WO2014103948A1 - Drive system for automated guided vehicle - Google Patents

Drive system for automated guided vehicle Download PDF

Info

Publication number
WO2014103948A1
WO2014103948A1 PCT/JP2013/084301 JP2013084301W WO2014103948A1 WO 2014103948 A1 WO2014103948 A1 WO 2014103948A1 JP 2013084301 W JP2013084301 W JP 2013084301W WO 2014103948 A1 WO2014103948 A1 WO 2014103948A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
guided vehicle
automatic guided
unit
Prior art date
Application number
PCT/JP2013/084301
Other languages
French (fr)
Japanese (ja)
Inventor
憲哉 角田
智史 港
健一 片江
昇一 家岡
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012286307A external-priority patent/JP6116089B2/en
Priority claimed from JP2013001102A external-priority patent/JP5962516B2/en
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2014103948A1 publication Critical patent/WO2014103948A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/32Waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive system for an automated guided vehicle.
  • Patent Document 1 describes correcting cell voltage variations caused by differences in internal resistance of a plurality of battery cells.
  • Patent Document 2 describes that the SOC is calculated based on the vehicle weight.
  • the hybrid vehicle includes an engine, a generator motor that generates electric power with the driving force of the engine, and a power storage device that can supply electric power to the generator motor and can be charged by regenerative power generated by the generator motor.
  • the automatic guided vehicle has a characteristic that a traveling pattern is predetermined and the fluctuation range of the loaded weight is wide. Such characteristics affect voltage control or SOC control of the power storage device.
  • the vehicle weight may differ by about 3 to 4 times between loading and non-loading. Then, the fluctuation range of the regenerative electric energy is widened. As a result, the voltage of the power storage device tends to be out of the allowable range, or the fluctuation range of the SOC is likely to be widened. Therefore, there may be a disadvantage that the life of the power storage device is shortened. However, it is not preferable from the viewpoint of cost and increase in size to adopt a power storage device with a wide allowable voltage range or to adopt a power storage device with a large battery capacity corresponding to a wide fluctuation range of SOC.
  • the above characteristics peculiar to the automatic guided vehicle affect the voltage or SOC of the power storage device, but no attention is paid to the voltage control or SOC control of the power storage device in the automatic guided vehicle. Is the actual situation.
  • An object of the present invention is to provide a driving system for an automatic guided vehicle capable of suitably performing voltage control or SOC control of a power storage device.
  • an engine a generator motor unit that is capable of generating electric power with the driving force of the engine and is used for traveling the automatic guided vehicle, and the generator motor unit
  • a power storage device that can be supplied with regenerative power that can be generated by the generator motor unit, a weight grasping unit that grasps a loaded weight of the automatic guided vehicle, and a traveling pattern of the automatic guided vehicle.
  • a traveling pattern grasping unit for grasping, an estimating unit for estimating a power variation amount of the power storage device in a predetermined specific section based on the loaded weight and the traveling pattern, and the power variation estimated by the estimating unit A voltage fluctuation amount calculation unit that calculates a fluctuation amount of the voltage of the power storage device based on the amount and an internal resistance of the power storage device, and based on a calculation result of the voltage fluctuation amount calculation unit, To provide a drive system of the automatic guided vehicle and a voltage adjusting unit for adjusting a voltage of said power storage device before the transport vehicle reaches the specific section.
  • an engine a generator motor that is capable of generating electric power with the driving force of the engine and used for traveling, and is capable of supplying electric power to the generator motor and the generator motor
  • Power storage device that can be charged by regenerative power that can be generated in the vehicle
  • an SOC grasping unit that grasps the SOC of the power storage device
  • a weight grasping unit that grasps the loaded weight of the automatic guided vehicle
  • a traveling pattern of the automatic guided vehicle A traveling pattern grasping unit that grasps the load
  • an estimation unit that estimates a variation amount of the SOC of the power storage device in a predetermined section based on the loaded weight and the traveling pattern, and the estimation unit that estimates the Based on the amount of variation
  • a calculation unit that calculates a deviation amount from a predetermined reference value in the SOC of the power storage device, and before the automatic guided vehicle reaches the specific section
  • An SOC adjustment unit that adjusts the SOC of the power storage device based on the grasping result of the SOC grasping unit
  • an electric power can be supplied to the engine, a generator motor that is capable of generating electric power with the driving force of the engine, and is used for traveling the automatic guided vehicle, and the generator motor.
  • a power storage device that can be charged by regenerative power that can be generated by the generator motor unit, a weight grasping unit that grasps a loaded weight of the automatic guided vehicle, and a traveling pattern grasping unit that grasps a traveling pattern of the automatic guided vehicle
  • An estimation unit that estimates a variation amount of a characteristic value indicating a state of the power storage device in a predetermined specific section based on the loaded weight and the travel pattern, and at least the power storage device based on the variation amount Based on a calculation result of a fluctuation amount of a value corresponding to the characteristic value or a deviation amount of the characteristic value from a predetermined reference value, and a calculation result of the fluctuation amount calculation unit Before the automated guided vehicle reaches the specific section, the value corresponding to the characteristic value of the power storage device is adjusted, or the
  • (A) is a graph which shows the fluctuation
  • (b) is a graph which shows the fluctuation
  • (A) is a graph which shows the speed fluctuation of an automatic guided vehicle
  • (b) is a graph which shows the fluctuation
  • (c) is charged in advance.
  • the flowchart which shows the modification of the process before deceleration.
  • the flowchart which shows the post-acceleration / deceleration processing.
  • the container terminal includes a gantry crane C1 that is disposed near the container ship S and that loads and unloads containers, and a rubber tire crane C2 that is disposed at a container installation site and that loads and unloads containers. .
  • an automated guided vehicle (AGV) 11 circulates in a predetermined direction (for example, counterclockwise) on a traveling route R defined by a guide section such as a guide line.
  • the automatic guided vehicle 11 is configured to be capable of loading containers, and transports containers between the vicinity of the container ship S and the container installation site. For example, when a container is loaded on the automatic guided vehicle 11 by the gantry crane C1, the automatic guided vehicle 11 transports the container to the container installation site.
  • the container is lowered by the rubber tire crane C2. After the container is lowered, the automatic guided vehicle 11 travels again toward the gantry crane C1.
  • the travel route R is flat without an inclination.
  • the drive system 10 of the automatic guided vehicle 11 includes an in-vehicle computer 21 mounted on the automatic guided vehicle 11 and an operation management computer 22 capable of wireless communication with the in-vehicle computer 21.
  • the operation management computer 22 controls the traveling of the automatic guided vehicle 11 by transmitting various commands to the in-vehicle computer 21.
  • the operation management computer 22 controls the drive of the gantry crane C1 and the rubber tire crane C2.
  • the automatic guided vehicle 11 of this embodiment is a so-called series type hybrid vehicle.
  • the automatic guided vehicle 11 includes an engine 31, a first generator motor (first motor generator) 32 that can generate power by the driving force of the engine 31, and the first generator motor 32. And a power generation inverter 33 connected thereto.
  • the automatic guided vehicle 11 includes a power storage device 34 connected to the power generation inverter 33, a travel inverter 35 connected to the power storage device 34 and the power generation inverter 33, and a second generator motor (second motor) connected to the travel inverter 35. Motor generator) 36.
  • first generator motor first motor generator
  • traveling inverter 35 and two second generator motors 36 are illustrated, but in reality, a plurality of them are provided according to the number of axles of the automatic guided vehicle 11.
  • two traveling inverters 35 and two second generator motors 36 are provided.
  • Each of the inverters 33 and 35 converts the DC power into AC power when DC power is input, and outputs the AC power when AC power is input. .
  • the rotor of the first generator motor 32 is connected to the drive shaft of the engine 31.
  • the first generator motor 32 generates AC power by rotating the rotor as the drive shaft of the engine 31 rotates.
  • the first generator motor 32 can also operate as a load by driving the engine 31 when AC power is input.
  • the second generator motor 36 is used for running the automatic guided vehicle 11. Specifically, the rotor of the second generator motor 36 is connected to the axle. When electric power is input to the second generator motor 36 from at least one of the generator inverter 33 (first generator motor 32) and the power storage device 34 via the traveling inverter 35, the second generator motor 36 is the automatic guided vehicle 11. Rotate the axle. On the other hand, the second generator motor 36 has a regenerative function for converting kinetic energy into electric energy, and generates power by performing regenerative braking when the automatic guided vehicle 11 is decelerated.
  • the first generator motor 32 and the second generator motor 36 correspond to the generator motor unit.
  • a clutch (not shown) is provided between the second generator motor 36 and the axle.
  • the in-vehicle computer 21 is configured to be able to control the clutch.
  • the power storage device 34 has an internal resistance.
  • the power storage device 34 is composed of, for example, a nickel metal hydride battery or a lithium ion battery, can supply power to the first generator motor 32 via the power generation inverter 33, and supplies power to the second generator motor 36 via the travel inverter 35. Can be supplied.
  • the power storage device 34 is charged by the electric power generated by the generator motors 32 and 36 being input via the inverters 33 and 35.
  • an allowable range in which the power storage device 34 is unlikely to deteriorate is set in the SOC (State of charge) (charge state, charge rate) of the power storage device 34.
  • SOC State of charge
  • the allowable range is set in advance according to the specifications of the power storage device 34, and a lower limit value and an upper limit value are set in the allowable range.
  • an allowable range in which the power storage device 34 is unlikely to deteriorate is set for the voltage of the power storage device 34.
  • the allowable range is set in advance according to the specifications of the power storage device 34, and an upper limit value and a lower limit value are set in the allowable range.
  • the electric power of power storage device 34 corresponds to a characteristic value indicating the state of power storage device 34.
  • the voltage of power storage device 34 is a value corresponding to electric power, which is a characteristic value indicating the state of power storage device 34.
  • the in-vehicle computer 21 is configured to suitably accelerate and decelerate the automatic guided vehicle 11 by controlling charging / discharging of the power storage device 34.
  • the in-vehicle computer 21 generates power by the first generator motor 32 by driving the engine 31 and supplies the generated power to the second generator motor 36.
  • the in-vehicle computer 21 discharges the power storage device 34 and supplies the discharged power to the second generator motor 36 to assist the traveling of the automatic guided vehicle 11, specifically, power running.
  • the discharge power of the power storage device 34 supplied to the second generator motor 36 is referred to as assist power.
  • the in-vehicle computer 21 supplies the regenerative power generated by the second generator motor 36 to the power storage device 34 to charge the power storage device 34.
  • the automatic guided vehicle 11 includes a power storage sensor 37 that measures the voltage and current of the power storage device 34.
  • the power storage sensor 37 transmits the measured value such as the voltage of the power storage device 34 to the in-vehicle computer 21.
  • the automatic guided vehicle 11 includes a load sensor 38 as a weight grasping unit that measures the loaded weight (load) of the automatic guided vehicle 11 and transmits the measurement result to the in-vehicle computer 21. Thereby, the vehicle-mounted computer 21 can grasp the voltage and current of the power storage device 34 and the loaded weight.
  • the operation management computer 22 transmits a running pattern in which the acceleration / deceleration pattern of the automated guided vehicle 11 is set to the in-vehicle computer 21 together with the running command.
  • the in-vehicle computer 21 receives the travel command and the travel pattern from the operation management computer 22, the in-vehicle computer 21 causes the automatic guided vehicle 11 to travel according to the received travel pattern.
  • the travel pattern information such as the travel distance, travel speed, and acceleration of the automatic guided vehicle 11 traveling on the travel route R is set.
  • the automatic guided vehicle 11 is set to travel while repeating acceleration and deceleration.
  • the traveling speed of the corner portion is set lower than the traveling speed of the straight portion. That is, in the travel route R, an acceleration section and a deceleration section are set as specific sections.
  • the vehicle-mounted computer 21 can grasp
  • the allowable ranges (lower limit value and upper limit value) of the internal resistance and voltage of the power storage device 34 are determined when the automatic guided vehicle 11 whose internal resistance of the power storage device 34 is the initial value travels according to the travel pattern. Is set to be within an allowable range. However, depending on the loading weight of the container loaded on the automatic guided vehicle 11, the voltage of the power storage device 34 may be outside the allowable range. In addition, the internal resistance of the power storage device 34 may vary due to repeated charging and discharging of the power storage device 34 and manufacturing variations. In this case, depending on how the internal resistance varies, the voltage of the power storage device 34 may be outside the allowable range.
  • the in-vehicle computer 21 executes a travel control process for causing the automatic guided vehicle 11 to travel while performing voltage control of the power storage device 34 in consideration of the loaded weight and the internal resistance of the power storage device 34.
  • the travel control process will be described with reference to FIG.
  • the traveling control process is a process that is periodically executed by the in-vehicle computer 21.
  • step S101 the in-vehicle computer 21 determines whether to start the automatic guided vehicle 11 or not. Specifically, it is determined whether or not a travel command is received from the operation management computer 22. The travel command is transmitted from the operation management computer 22 periodically, for example, at a predetermined time every day.
  • the in-vehicle computer 21 ends the traveling control process as it is.
  • the in-vehicle computer 21 executes an open circuit voltage (OCV: Open Circuit Voltage) determination process in steps S102 and S103.
  • OCV Open Circuit Voltage
  • step S102 the in-vehicle computer 21 measures the voltage of the power storage device 34.
  • step S103 the in-vehicle computer 21 stores the voltage measured in step S102 as an open voltage in a storage area provided in the in-vehicle computer 21.
  • the in-vehicle computer 21 executes the process of deriving the internal resistance of the power storage device 34 in steps S104 to S107. Specifically, first, in step S ⁇ b> 104, the in-vehicle computer 21 starts constant current discharge in which a constant current flows in the power storage device 34. In this case, the in-vehicle computer 21 controls to supply the electric power discharged from the power storage device 34 to the first generator motor 32. In the in-vehicle computer 21, the first generator motor 32 drives the engine 31 using the discharge power of the power storage device 34. When performing constant current discharge, the clutch is not connected.
  • step S105 the vehicle-mounted computer 21 measures the voltage of the electrical storage apparatus 34.
  • the in-vehicle computer 21 varies the constant current value by controlling the rotational speed of the engine 31 at a predetermined time during the constant current discharge, and measures the voltage at each constant current value.
  • the in-vehicle computer 21 terminates the discharge in step S106.
  • the in-vehicle computer 21 creates an IV plot with the open circuit voltage determined in step S103 as an intercept based on the measurement result.
  • the in-vehicle computer 21 derives the internal resistance from the slope of the IV plot, and stores the derived internal resistance in a predetermined storage area of the in-vehicle computer 21. Note that the in-vehicle computer 21 that executes the processes of steps S104 to S107 corresponds to the internal resistance deriving unit.
  • the in-vehicle computer 21 After completing the process in step S107, the in-vehicle computer 21 performs the pattern running of the automatic guided vehicle 11 in steps S108 to S117.
  • step S108 the in-vehicle computer 21 starts traveling the automatic guided vehicle 11 based on the traveling pattern received together with the traveling command. Thereafter, the in-vehicle computer 21 executes the processes of steps S109 to S116 in a constant speed section where the automatic guided vehicle 11 travels at a constant speed before the specific section (acceleration / deceleration section). In the constant speed section, regenerative power is not generated, and the assist power amount is “0” or smaller than that during acceleration.
  • step S109 the in-vehicle computer 21 grasps the loaded weight of the automatic guided vehicle 11 by the load sensor 38.
  • the in-vehicle computer 21 grasps the travel pattern, and grasps information related to the travel pattern such as the distance (or acceleration / deceleration time) and acceleration of the specific section.
  • the in-vehicle computer 21 that executes the process of step S110 corresponds to the travel pattern grasping unit.
  • the in-vehicle computer 21 estimates the regenerative power amount or the assist power amount based on the traveling pattern and the loaded weight. Specifically, for example, before the deceleration zone, the in-vehicle computer 21 estimates the amount of regenerative electric power generated in the deceleration zone, and before the acceleration zone, the in-vehicle guided vehicle 11 travels in the acceleration zone ( Estimate the amount of assist power required to assist the power running.
  • the in-vehicle computer 21 that executes the process of step S111 corresponds to the estimation unit.
  • the in-vehicle computer 21 estimates the open circuit voltage at the present time. Specifically, the in-vehicle computer 21 calculates the SOC fluctuation amount from the quotient of the integrated current value and the battery capacity. Then, the in-vehicle computer 21 estimates the current SOC from the fluctuation amount and the initial value of the open circuit voltage set in step S103, and estimates the current open circuit voltage from the current SOC.
