JPS61162537A - Frictional material composition - Google Patents

Frictional material composition

Info

Publication number
JPS61162537A
JPS61162537A JP345885A JP345885A JPS61162537A JP S61162537 A JPS61162537 A JP S61162537A JP 345885 A JP345885 A JP 345885A JP 345885 A JP345885 A JP 345885A JP S61162537 A JPS61162537 A JP S61162537A
Authority
JP
Japan
Prior art keywords
inorganic
rubber powder
unvulcanized rubber
friction
base component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP345885A
Other languages
Japanese (ja)
Inventor
Harunobu Kani
可児 春伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP345885A priority Critical patent/JPS61162537A/en
Publication of JPS61162537A publication Critical patent/JPS61162537A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing

Abstract

PURPOSE:To produce the titled composition having excellent preformability and improved initial frictional coefficient, and suitable for clutch facing, etc., by compounding a specific amount of a specific unvulcanized rubber powder to a base component composed of an inorganic or organic fiber, an inorganic or organic filler and a resin. CONSTITUTION:The objective composition is produced by compounding (A) 100pts.(wt.) of a base component composed of an inorganic or organic fiber (e.g. asbestos, glass fiber, etc.) an inorganic or organic filler (e.g. barium sulfate, alumina, etc.) and a resin (e.g. a phenolic resin) with (B) 5-50pts. of unvulcanized rubber powder (e.g. NBR, SBR, etc.) having particle diameter of 10mum-3mm. The unvulcanized rubber powder is preferably compounded with 50-150pts. of additives such as vulcanizing agent, softener, etc. per 100pts. of the rubber, and further preferably added with an anticoagulant (e.g. alumina, talc, etc.).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は摩擦材組成物に関し、詳しくは予備成形性に優
れ、初期摩擦係数が向上した摩擦材を得る摩擦材組成物
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a friction material composition, and more particularly to a friction material composition that provides excellent preformability and an improved initial coefficient of friction.

本発明の摩擦材組成物はクラッチフェーシング、振材組
成物はクラッチフェーシング、ブレーキライニング等に
利用できる。
The friction material composition of the present invention can be used for clutch facings, and the vibration material composition can be used for clutch facings, brake linings, etc.

[従来の技術] 従来の摩擦材はアスベスト、グラスファイバー等の無機
繊維、硫酸バリウム、グラフフィト等の粉末からなる無
機充填物、およびメラミン樹脂、フェノール樹脂等の結
合剤等からなる組成物を、有機溶剤等を使用した湿式混
合、あるいは有機溶剤等は用いない乾式混合によって常
温で予備成形し、その後加熱加圧して製造されている。
[Prior Art] Conventional friction materials are composed of inorganic fillers made of inorganic fibers such as asbestos and glass fibers, powders such as barium sulfate and graphite, and binders such as melamine resins and phenolic resins. It is manufactured by preforming at room temperature by wet mixing using an organic solvent or by dry mixing without using an organic solvent, followed by heating and pressing.

[発明が解決しようとする問題点] 従来の摩擦材組成物は、特に無機msaにグラスファイ
バー、炭素繊維等アスベスト以外の繊維を使用した場合
には常温での乾式混合で予備成形する場合に、成形体が
早期に形くずれを起こすという不具合があった。この問
題点を解決するには湿式混合にする方法、あるいは予備
成形時に加熱して結合剤の粘着性を増加させる方法等が
ある。しかしながら湿式混合の場合は予備成形体に含ま
れる有機溶剤等を蒸発・気化させる乾燥工程、およびガ
ス抜き工程等が必要であり、予備成形時に加熱するにも
加熱エネルギーが必要となって、コスト面で問題があっ
た。また従来の摩擦材では摩擦係数は使用時間とともに
増加して所望の値となるために、使用初期には所望の摩
擦係数が得られない場合もあった。
[Problems to be Solved by the Invention] Conventional friction material compositions, especially when fibers other than asbestos such as glass fiber or carbon fiber are used as the inorganic msa, have problems when preformed by dry mixing at room temperature. There was a problem in that the molded product lost its shape early. To solve this problem, there are methods such as wet mixing or heating during preforming to increase the adhesiveness of the binder. However, in the case of wet mixing, a drying process to evaporate the organic solvent contained in the preform, a degassing process, etc. are required, and heating energy is also required to heat the preform, resulting in a high cost. There was a problem. Furthermore, in conventional friction materials, the coefficient of friction increases with time of use and reaches a desired value, so there are cases where the desired coefficient of friction cannot be obtained at the beginning of use.

