WO2014104125A1 - Friction material and method for producing same - Google Patents

Friction material and method for producing same Download PDF

Info

Publication number
WO2014104125A1
WO2014104125A1 PCT/JP2013/084736 JP2013084736W WO2014104125A1 WO 2014104125 A1 WO2014104125 A1 WO 2014104125A1 JP 2013084736 W JP2013084736 W JP 2013084736W WO 2014104125 A1 WO2014104125 A1 WO 2014104125A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
phenol resin
friction
types
hydroxyl
Prior art date
Application number
PCT/JP2013/084736
Other languages
French (fr)
Japanese (ja)
Inventor
北原康利
岡山勝弥
今井淳司
Original Assignee
株式会社アドヴィックス
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス, 住友ベークライト株式会社 filed Critical 株式会社アドヴィックス
Publication of WO2014104125A1 publication Critical patent/WO2014104125A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0073Materials; Production methods therefor containing fibres or particles having lubricating properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure

Definitions

  • the present invention relates to a friction material used for, for example, a disc brake pad of a vehicle or the like and a method for manufacturing the friction material.
  • Friction materials used for brake pads, brake shoes, etc. for vehicles are generally powdered friction material raw materials mixed with fiber base material, friction modifier, filler, wetting agent, binder, etc. It is manufactured by pressing with a press. Production methods using a press include a hot press method in which a friction material material is heated and compacted to form, and a normal temperature press method in which a friction material material is compacted and molded at room temperature without being heated.
  • a wetting agent such as water is usually mixed in the friction material raw material at a ratio of 3 wt% to 6 wt%.
  • the friction material raw material contains inevitable water such as moisture contained in each component of the friction material raw material at a maximum of about 2% by weight.
  • the friction material material there is a phenol resin as a binder in addition to water and calcium hydroxide.
  • a part of calcium hydroxide elutes in water and becomes calcium ions.
  • Calcium ions bind to oxygen instead of hydrogen of the hydroxyl group of the phenol resin, and ionize the phenol resin.
  • the friction material material has a high fluidity, so that the moldability is enhanced.
  • the friction material can be compacted with an appropriate porosity, for example, to obtain a friction material having good performance, similar to the case of molding by the hot press method. it can.
  • the ionized phenol resin is altered during the mixing of the friction material, and as a result, the viscosity of the friction material may increase rapidly.
  • the higher the moisture content the faster the resin is denatured.
  • the rate of alteration is increased, and this phenomenon appears remarkably.
  • the phenolic resin In the friction material raw material containing only a phenolic resin having a small hydroxyl equivalent weight, the phenolic resin has many reaction points, so that the once chelated phenolic resin has many hydroxyl groups that are not yet bonded to calcium ions. These hydroxyl groups bind to other calcium ions. And when a phenol resin couple
  • the viscosity of the friction material raw material increases during mixing, a part of the friction material raw material may adhere to the inner wall or mixing blade of the mixer and the yield may deteriorate. Furthermore, since the fluidity of the friction material is lowered, the pot life (the time that can be formed by pressing after mixing the friction material) is shortened, and the moldability is also deteriorated.
  • Patent Document 1 As conventional manufacturing methods for solving such problems, for example, those disclosed in Patent Documents 1 and 2 are known.
  • Patent Document 1 the phenol resin is encapsulated in gelatin and microencapsulated, and in Patent Document 2, calcium hydroxide is coated with a water-repellent stearic acid compound. Calcium hydroxide is prevented from dissolving in water.
  • JP-A-3-210338 Japanese Patent Laid-Open No. 3-177482 (see FIG. 1) JP-A-3-210338 (refer to the claims)
  • Patent Document 1 it is necessary to separately perform microencapsulation of phenol resin, and in the manufacturing method of Patent Document 2, it is necessary to separately perform a process of coating with calcium hydroxide. For this reason, in any of the manufacturing methods, there remains room for improvement in terms of improving work efficiency.
  • gelatin added to encapsulate phenol resin and stearic acid compound added to coat calcium hydroxide may adversely affect the friction performance of the friction material.
  • an object of the present invention is to obtain a friction material that suppresses pseudo-polymerization of a phenol resin and has good characteristics even when molded by a room temperature press method.
  • the friction material according to the present invention is characterized in that the friction material material includes a fiber base material, a friction modifier, a filler, a wetting agent, and a plurality of types of phenol resins having different hydroxyl equivalents as a binder. It is a point manufactured by.
  • the phenol resin is chelated by calcium ions as described above.
  • the number of hydroxyl groups not bonded to calcium ions remains small. Therefore, chelation is not promoted any more and the pseudo-polymerization of the phenol resin is suppressed.
  • the phenol resin bonded to calcium ions remains in an ionized state. is doing.
  • the product of the mixing ratio of the phenol resin and the hydroxyl group equivalent of the phenol resin is calculated for each of a plurality of types of the phenol resins, and the sum of the calculated products is calculated as a plurality of types.
  • the hydroxyl equivalent when divided by the total blending ratio of the phenol resin is preferably 112 to 155 g / eq.
  • the hydroxyl group equivalent of the phenol resin having the largest hydroxyl group equivalent among the plurality of types of phenol resins is 135 g / eq or more.
  • a phenolic resin with a large hydroxyl equivalent has few reaction points. By adding such a phenolic resin, the pseudo-polymerization of the phenolic resin is suppressed, and a friction material having good characteristics even in a room temperature press method is obtained. be able to.
  • the plurality of types of phenol resins are two types, and the content ratio of the phenol resin having the larger hydroxyl equivalent and the phenol resin having the smaller hydroxyl equivalent is from 2:16 to It is preferable to be in the range of 2: 1.
  • the compounding ratio of the phenol resin having a large hydroxyl equivalent When the compounding ratio of the phenol resin having a large hydroxyl equivalent is small, the pseudo-polymerization of the phenol resin proceeds and the viscosity of the friction material raw material increases. In addition, if the compounding ratio of the phenol resin with a large hydroxyl equivalent is large, the pseudo-polymerization is suppressed, but there are not enough reaction points of the phenol resin, and the curing reaction of the phenol resin by heat treatment does not proceed, so that sufficient strength is obtained. I can't. With such a blending ratio, it is possible to obtain a friction material having good characteristics even in the room temperature press method by suppressing pseudo-polymerization without hindering the ionization of the phenol resin.
  • the blending ratio of the phenol resin having a larger hydroxyl equivalent is 1 to 20% by weight with respect to the entire friction material material.
  • the blending ratio of the phenol resin having a large hydroxyl equivalent is set in this way, it is possible to obtain a friction material having good characteristics even in the room temperature press method by suppressing pseudo-polymerization without hindering ionization of the phenol resin. .
  • the phenol resin having a larger hydroxyl equivalent is an aralkyl-modified phenol resin.
  • the aralkyl-modified phenol resin has a hydroxyl group equivalent of 170 to 180 g / eq
  • mixing with a straight type phenol resin having a hydroxyl group equivalent of 105 g / eq suppresses pseudo-polymerization without disturbing the ionization of the phenol resin.
  • a friction material having good characteristics can be obtained even in the press method.
  • the characteristics of the method for producing a friction material according to the present invention include a mixing step of stirring a fiber base material, a friction modifier, a filler, a wetting agent, and a friction material raw material containing a plurality of types of phenol resins having different hydroxyl equivalents as binders. And a forming step of forming the mixed powder obtained in the mixing step into a desired shape.
  • the phenol resin having a different hydroxyl equivalent is pseudo-crosslinked to the hydroxyl group of the phenol resin that becomes the chelating base point (reaction point), further pseudo-polymerization is suppressed, and the phenol resin is altered. Is suppressed. Therefore, high fluidity can be maintained even when left for a long time in the state where the mixing step is completed, and a friction material can be formed by a room temperature press method (molding step) even after being left for a long time.
  • the friction material formed in this way has achieved the same high density of the friction material as in the case of forming the friction material by the hot press method.
  • the friction material formed by the normal temperature press method of the friction material having such characteristics has the same pore size distribution as the friction material formed by the hot press method, so the friction material formed by the conventional normal temperature press method The wear resistance can be improved as compared with.
  • the friction material according to the present embodiment can be applied to, for example, a disc brake pad of a vehicle or the like, but is not limited thereto. In addition, it can apply to what can apply conventionally well-known friction materials, such as a brake shoe, for example.
  • the manufactured friction material can be integrated with a plate-like member such as a metal plate as a back plate and used as a brake pad.
  • the friction material raw material according to the present embodiment refers to all materials that are mixed in manufacturing the friction material.
  • the friction material raw material includes a fiber base material, a friction adjusting material, a filler, a wetting agent, a binder, etc., which will be described later. good.
  • a mixture of friction material raw materials for a normal temperature press method is referred to as a mixed powder for a normal temperature press method
  • a mixture of friction material materials for a hot press method is referred to as a mixed powder for a hot press method.
  • fiber base materials that can be used as fiber components include organic fibers such as aramid fibers, cellulose fibers, acrylic fibers, and carbon fibers, glass fibers, rock wool, ceramic fibers, potassium titanate fibers, and wallast.
  • organic fibers such as aramid fibers, cellulose fibers, acrylic fibers, and carbon fibers, glass fibers, rock wool, ceramic fibers, potassium titanate fibers, and wallast.
  • inorganic fibers such as knight, and metal fibers such as copper, stainless steel, and brass. These can be used alone or in combination of two or more.
  • the blending ratio of the fiber base material is not particularly limited, but may be added so as to be about 3 to 5% by weight of the friction material raw material.
  • these fiber base materials may be added to the friction material raw material in a state of being pre-hydrated. It is preferable to use an organic fiber as a fiber base (hereinafter also referred to as a water-containing fiber) to be hydrated. Since the amount of water sprayed can be reduced by adding the water-containing fiber to the friction material material, it is possible to make it difficult for the sprayed water to adhere to the inner wall of the mixer. As a result, it is possible to prevent the friction material raw material from being easily attached to the inner wall of the mixer, and to prevent the occurrence of inconvenience that the yield of the friction material is deteriorated and the labor is required for cleaning the mixer.
  • an organic fiber hereinafter also referred to as a water-containing fiber
  • friction modifiers examples include friction dust such as cashew dust and rubber dust, calcium carbonate, barium sulfate, magnesium oxide, graphite, mica, zircon, molybdenum disulfide, ceramic, copper powder, brass powder, zinc powder, aluminum powder, foam Examples include vermiculite. These can be used alone or in combination of two or more.
  • the blending ratio of the friction modifier is not particularly limited, but it is preferable to add the friction modifier so as to be about 3 to 30% by weight of the friction material.
  • these friction modifiers originally contain moisture although they are in a small amount.
  • Calcium hydroxide (slaked lime) is used as the filler. Calcium hydroxide is blended as a pH adjusting material in the friction material raw material, for example, as a countermeasure against rust adhesion to the brake disc rotor, thereby making the friction material alkaline.
  • the blending ratio of calcium hydroxide is not particularly limited, but may be added so as to be about 2% to 25% by weight of the friction material raw material.
  • water is used as the wetting agent for the mixed powder for the room temperature press method.
  • the mixing ratio of water is not particularly limited, but it is preferable to add it so as to be about 2 to 7% by weight of the friction material raw material.
  • the total amount of water contained in the water-containing fibers and water supplied by spraying, etc. should be 2% to 7% by weight of the friction material material. Good.
  • a surfactant or a viscosity imparting agent may be added to the water. If a surfactant is added to water, each component of the friction material raw material can be more reliably mixed by the surface active action of the added surfactant when the friction material raw material is mixed.
  • the surfactant may be either ionic or nonionic.
  • known ones such as sodium alkyl sulfate ester, polyoxyethylene alkyl ether, alkylamine oxide can be used. These can be used alone or in combination of two or more.
  • the blending ratio of the surfactant is not particularly limited, but may be added so as to be about 0.2% to 0.5% by weight of the friction material material.
  • viscosity imparting agent if a viscosity imparting agent is added to water, viscosity can be imparted to water, so that it is possible to reliably prevent the working environment from deteriorating due to generation of dust of the friction material, for example, during the mixing step.
  • the strength of the friction material can be improved by adding a viscosity imparting agent.
  • the viscosity imparting agent polyethylene oxide, sodium polyacrylate, methyl cellulose, a mixture thereof, and the like can be used. These can be used alone or in combination of two or more.
  • the blending ratio of the viscosity-imparting agent is not particularly limited, but may be added so as to be about 0.2% to 0.5% by weight of the friction material material.
  • moisture contained in each component of the friction material and raw materials that easily segregate in the mixing process (for example, dusts and metal fibers) ) Is preliminarily treated with a viscous aqueous solution, and unavoidable moisture such as moisture contained in total is contained in a maximum of about 2% by weight.
  • a phenol resin is preferably used as the binder.
  • the feature of the friction material in this embodiment is that two types of phenol resins having different hydroxyl equivalents are used as the phenol resin.
  • One is a general straight type phenol resin, and the hydroxyl equivalent is 105 g / eq.
  • the other is an aralkyl-modified phenol resin having a hydroxyl equivalent weight of 170 to 180 g / eq.
  • the blending ratio of the aralkyl-modified phenol resin is preferably about 1 to 20% by weight of the friction material material.
  • the blending ratio of the aralkyl-modified phenol resin and the straight type phenol resin is preferably in the range of 2:16 to 2: 1.
  • the total hydroxyl equivalent of the two types of phenolic resins mixed at such a mixing ratio is 112 to 155 g / eq.
  • the total hydroxyl equivalent of the two types of phenol resins described above is determined as follows. First, the product of the blending ratio of the aralkyl-modified phenol resin and the hydroxyl equivalent of the aralkyl-modified phenol resin is calculated, and the product of the blending ratio of the straight type phenol resin and the hydroxyl equivalent of the straight type phenol resin is calculated. And the sum of each calculated product is calculated
  • the total hydroxyl equivalent becomes the smallest when the hydroxyl equivalent of the aralkyl-modified phenol resin is 170 g / eq and the blending ratio of the aralkyl-modified phenol resin to the straight type phenol resin is 2:16. At this time, the total hydroxyl equivalent is 112 g / eq. On the contrary, the total hydroxyl equivalent becomes the largest when the hydroxyl equivalent of the aralkyl-modified phenol resin is 180 g / eq and the blending ratio of the aralkyl-modified phenol resin and the straight type phenol resin is 2: 1. At this time, the total hydroxyl equivalent is 155 g / eq. Thus, it is desirable that two kinds of phenol resins are mixed, and the total hydroxyl equivalent is 112 to 155 g / eq, and the total hydroxyl equivalent is within this range.
  • the higher the proportion of aralkyl-modified phenolic resin the better.
  • the blending ratio of the aralkyl-modified phenol resin is too large, the reaction points of the phenol resin to be bonded are insufficient, and the curing reaction of the phenol resin by heat treatment does not proceed, so that sufficient strength cannot be obtained. Therefore, the blending ratio of the aralkyl-modified phenol resin and the blending ratio with the straight type phenol resin are preferably in the above-described ranges.
  • an aralkyl-modified phenol resin is used as a phenol resin having a higher hydroxyl equivalent, but the present invention is not limited to this. If the above-mentioned blending ratio, blending ratio, and total hydroxyl equivalent are satisfied, the hydroxyl equivalent is within the range of 135 to 180 g / eq, such as cashew-modified phenolic resin (hydroxyl equivalent: 135 to 145 g / eq). Some other phenolic resin may be used.
  • the manufacturing method of the friction material according to the present embodiment includes a mixing step of stirring the friction material raw material, and a forming step of forming the mixed powder obtained in the mixing step into a desired shape. It can be applied to both the construction method and the hot press construction method. Hereinafter, it explains in detail using a drawing.
  • FIG. 2 shows a flow diagram when the friction material according to the present embodiment is manufactured by a room temperature press method.
  • a room temperature press method As shown in FIG. 2, first, each of the above-mentioned fiber base material, friction modifier, filler (calcium hydroxide), wetting agent (water), friction material raw material including a binder (phenol resin) and the like are weighed. At this time, the aralkyl-modified phenol resin and the straight type phenol resin are preliminarily mixed at a blending ratio within the above range.
  • these weighed friction material materials are put into a mixer such as a Henschel mixer or a Redige mixer, and mixed at room temperature for about 10 minutes, for example, to produce a mixed powder for a room temperature press method (mixing step).
  • mixing may be performed while cooling by a known cooling means so that the mixer does not increase in temperature.
  • the water may be added all at once after the mixing is completed, for example, or may be divided several times or continuously in small amounts. Further, the friction material material may be granulated when water is added to the friction material material and mixed.
  • an adhesive is applied to the side on which the prepared mixed powder for a normal temperature press method is placed and dried.
  • the molding pressure may be 50 to 200 MPa (preferably 100 MPa), and the molding time may be 5 to 60 seconds (preferably 15 seconds).
  • a clamping process for example, 180 ° C., 1 MPa, 10 minutes
  • heat treatment is performed at 150 to 250 ° C. for 5 to 180 minutes (preferably 230 ° C. for 3 hours), and various processes such as polishing and lot marking are performed.
  • FIG. 3 shows a flow chart when the friction material according to this embodiment is manufactured by the hot press method.
  • each of the above-mentioned fiber base material, friction adjusting material, filler (calcium hydroxide), friction material raw material including a binder (phenol resin) and the like are weighed.
  • the aralkyl-modified phenol resin and the straight type phenol resin are preliminarily mixed at a blending ratio within the above range.
  • these weighed friction material materials are put into a mixer such as a Henschel mixer or a Redige mixer, and mixed at room temperature for about 10 minutes, for example, to produce a mixed powder for the hot press method (mixing step).
  • mixing may be performed while cooling by a known cooling means so that the mixer does not increase in temperature.
  • a raw material that easily segregates in the mixing step may be pretreated with a viscous aqueous solution. good.
  • a predetermined amount of the mixed powder for the hot press method is weighed and preliminarily molded (normal temperature, 10 MPa), and then placed on the back plate and hot pressed (molding step).
  • the back plate as in the case of the room temperature press method, after applying an appropriate surface treatment, an adhesive is applied to the side on which the mixed powder for the hot press method after the pre-forming is placed and dried. Use what you let.
  • the molding temperature is 140 ° C. to 200 ° C. (preferably 160 ° C.)
  • the molding pressure is 10 MPa to 30 MPa (preferably 20 MPa)
  • the molding time is 3 minutes to 15 minutes (preferably 10 minutes).
  • heat treatment is performed at 150 to 250 ° C. for 5 to 180 minutes (preferably 230 ° C. for 3 hours), and various processes such as polishing and lot marking are performed.
  • a friction material was formed by a normal temperature press method and a hot press method immediately after mixing (after 0 hours), 8 hours after mixing, and 24 hours after mixing, respectively. Molding process).
  • a friction material was formed by a normal temperature press method and a hot press method immediately after mixing (after 0 hours), 8 hours after mixing, and 24 hours after mixing, respectively. Molding process).
  • Molding process About the mixed powder for room temperature press method, after pressing at the molding temperature of room temperature, molding pressure of 100 MPa, molding time of 15 seconds, press with a clamp (temperature 180 ° C, pressure 1 MPa, time 10 minutes), and finally heat treatment (Temperature 230 ° C., time 3 hours) was cured to obtain a friction material.
  • the mixed powder for the hot press method was pressed under the conditions of a molding temperature of 160 ° C., a molding pressure of 20 MPa, and a molding time of 10 minutes, and then heat treated (temperature 230 ° C., time 3 hours) and cured to obtain a friction material. .
  • Each of the friction materials thus obtained was evaluated for porosity measurement (formability), friction performance, and wear performance.
  • the porosity measurement when the porosity was 8.0 to 12.0, it was determined to have a good porosity.
  • the friction material is worn when pressed against the brake disc, and the wear powder is taken into and discharged from the pores, so that the friction performance can be maintained without any wear powder remaining on the surface of the friction material.
  • the smaller the porosity that is, the smaller the number of pores, the harder the friction material becomes.
  • the wear performance evaluation it was carried out according to JASO C406, and an average friction coefficient at a general use temperature (100 ° C.) was measured. When the average friction coefficient was larger than 0.35, it was determined that the film had good friction performance. In the wear performance evaluation, when the wear amount of Comparative Example 1 (thermoformed product) was 1.0, the wear amount was determined to be good when the wear amount was less than 1.2.
  • Example 6 room temperature press-molded product in which only the aralkyl-modified phenol resin is blended, since the fluidity is too good and almost no pores are formed even when molded, the one immediately after mixing has a porosity of 5. 7. Even after 24 hours from mixing, the molded product was poor with a porosity of 7.9. The friction performance was poor after 0 and 8 hours, but the wear performance was good even after 24 hours. In Example 6, since there are five items determined to be defective, the overall determination is “x”. Thus, it is understood that good performance cannot be obtained with a friction material formed from a friction material material containing only an aralkyl-modified phenol resin.
  • Examples 1 to 5 aralkyl-modified phenol resin and any one of straight type phenol resin and high ortho type phenol resin are blended. As shown in FIG. 4, the blending ratio of the aralkyl-modified phenol resin is 1 to 6% by weight, and the blending ratio of the aralkyl-modified phenol resin and the straight type phenol resin or the high-ortho type phenol resin is as in Example 1 and Example 3. 2: 4, 2:16 in Example 2, 2: 2 in Example 4, and 2: 1 in Example 5, all satisfy the above-described requirements.
  • Example 1 the moldability was in a favorable range.
  • the friction performance was poor only after 0 hours of Example 5, and the rest was good.
  • the wear performance was poor only after 24 hours of Example 2 and the rest was good.
  • Example 1 Example 3, and Example 4, since there were no items determined to be defective, the overall determination was “ ⁇ ”.
  • Example 2 and Example 5 since there is one item determined to be defective, the overall determination is “ ⁇ ”.
  • the friction material formed from the friction material containing aralkyl-modified phenol resin and either straight type phenol resin or high-ortho type phenol resin is good in terms of porosity, friction performance, and wear performance. You can see that the performance is good.
  • the present invention can be used for, for example, a friction material used for a disc brake pad of a vehicle or the like and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Braking Arrangements (AREA)

Abstract

Provided is a friction material which suppresses pseudo polymerization of a phenol resin and has favorable properties even when molded with a normal temperature pressing method. This friction material is produced by a friction material source which comprises a fiber base, a friction adjusting material, a filler, a wetting agent and a plurality of types of phenol resins with different hydroxyl equivalents, as a binder.

