydrolyzate and / or the condensation reaction of the hydrolyzate obtained from (1) can be sufficiently advanced, and the crystalline inorganic oxide fine particles can be coated and connected with the resulting condensate.
- crystalline inorganic oxide fine particles containing at least one metal element selected from the group consisting of titanium, zirconium, niobium, cerium and zinc and silicon ( 1) a coating material (2) made of a composite oxide containing at least one metal element selected from the group consisting of zirconium, aluminum and antimony and silicon, which covers the fine particles (1), and the coating material (2) composed of a composite oxide that is the same component as (2), and composed of a binding substance (3) that connects adjacent crystalline inorganic oxide fine particles (1) coated with the coating substance (2).
- An aqueous dispersion containing linked crystalline inorganic oxide fine particle groups is obtained.
- the linked crystalline inorganic oxide fine particle group contained in the dispersion according to the present invention has a shape generally shown in the electron micrograph of FIG.
- the organic solvent dispersion containing the linked crystalline inorganic oxide fine particle group according to the present invention is obtained by using water as a dispersion medium contained in the aqueous dispersion containing the linked crystalline inorganic oxide fine particle group according to the present invention as an organic solvent. It can manufacture by substituting.
- the linked crystalline inorganic oxide fine particle group contained in the aqueous dispersion is a hydrophilic fine particle group, it is desirable to make the fine particle group hydrophobic in advance when producing an organic solvent dispersion. .
- Examples of the surface treatment agent include organosilicon compounds and amine compounds.
- a conventionally known silane coupling agent having a hydrolyzable group can be used as the organosilicon compound.
- General formula R 3 SiX such as trimethylethoxysilane, dimethylphenylethoxysilane, dimethylvinylethoxysilane (wherein R is an organic group having an alkyl group, phenyl group, vinyl group, methacryloxy group, mercapto group, amino group or epoxy group
- a bifunctional silane represented by a general formula R 2 SiX 2 (wherein R and X are as described above) such as dimethyldiethoxysilane and diphenyldiethoxysilane;
- Trifunctional silanes represented by the general formula RSiX 3 (wherein R and X are as described above) such as methyltriethoxysilane and phenyltriethoxysilane; Examples thereof include
- amine compounds examples include ammonia; alkylamines such as ethylamine, triethylamine, isopropylamine and n-propylamine; aralkylamines such as benzylamine; alicyclic amines such as piperidine; monoethanolamine; And quaternary ammonium salts such as alkanolamine, tetramethylammonium salt, and tetramethylammonium hydroxide.
- alkylamines such as ethylamine, triethylamine, isopropylamine and n-propylamine
- aralkylamines such as benzylamine
- alicyclic amines such as piperidine
- monoethanolamine monoethanolamine
- quaternary ammonium salts such as alkanolamine, tetramethylammonium salt, and tetramethylammonium hydroxide.
- the surface treatment of the linked crystalline inorganic oxide fine particle group is performed by removing an organosilicon compound dissolved in an organic solvent such as methanol or a partially hydrolyzed product thereof. After being added to the dispersion sol, it can be carried out by heating to a temperature of about 40-60 ° C. and stirring for about 1-20 hours to hydrolyze the organosilicon compound or a partial hydrolyzate thereof. At the stage where this surface treatment operation is completed, all of the hydrolyzable groups possessed by the organosilicon compound are in a state of reacting with OH groups present on the surface of the linked crystalline inorganic oxide fine particle group. However, it may be in a state in which a part thereof remains unreacted.
- the water contained in the aqueous dispersion containing the surface-treated linked crystalline inorganic oxide fine particle group is replaced with an organic solvent.
- the details of the organic solvent are as described above.
- a conventionally known solvent replacement device such as an ultrafiltration device or a rotary evaporator can be used as the solvent replacement device.
- the operating conditions of the solvent displacement device vary depending on the solvent displacement device used, the type of the organic solvent, and the like.
- an ultrafiltration device SIP-1013 manufactured by Asahi Kasei Co., Ltd.
- the water-dispersed sol solid content concentration of 1 to 30% by weight
- an organic solvent for example, methanol
- It is preferable to perform solvent replacement under such conditions for example, pump discharge pressure of 10 to 20 MPa, water content after solvent replacement of 0.1 to 5% by weight, etc.).
- the aqueous dispersion is treated with an ultrafiltration device or the like. It is preferable to perform the above-described replacement operation after concentration using the solution to increase the solid concentration of the aqueous dispersion.
- optical substrate coating liquid, coating film formed using the coating liquid, and substrate with coating film> [Coating liquid for optical substrate]
- the organic solvent dispersion of the linked crystalline inorganic oxide fine particle group according to the present invention can be used, for example, as a coating liquid for an optical substrate, specifically, as the following two kinds of coating liquids.
- Hard coat layer film forming coating solution b. Coating liquid for primer layer film formation a.
- Hard coat layer coating solution This coating liquid for forming a hard coat layer film is composed of an organic solvent dispersion of linked crystalline inorganic oxide fine particles according to the present invention, and further, an organosilicon compound (A) as a binder component (that is, a vehicle component). Containing.
- organosilicon compound (A) examples include an organosilicon compound represented by the following general formula (I) and / or a hydrolyzate thereof.
- the following organic group an organic group having 1 to 5 carbon atoms containing a mercapto group, or an organic group having 1 to 5 carbon atoms containing an amino group
- R 2 is an alkyl group, alkylene group, cyclohexane having 3 or less carbon atoms
- R 3 is an alkyl group, alkylene group, or cycloalkyl group having 3 or less carbon atoms
- a is an integer of 0 or 1
- b is 0, 1 or 2 Is an integer.
- Representative examples of the organosilicon compound represented by the general formula (I) include alkoxysilane compounds.
- Specific examples include tetraethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxy.
- tetraethoxysilane, methyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, etc. Is preferably used.
- organosilicon compounds may be used alone or in combination of two or more.
- the organosilicon compound (A) is preferably partially hydrolyzed in the absence of a solvent or in a polar organic solvent such as alcohol in the presence of an acid and water. Or after hydrolyzing, it mixes with the organic solvent dispersion liquid (the said organic solvent dispersion liquid which does not contain the said organosilicon compound (A)) of the connection type
- the organosilicon compound (A) may be partially hydrolyzed or hydrolyzed after mixing with the organic solvent dispersion.
- the coating liquid for forming the hard coat layer film improves the dyeability of the hard coat layer film and the adhesion to the plastic lens substrate, and further prevents the occurrence of cracks.
- an uncrosslinked epoxy compound may be contained. Examples of the uncrosslinked epoxy compound include 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, and the like.
- 1,6-hexanediol diglycidyl ether 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, or the like.
- these uncrosslinked epoxy compounds may be used individually by 1 type, and may use 2 or more types together.
- the hard coat layer film-forming coating solution may contain components other than those usually mentioned above, such as surfactants, leveling agents or ultraviolet absorbers, which are usually included in the hard coat layer film-forming coating solution. Good.
- the amount of the organosilicon compound (A) in the coating liquid for forming a hard coat layer film is preferably 200 to 1000 parts by volume with respect to 100 parts by volume of the linked crystalline inorganic oxide fine particle group.
- This primer layer film-forming coating solution is composed of an organic solvent dispersion of linked crystalline inorganic oxide fine particles according to the present invention, and further, a thermosetting resin or a thermoplastic resin (B) as a binder component (that is, , Resin component).
- thermosetting resin or the thermoplastic resin (B) examples include a urethane resin, an epoxy resin, and a melamine resin as long as they are thermosetting resins.
- urethane resins and epoxy resins are used. Is preferred.
- the urethane resin examples include a reaction product of a block-type polyisocyanate such as hexamethylene diisocyanate and an active hydrogen-containing compound such as polyester polyol and polyether polyol
- examples of the epoxy resin include polyalkylene ether.
- examples include modified epoxy resins and epoxy group-containing compounds in which a flexible skeleton (soft segment) is introduced into the molecular chain.
- examples of the melamine resins include cured products of etherified methylol melamine, polyester polyol, and polyether polyol. It is done.
- a urethane resin that is a cured product of a block type isocyanate and a polyol is preferable.
- these thermosetting resins may be used individually by 1 type, and may use 2 or more types together.
- thermosetting resin or thermoplastic resin (B) if it is a thermoplastic resin, as this, an acrylic resin, a urethane-type resin, and ester-type resin will be mentioned, for example, Among these, urethane-type resin And ester resins are preferred.
- acrylic resin examples include a water-based emulsion obtained from a (meth) acrylic acid alkyl ester monomer, and a polymer emulsion obtained by copolymerizing the monomer with styrene, acrylonitrile, and the urethane resin.
- a polyol compound such as polyester polyol, polyether polyol, polycarbonate polyol and polyisocyanate
- ester resin examples include polyester for a hard segment and polyether or polyester for a soft segment.
- the primer layer film-forming coating solution may contain components other than those usually mentioned above, such as neutralizing agents, surfactants or ultraviolet absorbers, which are usually contained in the primer layer film-forming coating solution. .
- the amount of the thermosetting resin or thermoplastic resin (B) in the primer layer film forming coating solution is preferably 200 to 1000 parts by volume with respect to 100 parts by volume of the linked crystalline inorganic oxide fine particle group. It is.
- optical base material for applying the coating liquid for the optical base material examples include various plastic base materials.
- plastic base materials for example, a polystyrene resin, an allyl resin (especially an aromatic resin). Allyl resin), polycarbonate resin, polythiourethane resin, polythioepoxy resin, and the like.
- plastic base material comprised by PMMA resin, ABS resin, an epoxy resin, polysulfone resin etc. is mentioned, for example.
- optical substrates such as plastic lens substrates having a relatively high refractive index of 1.7 or more, more specifically 1.71 to 1.81, have been developed.
- the coating solution for a substrate can be applied to these high refractive optical substrates.
- the coating liquid for an optical substrate according to the present invention can be applied to an optical substrate having a relatively low refractive index of 1.50 to 1.70, more specifically 1.52 to 1.67. .
- the primer layer film forming coating solution is directly applied onto the optical substrate by a conventionally known method.
- the coating liquid for forming the hard coat layer film is applied directly on the optical substrate by a conventionally known method, or a coating film (primer layer film) formed from the coating liquid for forming the primer layer film. ) Is applied on top.
- the coating film thus formed on the optical substrate is cured by a conventionally known method to form a desired coating film for an optical substrate (cured film), that is, a hard coat layer film or a primer layer film. Is done.
- Measurement methods and evaluation test methods used in Examples and others of the present invention are as follows.
- the average particle diameter of inorganic oxide fine particles and connected inorganic oxide fine particles (hereinafter also referred to as “inorganic oxide fine particles”, etc. without distinction) is as follows. It was measured. First, a dispersion (or mixed solution) containing inorganic oxide fine particles or the like is diluted 1,000 times with distilled water in the case of an aqueous dispersion sol or with methanol in the case of a methanol dispersion sol, and then a metal with a collodion film.
- the sample was applied to a grid (Oken Shoji Co., Ltd.) and irradiated with a 250 W lamp for 30 minutes to scatter the solvent to prepare a measurement sample.
- a high-resolution scanning electron microscope (SEM) (S-5500, manufactured by Hitachi High-Technologies Corporation) was used to take an SEM photograph at a magnification of 250,000 times under the condition of an acceleration voltage of 30 kV.
- the particle sizes of 100 or more inorganic oxide fine particles or the like photographed in the photograph were each observed visually, and the average particle size was determined by taking the average of them.
- the number of connected inorganic oxide particles in the group of connected inorganic oxide particles is determined by drying a dispersion (or mixed solution) containing inorganic oxide particles, etc. Etc., and using a high-resolution scanning electron microscope (SEM) (S-5500 manufactured by Hitachi High-Technologies Corporation), SEM photographs were taken at a magnification of 250,000 times under the condition of an acceleration voltage of 30 kV. With respect to the group of 100 or more connected inorganic oxide fine particles photographed in 1), the number of connected inorganic oxide fine particles was visually observed, and the average value thereof was determined.
- SEM scanning electron microscope
- titanium, tin, and silicon were converted to oxide conversion criteria (TiO 2 , SnO 2 , ICPS-8100, analysis software ICPS-8000, manufactured by Shimadzu Corporation) Measured with SiO 2 ).
- aluminum zirconium was converted into an oxide conversion standard (Al 2 O using an ICP apparatus (manufactured by Shimadzu Corporation, ICPS-8100, analysis software ICPS-8000). 3 and ZrO 2 ), and sodium and potassium were measured by oxide conversion standard (Na 2 O, K 2 O) using an atomic absorption device (manufactured by Hitachi, Ltd., Z-5300, software Z-2000). It was measured.
- Crystallinity measurement method About 30 ml of a dispersion (or mixed solution) of inorganic oxide fine particles or the like is collected in a magnetic crucible (type B-2), dried by heating at 110 ° C. for 12 hours, and then desiccator. And cooled to room temperature. Next, after cooling the cooled product in a mortar for 15 minutes, the crystal form was measured using an X-ray diffractometer (RINT1400, manufactured by Rigaku Corporation). In addition, the crystal
- Abrasion tester BTM manufactured by Colts, USA
- a haze value measuring device NH2000 manufactured by NIPPON DENSHOKU
- the Bayer value was calculated based on the change in haze value between the plastic lens substrate (hereinafter also referred to as “the lens under test”) and the reference lens.
- the reference lens a commercially available plastic lens base material CR-39 base material (diethylene glycol bisallyl carbonate, using monomer manufactured by PPG, base material refractive index 1.60) was used.
- the haze value of each lens was measured, the initial haze value of the reference lens was D (std0), and the initial haze value of the lens under test was D (test0).
- Each lens was placed in the pan of the wear tester, and 500 g of abrasive material (exclusive sand) was filled thereon, and the pan was vibrated left and right 600 times.
- the haze value of the lens after vibration was measured, the haze value of the reference lens was D (stdf), and the haze value of the lens under test was D (testf).
- the Bayer test value (R) was calculated from the following formula.
- Haze value is less than 0.3%
- Method for evaluating scratch resistance of coating film The surface of the plastic lens substrate produced in Examples or Comparative Examples on the hard coat layer side or antireflection layer side is treated with Bonstar Steel Wool # 0000 (Nippon Steel Wool). (Made by Co., Ltd.) with a load of 1 kg, rubbing a distance of 1 cm in width and 3 cm under the condition of 50 reciprocations / 100 seconds, and then visually determining the area of the scratch against the steel wool sliding area. Evaluated by criteria.
- ⁇ The number of cells not peeled is 95 or more. ⁇ : The number of cells not peeled is less than 95.
- ⁇ The number of cells not peeled is 95 or more. ⁇ : The number of cells not peeled is less than 95.
- the refractive index of the linking type inorganic oxide fine particles was determined by adopting a calculation method from the coating film refractive index. . Specifically, a coating film was prepared by the procedure described in JP-A 2010-168266, [0105] to [0110], and the refractive index was measured using a spectroscopic ellipsometer (SOPRA ESVG, manufactured by Sopra). Calculated.
- SOPRA ESVG spectroscopic ellipsometer
- silica sol containing 15% by weight of silica fine particles having an average particle diameter of 7 nm (manufactured by JGC Catalysts & Chemicals Co., Ltd.) 0. 8 kg and 18.0 kg of pure water were mixed and heated in an autoclave (pressure-resistant glass industry, 120 L) at a temperature of 165 ° C. for 18 hours to obtain composite oxide fine particles (core) containing titanium as a main component. An aqueous dispersion of particles) was obtained.
- the obtained aqueous dispersion was cooled to room temperature, and then concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.), and an aqueous dispersion (mainly titanium was 10% by weight). 10.0 kg of an aqueous dispersion (1a) containing core particles as components was obtained.
- the core particles contained in the aqueous dispersion (1a) have a rutile-type crystal structure, and when the content of metal elements (oxide equivalent value) contained in the core particles is measured, TiO 2 is 75. 0.2% by weight, SnO 2 was 9.3% by weight, SiO 2 was 12.2% by weight, and K 2 O was 3.3% by weight.
- the average particle size of the core particles was 18 nm.
- the dispersion containing the inorganic oxide fine particles had a pH of 3.8 and a zeta potential of ⁇ 50 mV when the zeta potential was measured by the measurement method described above.
- aqueous potassium hydroxide solution is added to the inorganic oxide fine particle dispersion (1b) to adjust the pH of the dispersion to 10.0, and the dispersion is heated to a temperature of 90 ° C. 12.0 kg of the aqueous zirconate peroxide solution (1) and 3.0 kg of the silicic acid aqueous solution (1) were gradually added at the same time. After the addition was completed, the mixture was aged with stirring for 1 hour while maintaining the temperature at 90 ° C. A liquid (1c) was obtained.
- the zirconic acid contained in the zirconium peroxide aqueous solution (1) is represented by ZrO 2 and the silicic acid contained in the silicic acid aqueous solution (1) is represented by SiO 2 (in the following weight ratio formula, “SiO 2- (1) ”), and the molar ratio (ZrO 2 / SiO 2 ) was 33/67.
- the weight of the metal contained in the inorganic oxide fine particles in the mixed liquid (1c) is represented by oxide (TiO 2 , SnO 2 , SiO 2 (“SiO 2- (2)” in the following weight ratio formula). )),
- the weight ratio ((ZrO 2 + SiO 2- (1)) / (TiO 2 + SnO 2 + SiO 2- (2))) was 40/100.
- this mixed liquid (1c) is put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 50 L), heat-treated at a temperature of 160 ° C. for 18 hours, cooled to room temperature, and then subjected to an ultrafiltration membrane.
- a device Adahi Kasei Co., Ltd., SIP-1013
- the surface of the core particles mainly composed of titanium is composed of a complex oxide containing zirconium and silicon.
- a transparent milky white aqueous dispersion (hereinafter also referred to as “P-1”) of inorganic oxide fine particles (1) coated with a shell was prepared.
- aqueous dispersion (P-1) is also referred to as “aqueous dispersion (P-1) of linked crystalline inorganic oxide fine particles”.
- the dispersion medium was changed from water to methanol (manufactured by Hayashi Junyaku Co., Ltd.) using an ultrafiltration membrane (filter membrane manufactured by Asahi Kasei Co., Ltd., SIP-1013). , Methyl alcohol concentration: 99.9% by weight).
- the water content of the resulting inorganic oxide fine particle methanol dispersion (hereinafter referred to as “MP-1”) was about 0.5 wt%, and the solid content concentration was 30 wt%.
- the average particle diameter of the inorganic oxide fine particles was 18 nm, and 4 to 5 fine particles were connected to form a connected fine particle group, and the specific surface area of the connected fine particle group was 306 m 2 / g.
- the dispersion (MP-1) is also referred to as “methanol dispersion (MP-1) of linked crystalline inorganic oxide fine particle group”.
- Example 2 (Operation 2.2) Preparation of Aqueous Dispersion (P-2) of Linked Crystalline Inorganic Oxide Fine Particle Group
- operation 1.2 of Example 1 the aqueous solution of zirconate peroxide added to inorganic oxide fine particle dispersion (1b)
- P-2 A transparent milky white aqueous dispersion (hereinafter referred to as “P-2”) of inorganic oxide fine particles (2) formed by coating the surfaces of the particles with a shell made of a complex oxide containing zirconium and silicon was prepared.
- P-2 transparent milky white aqueous dispersion of inorganic oxide fine particles (2) formed by coating the surfaces of the particles with a shell made of a complex oxide containing zirconium and silicon was prepared.
- an inorganic oxide fine particle dispersion in which particles were pseudo-connected was obtained in the same manner as in Operation 1.2.
- the molar ratio (Zr / Si) between Zr contained in the aqueous zirconate peroxide solution and Si contained in the aqueous silicic acid solution was 10/90.
- aqueous dispersion (P-2) is also referred to as “aqueous dispersion (P-2) of linked crystalline inorganic oxide fine particle group”.
- the ratio of metal components contained in the connected fine particle group (oxide equivalent value) was measured, TiO 2 was 52.4 wt%, SnO 2 was 6.4 wt%, SiO 2 was 34.0 wt%, ZrO 2 was 5.7% by weight and K 2 O was 1.5% by weight.
- the molar ratio (ZrO 2 / SiO 2 ) was 0.082 when zirconium contained in the group of connected fine particles was expressed as ZrO 2 and silicon was expressed as SiO 2 .
- the water content of this methanol dispersion (MP-2) was about 0.5% by weight, and the solid content concentration was 30% by weight.
- the dispersion liquid (MP-2) is also referred to as “methanol dispersion liquid of linked crystalline inorganic oxide fine particle group (MP-2)”.
- Example 3 (Operation 3.2) Preparation of Aqueous Dispersion (P-3) of Linked Crystalline Inorganic Oxide Fine Particle Group
- operation 1.2 of Example 1 the aqueous solution of zirconate peroxide added to inorganic oxide fine particle dispersion (1b) was prepared.
- the same procedure as in the above procedure 1.2 was performed except that the amount was changed from 12.0 kg to 23.4 kg and the amount of the silicic acid aqueous solution was changed from 3.0 kg to 0.15 kg.
- a transparent milky white aqueous dispersion (hereinafter referred to as “P-3”) of inorganic oxide fine particles (3) obtained by coating the surface with a shell made of a complex oxide containing zirconium and silicon was prepared.
- an inorganic oxide fine particle dispersion in which particles were pseudo-connected was obtained in the same manner as in Operation 1.2.