本発明は上記問題点に鑑みてなされたものであり、予備
成形性に優れ、初期にも摩擦係数の高い摩擦材が得られ
る摩擦材組成物を提供するものである。
The present invention has been made in view of the above-mentioned problems, and provides a friction material composition that has excellent preformability and provides a friction material with a high coefficient of friction even in the initial stage.

L問題点を解決するための手段] 本発明の摩擦材組成物は、無機・有機繊維、無機・有機
充填物、樹脂等からなる基体成分100重量部とからな
ることを特徴とする。
Means for Solving Problem L] The friction material composition of the present invention is characterized by comprising 100 parts by weight of a base component consisting of inorganic/organic fibers, inorganic/organic fillers, resins, and the like.

ここで摩擦材とは、クラッチフェーシング、ブレーキラ
イニング、ブレーキパッド等を意味し、主として金属製
の相手材と贋動し、その贋動摩擦によって運動エネルギ
ーを熱エネルギーに変換する材料をいう。
Here, the term "friction material" refers to clutch facings, brake linings, brake pads, etc., and refers to a material that primarily moves against a metal counterpart and converts kinetic energy into thermal energy through the friction of the friction.

本発明にいう基体成分とは摩擦材の形状を保ち、摺動摩
擦抵抗を高めるものであり、従来と同様の無機・有機繊
維、無機・有機充填物、樹脂等からなる材料を用いるこ
とができる。無機・有機繊維は摩擦材の基材となるもの
であり、アスベスト、グラスファイバー、金属繊維、炭
素繊維、フェノール繊維等を単独であるいは2種以上を
混合して用いることができる。無機・有機充填物は主と
して摩擦調整の目的で配合され、硫酸バリウム、アルミ
ナ、炭酸カルシウム、水酸化カルシウム、珪藻上、グラ
ファイト、ドロマイト等の無機粉末、カシューダスト、
ラバーダスト等の有機粉末、アルミニウム、鉄、亜鉛等
の金属粉末等を用途に応じ種々選択して用いることがで
きる。樹脂は上記m緒および充填物の結合剤として作用
し、摩擦材の形状を保持しかつ硬度および摩擦を調整す
るものであり、フェノール系樹脂、ブチラール系樹脂、
フェノキシ系樹脂、エポキシ系樹脂等を用いることがで
きる。フェノール系1Ml1#とは、例えばフェノール
、クレゾール等のフェノール類の1種またはそれ以上と
、ホルムアルデヒドまたはその発生源となる化合物とよ
り縮合させて得られる樹脂をいう。またカシューナツト
オイル、ポリビニルブチラール、植物油、メラミン、エ
ポキシ化合物等で変性した変性フェノール樹脂を用いて
もよい。
The base component referred to in the present invention is a component that maintains the shape of the friction material and increases sliding frictional resistance, and conventional materials such as inorganic/organic fibers, inorganic/organic fillers, resins, etc. can be used. Inorganic/organic fibers serve as the base material of the friction material, and asbestos, glass fiber, metal fiber, carbon fiber, phenol fiber, etc. can be used alone or in combination of two or more types. Inorganic/organic fillers are mainly blended for the purpose of friction adjustment, and include inorganic powders such as barium sulfate, alumina, calcium carbonate, calcium hydroxide, diatoms, graphite, and dolomite, cashew dust,
Various organic powders such as rubber dust, metal powders such as aluminum, iron, zinc, etc. can be selected and used depending on the purpose. The resin acts as a binder for the above-mentioned cord and filler, maintains the shape of the friction material, and adjusts hardness and friction, and includes phenolic resin, butyral resin,
Phenoxy resin, epoxy resin, etc. can be used. Phenolic 1Ml1# refers to a resin obtained by condensing one or more phenols such as phenol and cresol with formaldehyde or a compound that is a source thereof. Furthermore, modified phenolic resins modified with cashew nut oil, polyvinyl butyral, vegetable oil, melamine, epoxy compounds, etc. may also be used.