Description

摩擦材及びその製造方法Friction material and manufacturing method thereof
 本発明は、例えば車両等のディスクブレーキ用パッドに使用する摩擦材及びその製造方法に関する。 The present invention relates to a friction material used for, for example, a disc brake pad of a vehicle or the like and a method for manufacturing the friction material.
 車両等のブレーキパッドやブレーキシュー等に使用される摩擦材は、一般的に、繊維基材、摩擦調整材、充填材、湿潤剤、バインダー等を配合して混合された粉末状の摩擦材原料をプレスで押し固めることにより製造される。プレスによる製造方法には、摩擦材原料を加熱して押し固めて成形するホットプレス工法と、摩擦材原料を加熱せずに常温で押し固めて成形する常温プレス工法がある。 Friction materials used for brake pads, brake shoes, etc. for vehicles are generally powdered friction material raw materials mixed with fiber base material, friction modifier, filler, wetting agent, binder, etc. It is manufactured by pressing with a press. Production methods using a press include a hot press method in which a friction material material is heated and compacted to form, and a normal temperature press method in which a friction material material is compacted and molded at room temperature without being heated.
 摩擦材原料を常温プレス工法で製造するために、摩擦材原料には、水等の湿潤剤が通常3重量%~6重量%の割合で配合される。また、ホットプレス工法で製造する場合も、摩擦材原料には、摩擦材原料の各成分が有する水分等の不可避な水が最大で2重量%程度含まれる。 In order to produce the friction material raw material by the room temperature press method, a wetting agent such as water is usually mixed in the friction material raw material at a ratio of 3 wt% to 6 wt%. In addition, when manufactured by the hot press method, the friction material raw material contains inevitable water such as moisture contained in each component of the friction material raw material at a maximum of about 2% by weight.
 また上述のいずれの工法においても、摩擦材の耐錆性能を確保するために、摩擦材原料に充填材としての水酸化カルシウムを配合し、摩擦材をアルカリ性にする。 In any of the above-described methods, in order to ensure the rust resistance performance of the friction material, calcium hydroxide as a filler is blended with the friction material material to make the friction material alkaline.
 さらに、摩擦材原料中には、水と水酸化カルシウムの他にバインダーとしてのフェノール樹脂が存在する。水酸化カルシウムは一部が水に溶出してカルシウムイオンとなる。カルシウムイオンはフェノール樹脂の水酸基の水素に替わって酸素と結合し、フェノール樹脂をイオン化する。イオン化したフェノール樹脂が単体で存在していると摩擦材原料は高い流動性を持つので、成形性が高まる。その結果、摩擦材原料を常温プレス工法で成形したときでも、ホットプレス工法で成形したときと同様に、例えば適度な気孔率を伴って押し固められ、良好な性能を有する摩擦材を得ることができる。 Furthermore, in the friction material material, there is a phenol resin as a binder in addition to water and calcium hydroxide. A part of calcium hydroxide elutes in water and becomes calcium ions. Calcium ions bind to oxygen instead of hydrogen of the hydroxyl group of the phenol resin, and ionize the phenol resin. When the ionized phenol resin is present alone, the friction material material has a high fluidity, so that the moldability is enhanced. As a result, even when the friction material is molded by the normal temperature press method, it can be compacted with an appropriate porosity, for example, to obtain a friction material having good performance, similar to the case of molding by the hot press method. it can.
 しかしイオン化したフェノール樹脂は摩擦材原料の混合中に変質し、その結果、摩擦材原料の粘度が急激に上昇してしまうことがある。特に、水分を多く含むほど樹脂の変質する速度が速くなる。例えば、ホットプレス工法用の摩擦材原料の場合、当該摩擦材原料中の水分の割合が1重量%以上になると変質の速度が速くなり、この現象が顕著に現れる。 However, the ionized phenol resin is altered during the mixing of the friction material, and as a result, the viscosity of the friction material may increase rapidly. In particular, the higher the moisture content, the faster the resin is denatured. For example, in the case of a friction material material for a hot press method, when the ratio of moisture in the friction material material is 1% by weight or more, the rate of alteration is increased, and this phenomenon appears remarkably.
 この原因を図1を用いて説明する。図1に示すように、混合中に水酸化カルシウムの一部が水に溶出してイオン化すると、フェノール樹脂は、水酸基が反応点となり溶出したカルシウムイオンと結合する。水酸基当量の小さいフェノール樹脂は反応点が多く水酸基当量の大きいフェノール樹脂は反応点が少ない。反応点を多く持つ水酸基当量の小さいフェノール樹脂は水酸基当量の大きいフェノール樹脂と比較してカルシウムイオンと結合しやすい。カルシウムイオンは結合手が2本あるので2個のフェノール樹脂の分子と結合することができ、2個のフェノール樹脂の分子を繋ぐことによりフェノール樹脂間に疑似架橋を形成し、フェノール樹脂をキレート化する。 This cause will be described with reference to FIG. As shown in FIG. 1, when a part of calcium hydroxide elutes into water and is ionized during mixing, the phenol resin binds to the eluted calcium ions with hydroxyl groups as reaction sites. A phenol resin having a small hydroxyl equivalent has many reaction points and a phenol resin having a large hydroxyl equivalent has few reaction points. A phenol resin having a large number of reaction points and a small hydroxyl equivalent is more likely to bind to calcium ions than a phenol resin having a large hydroxyl equivalent. Calcium ion has two bonds, so it can bind to two phenolic resin molecules. By connecting two phenolic resin molecules, pseudo-crosslinking is formed between the phenolic resins, and the phenolic resin is chelated. To do.
 水酸基当量の小さいフェノール樹脂のみが配合された摩擦材原料においては、フェノール樹脂は多くの反応点を有するので、一度キレート化されたフェノール樹脂はまだカルシウムイオンと結合されていない多くの水酸基を有しており、それらの水酸基は別のカルシウムイオンと結合する。そして、フェノール樹脂がカルシウムイオンを介して次々と結合してキレート化を繰り返すことによりフェノール樹脂の見かけ上の分子量は大きくなり、疑似高分子化する。これがフェノール樹脂の変質である。このフェノール樹脂の変質により、摩擦材原料の粘度が上昇すると考えられている。 In the friction material raw material containing only a phenolic resin having a small hydroxyl equivalent weight, the phenolic resin has many reaction points, so that the once chelated phenolic resin has many hydroxyl groups that are not yet bonded to calcium ions. These hydroxyl groups bind to other calcium ions. And when a phenol resin couple | bonds one after another via a calcium ion and chelate repeats, the apparent molecular weight of a phenol resin becomes large and it becomes pseudo-polymerization. This is the alteration of the phenolic resin. It is considered that the viscosity of the friction material raw material increases due to the alteration of the phenol resin.
 混合中に摩擦材原料の粘度が上昇すると、摩擦材原料の一部が混合機の内壁や混合羽根に固着して歩留まりが悪化するおそれがある。さらに、摩擦材原料の流動性が低下するためポットライフ(摩擦材原料の混合後、プレスにより成形できる時間)が短くなり、成形性も悪化する。 When the viscosity of the friction material raw material increases during mixing, a part of the friction material raw material may adhere to the inner wall or mixing blade of the mixer and the yield may deteriorate. Furthermore, since the fluidity of the friction material is lowered, the pot life (the time that can be formed by pressing after mixing the friction material) is shortened, and the moldability is also deteriorated.
 また、粘度上昇を防ぐために摩擦材材料を乾燥させて水分量を減少させ、製造ライン全体をドライ環境にすることも考えられるが、多大なコストを要し現実的ではない上、粉塵の発生やハンドリングの悪化が懸念される。 In addition, it is conceivable to dry the friction material to reduce the water content and prevent the entire production line from becoming a dry environment in order to prevent an increase in viscosity. There is concern about the deterioration of handling.
 このような問題を解決するための従来の製造方法としては、例えば、特許文献1及び2に示すものが知られている。フェノール樹脂の変質を防ぐため、特許文献1では、フェノール樹脂がゼラチンで包み込まれてマイクロカプセル化されており、特許文献2では、撥水性のあるステアリン酸化合物で水酸化カルシウムをコーティング処理することによって水酸化カルシウムが水に溶け出さないようにしている。 As conventional manufacturing methods for solving such problems, for example, those disclosed in Patent Documents 1 and 2 are known. In order to prevent the deterioration of the phenol resin, in Patent Document 1, the phenol resin is encapsulated in gelatin and microencapsulated, and in Patent Document 2, calcium hydroxide is coated with a water-repellent stearic acid compound. Calcium hydroxide is prevented from dissolving in water.
特開平3-177482号公報(図1参照)Japanese Patent Laid-Open No. 3-177482 (see FIG. 1) 特開平3-210338号公報(特許請求の範囲参照)JP-A-3-210338 (refer to the claims)
 しかし、特許文献1の製造方法では、フェノール樹脂のマイクロカプセル化を別途実施する必要があり、特許文献2の製造方法においても、水酸化カルシウムのコーティングという処理を別途実施する必要がある。このため、いずれの製造方法においても作業効率の向上を図るという点において改善する余地が残されていた。 However, in the manufacturing method of Patent Document 1, it is necessary to separately perform microencapsulation of phenol resin, and in the manufacturing method of Patent Document 2, it is necessary to separately perform a process of coating with calcium hydroxide. For this reason, in any of the manufacturing methods, there remains room for improvement in terms of improving work efficiency.
 また、フェノール樹脂をマイクロカプセル化するために添加されるゼラチンや、水酸化カルシウムをコーティングするために添加されるステアリン酸化合物が、摩擦材の摩擦性能に悪影響を与えるおそれもある。 Also, gelatin added to encapsulate phenol resin and stearic acid compound added to coat calcium hydroxide may adversely affect the friction performance of the friction material.
 上記問題に鑑み、本発明は、フェノール樹脂の疑似高分子化を抑制し、常温プレス工法で成形しても良好な特性を有する摩擦材を得ることを課題とする。 In view of the above problems, an object of the present invention is to obtain a friction material that suppresses pseudo-polymerization of a phenol resin and has good characteristics even when molded by a room temperature press method.
 上記課題を解決するために、本発明に係る摩擦材の特徴構成は、繊維基材、摩擦調整材、充填材、湿潤剤、及び水酸基当量の異なる複数種類のフェノール樹脂をバインダーとして含む摩擦材原料により製造された点である。 In order to solve the above-mentioned problems, the friction material according to the present invention is characterized in that the friction material material includes a fiber base material, a friction modifier, a filler, a wetting agent, and a plurality of types of phenol resins having different hydroxyl equivalents as a binder. It is a point manufactured by.
 水酸基当量の異なる複数種類のフェノール樹脂、すなわち水酸基当量の小さいフェノール樹脂と水酸基当量の大きいフェノール樹脂とが混合されて配合された摩擦材原料においては、上述したようにカルシウムイオンによりフェノール樹脂がキレート化しても、それが水酸基当量の大きいフェノール樹脂の場合には、カルシウムイオンと結合されていない水酸基の数が残り少ない。そのため、キレート化がそれ以上促進されず、フェノール樹脂の疑似高分子化が抑制される。また、カルシウムイオンの結合手の1本が別のフェノール樹脂と結合されていないとき、すなわちカルシウムイオンの結合手が余っているときには、カルシウムイオンと結合したフェノール樹脂はイオン化された状態のままで存在している。 As described above, in the friction material raw material in which a plurality of types of phenol resins having different hydroxyl equivalents, that is, a phenol resin having a small hydroxyl equivalent and a phenol resin having a large hydroxyl equivalent are mixed and mixed, the phenol resin is chelated by calcium ions as described above. However, in the case of a phenol resin having a large hydroxyl equivalent, the number of hydroxyl groups not bonded to calcium ions remains small. Therefore, chelation is not promoted any more and the pseudo-polymerization of the phenol resin is suppressed. In addition, when one of the calcium ion bonds is not bonded to another phenol resin, that is, when there is a surplus of calcium ion bonds, the phenol resin bonded to calcium ions remains in an ionized state. is doing.