- the molar ratio (ZrO 2 / SiO 2 ) was 95/5. It was.
- aqueous dispersion (P-3) is also referred to as “aqueous dispersion of linked crystalline inorganic oxide fine particles (P-3)”.
- the water content of this methanol dispersion (MP-3) was about 0.5% by weight, and the solid content concentration was 30% by weight.
- the dispersion liquid (MP-3) is also referred to as “methanol dispersion liquid of linked crystalline inorganic oxide fine particle group (MP-3)”.
- Example 4 (Operation 4.2) Preparation of Aqueous Dispersion (P-4) of Linked Crystalline Inorganic Oxide Fine Particle Group
- operation 1.2 of Example 1 the aqueous solution of zirconate peroxide added to inorganic oxide fine particle dispersion (1b) was prepared.
- a transparent milky white aqueous dispersion (hereinafter referred to as “P-4”) of inorganic oxide fine particles (4) formed by coating the surfaces of the particles with a shell made of a complex oxide containing zirconium and silicon was prepared.
- P-4 transparent milky white aqueous dispersion
- an inorganic oxide fine particle dispersion in which particles were pseudo-connected was obtained in the same manner as in Operation 1.2.
- aqueous dispersion (P-4) is also referred to as “aqueous dispersion of linked crystalline inorganic oxide fine particles (P-4)”.
- the ratio of metal components contained in the connected fine particle group (oxide equivalent value) was measured, TiO 2 was 73.3% by weight, SnO 2 was 9.2% by weight, and SiO 2 was 13.1% by weight. %, ZrO 2 was 2.9% by weight, and K 2 O was 1.5% by weight.
- the molar ratio (ZrO 2 / SiO 2 ) was 0.108 when zirconium contained in this connected fine particle group was represented as ZrO 2 and silicon was represented as SiO 2 .
- the water content of this methanol dispersion (MP-4) was about 0.5% by weight, and the solid content concentration was 30% by weight.
- the dispersion liquid (MP-4) is also referred to as “methanol dispersion liquid (MP-4) of linked crystalline inorganic oxide fine particle group”.
- Example 5 (Operation 5.2) Preparation of Aqueous Dispersion (P-5) of Linked Crystalline Inorganic Oxide Fine Particle Group
- the aqueous solution of zirconate peroxide added to inorganic oxide fine particle dispersion (1b) The same procedure as in the above procedure 1.2 was performed except that the amount was changed from 12.0 kg to 30.0 kg and the amount of the silicic acid aqueous solution was changed from 3.0 kg to 7.5 kg.
- a transparent milky white aqueous dispersion (hereinafter referred to as “P-5”) of inorganic oxide fine particles (5) obtained by coating the surface with a shell made of a complex oxide containing zirconium and silicon was prepared. In the course of this preparation, an inorganic oxide fine particle dispersion in which particles were pseudo-connected was obtained in the same manner as in Operation 1.2.
- aqueous dispersion (P-5) is also referred to as “aqueous dispersion (P-5) of linked crystalline inorganic oxide fine particle group”.
- TiO 2 was 33.0 wt%
- SnO 2 was 4.1 wt%
- SiO 2 was 35.7 wt%
- ZrO 2 was 25.5% by weight
- K 2 O was 1.7% by weight.
- the molar ratio (ZrO 2 / SiO 2 ) was 0.346 when the zirconium contained in this group of connected fine particles was expressed as ZrO 2 and silicon was expressed as SiO 2 .
- the water content of this methanol dispersion (MP-5) was about 0.5% by weight, and the solid content concentration was 30% by weight.
- the dispersion (MP-5) is also referred to as “methanol dispersion (MP-5) of linked crystalline inorganic oxide fine particle group”.
- alumina beads are separated and removed using a stainless steel filter having an opening of 44 ⁇ m, and 6.65 kg of pure water is further added and stirred to obtain an aqueous dispersion of zirconium oxide fine particles (core particles). 84 kg was obtained. The solid content of this aqueous dispersion was 11% by weight.
- this aqueous dispersion was washed with ion-exchanged water using an ultrafiltration membrane, and further subjected to deionization treatment by adding 0.43 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC), Zirconium oxide was applied to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to remove coarse particles by processing at a speed of 12,000 rpm for 1 hour, and the solid content concentration on the basis of ZrO 2 was 10% by weight. 9.50 kg of an aqueous dispersion of product fine particles (core particles) was obtained.
- an anion exchange resin manufactured by Mitsubishi Chemical Corporation: SANUPC
- Zirconium oxide was applied to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to remove coarse particles by processing at a speed of 12,000 rpm for 1 hour, and the solid content concentration on the basis of ZrO 2 was 10% by weight. 9.50 kg of an aqueous dispersion of
- the average particle diameter of the core particles contained in the aqueous dispersion was 20 nm, and the specific surface area was 92 m 2 / g. Furthermore, the content of the metal component contained in the core particles was 98.5% by weight for ZrO 2 and 1.5% by weight for K 2 O on the basis of oxide conversion of each metal component.
- an inorganic oxide fine particle dispersion in which particles were pseudo-connected was obtained in the same manner as in Operation 1.2. Further, the dispersion containing the inorganic oxide fine particles had a pH of 3.8 and a zeta potential of ⁇ 45 mV in the zeta potential measurement.
- aqueous dispersion (P-6) is also referred to as “aqueous dispersion of linked crystalline inorganic oxide fine particles (P-6)”.
- the water content of this methanol dispersion (MP-6) was about 0.5% by weight, and the solid content concentration was 30% by weight.
- the average particle diameter of the inorganic oxide fine particles is 20 nm, and 4 to 5 inorganic oxide fine particles are connected to form a connected fine particle group.
- the specific surface area of the connected fine particle group is 254 m 2 / g. there were.
- the dispersion liquid (MP-6) is also referred to as “methanol dispersion liquid of linked crystalline inorganic oxide fine particle group (MP-6)”.
- the inorganic oxide fine particles (C1) were not connected to each other, and the specific surface area of the fine particles was 208 m 2 / g.
- the aqueous dispersion (C-1) is also referred to as “aqueous dispersion (C-1) of unconnected crystalline inorganic oxide fine particles”.
- the water content of this methanol dispersion (MC-1) was about 0.5% by weight, and the solid content concentration was 30% by weight.
- the inorganic oxide fine particles were not connected, and the specific surface area of the fine particles was 224 m 2 / g.
- the dispersion (C-1) is also referred to as “methanol dispersion (MC-1) of unconnected crystalline inorganic oxide fine particles”.
- this hydrolyzed solution was mixed with 245.7 g of methanol (produced by Hayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9 wt%) and a solid content concentration of 30 wt% prepared in the above operation C1.3.
- methanol dispersion (MC-1) of crystalline inorganic oxide fine particles 460.3 g, methanol dispersion (MC-1) of crystalline inorganic oxide fine particles, 40.6 g of propylene glycol monomethyl ether (manufactured by Dow Chemical), tris (2,4-pentanedionato) aluminum (III) (Tokyo Chemical Industry) 6.5 g and 1.1 g of a silicone surfactant (L-7604, Toray Dow Corning Co., Ltd.) as a leveling agent were added and stirred at room temperature overnight to form a hard coat layer film A coating composition (R2) was prepared.
- the average particle diameter of the SiO 2 fine particles was 15 nm, and 3 to 4 granular fine particles were connected to form a connected fine particle group, and the specific surface area of the connected fine particle group was 170 m 2 / g.
- the aqueous dispersion (C-2) is also referred to as “aqueous dispersion of linked silica fine particles (C-2)”.
- the water content of this methanol dispersion (MC-2) was about 0.5% by weight, and the solid content concentration was 30% by weight.
- the average particle diameter of the silica fine particles was 15 nm, and 3 to 4 fine particles were connected to form a connected fine particle group, and the specific surface area of the connected fine particle group was 173 m 2 / g.
- the dispersion (MC-2) is also referred to as “methanol dispersion (MC-2) of linked silica fine particles”.
- the metal component contained in the silica fine particles in this methanol dispersion (MC-2) was measured and found to be 100.0% by weight of SiO 2 .
- inorganic oxide particulates (C3) Four to five inorganic oxide particulates (C3) are connected to form a connected fine particle group, and the specific surface area of the connected fine particle group is 254 m 2 / g.
- dispersion (C-3) is also referred to as “aqueous dispersion (C-3) of linked inorganic oxide fine particle group”.
- the crystallinity peak was not detected by X-ray diffraction of this connected fine particle group, and the inorganic oxide fine particles (C3) were amorphous.
- SiO 2 was 84.7% by weight
- ZrO 2 was 14.3% by weight
- K 2 O was 1.0% by weight.
- the molar ratio (ZrO 2 / SiO 2 ) when zirconium contained in the inorganic oxide fine particles was expressed as ZrO 2 and silicon was expressed as SiO 2 was 0.082.
- the water content of this methanol dispersion (MC-3) was about 0.5% by weight, and the solid content concentration was 30% by weight.
- the average particle diameter of the inorganic oxide fine particles was 12 nm, and 4 to 5 fine particles were connected to form a connected fine particle group, and the specific surface area of the connected fine particle group was 254 m 2 / g.
- the dispersion liquid (MP-2) is also referred to as “methanol dispersion liquid of linked inorganic oxide fine particle group (MP-2)”.
- the SiO 2 content was 91.1% by weight and the ZrO 2 content was 8.1% by weight.
- K 2 O was 0.8% by weight.
- the molar ratio (ZrO 2 / SiO 2 ) when zirconium contained in the group of connected fine particles was expressed as ZrO 2 and silicon was expressed as SiO 2 was 0.043.
- plastic lens substrate for test
- plastic lens substrate for test
- Pretreatment of plastic lens substrate Commercially available plastic lens substrate “monomer name: MR-8” (manufactured by Mitsui Chemicals, Inc., refractive index of substrate 1.60) and “monomer name: MR-7” Etching was carried out by immersing (with Mitsui Chemicals, Inc., base material refractive index 1.67) in a 10 wt% KOH aqueous solution kept at 40 ° C. for 2 minutes. Further, these were taken out, washed with water, and then sufficiently dried.
- primer layer film-forming coating composition was applied to each pre-treated plastic lens substrate to form a coating film.
- application of this coating composition was performed using the dipping method.
- the coating film was heat-treated at 100 ° C. for 10 minutes to preliminarily dry the coating film (primer layer).
- the film thickness of the primer layer thus formed after preliminary curing was approximately 0.5 to 1.0 ⁇ m.
- a coating composition for forming a hard coat layer film is applied to the surface of the plastic lens substrate that has been subjected to the pretreatment or the plastic lens substrate on which the primer layer film has been formed. A film was formed. In addition, application
- the coating film (hard coat layer) was cured by heat treatment at 110 ° C. for 2 hours. At this time, the main curing of the primer layer was also performed at the same time.
- the thickness of the hard coat layer film thus formed after curing was approximately 3.0 to 3.5 ⁇ m.
- the primer layer film-forming coating composition Y1 and the hard coat layer film-forming coating composition H1 were applied to form a base material for the test piece 9 and the primer layer film-forming coating composition S1. Then, a test piece 11 was prepared by applying the coating composition R1 for forming a hard coat layer film and forming an antireflection layer film.
- a test piece 13 in which an antireflection layer film was formed by applying the coating composition R2 for forming a hard coat layer film was prepared.
- “monomer name: MR-7” manufactured by Mitsui Chemicals, Inc., refractive index of base material: 1.67) is used as the base material of test pieces 12 to 13, and the other test piece base materials are used.
- “Monomer name: MR-8” manufactured by Mitsui Chemicals, Inc., base material refractive index 1.60) was used.
- test piece obtained by applying the coating composition prepared in the example had very high scratch resistance and film hardness, and had no cloudiness and high transparency. Further, it was found that the appearance interference fringes were good, and the adhesion, weather resistance and light resistance were high.