耐熱性の面では、無変性フェノール樹脂が優れている。In terms of heat resistance, unmodified phenolic resin is excellent.

なお基体成分には上記以外の添加剤、助剤等を添加する
こともできる。
Note that additives, auxiliaries, etc. other than those mentioned above may also be added to the base component.

本発明の最大の特徴は上記基体成分に、ざらに未加硫ゴ
ムの粉末が配合されるところにある。すなわち不発川音
は未加硫ゴム粉末を用いることにより、乾式混合におい
ても予備成形体の形くずれが生じず、良好な形保持性を
有することを発見して本発明を完成したものである。こ
の未加硫ゴムはNBR,SBR,BR,天然ゴム等、特
に制約を受けないがNBR,SBRが好ましい。また1
種のみならず2種以上を混合して用いることもできる。
The greatest feature of the present invention is that unvulcanized rubber powder is blended into the base component. That is, Fukanon completed the present invention by discovering that by using unvulcanized rubber powder, the preform does not lose its shape even during dry mixing and has good shape retention. This unvulcanized rubber may be NBR, SBR, BR, natural rubber, etc., but is not particularly limited, but NBR and SBR are preferred. Also 1
Not only seeds but also a mixture of two or more types can be used.

この未加硫ゴムは粉末状態で基体成分と混合され、その
粒径は10μ−〜3g+sの範囲のものが使用できる。
This unvulcanized rubber is mixed with the base component in a powdered state, and particles having a particle size in the range of 10 μ- to 3 g+s can be used.

ここで粒径が10μmより小さい場合には、ゴム粒子の
二次凝集が生じやすくなり、均一なゴム組成の成形体を
得るのが困難となる。
If the particle size is smaller than 10 μm, secondary aggregation of the rubber particles tends to occur, making it difficult to obtain a molded article with a uniform rubber composition.

また3mmより大きい場合には、成形体が不均一となり
易く、摩擦係数が部分的に異なったり、経時で変化した
りする場合もある。また摩擦材の外観も劣る等好ましい
とはいえない。
Moreover, if it is larger than 3 mm, the molded body tends to be non-uniform, and the coefficient of friction may differ locally or change over time. Furthermore, the appearance of the friction material is also poor, which is not desirable.

また上記未加硫ゴム粉末は上記基体成分100重量部に
対し5〜5011量部配合される。配合量が5重量部よ
り少ない場合には予備成形時の形保持性および摩擦材と
しての初期の*m係数を高める効果がほとんど見られず
、50重量部より多い場合にはフェード現象(連続制動
で摩擦面温度が急上昇する時の摩擦係数の低下)が生ず
るようになって好ましくない。
Further, the unvulcanized rubber powder is blended in an amount of 5 to 5011 parts by weight per 100 parts by weight of the base component. When the amount is less than 5 parts by weight, there is almost no effect of increasing the shape retention during preforming and the initial *m coefficient as a friction material, and when it is more than 50 parts by weight, there is a fade phenomenon (continuous braking). This is undesirable because it causes a decrease in the coefficient of friction (when the temperature of the friction surface suddenly increases).