  • the in-vehicle computer 21 After estimating the current open circuit voltage, the in-vehicle computer 21 is in step S113, and the in-vehicle computer 21 is in the regenerative power amount or assist power amount estimated in step S111 and the open circuit voltage estimated in step S112. Based on the above, the current of the power storage device 34 in the specific section, that is, the regenerative current or the assist current is calculated.
  • step S114 the in-vehicle computer 21 calculates the fluctuation amount of the voltage of the power storage device 34 based on the internal resistance derived in step S107 and the current of the power storage device 34 calculated in step S113. That is, derive. Specifically, the in-vehicle computer 21 calculates the amount of voltage increase before the deceleration zone, for example, and calculates the amount of voltage drop before the acceleration zone. The in-vehicle computer 21 that executes the processes of steps S112 to S114 corresponds to the voltage fluctuation amount calculation unit.
  • the in-vehicle computer 21 sets the target voltage in consideration of the allowable range of the voltage of the power storage device 34. For example, the in-vehicle computer 21 sets, as a target voltage, a voltage obtained by subtracting the amount of voltage increase from the upper limit value of the voltage of the power storage device 34 or a voltage lower than that before the deceleration section. Further, for example, before the acceleration section, the in-vehicle computer 21 sets a voltage obtained by adding a voltage drop amount to the lower limit value of the voltage of the power storage device 34 or a voltage higher than that as a target voltage.
  • step S116 the in-vehicle computer 21 adjusts the voltage of the power storage device 34 so that the voltage of the power storage device 34 approaches the target voltage set in step S115 before the automatic guided vehicle 11 reaches the specific section. Specifically, the in-vehicle computer 21 controls charging / discharging of the power storage device 34 so that the SOC of the power storage device 34 approaches the target SOC corresponding to the target voltage. Note that the processing in step S116 can also be said to be SOC adjustment processing. The in-vehicle computer 21 that performs the process of step S116 corresponds to the voltage adjustment unit.
  • the in-vehicle computer 21 When the current voltage is higher than the target voltage in the constant speed section before the acceleration section, the in-vehicle computer 21 does not charge / discharge the power storage device 34, and does not charge the current state in the constant speed section before the deceleration section. When the voltage is lower than the target voltage, the power storage device 34 is not charged / discharged.
  • the in-vehicle computer 21 executes acceleration / deceleration processing when the automatic guided vehicle 11 reaches the specific section. Specifically, the in-vehicle computer 21 supplies regenerative power to the power storage device 34, for example, in a deceleration zone, and supplies the power stored in the power storage device 34 to the traveling inverter 35 in an acceleration zone. In this case, the in-vehicle computer 21 performs power control so that the voltage of the power storage device 34 is within an allowable range. Specifically, for example, when the voltage of the power storage device 34 reaches an upper limit value during deceleration, the in-vehicle computer 21 interrupts charging of the power storage device 34 and supplies the remaining regenerative power to the first generator motor 32. . Similarly, for example, when the voltage of the power storage device 34 reaches a lower limit during acceleration, the in-vehicle computer 21 interrupts the discharge of the power storage device 34.
  • the in-vehicle computer 21 proceeds to step S118 and determines whether or not the pattern running is completed.
  • the in-vehicle computer 21 returns to step S109 when the pattern running is not finished, and ends the running control process when the pattern running is finished.
  • FIG. 5A is a graph showing a change in speed of the automatic guided vehicle 11, that is, a running pattern
  • FIG. 5B is a graph showing a change in voltage of the power storage device 34.
  • the deceleration section Td and the voltage of the power storage device 34 before that will be described.
  • the traveling pattern of the automatic guided vehicle 11 is switched to acceleration, constant speed, or deceleration from time t1 to time t8.
  • the voltage of the power storage device 34 fluctuates.
  • the voltage is within the allowable range.
  • a pre-adjustment section Tpr for reducing the voltage of the power storage device 34 in advance is provided before the deceleration section Td.
  • the voltage of the electrical storage device 34 exceeds the upper limit value during deceleration (deceleration section Td).
  • all the regenerative power generated in the deceleration zone Td is used for charging the power storage device 34.
  • the pre-adjustment section Tpr the automatic guided vehicle 11 travels using the electric power of the power storage device 34, and the power generation amount of the first generator motor 32 becomes small.
  • the voltage of the power storage device 34 is the upper limit value.
  • the voltage of the power storage device 34 is higher than the target voltage that should be close to the time point t5. For this reason, even if voltage adjustment of the electrical storage device 34 is not performed, power running in the acceleration section Ta from time t5 to time t6 is assisted.
  • the in-vehicle computer 21 estimates the power fluctuation amount of the power storage device 34 in the specific section, specifically, the assist power amount or the regenerative power amount based on the loaded weight and the running pattern, and the estimated power fluctuation amount The amount of voltage fluctuation is calculated based on the internal resistance.
  • the in-vehicle computer 21 adjusts the voltage of the power storage device 34 based on the calculated voltage fluctuation amount before the automatic guided vehicle 11 reaches the specific section. Thereby, while suppressing that the voltage of the electrical storage device 34 is outside the allowable range in the specific section, all the regenerative power can be used for charging in the deceleration section Td, and power running can be assisted in the acceleration section Ta. it can. Therefore, the life of the power storage device 34 can be extended and the fuel consumption can be improved.
  • the automatic guided vehicle 11 since the automatic guided vehicle 11 has a larger fluctuation range of the loaded weight than that of a normal vehicle such as an automobile because of loading a load such as a container, the fluctuation range of the regenerative electric energy accompanying the fluctuation of the loaded weight is wide. Easy to be.
  • the automatic guided vehicle 11 is different from a normal vehicle in that a traveling pattern is determined in advance.
  • the in-vehicle computer 21 sets a target voltage based on the amount of voltage fluctuation and the allowable range of the power storage device 34, and the power storage device so that the voltage of the power storage device 34 approaches the target voltage before reaching the specific section. 34 voltage is adjusted. For example, before the deceleration section Td, the in-vehicle computer 21 sets a value obtained by subtracting the amount of voltage fluctuation from the upper limit value of the voltage of the power storage device 34 as a target voltage, and adjusts the voltage so as to approach the target voltage. This avoids a situation where the regenerative power cannot be completely absorbed or power running cannot be assisted due to the voltage of the power storage device 34 reaching the upper limit value or the lower limit value in the middle of the specific section. can do.
  • the in-vehicle computer 21 derives the internal resistance of the power storage device 34 every time the automatic guided vehicle 11 is started. Thereby, the dispersion
  • the in-vehicle computer 21 changes the resistance value of the load to which the power of the power storage device 34 is supplied by adjusting the rotational speed of the engine 31 before starting the traveling of the automatic guided vehicle 11. Thereby, the current of power storage device 34 varies.
  • the in-vehicle computer 21 derives the internal resistance by measuring the voltage fluctuation with respect to the current fluctuation by the power storage sensor 37.
  • an IV plot can be created using the existing configuration of the engine 31 and the like, and the internal resistance can be derived therethrough.
  • a drive system for an automatic guided vehicle will be described.
  • the same components as those in the first embodiment will be denoted by the same reference numerals, the description thereof will be omitted, and differences from the first embodiment will be mainly described.
  • the second embodiment is different from the first embodiment in that the SOC (charge state, charge rate) of the power storage device 34 is adjusted instead of adjusting the voltage of the power storage device.
  • the SOC corresponds to a characteristic value indicating the state of the power storage device 34.
  • the SOC of the power storage device 34 is set to an allowable range that includes a predetermined reference value SOC0 and is unlikely to deteriorate.
  • the reference value SOC0 is a value set in advance based on the specification of the power storage device 34, and is set to 60%, for example.
  • the upper limit value and the lower limit value of the allowable range are set symmetrically with respect to the reference value SOC0. Specifically, the difference between the upper limit value and the reference value SOC0 is set to be the same as the difference between the reference value SOC0 and the lower limit value. Yes.
  • the upper limit value and the lower limit value are determined in advance according to the specifications of the power storage device 34.
  • the in-vehicle computer 21 of the present embodiment can grasp the SOC and the loaded weight of the power storage device 34.
  • the in-vehicle computer 21 performs pre-deceleration processing or pre-acceleration processing for performing SOC control of the power storage device 34 before acceleration / deceleration is performed so that the fluctuation range of the SOC of the power storage device 34 from the reference value SOC0 is narrowed.
  • the automatic guided vehicle 11 is running at a constant speed or stopped before acceleration / deceleration is performed.
  • the assist power amount is “0” or less than that during acceleration.
  • the pre-deceleration process is a process that is started before the automatic guided vehicle 11 reaches the deceleration zone, for example, a predetermined time (for example, 10 seconds) before reaching the deceleration zone.
  • the in-vehicle computer 21 first grasps the loaded weight of the automatic guided vehicle 11 by the load sensor 38 in step S1010. Thereafter, the in-vehicle computer 21 grasps the traveling pattern in step S1020 and grasps information related to the traveling pattern such as the distance (or deceleration time) of the deceleration section and acceleration. In subsequent step S1030, the in-vehicle computer 21 estimates the amount of regenerative electric power obtained in the deceleration zone based on the loaded weight and travel pattern grasped in steps S1010 and S1020.
  • step S1040 the in-vehicle computer 21 proceeds to step S1040, and estimates the SOC increase amount ⁇ SOC in the deceleration zone.
  • step S1050 the in-vehicle computer 21 sets SOC0 ⁇ SOC / 2 as a target value. Note that ⁇ SOC / 2 corresponds to the amount of deviation from the reference value SOC0.
  • step S1050 the in-vehicle computer 21 proceeds to step S1060 and adjusts the SOC so that the SOC reaches the target value by the time when the automatic guided vehicle 11 reaches the deceleration zone. Specifically, the in-vehicle computer 21 grasps the current SOC based on the measurement result of the SOC sensor 37 and calculates the difference from the target value. Then, the power storage device 34 is charged / discharged by the calculated amount. For example, when the current SOC is in the vicinity of the reference value SOC0, the in-vehicle computer 21 discharges the power storage device 34 until the target value is reached.
  • the automatic guided vehicle 11 is driven by the electric power of the power storage device 34, and the amount of power generated by the first generator motor 32 is reduced. That is, the adjustment of the SOC in the pre-deceleration process, that is, the adjustment to lower the SOC from the current SOC toward the target value, drives the second generator motor 36 using the electric power of the power storage device 34 and travels the automatic guided vehicle 11.
  • the power storage device 34 is discharged.
  • the in-vehicle computer 21 that performs the process of step S1020 corresponds to the travel pattern grasping unit.
  • the in-vehicle computer 21 that performs the processes of steps S1030 and S1040 corresponds to the estimation unit.
  • the in-vehicle computer 21 that performs the process of step S1050 corresponds to the calculation unit.
  • the in-vehicle computer 21 that performs the process of step S1060 corresponds to the SOC adjustment unit.
  • the pre-acceleration process is a process that is started before the automatic guided vehicle 11 reaches the acceleration section, for example, a predetermined time (for example, 10 seconds) before the time when it reaches the acceleration section.
  • the in-vehicle computer 21 first grasps the loaded weight of the automatic guided vehicle 11 by the load sensor 38 in step S201. Thereafter, the in-vehicle computer 21 grasps the travel pattern in step S202 and grasps information related to the travel pattern such as the distance (or acceleration time) of the acceleration section and acceleration. In subsequent step S203, the in-vehicle computer 21 estimates the amount of assist power required in the acceleration section based on the loaded weight and travel pattern obtained in steps S201 and S202. Thereafter, the in-vehicle computer 21 proceeds to step S204 to estimate the SOC reduction amount ⁇ SOC in the acceleration section.
  • in-vehicle computer 21 sets SOC0 + ⁇ SOC / 2 as a target value in step S205.
  • step S206 the in-vehicle computer 21 adjusts the SOC so that the SOC reaches the target value by the time when the automatic guided vehicle 11 reaches the acceleration section. Specifically, the in-vehicle computer 21 grasps the current SOC based on the measurement result of the SOC sensor 37 and calculates the difference from the target value. Then, the in-vehicle computer 21 charges and discharges the power storage device 34 by the calculated amount. For example, when the current SOC is in the vicinity of the reference value SOC0, the in-vehicle computer 21 charges the power storage device 34 until the target value is reached.
  • the power storage device 34 is charged using the electric power generated by the first generator motor 32. That is, the adjustment of the SOC in the pre-acceleration process, that is, the adjustment to increase the SOC from the current SOC toward the target value is performed by charging the power storage device 34 using the electric power generated by the first generator motor 32. Is called.
  • the vehicle-mounted computer 21 that performs the process of step S202 corresponds to the travel pattern grasping unit.
  • the in-vehicle computer 21 that performs the processing of step S203 and step S204 corresponds to the estimation unit.
  • the in-vehicle computer 21 that performs the process of step S205 corresponds to the calculation unit.
  • the in-vehicle computer 21 that performs the process of step S206 corresponds to the SOC adjustment unit.
  • FIG. 8A is a graph showing the speed fluctuation of the automatic guided vehicle 11 that travels from the gantry crane C1 to the rubber tire crane C2, that is, the travel pattern.
  • FIG. It is a graph which shows the fluctuation
  • FIG.8 (c) is a graph which shows the fluctuation
  • the traveling pattern of the automatic guided vehicle 11 is switched to acceleration, constant speed, or deceleration from time t1 to time t12.
  • the SOC fluctuates as shown in FIGS. 8B and 8C.
  • the SOC when the automatic guided vehicle 11 is not loaded with a container, the SOC includes the reference value SOC0 and the upper limit value and the lower limit value. Is within the set tolerance.
  • the fluctuation range of the SOC in the acceleration zone Ta and the deceleration zone Td becomes wide. For this reason, as shown in FIG. 8B, the SOC may be out of the allowable range.
  • the SOC of the power storage apparatus 34 is the reference before the automatic guided vehicle 11 reaches the deceleration section Td. It is lower than the value SOC0. For this reason, the SOC is within the allowable range without exceeding the upper limit value in the deceleration zone Td. That is, as shown in FIG. 8B and FIG. 8C, by charging / discharging the power storage device 34 before the automatic guided vehicle 11 reaches the specific section, the SOC of the SOC centered on the reference value SOC0 is obtained. The fluctuation range is narrow.
  • the in-vehicle computer 21 estimates the SOC fluctuation amount ⁇ SOC of the power storage device 34 in the specific section based on the loaded weight and the running pattern, and calculates the deviation amount from the reference value SOC0 based on the fluctuation amount ⁇ SOC. Then, a target value shifted by the shift amount from the reference value SOC0 is set. The in-vehicle computer 21 adjusts the SOC of the power storage device 34 so that the SOC approaches the target value before the automatic guided vehicle 11 reaches the specific section.
  • the in-vehicle computer 21 estimates the SOC reduction amount ⁇ SOC in the acceleration section Ta based on the loaded weight and the running pattern, and sets SOC0 + ⁇ SOC / 2 as the target value. Set.
  • the specific section is the deceleration section Td
  • the in-vehicle computer 21 estimates the SOC increase amount ⁇ SOC in the deceleration section Td based on the loaded weight and the running pattern, and sets SOC0 ⁇ SOC / 2 as the target value. To do. Thereby, the fluctuation range of the SOC from the reference value SOC0 can be narrowed. Therefore, deterioration of the power storage device 34 can be suppressed.
  • the power storage device 34 having a small battery capacity corresponding to a narrow fluctuation range, the power storage device 34 can be reduced in size, cost, and environmental load. And regenerative electric power can be collect
  • the automatic guided vehicle 11 has a wider fluctuation range of the loaded weight than that of a normal vehicle such as an automobile because of loading a container or the like. For this reason, the fluctuation range of the SOC of the power storage device 34 mounted on the automatic guided vehicle 11 tends to be widened.
  • the automatic guided vehicle 11 is different from a normal vehicle in that a traveling pattern is determined in advance.
  • the present embodiment focusing on the characteristic characteristics of the automatic guided vehicle 11 described above, a configuration in which the load weight and the traveling pattern are taken into account when estimating the SOC variation ⁇ SOC of the power storage device 34. By adopting, an accurate fluctuation amount ⁇ SOC can be estimated. Thereby, the SOC of power storage device 34 can be controlled more suitably.
  • the in-vehicle computer 21 sets 1 ⁇ 2 of the fluctuation amount ⁇ SOC as the deviation amount from the reference value SOC0.
  • a temperature sensor for detecting the temperature of the power storage device 34 is provided, and the internal resistance is corrected from the detection result of the temperature sensor. May be.