- the linked crystalline inorganic oxide fine particle group and the dispersion thereof according to the present invention can be used for optical material applications because the refractive index of the inorganic oxide fine particles such as titanium and zirconium constituting the fine particle group is high.
- it can be used for various applications such as hard cord materials, adhesive materials, sealing materials, highly reflective materials, and ultraviolet light absorbing materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
[課題]機械的強度(耐擦傷性、耐摩耗性)、外観適合性(曇り、干渉縞)、密着性、耐候性、耐光性、耐クラック性、光学特性(高屈折率)に優れた塗膜(ハードコート層膜およびプライマー層膜などの硬化膜)を形成するのに適した光学基材用塗布液の製造に有用な無機酸化物微粒子の分散液を提供すること。 [解決手段](1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子、(2)前記微粒子(1)を被覆する、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1とケイ素とを含む複合酸化物からなる被覆物質、および(3)該被覆物質と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記微粒子(1)同士を連結する結合物質から構成された連結型結晶性無機酸化物微粒子群を含む水および/または有機溶媒の分散液。
Description
本発明は、連結型結晶性無機酸化物微粒子群を含有する水および/または有機溶媒分散液、その製造方法、ならびに前記連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液に関する。
ケイ素および金属元素を含む酸化物微粒子からなる充填材としては、一般に、(1)二酸化珪素と少なくとも他の金属酸化物(酸化ジルコニウム等)とを凝集させ、その酸化物の結晶化温度未満の温度で熱処理することにより製造した、二酸化珪素と他の金属酸化物とが独立した非晶質層を形成してなる充填材(特許文献1、特許文献2)や、(2) 約100nm未満の平均粒子径を有する非重金属酸化物粒子(シリカ粒子等)と、重金属酸化物または約100nm未満の平均粒子径を有する重金属酸化物粒子(酸化ジルコニウム粒子等)とを含む実質的にアモルファス状のクラスタを含む充填材(特許文献3)などがある。
しかし、これらの充填材は、シリカゾルとジルコニウム塩水溶液とを混合して、これをスプレイドライヤーなどを用いて乾燥した後、焼成することにより得られるため、屈折率などの性状が異なるシリカ微粒子と酸化ジルコニウム成分(微粒子)とが混在するものであった。結果として、得られる充填材には、屈折率などにおいてムラが生じる場合があった。さらに、これらの充填材では、粒子の細孔容積や粒子の強度を調整することができず、このために透明性を向上させることが難しくなり、更には重合性樹脂との密着性が求められる用途においてはその密着性が不十分であるため、強度や硬度が低下による摩耗に対する耐性などが不十分となることがあった。
そこで、本出願人は、シリカゾル、酸性珪酸液およびジルコニウム塩水溶液を混合して、この混合液をスプレイドライヤーなど用いて乾燥した後、焼成する充填材の製造方法(特許文献4)を開発している。これにより得られた充填材は、酸性珪酸液に由来するシリカ成分と酸性ジルコニウム成分とがよく混じり合った酸化物であるため、その性状は、シリカゾルに由来するシリカ微粒子に近づいた性状(例えば、屈折率など)のものになっている。しかし、シリカ微粒子が混在することには変わりないので、上記のような問題点が完全に解消されるものではなかった。
さらに、本発明者らは、従来の充填材に付随する上記のような問題を解決するため、ジルコニウムシリケート化合物からなる結晶性の無機酸化物微粒子を含む充填材を開発している(特許文献5)。また、本発明者らは、シリカ系微粒子の表面をジルコニウム、ケイ素および酸素からなる複合酸化物で被覆してなる鎖状非晶質シリカ系微粒子群およびその製造方法を開発している(特許文献6)。
特許文献5に記載された充填材は、強度や硬度および摩耗に対する耐久性等において優れた特性を有しているが、その使用用途によっては、有機珪素化合物、有機チタニウム化合物、有機ジルコニウム化合物等の有機金属化合物によって前記無機酸化物微粒子の表面を処理(または改質)することが必要となる。しかし、前記無機酸化物微粒子は、結晶性の表面性状を備えているため、その表面を前記有機金属化合物でむらなく処理することは必ずしも容易ではなかった。
無機酸化物微粒子を塗膜などに配合する際には、得られる塗膜の強度を向上させることが求められており、さらに、特に眼鏡等の光学レンズのハードコート膜やプライマー膜などの用途においては様々な特性の向上が求められている。
本発明では、このような背景に鑑みて、機械的強度(耐擦傷性、耐摩耗性)、外観適合性(曇り、干渉縞)、密着性、耐候性、耐光性、耐クラック性、光学特性(高屈折率)に優れた塗膜(ハードコート層膜およびプライマー層膜などの硬化膜)を形成するのに適した光学基材用塗布液の製造に有用な無機酸化物微粒子およびその分散液(水および/または有機溶剤分散液)を提供することを目的としている。
さらに本発明は、これらの特性において優れた塗膜(ハードコート層膜およびプライマー層膜などの硬化膜)を形成するのに適した光学基材用塗布液、ならびにこれらの特性において優れた塗布膜(ハードコート層膜およびプライマー層膜などの硬化膜)および塗膜付基材(硬化膜付基材)を提供することを目的としている。
本発明者らは、鋭意研究した結果、無機酸化物微粒子として、特定の連結型結晶性無機酸化物微粒子群を用いることにより上記課題を解決できることを見い出し、本発明を完成させた。
本発明は、以下を要旨とするものである。
[1]
連結型結晶性無機酸化物微粒子群および分散媒を含む分散液であって、
該連結型結晶性無機酸化物微粒子群が
(1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子、
(2)前記微粒子(1)を被覆する、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1とケイ素とを含む複合酸化物からなる被覆物質、および
(3)該被覆物質と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記微粒子(1)同士を連結する結合物質
から構成されており、
該分散媒が水および/または有機溶媒である
ことを特徴とする連結型結晶性無機酸化物微粒子群を含む分散液。
連結型結晶性無機酸化物微粒子群および分散媒を含む分散液であって、
該連結型結晶性無機酸化物微粒子群が
(1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子、
(2)前記微粒子(1)を被覆する、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1とケイ素とを含む複合酸化物からなる被覆物質、および
(3)該被覆物質と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記微粒子(1)同士を連結する結合物質
から構成されており、
該分散媒が水および/または有機溶媒である
ことを特徴とする連結型結晶性無機酸化物微粒子群を含む分散液。
[2]
前記無機酸化物微粒子(1)が、5~100nmの平均粒子径を有することを特徴とする上記[1]に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記無機酸化物微粒子(1)が、5~100nmの平均粒子径を有することを特徴とする上記[1]に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[3]
前記無機酸化物微粒子(1)を構成する金属元素M2として、さらにスズ、タングステン、アンチモンおよびインジウムからなる群から選ばれる少なくとも1種を含むことを特徴とする上記[1]または[2]に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記無機酸化物微粒子(1)を構成する金属元素M2として、さらにスズ、タングステン、アンチモンおよびインジウムからなる群から選ばれる少なくとも1種を含むことを特徴とする上記[1]または[2]に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[4]
前記無機酸化物微粒子(1)が、前記金属元素とケイ素とを含む複合酸化物微粒子(その表面がケイ素酸化物で被覆されていないもの)であることを特徴とする上記[1]~[3]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記無機酸化物微粒子(1)が、前記金属元素とケイ素とを含む複合酸化物微粒子(その表面がケイ素酸化物で被覆されていないもの)であることを特徴とする上記[1]~[3]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[5]
前記無機酸化物微粒子(1)が、前記金属元素の酸化物微粒子もしくは複合酸化物微粒子の表面をケイ素酸化物で被覆したもの、または前記金属元素とケイ素とを含む複合酸化物微粒子の表面をケイ素酸化物で被覆したものであることを特徴とする上記[1]~[3]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記無機酸化物微粒子(1)が、前記金属元素の酸化物微粒子もしくは複合酸化物微粒子の表面をケイ素酸化物で被覆したもの、または前記金属元素とケイ素とを含む複合酸化物微粒子の表面をケイ素酸化物で被覆したものであることを特徴とする上記[1]~[3]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[6]
前記被覆物質(2)および前記結合物質(3)を構成する複合酸化物に含まれる前記金属元素成分をM1Oxで表し、さらにケイ素成分をSiO2で表したとき、モル比(M1Ox/SiO2)が5/95~98/2の範囲にあることを特徴とする上記[1]~[5]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記被覆物質(2)および前記結合物質(3)を構成する複合酸化物に含まれる前記金属元素成分をM1Oxで表し、さらにケイ素成分をSiO2で表したとき、モル比(M1Ox/SiO2)が5/95~98/2の範囲にあることを特徴とする上記[1]~[5]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[7]
前記結晶性無機酸化物微粒子(1)に含まれる金属元素M2およびケイ素の重量を、それぞれ、M2Oxの重量およびSiO2-(2)の重量に換算し、前記被覆物質(2)および前記結合物質(3)に含まれる金属元素M1およびケイ素の重量を、それぞれ、M1Oxの重量およびSiO2-(1)の重量に換算すると、重量比{(M1Ox+SiO2-(1))/(M2Ox+SiO2-(2))}が7/100~150/100の範囲にあることを特徴とする上記[1]~[6]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記結晶性無機酸化物微粒子(1)に含まれる金属元素M2およびケイ素の重量を、それぞれ、M2Oxの重量およびSiO2-(2)の重量に換算し、前記被覆物質(2)および前記結合物質(3)に含まれる金属元素M1およびケイ素の重量を、それぞれ、M1Oxの重量およびSiO2-(1)の重量に換算すると、重量比{(M1Ox+SiO2-(1))/(M2Ox+SiO2-(2))}が7/100~150/100の範囲にあることを特徴とする上記[1]~[6]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[8]
前記連結型結晶性無機酸化物微粒子群が、走査型電子顕微鏡(SEM)で観測した際に、帯状および/またはネットワーク状の形態として観測されることを特徴とする上記[1]~[7]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記連結型結晶性無機酸化物微粒子群が、走査型電子顕微鏡(SEM)で観測した際に、帯状および/またはネットワーク状の形態として観測されることを特徴とする上記[1]~[7]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[9]
前記分散媒が水であることを特徴とする上記[1]~[8]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記分散媒が水であることを特徴とする上記[1]~[8]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[10]
前記分散媒が有機溶媒または有機溶媒および水であることを特徴とする上記[1]~[8]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記分散媒が有機溶媒または有機溶媒および水であることを特徴とする上記[1]~[8]のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[11]
前記有機溶媒がアルコール、エーテルおよびケトンからなる群から選ばれる少なくとも1種の有機化合物であることを特徴とする上記[10]に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
前記有機溶媒がアルコール、エーテルおよびケトンからなる群から選ばれる少なくとも1種の有機化合物であることを特徴とする上記[10]に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
[12]
結晶性無機酸化物微粒子と、前記微粒子を被覆する被覆物質と、隣接する、前記被覆物質で被覆された前記微粒子同士とを連結する結合物質から構成された結晶性無機酸化物微粒子群を含む水分散液の製造方法であって、
(1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子(1)が1次元的または2次元的に連結した粒子を含有する水分散液を準備する工程、
(2)前記工程(1)で準備された水分散液に、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1の化合物を含むアルカリ性水溶液および珪酸を含む酸性水溶液を添加する工程、および
(3)前記工程(2)で得られた水分散液を水熱処理する工程
を含むことを特徴とする連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。
結晶性無機酸化物微粒子と、前記微粒子を被覆する被覆物質と、隣接する、前記被覆物質で被覆された前記微粒子同士とを連結する結合物質から構成された結晶性無機酸化物微粒子群を含む水分散液の製造方法であって、
(1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子(1)が1次元的または2次元的に連結した粒子を含有する水分散液を準備する工程、
(2)前記工程(1)で準備された水分散液に、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1の化合物を含むアルカリ性水溶液および珪酸を含む酸性水溶液を添加する工程、および
(3)前記工程(2)で得られた水分散液を水熱処理する工程
を含むことを特徴とする連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。
[13]
前記工程(1)において、前記結晶性無機酸化物微粒子(1)が連結せずに分散した水分散液を準備し、前記水分散液のpHを2~6に、および/または前記結晶性無機酸化物微粒子(1)と水との界面におけるゼータ電位(ただし、任意に水の量を調整し、水分散液中の前記結晶性無機酸化物微粒子(1)の含有量が0.15重量%の状態で測定した場合のゼータ電位である。)を-30~-70mVに調整し、前記水分散液を20~40℃の温度条件下に1~5時間放置して、前記水分散液中に含まれる前記結晶性無機酸化物微粒子(1)を1次元的または2次元的に連結させ熟成させることを特徴とする上記[12]に記載の連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。
前記工程(1)において、前記結晶性無機酸化物微粒子(1)が連結せずに分散した水分散液を準備し、前記水分散液のpHを2~6に、および/または前記結晶性無機酸化物微粒子(1)と水との界面におけるゼータ電位(ただし、任意に水の量を調整し、水分散液中の前記結晶性無機酸化物微粒子(1)の含有量が0.15重量%の状態で測定した場合のゼータ電位である。)を-30~-70mVに調整し、前記水分散液を20~40℃の温度条件下に1~5時間放置して、前記水分散液中に含まれる前記結晶性無機酸化物微粒子(1)を1次元的または2次元的に連結させ熟成させることを特徴とする上記[12]に記載の連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。
[14]
前記アルカリ性水溶液が、酸化物換算基準で0.5~20重量%の金属化合物の水溶液であることを特徴とする上記[12]または[13]に記載の連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。
前記アルカリ性水溶液が、酸化物換算基準で0.5~20重量%の金属化合物の水溶液であることを特徴とする上記[12]または[13]に記載の連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。
[15]
上記[9]に記載された分散液を、溶媒置換装置に供して該分散液中に含まれる水の一部または全てを有機溶媒で置換することを特徴とする連結型結晶性無機酸化物微粒子群を含む有機溶媒分散液の製造方法。
上記[9]に記載された分散液を、溶媒置換装置に供して該分散液中に含まれる水の一部または全てを有機溶媒で置換することを特徴とする連結型結晶性無機酸化物微粒子群を含む有機溶媒分散液の製造方法。
[16]
上記[10]に記載の連結型結晶性無機酸化物微粒子群を含む分散液からなる光学基材用塗布液。
上記[10]に記載の連結型結晶性無機酸化物微粒子群を含む分散液からなる光学基材用塗布液。
[17]
さらに有機ケイ素化合物からなるバインダー成分を含有し、ハードコート層膜形成用塗布液であることを特徴とする上記[16]に記載の光学基材用塗布液。
さらに有機ケイ素化合物からなるバインダー成分を含有し、ハードコート層膜形成用塗布液であることを特徴とする上記[16]に記載の光学基材用塗布液。
[18]
さらに熱硬化性樹脂または熱可塑性樹脂からなるバインダー成分を含有し、プライマー層膜形成用塗布液であることを特徴とする上記[16]に記載の光学基材用塗布液。
さらに熱硬化性樹脂または熱可塑性樹脂からなるバインダー成分を含有し、プライマー層膜形成用塗布液であることを特徴とする上記[16]に記載の光学基材用塗布液。
[19]
前記光学基材が、プラスチックレンズであることを特徴とする上記[16]~[18]のいずれかに記載の光学基材用塗布液。
前記光学基材が、プラスチックレンズであることを特徴とする上記[16]~[18]のいずれかに記載の光学基材用塗布液。
本発明に係る連結型結晶性無機酸化物微粒子群またはその分散液(水および/または有機溶剤分散液)を用いると、機械的強度(耐擦傷性、耐摩耗性)、外観適合性(曇り、干渉縞)、密着性、耐候性、耐光性、耐クラック性、光学特性(高屈折率)などにおいて優れた塗膜(ハードコート層膜およびプライマー層膜などの硬化膜)を形成するのに適した光学基材用塗布液の製造することができる。
また、本発明に係る光学基材用塗布液(ハードコート層膜形成用塗布液およびプライマー層膜形成用塗布液)を用いると、機械的強度(耐擦傷性、耐摩耗性)、外観適合性(曇り、干渉縞)、密着性、耐候性、耐光性、耐クラック性、光学特性(高屈折率)などにおいて優れた塗膜(ハードコート層膜およびプライマー層膜などの硬化膜)を形成することができる。
さらに、本発明に係る塗膜(ハードコート層膜およびプライマー層膜などの硬化膜)および塗膜付基材(硬化膜付基材)は、これらの特性において優れている。
以下、本発明に係る連結型結晶性無機酸化物微粒子群、該微粒子群を含む分散液(水および/または有機溶媒分散液)、その製造方法、および前記連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液について具体的に説明する。
<連結型結晶性無機酸化物微粒子群、および該微粒子群を含む分散液(水および/または有機溶媒分散液)>
[連結型結晶性無機酸化物微粒子群]
本発明に係る連結型結晶性無機酸化物微粒子群の水および/または有機溶媒分散液は、
(1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子、
(2)前記微粒子(1)を被覆する、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1とケイ素とを含む複合酸化物からなる被覆物質、および
(3)該被覆物質と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記微粒子(1)同士を連結する結合物質
から構成された連結型結晶性無機酸化物微粒子群を含んでいる。
[連結型結晶性無機酸化物微粒子群]
本発明に係る連結型結晶性無機酸化物微粒子群の水および/または有機溶媒分散液は、
(1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子、
(2)前記微粒子(1)を被覆する、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1とケイ素とを含む複合酸化物からなる被覆物質、および
(3)該被覆物質と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記微粒子(1)同士を連結する結合物質
から構成された連結型結晶性無機酸化物微粒子群を含んでいる。
結晶性無機酸化物微粒子(1):
前記結晶性無機酸化物微粒子(1)(本明細書中では「無機酸化物微粒子(1)」、「微粒子(1)」などともいう。)は、金属元素M2として、さらにスズ、タングステン、アンチモンおよびインジウムからなる群から選ばれる少なくとも1種を含んでいてもよい。また、前記微粒子(1)には、その製造方法にもよるが、製造過程のアルカリ金属元素(ナトリウム、カリウム等)が少量残存していてもよい。
前記結晶性無機酸化物微粒子(1)(本明細書中では「無機酸化物微粒子(1)」、「微粒子(1)」などともいう。)は、金属元素M2として、さらにスズ、タングステン、アンチモンおよびインジウムからなる群から選ばれる少なくとも1種を含んでいてもよい。また、前記微粒子(1)には、その製造方法にもよるが、製造過程のアルカリ金属元素(ナトリウム、カリウム等)が少量残存していてもよい。
前記微粒子(1)としては、前記金属元素とケイ素とを含む複合酸化物微粒子、前記金属元素の酸化物微粒子もしくは複合酸化物微粒子の表面をケイ素酸化物で被覆したもの、および前記金属元素とケイ素とを含む複合酸化物微粒子の表面をケイ素酸化物で被覆したものが挙げられる。これらの例としては、チタン、スズおよびケイ素の複合酸化物の微粒子、ジルコニウム酸化物の微粒子の表面をケイ素酸化物で被覆したものなどが挙げられる。
前記複合酸化物微粒子の表面をケイ素酸化物で被覆する場合は、ケイ素酸化物の量は、前記複合酸化物微粒子の重量(100重量%)に対して、0.5~30重量%の範囲であることが好ましい。
前記微粒子(1)は、結晶性の微粒子である。前記微粒子(1)が結晶性であるとは、X線回折パターンより求めた前記微粒子(1)の結晶子径が3nmを超えるものであることを意味する。結晶構造としては、金属元素の種類にもよるが、アナターゼ型、ルチル型、ブルッカイト型が挙げられる。前記微粒子(1)が結晶性であることにより、前記連結型結晶性無機酸化物微粒子群は高い屈折率を有する。
前記微粒子(1)の平均粒子径は、好ましくは5~100nmであり、さらに好ましくは5~50nmである。この平均粒子径の値は、走査型電子顕微鏡(SEM)で観察された像に基づいて測定された、該無機酸化物微粒子(1)の長軸方向の長さの平均値であり、このSEMによる観察の条件は、後述する実施例で採用された条件またはこれと同等の条件である。また、前記「長軸方向」とは、SEM像における1つの微粒子(1)の内部で最も長い軸の方位をいう。平均粒子径が上記範囲よりも過度に小さいと、1次粒子同士が凝集しやすい傾向をもつため前記微粒子(1)の分散液が増粘しやすくなり、平均粒子径が上記範囲よりも過度に大きいと、前記微粒子(1)の分散液の透明性が低下する傾向がある。
前記無機酸化物微粒子(1)の形状としては、球状、繊維状、針状、チューブ状、シート状等が挙げられる。
以上のような前記無機酸化物微粒子としては、従来公知の湿式調製法または乾式調製法で得られる無機酸化物微粒子を用いることができ、たとえば、チタニウムを含む無機酸化物微粒子であれば、特開2009-155496号公報に記載された無機酸化物微粒子、特開2010-168266号公報、特開2011-132484号公報、特開2011-136850号公報に記載された無機酸化物微粒子などが挙げられ、ジルコニウムを含む微粒子であれば、特開2012-056816号公報に記載されたコアシェル型無機酸化物微粒子、特開2011-037659号公報に記載された無機酸化物微粒子などを用いることができる。
被覆物質(2)および連結物質(3):
前記被覆物質(2)は、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1とケイ素とを含む複合酸化物からなり、前記微粒子(1)を被覆する。また、前記結合物質(3)は、前記被覆物質(2)と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記微粒子(1)同士を連結する。
前記被覆物質(2)は、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1とケイ素とを含む複合酸化物からなり、前記微粒子(1)を被覆する。また、前記結合物質(3)は、前記被覆物質(2)と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記微粒子(1)同士を連結する。
前記被覆物質(2)および前記結合物質(3)を構成する複合酸化物には、後述する製法上の観点からは、金属元素(M1Ox)およびケイ素(SiO2)が、モル比(M1Ox/SiO2)で好ましくは5/95~98/2、さらに好ましくは8/92~96/4となる割合で含まれる。
前記結晶性無機酸化物微粒子(1)に含まれる金属元素M2およびケイ素の重量を、それぞれ、その酸化物M2Oxの重量およびSiO2(以下の重量比の式では「SiO2-(2)」と表す。)の重量に換算し、前記被覆物質(2)および前記結合物質(3)に含まれる金属元素M1およびケイ素の重量を、それぞれ、その酸化物M1Oxの重量およびSiO2(以下の重量比の式では「SiO2-(1)」と表す。)の重量に換算すると、重量比{(M1Ox+SiO2-(1))/(M2Ox+SiO2-(2))}は、後述する製法上の観点からは、好ましくは7/100~150/100、さらに好ましくは10/100~120/100の範囲にある。
連結型結晶性無機酸化物微粒子群:
連結型結晶性無機酸化物微粒子群の平均粒子径は、好ましくは10~200nmであり、さらに好ましくは15~150nmである。この平均粒子径の値は、走査型電子顕微鏡(SEM)で観察された像に基づいて測定された、該連結型結晶性無機酸化物微粒子群の長軸方向の長さの平均値であり、このSEMによる観察の条件は、後述する実施例で採用された条件またはこれと同等の条件である。また、前記「長軸方向」とは、SEM像における1つの微粒子群の内部で最も長い軸の方位をいう。本発明に係る分散液をたとえば光学基材用塗布液(後述するハードコート層膜形成用塗布液、プライマー層膜形成用塗布液など)として用いる場合、前記平均粒子径が前記範囲よりも過度に小さいと、所望の機械的強度(耐擦傷性、耐摩耗性)が得られず、平均粒子径が前記範囲よりも過度に大きいと、塗膜の外観曇り不良が発生する。