 このように、水酸基当量の異なる複数種類のフェノール樹脂が配合された摩擦材原料においては、疑似高分子化が抑制されると共に、キレート化したフェノール樹脂はイオン化した状態で存在するため、高い流動性を維持することができる。これにより、常温プレス工法で摩擦材を形成したときであっても、ホットプレス工法で摩擦材を形成したときと同様の摩擦材原料の高密度化が達成できる。また、ホットプレス工法で形成した摩擦材と同等の気孔径分布を有するため、従来の常温プレス工法で形成した摩擦材と比較して耐摩耗性を向上させることができる。そのため、本特徴構成によれば、従来行われていたフェノール樹脂のマイクロカプセル化や、水酸化カルシウムのコーティングといった処理を別途行う必要がなくなり、より安価に摩擦材を製造することができる。 As described above, in the friction material raw material in which a plurality of types of phenol resins having different hydroxyl equivalents are blended, pseudo-polymerization is suppressed, and the chelated phenol resin exists in an ionized state, so that it has high fluidity. Can be maintained. Thereby, even when the friction material is formed by the room temperature press method, the same high density of the friction material can be achieved as when the friction material is formed by the hot press method. Moreover, since it has a pore size distribution equivalent to that of the friction material formed by the hot press method, it is possible to improve the wear resistance as compared with the friction material formed by the conventional room temperature press method. Therefore, according to this characteristic configuration, it is not necessary to separately perform processes such as the conventional microencapsulation of phenol resin and coating with calcium hydroxide, and the friction material can be manufactured at a lower cost.
 本発明に係る摩擦材においては、複数種類の前記フェノール樹脂のそれぞれについて前記フェノール樹脂の配合割合と当該フェノール樹脂の前記水酸基当量との積を算出し、算出したそれぞれの積の和を複数種類の前記フェノール樹脂の全配合割合で除したときの前記水酸基当量が112~155g/eqであると好適である。 In the friction material according to the present invention, the product of the mixing ratio of the phenol resin and the hydroxyl group equivalent of the phenol resin is calculated for each of a plurality of types of the phenol resins, and the sum of the calculated products is calculated as a plurality of types. The hydroxyl equivalent when divided by the total blending ratio of the phenol resin is preferably 112 to 155 g / eq.
 このような水酸基当量となるように、水酸基当量の異なる複数種類のフェノール樹脂を用いれば、フェノール樹脂のイオン化を妨げることなく疑似高分子化を抑制することができる。その結果、ホットプレス工法だけではなく常温プレス工法においても良好な性能を有する摩擦材を製造することができる。 If a plurality of types of phenol resins having different hydroxyl equivalents are used so as to have such hydroxyl equivalents, pseudo-polymerization can be suppressed without impeding ionization of the phenol resins. As a result, a friction material having good performance can be produced not only in the hot press method but also in the room temperature press method.
 本発明に係る摩擦材においては、複数種類の前記フェノール樹脂の中で前記水酸基当量が最も大きい前記フェノール樹脂の前記水酸基当量が135g/eq以上であると好適である。 In the friction material according to the present invention, it is preferable that the hydroxyl group equivalent of the phenol resin having the largest hydroxyl group equivalent among the plurality of types of phenol resins is 135 g / eq or more.
 水酸基当量の大きいフェノール樹脂は反応点が少ないので、このようなフェノール樹脂を配合することにより、フェノール樹脂の疑似高分子化を抑制して、常温プレス工法においても良好な特性を有する摩擦材を得ることができる。 A phenolic resin with a large hydroxyl equivalent has few reaction points. By adding such a phenolic resin, the pseudo-polymerization of the phenolic resin is suppressed, and a friction material having good characteristics even in a room temperature press method is obtained. be able to.
 本発明に係る摩擦材においては、複数種類の前記フェノール樹脂は2種類からなり、前記水酸基当量が大きい方の前記フェノール樹脂と前記水酸基当量が小さい方の前記フェノール樹脂の含有比率が2:16~2:1の範囲内にあると好適である。 In the friction material according to the present invention, the plurality of types of phenol resins are two types, and the content ratio of the phenol resin having the larger hydroxyl equivalent and the phenol resin having the smaller hydroxyl equivalent is from 2:16 to It is preferable to be in the range of 2: 1.
 水酸基当量の大きいフェノール樹脂の配合比が少ないと、フェノール樹脂の疑似高分子化が進行し摩擦材原料の粘度が上昇する。また、水酸基当量の大きいフェノール樹脂の配合比が多いと、疑似高分子化は抑制されるもののフェノール樹脂の反応点が足りず、熱処理によるフェノール樹脂の硬化反応が進まないため十分な強度を得ることができない。このような配合比とすれば、フェノール樹脂のイオン化を妨げることなく疑似高分子化を抑制して、常温プレス工法においても良好な特性を有する摩擦材を得ることができる。 When the compounding ratio of the phenol resin having a large hydroxyl equivalent is small, the pseudo-polymerization of the phenol resin proceeds and the viscosity of the friction material raw material increases. In addition, if the compounding ratio of the phenol resin with a large hydroxyl equivalent is large, the pseudo-polymerization is suppressed, but there are not enough reaction points of the phenol resin, and the curing reaction of the phenol resin by heat treatment does not proceed, so that sufficient strength is obtained. I can't. With such a blending ratio, it is possible to obtain a friction material having good characteristics even in the room temperature press method by suppressing pseudo-polymerization without hindering the ionization of the phenol resin.
 本発明に係る摩擦材においては、前記水酸基当量が大きい方の前記フェノール樹脂の配合割合は、前記摩擦材原料の全体に対して1~20重量%であると好適である。 In the friction material according to the present invention, it is preferable that the blending ratio of the phenol resin having a larger hydroxyl equivalent is 1 to 20% by weight with respect to the entire friction material material.
 水酸基当量の大きいフェノール樹脂の配合割合をこのようにすれば、フェノール樹脂のイオン化を妨げることなく疑似高分子化を抑制して、常温プレス工法においても良好な特性を有する摩擦材を得ることができる。 If the blending ratio of the phenol resin having a large hydroxyl equivalent is set in this way, it is possible to obtain a friction material having good characteristics even in the room temperature press method by suppressing pseudo-polymerization without hindering ionization of the phenol resin. .
 本発明に係る摩擦材においては、前記水酸基当量が大きい方の前記フェノール樹脂はアラルキル変性フェノール樹脂であると好適である。 In the friction material according to the present invention, it is preferable that the phenol resin having a larger hydroxyl equivalent is an aralkyl-modified phenol resin.
 アラルキル変性フェノール樹脂は水酸基当量が170~180g/eqなので、水酸基当量が105g/eqであるストレートタイプフェノール樹脂と混合することにより、フェノール樹脂のイオン化を妨げることなく疑似高分子化を抑制して、常温プレス工法においても良好な特性を有する摩擦材を得ることができる。 Since the aralkyl-modified phenol resin has a hydroxyl group equivalent of 170 to 180 g / eq, mixing with a straight type phenol resin having a hydroxyl group equivalent of 105 g / eq suppresses pseudo-polymerization without disturbing the ionization of the phenol resin. A friction material having good characteristics can be obtained even in the press method.
 本発明に係る摩擦材の製造方法の特徴は、繊維基材、摩擦調整材、充填材、湿潤剤、及び水酸基当量の異なる複数種類のフェノール樹脂をバインダーとして含む摩擦材原料を攪拌する混合工程と、前記混合工程で得られた混合粉を所望の形状に成形する成形工程とを含む点である。 The characteristics of the method for producing a friction material according to the present invention include a mixing step of stirring a fiber base material, a friction modifier, a filler, a wetting agent, and a friction material raw material containing a plurality of types of phenol resins having different hydroxyl equivalents as binders. And a forming step of forming the mixed powder obtained in the mixing step into a desired shape.
 このような特徴とすれば、キレート化の基点(反応点)となるフェノール樹脂の水酸基に水酸基当量の異なるフェノール樹脂が疑似架橋するものの、それ以上の疑似高分子化が抑制され、フェノール樹脂の変質が抑制される。そのため、混合工程が終了した状態で長時間放置しても高い流動性を維持することができ、長時間放置後でも常温プレス工法(成形工程)で摩擦材を形成することができる。このようにして成形した摩擦材は、ホットプレス工法で摩擦材を形成したときと同様の摩擦材原料の高密度化が達成できている。また、このような特徴を有する摩擦材材料を常温プレス工法で成形した摩擦材は、ホットプレス工法で形成した摩擦材と同等の気孔径分布を有するため、従来の常温プレス工法で形成した摩擦材と比較して耐摩耗性を向上させることができる。 With such a feature, although the phenol resin having a different hydroxyl equivalent is pseudo-crosslinked to the hydroxyl group of the phenol resin that becomes the chelating base point (reaction point), further pseudo-polymerization is suppressed, and the phenol resin is altered. Is suppressed. Therefore, high fluidity can be maintained even when left for a long time in the state where the mixing step is completed, and a friction material can be formed by a room temperature press method (molding step) even after being left for a long time. The friction material formed in this way has achieved the same high density of the friction material as in the case of forming the friction material by the hot press method. In addition, the friction material formed by the normal temperature press method of the friction material having such characteristics has the same pore size distribution as the friction material formed by the hot press method, so the friction material formed by the conventional normal temperature press method The wear resistance can be improved as compared with.
フェノール樹脂の疑似高分子化の過程を表す説明図である。It is explanatory drawing showing the process of pseudo-polymerization of a phenol resin. 本実施形態に係る摩擦材を常温プレス工法で製造するときのフロー図である。It is a flowchart when manufacturing the friction material which concerns on this embodiment with a normal temperature press construction method. 本実施形態に係る摩擦材をホットプレス工法で製造するときのフロー図である。It is a flowchart when manufacturing the friction material which concerns on this embodiment with a hot press construction method. 本実施形態に係る摩擦材の実施例及び比較例の組成と性能評価を表す図である。It is a figure showing the composition and performance evaluation of the Example and comparative example of a friction material which concern on this embodiment.
1.摩擦材の組成
 以下、本発明の実施形態について詳細に説明する。本実施形態に係る摩擦材は、例えば車両等のディスクブレーキ用パッドに適用できるが、これに限られるものではない。その他、例えば、ブレーキシュー等、従来公知の摩擦材が適用できるものに適用することができる。製造された摩擦材は、裏板としての金属板等の板状部材と一体化してブレーキパッドとして使用することができる。
1. Hereinafter, embodiments of the present invention will be described in detail. The friction material according to the present embodiment can be applied to, for example, a disc brake pad of a vehicle or the like, but is not limited thereto. In addition, it can apply to what can apply conventionally well-known friction materials, such as a brake shoe, for example. The manufactured friction material can be integrated with a plate-like member such as a metal plate as a back plate and used as a brake pad.
 本実施形態に係る摩擦材原料は、摩擦材を製造する上で混合する全ての材料をいう。摩擦材原料には、後述する繊維基材,摩擦調整材,充填材,湿潤剤,バインダー等が含まれるが、この他にも摩擦材を製造する際に一般に使用されるものを含有させても良い。なお、以下本明細書において、常温プレス工法用に摩擦材原料を混合したものを常温プレス工法用混合粉といい、ホットプレス工法用に摩擦材原料を混合したものをホットプレス工法用混合粉というものとする。 The friction material raw material according to the present embodiment refers to all materials that are mixed in manufacturing the friction material. The friction material raw material includes a fiber base material, a friction adjusting material, a filler, a wetting agent, a binder, etc., which will be described later. good. Hereinafter, in the present specification, a mixture of friction material raw materials for a normal temperature press method is referred to as a mixed powder for a normal temperature press method, and a mixture of friction material materials for a hot press method is referred to as a mixed powder for a hot press method. Shall.