本発明の摩擦材組成物には未加硫ゴムの性能を調整する
配合剤を添加することが望ましい。例えば加硫剤を添加
することにより加熱加圧成形時に未加硫ゴムを加硫する
、カーボンを添加して補強性を付与する等のものである
。このような配合剤には従来周知の加硫剤、加硫助剤、
老化防止剤、充填剤、粘着性付与剤等を、用途に応じ種
々選択して用いることができる。これらの配合剤は、未
加硫ゴム100重量部に対し通常50〜150重量部配
合される。これらの配合剤は、基体成分および未加硫ゴ
ム粉末と同時に混合することもできるが、未加硫ゴム中
に予め混合しておき、粒径10μII〜3IImの未加
硫配合ゴム粉末として基体成分と混合するのが望ましい
。ただしこの場合は、配合剤の添加量を調節しなければ
ならないことは言うまでもない。
It is desirable to add a compounding agent to the friction material composition of the present invention to adjust the performance of the unvulcanized rubber. For example, unvulcanized rubber is vulcanized during hot-press molding by adding a vulcanizing agent, or carbon is added to impart reinforcing properties. Such compounding agents include conventionally well-known vulcanizing agents, vulcanizing aids,
Various anti-aging agents, fillers, tackifiers, etc. can be selected and used depending on the purpose. These compounding agents are usually mixed in an amount of 50 to 150 parts by weight per 100 parts by weight of unvulcanized rubber. Although these compounding agents can be mixed simultaneously with the base component and unvulcanized rubber powder, they can be mixed in advance into the unvulcanized rubber and used as the base component as unvulcanized compounded rubber powder with a particle size of 10 μII to 3 II m. It is preferable to mix it with However, in this case, it goes without saying that the amount of the compounding agent added must be adjusted.

未加硫ゴム粉末あるいは未加硫配合ゴム粉末は通常凍結
粉砕等の方法で製造される。例えば未加硫ゴムと配合剤
とを加熱ニーダ、バンバリーミキサ−等で混練し、板状
に押出し侵短冊状に切断し、−30’C以下で凍結粉砕
することにより粉末を得ることができる。なおこれらの
粉末粒子は、常温時に粒子自体の粘着性により、粒子ど
うしが粘着し合って大きな粒子となるような不具合が発
生する場合がある。このような不具合を防止するために
アルミナ、タルク、炭酸カルシウム、硫酸バリウム、ク
レー等の基体成分の充填物粉末の一部のごく少I(通常
ゴム粉末に対し0.5〜3,0重置%)を、上記凍結粉
砕後の低置時に、未加硫ゴム粉末あるいは未加硫配合ゴ
ム粉末に添加することも好ましい方法である。この場合
は、充填物粉末は凝集防止剤として作用している。
Unvulcanized rubber powder or unvulcanized compounded rubber powder is usually produced by a method such as freeze-pulverization. For example, a powder can be obtained by kneading unvulcanized rubber and a compounding agent in a heating kneader, Banbury mixer, etc., extruding it into a plate shape, cutting it into eroded strips, and freeze-pulverizing it at -30'C or below. Note that these powder particles may cause problems such as particles sticking to each other and becoming large particles due to the stickiness of the particles themselves at room temperature. To prevent such problems, a very small amount of I (usually 0.5 to 3.0 times the amount of rubber powder) is added to the filler powder of base components such as alumina, talc, calcium carbonate, barium sulfate, and clay. %) to the unvulcanized rubber powder or the unvulcanized compounded rubber powder during the cooling process after the above-mentioned freeze-pulverization. In this case, the filler powder is acting as an anti-agglomeration agent.

本発明の摩擦材組成物により摩擦材を製造するには、従
来と同様の方法を利用できる。しかしながら本発明の効
果の一つである予備成形時の形保持性を発揮するには、
基体成分にはlj機溶剤等を用いず、乾式混合後予備成
形を行なうことが望ましい。すなわち基体成分と未加硫
ゴム粉末あるいは未加硫配合ゴム粉末とをバンバリーミ
キサ−、ヘンシェルミキサー、ニーダ、V型プレンダー
、高速回転機等で十分混合して混合原料を製造する。
In order to manufacture a friction material using the friction material composition of the present invention, conventional methods can be used. However, in order to achieve shape retention during preforming, which is one of the effects of the present invention,
It is desirable to perform preforming after dry mixing without using lj solvent or the like for the base component. That is, the base component and unvulcanized rubber powder or unvulcanized blended rubber powder are thoroughly mixed in a Banbury mixer, Henschel mixer, kneader, V-type blender, high-speed rotating machine, etc. to produce a mixed raw material.