連結型結晶性無機酸化物微粒子群の平均粒子径は、好ましくは10~200nmであり、さらに好ましくは15~150nmである。この平均粒子径の値は、走査型電子顕微鏡(SEM)で観察された像に基づいて測定された、該連結型結晶性無機酸化物微粒子群の長軸方向の長さの平均値であり、このSEMによる観察の条件は、後述する実施例で採用された条件またはこれと同等の条件である。また、前記「長軸方向」とは、SEM像における1つの微粒子群の内部で最も長い軸の方位をいう。本発明に係る分散液をたとえば光学基材用塗布液(後述するハードコート層膜形成用塗布液、プライマー層膜形成用塗布液など)として用いる場合、前記平均粒子径が前記範囲よりも過度に小さいと、所望の機械的強度(耐擦傷性、耐摩耗性)が得られず、平均粒子径が前記範囲よりも過度に大きいと、塗膜の外観曇り不良が発生する。
前記連結型結晶性無機酸化物微粒子群には、連結していない、被覆物質(2)で被覆された微粒子(1)が含まれていても良いが、その量は、たとえば50重量%以下、好ましくは10重量%以下である(微粒子群と、連結していない被覆物質(2)で被覆された微粒子(1)との合計量を100重量%とする。)。
本発明に係る分散液をたとえば光学基材用塗布液として用いる場合には、前記連結型結晶性無機酸化物微粒子群の屈折率は、好ましくは1.6~2.6であり、さらに好ましくは1.7~2.4である。屈折率が1.6よりも過度に小さいと、光学基材用塗布液を屈折率1.56以上の基材に塗膜した時に外観干渉縞不良を起こし、屈折率が2.6よりも過度に大きいと、バインダー成分に対する前記連結型結晶性無機酸化物微粒子群の割合を小さくしなければならないために塗膜に所望の機械的強度(耐擦傷性、耐摩耗性)が得られ難い。
本発明に係る分散液をたとえば光学基材用塗布液として用いる場合には、前記連結型結晶性無機酸化物微粒子群のシェラー(Scherrer)の式を用いて算出されたX線回折結晶子径(結晶子径には、長軸、短軸があるが、ここでいう結晶子径は長軸である。)の結晶子径は、好ましくは5~100nmであり、さらに好ましくは5~50nmである。結晶子径が5nmよりも過度に小さいと、結晶性が低下することで連結型結晶性無機酸化物微粒子群の屈折率が低下し、結晶子径が100nmよりも過度に大きいと、塗膜の透明性が低下する。
本発明に係る連結型結晶性無機酸化物微粒子群は、本発明に係る連結型結晶性無機酸化物微粒子群の分散液から分散媒を除去することにより製造(回収)することができる。
[連結型結晶性無機酸化物微粒子群の分散液]
本発明に係る連結型結晶性無機酸化物微粒子群の分散液は、分散媒として水および/または有機溶媒を含んでいる。
本発明に係る連結型結晶性無機酸化物微粒子群の分散液は、分散媒として水および/または有機溶媒を含んでいる。
前記有機溶媒としては、メタノール、エタノール、ブタノール、プロパノール、イソプロピルアルコ-ル等のアルコール類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル類、メチルエチルケトン、γ-ブチロラクトン等のケトン類から選ばれた有機化合物などが挙げられる。
これらの中でも、本発明に係る有機溶媒分散液を光学基材用塗布液の調製に使用する場合であれば、メタノール等のアルコール類やプロピレングリコールモノメチルエーテル等のエーテル類から選ばれた有機化合物の少なくとも1種が好ましい。その理由は、塗布膜の乾燥速度が比較的速く、成膜し易いためである。
本発明に係る分散液が有機溶媒分散液である場合には、分散媒として、少量(たとえば、全分散媒100重量%に対して0.5~5重量%)の水が含まれていてもよい。
本発明に係る分散液中の前記連結型結晶性無機酸化物微粒子群の含有量は、前記分散液の用途や分散媒の種類等によっても異なるが、前記分散液中に、たとえば5~50重量%である。本発明に係る有機溶媒分散液を後述する光学基材用塗布液(ハードコート層膜形成用塗布液、プライマー層膜形成用塗布液など)として用いる場合であれば、前記連結型結晶性無機酸化物微粒子群の含有量は、好ましくは10~40重量%である(分散液の全量を100重量%とする。)。
<連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法>
本発明に係る連結型結晶性無機酸化物微粒子群を含む水分散液は、好ましくは下記の工程(1)~(3)を有する製造方法により製造される。
(1)前記結晶性無機酸化物微粒子が1次元的または2次元的に連結した粒子を含有する水分散液を準備する工程、
(2)前記工程(1)で準備された水分散液に、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の特定の金属元素M1の化合物を含むアルカリ性水溶液および珪酸を含む酸性水溶液を添加する工程、および
(3)前記工程(2)で得られた水分散液を水熱処理する工程。
本発明に係る連結型結晶性無機酸化物微粒子群を含む水分散液は、好ましくは下記の工程(1)~(3)を有する製造方法により製造される。
(1)前記結晶性無機酸化物微粒子が1次元的または2次元的に連結した粒子を含有する水分散液を準備する工程、
(2)前記工程(1)で準備された水分散液に、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の特定の金属元素M1の化合物を含むアルカリ性水溶液および珪酸を含む酸性水溶液を添加する工程、および
(3)前記工程(2)で得られた水分散液を水熱処理する工程。
工程(1):
工程(1)では、前記結晶性無機酸化物微粒子(1)が1次元的または2次元的に連結した粒子を含有する水分散液を準備する。
工程(1)では、前記結晶性無機酸化物微粒子(1)が1次元的または2次元的に連結した粒子を含有する水分散液を準備する。
前記結晶性無機酸化物微粒子(1)の詳細は上述のとおりである。
前記結晶性無機酸化物微粒子(1)が連結した粒子を含有する水分散液を調製するためには、たとえば、まず、前記結晶性無機酸化物微粒子(1)が連結せずに分散した水分散液(そのpHは、たとえば8~11程度である。)を準備する。この水分散液を準備するには、前記結晶性無機酸化物微粒子(1)を水に分散させて前記水分散液を調製してもよく、あるいは、前記結晶性無機酸化物微粒子(1)を水分散液の形態で製造してもよい。
この水分散液のpHを2~6に調整することにより、近接する前記微粒子(1)同士は疑似的に連結する。このpH調整は、たとえば前記水分散液を陽イオン交換樹脂と接触させることにより行うことができる。
また、このときの前記結晶性無機酸化物微粒子(1)と水との界面におけるゼータ電位(ただし、前記水分散液中の前記微粒子(1)の濃度が0.15重量%であれば、該水分散液におけるゼータ電位であり、該濃度が0.15重量%でない場合には、水の量を増減させて該濃度が0.15重量%になるように調製された水分散液におけるゼータ電位である。)は、好ましくは-30~-70mV、さらに好ましくは-40~-70mVである。-30mVよりも過度に小さいと、結晶性無機酸化物微粒子が三次元的に凝集しやすい傾向にあり、-70mVよりも過度に大きいと結晶性無機酸化物微粒子の斥力が強くなりやすい傾向にある。
「粒子が疑似的に連結している」とは、静電的引力によって粒子同士が連結した状態であり、粒子同士が共有結合により連結した状態ではない。また、粒子が3次元的に連結した状態、いわゆる凝集状態ではなく、1次元的または2次元的に連結した状態である。
結晶性微粒子は、非晶質微粒子と比較して、表面OH基が少ないため、連結状構造をとらせる場合には、微粒子表面に表面処理剤により親水性基を付与することも考えられるが、結晶性微粒子の凝集を生じたりする可能性が高くなる恐れがあった。一方、本発明においては、前記結晶性無機酸化物微粒子(1)の水分散液のpHを調節することにより前記微粒子(1)を疑似的に連結するため、このような凝集を生じることがない。
工程(1)では、好ましくは、前記水分散液のpHを2~6に、および/または前記結晶性無機酸化物微粒子(1)と水との界面におけるゼータ電位を-30~-70mVに調整し、前記水分散液を20~40℃の温度条件下に0.5~5時間(さらに好ましくは1~2時間)放置する。こうすることによって、水分散液中の固形成分を熟成、すなわち、前記微粒子(1)同士の疑似的な連結をより強固にし、工程(2)で前記水分散液のpHを高めても疑似的な連結を維持することができる。この放置の際には、前記水分散液を撹拌することが好ましい。
工程(2):
工程(2)では、前記工程(1)で得られた水分散液に、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1の化合物を含むアルカリ性水溶液および珪酸を含む酸性水溶液を添加する。
工程(2)では、前記工程(1)で得られた水分散液に、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1の化合物を含むアルカリ性水溶液および珪酸を含む酸性水溶液を添加する。
工程(2)では、まず、前記工程(1)で得られた水分散液のpHを7~11に調整する工程(以下「工程(2a)」ともいう。)を実施する。このpH調整は、たとえば前記工程(1)で得られた水分散液にアルカリ金属の水酸化物(例:水酸化ナトリウム、水酸化カリウム)の水溶液を添加することにより行うことができる。
次いで、工程(2a)によりpHを7~11に調整した水分散液を、70~95℃に加熱したのち、この水分散液に特定の金属化合物のアルカリ性水溶液および珪酸を含む酸性水溶液を添加する。
前記の特定の金属化合物のアルカリ性水溶液とは、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素の化合物を含むアルカリ水溶液である。
その具体例としては、特開2008-115060号公報の[0022]~[0029]に詳細が記載された、酸化ジルコニウム水和物を含む水溶液に、アルカリ金属の水酸化物および過酸化水素を添加して攪拌することにより、該酸化ジルコニウム水和物を解膠して溶解させた水溶液などが挙げられる。
前記アルカリ性水溶液は、前記金属元素をその酸化物換算基準で好ましくは0.3~20重量%含有する。
前記の珪酸を含む酸性水溶液(以下「珪酸液」ともいう。)としては、アルカリ金属珪酸塩、有機塩基の珪酸塩等の珪酸塩水溶液を陽イオン交換樹脂で処理して脱アルカリしたものが挙げられる。また、これらの珪酸塩としては、珪酸ナトリウム(水ガラス)、珪酸カリウム等のアルカリ金属珪酸塩、第4級アンモニウムシリケート等の有機塩基の珪酸塩などが挙げられる。前記珪酸液としては、水ガラス(珪酸ナトリウム)を水で希釈した後、陽イオン交換樹脂で処理して脱アルカリしたものが好ましい。
この珪酸液の中でも、pHが2~4、好ましくは2~3の範囲にあり、珪素成分の含有量がSiO2換算基準で0.5~5重量%、好ましくは0.8~4.8重量%の範囲にあるものが好ましい。前記pHが2よりも過度に低いと、前記の処理に要する陽イオン交換樹脂の量と処理時間が必要以上に多くなって経済的ではなくなり、また前記pHが4よりも過度に高いと、脱アルカリの度合いが低いため、珪酸液の安定性が悪くなる。さらに、前記含有量が0.5重量%よりも過度に少ないと、経済的に前記無機酸化物微粒子を得ることが難しくなり、また前記含有量が5重量%よりも過度に高いと、珪酸液の安定性が悪くなる。
前記アルカリ性水溶液および前記珪酸液は、前記アルカリ性水溶液中に含まれる金属元素成分をM1Oxで表し、前記珪酸液に含まれる珪素をSiO2で表したとき、モル比(M1Ox/SiO2)が好ましくは5/95~98/2、さらに好ましくは8/92~96/4となる割合で、前記工程(2a)で得られた水分散液に、ゆっくりと添加される。前記モル比が5/95よりも過度に小さいと、結晶性無機酸化物微粒子群を得ることが難しくなり、また前記モル比が98/2よりも過度に大きいと、前記アルカリ性水溶液および前記珪酸液を前記工程(2a)で得られた水分散液に添加している間に、混合液が不安定となって前記結晶性無機酸化物微粒子(1)の凝集が起こってしまう。
また、前記工程(2a)で得られた水分散液へのこれらの添加量は、前記結晶性無機酸化物微粒子(1)に含まれる金属元素M2およびケイ素の重量を、それぞれの酸化物(M2Ox、SiO2(以下の重量比の式では「SiO2-(2)」と表す。))の重量に換算し、前記アルカリ性水溶液に含まれる金属元素M1および前記珪酸液に含まれるケイ素の重量を、それぞれの酸化物(M1Ox、SiO2(以下の重量比の式では「SiO2-(1)」と表す。))の重量に換算すると、重量比{(M1Ox+SiO2-(1))/(M2Ox+SiO2-(2))}は、好ましくは7/100~150/100、さらに好ましくは10/100~120/100となる量である。前記モル比が7/100よりも過度に小さいと、結晶性無機酸化物微粒子群を得ることが難しくなり、また前記モル比が150/100よりも過度に大きいと、前記アルカリ性水溶液および前記珪酸液を前記工程(2a)で得られた水分散液に添加している間に、混合液が不安定となって前記結晶性無機酸化物微粒子(1)の凝集が起こってしまう。
前記工程(2a)で得られた水分散液は、前記アルカリ性水溶液および前記珪酸液を添加する前に、70~95℃、好ましくは80~90℃の温度に加熱される。温度が前記範囲にあると、前記アルカリ性水溶液中の金属化合物(例:ジルコニウム化合物)と前記珪酸液中の珪酸との加水分解反応を進めることができる。一方、前記温度が過度に低いと、前記加水分解反応の進行が遅く、前記温度が過度に高いと、前記水分散液中の水の蒸発が進行してしまう。
一方、前記工程(2a)で得られた水分散液に添加される前記アルカリ性水溶液および前記珪酸液は、加熱されたものであっても良く、室温のものであっても良い。
また、前記アルカリ性水溶液および前記珪酸液の添加は、これらの添加量や濃度によっても異なるが、好ましくは、同時に4~24時間かけてゆっくりと行われる。
工程(3):
工程(3)では前記工程(2)で得られた水分散液を水熱処理する。
工程(3)では前記工程(2)で得られた水分散液を水熱処理する。
前記水熱処理は、好ましくは耐圧・耐熱容器、さらに好ましくはステンレススチール製のオートクレーブの中で行われる。
また、前記水熱処理は、好ましくは130~250℃、さらに好ましくは150~200℃の温度条件下で、好ましくは10~100時間、さらに好ましくは12~40時間かけて行われる。前記の条件下で水熱処理を行うと、前記工程(3)で前記水分散液に添加されるアルカリ水溶液中の特定の金属化合物(例:ジルコニウム化合物)と酸性水溶液中の珪酸との加水分解反応から得られる部分加水分解物および/または加水分解物の縮合反応を充分に進め、得られる縮合物によって前記結晶性無機酸化物微粒子を被覆しかつ連結することができる。
このように工程(1)~(3)を経ることにより、チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれた少なくとも1種の金属元素とケイ素とを含む結晶性無機酸化物微粒子(1)、前記微粒子(1)を被覆する、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれた少なくとも1種の金属元素とケイ素とを含む複合酸化物からなる被覆物質(2)、および前記被覆物質(2)と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記結晶性無機酸化物微粒子(1)同士を連結する結合物質(3)から構成された連結型結晶性無機酸化物微粒子群を含む水分散液が得られる。
また、本発明に係る分散液中に含まれる前記連結型結晶性無機酸化物微粒子群は、概ね図1の電子顕微鏡写真に示すような形状を有している。
<連結型結晶性無機酸化物微粒子群を含む有機溶媒分散液の製造方法>
本発明に係る連結型結晶性無機酸化物微粒子群を含む有機溶媒分散液は、本発明に係る連結型結晶性無機酸化物微粒子群を含む水分散液に含まれる分散媒である水を有機溶媒に置換することにより製造することができる。
本発明に係る連結型結晶性無機酸化物微粒子群を含む有機溶媒分散液は、本発明に係る連結型結晶性無機酸化物微粒子群を含む水分散液に含まれる分散媒である水を有機溶媒に置換することにより製造することができる。
前記水分散液に含まれる連結型結晶性無機酸化物微粒子群は親水性の微粒子群であるため、有機溶媒分散液を製造する際には、前記微粒子群を予め疎水性にしておくことが望ましい。そのためには、表面処理剤を用いて該微粒子群の表面を従来公知の方法で処理しておくことが好ましい。
前記表面処理剤としては、有機ケイ素化合物やアミン系化合物などが挙げられる。
ここで、前記有機ケイ素化合物としては、加水分解性基を有する従来公知のシランカップリング剤を用いることができ、具体例としては、
トリメチルエトキシシラン、ジメチルフェニルエトキシシラン、ジメチルビニルエトキシシラン等の一般式R3SiX(式中、Rは、アルキル基、フェニル基、ビニル基、メタクリロキシ基、メルカプト基、アミノ基またはエポキシ基を有する有機基を表し、Xは、アルコキシ基、クロロ基等の加水分解性基を表す。)で表される単官能性シラン;
ジメチルジエトキシシラン、ジフェニルジエトキシシラン等の一般式R2SiX2(式中、RおよびXは上記の通りである。)で表される二官能性シラン;
メチルトリエトキシシラン、フェニルトリエトキシシラン等の一般式RSiX3(式中、RおよびXは上記の通りである。)で表される三官能性シラン;
テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランなどの一般式SiX4(式中、Xは上記の通りである。)で表される四官能性シラン
などが挙げられる。
トリメチルエトキシシラン、ジメチルフェニルエトキシシラン、ジメチルビニルエトキシシラン等の一般式R3SiX(式中、Rは、アルキル基、フェニル基、ビニル基、メタクリロキシ基、メルカプト基、アミノ基またはエポキシ基を有する有機基を表し、Xは、アルコキシ基、クロロ基等の加水分解性基を表す。)で表される単官能性シラン;
ジメチルジエトキシシラン、ジフェニルジエトキシシラン等の一般式R2SiX2(式中、RおよびXは上記の通りである。)で表される二官能性シラン;
メチルトリエトキシシラン、フェニルトリエトキシシラン等の一般式RSiX3(式中、RおよびXは上記の通りである。)で表される三官能性シラン;
テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランなどの一般式SiX4(式中、Xは上記の通りである。)で表される四官能性シラン
などが挙げられる。
また、前記アミン系化合物としては、アンモニア;エチルアミン、トリエチルアミン、イソプロピルアミン、n-プロピルアミン等のアルキルアミン、ベンジルアミン等のアラルキルアミン、ピペリジン等の脂環式アミン、モノエタノールアミン、トリエタノールアミン等のアルカノールアミン、テトラメチルアンモニウム塩、テトラメチルアンモニウムハイドロオキサイド等の第4級アンモニウム塩または第4級アンモニウムハイドロオキサイドなどが挙げられる。
これらは、1種単独で用いてもよく2種以上を併用してもよい。
前記連結型結晶性無機酸化物微粒子群の表面処理は、たとえば表面処理剤として前記有機ケイ素化合物を用いる場合には、メタノールなどの有機溶媒に溶解した有機ケイ素化合物またはその部分加水分解物を前記水分散ゾル中に添加したのち、約40~60℃の温度に加熱して約1~20時間、撹拌して、前記有機ケイ素化合物またはその部分加水分解物を加水分解させることによって行うことができる。
なお、この表面処理の操作が終了した段階では、前記有機ケイ素化合物の有する加水分解性基のすべてが、前記連結型結晶性無機酸化物微粒子群の表面に存在するOH基と反応した状態となっていることが好ましいが、その一部が未反応のまま残存した状態であってもよい。
なお、この表面処理の操作が終了した段階では、前記有機ケイ素化合物の有する加水分解性基のすべてが、前記連結型結晶性無機酸化物微粒子群の表面に存在するOH基と反応した状態となっていることが好ましいが、その一部が未反応のまま残存した状態であってもよい。
次いで、表面処理された連結型結晶性無機酸化物微粒子群を含む水分散液に含まれる水を有機溶媒に置換する。有機溶媒の詳細は前述のとおりである。
この置換操作では、溶媒置換装置として、従来公知の溶媒置換装置、たとえば限外濾過装置やロータリーエバポレーターなどを用いることができる。前記溶媒置換装置の操作条件は、使用する溶媒置換装置や前記有機溶媒の種類などによっても異なるが、たとえば限外濾過装置(旭化成(株)製SIP-1013)を用いて行う場合には、限界濾過膜を備えた該装置内に、前記水分散ゾル(固形分濃度1~30重量%)と該ゾル中に含まれる水と置換すべき有機溶媒(たとえば、メタノール)を送入し、一般的な条件下(たとえば、ポンプ吐出圧10~20MPa、溶媒置換後の水分含有量0.1~5重量%など)で溶媒置換することが好ましい。
前記水分散液に含まれる連結型結晶性無機酸化物微粒子群の濃度が、所望する有機溶媒分散液の固形分濃度より遙かに低い場合には、該水分散液を限外濾過装置などを用いて濃縮して、該水分散液の固形分濃度を高めておいてから、前記の置換操作を行うことが好ましい。
<光学基材用塗布液、該塗布液を用いて形成した塗布膜および塗布膜付基材>
[光学基材用塗布液]
本発明に係る連結型結晶性無機酸化物微粒子群の有機溶媒分散液は、たとえば、光学基材用塗布液、具体的には下記の2種の塗布液として使用することができる。
[光学基材用塗布液]
本発明に係る連結型結晶性無機酸化物微粒子群の有機溶媒分散液は、たとえば、光学基材用塗布液、具体的には下記の2種の塗布液として使用することができる。
a.ハードコート層膜形成用塗布液
b.プライマー層膜形成用塗布液
a.ハードコート層膜形成用塗布液:
このハードコート層膜形成用塗布液は、本発明に係る連結型結晶性無機酸化物微粒子群の有機溶媒分散液からなり、さらに、バインダー成分としての有機ケイ素化合物(A)(すなわち、ビヒクル成分)を含有する。
b.プライマー層膜形成用塗布液
a.ハードコート層膜形成用塗布液:
このハードコート層膜形成用塗布液は、本発明に係る連結型結晶性無機酸化物微粒子群の有機溶媒分散液からなり、さらに、バインダー成分としての有機ケイ素化合物(A)(すなわち、ビヒクル成分)を含有する。
前記有機ケイ素化合物(A)としては、下記一般式(I)で表される有機ケイ素化合物および/またはその加水分解物が挙げられる。
R1
aR2
bSi(OR3)4-(a+b) (I)
(式中、R1は炭素数1~6のアルキル基、ビニル基を含有する炭素数8以下の有機基、エポキシ基を含有する炭素数8以下の有機基、メタクリロキシ基を含有する炭素数8以下の有機基、メルカプト基を含有する炭素数1~5の有機基またはアミノ基を含有する炭素数1~5の有機基であり、R2は炭素数3以下のアルキル基、アルキレン基、シクロアルキル基もしくはハロゲン化アルキル基またはアリル基であり、R3は炭素数3以下のアルキル基、アルキレン基またはシクロアルキル基である。また、aは0または1の整数、bは0、1または2の整数である。)
前記一般式(I)で表される有機ケイ素化合物としては、アルコキシシラン化合物がその代表例として挙げられ、具体的には、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、トリメチルクロロシラン、α-グルシドキシメチルトリメトキシシラン、α-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)-エチルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジメトキキシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジエトキキシランなどがある。これらの中でも、テトラエトキシシラン、メチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシランなどを使用することが好ましい。これらの有機ケイ素化合物は、1種類単独で用いてもよく、2種類以上を併用してもよい。
(式中、R1は炭素数1~6のアルキル基、ビニル基を含有する炭素数8以下の有機基、エポキシ基を含有する炭素数8以下の有機基、メタクリロキシ基を含有する炭素数8以下の有機基、メルカプト基を含有する炭素数1~5の有機基またはアミノ基を含有する炭素数1~5の有機基であり、R2は炭素数3以下のアルキル基、アルキレン基、シクロアルキル基もしくはハロゲン化アルキル基またはアリル基であり、R3は炭素数3以下のアルキル基、アルキレン基またはシクロアルキル基である。また、aは0または1の整数、bは0、1または2の整数である。)
前記一般式(I)で表される有機ケイ素化合物としては、アルコキシシラン化合物がその代表例として挙げられ、具体的には、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、トリメチルクロロシラン、α-グルシドキシメチルトリメトキシシラン、α-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)-エチルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジメトキキシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジエトキキシランなどがある。これらの中でも、テトラエトキシシラン、メチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシランなどを使用することが好ましい。これらの有機ケイ素化合物は、1種類単独で用いてもよく、2種類以上を併用してもよい。
前記ハードコート層膜形成用塗布液を調製する際に、前記有機ケイ素化合物(A)は、好ましくは、無溶媒下またはアルコール等の極性有機溶媒中で、酸および水の存在下で部分加水分解または加水分解した後に、上述した連結型結晶性無機酸化物微粒子群の有機溶媒分散液(前記有機ケイ素化合物(A)を含まない前記有機溶媒分散液)と混合される。前記有機ケイ素化合物(A)は、前記有機溶媒分散液と混合した後に、部分加水分解または加水分解されてもよい。
前記ハードコート層膜形成用塗布液は、ハードコート層膜の染色性や、プラスチックレンズ基材等への密着性を向上させ、更にはクラックの発生を防止するために、上記の成分に加えて、未架橋エポキシ化合物を含有していてもよい。この未架橋エポキシ化合物としては、たとえば1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル等が挙げられる。これらの中でも1,6-ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテルなどを使用することが好ましい。また、これらの未架橋エポキシ化合物は、1種類単独で用いてもよく、2種類以上を併用してもよい。
さらに、前記ハードコート層膜形成用塗布液は、ハードコート層膜形成用塗布液に通常含まれることのある上記以外の成分、たとえば界面活性剤、レベリング剤または紫外線吸収剤などを含んでいてもよい。
前記ハードコート層膜形成用塗布液中の前記有機ケイ素化合物(A)の量は、好ましくは、前記連結型結晶性無機酸化物微粒子群100体積部に対し、200~1000体積部である。
b.プライマー層膜形成用塗布液:
このプライマー層膜形成用塗布液は、本発明に係る連結型結晶性無機酸化物微粒子群の有機溶媒分散液からなり、さらに、バインダー成分としての熱硬化性樹脂または熱可塑性樹脂(B)(すなわち、樹脂成分)を含有する。
このプライマー層膜形成用塗布液は、本発明に係る連結型結晶性無機酸化物微粒子群の有機溶媒分散液からなり、さらに、バインダー成分としての熱硬化性樹脂または熱可塑性樹脂(B)(すなわち、樹脂成分)を含有する。
前記熱硬化性樹脂または熱可塑性樹脂(B)としては、熱硬化性樹脂であれば、ウレタン系樹脂、エポキシ系樹脂およびメラミン系樹脂などが挙げられ、これらの中でも、ウレタン系樹脂およびエポキシ系樹脂が好ましい。
前記ウレタン系樹脂としては、たとえばヘキサメチレンジイソシアネート等のブロック型ポリイシシアネートとポリエステルポリオール、ポリエーテルポリオール等の活性水素含有化合物との反応物が挙げられ、また前記エポキシ樹脂としては、たとえばポリアルキレンエーテル変性エポキシ樹脂や分子鎖に柔軟性骨格(ソフトセグメント)を導入したエポキシ基含有化合物が挙げられ、前記メラミン系樹脂としては、たとえばエーテル化メチロールメラミンとポリエステルポリオール、ポリエーテルポリオールとの硬化物が挙げられる。これらの中でも、ブロック型イシシアネートとポリオールとの硬化物であるウレタン系樹脂が好ましい。また、これらの熱硬化性樹脂は、1種類単独で用いてもよく、2種類以上を併用してもよい。
また、前記熱硬化性樹脂または熱可塑性樹脂(B)としては、熱可塑性樹脂であれば、としては、たとえばアクリル系樹脂、ウレタン系樹脂およびエステル系樹脂が挙げられ、これらの中でも、ウレタン系樹脂およびエステル系樹脂が好ましい。