 繊維基材としては、例えば、繊維成分として使用されるものにはアラミド繊維,セルロース繊維,アクリル繊維,炭素繊維等の有機繊維、ガラス繊維,ロックウ-ル,セラミックス繊維,チタン酸カリウム繊維,ワラストナイト等の無機繊維、銅,ステンレス,真鍮等の金属繊維が挙げられる。これらを単独または2種類以上組み合わせて使用することができる。繊維基材の配合割合は特に限定されるものではないが、摩擦材原料の3重量%~5重量%程度となるように添加すればよい。 Examples of fiber base materials that can be used as fiber components include organic fibers such as aramid fibers, cellulose fibers, acrylic fibers, and carbon fibers, glass fibers, rock wool, ceramic fibers, potassium titanate fibers, and wallast. Examples thereof include inorganic fibers such as knight, and metal fibers such as copper, stainless steel, and brass. These can be used alone or in combination of two or more. The blending ratio of the fiber base material is not particularly limited, but may be added so as to be about 3 to 5% by weight of the friction material raw material.
 常温プレス工法用混合粉の場合、これら繊維基材は、予め含水させた状態で摩擦材原料に添加してもよい。含水させる繊維基材(以下、含水繊維とも称する)としては、有機繊維を使用するのが好ましい。含水繊維を摩擦材原料に添加することで噴霧する水の量を減らすことができるため、混合機の内壁に噴霧した水を付着しにくくすることができる。その結果、摩擦材原料が混合機の内壁に付着しにくくなり、摩擦材の収率の悪化や当該混合機の清掃に労力を要するという不都合が発生するのを未然に防止することができる。また、混合工程を行なうに際して含水繊維を添加して攪拌すると、水を別途噴霧したときより摩擦材原料の全体に水分を浸透させやすくなるため、摩擦材原料をより均一に混合しやすくなる。その結果、より粉塵の発生を抑制でき、かつ偏析の少ない均質性に優れた摩擦材を製造することができる。 In the case of a mixed powder for a normal temperature press method, these fiber base materials may be added to the friction material raw material in a state of being pre-hydrated. It is preferable to use an organic fiber as a fiber base (hereinafter also referred to as a water-containing fiber) to be hydrated. Since the amount of water sprayed can be reduced by adding the water-containing fiber to the friction material material, it is possible to make it difficult for the sprayed water to adhere to the inner wall of the mixer. As a result, it is possible to prevent the friction material raw material from being easily attached to the inner wall of the mixer, and to prevent the occurrence of inconvenience that the yield of the friction material is deteriorated and the labor is required for cleaning the mixer. Further, when water-containing fibers are added and stirred during the mixing step, it becomes easier for water to penetrate into the entire friction material material than when water is sprayed separately, and therefore the friction material material can be more uniformly mixed. As a result, it is possible to produce a friction material that can further suppress the generation of dust and is excellent in homogeneity with little segregation.
 摩擦調整材としては、例えばカシューダスト,ゴムダスト等のフリクションダスト、炭酸カルシウム,硫酸バリウム,酸化マグネシウム,黒鉛,マイカ,ジルコン,二硫化モリブデン,セラミック,銅粉,真ちゅう粉,亜鉛粉,アルミニウム粉,発泡バーミキュライト等が挙げられる。これらを単独または2種類以上組み合わせて使用することができる。摩擦調整材の配合割合は特に限定されるものではないが、摩擦材原料の3重量%~30重量%程度となるように添加するのがよい。また、これらの摩擦調整材は微量ながら元々水分を含んでいる。 Examples of friction modifiers include friction dust such as cashew dust and rubber dust, calcium carbonate, barium sulfate, magnesium oxide, graphite, mica, zircon, molybdenum disulfide, ceramic, copper powder, brass powder, zinc powder, aluminum powder, foam Examples include vermiculite. These can be used alone or in combination of two or more. The blending ratio of the friction modifier is not particularly limited, but it is preferable to add the friction modifier so as to be about 3 to 30% by weight of the friction material. In addition, these friction modifiers originally contain moisture although they are in a small amount.
 充填材としては、水酸化カルシウム(消石灰)を使用する。水酸化カルシウムは、例えばブレーキディスクロータとの錆固着対策として、摩擦材原料にpH調整材として配合され、これにより摩擦材をアルカリ性にする。水酸化カルシウムの配合割合は特に限定されるものではないが、摩擦材原料の2重量%~25重量%程度となるように添加すればよい。 Calcium hydroxide (slaked lime) is used as the filler. Calcium hydroxide is blended as a pH adjusting material in the friction material raw material, for example, as a countermeasure against rust adhesion to the brake disc rotor, thereby making the friction material alkaline. The blending ratio of calcium hydroxide is not particularly limited, but may be added so as to be about 2% to 25% by weight of the friction material raw material.
 常温プレス工法用混合粉の湿潤剤としては、好ましくは水を使用する。水の配合割合は特に限定されるものではないが、摩擦材原料の2重量%~7重量%程度となるように添加するのがよい。なお、繊維基材として含水繊維を使用した場合は、含水繊維に含まれる水及び噴霧等によって供給する水の量の総量が、摩擦材原料の2重量%~7重量%となるようにすればよい。また、このとき、摩擦材原料に添加する水の全てを含水繊維によって供給するように構成してもよい。 水 Preferably water is used as the wetting agent for the mixed powder for the room temperature press method. The mixing ratio of water is not particularly limited, but it is preferable to add it so as to be about 2 to 7% by weight of the friction material raw material. When water-containing fibers are used as the fiber base material, the total amount of water contained in the water-containing fibers and water supplied by spraying, etc. should be 2% to 7% by weight of the friction material material. Good. Moreover, you may comprise so that all the water added to a friction material raw material may be supplied with a water-containing fiber at this time.
 水には、例えば界面活性剤や粘性付与剤等を添加してもよい。水に界面活性剤を添加すれば、摩擦材原料を混合する際に、添加された界面活性剤の界面活性作用によって当該摩擦材原料の各成分をより確実に混合することができる。当該界面活性剤は、イオン系及び非イオン系の何れを使用してもよい。界面活性剤としては、アルキル硫酸エステルナトリウム,ポリオキシエチレンアルキルエーテル,アルキルアミンオキシド等公知のものを使用することができる。これらを単独または2種類以上組み合わせて使用することができる。界面活性剤の配合割合は特に限定されるものではないが、摩擦材原料の0.2重量%~0.5重量%程度となるように添加すればよい。 For example, a surfactant or a viscosity imparting agent may be added to the water. If a surfactant is added to water, each component of the friction material raw material can be more reliably mixed by the surface active action of the added surfactant when the friction material raw material is mixed. The surfactant may be either ionic or nonionic. As the surfactant, known ones such as sodium alkyl sulfate ester, polyoxyethylene alkyl ether, alkylamine oxide can be used. These can be used alone or in combination of two or more. The blending ratio of the surfactant is not particularly limited, but may be added so as to be about 0.2% to 0.5% by weight of the friction material material.
 また、水に粘性付与剤を添加すれば水に粘性を付与することができるため、例えば混合工程時に摩擦材原料の粉塵が発生し、作業環境が悪化するのを確実に防止することができる。また、粘性付与剤を添加することで、摩擦材の強度を向上させることができる。当該粘性付与剤としてはポリエチレンオキサイド,ポリアクリル酸ソーダ,メチルセルローズ及びこれらの混合物等が使用できる。これらを単独または2種類以上組み合わせて使用することができる。粘性付与剤の配合割合は特に限定されるものではないが、摩擦材原料の0.2重量%~0.5重量%程度となるように添加すればよい。 Further, if a viscosity imparting agent is added to water, viscosity can be imparted to water, so that it is possible to reliably prevent the working environment from deteriorating due to generation of dust of the friction material, for example, during the mixing step. Moreover, the strength of the friction material can be improved by adding a viscosity imparting agent. As the viscosity imparting agent, polyethylene oxide, sodium polyacrylate, methyl cellulose, a mixture thereof, and the like can be used. These can be used alone or in combination of two or more. The blending ratio of the viscosity-imparting agent is not particularly limited, but may be added so as to be about 0.2% to 0.5% by weight of the friction material material.
 ホットプレス工法用混合粉には、特に具体的な湿潤剤を配合させる必要はないが、摩擦材原料の各成分が有する水分や、混合工程で偏析しやすい原料(例えば、ダスト類や金属繊維等)を粘性のある水溶液で前処理することで含まれる水分といった不可避な水分が、合わせて最大で2重量%程度含まれる。 Although it is not necessary to add a specific wetting agent to the mixed powder for the hot press method, moisture contained in each component of the friction material and raw materials that easily segregate in the mixing process (for example, dusts and metal fibers) ) Is preliminarily treated with a viscous aqueous solution, and unavoidable moisture such as moisture contained in total is contained in a maximum of about 2% by weight.
 バインダーとしては、好ましくはフェノール樹脂を使用する。本実施形態における摩擦材の特徴は、フェノール樹脂として水酸基当量の異なる2種類のフェノール樹脂を用いていることである。一方は一般的なストレートタイプフェノール樹脂で、水酸基当量は105g/eqである。そして他方がアラルキル変性フェノール樹脂で、水酸基当量は170~180g/eqである。アラルキル変性フェノール樹脂の配合割合は、摩擦材原料の1重量%~20重量%程度となるように添加するのがよい。また、アラルキル変性フェノール樹脂とストレートタイプフェノール樹脂の配合比は、2:16~2:1の範囲内にあることが望ましい。このような配合比で混合された2種類のフェノール樹脂のトータルの水酸基当量は112~155g/eqとなる。 As the binder, a phenol resin is preferably used. The feature of the friction material in this embodiment is that two types of phenol resins having different hydroxyl equivalents are used as the phenol resin. One is a general straight type phenol resin, and the hydroxyl equivalent is 105 g / eq. The other is an aralkyl-modified phenol resin having a hydroxyl equivalent weight of 170 to 180 g / eq. The blending ratio of the aralkyl-modified phenol resin is preferably about 1 to 20% by weight of the friction material material. The blending ratio of the aralkyl-modified phenol resin and the straight type phenol resin is preferably in the range of 2:16 to 2: 1. The total hydroxyl equivalent of the two types of phenolic resins mixed at such a mixing ratio is 112 to 155 g / eq.
 上述した2種類のフェノール樹脂のトータルの水酸基当量は、次のようにして求める。まず、アラルキル変性フェノール樹脂の配合割合とアラルキル変性フェノール樹脂の水酸基当量との積を算出し、ストレートタイプフェノール樹脂の配合割合とストレートタイプフェノール樹脂の水酸基当量との積を算出する。そして、算出したそれぞれの積の和を求め、その和をアラルキル変性フェノール樹脂とストレートタイプフェノール樹脂の合計の配合割合で除したものがトータルの水酸基当量となる。これはいわゆる加重平均である。これを用いると、トータルの水酸基当量が最も小さくなるのは、アラルキル変性フェノール樹脂の水酸基当量が170g/eqで且つアラルキル変性フェノール樹脂とストレートタイプフェノール樹脂の配合比が2:16のときである。このとき、トータルの水酸基当量は112g/eqとなる。逆にトータルの水酸基当量が最も大きくなるのは、アラルキル変性フェノール樹脂の水酸基当量が180g/eqで且つアラルキル変性フェノール樹脂とストレートタイプフェノール樹脂の配合比が2:1のときである。このとき、トータルの水酸基当量は155g/eqとなる。このように、2種類のフェノール樹脂を混合し、そのトータルの水酸基当量が112~155g/eqとなり、トータルの水酸基当量がこの範囲内にあるのが望ましい。 The total hydroxyl equivalent of the two types of phenol resins described above is determined as follows. First, the product of the blending ratio of the aralkyl-modified phenol resin and the hydroxyl equivalent of the aralkyl-modified phenol resin is calculated, and the product of the blending ratio of the straight type phenol resin and the hydroxyl equivalent of the straight type phenol resin is calculated. And the sum of each calculated product is calculated | required, and what remove | divided the sum by the total mixture ratio of the aralkyl modified phenol resin and straight type phenol resin becomes a total hydroxyl equivalent. This is a so-called weighted average. When this is used, the total hydroxyl equivalent becomes the smallest when the hydroxyl equivalent of the aralkyl-modified phenol resin is 170 g / eq and the blending ratio of the aralkyl-modified phenol resin to the straight type phenol resin is 2:16. At this time, the total hydroxyl equivalent is 112 g / eq. On the contrary, the total hydroxyl equivalent becomes the largest when the hydroxyl equivalent of the aralkyl-modified phenol resin is 180 g / eq and the blending ratio of the aralkyl-modified phenol resin and the straight type phenol resin is 2: 1. At this time, the total hydroxyl equivalent is 155 g / eq. Thus, it is desirable that two kinds of phenol resins are mixed, and the total hydroxyl equivalent is 112 to 155 g / eq, and the total hydroxyl equivalent is within this range.