この混合原料を型内に充填し、常温で押圧して予備成形
を行ない、粗形材を製造する。次に加熱型内に粗形材を
入れ、加熱加圧して摩擦材を製造する、等とするのがよ
い。
This mixed raw material is filled into a mold and pressed at room temperature to perform preforming to produce a rough shaped material. Next, it is preferable to put the rough shaped material into a heating mold and heat and pressurize it to produce a friction material.

[作用および発明の効果] 本発明の摩擦材組成物は未加硫ゴムの粘着性により、乾
式混合においても予備成形体の形を長時間維持すること
が可能である。また加熱加圧時に未加硫ゴムが加硫され
ることにより、基体成分と一体的に結合することも可能
であり、強度の高い摩擦材が得られる。また未加硫ゴム
の配合量を増す程初期の摩擦係数を高くすることができ
る。さらに加硫時の未加硫ゴム粉末の体積の収縮、およ
び乾式混合時の空気の巻き込みにより、得られる摩擦材
は従来に比べて高い気孔率を有している。
[Function and Effects of the Invention] The friction material composition of the present invention can maintain the shape of a preform for a long time even during dry mixing due to the tackiness of the unvulcanized rubber. Further, by vulcanizing the unvulcanized rubber during heating and pressurization, it is possible to integrally bond with the base component, and a high-strength friction material can be obtained. Furthermore, the initial coefficient of friction can be increased as the amount of unvulcanized rubber is increased. Furthermore, due to the shrinkage of the volume of the unvulcanized rubber powder during vulcanization and the inclusion of air during dry mixing, the resulting friction material has a higher porosity than conventional materials.

従って**時の発熱によって有機物が分解した場合に、
分解生成物を内部気孔に吸収し、あるいは外部に連通す
る気孔から外部に逃がすことが可能となる。これにより
有機物の分解が促進され、以て*m係数を早期に安定化
することが可能となる等、本発明の効果は大きい。
Therefore, when organic matter decomposes due to heat generation at **,
It becomes possible for decomposition products to be absorbed into internal pores or released to the outside through pores communicating with the outside. This promotes the decomposition of organic matter, thereby making it possible to stabilize the *m coefficient at an early stage, and the effects of the present invention are significant.

[実施例] 以下実施例により説明する。[Example] This will be explained below using examples.

平均直径8μm、平均長さ3msのグラスファイバー3
0重量%、ケブラー(芳香族ポリアミトン15重最%、
無変性フェノール樹l1l(ストレートフェノールレジ
ン)25重量%、カシューダスト10重量%、硫酸バリ
ウム粉末20重量%からなる配合物を基体成分とした。
Glass fiber 3 with an average diameter of 8 μm and an average length of 3 ms
0% by weight, Kevlar (15% by weight of aromatic polyamide,
The base component was a mixture consisting of 25% by weight of unmodified phenol resin (straight phenol resin), 10% by weight of cashew dust, and 20% by weight of barium sulfate powder.

また未加硫NBRゴム50重量部、カーボンブラック2
3重量部、イオウ107111部、タルク10重量部、
酸化亜鉛5重量部、老化防止剤2重量部からなる配合物
を110℃で混M侵板状に押出し、短冊状に切断後−5
0℃で凍結粉砕して粒径0.1〜1.0Hの未加硫配合
ゴム粉末を得た。そして上記基体成分と、上記未加硫配
合ゴム粉末中の未加硫ゴム成分とが垂最比で100対1
0となるように配合し、実施例1の摩擦材の組成物を得
た。
Also, 50 parts by weight of unvulcanized NBR rubber, 2 parts of carbon black
3 parts by weight, 107,111 parts by weight of sulfur, 10 parts by weight of talc,
A mixture consisting of 5 parts by weight of zinc oxide and 2 parts by weight of anti-aging agent was extruded at 110°C into a mixed M plate shape and cut into strips.
Freeze-pulverization was performed at 0°C to obtain unvulcanized compounded rubber powder with a particle size of 0.1 to 1.0H. The base component and the unvulcanized rubber component in the unvulcanized compounded rubber powder are in a vertical ratio of 100:1.
The friction material composition of Example 1 was obtained.