  • the operation management computer 22 may store inclination information regarding the inclination of the travel route R in a predetermined storage area.
  • the operation management computer 22 may transmit the inclination information of the travel route R to the in-vehicle computer 21 in addition to the travel pattern.
  • the in-vehicle computer 21 grasps the inclination in the deceleration zone Td or the acceleration zone Ta before executing the process of step S111. Then, the in-vehicle computer 21 may estimate the regenerative power amount or the assist power amount based on the loaded weight, the running pattern, and the inclination in step S111. Thereby, the further improvement of the estimation precision of regenerative electric energy or assist electric energy can be aimed at.
  • the in-vehicle computer 21 grasps the traveling pattern and the inclination in the deceleration zone Td in step S3020 between step S1010 and step S1030. To do.
  • the in-vehicle computer 21 may estimate the SOC fluctuation amount ⁇ SOC based on the loaded weight, the running pattern, and the inclination in steps S1030 and S1040. As a result, it is possible to further improve the estimation accuracy of the fluctuation amount ⁇ SOC.
  • the processing in step S3020 corresponds to the inclination grasping unit. In the pre-acceleration processing, the inclination may be grasped, and the fluctuation amount ⁇ SOC may be estimated based on the grasp result.
  • the acceleration section Ta and the deceleration section Td are set as specific sections.
  • the present invention is not limited to this, and in short, the section in which the power storage device 34 is charged and the discharge of the power storage apparatus 34 It is only necessary that the section in which is performed is set as the specific section.
  • a downward section that is inclined downward may be set as a section where the power storage device 34 is charged, or an upward section that is inclined upward may be set as a section where the power storage device 34 is discharged. Good.
  • the current of the power storage device 34 is varied by controlling the rotational speed of the engine 31.
  • the resistance of the variable resistor may be varied while discharging while connected to the variable resistor. In short, as long as an IV plot can be created, its specific configuration is arbitrary.
  • the regenerative current or assist current is calculated based on the regenerative power amount or assist power amount and the open circuit voltage.
  • the present invention is not limited to this, and the regenerative power amount or assist power amount is calculated.
  • the regenerative current or the assist current may be calculated based on the internal resistance.
  • the internal resistance is derived before the start of traveling.
  • the present invention is not limited to this, and the internal resistance may be derived during traveling. However, in consideration of the accuracy of deriving the internal resistance, it is preferable to derive it before traveling.
  • the execution timing of the internal resistance derivation process is not limited to when the automatic guided vehicle 11 starts, but is arbitrary.
  • a configuration in which a predetermined time has elapsed since the last operation of the automatic guided vehicle 11 is completed, or a configuration in which the operation is periodically performed at a predetermined time may be employed.
  • the in-vehicle computer 21 may be configured to execute post-acceleration / deceleration processing after the automated guided vehicle 11 passes a specific section.
  • the post-acceleration / deceleration processing first, in step S401, the SOC variation ⁇ SOC estimated before reaching the specific section is measured by the SOC sensor 37.
  • a comparison process for comparing the actual fluctuation amount ⁇ SOC of the SOC of the power storage device 34 in the specific section is executed.
  • step S402 it is determined whether or not the two match. If they match, the post-acceleration / deceleration processing is terminated as it is.
  • step S403 If they are different, in step S403, they are used for estimating the fluctuation amount ⁇ SOC based on the comparison result. Is set, and the post-acceleration / deceleration processing is terminated. Then, in steps S1030 and S1040 of the next pre-deceleration process or steps S203 and S204 of the pre-acceleration process, the fluctuation amount ⁇ SOC is estimated using the correction value.
  • step S401 executed by the in-vehicle computer 21 corresponds to the comparison unit.
  • the difference between the upper limit value and the reference value SOC0 and the difference between the reference value SOC0 and the lower limit value are set to be the same.
  • the present invention is not limited to this, and for example, both may be different.
  • 1/2 of the estimated fluctuation amount ⁇ SOC is adopted as the deviation amount, but is not limited thereto, and may be other than 1/2, for example.
  • a value larger than 1 ⁇ 2 of the estimated variation ⁇ SOC is set in the pre-acceleration process.
  • the amount of deviation may be calculated, or in the pre-deceleration process, a value smaller than 1 ⁇ 2 of the estimated fluctuation amount ⁇ SOC may be calculated as the amount of deviation.
  • a value smaller than 1 ⁇ 2 of the estimated fluctuation amount ⁇ SOC in the pre-acceleration process. May be calculated as the deviation amount, or a value larger than 1 ⁇ 2 of the estimated fluctuation amount ⁇ SOC may be calculated as the deviation amount in the pre-deceleration process.
  • the target value of the prior SOC may be set so as to be wide at.
  • the time for performing pre-charging and the time for performing pre-discharging may be different.
  • the time for performing the precharge may be set longer than the time for performing the predischarge. In this case, since the amount of increase in SOC per unit time can be reduced, a reduction in fuel consumption can be suppressed.
  • the load weight is measured using the load sensor 38, but the configuration for grasping the load weight is arbitrary.
  • the load weight may be estimated from the amount of power required during acceleration, may be acquired from the operation management computer 22 by wireless communication, or the measurement result measured by the gantry crane C1 or the rubber tire crane C2 is used. You may get it.
  • the power storage device 34 is a nickel metal hydride battery or a lithium ion secondary battery, but is not limited thereto, and may be a power storage device such as an electric double layer capacitor.
  • the automatic guided vehicle 11 may stop using the engine 31 and stand by using only the electric power of the power storage device 34.
  • the power storage device 34 when the front signal of the automated guided vehicle 11 is a red signal, or when the forward guided vehicle 11 is decelerated, the power storage device 34 is discharged in advance. You may go.
  • the in-vehicle computer 21 performs a series of controls, but is not limited to this, and a plurality of control units may perform various controls. That is, the control subject of the engine 31 and the generator motors 32 and 36 is arbitrary.
  • the operation management computer 22 controls driving of the cranes C1 and C2, but is not limited to this, and another management computer may control these driving.
  • two second generator motors 36 are provided.
  • the present invention is not limited to this, and there may be three or more or one.
  • the power storage device 34 when the current voltage is higher than the target voltage in the constant speed section before the acceleration section, the power storage device 34 may be discharged so as to approach the target voltage, When the current voltage is lower than the target voltage in the previous constant speed section, the power storage device 34 may be charged so as to approach the target voltage.
  • the automatic guided vehicle 11 includes a first generator motor 32 that can generate electric power by the driving force of the engine 31 and a second electric power generation that can run the automatic guided vehicle 11 and generate regenerative power.
  • a first generator motor 32 that can generate electric power by the driving force of the engine 31
  • a second electric power generation that can run the automatic guided vehicle 11 and generate regenerative power.
  • the present invention is not limited to this.
  • it may be a hybrid vehicle of another method such as a so-called parallel method in which both functions are executed by one generator motor.
  • the automatic guided vehicle 11 includes an engine 31, a power generation motor unit that can generate electric power by the driving force of the engine 31, can run the automatic guided vehicle 11, and can generate regenerative power, and a power storage device 34. If it is, the specific configuration is arbitrary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This drive system for an automated guided vehicle is equipped with: an engine; a generator-motor unit that is capable of generating electric power using a driving force of the engine and is used by the automated guided vehicle for traveling; a power storage device that is capable of supplying electric power to the generator-motor unit and can be charged using regenerative electric power that may be generated by the generator-motor unit; an estimation unit; a voltage variation calculation unit; and a voltage regulation unit. The estimation unit estimates a power variation of the power storage device within a predetermined designated section on the basis of a carrying weight and a traveling pattern. The voltage variation calculation unit calculates a voltage variation of the power storage device on the basis of the power variation estimated by the estimation unit and an internal resistance of the power storage device. The voltage regulation unit regulates the voltage of the power storage device before the automated guided vehicle reaches the designated section on the basis of the calculation result of the voltage variation calculation unit.

Description

無人搬送車の駆動システムDriving system for automated guided vehicles
 本発明は、無人搬送車の駆動システムに関する。 The present invention relates to a drive system for an automated guided vehicle.
 従来から、有人のハイブリッド車両においては、当該ハイブリッド車両に搭載されている蓄電装置の電圧又はSOC(State of Charge)を制御することが行われている。例えば、特許文献1には、複数の電池セルの内部抵抗の違いに起因したセル電圧のばらつきを補正することが記載されている。また、特許文献2には、車両重量に基づいてSOCの演算を行うことが記載されている。 Conventionally, in a manned hybrid vehicle, the voltage or SOC (State 装置 of Charge) of a power storage device mounted on the hybrid vehicle has been controlled. For example, Patent Document 1 describes correcting cell voltage variations caused by differences in internal resistance of a plurality of battery cells. Patent Document 2 describes that the SOC is calculated based on the vehicle weight.
特開2004-227995号公報JP 2004-227995 A 特開2003-111209号公報JP 2003-111209 A
 ここで、本発明者らは、作業者が運転を行うことなく予め定められた走行経路を走行する無人搬送車(AGV:Automated Guided Vehicle)を優れた環境性及び経済性から、ハイブリッド車両にすることに着目した。ハイブリッド車両は、エンジンと、エンジンの駆動力で発電する発電電動機と、発電電動機に電力を供給可能であるとともに発電電動機にて発生する回生電力により充電可能な蓄電装置とを有する。この場合、無人搬送車には、有人のハイブリッド車両と異なり、走行パターンが予め定められているとともに積載重量の変動幅が広いといった特性がある。そして、このような特性は、蓄電装置の電圧制御又はSOCの制御に影響を与える。 Here, the present inventors make an automated guided vehicle (AGV) that travels on a predetermined traveling route without driving by an operator into a hybrid vehicle because of excellent environmental performance and economy. Focused on that. The hybrid vehicle includes an engine, a generator motor that generates electric power with the driving force of the engine, and a power storage device that can supply electric power to the generator motor and can be charged by regenerative power generated by the generator motor. In this case, unlike the manned hybrid vehicle, the automatic guided vehicle has a characteristic that a traveling pattern is predetermined and the fluctuation range of the loaded weight is wide. Such characteristics affect voltage control or SOC control of the power storage device.
 例えば、大型の無人搬送車においては、積載時と非積載時とで車両重量が約3~4倍異なる場合がある。すると、回生電力量の変動幅が広くなり、その結果蓄電装置の電圧が許容範囲外となったり、SOCの変動幅が広くなったりし易い。そのため、蓄電装置の寿命が短くなるといった不都合が生じ得る。かといって、電圧の許容範囲が広い蓄電装置を採用したり、SOCの広い変動幅に対応させて電池容量が大きい蓄電装置を採用したりすることは、コストや大型化の観点から好ましくない。また、蓄電装置の電圧が許容範囲外とならないように、又はSOCの変動幅を狭くするべく、蓄電装置の充放電を強制的に中断すると、無人搬送車に搭載されているエンジンの負担が大きくなったり、取得可能な電力が取得できなかったりといった不都合が生じ得る。 For example, in a large automatic guided vehicle, the vehicle weight may differ by about 3 to 4 times between loading and non-loading. Then, the fluctuation range of the regenerative electric energy is widened. As a result, the voltage of the power storage device tends to be out of the allowable range, or the fluctuation range of the SOC is likely to be widened. Therefore, there may be a disadvantage that the life of the power storage device is shortened. However, it is not preferable from the viewpoint of cost and increase in size to adopt a power storage device with a wide allowable voltage range or to adopt a power storage device with a large battery capacity corresponding to a wide fluctuation range of SOC. In addition, if charging / discharging of the power storage device is forcibly interrupted so that the voltage of the power storage device does not fall outside the allowable range or the fluctuation range of the SOC is narrowed, the burden on the engine mounted on the automatic guided vehicle becomes large. Inconveniences such as becoming unacceptable or not being able to acquire electric power that can be acquired.
 以上の通り、無人搬送車特有の上記特性は、蓄電装置の電圧又はSOCに影響を与えるにも関わらず、無人搬送車における蓄電装置の電圧制御又はSOCの制御については、何ら着目されていないのが実情である。 As described above, the above characteristics peculiar to the automatic guided vehicle affect the voltage or SOC of the power storage device, but no attention is paid to the voltage control or SOC control of the power storage device in the automatic guided vehicle. Is the actual situation.
 本発明の目的は、蓄電装置の電圧制御又はSOCの制御を好適に行うことができる無人搬送車の駆動システムを提供することにある。 An object of the present invention is to provide a driving system for an automatic guided vehicle capable of suitably performing voltage control or SOC control of a power storage device.
 上記目的を達成するために本発明の第1の態様は、エンジンと、前記エンジンの駆動力で発電可能なものであって前記無人搬送車の走行に用いられる発電電動部と、前記発電電動部に電力を供給可能であるとともに前記発電電動部にて発生し得る回生電力により充電可能な蓄電装置と、前記無人搬送車の積載重量を把握する重量把握部と、前記無人搬送車の走行パターンを把握する走行パターン把握部と、前記積載重量及び前記走行パターンに基づいて、予め定められた特定区間における前記蓄電装置の電力変動量を推定する推定部と、前記推定部により推定された前記電力変動量と前記蓄電装置の内部抵抗とに基づいて、前記蓄電装置の電圧の変動量を算出する電圧変動量算出部と、前記電圧変動量算出部の算出結果に基づいて、前記無人搬送車が前記特定区間に到達する前に前記蓄電装置の電圧を調整する電圧調整部と、を備える無人搬送車の駆動システムを提供する。 To achieve the above object, according to a first aspect of the present invention, there is provided an engine, a generator motor unit that is capable of generating electric power with the driving force of the engine and is used for traveling the automatic guided vehicle, and the generator motor unit A power storage device that can be supplied with regenerative power that can be generated by the generator motor unit, a weight grasping unit that grasps a loaded weight of the automatic guided vehicle, and a traveling pattern of the automatic guided vehicle. A traveling pattern grasping unit for grasping, an estimating unit for estimating a power variation amount of the power storage device in a predetermined specific section based on the loaded weight and the traveling pattern, and the power variation estimated by the estimating unit A voltage fluctuation amount calculation unit that calculates a fluctuation amount of the voltage of the power storage device based on the amount and an internal resistance of the power storage device, and based on a calculation result of the voltage fluctuation amount calculation unit, To provide a drive system of the automatic guided vehicle and a voltage adjusting unit for adjusting a voltage of said power storage device before the transport vehicle reaches the specific section.
 本発明の第2の態様は、エンジンと、前記エンジンの駆動力で発電可能なものであって走行に用いられる発電電動部と、前記発電電動部に電力を供給可能であるとともに前記発電電動部にて発生し得る回生電力により充電可能な蓄電装置と、前記蓄電装置のSOCを把握するSOC把握部と、前記無人搬送車の積載重量を把握する重量把握部と、前記無人搬送車の走行パターンを把握する走行パターン把握部と、前記積載重量及び前記走行パターンに基づいて、予め定められた特定区間における前記蓄電装置のSOCの変動量を推定する推定部と、前記推定部により推定された前記変動量に基づいて、前記蓄電装置のSOCにおける予め定められた基準値からのずれ量を算出する算出部と、前記無人搬送車が前記特定区間に到達する前に、前記蓄電装置のSOCが前記基準値から前記ずれ量だけずれた目標値に近づくよう前記SOC把握部の把握結果に基づいて前記蓄電装置のSOCを調整するSOC調整部と、を備えている無人搬送車の駆動システムを提供する。 According to a second aspect of the present invention, there is provided an engine, a generator motor that is capable of generating electric power with the driving force of the engine and used for traveling, and is capable of supplying electric power to the generator motor and the generator motor Power storage device that can be charged by regenerative power that can be generated in the vehicle, an SOC grasping unit that grasps the SOC of the power storage device, a weight grasping unit that grasps the loaded weight of the automatic guided vehicle, and a traveling pattern of the automatic guided vehicle A traveling pattern grasping unit that grasps the load, and an estimation unit that estimates a variation amount of the SOC of the power storage device in a predetermined section based on the loaded weight and the traveling pattern, and the estimation unit that estimates the Based on the amount of variation, a calculation unit that calculates a deviation amount from a predetermined reference value in the SOC of the power storage device, and before the automatic guided vehicle reaches the specific section, An SOC adjustment unit that adjusts the SOC of the power storage device based on the grasping result of the SOC grasping unit so that the SOC of the power storage device approaches the target value shifted from the reference value by the deviation amount Provide a car drive system.