 ストレートタイプフェノール樹脂とアラルキル変性フェノール樹脂とが混合された摩擦材原料においては、カルシウムイオンによりフェノール樹脂がキレート化しても、それがアラルキル変性フェノール樹脂の場合にはカルシウムイオンと結合されていない水酸基の数が残り少ない。そのため、キレート化がそれ以上促進されず、フェノール樹脂の疑似高分子化が抑制される。また、カルシウムイオンの結合手の1本が別のフェノール樹脂と結合されていないとき、すなわちカルシウムイオンの結合手が余っているときには、カルシウムイオンと結合したフェノール樹脂はイオン化された状態のままで存在している。 In the friction material raw material in which straight type phenol resin and aralkyl-modified phenol resin are mixed, even if the phenol resin is chelated by calcium ions, in the case of aralkyl-modified phenol resin, the number of hydroxyl groups not bonded to calcium ions There is little remaining. Therefore, chelation is not promoted any more and the pseudo-polymerization of the phenol resin is suppressed. In addition, when one of the calcium ion bonds is not bonded to another phenol resin, that is, when there is a surplus of calcium ion bonds, the phenol resin bonded to calcium ions remains in an ionized state. is doing.
 このように、ストレートタイプフェノール樹脂とアラルキル変性フェノール樹脂とが混合されて配合された摩擦材原料においては、疑似高分子化が抑制されると共に、キレート化したフェノール樹脂はイオン化した状態で存在するため、高い流動性を維持することができる。これにより、常温プレス工法で摩擦材を形成したときであっても、ホットプレス工法で摩擦材を形成したときと同様の摩擦材原料の高密度化が達成できる。また、ホットプレス工法で形成した摩擦材と同等の気孔径分布を有するため、従来の常温プレス工法で形成した摩擦材と比較して耐摩耗性を向上させることができる。 In this way, in the friction material raw material in which the straight type phenol resin and the aralkyl-modified phenol resin are mixed and blended, pseudo-polymerization is suppressed, and the chelated phenol resin exists in an ionized state. High fluidity can be maintained. Thereby, even when the friction material is formed by the room temperature press method, the same high density of the friction material can be achieved as when the friction material is formed by the hot press method. Moreover, since it has a pore size distribution equivalent to that of the friction material formed by the hot press method, it is possible to improve the wear resistance as compared with the friction material formed by the conventional room temperature press method.
 ただし、アラルキル変性フェノール樹脂の配合割合は多ければ多いほど良いというわけではない。アラルキル変性フェノール樹脂の配合割合が多すぎると結合するフェノール樹脂の反応点が不足し、熱処理によるフェノール樹脂の硬化反応が進まないため十分な強度を得ることができない。そのため、アラルキル変性フェノール樹脂の配合割合やストレートタイプフェノール樹脂との配合比は上述した範囲にあることが望ましい。 However, the higher the proportion of aralkyl-modified phenolic resin, the better. When the blending ratio of the aralkyl-modified phenol resin is too large, the reaction points of the phenol resin to be bonded are insufficient, and the curing reaction of the phenol resin by heat treatment does not proceed, so that sufficient strength cannot be obtained. Therefore, the blending ratio of the aralkyl-modified phenol resin and the blending ratio with the straight type phenol resin are preferably in the above-described ranges.
 本実施形態においては、水酸基当量の高い方のフェノール樹脂としてアラルキル変性フェノール樹脂を用いたがこれだけに限られるものではない。上述した配合割合や配合比、トータルの水酸基当量を充足するものであれば、例えばカシュー変性フェノール樹脂(水酸基当量:135~145g/eq)のように水酸基当量が135~180g/eqの範囲内にある他のフェノール樹脂を用いても良い。 In this embodiment, an aralkyl-modified phenol resin is used as a phenol resin having a higher hydroxyl equivalent, but the present invention is not limited to this. If the above-mentioned blending ratio, blending ratio, and total hydroxyl equivalent are satisfied, the hydroxyl equivalent is within the range of 135 to 180 g / eq, such as cashew-modified phenolic resin (hydroxyl equivalent: 135 to 145 g / eq). Some other phenolic resin may be used.
 また、本実施形態においては、水酸基当量の異なる2種類のフェノール樹脂を用いたが、上述した配合割合や配合比、トータルの水酸基当量を充足する限りにおいて、3種類以上のフェノール樹脂を用いて摩擦材を形成しても良い。 In this embodiment, two types of phenolic resins having different hydroxyl equivalents were used. However, as long as the above-described blending ratio, blending ratio, and total hydroxyl equivalents were satisfied, friction was performed using three or more phenolic resins. A material may be formed.
2.摩擦材の製造方法
 次に、本実施形態に係る摩擦材の製造方法について説明する。本実施形態に係る摩擦材の製造方法は、摩擦材原料を攪拌する混合工程と、当該混合工程で得られた混合粉を所望の形状に成形する成形工程とを有するものであって、常温プレス工法及びホットプレス工法のいずれにも適用することができる。以下、図面を用いて詳細に説明する。
2. Next, a method for manufacturing the friction material according to the present embodiment will be described. The manufacturing method of the friction material according to the present embodiment includes a mixing step of stirring the friction material raw material, and a forming step of forming the mixed powder obtained in the mixing step into a desired shape. It can be applied to both the construction method and the hot press construction method. Hereinafter, it explains in detail using a drawing.
(常温プレス工法)
 図2に、本実施形態に係る摩擦材を常温プレス工法で製造するときのフロー図を示す。図2に示すように、先ず上述の繊維基材、摩擦調整材、充填材(水酸化カルシウム)、湿潤剤(水)、バインダー(フェノール樹脂)等を含む摩擦材原料のそれぞれを計量する。このとき、アラルキル変性フェノール樹脂とストレートタイプフェノール樹脂とは上記範囲内の配合比で予め混合されている。次いで、計量したこれらの摩擦材原料をヘンシェルミキサあるいはレディゲミキサ等の混合機に投入し、常温にて例えば10分程度混合して常温プレス工法用混合粉を作製する(混合工程)。このとき、当該混合機が昇温しないように公知の冷却手段によって冷却しながら混合するようにしても良い。
(Normal temperature press method)
FIG. 2 shows a flow diagram when the friction material according to the present embodiment is manufactured by a room temperature press method. As shown in FIG. 2, first, each of the above-mentioned fiber base material, friction modifier, filler (calcium hydroxide), wetting agent (water), friction material raw material including a binder (phenol resin) and the like are weighed. At this time, the aralkyl-modified phenol resin and the straight type phenol resin are preliminarily mixed at a blending ratio within the above range. Next, these weighed friction material materials are put into a mixer such as a Henschel mixer or a Redige mixer, and mixed at room temperature for about 10 minutes, for example, to produce a mixed powder for a room temperature press method (mixing step). At this time, mixing may be performed while cooling by a known cooling means so that the mixer does not increase in temperature.
 なお、水は、例えば混合が終了した後続けて一度に投入してもよいし、何度かに分割してあるいは少量ずつ連続して投入してもよい。また、水を摩擦材原料に投入して、混合する際に摩擦材原料が造粒されるようにしてもよい。 It should be noted that the water may be added all at once after the mixing is completed, for example, or may be divided several times or continuously in small amounts. Further, the friction material material may be granulated when water is added to the friction material material and mixed.
 裏板(金属製プレート等)については、適当な表面処理を施した後、作製した常温プレス工法用混合粉を載置する側に接着剤を塗布して乾燥させる。 For the back plate (metal plate, etc.), after applying an appropriate surface treatment, an adhesive is applied to the side on which the prepared mixed powder for a normal temperature press method is placed and dried.
 次いで、乾燥させた裏板に、秤量した所定量の常温プレス工法用混合粉を載置して、常温プレスを実施する(成形工程)。このとき、成形圧力を50MPa~200MPa(好ましくは100MPa)とし、成形時間を5秒~60秒(好ましくは15秒)とすると良い。 Next, a predetermined amount of the mixed powder for room temperature press method is placed on the dried back plate, and room temperature press is performed (molding process). At this time, the molding pressure may be 50 to 200 MPa (preferably 100 MPa), and the molding time may be 5 to 60 seconds (preferably 15 seconds).
 次いで、クランプ処理(例えば、180℃,1MPa,10分)を行う。その後、150℃~250℃,5分~180分の熱処理(好ましくは、230℃,3時間)を行い、さらに研磨、ロット刻印の諸工程を行う。 Next, a clamping process (for example, 180 ° C., 1 MPa, 10 minutes) is performed. Thereafter, heat treatment is performed at 150 to 250 ° C. for 5 to 180 minutes (preferably 230 ° C. for 3 hours), and various processes such as polishing and lot marking are performed.
(ホットプレス工法)
 ここでは、上述の常温プレス工法と異なる工程を主として説明を行う。図3に、本実施形態に係る摩擦材をホットプレス工法で製造するときのフロー図を示す。図3に示すように、先ず上述の繊維基材、摩擦調整材、充填材(水酸化カルシウム)、バインダー(フェノール樹脂)等を含む摩擦材原料のそれぞれを計量する。このとき、アラルキル変性フェノール樹脂とストレートタイプフェノール樹脂とは上記範囲内の配合比で予め混合されている。次いで、計量したこれらの摩擦材原料をヘンシェルミキサあるいはレディゲミキサ等の混合機に投入し、常温にて例えば10分程度混合してホットプレス工法用混合粉を作製する(混合工程)。このとき、当該混合機が昇温しないように公知の冷却手段によって冷却しながら混合するようにしても良い。
(Hot press method)
Here, the steps different from the room temperature press method described above will be mainly described. FIG. 3 shows a flow chart when the friction material according to this embodiment is manufactured by the hot press method. As shown in FIG. 3, first, each of the above-mentioned fiber base material, friction adjusting material, filler (calcium hydroxide), friction material raw material including a binder (phenol resin) and the like are weighed. At this time, the aralkyl-modified phenol resin and the straight type phenol resin are preliminarily mixed at a blending ratio within the above range. Next, these weighed friction material materials are put into a mixer such as a Henschel mixer or a Redige mixer, and mixed at room temperature for about 10 minutes, for example, to produce a mixed powder for the hot press method (mixing step). At this time, mixing may be performed while cooling by a known cooling means so that the mixer does not increase in temperature.
 なお、ホットプレス工法では、摩擦材原料を計量した後、必要に応じて、混合工程で偏析しやすい原料(例えば、ダスト類や金属繊維等)を粘性のある水溶液で前処理するようにしても良い。 In the hot press method, after the friction material raw material is weighed, if necessary, a raw material that easily segregates in the mixing step (for example, dusts or metal fibers) may be pretreated with a viscous aqueous solution. good.
 次いで、ホットプレス工法用混合粉の所定量を秤量して予備成形(常温,10MPa)を実施した後、裏板に載置してホットプレスを実施する(成形工程)。なお、当該裏板については、上記常温プレス工法の場合と同様に、適当な表面処理を施した後、予備成形後のホットプレス工法用混合粉を載置する側に接着剤を塗布して乾燥させたものを使用する。 Next, a predetermined amount of the mixed powder for the hot press method is weighed and preliminarily molded (normal temperature, 10 MPa), and then placed on the back plate and hot pressed (molding step). For the back plate, as in the case of the room temperature press method, after applying an appropriate surface treatment, an adhesive is applied to the side on which the mixed powder for the hot press method after the pre-forming is placed and dried. Use what you let.