次に基体成分と未加硫配合ゴム粉末は実施例1と同一組
成のものを使用し、基体成分と、未加硫配合ゴム粉末中
の未加硫ゴム成分とを重i比で100対45となるよう
に配合し、実施例2の摩擦材組成物を得た。
Next, the base component and the unvulcanized compounded rubber powder had the same composition as in Example 1, and the base component and the unvulcanized rubber component in the unvulcanized compounded rubber powder were mixed in a weight i ratio of 100:45. The friction material composition of Example 2 was obtained.

さらに基体成分と未加硫配合ゴム粉末は実施例ゴム粉末
中の未加硫ゴム成分とを重量比で100対2.5および
100対55となるように配合して比較例1、比較例2
の摩擦材組成物を、また未加硫配合ゴム粉末を配合せず
、基体成分のみからなる摩擦材組成物を従来例とした。
Furthermore, the base component and the unvulcanized compounded rubber powder were mixed with the unvulcanized rubber component in the example rubber powder at a weight ratio of 100:2.5 and 100:55, respectively, for Comparative Example 1 and Comparative Example 2.
A friction material composition consisting of only a base component without blending unvulcanized compounded rubber powder was used as a conventional example.

[試験例] 上記実施例1、実施例2、および従来例の摩擦材組成物
を用い、それぞれ常温でV型ブレンダーを用いて混練後
、外径236謹−1内径1501L厚さ101Iの予備
成形体を得る成形型に充填し、常温において面圧250
kQ/c12で加圧して、それぞれの予備成形体を作成
した。なお加圧時間は1分間と5分間の2点を選び、そ
れぞれの摩擦材組成物について、この2点の加圧時間に
よる2個の予備成形体を作成した。そして得られた予備
成形体の成形型から取り出した直後の厚さと、5分間自
然放置後の厚さを測定し、結果を第1図および第2図の
棒グラフに示す。なお本試験例の場合は厚みが12.5
m−を越えると予備成形体の形の維持が不可能となるこ
とがわかっている。
[Test Example] Using the friction material compositions of Example 1, Example 2, and the conventional example, each was kneaded at room temperature using a V-type blender, and then preformed to have an outer diameter of 236cm-1, an inner diameter of 1501L, and a thickness of 101I. Fill the mold to obtain the body, and apply a surface pressure of 250 at room temperature.
Each preform was created by applying pressure at kQ/c12. Two pressurization times of 1 minute and 5 minutes were selected, and two preforms were created for each friction material composition using these two pressurization times. The thickness of the obtained preform immediately after it was taken out of the mold and the thickness after it was left to stand for 5 minutes were measured, and the results are shown in the bar graphs of FIGS. 1 and 2. In the case of this test example, the thickness is 12.5
It has been found that if m- is exceeded, it becomes impossible to maintain the shape of the preform.

第1図より従来例の摩擦材組成物による予備成形体では
、1分間加圧後、5分間放置すると厚みが13.7mm
にもなって形の維持が困難であり、第2°図より5分間
加圧後5分間の放置でも11゜7■となって形保持が危
険な領域である。それに比べ実施例1および実施例2の
摩擦材組成物による予備成形体では、1分間の加圧でも
5分間放置後の厚さは10.3〜10.8mmと形保持
性に極めて優れている。
Figure 1 shows that the thickness of the preformed body made from the conventional friction material composition is 13.7 mm when it is left for 5 minutes after being pressurized for 1 minute.
This makes it difficult to maintain the shape, and as shown in Figure 2, even after 5 minutes of pressurization and 5 minutes of standing, the temperature is 11°7, which is a dangerous area for maintaining the shape. In comparison, the preforms made of the friction material compositions of Examples 1 and 2 had extremely excellent shape retention, with a thickness of 10.3 to 10.8 mm after being left for 5 minutes even when pressurized for 1 minute. .