 本発明の第3の態様は、エンジンと、前記エンジンの駆動力で発電可能なものであって前記無人搬送車の走行に用いられる発電電動部と、及び前記発電電動部に電力を供給可能であるとともに前記発電電動部にて発生し得る回生電力により充電可能な蓄電装置と、前記無人搬送車の積載重量を把握する重量把握部と、前記無人搬送車の走行パターンを把握する走行パターン把握部と、前記積載重量及び前記走行パターンに基づいて、予め定められた特定区間における前記蓄電装置の状態を示す特性値の変動量を推定する推定部と、少なくとも前記変動量に基づいて、前記蓄電装置の前記特性値に対応する値の変動量又は前記特性値における予め定められた基準値からのずれ量を算出する算出部と、前記変動量算出部の算出結果に基づいて前記無人搬送車が前記特定区間に到達する前に、前記蓄電装置の前記特性値に対応する値を調整するか又は前記蓄電装置の前記特性値が前記基準値から前記ずれ量だけずれた目標値に近づくように前記蓄電装置の前記特性値を調整する調整部とを備えている無人搬送車の駆動システムを提供する。 According to a third aspect of the present invention, an electric power can be supplied to the engine, a generator motor that is capable of generating electric power with the driving force of the engine, and is used for traveling the automatic guided vehicle, and the generator motor. And a power storage device that can be charged by regenerative power that can be generated by the generator motor unit, a weight grasping unit that grasps a loaded weight of the automatic guided vehicle, and a traveling pattern grasping unit that grasps a traveling pattern of the automatic guided vehicle An estimation unit that estimates a variation amount of a characteristic value indicating a state of the power storage device in a predetermined specific section based on the loaded weight and the travel pattern, and at least the power storage device based on the variation amount Based on a calculation result of a fluctuation amount of a value corresponding to the characteristic value or a deviation amount of the characteristic value from a predetermined reference value, and a calculation result of the fluctuation amount calculation unit Before the automated guided vehicle reaches the specific section, the value corresponding to the characteristic value of the power storage device is adjusted, or the characteristic value of the power storage device is set to a target value that is shifted from the reference value by the shift amount. There is provided a drive system for an automatic guided vehicle that includes an adjustment unit that adjusts the characteristic value of the power storage device so as to approach.
無人搬送車の駆動システムが適用されるコンテナターミナルの模式図。The schematic diagram of the container terminal to which the drive system of an automatic guided vehicle is applied. 無人搬送車の駆動システムを示す概念図。The conceptual diagram which shows the drive system of an automatic guided vehicle. 無人搬送車の構成を示すブロック図。The block diagram which shows the structure of an automatic guided vehicle. 車載コンピュータにて実行される走行制御処理を示すフローチャート。The flowchart which shows the traveling control process performed with a vehicle-mounted computer. (a)は無人搬送車の速度の変動を示すグラフであり、(b)は蓄電装置の電圧の変動を示すグラフ。(A) is a graph which shows the fluctuation | variation of the speed of an automatic guided vehicle, (b) is a graph which shows the fluctuation | variation of the voltage of an electrical storage apparatus. 車載コンピュータにて実行される減速前処理を示すフローチャート。The flowchart which shows the pre-deceleration process performed with a vehicle-mounted computer. 車載コンピュータにて実行される加速前処理を示すフローチャート。The flowchart which shows the pre-acceleration process performed with a vehicle-mounted computer. (a)は無人搬送車の速度変動を示すグラフであり、(b)は事前に充放電を行わない場合のSOC(State of Charge)の変動を示すグラフであり、(c)は事前に充放電を行う場合のSOCの変動を示すグラフ。(A) is a graph which shows the speed fluctuation of an automatic guided vehicle, (b) is a graph which shows the fluctuation | variation of SOC (State of Charge) when charging / discharging is not performed in advance, and (c) is charged in advance. The graph which shows the fluctuation | variation of SOC at the time of discharging. 減速前処理の変形例を示すフローチャート。The flowchart which shows the modification of the process before deceleration. 加減速後処理を示すフローチャート。The flowchart which shows the post-acceleration / deceleration processing.
 (第1の実施形態)
 以下、無人搬送車の駆動システムを港湾のコンテナターミナルに適用した一実施形態について説明する。
(First embodiment)
Hereinafter, an embodiment in which a driving system for an automatic guided vehicle is applied to a container terminal in a harbor will be described.
 先ず、コンテナターミナルの全体像について説明する。図1に示すように、コンテナターミナルは、コンテナ船S付近に配置され、コンテナの積み降ろしを行うガントリークレーンC1と、コンテナ設置場に配置され、コンテナの積み降ろしを行うラバータイヤクレーンC2とを備える。 First, an overview of the container terminal will be described. As shown in FIG. 1, the container terminal includes a gantry crane C1 that is disposed near the container ship S and that loads and unloads containers, and a rubber tire crane C2 that is disposed at a container installation site and that loads and unloads containers. .
 また、コンテナターミナルにおいては、無人搬送車(AGV:Automated Guided Vehicle)11が誘導ライン等の誘導部によって規定された走行経路Rを予め定められた方向(例えば反時計回り)で周回する。無人搬送車11は、コンテナを積載可能に構成されており、コンテナ船S付近とコンテナ設置場との間でコンテナの搬送を行う。例えば、ガントリークレーンC1にてコンテナが無人搬送車11に積まれた場合には、無人搬送車11はそのコンテナをコンテナ設置場に搬送する。そして、無人搬送車11がコンテナ設置場に到着すると、そのコンテナはラバータイヤクレーンC2にて降ろされる。コンテナが降ろされた後は、無人搬送車11は再度ガントリークレーンC1に向けて走行する。なお、本実施形態では、走行経路Rは傾斜がなく平坦であるとする。 Also, at the container terminal, an automated guided vehicle (AGV) 11 circulates in a predetermined direction (for example, counterclockwise) on a traveling route R defined by a guide section such as a guide line. The automatic guided vehicle 11 is configured to be capable of loading containers, and transports containers between the vicinity of the container ship S and the container installation site. For example, when a container is loaded on the automatic guided vehicle 11 by the gantry crane C1, the automatic guided vehicle 11 transports the container to the container installation site. When the automatic guided vehicle 11 arrives at the container installation site, the container is lowered by the rubber tire crane C2. After the container is lowered, the automatic guided vehicle 11 travels again toward the gantry crane C1. In the present embodiment, it is assumed that the travel route R is flat without an inclination.
 次に、上記のように周回する無人搬送車11の駆動システム10について説明する。図2に示すように、無人搬送車11の駆動システム10は、無人搬送車11に搭載された車載コンピュータ21と、当該車載コンピュータ21と無線通信可能な運行管理コンピュータ22とを備えている。運行管理コンピュータ22は、車載コンピュータ21に各種指令を送信することにより、無人搬送車11の走行を制御する。また、運行管理コンピュータ22は、ガントリークレーンC1及びラバータイヤクレーンC2の駆動を制御する。 Next, the drive system 10 of the automatic guided vehicle 11 that goes around as described above will be described. As shown in FIG. 2, the drive system 10 of the automatic guided vehicle 11 includes an in-vehicle computer 21 mounted on the automatic guided vehicle 11 and an operation management computer 22 capable of wireless communication with the in-vehicle computer 21. The operation management computer 22 controls the traveling of the automatic guided vehicle 11 by transmitting various commands to the in-vehicle computer 21. Moreover, the operation management computer 22 controls the drive of the gantry crane C1 and the rubber tire crane C2.
 次に、無人搬送車11の具体的な構成について説明する。本実施形態の無人搬送車11は、所謂シリーズ方式のハイブリッド車両である。詳細には、図3に示すように、無人搬送車11は、エンジン31と、そのエンジン31の駆動力によって発電可能な第1発電電動機(第1モータジェネレータ)32と、第1発電電動機32に接続された発電インバータ33とを備えている。さらに、無人搬送車11は、発電インバータ33に接続された蓄電装置34と、蓄電装置34及び発電インバータ33に接続された走行インバータ35と、走行インバータ35に接続された第2発電電動機(第2モータジェネレータ)36とを備えている。なお、図3では、走行インバータ35と第2発電電動機36とは、それぞれ1つのみ例示したが、実際には無人搬送車11の車軸の数に応じてそれぞれ複数設けられる。本実施形態では、走行インバータ35と第2発電電動機36とは、それぞれ2つずつ設けられている。各インバータ33,35は、直流電力が入力された場合には該直流電力を交流電力に変換して出力し、交流電力が入力された場合には該交流電力を直流電力に変換して出力する。 Next, a specific configuration of the automatic guided vehicle 11 will be described. The automatic guided vehicle 11 of this embodiment is a so-called series type hybrid vehicle. Specifically, as shown in FIG. 3, the automatic guided vehicle 11 includes an engine 31, a first generator motor (first motor generator) 32 that can generate power by the driving force of the engine 31, and the first generator motor 32. And a power generation inverter 33 connected thereto. Furthermore, the automatic guided vehicle 11 includes a power storage device 34 connected to the power generation inverter 33, a travel inverter 35 connected to the power storage device 34 and the power generation inverter 33, and a second generator motor (second motor) connected to the travel inverter 35. Motor generator) 36. In FIG. 3, only one traveling inverter 35 and two second generator motors 36 are illustrated, but in reality, a plurality of them are provided according to the number of axles of the automatic guided vehicle 11. In the present embodiment, two traveling inverters 35 and two second generator motors 36 are provided. Each of the inverters 33 and 35 converts the DC power into AC power when DC power is input, and outputs the AC power when AC power is input. .
 第1発電電動機32のロータがエンジン31の駆動軸に連結されている。エンジン31の駆動軸の回転にともなってロータが回転することにより、第1発電電動機32は交流電力を発生させる。一方、第1発電電動機32は、交流電力が入力された場合、エンジン31を駆動させることで、負荷として動作することも可能である。 The rotor of the first generator motor 32 is connected to the drive shaft of the engine 31. The first generator motor 32 generates AC power by rotating the rotor as the drive shaft of the engine 31 rotates. On the other hand, the first generator motor 32 can also operate as a load by driving the engine 31 when AC power is input.
 第2発電電動機36は無人搬送車11の走行に用いられるものである。詳細には、第2発電電動機36のロータが車軸に連結されている。走行インバータ35を介して、発電インバータ33(第1発電電動機32)及び蓄電装置34の少なくとも一方から第2発電電動機36に電力が入力された場合には、第2発電電動機36は無人搬送車11の車軸を回転させる。一方、第2発電電動機36は、運動エネルギを電気エネルギに変換する回生機能を有しており、無人搬送車11の減速時において回生制動を行うことにより発電する。第1発電電動機32及び第2発電電動機36が発電電動部に対応する。 The second generator motor 36 is used for running the automatic guided vehicle 11. Specifically, the rotor of the second generator motor 36 is connected to the axle. When electric power is input to the second generator motor 36 from at least one of the generator inverter 33 (first generator motor 32) and the power storage device 34 via the traveling inverter 35, the second generator motor 36 is the automatic guided vehicle 11. Rotate the axle. On the other hand, the second generator motor 36 has a regenerative function for converting kinetic energy into electric energy, and generates power by performing regenerative braking when the automatic guided vehicle 11 is decelerated. The first generator motor 32 and the second generator motor 36 correspond to the generator motor unit.
 なお、第2発電電動機36と車軸との間にはクラッチ(図示略)が設けられている。車載コンピュータ21は、クラッチの制御を行うことが可能に構成されている。 A clutch (not shown) is provided between the second generator motor 36 and the axle. The in-vehicle computer 21 is configured to be able to control the clutch.
 蓄電装置34は、内部抵抗を有する。蓄電装置34は、例えばニッケル水素電池やリチウムイオン電池で構成され、発電インバータ33を介して第1発電電動機32に電力を供給可能であるとともに、走行インバータ35を介して第2発電電動機36に電力を供給可能となっている。また、蓄電装置34は、各発電電動機32,36にて発電された電力が各インバータ33,35を介して入力されることにより充電される。 The power storage device 34 has an internal resistance. The power storage device 34 is composed of, for example, a nickel metal hydride battery or a lithium ion battery, can supply power to the first generator motor 32 via the power generation inverter 33, and supplies power to the second generator motor 36 via the travel inverter 35. Can be supplied. The power storage device 34 is charged by the electric power generated by the generator motors 32 and 36 being input via the inverters 33 and 35.
 ちなみに、蓄電装置34のSOC(State of Charge)(充電状態、充電率)には、蓄電装置34が劣化しにくい許容範囲が設定されている。許容範囲は、蓄電装置34の仕様によって予め設定されており、許容範囲には下限値及び上限値が設定されている。 Incidentally, an allowable range in which the power storage device 34 is unlikely to deteriorate is set in the SOC (State of charge) (charge state, charge rate) of the power storage device 34. The allowable range is set in advance according to the specifications of the power storage device 34, and a lower limit value and an upper limit value are set in the allowable range.
 同様に、蓄電装置34の電圧には、蓄電装置34が劣化しにくい許容範囲が設定されている。許容範囲は、蓄電装置34の仕様によって予め設定されており、許容範囲には上限値及び下限値が設定されている。蓄電装置34の電力は、蓄電装置34の状態を示す特性値に対応する。蓄電装置34の電圧は、蓄電装置34の状態を示す特性値である電力に対応する値である。 Similarly, an allowable range in which the power storage device 34 is unlikely to deteriorate is set for the voltage of the power storage device 34. The allowable range is set in advance according to the specifications of the power storage device 34, and an upper limit value and a lower limit value are set in the allowable range. The electric power of power storage device 34 corresponds to a characteristic value indicating the state of power storage device 34. The voltage of power storage device 34 is a value corresponding to electric power, which is a characteristic value indicating the state of power storage device 34.
 車載コンピュータ21は、蓄電装置34の充放電を制御することにより、無人搬送車11の加減速を好適に行うよう構成されている。例えば、加速時には、車載コンピュータ21は、エンジン31の駆動によって第1発電電動機32にて発電し、その発電された電力を第2発電電動機36に供給させる。これにより、車載コンピュータ21は、蓄電装置34の放電を行い、その放電電力を第2発電電動機36に供給させて無人搬送車11の走行、詳細には力行を補助する。なお、第2発電電動機36に供給される蓄電装置34の放電電力をアシスト電力と言う。 The in-vehicle computer 21 is configured to suitably accelerate and decelerate the automatic guided vehicle 11 by controlling charging / discharging of the power storage device 34. For example, during acceleration, the in-vehicle computer 21 generates power by the first generator motor 32 by driving the engine 31 and supplies the generated power to the second generator motor 36. Thereby, the in-vehicle computer 21 discharges the power storage device 34 and supplies the discharged power to the second generator motor 36 to assist the traveling of the automatic guided vehicle 11, specifically, power running. The discharge power of the power storage device 34 supplied to the second generator motor 36 is referred to as assist power.
 一方、減速時には、車載コンピュータ21は、第2発電電動機36にて発生した回生電力を蓄電装置34に供給させ、蓄電装置34の充電を行う。 On the other hand, at the time of deceleration, the in-vehicle computer 21 supplies the regenerative power generated by the second generator motor 36 to the power storage device 34 to charge the power storage device 34.
 無人搬送車11は、蓄電装置34の電圧や電流を測定する蓄電センサ37を備えている。蓄電センサ37は、測定された蓄電装置34の電圧等の値を車載コンピュータ21に送信する。また、無人搬送車11は、当該無人搬送車11の積載重量(荷重)を測定するとともに、その測定結果を車載コンピュータ21に送信する重量把握部としての荷重センサ38を備えている。これにより、車載コンピュータ21は、蓄電装置34の電圧及び電流と、積載重量とを把握可能となっている。 The automatic guided vehicle 11 includes a power storage sensor 37 that measures the voltage and current of the power storage device 34. The power storage sensor 37 transmits the measured value such as the voltage of the power storage device 34 to the in-vehicle computer 21. The automatic guided vehicle 11 includes a load sensor 38 as a weight grasping unit that measures the loaded weight (load) of the automatic guided vehicle 11 and transmits the measurement result to the in-vehicle computer 21. Thereby, the vehicle-mounted computer 21 can grasp the voltage and current of the power storage device 34 and the loaded weight.
 ここで、運行管理コンピュータ22は、無人搬送車11を走行させる場合、走行指令とともに、無人搬送車11の加減速のパターンが設定された走行パターンを車載コンピュータ21に送信する。車載コンピュータ21は、運行管理コンピュータ22から上記走行指令及び走行パターンを受信した場合には、受信した走行パターンに従って無人搬送車11を走行させる。 Here, when running the automatic guided vehicle 11, the operation management computer 22 transmits a running pattern in which the acceleration / deceleration pattern of the automated guided vehicle 11 is set to the in-vehicle computer 21 together with the running command. When the in-vehicle computer 21 receives the travel command and the travel pattern from the operation management computer 22, the in-vehicle computer 21 causes the automatic guided vehicle 11 to travel according to the received travel pattern.