前記アクリル系樹脂としては、たとえば(メタ)アクリル酸アルキスエステルモノマーから得られる水系エマルジョンや前記モノマーとスチレン、アクリロニトリル等とを共重合させたポリマーエマルジョンが挙げられ、また前記ウレタン系樹脂としては、たとえばポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオールなどのポリオール化合物とポリイシシアネートとを反応させてなる水系エマルジョンが挙げられ、前記エステル系樹脂としては、たとえばハードセグメントにポリエステル、ソフトセグメントにポリエーテルまたはポリエステルを用いたマルチブロック共重合体の水分散型エラストマーが挙げられる。これらの中でも、ポリエステルポリオールまたはポリエーテルポリオールとポリイシシアネートから得られる水分散型ウレタン系樹脂を使用することが好ましい。また、これらの熱可塑性樹脂は、1種類単独で用いてもよく、2種類以上を併用してもよい。
さらに、前記プライマー層膜形成用塗布液は、プライマー層膜形成用塗布液に通常含まれることのある上記以外の成分、たとえば中和剤、界面活性剤または紫外線吸収剤などを含んでいてもよい。
前記プライマー層膜形成用塗布液中の前記熱硬化性樹脂または熱可塑性樹脂(B)の量は、好ましくは、前記連結型結晶性無機酸化物微粒子群100体積部に対し、200~1000体積部である。
[光学基材用塗膜(硬化膜)および塗膜付基材]
前記光学基材用塗布液を塗布するための光学基材としては、各種のプラスチック基材が挙げられ、これを光学レンズとして使用する場合には、たとえばポリスチレン樹脂、アリル樹脂(特に、芳香族系アリル樹脂)、ポリカーボネート樹脂、ポリチオウレタン樹脂、ポリチオエポキシ樹脂などで構成されたプラスチックレンズ基材が挙げられる。また、光学レンズ以外に用いられるプラスチック基材としては、たとえばPMMA樹脂、ABS樹脂、エポキシ樹脂、ポリサルフォン樹脂などで構成されたプラスチック基材が挙げられる。
前記光学基材用塗布液を塗布するための光学基材としては、各種のプラスチック基材が挙げられ、これを光学レンズとして使用する場合には、たとえばポリスチレン樹脂、アリル樹脂(特に、芳香族系アリル樹脂)、ポリカーボネート樹脂、ポリチオウレタン樹脂、ポリチオエポキシ樹脂などで構成されたプラスチックレンズ基材が挙げられる。また、光学レンズ以外に用いられるプラスチック基材としては、たとえばPMMA樹脂、ABS樹脂、エポキシ樹脂、ポリサルフォン樹脂などで構成されたプラスチック基材が挙げられる。
また、昨今では、1.7以上、さらに詳しくは1.71~1.81の比較的高い屈折率を有する光学基材(プラスチックレンズ基材など)が開発されているが、本発明に係る光学基材用塗布液は、これらの高屈折光学基材にも適用することができる。一方、本発明に係る光学基材用塗布液は、1.50~1.70、さらに詳しくは1.52~1.67の比較的低い屈折率を有する光学基材にも適用することができる。
前記プライマー層膜形成用塗布液は、従来公知の方法で前記光学基材上に直接、塗布される。一方、前記ハードコート層膜形成用塗布液は、従来公知の方法で前記光学基材上に直接、塗布されるか、あるいは前記プライマー層膜形成用塗布液から形成された塗膜(プライマー層膜)上に塗布される。
このようにして光学基材上に形成された塗膜は、従来公知の方法で硬化させることにより、所望の光学基材用塗膜(硬化膜)、すなわちハードコート層膜やプライマー層膜が形成される。
以下、本発明を実施例に基づき具体的に説明する。しかし、本発明は、これらの実施例に記載された範囲に限定されるものではない。
[測定方法および評価試験方法]
本発明の実施例その他で使用された測定方法および評価試験方法は以下の通りである。
本発明の実施例その他で使用された測定方法および評価試験方法は以下の通りである。
(無機酸化物微粒子等の測定)
(1)平均粒子径の測定方法
無機酸化物微粒子および連結型無機酸化物微粒子(以下、これらを区別せずに「無機酸化物微粒子等」ともいう。)の平均粒子径は、次のように測定した。まず、無機酸化物微粒子等を含む分散液(または混合液)を、水分散ゾルの場合は蒸留水で、メタノール分散ゾルの場合にはメタノールにて約1,000倍希釈してコロジオン膜付き金属グリッド(応研商事(株))に塗布し250Wランプにて30分間照射して溶媒を飛散し測定用サンプルを調製した。この測定用サンプルを用いて、高分解能走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製S-5500)により、加速電圧30kVの条件下、倍率25万倍でSEM写真を撮影し、この写真に撮影された任意の100個以上の無機酸化物微粒子等の粒子径についてそれぞれ目視で観察し、それらの平均をとることにより平均粒子径を求めた。
(1)平均粒子径の測定方法
無機酸化物微粒子および連結型無機酸化物微粒子(以下、これらを区別せずに「無機酸化物微粒子等」ともいう。)の平均粒子径は、次のように測定した。まず、無機酸化物微粒子等を含む分散液(または混合液)を、水分散ゾルの場合は蒸留水で、メタノール分散ゾルの場合にはメタノールにて約1,000倍希釈してコロジオン膜付き金属グリッド(応研商事(株))に塗布し250Wランプにて30分間照射して溶媒を飛散し測定用サンプルを調製した。この測定用サンプルを用いて、高分解能走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製S-5500)により、加速電圧30kVの条件下、倍率25万倍でSEM写真を撮影し、この写真に撮影された任意の100個以上の無機酸化物微粒子等の粒子径についてそれぞれ目視で観察し、それらの平均をとることにより平均粒子径を求めた。
(2)粒子の連結個数の測定方法
連結型無機酸化物微粒子群中の無機酸化物微粒子の連結個数は、無機酸化物微粒子等を含む分散液(または混合液)を乾燥させて無機酸化物微粒子等を準備し、高分解能走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製S-5500)を用いて、加速電圧30kVの条件下、倍率25万倍でSEM写真を撮影し、この写真に撮影された任意の100個以上の連結型無機酸化物微粒子群について、無機酸化物微粒子の連結個数をそれぞれ目視で観察し、それらの平均的な値を求めた。
連結型無機酸化物微粒子群中の無機酸化物微粒子の連結個数は、無機酸化物微粒子等を含む分散液(または混合液)を乾燥させて無機酸化物微粒子等を準備し、高分解能走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製S-5500)を用いて、加速電圧30kVの条件下、倍率25万倍でSEM写真を撮影し、この写真に撮影された任意の100個以上の連結型無機酸化物微粒子群について、無機酸化物微粒子の連結個数をそれぞれ目視で観察し、それらの平均的な値を求めた。
(3)比表面積の測定方法
無機酸化物微粒子等を含む分散液を乾燥させて得られた粉体を磁性ルツボ(B-2型)に約30ml採取し、300℃の温度で2時間乾燥後、デシケータに入れて室温まで冷却し、測定用サンプルを得た。次に、このサンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、粒子の比表面積(m2/g)をBET法にて測定した。
無機酸化物微粒子等を含む分散液を乾燥させて得られた粉体を磁性ルツボ(B-2型)に約30ml採取し、300℃の温度で2時間乾燥後、デシケータに入れて室温まで冷却し、測定用サンプルを得た。次に、このサンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、粒子の比表面積(m2/g)をBET法にて測定した。
(4)無機酸化物微粒子等の組成分析方法
<チタニウム、ケイ素、スズの含有量>
固形分濃度10重量%の無機酸化物微粒子等を含む水分散液(または混合液)3gを容量30mlの蓋付きジルコニアボールに採取し、乾燥(200℃、20分)させ、焼成(700℃、5分)した後、Na2O2 2gおよびNaOH 1gを加えて15分間溶融した。さらに、HCl 50mlと水200mlを加えて溶解したのち、純水で500mlになるよう希釈して試料とした。得られた試料について、ICP装置(島津製作所(株)製、ICPS-8100、解析ソフトウェアICPS-8000)を用いて、チタニウム、スズ、ケイ素の含有量を酸化物換算基準(TiO2、SnO2、SiO2)で測定した。
<チタニウム、ケイ素、スズの含有量>
固形分濃度10重量%の無機酸化物微粒子等を含む水分散液(または混合液)3gを容量30mlの蓋付きジルコニアボールに採取し、乾燥(200℃、20分)させ、焼成(700℃、5分)した後、Na2O2 2gおよびNaOH 1gを加えて15分間溶融した。さらに、HCl 50mlと水200mlを加えて溶解したのち、純水で500mlになるよう希釈して試料とした。得られた試料について、ICP装置(島津製作所(株)製、ICPS-8100、解析ソフトウェアICPS-8000)を用いて、チタニウム、スズ、ケイ素の含有量を酸化物換算基準(TiO2、SnO2、SiO2)で測定した。
<アルミニウム、ジルコニウム、ナトリウム、カリウムの含有量>
固形分濃度10重量%の無機酸化物微粒子等を含む水分散液(または混合液)9gを容量100mlの白金皿に採取し、サンドバス上で200℃で20分間加熱して乾燥させた後、バーナーで700℃、5分間加熱して有機物を除去後、HF 10mlおよびH2SO4 5mlを加えて白煙が出るまで加熱した。さらに、これを100mlとなるように純水で希釈した後、アルミニウムジルコニウムはICP装置((株)島津製作所製、ICPS-8100、解析ソフトウェアICPS-8000)を用いて酸化物換算基準(Al2O3,ZrO2)で測定し、ナトリウムおよびカリウムは原子吸光装置((株)日立製作所製、Z-5300、ソフトウェアZ-2000)を用いて酸化物換算基準(Na2O、K2O)で測定した。
固形分濃度10重量%の無機酸化物微粒子等を含む水分散液(または混合液)9gを容量100mlの白金皿に採取し、サンドバス上で200℃で20分間加熱して乾燥させた後、バーナーで700℃、5分間加熱して有機物を除去後、HF 10mlおよびH2SO4 5mlを加えて白煙が出るまで加熱した。さらに、これを100mlとなるように純水で希釈した後、アルミニウムジルコニウムはICP装置((株)島津製作所製、ICPS-8100、解析ソフトウェアICPS-8000)を用いて酸化物換算基準(Al2O3,ZrO2)で測定し、ナトリウムおよびカリウムは原子吸光装置((株)日立製作所製、Z-5300、ソフトウェアZ-2000)を用いて酸化物換算基準(Na2O、K2O)で測定した。
(5)結晶性の測定方法
無機酸化物微粒子等の分散液(または混合液)を磁性ルツボ(B-2型)に約30ml採取し、110℃で12時間加熱して乾燥させた後、デシケータに入れて室温まで冷却した。次に、冷却物を乳鉢で15分間粉砕した後、X線回折装置(理学電気(株)製、RINT1400)を用いて結晶形態を測定した。なお、本発明でいう結晶形態は、この測定結果から判定された形態(たとえば、ルチル型など)を示す。
無機酸化物微粒子等の分散液(または混合液)を磁性ルツボ(B-2型)に約30ml採取し、110℃で12時間加熱して乾燥させた後、デシケータに入れて室温まで冷却した。次に、冷却物を乳鉢で15分間粉砕した後、X線回折装置(理学電気(株)製、RINT1400)を用いて結晶形態を測定した。なお、本発明でいう結晶形態は、この測定結果から判定された形態(たとえば、ルチル型など)を示す。
(6)ゼータ電位の測定方法
無機酸化物微粒子等の分散液に蒸留水を添加して、固形分濃度0.15%に希釈した測定用サンプルを調製した。この測定用サンプルを用いて、ゼータ電位測定装置(Malvern Instruments社製Zeta potential analyzer,Zetasizer Nano ZおよびMulti purpose Titrator,MPT-2)を用いて、25℃においてpHとゼータ電位を測定した。
無機酸化物微粒子等の分散液に蒸留水を添加して、固形分濃度0.15%に希釈した測定用サンプルを調製した。この測定用サンプルを用いて、ゼータ電位測定装置(Malvern Instruments社製Zeta potential analyzer,Zetasizer Nano ZおよびMulti purpose Titrator,MPT-2)を用いて、25℃においてpHとゼータ電位を測定した。
(硬化塗膜の測定)
(7)膜硬度(Bayer値)の測定方法
磨耗試験機BTM(米コルツ社製)およびヘーズ値測定装置(NIPPON DENSHOKU製NDH2000)を使用し、実施例または比較例の分散液を用いて作製したプラスチックレンズ基板(以下「被試験レンズ」ともいう。)と基準レンズとのヘーズ値の変化に基づいてBayer値を算出した。基準レンズとしては、市販のプラスチックレンズ基材CR-39基材(ジエチレングリコールビスアリルカーボネート、PPG社製モノマー使用、基材の屈折率1.60)を使用した。
(7)膜硬度(Bayer値)の測定方法
磨耗試験機BTM(米コルツ社製)およびヘーズ値測定装置(NIPPON DENSHOKU製NDH2000)を使用し、実施例または比較例の分散液を用いて作製したプラスチックレンズ基板(以下「被試験レンズ」ともいう。)と基準レンズとのヘーズ値の変化に基づいてBayer値を算出した。基準レンズとしては、市販のプラスチックレンズ基材CR-39基材(ジエチレングリコールビスアリルカーボネート、PPG社製モノマー使用、基材の屈折率1.60)を使用した。
具体的には、まずそれぞれのレンズのヘーズ値を測定し、基準レンズの初期ヘーズ値をD(std0)、被試験レンズの初期ヘーズ値をD(test0)とした。それぞれのレンズを上記磨耗試験機のパンに設置し、その上に研磨材(専用砂)500gを充填し、パンを600回左右に振動させた。振動後のレンズのヘーズ値を測定し、基準レンズのヘーズ値をD(stdf)、被試験レンズのヘーズ値をD(testf)とした。Bayer試験値(R)を以下の数式から算出した。
R=[D(stdf)-D(std0)]/[D(testf)-D(test0)]
(8)塗膜の外観(干渉縞)の評価方法
内壁が黒色である箱の中に蛍光灯「商品名:メロウ5N」(東芝ライテック(株)製、三波長型昼白色蛍光灯)を取り付け、蛍光灯の光を実施例または比較例の分散液を用いて作製されたプラスチックレンズ基板のハードコート層膜または反射防止層膜表面で反射させ、光の干渉による虹模様(干渉縞)の発生を目視にて確認し、以下の基準で評価した。
(8)塗膜の外観(干渉縞)の評価方法
内壁が黒色である箱の中に蛍光灯「商品名:メロウ5N」(東芝ライテック(株)製、三波長型昼白色蛍光灯)を取り付け、蛍光灯の光を実施例または比較例の分散液を用いて作製されたプラスチックレンズ基板のハードコート層膜または反射防止層膜表面で反射させ、光の干渉による虹模様(干渉縞)の発生を目視にて確認し、以下の基準で評価した。
S:干渉縞が殆ど無い
A:干渉縞が目立たない
B:干渉縞が認められるが、許容範囲にある
C:干渉縞が目立つ
D:ぎらつきのある干渉縞がある。
A:干渉縞が目立たない
B:干渉縞が認められるが、許容範囲にある
C:干渉縞が目立つ
D:ぎらつきのある干渉縞がある。
(9)塗膜の外観(曇り)の評価方法
内壁が黒色である箱の中に蛍光灯「商品名:メロウ5N」(東芝ライテック(株)製、三波長型昼白色蛍光灯)を取り付け、プラスチックレンズ基板を蛍光灯の直下に、ハードコート層膜側または反射防止層膜側を蛍光灯に向けて置き、これらの透明度(曇りの程度)をヘーズメーター(NIPPON DENSHOKU製NDH2000)にて確認し、以下の基準で評価した。
内壁が黒色である箱の中に蛍光灯「商品名:メロウ5N」(東芝ライテック(株)製、三波長型昼白色蛍光灯)を取り付け、プラスチックレンズ基板を蛍光灯の直下に、ハードコート層膜側または反射防止層膜側を蛍光灯に向けて置き、これらの透明度(曇りの程度)をヘーズメーター(NIPPON DENSHOKU製NDH2000)にて確認し、以下の基準で評価した。
A:ヘーズ値が0.3%未満
B:ヘーズ値が0.3%以上~1.0%未満
C:ヘーズ値が1.0%以上~5.0%未満
D:ヘーズ値が5.0%以上
(10)塗膜の耐擦傷性の評価方法
実施例または比較例で作製したプラスチックレンズ基板のハードコート層膜側または反射防止層膜側の表面を、ボンスタースチールウール♯0000(日本スチールウール(株)製)に1kgの荷重をかけ、幅1cm、3cmの距離を50往復/100秒の条件で擦った後、スチールウール摺動面積に対する傷自体の面積を目視にて判定し、以下の基準で評価した。
B:ヘーズ値が0.3%以上~1.0%未満
C:ヘーズ値が1.0%以上~5.0%未満
D:ヘーズ値が5.0%以上
(10)塗膜の耐擦傷性の評価方法
実施例または比較例で作製したプラスチックレンズ基板のハードコート層膜側または反射防止層膜側の表面を、ボンスタースチールウール♯0000(日本スチールウール(株)製)に1kgの荷重をかけ、幅1cm、3cmの距離を50往復/100秒の条件で擦った後、スチールウール摺動面積に対する傷自体の面積を目視にて判定し、以下の基準で評価した。
A:2%未満
B:2%以上~30%未満
C:30%以上~60%未満
D:60%以上
(11)塗膜の密着性の評価方法
ハードコート層膜を有するプラスチックレンズ基板のハードコート層膜側または反射防止層膜側の表面に、ナイフにより1mm間隔で切れ目を入れ、1平方mmのマス目を100個形成し、セロハン製粘着テープを、これらのマス目に強く押し付けた後、プラスチックレンズ基板の面内方向に対して90度方向へ急激に引っ張り、この操作を合計5回行い、剥離していないマス目の数を数え、以下の基準で評価した。
B:2%以上~30%未満
C:30%以上~60%未満
D:60%以上
(11)塗膜の密着性の評価方法
ハードコート層膜を有するプラスチックレンズ基板のハードコート層膜側または反射防止層膜側の表面に、ナイフにより1mm間隔で切れ目を入れ、1平方mmのマス目を100個形成し、セロハン製粘着テープを、これらのマス目に強く押し付けた後、プラスチックレンズ基板の面内方向に対して90度方向へ急激に引っ張り、この操作を合計5回行い、剥離していないマス目の数を数え、以下の基準で評価した。
○:剥離していないマス目の数が95個以上
×:剥離していないマス目の数が95個未満。
×:剥離していないマス目の数が95個未満。
(12)塗膜の耐候的な密着性(耐候的密着性)の評価方法
ハードコート層膜を有するプラスチックレンズ基板をキセノンウエザーメーター(スガ試験機(株)製X-75型)で曝露試験をした後、外観の確認および前記の密着性の評価と同様の評価を行い、以下の基準で評価した。なお、曝露時間は、反射防止膜を有している基板は250時間、反射防止膜を有していない基板は50時間とした。
ハードコート層膜を有するプラスチックレンズ基板をキセノンウエザーメーター(スガ試験機(株)製X-75型)で曝露試験をした後、外観の確認および前記の密着性の評価と同様の評価を行い、以下の基準で評価した。なお、曝露時間は、反射防止膜を有している基板は250時間、反射防止膜を有していない基板は50時間とした。
○:剥離していないマス目の数が95個以上
×:剥離していないマス目の数が95個未満。
×:剥離していないマス目の数が95個未満。
(13)塗膜の耐光性の評価方法
退色試験用水銀ランプ(東芝(株)製H400-E)により紫外線を50時間照射し、試験前後のプラスチックレンズ基板の透過率測定(日本電子(株)製、V-550)を行い、以下の基準で評価した。なお、ランプとプラスチックレンズ基板との距離は、70mmとし、ランプの出力は、プラスチックレンズ基板の表面温度が45±5℃となるように調整した。また、この試験は、反射防止層膜をハードコート層膜の表面に設けたプラスチックレンズ基板を対象として行った。
退色試験用水銀ランプ(東芝(株)製H400-E)により紫外線を50時間照射し、試験前後のプラスチックレンズ基板の透過率測定(日本電子(株)製、V-550)を行い、以下の基準で評価した。なお、ランプとプラスチックレンズ基板との距離は、70mmとし、ランプの出力は、プラスチックレンズ基板の表面温度が45±5℃となるように調整した。また、この試験は、反射防止層膜をハードコート層膜の表面に設けたプラスチックレンズ基板を対象として行った。
○:透過率変化が5%未満
△:透過率変化が5%以上~10%未満
×:透過率変化が10%以上
(14)耐クラック性の評価方法
試験片のレンズ凹凸面および周辺部に発生した微細クラックを目視観察し、以下の基準で評価した。
△:透過率変化が5%以上~10%未満
×:透過率変化が10%以上
(14)耐クラック性の評価方法
試験片のレンズ凹凸面および周辺部に発生した微細クラックを目視観察し、以下の基準で評価した。
○:クラック本数が2本未満
×:クラック本数が2本以上
(15)粒子の屈折率測定方法
連結型無機酸化物微粒子の屈折率は、塗膜屈折率からの算定法を採用して求めた。具体的には、特開2010-168266号公報の[0105]~[0110]に記載した手順により塗膜を作成し、分光エリプソメーター(ソプラ社製、SOPRA ESVG)を用い、屈折率を測定し算定した。
×:クラック本数が2本以上
(15)粒子の屈折率測定方法
連結型無機酸化物微粒子の屈折率は、塗膜屈折率からの算定法を採用して求めた。具体的には、特開2010-168266号公報の[0105]~[0110]に記載した手順により塗膜を作成し、分光エリプソメーター(ソプラ社製、SOPRA ESVG)を用い、屈折率を測定し算定した。
A.微粒子分散液、塗料組成物等の調製
[実施例1]
<工程(1)>
(操作1.1)チタニウムを主成分とする複合酸化物微粒子(コア粒子)の調製
四塩化チタン(大阪チタニウムテクノロジーズ(株)製)をTiO2換算基準で7.75重量%含む四塩化チタン水溶液93.7kgと、アンモニアを15重量%含むアンモニア水(宇部興産(株)製)36.3kgとを混合し、pH9.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、純水で洗浄して、固形分含有量が10重量%の含水チタン酸ケーキ72.6kgを得た。
[実施例1]
<工程(1)>
(操作1.1)チタニウムを主成分とする複合酸化物微粒子(コア粒子)の調製
四塩化チタン(大阪チタニウムテクノロジーズ(株)製)をTiO2換算基準で7.75重量%含む四塩化チタン水溶液93.7kgと、アンモニアを15重量%含むアンモニア水(宇部興産(株)製)36.3kgとを混合し、pH9.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、純水で洗浄して、固形分含有量が10重量%の含水チタン酸ケーキ72.6kgを得た。
次に、このケーキに、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)83.0kgと純水411.4kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらに純水159.0kgを加えて、過酸化チタン酸をTiO2換算基準で1重量%含む過酸化チタン酸水溶液を726.0kg得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.5であった。
次いで、前記過酸化チタン酸水溶液72.9kgに、陽イオン交換樹脂(三菱化学(株)製)3.5kgを混合して、さらにスズ酸カリウム(昭和化工(株)製)をSnO2換算基準で1重量%含むスズ酸カリウム水溶液9.1kgを撹拌下で徐々に添加した。
次に、得られた混合物に、カリウムイオンなどを取り込んだ前記陽イオン交換樹脂を分離した後、平均粒子径が7nmのシリカ微粒子を15重量%含むシリカゾル(日揮触媒化成(株)製)0.8kgおよび純水18.0kgを混合し、オートクレーブ(耐圧硝子工業(株)製、120L)中で165℃の温度で18時間、加熱することにより、チタニウムを主成分とする複合酸化物微粒子(コア粒子)の水分散液を得た。
得られた水分散液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV-3010)で濃縮して、固形分含有量が10重量%の水分散液(チタニウムを主成分とするコア粒子を含む水分散液(1a))10.0kgを得た。
この水分散液(1a)の中に含まれるコア粒子はルチル型の結晶構造を有し、このコア粒子に含まれる金属元素の含有量(酸化物換算値)を測定したところ、TiO2が75.2重量%、SnO2が9.3重量%、SiO2が12.2重量%、K2Oが3.3重量%であった。またこのコア粒子の平均粒子径は18nmであった。
(操作1.2)連結型無機酸化物微粒子群の水分散液(P-1)の調製
オキシ塩化ジルコニウム(太陽鉱工(株)製)をZrO2換算基準で2重量%含むオキシ塩化ジルコニウム水溶液26.3kgに、アンモニアを15重量%含むアンモニア水を撹拌下で徐々に添加して、pH8.5のスラリー液を得た。次いで、このスラリーを濾過した後、純水で洗浄して、ジルコニウム成分をZrO2に換算基準で10重量%含むケーキ5.26kgを得た。
オキシ塩化ジルコニウム(太陽鉱工(株)製)をZrO2換算基準で2重量%含むオキシ塩化ジルコニウム水溶液26.3kgに、アンモニアを15重量%含むアンモニア水を撹拌下で徐々に添加して、pH8.5のスラリー液を得た。次いで、このスラリーを濾過した後、純水で洗浄して、ジルコニウム成分をZrO2に換算基準で10重量%含むケーキ5.26kgを得た。
次に、このケーキ200gに純水1.80kgを加え、さらに水酸化カリウム(関東化学(株)製)を10重量%含む水酸化カリウム水溶液120gを加えてアルカリ性にした後、過酸化水素を35重量%含む過酸化水素水400gを加えて、50℃の温度に加熱してこのケーキを溶解した。さらに、純水1.48kgを加えて、過酸化ジルコン酸をZrO2換算基準で0.5重量%含む過酸化ジルコン酸水溶液(1)4.0kgを得た。なお、この過酸化ジルコン酸水溶液のpHは、12.2であった。
また、市販の水ガラス(AGCエスアイテック(株)製)を純水にて希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、珪酸をSiO2換算基準で2重量%含む珪酸水溶液(1)を得た。なお、この珪酸水溶液液のpHは、2.3であった。
次に、上記操作1.1で得られた、チタニウムを主成分とするコア粒子を含む水分散液(1a)3.0kgに純水12.0kgを加えて固形分含有量を2重量%としたものを、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリしてそのpHを2.8に調整し、次いで前記陽イオン交換樹脂を分離し、室温で1時間撹拌して、粒子同士が連結した無機酸化物微粒子の分散液(1b)を得た。なお、この分散液の中の無機酸化物微粒子が連結していることは、この分散液を抜き取り、これをSEM観察することにより確認した。
さらに、この無機酸化物微粒子を含む分散液の、前述の測定方法でゼータ電位測定を行った際のpHは3.8、ゼータ電位は-50mVであった。
<工程(2)>
次に、この無機酸化物微粒子分散液(1b)に水酸化カリウム水溶液を加えて、分散液のpHを10.0に調整して、この分散液を90℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液(1)12.0kgおよび珪酸水溶液(1)3.0kgを同時に徐々に添加し、添加終了後、さらに90℃の温度に保ちながら攪拌下で1時間熟成を行い、混合液(1c)を得た。ここで、過酸化ジルコン酸水溶液(1)中に含まれるジルコン酸をZrO2で表し、珪酸水溶液(1)中に含まれる珪酸をSiO2で表したとき(以下の重量比の式では「SiO2-(1)」と表す。)、これらのモル比(ZrO2/SiO2)は33/67であった。また、混合液(1c)中の無機酸化物微粒子に含まれる金属の重量を酸化物(TiO2、SnO2、SiO2(以下の重量比の式では「SiO2-(2)」と表す。))の重量に換算すると、重量比((ZrO2+SiO2-(1))/(TiO2+SnO2+SiO2-(2)))は40/100であった。
<工程(2)>
次に、この無機酸化物微粒子分散液(1b)に水酸化カリウム水溶液を加えて、分散液のpHを10.0に調整して、この分散液を90℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液(1)12.0kgおよび珪酸水溶液(1)3.0kgを同時に徐々に添加し、添加終了後、さらに90℃の温度に保ちながら攪拌下で1時間熟成を行い、混合液(1c)を得た。ここで、過酸化ジルコン酸水溶液(1)中に含まれるジルコン酸をZrO2で表し、珪酸水溶液(1)中に含まれる珪酸をSiO2で表したとき(以下の重量比の式では「SiO2-(1)」と表す。)、これらのモル比(ZrO2/SiO2)は33/67であった。また、混合液(1c)中の無機酸化物微粒子に含まれる金属の重量を酸化物(TiO2、SnO2、SiO2(以下の重量比の式では「SiO2-(2)」と表す。))の重量に換算すると、重量比((ZrO2+SiO2-(1))/(TiO2+SnO2+SiO2-(2)))は40/100であった。
<工程(3)>