次に摩擦特性の試験例を説明する。。Next, a test example of friction characteristics will be explained. .

それぞれの摩擦材組成物を面圧250kQ/am2で5
分間加圧し、予備成形体を形成後直ちに面圧100kg
/cwt、型瀉160℃ニセットシタ圧縮成形機にて成
形した。なお加熱成形に要した時間は3分である。この
成形後200℃で4時間熱処理を行ない、表面および裏
面を研磨してそれぞれの乾式クラッチフェーシングを製
造した。
5 of each friction material composition at a surface pressure of 250 kQ/am2.
Immediately after forming a preform, a surface pressure of 100 kg was applied.
/cwt, and was molded using a compression molding machine at 160°C. Note that the time required for heat molding was 3 minutes. After this molding, heat treatment was performed at 200° C. for 4 hours, and the front and back surfaces were polished to produce respective dry clutch facings.

以上の各実施例、各比較例および従来例の摩擦材組成物
から得られた乾式タラツチフエーシングを、クラッチダ
イナモチスターにて2000回の継合試験を実施し、摩
擦係数を測定して結果を第3図に示す。なおこの試験に
おける各条件は、慣性質jib、3kam s” 、回
転数150Orpm。
The dry flat facings obtained from the friction material compositions of the above Examples, Comparative Examples, and Conventional Examples were subjected to 2000 joint tests using a clutch dynamometer, and the friction coefficients were measured. The results are shown in Figure 3. The conditions in this test were: jib inertia, 3 kam s'', and rotation speed 150 rpm.

温度200℃であり、相手材には鋳鉄を用いた。The temperature was 200°C, and cast iron was used as the mating material.

第3図より未加硫ゴムの添加量の増加につれて初期の摩
擦係数が高くなることが明らかである。また比較例1お
よび従来例では、摩擦係数が安定する迄に約80回の継
合同数が必要であるのに比べ、実施例1、実[12では
約60回と少ない回数で安定となる。また比較例2では
連続継合で摩擦係数が低下するフェード現象が表われて
いる。
It is clear from FIG. 3 that the initial coefficient of friction increases as the amount of unvulcanized rubber added increases. Further, in Comparative Example 1 and the conventional example, approximately 80 joints are required until the friction coefficient becomes stable, whereas in Example 1 and Actual Example 12, the number of joints is as small as approximately 60 times. Furthermore, in Comparative Example 2, a fading phenomenon in which the friction coefficient decreases due to continuous jointing appears.