 走行パターンには、走行経路Rを走行する無人搬送車11の走行距離、走行速度及び加速度等の情報が設定されている。無人搬送車11は加減速を繰り返しながら走行するように設定されている。例えば、走行経路R中、コーナ部分の走行速度は、直線部分の走行速度よりも低く設定されている。つまり、走行経路Rには、特定区間として加速区間と減速区間とが設定されている。そして、車載コンピュータ21は、走行パターンを把握することを通じて、無人搬送車11が加速区間及び減速区間に到達するよりも前の時点にて加速区間及び減速区間を把握することができる。 In the travel pattern, information such as the travel distance, travel speed, and acceleration of the automatic guided vehicle 11 traveling on the travel route R is set. The automatic guided vehicle 11 is set to travel while repeating acceleration and deceleration. For example, in the traveling route R, the traveling speed of the corner portion is set lower than the traveling speed of the straight portion. That is, in the travel route R, an acceleration section and a deceleration section are set as specific sections. And the vehicle-mounted computer 21 can grasp | ascertain an acceleration area and a deceleration area before the automatic guided vehicle 11 arrives at an acceleration area and a deceleration area by grasping | ascertaining a driving pattern.
 ここで、蓄電装置34の内部抵抗及び電圧の許容範囲(下限値、上限値)は、蓄電装置34の内部抵抗が初期値である無人搬送車11が走行パターンに従って走行した場合に、蓄電装置34の電圧が許容範囲内に収まるように設定されている。しかしながら、無人搬送車11に積載されるコンテナの積載重量によっては、蓄電装置34の電圧が許容範囲外となる場合がある。また、蓄電装置34の充放電の繰り返しや製造上のばらつきによって、蓄電装置34の内部抵抗には、ばらつきが生じ得る。この場合、内部抵抗のばらつき具合によっては、蓄電装置34の電圧が許容範囲外となる場合が生じ得る。 Here, the allowable ranges (lower limit value and upper limit value) of the internal resistance and voltage of the power storage device 34 are determined when the automatic guided vehicle 11 whose internal resistance of the power storage device 34 is the initial value travels according to the travel pattern. Is set to be within an allowable range. However, depending on the loading weight of the container loaded on the automatic guided vehicle 11, the voltage of the power storage device 34 may be outside the allowable range. In addition, the internal resistance of the power storage device 34 may vary due to repeated charging and discharging of the power storage device 34 and manufacturing variations. In this case, depending on how the internal resistance varies, the voltage of the power storage device 34 may be outside the allowable range.
 これに対して、車載コンピュータ21は、積載重量や蓄電装置34の内部抵抗を考慮した蓄電装置34の電圧制御を行いつつ、無人搬送車11を走行させる走行制御処理を実行する。図4を用いて走行制御処理について説明する。なお、走行制御処理は、車載コンピュータ21にて定期的に実行される処理である。 On the other hand, the in-vehicle computer 21 executes a travel control process for causing the automatic guided vehicle 11 to travel while performing voltage control of the power storage device 34 in consideration of the loaded weight and the internal resistance of the power storage device 34. The travel control process will be described with reference to FIG. The traveling control process is a process that is periodically executed by the in-vehicle computer 21.
 先ず、ステップS101では、車載コンピュータ21は、無人搬送車11を始動させるか否かを判定する。具体的には、運行管理コンピュータ22から走行指令を受信しているか否かを判定する。なお、走行指令は、定期的、例えば毎日所定の時刻に運行管理コンピュータ22から送信されるものである。 First, in step S101, the in-vehicle computer 21 determines whether to start the automatic guided vehicle 11 or not. Specifically, it is determined whether or not a travel command is received from the operation management computer 22. The travel command is transmitted from the operation management computer 22 periodically, for example, at a predetermined time every day.
 走行指令を受信していない場合には、車載コンピュータ21は、そのまま本走行制御処理を終了する。走行指令を受信している場合には、車載コンピュータ21は、ステップS102及びステップS103にて、開放電圧(OCV:Open Circuit Voltage)の決定処理を実行する。 If the traveling command is not received, the in-vehicle computer 21 ends the traveling control process as it is. When the traveling command is received, the in-vehicle computer 21 executes an open circuit voltage (OCV: Open Circuit Voltage) determination process in steps S102 and S103.
 具体的には、ステップS102では、車載コンピュータ21は、蓄電装置34の電圧を測定する。続くステップS103では、車載コンピュータ21は、上記ステップS102にて測定された電圧を開放電圧として、車載コンピュータ21に設けられた記憶領域に記憶させる。 Specifically, in step S102, the in-vehicle computer 21 measures the voltage of the power storage device 34. In subsequent step S103, the in-vehicle computer 21 stores the voltage measured in step S102 as an open voltage in a storage area provided in the in-vehicle computer 21.
 開放電圧を決定した後は、ステップS104~ステップS107にて、車載コンピュータ21は、蓄電装置34の内部抵抗の導出処理を実行する。詳細には、先ずステップS104にて、車載コンピュータ21は、蓄電装置34において一定の電流が流れる定電流放電を開始する。この場合、車載コンピュータ21は、蓄電装置34から放電された電力を、第1発電電動機32に供給するよう制御する。車載コンピュータ21は、第1発電電動機32は上記蓄電装置34の放電電力を用いてエンジン31を駆動させる。なお、定電流放電を行う場合には、クラッチを接続されていない状態にする。 After determining the open-circuit voltage, the in-vehicle computer 21 executes the process of deriving the internal resistance of the power storage device 34 in steps S104 to S107. Specifically, first, in step S <b> 104, the in-vehicle computer 21 starts constant current discharge in which a constant current flows in the power storage device 34. In this case, the in-vehicle computer 21 controls to supply the electric power discharged from the power storage device 34 to the first generator motor 32. In the in-vehicle computer 21, the first generator motor 32 drives the engine 31 using the discharge power of the power storage device 34. When performing constant current discharge, the clutch is not connected.
 そして、ステップS105では、車載コンピュータ21は、蓄電装置34の電圧を測定する。ここで、車載コンピュータ21は、定電流放電中、所定の時点で、エンジン31の回転速度を制御することにより定電流値を変動させ、それぞれの定電流値における電圧を測定する。 And in step S105, the vehicle-mounted computer 21 measures the voltage of the electrical storage apparatus 34. FIG. Here, the in-vehicle computer 21 varies the constant current value by controlling the rotational speed of the engine 31 at a predetermined time during the constant current discharge, and measures the voltage at each constant current value.
 電圧測定後、車載コンピュータ21は、ステップS106にて放電を終了させる。そして、ステップS107では、車載コンピュータ21は、測定結果に基づいて、ステップS103にて決定した開放電圧を切片とするI-Vプロットを作成する。車載コンピュータ21は、そのI-Vプロットの傾きから内部抵抗を導出し、その導出された内部抵抗を車載コンピュータ21の所定の記憶領域に記憶させておく。なお、ステップS104~ステップS107の処理を実行する車載コンピュータ21が内部抵抗導出部に対応する。 After the voltage measurement, the in-vehicle computer 21 terminates the discharge in step S106. In step S107, the in-vehicle computer 21 creates an IV plot with the open circuit voltage determined in step S103 as an intercept based on the measurement result. The in-vehicle computer 21 derives the internal resistance from the slope of the IV plot, and stores the derived internal resistance in a predetermined storage area of the in-vehicle computer 21. Note that the in-vehicle computer 21 that executes the processes of steps S104 to S107 corresponds to the internal resistance deriving unit.
 ステップS107の処理を終了した後、車載コンピュータ21は、ステップS108~ステップS117にて無人搬送車11のパターン走行を行う。 After completing the process in step S107, the in-vehicle computer 21 performs the pattern running of the automatic guided vehicle 11 in steps S108 to S117.
 先ず、ステップS108では、車載コンピュータ21は、走行指令とともに受信した走行パターンに基づいて無人搬送車11の走行を開始する。その後、車載コンピュータ21は、特定区間(加減速区間)よりも前の時点であって無人搬送車11が定速で走行する定速区間にてステップS109~ステップS116の処理を実行する。なお、定速区間においては、回生電力は発生せず、アシスト電力量は「0」又は加速時よりも小さくなっている。 First, in step S108, the in-vehicle computer 21 starts traveling the automatic guided vehicle 11 based on the traveling pattern received together with the traveling command. Thereafter, the in-vehicle computer 21 executes the processes of steps S109 to S116 in a constant speed section where the automatic guided vehicle 11 travels at a constant speed before the specific section (acceleration / deceleration section). In the constant speed section, regenerative power is not generated, and the assist power amount is “0” or smaller than that during acceleration.
 先ずステップS109では、車載コンピュータ21は、荷重センサ38により無人搬送車11の積載重量を把握する。そして、車載コンピュータ21は、ステップS110では走行パターンを把握して、特定区間の距離(又は加減速時間)や加速度等の走行パターンに関する情報を把握する。ステップS110の処理を実行する車載コンピュータ21が走行パターン把握部に対応する。 First, in step S109, the in-vehicle computer 21 grasps the loaded weight of the automatic guided vehicle 11 by the load sensor 38. In step S110, the in-vehicle computer 21 grasps the travel pattern, and grasps information related to the travel pattern such as the distance (or acceleration / deceleration time) and acceleration of the specific section. The in-vehicle computer 21 that executes the process of step S110 corresponds to the travel pattern grasping unit.
 続くステップS111では、車載コンピュータ21は、上記走行パターン及び積載重量に基づいて回生電力量又はアシスト電力量を推定する。詳細には、例えば減速区間の前においては、車載コンピュータ21は、当該減速区間にて発生する回生電力量を推定し、加速区間の前においては、当該加速区間にて無人搬送車11の走行(力行)を補助するのに要するアシスト電力量を推定する。ステップS111の処理を実行する車載コンピュータ21が推定部に対応する。 In subsequent step S111, the in-vehicle computer 21 estimates the regenerative power amount or the assist power amount based on the traveling pattern and the loaded weight. Specifically, for example, before the deceleration zone, the in-vehicle computer 21 estimates the amount of regenerative electric power generated in the deceleration zone, and before the acceleration zone, the in-vehicle guided vehicle 11 travels in the acceleration zone ( Estimate the amount of assist power required to assist the power running. The in-vehicle computer 21 that executes the process of step S111 corresponds to the estimation unit.
 その後、ステップS112では、車載コンピュータ21は、現時点における開放電圧を推定する。詳細には、車載コンピュータ21は、電流の積算値と電池容量との商からSOCの変動量を算出する。そして、車載コンピュータ21は、当該変動量と、ステップS103にて設定された開放電圧の初期値とから、現状のSOCを推定し、現状のSOCから現状の開放電圧を推定する。 Thereafter, in step S112, the in-vehicle computer 21 estimates the open circuit voltage at the present time. Specifically, the in-vehicle computer 21 calculates the SOC fluctuation amount from the quotient of the integrated current value and the battery capacity. Then, the in-vehicle computer 21 estimates the current SOC from the fluctuation amount and the initial value of the open circuit voltage set in step S103, and estimates the current open circuit voltage from the current SOC.
 現状の開放電圧を推定した後、車載コンピュータ21は、ステップS113にて、車載コンピュータ21は、上記ステップS111にて推定された回生電力量又はアシスト電力量と、ステップS112にて推定された開放電圧とに基づいて、特定区間における蓄電装置34の電流、すなわち回生電流又はアシスト電流を算出する。 After estimating the current open circuit voltage, the in-vehicle computer 21 is in step S113, and the in-vehicle computer 21 is in the regenerative power amount or assist power amount estimated in step S111 and the open circuit voltage estimated in step S112. Based on the above, the current of the power storage device 34 in the specific section, that is, the regenerative current or the assist current is calculated.
 その後、ステップS114では、車載コンピュータ21は、ステップS107にて導出された内部抵抗と、上記ステップS113にて算出された蓄電装置34の電流とに基づいて、蓄電装置34の電圧の変動量を算出、即ち導出する。詳細には、車載コンピュータ21は、例えば減速区間の前においては電圧上昇量を算出し、加速区間の前においては電圧降下量を算出する。ステップS112~ステップS114の処理を実行する車載コンピュータ21が、電圧変動量算出部に対応する。 Thereafter, in step S114, the in-vehicle computer 21 calculates the fluctuation amount of the voltage of the power storage device 34 based on the internal resistance derived in step S107 and the current of the power storage device 34 calculated in step S113. That is, derive. Specifically, the in-vehicle computer 21 calculates the amount of voltage increase before the deceleration zone, for example, and calculates the amount of voltage drop before the acceleration zone. The in-vehicle computer 21 that executes the processes of steps S112 to S114 corresponds to the voltage fluctuation amount calculation unit.
 そして、ステップ115では、車載コンピュータ21は、蓄電装置34の電圧の許容範囲を考慮して目標電圧を設定する。車載コンピュータ21は、例えば、減速区間の前においては、蓄電装置34の電圧の上限値から電圧上昇量を差し引いた電圧、又はそれよりも低い電圧を目標電圧として設定する。また、車載コンピュータ21は、例えば加速区間の前においては、蓄電装置34の電圧の下限値に対して電圧降下量を加算した電圧、又はそれよりも高い電圧を目標電圧として設定する。 In step 115, the in-vehicle computer 21 sets the target voltage in consideration of the allowable range of the voltage of the power storage device 34. For example, the in-vehicle computer 21 sets, as a target voltage, a voltage obtained by subtracting the amount of voltage increase from the upper limit value of the voltage of the power storage device 34 or a voltage lower than that before the deceleration section. Further, for example, before the acceleration section, the in-vehicle computer 21 sets a voltage obtained by adding a voltage drop amount to the lower limit value of the voltage of the power storage device 34 or a voltage higher than that as a target voltage.
 ステップS116では、車載コンピュータ21は、無人搬送車11が特定区間に到達するまでに、蓄電装置34の電圧が上記ステップS115にて設定された目標電圧に近づくよう蓄電装置34の電圧を調整する。詳細には、車載コンピュータ21は、蓄電装置34のSOCが上記目標電圧に対応した目標SOCに近づくように蓄電装置34の充放電の制御を行う。なお、ステップS116の処理は、SOCの調整処理とも言える。当該ステップS116の処理を行う車載コンピュータ21が電圧調整部に対応する。 In step S116, the in-vehicle computer 21 adjusts the voltage of the power storage device 34 so that the voltage of the power storage device 34 approaches the target voltage set in step S115 before the automatic guided vehicle 11 reaches the specific section. Specifically, the in-vehicle computer 21 controls charging / discharging of the power storage device 34 so that the SOC of the power storage device 34 approaches the target SOC corresponding to the target voltage. Note that the processing in step S116 can also be said to be SOC adjustment processing. The in-vehicle computer 21 that performs the process of step S116 corresponds to the voltage adjustment unit.
 なお、車載コンピュータ21は、加速区間の前の定速区間において現状の電圧が目標電圧よりも高い場合には、蓄電装置34の充放電を行わず、減速区間の前の定速区間において現状の電圧が目標電圧よりも低い場合には、蓄電装置34の充放電を行わない。 When the current voltage is higher than the target voltage in the constant speed section before the acceleration section, the in-vehicle computer 21 does not charge / discharge the power storage device 34, and does not charge the current state in the constant speed section before the deceleration section. When the voltage is lower than the target voltage, the power storage device 34 is not charged / discharged.
 その後、ステップS117では、車載コンピュータ21は、無人搬送車11が特定区間に到達した場合の加減速時処理を実行する。具体的には、車載コンピュータ21は、例えば減速区間においては回生電力を蓄電装置34に供給し、加速区間においては蓄電装置34に蓄電されている電力を走行インバータ35に供給する。この場合、車載コンピュータ21は、蓄電装置34の電圧が許容範囲内に収まるように電力制御を行う。詳細には、車載コンピュータ21は、例えば減速中に蓄電装置34の電圧が上限値に到達した場合には、蓄電装置34の充電を中断し、残りの回生電力を第1発電電動機32に供給する。同様に、車載コンピュータ21は、例えば加速中に蓄電装置34の電圧が下限値に到達した場合には、蓄電装置34の放電を中断する。 Thereafter, in step S117, the in-vehicle computer 21 executes acceleration / deceleration processing when the automatic guided vehicle 11 reaches the specific section. Specifically, the in-vehicle computer 21 supplies regenerative power to the power storage device 34, for example, in a deceleration zone, and supplies the power stored in the power storage device 34 to the traveling inverter 35 in an acceleration zone. In this case, the in-vehicle computer 21 performs power control so that the voltage of the power storage device 34 is within an allowable range. Specifically, for example, when the voltage of the power storage device 34 reaches an upper limit value during deceleration, the in-vehicle computer 21 interrupts charging of the power storage device 34 and supplies the remaining regenerative power to the first generator motor 32. . Similarly, for example, when the voltage of the power storage device 34 reaches a lower limit during acceleration, the in-vehicle computer 21 interrupts the discharge of the power storage device 34.