次いで、この混合液(1c)をオートクレーブ(耐圧硝子工業(株)製、50L)に入れて、160℃の温度で18時間、加熱処理を行なったのち、室温まで冷却して、限外濾過膜装置(旭化成(株)製、SIP-1013)を用いて固形分含有量10重量%に濃縮することにより、チタニウムを主成分とするコア粒子の表面を、ジルコニウムおよびケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(1)の透明乳白色水分散液(以下、「P-1」ともいう。)を調製した。
次いで、この混合液(1c)をオートクレーブ(耐圧硝子工業(株)製、50L)に入れて、160℃の温度で18時間、加熱処理を行なったのち、室温まで冷却して、限外濾過膜装置(旭化成(株)製、SIP-1013)を用いて固形分含有量10重量%に濃縮することにより、チタニウムを主成分とするコア粒子の表面を、ジルコニウムおよびケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(1)の透明乳白色水分散液(以下、「P-1」ともいう。)を調製した。
この無機酸化物微粒子(1)は4~5個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は266m2/gであった。以下、上記水分散液(P-1)を「連結型結晶性無機酸化物微粒子群の水分散液(P-1)」ともいう。
この連結型微粒子群のX線回折では結晶性ピークが検出され、結晶構造はルチル型であった。
この連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が52.1重量%、SnO2が6.5重量%、SiO2が25.0重量%、ZrO2が14.8重量%、K2Oが1.6重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.289であった。
(操作1.3)連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-1)の調製
上記操作1.2で得られた連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに陽イオン交換樹脂を混合して脱イオン処理した後、前記イオン交換樹脂を分離して得られた分散液に、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液を撹拌下で添加した後、50℃の温度で6時間、加熱した。
上記操作1.2で得られた連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに陽イオン交換樹脂を混合して脱イオン処理した後、前記イオン交換樹脂を分離して得られた分散液に、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液を撹拌下で添加した後、50℃の温度で6時間、加熱した。
次に、得られた混合液を室温まで冷却してから、限外濾過膜(旭化成(株)製濾過膜、SIP-1013)を用いて分散媒を水からメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)に置換した。
得られた無機酸化物微粒子のメタノール分散液(以下「MP-1」という)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
この無機酸化物微粒子の平均粒子径は18nmであり、この微粒子は4~5個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は306m2/gであった。以下、上記分散液(MP-1)を「連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-1)」ともいう。
このメタノール分散液(MP-1)中の連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が47.9重量%、SnO2が5.5重量%、SiO2が32.0重量%、ZrO2が13.1重量%、K2Oが1.6重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.200であった。
(操作1.4)ハードコート層膜形成用塗料組成物(H1)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)180.4gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)31.9gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液61.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)180.4gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)31.9gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液61.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)278.5gおよび上記操作1.3で調製した固形分濃度30重量%の連結型無機酸化物微粒子群のメタノール分散液(MP-1)398.8g、プロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)7.2gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(H1)を調製した。
(操作1.5)ハードコート層膜形成用塗料組成物(H2)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)161.9gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)28.7gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液55.2gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)161.9gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)28.7gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液55.2gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)245.7gおよび上記操作1.3で調製した固形分濃度30重量%の連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-1)460.3g、プロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)6.5gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(H2)を調製した。
(操作1.6)プライマー層膜形成用塗料組成物(Y1)の調製
市販の熱可塑性樹脂であるポリウレタンのエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)205.3gに、上記操作1.3で調製した連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-1)164.2gおよびイオン交換水96.9gを加えて1時間攪拌し、次いで、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)531.1g、およびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)0.3gを加えて室温で一昼夜攪拌して、プライマー層膜形成用塗料組成物(Y1)を調製した。
市販の熱可塑性樹脂であるポリウレタンのエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)205.3gに、上記操作1.3で調製した連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-1)164.2gおよびイオン交換水96.9gを加えて1時間攪拌し、次いで、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)531.1g、およびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)0.3gを加えて室温で一昼夜攪拌して、プライマー層膜形成用塗料組成物(Y1)を調製した。
(操作1.7)プライマー層膜形成用塗料組成物(Y2)の調製
市販の熱可塑性樹脂であるポリウレタンのエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)160.7gに、上記操作1.3で調製した連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-1)208.9gおよびイオン交換水96.9gを加えて1時間攪拌し、次いで、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)531.1g、およびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)0.3gを加えて室温で一昼夜攪拌して、プライマー層膜形成用塗料組成物(Y2)を調製した。
市販の熱可塑性樹脂であるポリウレタンのエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)160.7gに、上記操作1.3で調製した連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-1)208.9gおよびイオン交換水96.9gを加えて1時間攪拌し、次いで、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)531.1g、およびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)0.3gを加えて室温で一昼夜攪拌して、プライマー層膜形成用塗料組成物(Y2)を調製した。
[実施例2]
(操作2.2)連結型結晶性無機酸化物微粒子群の水分散液(P-2)の調製
実施例1の操作1.2において、無機酸化物微粒子分散液(1b)に添加する過酸化ジルコン酸水溶液の量を12.0kgから4.6kgに変更し、珪酸水溶液の量を3.0kgから4.9kgに変更したこと以外は上記操作1.2と同様の操作を行うことにより、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(2)の透明乳白色水分散液(以下、「P-2」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。
(操作2.2)連結型結晶性無機酸化物微粒子群の水分散液(P-2)の調製
実施例1の操作1.2において、無機酸化物微粒子分散液(1b)に添加する過酸化ジルコン酸水溶液の量を12.0kgから4.6kgに変更し、珪酸水溶液の量を3.0kgから4.9kgに変更したこと以外は上記操作1.2と同様の操作を行うことにより、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(2)の透明乳白色水分散液(以下、「P-2」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。
ここで、過酸化ジルコン酸水溶液中に含まれるZrと珪酸水溶液中に含まれるSiとのモル比(Zr/Si)は10/90であった。
この無機酸化物微粒子(2)は4~5個連結して連結型微粒子群を構成しており、この連結型微粒子群の比表面積は272m2/gであった。以下、上記水分散液(P-2)を「連結型結晶性無機酸化物微粒子群の水分散液(P-2)」ともいう。
この連結型微粒子群のX線回折では結晶性ピークが検出され、結晶構造はルチル型であった。
この連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が52.4重量%、SnO2が6.4重量%、SiO2が34.0重量%、ZrO2が5.7重量%、K2Oが1.5重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.082であった。
(操作2.3)連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-2)の調製
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに替えて上記操作2.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-2)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MP-2」という)を調製した。
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに替えて上記操作2.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-2)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MP-2」という)を調製した。
このメタノール分散液(MP-2)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
この無機酸化物微粒子は4~5個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は310m2/gであった。以下、上記分散液(MP-2)を「連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-2)」ともいう。
このメタノール分散液(MP-2)中の連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO246.6が重量%、SnO25.8が重量%、SiO2が41.1重量%、ZrO2が5.0重量%、K2Oが1.5重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.059であった。
(操作2.4)ハードコート層膜形成用塗料組成物(H3)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)173.8gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)30.8gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液59.2gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)173.8gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)30.8gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液59.2gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)266.8gおよび上記操作2.3で調製した固形分濃度30重量%の連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-2)420.8g、プロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)7.0gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(H3)を調製した。
[実施例3]
(操作3.2)連結型結晶性無機酸化物微粒子群の水分散液(P-3)の調製
実施例1の操作1.2において、無機酸化物微粒子分散液(1b)に添加する過酸化ジルコン酸水溶液の量を12.0kgから23.4kgに変更し、珪酸水溶液の量を3.0kgから0.15kgに変更したこと以外は上記操作1.2と同様の操作を行い、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(3)の透明乳白色水分散液(以下、「P-3」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。
(操作3.2)連結型結晶性無機酸化物微粒子群の水分散液(P-3)の調製
実施例1の操作1.2において、無機酸化物微粒子分散液(1b)に添加する過酸化ジルコン酸水溶液の量を12.0kgから23.4kgに変更し、珪酸水溶液の量を3.0kgから0.15kgに変更したこと以外は上記操作1.2と同様の操作を行い、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(3)の透明乳白色水分散液(以下、「P-3」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。
ここで、過酸化ジルコン酸水溶液中に含まれるジルコン酸をZrO2で表し、珪酸水溶液中に含まれる珪酸をSiO2で表したとき、モル比(ZrO2/SiO2)は95/5であった。
この無機酸化物微粒子(3)は5~10個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は258m2/gであった。以下、上記水分散液(P-3)を「連結型結晶性無機酸化物微粒子群の水分散液(P-3)」ともいう。
この連結型微粒子群のX線回折では結晶性ピークが検出され、結晶構造はルチル型であった。
この連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が65.9重量%、SnO2が8.2重量%、SiO2が11.4重量%、ZrO2が12.9重量%、K2Oが1.6重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.552であった。
(操作3.3)連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-3)の調製
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに替えて上記操作3.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-3)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MP-3」という)を調製した。
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに替えて上記操作3.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-3)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MP-3」という)を調製した。
このメタノール分散液(MP-3)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
この無機酸化物微粒子は5~10個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は296m2/gであった。以下、上記分散液(MP-3)を「連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-3)」ともいう。
このメタノール分散液(MP-3)中の連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が60.7重量%、SnO2が7.5重量%、SiO2が18.2重量%、ZrO2が12.0重量%、K2Oが1.6重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.322であった。
(操作3.4)ハードコート層膜形成用塗料組成物(H4)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)183.8gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)32.6gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液62.7gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)183.8gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)32.6gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液62.7gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)284.7gおよび上記操作3.3で調製した固形分濃度30重量%の連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-3)387.2g、プロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)7.4gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(H4)を調製した。
[実施例4]
(操作4.2)連結型結晶性無機酸化物微粒子群の水分散液(P-4)の調製
実施例1の操作1.2において、無機酸化物微粒子分散液(1b)に添加する過酸化ジルコン酸水溶液の量を12.0kgから3.0kgに変更し、珪酸水溶液の量を3.0kgから0.75kgに変更したこと以外は上記操作1.2と同様の操作を行うことにより、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(4)の透明乳白色水分散液(以下、「P-4」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。
(操作4.2)連結型結晶性無機酸化物微粒子群の水分散液(P-4)の調製
実施例1の操作1.2において、無機酸化物微粒子分散液(1b)に添加する過酸化ジルコン酸水溶液の量を12.0kgから3.0kgに変更し、珪酸水溶液の量を3.0kgから0.75kgに変更したこと以外は上記操作1.2と同様の操作を行うことにより、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(4)の透明乳白色水分散液(以下、「P-4」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。
ここで、過酸化ジルコン酸水溶液中に含まれるジルコン酸をZrO2で表し、珪酸水溶液中に含まれる珪酸をSiO2で表したとき(以下の重量比の式では「SiO2-(1)」と表す。)、モル比(ZrO2/SiO2)は33/67であった。また、水分散液(P-4)中の無機酸化物微粒子に含まれる金属の重量を酸化物(TiO2、SnO2、SiO2(以下の重量比の式では「SiO2-(2)」と表す。))の重量に換算すると、重量比((ZrO2+SiO2-(1))/(TiO2+SnO2+SiO2-(2)))は10/100であった。
この無機酸化物微粒子(4)は3~4個連結して連結型微粒子群を構成しており、この連結型微粒子群の比表面積は259m2/gであった。以下、上記水分散液(P-4)を「連結型結晶性無機酸化物微粒子群の水分散液(P-4)」ともいう。
この連結型微粒子群のX線回折では結晶性ピークが検出され、結晶構造はルチル型であった。
また、この連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が73.3重量%、SnO2が9.2重量%、SiO2が13.1重量%、ZrO2が2.9重量%、K2Oが1.5重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.108であった。
(操作4.3)連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-4)の調製
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに替えて上記操作4.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-4)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MP-4」という)を調製した。
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに替えて上記操作4.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-4)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MP-4」という)を調製した。
このメタノール分散液(MP-4)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
この無機酸化物微粒子は3~4個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は299m2/gであった。以下、上記分散液(MP-4)を「連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-4)」ともいう。
このメタノール分散液(MP-4)中の連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が68.2重量%、SnO2が8.5重量%、SiO2が20.0重量%、ZrO2が1.8重量%、K2Oが1.5重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.044であった。
(操作4.4)ハードコート層膜形成用塗料組成物(H5)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)199.3gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)35.3gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液67.9gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)199.3gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)35.3gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液67.9gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)312.1gおよび上記操作4.3で調製した固形分濃度30重量%の連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-4)335.7g、プロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)8.0gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(H5)を調製した。
[実施例5]
(操作5.2)連結型結晶性無機酸化物微粒子群の水分散液(P-5)の調製
実施例1の操作1.2において、無機酸化物微粒子分散液(1b)に添加する過酸化ジルコン酸水溶液の量を12.0kgから30.0kgに変更し、珪酸水溶液の量を3.0kgから7.5kgに変更したこと以外は上記操作1.2と同様の操作を行い、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(5)の透明乳白色水分散液(以下、「P-5」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。
(操作5.2)連結型結晶性無機酸化物微粒子群の水分散液(P-5)の調製
実施例1の操作1.2において、無機酸化物微粒子分散液(1b)に添加する過酸化ジルコン酸水溶液の量を12.0kgから30.0kgに変更し、珪酸水溶液の量を3.0kgから7.5kgに変更したこと以外は上記操作1.2と同様の操作を行い、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(5)の透明乳白色水分散液(以下、「P-5」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。