 ホットプレスを実施する際は、成形温度を140℃~200℃(好ましくは160℃)とし、成形圧力を10MPa~30MPa(好ましくは20MPa)とし、成形時間を3分~15分(好ましくは10分)とすると良い。その後、150℃~250℃,5分~180分の熱処理(好ましくは、230℃,3時間)を行い、さらに研磨、ロット刻印の諸工程を行う。なお、ホットプレス工法では、クランプ処理を実施する必要はない。 When performing hot pressing, the molding temperature is 140 ° C. to 200 ° C. (preferably 160 ° C.), the molding pressure is 10 MPa to 30 MPa (preferably 20 MPa), and the molding time is 3 minutes to 15 minutes (preferably 10 minutes). ) Thereafter, heat treatment is performed at 150 to 250 ° C. for 5 to 180 minutes (preferably 230 ° C. for 3 hours), and various processes such as polishing and lot marking are performed. In the hot press method, it is not necessary to perform a clamping process.
 次に、本実施形態に係る摩擦材の実施例について説明する。常温プレス用及びホットプレス用の摩擦材原料の各成分を、図4の「混合粉配合」に示す配合比で計量した後、レディゲミキサに投入して10分間混合した(混合工程)。なお、ハイオルソタイプフェノール樹脂は樹脂の赤色変化を防止する特性を有しており、水酸基当量はストレートタイプフェノール樹脂と同等なので、ここではストレートタイプフェノール樹脂同様、水酸基当量の小さいフェノール樹脂として扱うものとする。 Next, examples of the friction material according to the present embodiment will be described. Each component of the friction material raw material for room temperature press and hot press was weighed at a blending ratio shown in “mixed powder blending” in FIG. The high-ortho type phenolic resin has the property of preventing red color change of the resin, and the hydroxyl equivalent is equivalent to the straight type phenol resin. .
 そして、混合粉のポットライフ性を確認するために、混合直後(0時間後),混合から8時間後,24時間後の混合粉をそれぞれ常温プレス工法及びホットプレス工法で摩擦材を成形した(成形工程)。常温プレス工法用混合粉については、成形温度が室温,成形圧力100MPa,成形時間15秒という条件でプレスした後、クランプで加圧(温度180℃,圧力1MPa,時間10分)し、最後に熱処理(温度230℃,時間3時間)を行って硬化させて摩擦材を得た。ホットプレス工法用混合粉については、成形温度160℃,成形圧力20MPa,成形時間10分という条件でプレスした後、熱処理(温度230℃,時間3時間)を行って硬化させて摩擦材を得た。こうして得られた摩擦材のそれぞれについて気孔率の測定(成形性),摩擦性能,摩耗性能を評価した。 Then, in order to confirm the pot life property of the mixed powder, a friction material was formed by a normal temperature press method and a hot press method immediately after mixing (after 0 hours), 8 hours after mixing, and 24 hours after mixing, respectively. Molding process). About the mixed powder for room temperature press method, after pressing at the molding temperature of room temperature, molding pressure of 100 MPa, molding time of 15 seconds, press with a clamp (temperature 180 ° C, pressure 1 MPa, time 10 minutes), and finally heat treatment (Temperature 230 ° C., time 3 hours) was cured to obtain a friction material. The mixed powder for the hot press method was pressed under the conditions of a molding temperature of 160 ° C., a molding pressure of 20 MPa, and a molding time of 10 minutes, and then heat treated (temperature 230 ° C., time 3 hours) and cured to obtain a friction material. . Each of the friction materials thus obtained was evaluated for porosity measurement (formability), friction performance, and wear performance.
 気孔率測定においては、気孔率が8.0~12.0のときに良好な気孔率を有すると判定した。一般に摩擦材はブレーキディスクに押しつけられると摩耗し、摩耗粉が気孔内に取り込まれ排出されるため、摩擦材表面に摩耗粉が残らずに摩擦性能を維持することができる。しかし、気孔率が大きければいいというものではない。気孔率が大きい、すなわち気孔の数が多いほど摩擦材は柔らかくなるため摩擦性能は向上するが摩耗量が多くなり摩耗性能が低下する。逆に気孔率が小さい、すなわち気孔の数が少ないほど摩擦材は硬くなるためブレーキディスクに押しつけられたときに面当たりが悪くなり摩擦性能が低下するが、逆に摩耗性能は向上する。従って、摩擦性能と摩耗性能のバランスを考慮して気孔率が適当な範囲内にあることが摩擦材の性能にとって重要である。摩擦性能評価においては、JASO C406に従って実施し、一般使用温度(100℃)における平均摩擦係数を測定した。平均摩擦係数が0.35より大きいときに良好な摩擦性能を有すると判定した。摩耗性能評価においては、比較例1(熱成形品)の摩耗量を1.0としたときに摩耗量が1.2より少ないときに良好な摩耗性能を有すると判定した。そして、実施例1~6の総合的な判定として、不良と判定された項目がない実施例については摩擦材として良好な性能を有するとして「○」、不良と判定された項目が1個である実施例については摩擦材としてやや良好な性能を有するとして「△」、不良と判定された項目が2個以上である実施例については摩擦材として良好な性能を有していないとして「×」とそれぞれ判定した。なお、図4において、不良の項目については網掛け表示がされている。 In the porosity measurement, when the porosity was 8.0 to 12.0, it was determined to have a good porosity. Generally, the friction material is worn when pressed against the brake disc, and the wear powder is taken into and discharged from the pores, so that the friction performance can be maintained without any wear powder remaining on the surface of the friction material. However, it does not mean that the porosity is high. The larger the porosity, that is, the greater the number of pores, the softer the friction material, so that the friction performance is improved, but the wear amount is increased and the wear performance is lowered. On the contrary, the smaller the porosity, that is, the smaller the number of pores, the harder the friction material becomes. Therefore, when pressed against the brake disc, the surface contact becomes worse and the friction performance is lowered, but the wear performance is improved. Therefore, it is important for the performance of the friction material that the porosity is within an appropriate range in consideration of the balance between the friction performance and the wear performance. In the friction performance evaluation, it was carried out according to JASO C406, and an average friction coefficient at a general use temperature (100 ° C.) was measured. When the average friction coefficient was larger than 0.35, it was determined that the film had good friction performance. In the wear performance evaluation, when the wear amount of Comparative Example 1 (thermoformed product) was 1.0, the wear amount was determined to be good when the wear amount was less than 1.2. In addition, as a comprehensive determination of Examples 1 to 6, in the example in which there is no item determined as defective, “◯” indicates that the friction material has good performance, and there is one item determined as defective. As for the examples, “△” as having a slightly good performance as a friction material, and “×” as having no good performance as a friction material for an example in which two or more items were judged as defective. Each was judged. In FIG. 4, defective items are shaded.
 図4に示すように、いずれの摩擦材においても経時と共に気孔率は増加する傾向である。ストレートタイプフェノール樹脂のみが配合されアラルキル変性フェノール樹脂が配合されていない比較例1と比較例2においては、比較例1の24時間後,比較例2の8時間後と24時間後において気孔率が12.0を上回り、良好な範囲を逸脱した。摩擦性能は比較例1と比較例2のいずれのポットライフの実施例においても0.35を上回って良好であり、気孔率が大きくなるにつれて摩擦性能は向上した。一方、摩耗性能は比較例1の24時間後,比較例2の8時間後と24時間後において1.2以上で不良となった。このように、ストレートタイプフェノール樹脂のみが配合された摩擦材では、良好な性能が得られないことがわかる。 As shown in FIG. 4, in any friction material, the porosity tends to increase with time. In Comparative Example 1 and Comparative Example 2 in which only a straight type phenolic resin is blended and no aralkyl-modified phenolic resin is blended, the porosity is 12 after 24 hours of Comparative Example 1 and after 8 hours and 24 hours of Comparative Example 2. More than 0.0, deviating from the good range. The friction performance was good, exceeding 0.35 in both pot life examples of Comparative Example 1 and Comparative Example 2, and the friction performance improved as the porosity increased. On the other hand, the wear performance was poor at 1.2 or more after 24 hours of Comparative Example 1 and after 8 hours and 24 hours of Comparative Example 2. Thus, it can be seen that the friction material containing only the straight type phenolic resin cannot obtain good performance.
 逆にアラルキル変性フェノール樹脂のみが配合されている実施例6(常温プレス成形品)においては、流動性が良すぎて成形してもほとんど気孔が形成されないため、混合直後のものが気孔率5.7、混合から24時間経過後に成形したものにおいても気孔率7.9となり不良であった。摩擦性能は0時間後と8時間後において不良であったが、摩耗性能は24時間経過後でも良好であった。実施例6は、不良と判定された項目が5個なので、総合判定では「×」とした。このように、アラルキル変性フェノール樹脂のみが配合された摩擦材原料で成形した摩擦材では、良好な性能が得られないことがわかる。 On the contrary, in Example 6 (room temperature press-molded product) in which only the aralkyl-modified phenol resin is blended, since the fluidity is too good and almost no pores are formed even when molded, the one immediately after mixing has a porosity of 5. 7. Even after 24 hours from mixing, the molded product was poor with a porosity of 7.9. The friction performance was poor after 0 and 8 hours, but the wear performance was good even after 24 hours. In Example 6, since there are five items determined to be defective, the overall determination is “x”. Thus, it is understood that good performance cannot be obtained with a friction material formed from a friction material material containing only an aralkyl-modified phenol resin.
 実施例1~5においては、アラルキル変性フェノール樹脂と、ストレートタイプフェノール樹脂及びハイオルソタイプフェノール樹脂のいずれか一方が配合されている。図4に示すように、アラルキル変性フェノール樹脂の配合割合は1~6重量%であり、アラルキル変性フェノール樹脂とストレートタイプフェノール樹脂またはハイオルソタイプフェノール樹脂の配合比は、実施例1,実施例3では2:4、実施例2では2:16、実施例4では2:2、実施例5では2:1といずれも上述した要件を充足している。 In Examples 1 to 5, aralkyl-modified phenol resin and any one of straight type phenol resin and high ortho type phenol resin are blended. As shown in FIG. 4, the blending ratio of the aralkyl-modified phenol resin is 1 to 6% by weight, and the blending ratio of the aralkyl-modified phenol resin and the straight type phenol resin or the high-ortho type phenol resin is as in Example 1 and Example 3. 2: 4, 2:16 in Example 2, 2: 2 in Example 4, and 2: 1 in Example 5, all satisfy the above-described requirements.
 実施例1~5においては、成形性はいずれも良好な範囲にあった。摩擦性能は、実施例5の0時間後だけが不良で残りは良好であった。摩耗性能は、実施例2の24時間後だけが不良で残りは良好であった。これらをまとめると、実施例1,実施例3,実施例4は、不良と判定された項目が0個なので、総合判定では「○」とした。実施例2と実施例5は、不良と判定された項目が1個なので、総合判定では「△」とした。このように、アラルキル変性フェノール樹脂と、ストレートタイプフェノール樹脂及びハイオルソタイプフェノール樹脂のいずれか一方が配合された摩擦材原料で成形した摩擦材では、気孔率,摩擦性能,摩耗性能のいずれにおいても良好な性能が得られるがわかる。 In Examples 1 to 5, the moldability was in a favorable range. The friction performance was poor only after 0 hours of Example 5, and the rest was good. The wear performance was poor only after 24 hours of Example 2 and the rest was good. In summary, in Example 1, Example 3, and Example 4, since there were no items determined to be defective, the overall determination was “◯”. In Example 2 and Example 5, since there is one item determined to be defective, the overall determination is “Δ”. As described above, the friction material formed from the friction material containing aralkyl-modified phenol resin and either straight type phenol resin or high-ortho type phenol resin is good in terms of porosity, friction performance, and wear performance. You can see that the performance is good.
 本発明は、例えば車両等のディスクブレーキ用パッドに使用する摩擦材及びその製造方法に利用することができる。 The present invention can be used for, for example, a friction material used for a disc brake pad of a vehicle or the like and a manufacturing method thereof.