 車載コンピュータ21は、無人搬送車11の加減速が終了した後は、ステップS118に進み、パターン走行が終了したか否かを判定する。車載コンピュータ21は、パターン走行が終了していない場合にはステップS109に戻る一方、パターン走行が終了した場合には、本走行制御処理を終了する。 After the acceleration / deceleration of the automatic guided vehicle 11 is completed, the in-vehicle computer 21 proceeds to step S118 and determines whether or not the pattern running is completed. The in-vehicle computer 21 returns to step S109 when the pattern running is not finished, and ends the running control process when the pattern running is finished.
 次に、図5を用いて本実施形態の作用について説明する。図5(a)は、無人搬送車11の速度の変動、即ち走行パターンを示すグラフであり、図5(b)は、蓄電装置34の電圧の変動を示すグラフである。なお、説明の便宜上、減速区間Td及びその前における蓄電装置34の電圧について説明する。 Next, the operation of this embodiment will be described with reference to FIG. FIG. 5A is a graph showing a change in speed of the automatic guided vehicle 11, that is, a running pattern, and FIG. 5B is a graph showing a change in voltage of the power storage device 34. For convenience of explanation, the deceleration section Td and the voltage of the power storage device 34 before that will be described.
 図5(a)に示すように、時点t1~t8にて、無人搬送車11の走行パターンが、加速、定速及び減速のいずれかに切り換わる。これに対応させて、図5(b)に示すように、蓄電装置34の電圧が変動する。この場合、図5(b)の2点鎖線に示すように、蓄電装置34の内部抵抗にばらつきがない場合、詳細には内部抵抗が初期値から変動していない場合には、蓄電装置34の電圧は許容範囲内に収まっている。 As shown in FIG. 5 (a), the traveling pattern of the automatic guided vehicle 11 is switched to acceleration, constant speed, or deceleration from time t1 to time t8. Corresponding to this, as shown in FIG. 5B, the voltage of the power storage device 34 fluctuates. In this case, as shown by a two-dot chain line in FIG. 5B, when there is no variation in the internal resistance of the power storage device 34, specifically, when the internal resistance does not vary from the initial value, The voltage is within the allowable range.
 ここで、例えば図5(b)の1点鎖線及び区間Xに示すように、蓄電装置34の内部抵抗にばらつきが生じた場合、減速中に蓄電装置34の電圧が上限値に達し、蓄電装置34が回生電力を吸収しきれない事態が生じ得る。特に、内部抵抗が高くなると、電圧の上昇量が大きくなり易いため、上記事態が発生し易い。 Here, for example, as shown in the one-dot chain line and section X in FIG. 5B, when the internal resistance of the power storage device 34 varies, the voltage of the power storage device 34 reaches the upper limit during deceleration, and the power storage device There may be a situation where 34 cannot absorb the regenerative power. In particular, when the internal resistance increases, the amount of increase in voltage is likely to increase, so the above situation is likely to occur.
 これに対して、図5(b)の実線に示すように、減速区間Tdの前に、蓄電装置34の電圧を事前に下げる事前調整区間Tprが設けられている。これにより、減速中(減速区間Td)に蓄電装置34の電圧が上限値を超えることが回避されている。このため、減速区間Tdにて発生した回生電力が全て蓄電装置34の充電に用いられている。また、事前調整区間Tprにおいては、無人搬送車11は蓄電装置34の電力を用いて走行し、第1発電電動機32の発電量が小さくなる。 On the other hand, as shown by a solid line in FIG. 5B, a pre-adjustment section Tpr for reducing the voltage of the power storage device 34 in advance is provided before the deceleration section Td. Thereby, it is avoided that the voltage of the electrical storage device 34 exceeds the upper limit value during deceleration (deceleration section Td). For this reason, all the regenerative power generated in the deceleration zone Td is used for charging the power storage device 34. Further, in the pre-adjustment section Tpr, the automatic guided vehicle 11 travels using the electric power of the power storage device 34, and the power generation amount of the first generator motor 32 becomes small.
 なお、加速区間Taの前としての時点t4から時点t5までの定速区間においては、蓄電装置34の電圧が上限値となっている。当該蓄電装置34の電圧は、時点t5までに近づけるべき目標電圧よりも高い。このため、蓄電装置34の電圧調整が行われなくても、時点t5から時点t6までの加速区間Taにおける力行がアシストされる。 In the constant speed section from time t4 to time t5 before the acceleration section Ta, the voltage of the power storage device 34 is the upper limit value. The voltage of the power storage device 34 is higher than the target voltage that should be close to the time point t5. For this reason, even if voltage adjustment of the electrical storage device 34 is not performed, power running in the acceleration section Ta from time t5 to time t6 is assisted.
 以上詳述した本実施形態によれば以下の優れた効果を奏する。 According to the embodiment described above in detail, the following excellent effects are obtained.
 (1)車載コンピュータ21は、積載重量及び走行パターンに基づいて、特定区間における蓄電装置34の電力変動量、詳細にはアシスト電力量又は回生電力量を推定し、その推定された電力変動量と内部抵抗とに基づいて電圧の変動量を算出する。そして、車載コンピュータ21は、無人搬送車11が特定区間に到達する前に、その算出された電圧の変動量に基づいて蓄電装置34の電圧の調整を行う。これにより、特定区間において蓄電装置34の電圧が許容範囲外となることを抑制しつつ、減速区間Tdにおいては回生電力を全て充電に用いることができ、加速区間Taにおいては力行をアシストすることができる。よって、蓄電装置34の長寿命化及び燃費の向上を図ることができる。 (1) The in-vehicle computer 21 estimates the power fluctuation amount of the power storage device 34 in the specific section, specifically, the assist power amount or the regenerative power amount based on the loaded weight and the running pattern, and the estimated power fluctuation amount The amount of voltage fluctuation is calculated based on the internal resistance. The in-vehicle computer 21 adjusts the voltage of the power storage device 34 based on the calculated voltage fluctuation amount before the automatic guided vehicle 11 reaches the specific section. Thereby, while suppressing that the voltage of the electrical storage device 34 is outside the allowable range in the specific section, all the regenerative power can be used for charging in the deceleration section Td, and power running can be assisted in the acceleration section Ta. it can. Therefore, the life of the power storage device 34 can be extended and the fuel consumption can be improved.
 特に、無人搬送車11はコンテナ等の荷を積載する関係上、積載重量の変動幅が自動車等の通常の車両と比較して広いため、積載重量の変動に伴う回生電力量の変動幅が広くなり易い。また、無人搬送車11は、通常の車両と異なり、走行パターンが予め定められている。 In particular, since the automatic guided vehicle 11 has a larger fluctuation range of the loaded weight than that of a normal vehicle such as an automobile because of loading a load such as a container, the fluctuation range of the regenerative electric energy accompanying the fluctuation of the loaded weight is wide. Easy to be. In addition, the automatic guided vehicle 11 is different from a normal vehicle in that a traveling pattern is determined in advance.
 この点、本実施形態では、上記に示した無人搬送車11の特有の特性に着目して、回生電力量又はアシスト電力量を推定する際に積載重量及び走行パターンを考慮する構成を採用することにより、回生電力量又はアシスト電力量の推定精度の向上を図ることができる。これにより、蓄電装置34の電圧制御を、より好適に行うことができる。 In this regard, in this embodiment, paying attention to the unique characteristics of the automatic guided vehicle 11 described above, a configuration in which the loaded weight and the traveling pattern are taken into account when estimating the regenerative power amount or the assist power amount is adopted. Thus, it is possible to improve the estimation accuracy of the regenerative power amount or the assist power amount. Thereby, voltage control of the electrical storage device 34 can be performed more suitably.
 (2)車載コンピュータ21は、電圧の変動量と蓄電装置34の許容範囲とに基づいて目標電圧を設定し、特定区間に到達する前に蓄電装置34の電圧が目標電圧に近づくように蓄電装置34の電圧を調整する。車載コンピュータ21は、例えば減速区間Tdの前では、蓄電装置34の電圧の上限値から電圧の変動量を差し引いた値を目標電圧として設定し、その目標電圧に近づくように電圧の調整を行う。これにより、特定区間の途中において蓄電装置34の電圧が上限値又は下限値に到達してしまうことに起因して、回生電力を全て吸収できなかったり、力行をアシストしきれなかったりする事態を回避することができる。 (2) The in-vehicle computer 21 sets a target voltage based on the amount of voltage fluctuation and the allowable range of the power storage device 34, and the power storage device so that the voltage of the power storage device 34 approaches the target voltage before reaching the specific section. 34 voltage is adjusted. For example, before the deceleration section Td, the in-vehicle computer 21 sets a value obtained by subtracting the amount of voltage fluctuation from the upper limit value of the voltage of the power storage device 34 as a target voltage, and adjusts the voltage so as to approach the target voltage. This avoids a situation where the regenerative power cannot be completely absorbed or power running cannot be assisted due to the voltage of the power storage device 34 reaching the upper limit value or the lower limit value in the middle of the specific section. can do.
 (3)車載コンピュータ21は、無人搬送車11が始動する度に、蓄電装置34の内部抵抗を導出する。これにより、内部抵抗にばらつきを好適に把握することができる。よって、その内部抵抗のばらつきを考慮して、蓄電装置34の電圧の変動量を算出することができる。したがって、内部抵抗にばらつきが生じている場合であっても、上記(1)及び(2)に示した効果を奏する。 (3) The in-vehicle computer 21 derives the internal resistance of the power storage device 34 every time the automatic guided vehicle 11 is started. Thereby, the dispersion | variation in internal resistance can be grasped | ascertained suitably. Therefore, the fluctuation amount of the voltage of the power storage device 34 can be calculated in consideration of the variation in the internal resistance. Therefore, even when the internal resistance varies, the effects (1) and (2) are achieved.
 (4)車載コンピュータ21は、無人搬送車11の走行を開始する前に、エンジン31の回転速度を調整することにより、蓄電装置34の電力が供給される負荷の抵抗の値を変える。これにより、蓄電装置34の電流が変動する。そして、車載コンピュータ21は、その電流変動に対する電圧変動を蓄電センサ37にて測定することにより、内部抵抗を導出する。これにより、エンジン31等の既存の構成を用いて、I-Vプロットを作成することができ、それを通じて内部抵抗を導出することができる。 (4) The in-vehicle computer 21 changes the resistance value of the load to which the power of the power storage device 34 is supplied by adjusting the rotational speed of the engine 31 before starting the traveling of the automatic guided vehicle 11. Thereby, the current of power storage device 34 varies. The in-vehicle computer 21 derives the internal resistance by measuring the voltage fluctuation with respect to the current fluctuation by the power storage sensor 37. Thus, an IV plot can be created using the existing configuration of the engine 31 and the like, and the internal resistance can be derived therethrough.
 (第2の実施形態)
 第2の実施形態に係る無人搬送車の駆動システムについて説明する。以下の説明において、第1の実施形態と同様の構成については同様の符号を付しその説明を省略し、第1の実施形態と異なる点を中心に説明する。第2の実施形態は、蓄電装置の電圧を調整することに代えて、蓄電装置34のSOC(充電状態、充電率)を調整する点において第1の実施形態と異なる。SOCは、蓄電装置34の状態を示す特性値に対応する。
(Second Embodiment)
A drive system for an automatic guided vehicle according to a second embodiment will be described. In the following description, the same components as those in the first embodiment will be denoted by the same reference numerals, the description thereof will be omitted, and differences from the first embodiment will be mainly described. The second embodiment is different from the first embodiment in that the SOC (charge state, charge rate) of the power storage device 34 is adjusted instead of adjusting the voltage of the power storage device. The SOC corresponds to a characteristic value indicating the state of the power storage device 34.
 蓄電装置34のSOCには、予め定められた基準値SOC0を含む範囲であって蓄電装置34が劣化しにくい許容範囲が設定されている。基準値SOC0は、蓄電装置34の仕様に基づいて予め設定されている値であり、例えば60%に設定されている。許容範囲の上限値及び下限値は、基準値SOC0に対して対称に設定されており、詳細には上限値から基準値SOC0の差は、基準値SOC0から下限値の差と同一に設定されている。なお、上限値及び下限値は、蓄電装置34の仕様によって予め定められている。 The SOC of the power storage device 34 is set to an allowable range that includes a predetermined reference value SOC0 and is unlikely to deteriorate. The reference value SOC0 is a value set in advance based on the specification of the power storage device 34, and is set to 60%, for example. The upper limit value and the lower limit value of the allowable range are set symmetrically with respect to the reference value SOC0. Specifically, the difference between the upper limit value and the reference value SOC0 is set to be the same as the difference between the reference value SOC0 and the lower limit value. Yes. The upper limit value and the lower limit value are determined in advance according to the specifications of the power storage device 34.
 本実施形態の車載コンピュータ21は、蓄電装置34のSOC及び積載重量を把握可能となっている。 The in-vehicle computer 21 of the present embodiment can grasp the SOC and the loaded weight of the power storage device 34.
 かかる構成において、車載コンピュータ21は、蓄電装置34のSOCにおける基準値SOC0からの変動幅が狭くなるように、加減速が行われる前において蓄電装置34のSOC制御を行う減速前処理又は加速前処理を実行する。なお、加減速が行われる前、無人搬送車11は、定速で走行している又は停止しているものとする。無人搬送車11が定速で走行する定速区間においては、回生電力は発生せず、アシスト電力量は「0」又は加速時よりも少なくなっている。 In such a configuration, the in-vehicle computer 21 performs pre-deceleration processing or pre-acceleration processing for performing SOC control of the power storage device 34 before acceleration / deceleration is performed so that the fluctuation range of the SOC of the power storage device 34 from the reference value SOC0 is narrowed. Execute. It is assumed that the automatic guided vehicle 11 is running at a constant speed or stopped before acceleration / deceleration is performed. In the constant speed section where the automated guided vehicle 11 travels at a constant speed, regenerative power is not generated, and the assist power amount is “0” or less than that during acceleration.
 減速前処理は、無人搬送車11が減速区間に到達する前、例えば減速区間に到達する時点よりも所定時間(例えば10秒)前に開始される処理である。 The pre-deceleration process is a process that is started before the automatic guided vehicle 11 reaches the deceleration zone, for example, a predetermined time (for example, 10 seconds) before reaching the deceleration zone.
 図6に示すように、減速前処理では、車載コンピュータ21は、先ずステップS1010にて、荷重センサ38により無人搬送車11の積載重量を把握する。その後、車載コンピュータ21は、ステップS1020にて走行パターンを把握して、減速区間の距離(又は減速時間)や加速度等の走行パターンに関する情報を把握する。続くステップS1030では、車載コンピュータ21は、上記ステップS1010及びステップS1020にて把握された積載重量及び走行パターンに基づいて、減速区間において得られる回生電力量を推定する。その後、車載コンピュータ21は、ステップS1040に進み、減速区間におけるSOCの上昇量δSOCを推定する。そして、車載コンピュータ21は、ステップS1050では、SOC0-δSOC/2を目標値として設定する。なお、δSOC/2が基準値SOC0からのずれ量に対応する。 As shown in FIG. 6, in the pre-deceleration process, the in-vehicle computer 21 first grasps the loaded weight of the automatic guided vehicle 11 by the load sensor 38 in step S1010. Thereafter, the in-vehicle computer 21 grasps the traveling pattern in step S1020 and grasps information related to the traveling pattern such as the distance (or deceleration time) of the deceleration section and acceleration. In subsequent step S1030, the in-vehicle computer 21 estimates the amount of regenerative electric power obtained in the deceleration zone based on the loaded weight and travel pattern grasped in steps S1010 and S1020. Thereafter, the in-vehicle computer 21 proceeds to step S1040, and estimates the SOC increase amount δSOC in the deceleration zone. In step S1050, the in-vehicle computer 21 sets SOC0−δSOC / 2 as a target value. Note that δSOC / 2 corresponds to the amount of deviation from the reference value SOC0.