ここで、過酸化ジルコン酸水溶液中に含まれるジルコン酸をZrO2で表し、珪酸水溶液中に含まれる珪酸をSiO2で表したとき(以下の重量比の式では「SiO2-(1)」と表す。)、モル比(ZrO2/SiO2)は33/67であった。また、水分散液(P-5)中の無機酸化物微粒子に含まれる金属の重量を酸化物(TiO2、SnO2、SiO2(以下の重量比の式では「SiO2-(2)」と表す。))の重量に換算すると、重量比((ZrO2+SiO2-(1))/(TiO2+SnO2+SiO2-(2)))は100/100であった。
この無機酸化物微粒子(5)は5~10個連結して連結型微粒子群を構成しており、この連結型微粒子群の比表面積は271m2/gであった。以下、上記水分散液(P-5)を「連結型結晶性無機酸化物微粒子群の水分散液(P-5)」ともいう。
この連結型微粒子群のX線回折では結晶性ピークが検出され、結晶構造はルチル型であった。
この連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が33.0重量%、SnO2が4.1重量%、SiO2が35.7重量%、ZrO2が25.5重量%、K2Oが1.7重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.346であった。
(操作5.3)連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-5)の調製
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散(P-1)1470gに替えて上記操作5.2で調製した連結型結晶性無機酸化物微粒子群の水分散(P-5)1470gを用いたこと以外は上記操作1.3と同様の操作を行い、無機酸化物微粒子のメタノール分散液(以下「MP-5」という)を調製した。
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散(P-1)1470gに替えて上記操作5.2で調製した連結型結晶性無機酸化物微粒子群の水分散(P-5)1470gを用いたこと以外は上記操作1.3と同様の操作を行い、無機酸化物微粒子のメタノール分散液(以下「MP-5」という)を調製した。
このメタノール分散液(MP-5)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
この無機酸化物微粒子は5~10個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は309m2/gであった。以下、上記分散液(MP-5)を「連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-5)」ともいう。
このメタノール分散液(MP-5)中の連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が29.4重量%、SnO2が3.7重量%、SiO2が42.6重量%、ZrO2が22.6重量%、K2Oが1.7重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.919であった。
(操作5.4)ハードコート層膜形成用塗料組成物(H6)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)136.3gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)24.1gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液46.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)136.3gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)24.1gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液46.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)200.3gおよび上記操作5.3で調製した固形分濃度30重量%の連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-5)545.5g、さらにプロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)5.5gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(H6)を調製した。
[実施例6]
<工程(1)>
(操作6.1.1)ジルコニウムを主成分とする複合酸化物微粒子(コア粒子)の調製
純水52.13kgにオキシ塩化ジルコニウム8水和物(太陽鉱工(株)製、ZrOCl2・8H2O)1.40kgを溶解し、これに濃度10重量%のKOH水溶液49.13kgを添加してジルコニウム水酸化物ヒドロゲル(ZrO2濃度1重量%)を調製した。次いで、得られたジルコニウム水酸化物ヒドロゲルを、限外濾過膜法により電導度が0.5mS/cm以下になるまで洗浄した。
<工程(1)>
(操作6.1.1)ジルコニウムを主成分とする複合酸化物微粒子(コア粒子)の調製
純水52.13kgにオキシ塩化ジルコニウム8水和物(太陽鉱工(株)製、ZrOCl2・8H2O)1.40kgを溶解し、これに濃度10重量%のKOH水溶液49.13kgを添加してジルコニウム水酸化物ヒドロゲル(ZrO2濃度1重量%)を調製した。次いで、得られたジルコニウム水酸化物ヒドロゲルを、限外濾過膜法により電導度が0.5mS/cm以下になるまで洗浄した。
上記操作により得られたZrO2としての濃度が1重量%のジルコニウム水酸化物ヒドロゲル102.75kgに、濃度10重量%のKOH水溶液20.24kgを加えて十分攪拌した後、濃度35重量%の過酸化水素水溶液0.56kgを加えた。このとき、溶液は激しく発泡して透明になり、pHは11.4であった。
次いで、この溶液に濃度28.8重量%のアンモニア水溶液5.63kgを加えて充分攪拌して、ジルコニウム酸化物微粒子(コア粒子)の前駆体スラリーを得た。このとき、前記スラリーは薄黄色になり、pHは13.4であった。
この前駆体スラリーの1/3をオートクレーブ(耐圧硝子工業(株)製、100L)に充填し、150℃で11時間水熱処理を行った後、遠心沈降法によりジルコニウム酸化物微粒子を分離し、これを充分に洗浄したのちイオン交換水に分散させて、ジルコニウム酸化物微粒子(コア粒子)の水分散液10.10kgを得た。この水分散液のジルコニウムの含有量はZrO2換算基準で10重量%であった。
次いで、前記コア粒子の水分散液10.10kgをスプレードライヤー(NIRO社製NIRO ATOMIZER)に供して噴霧乾燥した。これにより、ジルコニウム酸化物微粒子(コア粒子)の乾燥粉体0.90kgを得た。得られた乾燥粉体に含まれるコア粒子の平均粒子径は約2μmであった。
次に、この乾燥粉体0.90kgを、空気雰囲気下、500℃の温度にて2時間焼成して、ジルコニウム酸化物微粒子(コア粒子)の焼成粉体0.84kgを得た。
この焼成粉体0.84kgを純水0.74kgに分散させ、これに、濃度28.6%の酒石酸水溶液0.55kg、濃度50重量%のKOH水溶液0.23kgを加えて充分攪拌した。次いで、粒子径0.1mmのアルミナビーズ(大明化学工業(株)製 高純度アルミナビーズ)を加え、これを湿式粉砕機(カンペハピオ(株)製バッチ式卓上サンドミル)に供して180分間、前記焼成粉体の粉砕及び分散処理を行った。その後、アルミナビーズを、目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水6.65kgを添加して撹拌を行い、ジルコニウム酸化物微粒子(コア粒子)の水分散液8.84kgを得た。この水分散液の固形分含有量は11重量%であった。
次いで、この水分散液を、限外濾過膜を用いてイオン交換水で洗浄し、さらに陰イオン交換樹脂(三菱化学(株)製:SANUPC)0.43kgを加えて脱イオン処理をした後、遠心分離機(日立工機(株)製CR-21G)に供して12,000rpmの速度で1時間処理して粗大粒子を除去し、ZrO2換算基準の固形分濃度が10重量%のジルコニウム酸化物微粒子(コア粒子)の水分散液9.50kgを得た。
前記水分散液に含まれるコア粒子の平均粒子径は20nm、比表面積は92m2/gであった。さらに、このコア粒子に含まれる金属成分の含有量は、各金属成分の酸化物換算基準で、ZrO2が98.5重量%、K2Oが1.5重量%であった。
(操作6.1.2)シリカ被覆コア粒子の調製
市販の水ガラス(AGCエスアイテック(株)製、JIS3号水硝子、SiO2濃度24質量%)を純水にて希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、珪酸をSiO2換算基準で4.5重量%含む、pHが2.3の珪酸水溶液を得た。
市販の水ガラス(AGCエスアイテック(株)製、JIS3号水硝子、SiO2濃度24質量%)を純水にて希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、珪酸をSiO2換算基準で4.5重量%含む、pHが2.3の珪酸水溶液を得た。
操作6.1.2で得られたジルコニウム酸化物微粒子(コア粒子)の水分散液3.0kgを、陽イオン交換樹脂(三菱化学(株)製)0.3kgを用いて脱アルカリした後、樹脂分離して水分散ゾルを得た。次いで、この水分散ゾルに前記珪酸液1681.1gを攪拌しながら徐々に添加し、さらに添加終了後、35℃の温度に保ちながら攪拌下で1時間熟成することにより、シリカで被覆されたコア微粒子の水分散液を得た。なお、この水分散液の固形分含有量は6.9重量%であった。
(操作6.2)連結型無機酸化物微粒子群の水分散液(P-6)の調製
実施例1の操作1.2において、操作1.1で調製したチタニウムを主成分とするコア粒子の水分散液(1a)3.0kgに替えて上記操作6.1.2で調製したジルコニウムを主成分とするコア粒子の水分散液3.0kgを用いた以外は実施例1の操作1.2と同様の操作を行うことにより、ジルコニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(6)の透明乳白色水分散液(以下、「P-6」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。さらに、この無機酸化物微粒子を含む分散液は、ゼータ電位測定において、pHは3.8、ゼータ電位は-45mVであった。
実施例1の操作1.2において、操作1.1で調製したチタニウムを主成分とするコア粒子の水分散液(1a)3.0kgに替えて上記操作6.1.2で調製したジルコニウムを主成分とするコア粒子の水分散液3.0kgを用いた以外は実施例1の操作1.2と同様の操作を行うことにより、ジルコニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(6)の透明乳白色水分散液(以下、「P-6」という)を調製した。なお、この調製の過程で、操作1.2と同様に、粒子同士が疑似的に連結した無機酸化物微粒子分散液が得られた。さらに、この無機酸化物微粒子を含む分散液は、ゼータ電位測定において、pHは3.8、ゼータ電位は-45mVであった。
この無機酸化物微粒子(6)は4~5個連結して連結型微粒子群を構成しており、この連結型微粒子群の比表面積は204m2/gであった。以下、上記水分散液(P-6)を「連結型結晶性無機酸化物微粒子群の水分散液(P-6)」ともいう。
この連結型無機酸化物微粒子群のX線回折では結晶性ピークが検出され、結晶構造は単斜晶系と立方晶系とからなる結晶型であった。
この連結型無機酸化物微粒子群に含まれる金属成分を測定したところ、SiO2が77.9重量%、ZrO2が20.6重量%、K2Oが1.5重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は1.844であった。
(操作6.3)連結型無機酸化物微粒子群のメタノール分散液(MP-6)の調製
実施例1の操作1.3において、上記操作1.2で調製した連結型無機酸化物微粒子群の水分散(P-1)1470gに替えて上記操作6.2で調製した連結型無機酸化物微粒子群の水分散(P-6)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MP-6」という)を調製した。
実施例1の操作1.3において、上記操作1.2で調製した連結型無機酸化物微粒子群の水分散(P-1)1470gに替えて上記操作6.2で調製した連結型無機酸化物微粒子群の水分散(P-6)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MP-6」という)を調製した。
このメタノール分散液(MP-6)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
この無機酸化物微粒子の平均粒子径は20nmであり、この無機酸化物微粒子は4~5個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は254m2/gであった。以下、上記分散液(MP-6)を「連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-6)」ともいう。
このメタノール分散液(MP-6)中の連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、SiO2が70.9重量%、ZrO2が27.6重量%、K2Oが1.5重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は1.253であった。
ハードコート層膜形成用塗料組成物(H7)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)143.9gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)25.5gの混合液中に、攪拌しながら0.01Nの塩酸水溶液49.0gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)143.9gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)25.5gの混合液中に、攪拌しながら0.01Nの塩酸水溶液49.0gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)213.7gおよび上記操作6.3で調製した固形分濃度30重量%の連結型結晶性無機酸化物微粒子群のメタノール分散液(MP-6)520.4g、プロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)5.8gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(H7)を調製した。
[比較例1]
(操作C1.2)非連結型結晶性無機酸化物微粒子の水分散液(C-1)の調製
実施例1の操作1.2において、無機酸化物微粒子の分散液(1b)に過酸化ジルコン酸水溶液(1)および珪酸水溶液(1)を添加することに替えてチタニウムを主成分とするコア粒子を含む水分散液(1a)に過酸化ジルコン酸水溶液(1)6.0kgおよび珪酸水溶液(1)4.5kgを添加したこと(すなわち、「水分散液(1a)に純水を加えたものを陽イオン交換樹脂を用いて脱アルカリして、pHを2.8に、かつ前述の測定方法でゼータ電位測定を行った際のpHは3.8、ゼータ電位は-50mVに調整し、次いで前記陽イオン交換樹脂を分離して、室温で1時間撹拌して、粒子同士を疑似的に連結させる」操作を実施しなかったこと)以外は上記操作1.2と同様の操作を行い、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(C1)の透明乳白色水分散液(以下、「C-1」という)を調製した。
(操作C1.2)非連結型結晶性無機酸化物微粒子の水分散液(C-1)の調製
実施例1の操作1.2において、無機酸化物微粒子の分散液(1b)に過酸化ジルコン酸水溶液(1)および珪酸水溶液(1)を添加することに替えてチタニウムを主成分とするコア粒子を含む水分散液(1a)に過酸化ジルコン酸水溶液(1)6.0kgおよび珪酸水溶液(1)4.5kgを添加したこと(すなわち、「水分散液(1a)に純水を加えたものを陽イオン交換樹脂を用いて脱アルカリして、pHを2.8に、かつ前述の測定方法でゼータ電位測定を行った際のpHは3.8、ゼータ電位は-50mVに調整し、次いで前記陽イオン交換樹脂を分離して、室温で1時間撹拌して、粒子同士を疑似的に連結させる」操作を実施しなかったこと)以外は上記操作1.2と同様の操作を行い、チタニウムを主成分とするコア粒子の表面を、ジルコニウムとケイ素を含む複合酸化物からなるシェルで被覆してなる無機酸化物微粒子(C1)の透明乳白色水分散液(以下、「C-1」という)を調製した。
ここで、過酸化ジルコン酸水溶液中に含まれるジルコン酸をZrO2で表し、珪酸水溶液中に含まれる珪酸をSiO2で表したとき(以下の重量比の式では「SiO2-(1)」と表す。)、モル比(ZrO2/SiO2)は14/86であった。また、水分散液(C-1)中の無機酸化物微粒子に含まれる金属の重量を酸化物(TiO2、SnO2、SiO2(以下の重量比の式では「SiO2-(2)」と表す。))の重量に換算すると、重量比((ZrO2+SiO2-(1))/(TiO2+SnO2+SiO2-(2)))は40/100であった。
この無機酸化物微粒子(C1)は互いに連結しておらず、この微粒子の比表面積は208m2/gであった。以下、上記水分散液(C-1)を「非連結型結晶性無機酸化物微粒子の水分散液(C-1)」ともいう。
この無機酸化物微粒子(C1)のX線回折では結晶性ピークが検出され、結晶構造はルチル型であった。
この無機酸化物微粒子(C1)に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が52.2重量%、SnO2が6.5重量%、SiO2が24.9重量%、ZrO2が14.8重量%、K2Oが1.6重量%であった。ここで、この無機酸化物微粒子に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.290であった。
(操作C1.3)非連結型結晶性無機酸化物微粒子のメタノール分散液(MC-1)の調製
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子の水分散(P-1)1470gに替えて上記操作C1.2で調製した非連結型結晶性無機酸化物微粒子の水分散(C-1)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MC-1」という)を調製した。
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子の水分散(P-1)1470gに替えて上記操作C1.2で調製した非連結型結晶性無機酸化物微粒子の水分散(C-1)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MC-1」という)を調製した。
このメタノール分散液(MC-1)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
この無機酸化物微粒子は連結しておらず、この微粒子の比表面積は224m2/gであった。以下、上記分散液(C-1)を「非連結型結晶性無機酸化物微粒子のメタノール分散液(MC-1)」ともいう。
このメタノール分散液(MC-1)中の無機酸化物微粒子に含まれる金属成分の割合(酸化物換算値)を測定したところ、TiO2が47.8重量%、SnO2が5.5重量%、SiO2が32.0重量%、ZrO2が13.2重量%、K2Oが1.6重量%であった。ここで、この無機酸化物微粒子に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.201であった。
(操作C1.4)ハードコート層膜形成用塗料組成物(R1)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)180.4gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)31.9gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液61.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)180.4gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)31.9gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液61.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)278.5gおよび上記操作C1.3で調製した固形分濃度30重量%の非連結型結晶性無機酸化物微粒子のメタノール分散液(MC-1)398.8g、さらにプロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)7.2gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(R1)を調製した。
(操作C1.5)ハードコート層膜形成用塗料組成物(R2)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)161.9gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)28.7gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液55.2gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)161.9gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)28.7gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液55.2gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)245.7gおよび上記操作C1.3で調製した固形分濃度30重量%の非連結型結晶性無機酸化物微粒子のメタノール分散液(MC-1)460.3g、プロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)6.5gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(R2)を調製した。
(操作C1.6)プライマー層膜形成用塗料組成物(S1)の調製
市販の熱可塑性樹脂であるポリウレタンエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)205.3gに、上記操作C1.3で調製した非連結型結晶性無機酸化物微粒子のメタノール分散液(MC-1)164.2gおよびイオン交換水96.9gを加えて1時間攪拌し、次いで、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)531.1g、およびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)0.3gを加えて室温で一昼夜攪拌して、プライマー層膜形成用塗料組成物(S1)を調製した。
市販の熱可塑性樹脂であるポリウレタンエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)205.3gに、上記操作C1.3で調製した非連結型結晶性無機酸化物微粒子のメタノール分散液(MC-1)164.2gおよびイオン交換水96.9gを加えて1時間攪拌し、次いで、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)531.1g、およびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)0.3gを加えて室温で一昼夜攪拌して、プライマー層膜形成用塗料組成物(S1)を調製した。
(操作C1.7)プライマー層膜形成用塗料組成物(S2)の調製
市販の熱可塑性樹脂であるポリウレタンエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)160.7gに、上記操作C1.3で調製した非連結型結晶性無機酸化物微粒子のメタノール分散液(MC-1)208.9gおよびイオン交換水96.9gを加えて、1時間攪拌し、次いで、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)531.1g、およびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)0.3gを加えて室温で一昼夜攪拌して、プライマー層膜形成用塗料組成物(S2)を調製した。
市販の熱可塑性樹脂であるポリウレタンエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)160.7gに、上記操作C1.3で調製した非連結型結晶性無機酸化物微粒子のメタノール分散液(MC-1)208.9gおよびイオン交換水96.9gを加えて、1時間攪拌し、次いで、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)531.1g、およびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)0.3gを加えて室温で一昼夜攪拌して、プライマー層膜形成用塗料組成物(S2)を調製した。
[比較例2]
(操作C2.2)連結型シリカ微粒子群の水分散液(C-2)の調製
シリカゾル(日揮触媒化成(株)製:SI-550、SiO2濃度20重量%)2.0kgにイオン交換水6.0kgを加え、次いで陽イオン交換樹脂(三菱化学(株)製:SK-1BH)400gを添加し、1時間撹拌して脱アルカリ処理した。得られた脱アルカリ処理物に、陽イオン交換樹脂を分離してから陰イオン交換樹脂(三菱化学(株)製:SANUPC)400gを添加し、これらを1時間撹拌して脱アニオン処理して陰イオン交換樹脂を分離し、次いでオートクレーブ(耐圧硝子工業(株)製、10L)に入れて、200℃の温度で4時間、加熱処理を行なった後、室温まで冷却した。次いで、得られた処理物に再び陽イオン交換樹脂(三菱化学(株)製:SK-1BH)400gを添加し、これらを1時間撹拌して脱アルカリ処理して陽イオン交換樹脂を分離することにより、SiO2濃度5重量%のシリカ粒子の分散液(C-2)を調製した。
(操作C2.2)連結型シリカ微粒子群の水分散液(C-2)の調製
シリカゾル(日揮触媒化成(株)製:SI-550、SiO2濃度20重量%)2.0kgにイオン交換水6.0kgを加え、次いで陽イオン交換樹脂(三菱化学(株)製:SK-1BH)400gを添加し、1時間撹拌して脱アルカリ処理した。得られた脱アルカリ処理物に、陽イオン交換樹脂を分離してから陰イオン交換樹脂(三菱化学(株)製:SANUPC)400gを添加し、これらを1時間撹拌して脱アニオン処理して陰イオン交換樹脂を分離し、次いでオートクレーブ(耐圧硝子工業(株)製、10L)に入れて、200℃の温度で4時間、加熱処理を行なった後、室温まで冷却した。次いで、得られた処理物に再び陽イオン交換樹脂(三菱化学(株)製:SK-1BH)400gを添加し、これらを1時間撹拌して脱アルカリ処理して陽イオン交換樹脂を分離することにより、SiO2濃度5重量%のシリカ粒子の分散液(C-2)を調製した。
このSiO2微粒子のX線回折では結晶性ピークが検出されず、SiO2微粒子は非晶質であった。
このSiO2微粒子に含まれる金属成分の割合(酸化物換算値)を測定したところ、SiO2が99.98重量%、Na2Oが0.02重量%であった。
このSiO2微粒子の平均粒子径は15nmであり、この粒状微粒子は3~4個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は170m2/gであった。以下、上記水分散液(C-2)を「連結型シリカ微粒子群の水分散液(C-2)」ともいう。
(操作C2.3)連結型シリカ微粒子のメタノール分散液(MC-2)の調製
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子の水分散(P-1)1470gに替えて上記操作C2.2で調製した連結型シリカ微粒子群の水分散(C-2)2.94kgを用いたこと以外は上記操作1.3と同様の操作を行うことにより、シリカ微粒子のメタノール分散液(以下「MC-2」という)を調製した。
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子の水分散(P-1)1470gに替えて上記操作C2.2で調製した連結型シリカ微粒子群の水分散(C-2)2.94kgを用いたこと以外は上記操作1.3と同様の操作を行うことにより、シリカ微粒子のメタノール分散液(以下「MC-2」という)を調製した。