Claims (7)

  1.  繊維基材、摩擦調整材、充填材、湿潤剤、及び水酸基当量の異なる複数種類のフェノール樹脂をバインダーとして含む摩擦材原料により製造された摩擦材。 A friction material manufactured from a friction material material containing a fiber base material, a friction modifier, a filler, a wetting agent, and a plurality of types of phenol resins having different hydroxyl equivalents as binders.
  2.  複数種類の前記フェノール樹脂のそれぞれについて前記フェノール樹脂の配合割合と当該フェノール樹脂の前記水酸基当量との積を算出し、算出したそれぞれの積の和を複数種類の前記フェノール樹脂の全配合割合で除したときの前記水酸基当量が112~155g/eqである請求項1に記載の摩擦材。 Calculate the product of the blending ratio of the phenolic resin and the hydroxyl group equivalent of the phenolic resin for each of the plurality of types of phenolic resins, and divide the sum of the calculated products by the total blending ratio of the plurality of types of the phenolic resins. The friction material according to claim 1, wherein the hydroxyl equivalent weight is 112 to 155 g / eq.
  3.  複数種類の前記フェノール樹脂の中で前記水酸基当量が最も大きい前記フェノール樹脂の前記水酸基当量が135g/eq以上である請求項1又は2に記載の摩擦材。 The friction material according to claim 1 or 2, wherein the hydroxyl group equivalent of the phenol resin having the largest hydroxyl group equivalent among the plurality of types of phenol resins is 135 g / eq or more.
  4.  複数種類の前記フェノール樹脂は2種類からなり、
     前記水酸基当量が大きい方の前記フェノール樹脂と前記水酸基当量が小さい方の前記フェノール樹脂の含有比率が2:16~2:1の範囲内にある請求項1乃至3のいずれか一項に記載の摩擦材。
    The plural types of the phenolic resin are composed of two types,
    The content ratio of the phenol resin having a larger hydroxyl equivalent and the phenol resin having a smaller hydroxyl equivalent is in the range of 2:16 to 2: 1. Friction material.
  5.  前記水酸基当量が大きい方の前記フェノール樹脂の配合割合は、前記摩擦材原料の全体に対して1~20重量%である請求項4に記載の摩擦材。 The friction material according to claim 4, wherein a blending ratio of the phenol resin having a larger hydroxyl equivalent is 1 to 20% by weight with respect to the whole friction material raw material.
  6.  前記水酸基当量が大きい方の前記フェノール樹脂はアラルキル変性フェノール樹脂である請求項4又は5に記載の摩擦材。 The friction material according to claim 4 or 5, wherein the phenol resin having a larger hydroxyl equivalent is an aralkyl-modified phenol resin.
  7.  繊維基材、摩擦調整材、充填材、湿潤剤、及び水酸基当量の異なる複数種類のフェノール樹脂をバインダーとして含む摩擦材原料を攪拌する混合工程と、
     前記混合工程で得られた混合粉を所望の形状に成形する成形工程とを含む摩擦材の製造方法。
    A mixing step of stirring a friction material material containing a fibrous base material, a friction modifier, a filler, a wetting agent, and a plurality of types of phenol resins having different hydroxyl equivalents as a binder;
    A method for producing a friction material, comprising: a molding step of molding the mixed powder obtained in the mixing step into a desired shape.
PCT/JP2013/084736 2012-12-25 2013-12-25 Friction material and method for producing same WO2014104125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012281554A JP2014125504A (en) 2012-12-25 2012-12-25 Friction material and method for producing the same
JP2012-281554 2012-12-25