以上の試験例により実施例1および実施例2のjI擦材
組成物は予備成形時の形保持性に優れ、これにより得ら
れる摩擦材も優れた摩擦特性を有していることが明らか
である。
From the above test examples, it is clear that the jI friction material compositions of Examples 1 and 2 have excellent shape retention during preforming, and the friction materials obtained thereby also have excellent friction properties. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は試験例の結果を示し、第
1図および第2図は予備成形体の厚みの変化を示す棒グ
ラフ、第3図は摩擦係数の継合回数による変化を示すグ
ラフである。 第1図
Figures 1, 2 and 3 show the results of test examples, Figures 1 and 2 are bar graphs showing changes in the thickness of the preform, and Figure 3 shows changes in friction coefficient depending on the number of joints. This is a graph showing. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)無機・有機繊維、無機・有機充填物、樹脂等から
なる基体成分100重量部と、 粒径10μm〜3mmの未加硫ゴム粉末5〜50重量部
とからなることを特徴とする摩擦材組成物。
(1) Friction characterized by consisting of 100 parts by weight of a base component consisting of inorganic/organic fibers, inorganic/organic fillers, resins, etc., and 5 to 50 parts by weight of unvulcanized rubber powder with a particle size of 10 μm to 3 mm. material composition.
(2)未加硫ゴム粉末は加硫剤、軟化剤等のゴム用配合
剤が混合された未加硫配合ゴムである特許請求の範囲第
1項記載の摩擦材組成物。
(2) The friction material composition according to claim 1, wherein the unvulcanized rubber powder is an unvulcanized compounded rubber mixed with rubber compounding agents such as a vulcanizing agent and a softening agent.
(3)未加硫ゴム粉末表面には凝集防止剤が付着してい
る特許請求の範囲第1項記載の摩擦材組成物。
(3) The friction material composition according to claim 1, wherein an anti-agglomeration agent is attached to the surface of the unvulcanized rubber powder.
JP345885A 1985-01-11 1985-01-11 Frictional material composition Pending JPS61162537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP345885A JPS61162537A (en) 1985-01-11 1985-01-11 Frictional material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP345885A JPS61162537A (en) 1985-01-11 1985-01-11 Frictional material composition

Publications (1)

Publication Number Publication Date
JPS61162537A true JPS61162537A (en) 1986-07-23

Family

ID=11557876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP345885A Pending JPS61162537A (en) 1985-01-11 1985-01-11 Frictional material composition

Country Status (1)

Country Link
JP (1) JPS61162537A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360587A (en) * 1992-01-15 1994-11-01 Plastics Engineering Company Preparation of friction elements and compositions therefor
JP2007154154A (en) * 2005-11-14 2007-06-21 Akebono Brake Ind Co Ltd Non-asbestos friction material
JP2007187101A (en) * 2006-01-13 2007-07-26 Toyota Motor Corp Internal combustion engine
JP2008088246A (en) * 2006-09-29 2008-04-17 Akebono Brake Ind Co Ltd Non-asbestos friction member
JP2010180321A (en) * 2009-02-05 2010-08-19 Aisin Chem Co Ltd Friction material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360587A (en) * 1992-01-15 1994-11-01 Plastics Engineering Company Preparation of friction elements and compositions therefor
JP2007154154A (en) * 2005-11-14 2007-06-21 Akebono Brake Ind Co Ltd Non-asbestos friction material
JP2007187101A (en) * 2006-01-13 2007-07-26 Toyota Motor Corp Internal combustion engine
JP2008088246A (en) * 2006-09-29 2008-04-17 Akebono Brake Ind Co Ltd Non-asbestos friction member
JP2010180321A (en) * 2009-02-05 2010-08-19 Aisin Chem Co Ltd Friction material

Similar Documents

Publication Publication Date Title
CA1298009C (en) Molded non-asbestos friction member containing diatomaceous earth
US20020137815A1 (en) Non-asbestos friction material
GB2085019A (en) Friction material
KR20030004106A (en) Non-asbestos friction material
JPS61162537A (en) Frictional material composition
CA1059277A (en) Dry mix organic brake linings
US20040030000A1 (en) Non-asbestos friction material
JP2993362B2 (en) Method for producing fiber-containing granulated material
US4146527A (en) Method for manufacturing a friction material of the resin mold type
JPH11148071A (en) Composition for friction material
JP5011557B2 (en) Composite friction modifier for friction material
EP1298346A1 (en) Non-asbestos friction material
JPH0323774B2 (en)
JPH09291954A (en) Friction material
JPS6234974B2 (en)
JPH04306288A (en) Non-asbestos friction material
JPH04249629A (en) Frictional member
JPH0343501B2 (en)
JP2008231172A (en) Friction material
JPH03134086A (en) Non-asbestine friction material for use in brake
KR101337430B1 (en) Organic type friction material for wind generator yaw brake
JPS5811580A (en) Friction material
JPS62258235A (en) Non-asbestine friction material
JPH04314779A (en) Nonasbestine friction material
KR20110123465A (en) Brake friction material and method of manufacturing the same