このメタノール分散液(MC-2)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
このシリカ微粒子の平均粒子径は15nmであり、この微粒子は3~4個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は173m2/gであった。以下、上記分散液(MC-2)を「連結型シリカ微粒子群のメタノール分散液(MC-2)」ともいう。
このメタノール分散液(MC-2)中のシリカ微粒子に含まれる金属成分を測定したところ、SiO2100.0重量%であった。
(操作C2.4)ハードコート層膜形成用塗料組成物(R3)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)198.1gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)35.1gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液67.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)198.1gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)35.1gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液67.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)310.0gおよび上記操作C2.3で調製した固形分濃度30重量%の連結型シリカ微粒子群のメタノール分散液(MC-2)339.5g、さらにプロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)7.9gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(R3)を調製した。
[比較例3]
(操作C3.2)連結型無機酸化物微粒子群の水分散液(C-3)の調製
実施例1の操作1.1から操作1.2にかけて工程(1)を実施せず、操作1.2の工程(2)、(3)において、無機酸化物微粒子分散液(1b)に替えてシリカゾル(日揮触媒化成(株)製 SI-30、平均粒子径12nm、SiO2濃度30重量%)1.0kgを用いたこと以外は上記操作1.2と同様の操作を行うことにより、シリカのコア粒子の表面を、ジルコニウムおよびケイ素を含む複合酸化物からなるシェルで被覆してなるコアシェル微粒子(C3)の透明乳白色水分散液(以下、「C-3」という)を調製した。
(操作C3.2)連結型無機酸化物微粒子群の水分散液(C-3)の調製
実施例1の操作1.1から操作1.2にかけて工程(1)を実施せず、操作1.2の工程(2)、(3)において、無機酸化物微粒子分散液(1b)に替えてシリカゾル(日揮触媒化成(株)製 SI-30、平均粒子径12nm、SiO2濃度30重量%)1.0kgを用いたこと以外は上記操作1.2と同様の操作を行うことにより、シリカのコア粒子の表面を、ジルコニウムおよびケイ素を含む複合酸化物からなるシェルで被覆してなるコアシェル微粒子(C3)の透明乳白色水分散液(以下、「C-3」という)を調製した。
この無機酸化物粒状微粒子(C3)は4~5個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は254m2/gであった。以下、上記分散液(C-3)を「連結型無機酸化物微粒子群の水分散液(C-3)」ともいう。
この連結型微粒子群のX線回折では結晶性ピークが検出されず、無機酸化物微粒子(C3)は非晶質であった。
この連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、SiO2が84.7重量%、ZrO2が14.3重量%、K2Oが1.0重量%であった。ここで、この無機酸化物微粒子に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.082であった。
(操作C3.3)連結型無機酸化物微粒子群のメタノール分散液(MC-3)の調製
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに替えて上記操作C3.2で調製した連結型無機酸化物微粒子群の水分散液(C-3)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MC-3」という)を調製した。
実施例1の操作1.3において、上記操作1.2で調製した連結型結晶性無機酸化物微粒子群の水分散液(P-1)1470gに替えて上記操作C3.2で調製した連結型無機酸化物微粒子群の水分散液(C-3)1470gを用いたこと以外は上記操作1.3と同様の操作を行うことにより、無機酸化物微粒子のメタノール分散液(以下「MC-3」という)を調製した。
このメタノール分散液(MC-3)の水分含有量は約0.5重量%、固形分濃度は30重量%であった。
この無機酸化物微粒子の平均粒子径は12nmであり、この微粒子は4~5個連結して連結型微粒子群を構成しており、連結型微粒子群の比表面積は254m2/gであった。以下、上記分散液(MP-2)を「連結型無機酸化物微粒子群のメタノール分散液(MP-2)」ともいう。
このメタノール分散液(MP-2)中の連結型微粒子群に含まれる金属成分の割合(酸化物換算値)を測定したところ、SiO2が91.1重量%、ZrO2が8.1重量%、K2Oが0.8重量%であった。ここで、この連結型微粒子群に含まれるジルコニウムをZrO2と表し、ケイ素をSiO2と表したときのモル比(ZrO2/SiO2)は0.043であった。
(操作C3.4)ハードコート層膜形成用塗料組成物(R4)の調製
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)198.1gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)35.1gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液67.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
γ-グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z-6040)198.1gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)35.1gの混合液中に、混合液を攪拌しながら0.01Nの塩酸水溶液67.5gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行い、加水分解液を得た。
次いで、この加水分解液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)310.0gおよび上記操作C3.3で調製した固形分濃度30重量%の連結型シリカ微粒子のメタノール分散液(MC-3)339.5g、プロピレングリコールモノメチルエーテル(ダウケミカル製)40.6g、トリス(2,4-ペンタンジオナト)アルミニウム(III)(東京化成工業(株)製)7.9gおよびレベリング剤としてのシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L-7604)1.1gを加え、室温で一昼夜攪拌して、ハードコート層膜形成用塗料組成物(R4)を調製した。
実施例1~5および比較例1~3で調製した各無機酸化物微粒子および各分散液の性状を表1~5に示す。
B.試験用プラスチックレンズ基板(試験片)の作製および評価
<プラスチックレンズ基板(試験片)の作製>
(1)プラスチックレンズ基材の前処理
市販のプラスチックレンズ基材「モノマー名:MR-8」(三井化学(株)製、基材の屈折率1.60)および「モノマー名:MR-7」(三井化学(株)製、基材の屈折率1.67)を、40℃に保った10重量%濃度のKOH水溶液に2分間浸漬してエッチング処理を行った。更に、これらを取り出して水洗したのち、十分に乾燥させた。
<プラスチックレンズ基板(試験片)の作製>
(1)プラスチックレンズ基材の前処理
市販のプラスチックレンズ基材「モノマー名:MR-8」(三井化学(株)製、基材の屈折率1.60)および「モノマー名:MR-7」(三井化学(株)製、基材の屈折率1.67)を、40℃に保った10重量%濃度のKOH水溶液に2分間浸漬してエッチング処理を行った。更に、これらを取り出して水洗したのち、十分に乾燥させた。
(2)プライマー層膜の形成
前処理を行ったプラスチックレンズ基材にプライマー層膜形成用塗料組成物をそれぞれ塗布して塗膜を形成した。なお、この塗料組成物の塗布は、ディッピング法を用いて行った。
前処理を行ったプラスチックレンズ基材にプライマー層膜形成用塗料組成物をそれぞれ塗布して塗膜を形成した。なお、この塗料組成物の塗布は、ディッピング法を用いて行った。
次に、前記塗膜を100℃で10分間、加熱処理して、塗膜(プライマー層)の予備乾燥を行った。
このようにして形成された前記プライマー層の予備硬化後の膜厚は、概ね0.5~1.0μmであった。
(3)ハードコート層膜の形成
前記前処理を行ったプラスチックレンズ基材、またはプライマー層膜を形成したプラスチックレンズ基材の表面に、ハードコート層膜形成用の塗料組成物を塗布して塗膜を形成した。なお、この塗料組成物の塗布は、ディッピング法を用いて行った。
前記前処理を行ったプラスチックレンズ基材、またはプライマー層膜を形成したプラスチックレンズ基材の表面に、ハードコート層膜形成用の塗料組成物を塗布して塗膜を形成した。なお、この塗料組成物の塗布は、ディッピング法を用いて行った。
次に、前記塗膜を90℃で10分間、乾燥させた後、110℃で2時間、加熱処理して、塗膜(ハードコート層)の硬化を行った。この際、前記プライマー層の本硬化も同時に行った。
このようにして形成された前記ハードコート層膜の硬化後の膜厚は、概ね3.0~3.5μmであった。
(4)反射防止膜層の形成
前記ハードコート層膜の表面に、以下に示す構成の無機酸化物成分を真空蒸着法によって蒸着させた。ここでは、ハードコート層側から大気側に向かって、SiO2:0.06λ、ZrO2:0.15λ、SiO2:0.04λ、ZrO2:0.25λ、SiO2:0.25λの順序で積層された反射防止層膜の層をそれぞれ形成した。また、設計波長λは、520nmとした。
前記ハードコート層膜の表面に、以下に示す構成の無機酸化物成分を真空蒸着法によって蒸着させた。ここでは、ハードコート層側から大気側に向かって、SiO2:0.06λ、ZrO2:0.15λ、SiO2:0.04λ、ZrO2:0.25λ、SiO2:0.25λの順序で積層された反射防止層膜の層をそれぞれ形成した。また、設計波長λは、520nmとした。
<プラスチックレンズ基板(試験片)の評価>
実施例1~5、比較例1~3で得られたハードコート層膜形成用の塗料組成物H1、H2、H3、H4、H5、H6、H7、R1、R2、R3、R4と、プライマー層膜形成用塗料組成物Y1、Y2、S1、S2を用いて、表6に示す組み合わせで前処理を行ったプラスチックレンズ基材上にプライマー層膜およびハードコート層膜を形成して試験片1~13を作製した。
実施例1~5、比較例1~3で得られたハードコート層膜形成用の塗料組成物H1、H2、H3、H4、H5、H6、H7、R1、R2、R3、R4と、プライマー層膜形成用塗料組成物Y1、Y2、S1、S2を用いて、表6に示す組み合わせで前処理を行ったプラスチックレンズ基材上にプライマー層膜およびハードコート層膜を形成して試験片1~13を作製した。
なお、プライマー層膜形成用塗料組成物Y1とハードコート層膜形成用塗料組成物H1を塗布し反射防止層膜を形成した試験片9の基材、および、プライマー層膜形成用塗料組成物S1とハードコート層膜形成用塗料組成物R1を塗布し反射防止層膜を形成した試験片11を作成した。
さらに、プライマー層膜形成用塗料組成物Y2とハードコート層膜形成用塗料組成物H2を塗布し反射防止層膜を形成した試験片12の基材、および、プライマー層膜形成用塗料組成物S2とハードコート層膜形成用塗料組成物R2を塗布し反射防止層膜を形成した試験片13を作成した。ここで、試験片12~13の基材としては「モノマー名:MR-7」(三井化学(株)製、基材の屈折率1.67)を用い、それ以外の試験片の基材には「モノマー名:MR-8」(三井化学(株)製、基材の屈折率1.60)を用いた。
このようにして得られた試験片1~13について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、膜硬度、密着性、耐候性、耐光性、屈折率を試験して評価した。その結果を表7に示す。
この結果から明らかなように、実施例で作成した塗料組成物を塗布して得られた試験片では耐擦傷性および膜硬度が非常に高いとともに、曇りがなく透明度が高いことがわかった。また、外観干渉縞も良好で、さらに密着性、耐候的密着性および耐光性が高いことがわかった。
本発明に係る連結型結晶性無機酸化物微粒子群およびその分散液は、該微粒子群を構成するチタニウムやジルコニウムなどの無機酸化物微粒子の屈折率が高いことから、光学材料用途に利用でき、その他にも、ハードコード材料、接着材料、封止材料、高反射性材料、紫外光吸収材料などの様々な用途に使用することができる。
Claims (19)
- 連結型結晶性無機酸化物微粒子群および分散媒を含む分散液であって、
該連結型結晶性無機酸化物微粒子群が
(1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子、
(2)前記微粒子(1)を被覆する、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1とケイ素とを含む複合酸化物からなる被覆物質、および
(3)該被覆物質と同一成分である複合酸化物からなり、隣接する、前記被覆物質(2)で被覆された前記微粒子(1)同士を連結する結合物質
から構成されており、
該分散媒が水および/または有機溶媒である
ことを特徴とする連結型結晶性無機酸化物微粒子群を含む分散液。 - 前記無機酸化物微粒子(1)が、5~100nmの平均粒子径を有することを特徴とする請求項1に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記無機酸化物微粒子(1)を構成する金属元素M2として、さらにスズ、タングステン、アンチモンおよびインジウムからなる群から選ばれる少なくとも1種を含むことを特徴とする請求項1または2に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記無機酸化物微粒子(1)が、前記金属元素とケイ素とを含む複合酸化物微粒子であることを特徴とする請求項1~3のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記無機酸化物微粒子(1)が、前記金属元素の酸化物微粒子もしくは複合酸化物微粒子の表面をケイ素酸化物で被覆したもの、または前記金属元素とケイ素とを含む複合酸化物微粒子の表面をケイ素酸化物で被覆したものであることを特徴とする請求項1~3のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記被覆物質(2)および前記結合物質(3)を構成する複合酸化物に含まれる前記金属元素成分をM1Oxで表し、さらにケイ素成分をSiO2で表したとき、モル比(M1Ox/SiO2)が5/95~98/2の範囲にあることを特徴とする請求項1~5のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記結晶性無機酸化物微粒子(1)に含まれる金属元素M2およびケイ素の重量を、それぞれ、M2Oxの重量およびSiO2-(2)の重量に換算し、前記被覆物質(2)および前記結合物質(3)に含まれる金属元素M1およびケイ素の重量を、それぞれ、M1Oxの重量およびSiO2-(1)の重量に換算すると、重量比{(M1Ox+SiO2-(1))/(M2Ox+SiO2-(2))}が7/100~150/100の範囲にあることを特徴とする請求項1~6のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記連結型結晶性無機酸化物微粒子群が、走査型電子顕微鏡(SEM)で観測した際に、帯状および/またはネットワーク状の形態として観測されることを特徴とする請求項1~7のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記分散媒が水であることを特徴とする請求項1~8のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記分散媒が有機溶媒または有機溶媒および水であることを特徴とする請求項1~8のいずれかに記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 前記有機溶媒がアルコール、エーテルおよびケトンからなる群から選ばれる少なくとも1種の有機化合物であることを特徴とする請求項10に記載の連結型結晶性無機酸化物微粒子群を含む分散液。
- 結晶性無機酸化物微粒子と、前記微粒子を被覆する被覆物質と、隣接する、前記被覆物質で被覆された前記微粒子同士を連結する結合物質とから構成された結晶性無機酸化物微粒子群を含む水分散液の製造方法であって、
(1)チタニウム、ジルコニウム、ニオブ、セリウムおよび亜鉛からなる群から選ばれる少なくとも1種の金属元素M2とケイ素とを含む結晶性無機酸化物微粒子(1)が1次元的または2次元的に連結した粒子を含有する水分散液を準備する工程、
(2)前記工程(1)で準備された水分散液に、ジルコニウム、アルミニウムおよびアンチモンからなる群から選ばれる少なくとも1種の金属元素M1の化合物を含むアルカリ性水溶液および珪酸を含む酸性水溶液を添加する工程、および
(3)前記工程(2)で得られた水分散液を水熱処理する工程
を含むことを特徴とする連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。 - 前記工程(1)において、前記結晶性無機酸化物微粒子(1)が連結せずに分散した水分散液を準備し、前記水分散液のpHを2~6に、および/または前記結晶性無機酸化物微粒子(1)と水との界面におけるゼータ電位(ただし、任意に水の量を調整し、水分散液中の前記結晶性無機酸化物微粒子(1)の含有量が0.15重量%の状態で測定した場合のゼータ電位である。)を-30~-70mVに調整し、前記水分散液を20~40℃の温度条件下に1~5時間放置して、前記水分散液中に含まれる前記結晶性無機酸化物微粒子(1)を1次元的または2次元的に連結させ熟成させることを特徴とする請求項12に記載の連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。
- 前記アルカリ性水溶液が、酸化物換算基準で0.5~20重量%の金属化合物の水溶液であることを特徴とする請求項12または13に記載の連結型結晶性無機酸化物微粒子群を含む水分散液の製造方法。
- 請求項9に記載された分散液を、溶媒置換装置に供して該分散液中に含まれる水の一部または全てを有機溶媒で置換することを特徴とする連結型結晶性無機酸化物微粒子群を含む有機溶媒分散液の製造方法。
- 請求項10に記載の連結型結晶性無機酸化物微粒子群を含む分散液からなる光学基材用塗布液。
- さらに有機ケイ素化合物からなるバインダー成分を含有し、ハードコート層膜形成用塗布液であることを特徴とする請求項16に記載の光学基材用塗布液。
- さらに熱硬化性樹脂または熱可塑性樹脂からなるバインダー成分を含有し、プライマー層膜形成用塗布液であることを特徴とする請求項16に記載の光学基材用塗布液。
- 前記光学基材が、プラスチックレンズであることを特徴とする請求項16~18のいずれかに記載の光学基材用塗布液。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014554601A JP6278902B2 (ja) | 2012-12-28 | 2013-12-27 | 連結型結晶性無機酸化物微粒子群を含む水および/または有機溶媒分散液、その製造方法、ならびに該連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-288172 | 2012-12-28 | ||
JP2012288172 | 2012-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014104312A1 true WO2014104312A1 (ja) | 2014-07-03 |
Family
ID=51021381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/085141 WO2014104312A1 (ja) | 2012-12-28 | 2013-12-27 | 連結型結晶性無機酸化物微粒子群を含む水および/または有機溶媒分散液、その製造方法、ならびに該連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6278902B2 (ja) |
WO (1) | WO2014104312A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115315412A (zh) * | 2020-03-31 | 2022-11-08 | 日挥触媒化成株式会社 | 被覆氧化锆的氧化钛微粒的制造方法、被覆氧化锆的氧化钛微粒及其用途 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115060A (ja) * | 2006-11-07 | 2008-05-22 | Catalysts & Chem Ind Co Ltd | 鎖状シリカ系微粒子群を含む水分散液の製造方法、および鎖状シリカ系微粒子群の水分散液並びにその有機溶媒分散液 |
WO2010071010A1 (ja) * | 2008-12-18 | 2010-06-24 | 日揮触媒化成株式会社 | 鎖状シリカ系中空微粒子とその製造方法、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材 |
JP2011093754A (ja) * | 2009-10-30 | 2011-05-12 | Jgc Catalysts & Chemicals Ltd | 五酸化アンチモン系複合酸化物微粒子、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材 |
WO2011102467A1 (ja) * | 2010-02-19 | 2011-08-25 | 国立大学法人東京大学 | 結晶性金属酸化物構造体の製造方法 |
-
2013
- 2013-12-27 JP JP2014554601A patent/JP6278902B2/ja active Active
- 2013-12-27 WO PCT/JP2013/085141 patent/WO2014104312A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008115060A (ja) * | 2006-11-07 | 2008-05-22 | Catalysts & Chem Ind Co Ltd | 鎖状シリカ系微粒子群を含む水分散液の製造方法、および鎖状シリカ系微粒子群の水分散液並びにその有機溶媒分散液 |
WO2010071010A1 (ja) * | 2008-12-18 | 2010-06-24 | 日揮触媒化成株式会社 | 鎖状シリカ系中空微粒子とその製造方法、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材 |
JP2011093754A (ja) * | 2009-10-30 | 2011-05-12 | Jgc Catalysts & Chemicals Ltd | 五酸化アンチモン系複合酸化物微粒子、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材 |
WO2011102467A1 (ja) * | 2010-02-19 | 2011-08-25 | 国立大学法人東京大学 | 結晶性金属酸化物構造体の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115315412A (zh) * | 2020-03-31 | 2022-11-08 | 日挥触媒化成株式会社 | 被覆氧化锆的氧化钛微粒的制造方法、被覆氧化锆的氧化钛微粒及其用途 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014104312A1 (ja) | 2017-01-19 |
JP6278902B2 (ja) | 2018-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754943B2 (ja) | 高屈折率金属酸化物微粒子を含む塗料組成物および該塗料組成物を基材上に塗布して得られる硬化性塗膜 | |
JP5455501B2 (ja) | コアシェル型複合酸化物微粒子の分散液および該分散液の製造方法、該コアシェル型複合酸化物微粒子を含む塗料組成物、硬化性塗膜および硬化性塗膜付き基材 | |
JP5255270B2 (ja) | コアシェル構造を有する無機酸化物微粒子、該微粒子を含む分散ゾルおよび光学基材用塗布液 | |
JP6049368B2 (ja) | Al修飾無機酸化物微粒子とその製造方法、分散液、および塗料組成物 | |
JP5591530B2 (ja) | シリカ系微粒子分散ゾルの製造方法、シリカ系微粒子分散ゾル、該分散ゾルを含む塗料組成物、硬化性塗膜および硬化性塗膜付き基材 | |
KR101907882B1 (ko) | 이산화규소-산화제2주석 복합산화물 피복 산화티탄 함유 금속 산화물 입자 | |
JP5854584B2 (ja) | 高屈折率金属酸化物微粒子を含む水分散ゾルの調製方法、該方法から得られる水分散ゾルおよび前記微粒子を含む有機溶媒分散ゾル並びに塗料組成物 | |
KR101437200B1 (ko) | 표면 피복된 이산화티탄졸, 그 제조법 및 그것을 포함한 코팅 조성물 | |
WO2006001487A1 (ja) | スズ修飾ルチル型酸化チタン微粒子 | |
JP5514487B2 (ja) | 高屈折率金属酸化物微粒子の水分散ゾル、その調製方法および該金属酸化物微粒子の有機溶媒分散ゾル | |
JP6214412B2 (ja) | コアシェル型酸化物微粒子の分散液、その製造方法、およびその用途 | |
JP6080583B2 (ja) | 表面改質無機複合酸化物微粒子、その製造方法、該微粒子を含む分散液、光学基材用塗布液、光学基材用塗膜および塗膜付基材 | |
JP5713668B2 (ja) | ハードコート層膜形成用塗料組成物 | |
US9534122B2 (en) | Oligomer-modified fine particles, method for producing the same, and coating containing the particles | |
JP5511368B2 (ja) | 高屈折率金属酸化物微粒子を含む有機溶媒分散ゾルの調製方法並びにその有機溶媒分散ゾル、および該有機溶媒分散ゾルを用いて得られる塗料組成物 | |
JP6253484B2 (ja) | 塗料組成物、ハードコート層およびハードコート層付き光学基材ならびにこれらの製造方法 | |
JP6278902B2 (ja) | 連結型結晶性無機酸化物微粒子群を含む水および/または有機溶媒分散液、その製造方法、ならびに該連結型結晶性無機酸化物微粒子群を含む光学基材用塗布液 | |
JP2012162426A (ja) | シリカ系微粒子の分散ゾル、該分散ゾルの製造方法および塗料組成物 | |
JP5700944B2 (ja) | 金平糖状のシリカ系微粒子の分散ゾル、該分散ゾルを含む塗料組成物、および金平糖状のシリカ系微粒子分散ゾルの製造方法。 | |
JP6232310B2 (ja) | 塗料組成物、塗膜および塗膜付き光学物品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13867036 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014554601 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13867036 Country of ref document: EP Kind code of ref document: A1 |