Publications (1)

Publication Number Publication Date
WO2014104125A1 true WO2014104125A1 (en) 2014-07-03

Family

ID=51021203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084736 WO2014104125A1 (en) 2012-12-25 2013-12-25 Friction material and method for producing same

Country Status (2)

Country Link
JP (1) JP2014125504A (en)
WO (1) WO2014104125A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322587A (en) * 2022-08-26 2022-11-11 中国第一汽车股份有限公司 Friction material for disc brake and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6753649B2 (en) * 2015-02-06 2020-09-09 日本ブレーキ工業株式会社 Friction materials and members
WO2016125892A1 (en) * 2015-02-06 2016-08-11 日本ブレーキ工業株式会社 Friction material and friction member
JP6753650B2 (en) * 2015-02-20 2020-09-09 日本ブレーキ工業株式会社 Friction materials and members

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091726A (en) * 2002-09-03 2004-03-25 Sumitomo Bakelite Co Ltd Phenolic resin composition for friction material and method for producing the same
JP2006275198A (en) * 2005-03-30 2006-10-12 Nisshinbo Ind Inc Disc pad
JP2008189791A (en) * 2007-02-05 2008-08-21 Advics:Kk Friction material
JP2008222897A (en) * 2007-03-14 2008-09-25 Sumitomo Bakelite Co Ltd Phenol resin composition for friction material
JP2011241381A (en) * 2010-04-23 2011-12-01 Nisshinbo Brake Inc Disk brake pad

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091726A (en) * 2002-09-03 2004-03-25 Sumitomo Bakelite Co Ltd Phenolic resin composition for friction material and method for producing the same
JP2006275198A (en) * 2005-03-30 2006-10-12 Nisshinbo Ind Inc Disc pad
JP2008189791A (en) * 2007-02-05 2008-08-21 Advics:Kk Friction material
JP2008222897A (en) * 2007-03-14 2008-09-25 Sumitomo Bakelite Co Ltd Phenol resin composition for friction material
JP2011241381A (en) * 2010-04-23 2011-12-01 Nisshinbo Brake Inc Disk brake pad

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322587A (en) * 2022-08-26 2022-11-11 中国第一汽车股份有限公司 Friction material for disc brake and preparation method and application thereof
CN115322587B (en) * 2022-08-26 2024-01-16 中国第一汽车股份有限公司 Friction material for disc brake and preparation method and application thereof

Also Published As

Publication number Publication date
JP2014125504A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
EP2745027B1 (en) Friction material for brakes
EP2491267B1 (en) Friction material for brakes
EP2526318B1 (en) Copper-free friction material for brake pads
JP6247079B2 (en) Friction material
US8863917B2 (en) Friction material for brakes
EP2491089B2 (en) Friction material for brakes
JP5981839B2 (en) Friction material
WO2014104125A1 (en) Friction material and method for producing same
WO2014157616A1 (en) Friction material
JP6157108B2 (en) Friction material
JP2002226834A (en) Nonasbestos friction material
JP5660375B2 (en) Friction material manufacturing method
JP2017095646A (en) Friction material
EP1482203A1 (en) Friction material
JP2003313312A (en) Non-asbestos friction material
JPH11148071A (en) Composition for friction material
JP2007113642A (en) Friction couple and friction material
JP6509054B2 (en) Friction material
JPS61162537A (en) Frictional material composition
JP6370421B2 (en) Friction material
JPH03181529A (en) Frictionizing material composition
JP2007112952A (en) Friction material
WO2022209400A1 (en) Friction material
JPS5924776A (en) Semi-metallic friction material
JP2004315626A (en) Friction material and method for producing the same, and composition for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868863

Country of ref document: EP

Kind code of ref document: A1