 ステップS1050の実行後、車載コンピュータ21は、ステップS1060に進み、無人搬送車11の減速区間の到達時点までにSOCが目標値となるようにSOCの調整を行う。具体的には、車載コンピュータ21は、SOCセンサ37の測定結果に基づいて現状のSOCを把握し、目標値との差を算出する。そして、算出された分だけ蓄電装置34の充放電を行う。車載コンピュータ21は、例えば現状のSOCが基準値SOC0近傍にある場合には、目標値となるまで蓄電装置34の放電を行う。この場合、無人搬送車11は蓄電装置34の電力により走行し、第1発電電動機32の発電量が少なくなる。すなわち、減速前処理におけるSOCの調整、即ち現状のSOCから目標値に向けてSOCを低下させる調整は、蓄電装置34の電力を用いて第2発電電動機36を駆動し、無人搬送車11を走行させて、蓄電装置34を放電させることによって行われる。 After execution of step S1050, the in-vehicle computer 21 proceeds to step S1060 and adjusts the SOC so that the SOC reaches the target value by the time when the automatic guided vehicle 11 reaches the deceleration zone. Specifically, the in-vehicle computer 21 grasps the current SOC based on the measurement result of the SOC sensor 37 and calculates the difference from the target value. Then, the power storage device 34 is charged / discharged by the calculated amount. For example, when the current SOC is in the vicinity of the reference value SOC0, the in-vehicle computer 21 discharges the power storage device 34 until the target value is reached. In this case, the automatic guided vehicle 11 is driven by the electric power of the power storage device 34, and the amount of power generated by the first generator motor 32 is reduced. That is, the adjustment of the SOC in the pre-deceleration process, that is, the adjustment to lower the SOC from the current SOC toward the target value, drives the second generator motor 36 using the electric power of the power storage device 34 and travels the automatic guided vehicle 11. The power storage device 34 is discharged.
 なお、ステップS1020の処理を行う車載コンピュータ21が走行パターン把握部に対応する。ステップS1030及びステップS1040の処理を行う車載コンピュータ21が推定部に対応する。ステップS1050の処理を行う車載コンピュータ21が算出部に対応する。ステップS1060の処理を行う車載コンピュータ21がSOC調整部に対応する。 Note that the in-vehicle computer 21 that performs the process of step S1020 corresponds to the travel pattern grasping unit. The in-vehicle computer 21 that performs the processes of steps S1030 and S1040 corresponds to the estimation unit. The in-vehicle computer 21 that performs the process of step S1050 corresponds to the calculation unit. The in-vehicle computer 21 that performs the process of step S1060 corresponds to the SOC adjustment unit.
 次に、加速前処理について説明する。加速前処理は、無人搬送車11が加速区間に到達する前、例えば加速区間に到達する時点よりも所定時間(例えば10秒)前に開始される処理である。 Next, pre-acceleration processing will be described. The pre-acceleration process is a process that is started before the automatic guided vehicle 11 reaches the acceleration section, for example, a predetermined time (for example, 10 seconds) before the time when it reaches the acceleration section.
 図7に示すように、加速前処理では、車載コンピュータ21は、先ずステップS201にて、荷重センサ38により無人搬送車11の積載重量を把握する。その後、車載コンピュータ21は、ステップS202にて走行パターンを把握して、加速区間の距離(又は加速時間)や加速度等の走行パターンに関する情報を把握する。続くステップS203では、車載コンピュータ21は、上記ステップS201及びステップS202にて把握された積載重量及び走行パターンに基づいて、加速区間において必要なアシスト電力量を推定する。その後、車載コンピュータ21は、ステップS204に進み、加速区間におけるSOCの減少量δSOCを推定する。 As shown in FIG. 7, in the pre-acceleration process, the in-vehicle computer 21 first grasps the loaded weight of the automatic guided vehicle 11 by the load sensor 38 in step S201. Thereafter, the in-vehicle computer 21 grasps the travel pattern in step S202 and grasps information related to the travel pattern such as the distance (or acceleration time) of the acceleration section and acceleration. In subsequent step S203, the in-vehicle computer 21 estimates the amount of assist power required in the acceleration section based on the loaded weight and travel pattern obtained in steps S201 and S202. Thereafter, the in-vehicle computer 21 proceeds to step S204 to estimate the SOC reduction amount δSOC in the acceleration section.
 その後、車載コンピュータ21は、ステップS205では、SOC0+δSOC/2を目標値として設定する。そして、車載コンピュータ21は、ステップS206にて、無人搬送車11の加速区間の到達時点までにSOCが目標値となるようにSOCの調整を行う。具体的には、車載コンピュータ21は、SOCセンサ37の測定結果に基づいて現状のSOCを把握し、目標値との差を算出する。そして、車載コンピュータ21は、算出された分だけ蓄電装置34の充放電を行う。車載コンピュータ21は、例えば現状のSOCが基準値SOC0近傍にある場合には、目標値となるまで蓄電装置34の充電を行う。ちなみに、蓄電装置34の充電は、第1発電電動機32によって発電された電力を用いて行われる。すなわち、加速前処理におけるSOCの調整、即ち現状のSOCから目標値に向けてSOCを上昇させる調整は、第1発電電動機32にて発電された電力を用いて蓄電装置34を充電することによって行われる。 Thereafter, in-vehicle computer 21 sets SOC0 + δSOC / 2 as a target value in step S205. In step S206, the in-vehicle computer 21 adjusts the SOC so that the SOC reaches the target value by the time when the automatic guided vehicle 11 reaches the acceleration section. Specifically, the in-vehicle computer 21 grasps the current SOC based on the measurement result of the SOC sensor 37 and calculates the difference from the target value. Then, the in-vehicle computer 21 charges and discharges the power storage device 34 by the calculated amount. For example, when the current SOC is in the vicinity of the reference value SOC0, the in-vehicle computer 21 charges the power storage device 34 until the target value is reached. Incidentally, the power storage device 34 is charged using the electric power generated by the first generator motor 32. That is, the adjustment of the SOC in the pre-acceleration process, that is, the adjustment to increase the SOC from the current SOC toward the target value is performed by charging the power storage device 34 using the electric power generated by the first generator motor 32. Is called.
 なお、ステップS202の処理を行う車載コンピュータ21が走行パターン把握部に対応する。ステップS203及びステップS204の処理を行う車載コンピュータ21が推定部に対応する。ステップS205の処理を行う車載コンピュータ21が算出部に対応する。ステップS206の処理を行う車載コンピュータ21がSOC調整部に対応する。 In addition, the vehicle-mounted computer 21 that performs the process of step S202 corresponds to the travel pattern grasping unit. The in-vehicle computer 21 that performs the processing of step S203 and step S204 corresponds to the estimation unit. The in-vehicle computer 21 that performs the process of step S205 corresponds to the calculation unit. The in-vehicle computer 21 that performs the process of step S206 corresponds to the SOC adjustment unit.
 次に、図8を用いて本実施形態の作用を説明する。図8(a)は、ガントリークレーンC1からラバータイヤクレーンC2までを走行する無人搬送車11の速度変動、即ち走行パターンを示すグラフであり、図8(b)は、比較対象として、事前に充放電を行わない場合のSOCの変動を示すグラフであり、図8(c)は事前に充放電を行う場合のSOCの変動を示すグラフである。 Next, the operation of this embodiment will be described with reference to FIG. FIG. 8A is a graph showing the speed fluctuation of the automatic guided vehicle 11 that travels from the gantry crane C1 to the rubber tire crane C2, that is, the travel pattern. FIG. It is a graph which shows the fluctuation | variation of SOC when not discharging, and FIG.8 (c) is a graph which shows the fluctuation | variation of SOC when charging / discharging in advance.
 図8(a)に示すように、時点t1~t12にて、無人搬送車11の走行パターンが、加速、定速及び減速のいずれかに切り換わる。これに対応して、図8(b)及び図8(c)に示すように、SOCが変動する。この場合、図8(b)及び図8(c)の破線に示すように、無人搬送車11にコンテナが積載されていない場合には、SOCは、基準値SOC0を含み且つ上限値及び下限値が設定された許容範囲内に収まっている。しかしながら、無人搬送車11にコンテナが積載されている場合には、加速区間Ta及び減速区間TdにおけるSOCの変動幅が広くなる。このため、図8(b)に示すように、SOCが許容範囲外となる場合がある。 As shown in FIG. 8 (a), the traveling pattern of the automatic guided vehicle 11 is switched to acceleration, constant speed, or deceleration from time t1 to time t12. Correspondingly, the SOC fluctuates as shown in FIGS. 8B and 8C. In this case, as shown by the broken lines in FIGS. 8B and 8C, when the automatic guided vehicle 11 is not loaded with a container, the SOC includes the reference value SOC0 and the upper limit value and the lower limit value. Is within the set tolerance. However, when a container is loaded on the automatic guided vehicle 11, the fluctuation range of the SOC in the acceleration zone Ta and the deceleration zone Td becomes wide. For this reason, as shown in FIG. 8B, the SOC may be out of the allowable range.
 これに対して、図8(c)に示すように、加速区間Taの前にて、蓄電装置34の事前充電を行う事前充電区間Tpcが設けられている場合、無人搬送車11が加速区間Taに到達する時点にて、蓄電装置34のSOCが基準値SOC0よりも高くなっている。このため、SOCは、加速区間Taにおいて下限値を下回ることなく許容範囲内に収まっている。 On the other hand, as shown in FIG. 8C, when the precharge section Tpc for precharging the power storage device 34 is provided before the acceleration section Ta, the automatic guided vehicle 11 is in the acceleration section Ta. At the point of time, the SOC of power storage device 34 is higher than reference value SOC0. For this reason, the SOC is within the allowable range without falling below the lower limit value in the acceleration section Ta.
 また、減速区間Tdの前にて、蓄電装置34の事前放電を行う事前放電区間Tpdが設けられている場合、無人搬送車11が減速区間Tdに到達する前にて蓄電装置34のSOCが基準値SOC0よりも低くなっている。このため、SOCは、減速区間Tdにおいて、上限値を超えることなく許容範囲内に収まっている。つまり、図8(b)及び図8(c)に示すように、無人搬送車11が特定区間に到達する前に蓄電装置34の充放電を行うことにより、基準値SOC0を中心とするSOCの変動幅が狭くなっている。 Further, when the pre-discharge section Tpd for performing the pre-discharge of the power storage device 34 is provided before the deceleration section Td, the SOC of the power storage apparatus 34 is the reference before the automatic guided vehicle 11 reaches the deceleration section Td. It is lower than the value SOC0. For this reason, the SOC is within the allowable range without exceeding the upper limit value in the deceleration zone Td. That is, as shown in FIG. 8B and FIG. 8C, by charging / discharging the power storage device 34 before the automatic guided vehicle 11 reaches the specific section, the SOC of the SOC centered on the reference value SOC0 is obtained. The fluctuation range is narrow.
 以上詳述した本実施形態によれば以下の優れた効果を奏する。 According to the embodiment described above in detail, the following excellent effects are obtained.
 (1)車載コンピュータ21は、積載重量及び走行パターンに基づいて、特定区間における蓄電装置34のSOCの変動量δSOCを推定し、その変動量δSOCに基づいて基準値SOC0からのずれ量を算出し、基準値SOC0からの上記ずれ量だけずれた目標値を設定する。そして、車載コンピュータ21は、無人搬送車11が特定区間に到達する前に、SOCが目標値に近づくように蓄電装置34のSOCを調整する。具体的には、車載コンピュータ21は、特定区間が加速区間Taである場合には、積載重量及び走行パターンに基づいて加速区間TaにおけるSOCの減少量δSOCを推定し、SOC0+δSOC/2を目標値として設定する。一方、車載コンピュータ21は、特定区間が減速区間Tdである場合には、積載重量及び走行パターンに基づいて減速区間TdにおけるSOCの上昇量δSOCを推定し、SOC0-δSOC/2を目標値として設定する。これにより、基準値SOC0からのSOCの変動幅を狭くすることができる。よって、蓄電装置34の劣化を抑制することができる。また、狭い変動幅に対応させて電池容量が小さい蓄電装置34を用いることができることを通じて、蓄電装置34の小型化、コスト低減及び環境負荷低減を図ることができる。そして、回生電力を好適に回収することができ、それを通じて無人搬送車11の燃費の向上を図ることができる。 (1) The in-vehicle computer 21 estimates the SOC fluctuation amount δSOC of the power storage device 34 in the specific section based on the loaded weight and the running pattern, and calculates the deviation amount from the reference value SOC0 based on the fluctuation amount δSOC. Then, a target value shifted by the shift amount from the reference value SOC0 is set. The in-vehicle computer 21 adjusts the SOC of the power storage device 34 so that the SOC approaches the target value before the automatic guided vehicle 11 reaches the specific section. Specifically, when the specific section is the acceleration section Ta, the in-vehicle computer 21 estimates the SOC reduction amount δSOC in the acceleration section Ta based on the loaded weight and the running pattern, and sets SOC0 + δSOC / 2 as the target value. Set. On the other hand, when the specific section is the deceleration section Td, the in-vehicle computer 21 estimates the SOC increase amount δSOC in the deceleration section Td based on the loaded weight and the running pattern, and sets SOC0−δSOC / 2 as the target value. To do. Thereby, the fluctuation range of the SOC from the reference value SOC0 can be narrowed. Therefore, deterioration of the power storage device 34 can be suppressed. Further, through the use of the power storage device 34 having a small battery capacity corresponding to a narrow fluctuation range, the power storage device 34 can be reduced in size, cost, and environmental load. And regenerative electric power can be collect | recovered suitably, and the improvement of the fuel consumption of the automatic guided vehicle 11 can be aimed at through it.
 (2)特に、無人搬送車11はコンテナ等の荷を積載する関係上、積載重量の変動幅が自動車等の通常の車両と比較して広い。このため、無人搬送車11に搭載される蓄電装置34のSOCの変動幅は広くなり易い。また、無人搬送車11は、通常の車両と異なり、走行パターンが予め定められている。 (2) In particular, the automatic guided vehicle 11 has a wider fluctuation range of the loaded weight than that of a normal vehicle such as an automobile because of loading a container or the like. For this reason, the fluctuation range of the SOC of the power storage device 34 mounted on the automatic guided vehicle 11 tends to be widened. In addition, the automatic guided vehicle 11 is different from a normal vehicle in that a traveling pattern is determined in advance.
 この点、本実施形態によれば、上記に示した無人搬送車11の特有の特性に着目して、蓄電装置34のSOCの変動量δSOCを推定する際に積載重量及び走行パターンを考慮する構成を採用することにより、正確な変動量δSOCを推定することができる。これにより、蓄電装置34のSOCの制御を、より好適に行うことができる。 In this regard, according to the present embodiment, focusing on the characteristic characteristics of the automatic guided vehicle 11 described above, a configuration in which the load weight and the traveling pattern are taken into account when estimating the SOC variation δSOC of the power storage device 34. By adopting, an accurate fluctuation amount δSOC can be estimated. Thereby, the SOC of power storage device 34 can be controlled more suitably.
 (3)車載コンピュータ21は、目標値を決定する際、基準値SOC0からのずれ量として、変動量δSOCの1/2を設定する。これにより、無人搬送車11が特定区間を通過する前後で、即ちSOCが変動する前後で、SOCが基準値SOC0を中心として対称となるように変動する。よって、基準値SOC0からの変動幅を、より狭くすることができる。 (3) When determining the target value, the in-vehicle computer 21 sets ½ of the fluctuation amount δSOC as the deviation amount from the reference value SOC0. As a result, before and after the automated guided vehicle 11 passes through the specific section, that is, before and after the SOC changes, the SOC changes so as to be symmetric with respect to the reference value SOC0. Therefore, the fluctuation range from the reference value SOC0 can be made narrower.
 なお、上記第1及び第2の実施形態は以下のように変更してもよい。 Note that the first and second embodiments may be modified as follows.
 ○ 第1の実施形態において、蓄電装置34の内部抵抗が温度に応じて変動することに着目し、蓄電装置34の温度を検出する温度センサを設け、その温度センサの検出結果から内部抵抗を補正してもよい。 ○ In the first embodiment, paying attention to the fact that the internal resistance of the power storage device fluctuates according to the temperature, a temperature sensor for detecting the temperature of the power storage device 34 is provided, and the internal resistance is corrected from the detection result of the temperature sensor. May be.
 ○ 第1及び第2の実施形態において、運行管理コンピュータ22は、走行経路Rの傾斜に関する傾斜情報を所定の記憶領域に記憶してもよい。そして、運行管理コンピュータ22は、走行パターンに加えて、走行経路Rの傾斜情報を車載コンピュータ21に送信してもよい。 In the first and second embodiments, the operation management computer 22 may store inclination information regarding the inclination of the travel route R in a predetermined storage area. The operation management computer 22 may transmit the inclination information of the travel route R to the in-vehicle computer 21 in addition to the travel pattern.
 この場合、第1の実施形態では、車載コンピュータ21は、ステップS111の処理を実行する前にて、減速区間Td又は加速区間Taにおける傾斜を把握する。そして、車載コンピュータ21は、ステップS111にて、積載重量、走行パターン及び傾斜に基づいて回生電力量又はアシスト電力量を推定してもよい。これにより、回生電力量又はアシスト電力量の推定精度の更なる向上を図ることができる。 In this case, in the first embodiment, the in-vehicle computer 21 grasps the inclination in the deceleration zone Td or the acceleration zone Ta before executing the process of step S111. Then, the in-vehicle computer 21 may estimate the regenerative power amount or the assist power amount based on the loaded weight, the running pattern, and the inclination in step S111. Thereby, the further improvement of the estimation precision of regenerative electric energy or assist electric energy can be aimed at.
 また、上記変更例の場合、第2の実施形態では、図9に示すように、車載コンピュータ21は、ステップS1010とステップS1030の間のステップS3020にて、減速区間Tdにおける走行パターン及び傾斜を把握する。そして、車載コンピュータ21は、ステップS1030,S1040にて、積載重量、走行パターン及び傾斜に基づいてSOCの変動量δSOCを推定してもよい。これにより、変動量δSOCの推定精度の更なる向上を図ることができる。上記ステップS3020の処理が傾斜把握部に対応する。なお、加速前処理においても、傾斜を把握し、その把握結果に基づいて変動量δSOCを推定してもよい。 In the case of the above modification, in the second embodiment, as shown in FIG. 9, the in-vehicle computer 21 grasps the traveling pattern and the inclination in the deceleration zone Td in step S3020 between step S1010 and step S1030. To do. The in-vehicle computer 21 may estimate the SOC fluctuation amount δSOC based on the loaded weight, the running pattern, and the inclination in steps S1030 and S1040. As a result, it is possible to further improve the estimation accuracy of the fluctuation amount δSOC. The processing in step S3020 corresponds to the inclination grasping unit. In the pre-acceleration processing, the inclination may be grasped, and the fluctuation amount δSOC may be estimated based on the grasp result.
 ○ 第1及び第2の実施形態では、特定区間として加速区間Ta及び減速区間Tdが設定されていたが、これに限られず、要は蓄電装置34の充電が行われる区間及び蓄電装置34の放電が行われる区間が特定区間として設定されていればよい。例えば、蓄電装置34の充電が行われる区間として下り傾斜している下り区間が設定されていてもよく、蓄電装置34の放電が行われる区間として上り傾斜している上り区間が設定されていてもよい。 ○ In the first and second embodiments, the acceleration section Ta and the deceleration section Td are set as specific sections. However, the present invention is not limited to this, and in short, the section in which the power storage device 34 is charged and the discharge of the power storage apparatus 34 It is only necessary that the section in which is performed is set as the specific section. For example, a downward section that is inclined downward may be set as a section where the power storage device 34 is charged, or an upward section that is inclined upward may be set as a section where the power storage device 34 is discharged. Good.
 ○ 第1の実施形態では、内部抵抗を導出する際、エンジン31の回転速度を制御することにより、蓄電装置34の電流を変動させるが、これに限られず、例えば、別途可変抵抗を設け、その可変抵抗に接続した状態で放電を行いつつ、可変抵抗の抵抗を可変させてもよい。要は、I-Vプロットを作成することができれば、その具体的な構成は任意である。 ○ In the first embodiment, when deriving the internal resistance, the current of the power storage device 34 is varied by controlling the rotational speed of the engine 31. However, the present invention is not limited to this. The resistance of the variable resistor may be varied while discharging while connected to the variable resistor. In short, as long as an IV plot can be created, its specific configuration is arbitrary.
 ○ 第1の実施形態において、ステップS113では、回生電力量又はアシスト電力量と開放電圧とに基づいて、回生電流又はアシスト電流を算出するが、これに限られず、回生電力量又はアシスト電力量と内部抵抗とに基づいて、回生電流又はアシスト電流を算出してもよい。 In the first embodiment, in step S113, the regenerative current or assist current is calculated based on the regenerative power amount or assist power amount and the open circuit voltage. However, the present invention is not limited to this, and the regenerative power amount or assist power amount is calculated. The regenerative current or the assist current may be calculated based on the internal resistance.
 ○ 第1の実施形態では、走行を開始する前に内部抵抗を導出するが、これに限られず、走行中に内部抵抗を導出してもよい。但し、内部抵抗の導出精度を考慮すれば、走行前に導出する方が好ましい。 ○ In the first embodiment, the internal resistance is derived before the start of traveling. However, the present invention is not limited to this, and the internal resistance may be derived during traveling. However, in consideration of the accuracy of deriving the internal resistance, it is preferable to derive it before traveling.
 ○ 第1の実施形態において、内部抵抗の導出処理の実行タイミングは、無人搬送車11が始動する場合に限られず、任意である。例えば、前回の無人搬送車11の稼働が終了してから予め定められた時間が経過した場合に行う構成としてもよいし、予め定められた時刻に定期的に行う構成としてもよい。 In the first embodiment, the execution timing of the internal resistance derivation process is not limited to when the automatic guided vehicle 11 starts, but is arbitrary. For example, a configuration in which a predetermined time has elapsed since the last operation of the automatic guided vehicle 11 is completed, or a configuration in which the operation is periodically performed at a predetermined time may be employed.
 ○ 第2の実施形態において、車載コンピュータ21は、無人搬送車11が特定区間を通過した後に加減速後処理を実行する構成であってもよい。この場合、図10に示すように、加減速後処理においては、先ずステップS401にて、特定区間に到達する前に推定されたSOCの変動量δSOCと、SOCセンサ37にて測定されるものであって、特定区間における蓄電装置34のSOCの実際の変動量δSOCとを比較する比較処理を実行する。そして、ステップS402にて、両者が一致しているか否かを判定する。両者が一致している場合には、そのまま本加減速後処理を終了し、両者が異なっている場合には、ステップS403にて、上記比較結果に基づいて、変動量δSOCの推定の際に用いられる補正値を設定し、本加減速後処理を終了する。そして、次の減速前処理のステップS1030,S1040又は加速前処理におけるステップS203,S204では、上記補正値を用いて変動量δSOCを推定する。 In the second embodiment, the in-vehicle computer 21 may be configured to execute post-acceleration / deceleration processing after the automated guided vehicle 11 passes a specific section. In this case, as shown in FIG. 10, in the post-acceleration / deceleration processing, first, in step S401, the SOC variation δSOC estimated before reaching the specific section is measured by the SOC sensor 37. Thus, a comparison process for comparing the actual fluctuation amount δSOC of the SOC of the power storage device 34 in the specific section is executed. In step S402, it is determined whether or not the two match. If they match, the post-acceleration / deceleration processing is terminated as it is. If they are different, in step S403, they are used for estimating the fluctuation amount δSOC based on the comparison result. Is set, and the post-acceleration / deceleration processing is terminated. Then, in steps S1030 and S1040 of the next pre-deceleration process or steps S203 and S204 of the pre-acceleration process, the fluctuation amount δSOC is estimated using the correction value.
 かかる処理によれば、推定された変動量δSOCが正しいか否かの判断を行うことができる。また、両者が異なっている場合には、補正値が設定されることにより、次回の変動量δSOCの推定において両者の差を小さくすることができ、推定精度の更なる向上を図ることができる。車載コンピュータ21にて実行されるステップS401の比較処理が比較部に対応する。 According to such processing, it is possible to determine whether or not the estimated fluctuation amount δSOC is correct. Further, when the two are different, by setting a correction value, the difference between the two can be reduced in the next estimation of the fluctuation amount δSOC, and the estimation accuracy can be further improved. The comparison process in step S401 executed by the in-vehicle computer 21 corresponds to the comparison unit.
 なお、上記構成において、両者の差が許容範囲外である場合には、無人搬送車11等に何らかの異常が発生していると判断し、異常報知を行う構成としてもよい。 In the above configuration, when the difference between the two is outside the allowable range, it may be determined that some kind of abnormality has occurred in the automatic guided vehicle 11 and the like, and the abnormality notification may be performed.
 ○ 第2の実施形態では、上限値から基準値SOC0の差と、基準値SOC0から下限値の差とは同一に設定されているが、これに限られず、例えば両者を異ならせてもよい。 In the second embodiment, the difference between the upper limit value and the reference value SOC0 and the difference between the reference value SOC0 and the lower limit value are set to be the same. However, the present invention is not limited to this, and for example, both may be different.
 ○ 第2の実施形態では、ずれ量として、推定された変動量δSOCの1/2を採用したが、これに限られず、例えば1/2以外であってもよい。例えば、基準値SOC0と下限値との差が基準値SOC0と上限値との差よりも小さい状況にあっては、加速前処理において、推定された変動量δSOCの1/2よりも大きい値をずれ量として算出してもよいし、減速前処理において、推定された変動量δSOCの1/2よりも小さい値をずれ量として算出してもよい。同様に、基準値SOC0と下限値との差が基準値SOC0と上限値との差よりも大きい状況にあっては、加速前処理において、推定された変動量δSOCの1/2よりも小さい値をずれ量として算出してもよいし、減速前処理において、推定された変動量δSOCの1/2よりも大きい値をずれ量として算出してもよい。 In the second embodiment, 1/2 of the estimated fluctuation amount δSOC is adopted as the deviation amount, but is not limited thereto, and may be other than 1/2, for example. For example, in a situation where the difference between the reference value SOC0 and the lower limit value is smaller than the difference between the reference value SOC0 and the upper limit value, a value larger than ½ of the estimated variation δSOC is set in the pre-acceleration process. The amount of deviation may be calculated, or in the pre-deceleration process, a value smaller than ½ of the estimated fluctuation amount δSOC may be calculated as the amount of deviation. Similarly, in a situation where the difference between the reference value SOC0 and the lower limit value is larger than the difference between the reference value SOC0 and the upper limit value, a value smaller than ½ of the estimated fluctuation amount δSOC in the pre-acceleration process. May be calculated as the deviation amount, or a value larger than ½ of the estimated fluctuation amount δSOC may be calculated as the deviation amount in the pre-deceleration process.
 つまり、基準値SOC0及び下限値の差と、基準値SOC0及び上限値の差とが異なる場合には、基準値SOC0からのSOCの変動幅が、上記差が小さい側よりも上記差が大きい側にて広くなるように、事前のSOCの目標値を設定してもよい。 That is, when the difference between the reference value SOC0 and the lower limit value is different from the difference between the reference value SOC0 and the upper limit value, the fluctuation range of the SOC from the reference value SOC0 is larger than the smaller difference side. The target value of the prior SOC may be set so as to be wide at.
 ○ 第2の実施形態において、事前充電を行う時間と、事前放電を行う時間とを異ならせてもよい。例えば事前充電を行う時間を、事前放電を行う時間よりも長くしてもよい。この場合、単位時間当たりのSOCの上昇量を少なくすることができるため、燃費の低下を抑制することができる。 In the second embodiment, the time for performing pre-charging and the time for performing pre-discharging may be different. For example, the time for performing the precharge may be set longer than the time for performing the predischarge. In this case, since the amount of increase in SOC per unit time can be reduced, a reduction in fuel consumption can be suppressed.
 ○ 第1及び第2の実施形態では、荷重センサ38を用いて積載重量を測定するが、積載重量を把握する構成は任意である。例えば、加速時に要した電力量から積載重量を推定してもよいし、運行管理コンピュータ22から無線通信で取得してもよいし、ガントリークレーンC1又はラバータイヤクレーンC2にて測定された測定結果を取得してもよい。 In the first and second embodiments, the load weight is measured using the load sensor 38, but the configuration for grasping the load weight is arbitrary. For example, the load weight may be estimated from the amount of power required during acceleration, may be acquired from the operation management computer 22 by wireless communication, or the measurement result measured by the gantry crane C1 or the rubber tire crane C2 is used. You may get it.
 ○ 第1及び第2の実施形態では、蓄電装置34は、ニッケル水素電池やリチウムイオン二次電池であったが、これに限られず、例えば電気二重層キャパシタ等の蓄電装置であってもよい。 In the first and second embodiments, the power storage device 34 is a nickel metal hydride battery or a lithium ion secondary battery, but is not limited thereto, and may be a power storage device such as an electric double layer capacitor.
 ○ 第1及び第2の実施形態において、無人搬送車11の停車中は、無人搬送車11は、エンジン31を停止し、蓄電装置34の電力のみを使用して待機してもよい。 In the first and second embodiments, while the automatic guided vehicle 11 is stopped, the automatic guided vehicle 11 may stop using the engine 31 and stand by using only the electric power of the power storage device 34.
 ○ 第1及び第2の実施形態において、無人搬送車11の前方の信号が赤信号である場合、又は前方の無人搬送車11が減速している場合には、事前に蓄電装置34の放電を行ってもよい。 ○ In the first and second embodiments, when the front signal of the automated guided vehicle 11 is a red signal, or when the forward guided vehicle 11 is decelerated, the power storage device 34 is discharged in advance. You may go.
 ○ 第1及び第2の実施形態では、車載コンピュータ21が一連の制御を行うが、これに限られず、複数の制御部が各種制御を行ってもよい。つまり、エンジン31及び各発電電動機32,36の制御主体は任意である。 In the first and second embodiments, the in-vehicle computer 21 performs a series of controls, but is not limited to this, and a plurality of control units may perform various controls. That is, the control subject of the engine 31 and the generator motors 32 and 36 is arbitrary.
 ○ 第1及び第2の実施形態では、運行管理コンピュータ22が各クレーンC1,C2の駆動を制御するが、これに限られず、別の管理コンピュータがこれらの駆動を制御してもよい。 In the first and second embodiments, the operation management computer 22 controls driving of the cranes C1 and C2, but is not limited to this, and another management computer may control these driving.
 ○ 第1及び第2の実施形態では、第2発電電動機36は2つ設けられていたが、これに限られず、3つ以上であってもよいし、1つであってもよい。 In the first and second embodiments, two second generator motors 36 are provided. However, the present invention is not limited to this, and there may be three or more or one.
 ○ 第1の実施形態において、加速区間の前の定速区間において現状の電圧が目標電圧よりも高い場合に、目標電圧に近づくように蓄電装置34の放電を行ってもよいし、減速区間の前の定速区間において現状の電圧が目標電圧よりも低い場合には、目標電圧に近づくように蓄電装置34の充電を行ってもよい。 In the first embodiment, when the current voltage is higher than the target voltage in the constant speed section before the acceleration section, the power storage device 34 may be discharged so as to approach the target voltage, When the current voltage is lower than the target voltage in the previous constant speed section, the power storage device 34 may be charged so as to approach the target voltage.
 ○ 第1及び第2の実施形態では、無人搬送車11は、エンジン31の駆動力によって発電可能な第1発電電動機32と、無人搬送車11を走行させるとともに回生電力を発生可能な第2発電電動機36とを区別して備えている所謂シリーズ方式のハイブリッド車両であったが、これに限られない。例えば、両者の機能を1つの発電電動機にて実行する所謂パラレル方式等の他の方式のハイブリッド車両であってもよい。要は、無人搬送車11は、エンジン31、エンジン31の駆動力によって発電可能なものであって無人搬送車11を走行させるとともに回生電力を発生可能な発電電動部、及び蓄電装置34を備えているものであれば、その具体的な構成については任意である。 ○ In the first and second embodiments, the automatic guided vehicle 11 includes a first generator motor 32 that can generate electric power by the driving force of the engine 31 and a second electric power generation that can run the automatic guided vehicle 11 and generate regenerative power. Although it is a so-called series-type hybrid vehicle that is distinguished from the electric motor 36, the present invention is not limited to this. For example, it may be a hybrid vehicle of another method such as a so-called parallel method in which both functions are executed by one generator motor. In short, the automatic guided vehicle 11 includes an engine 31, a power generation motor unit that can generate electric power by the driving force of the engine 31, can run the automatic guided vehicle 11, and can generate regenerative power, and a power storage device 34. If it is, the specific configuration is arbitrary.

Claims (13)

  1.  無人搬送車の駆動システムであって、
     エンジンと、
     前記エンジンの駆動力で発電可能なものであって前記無人搬送車の走行に用いられる発電電動部と、
     前記発電電動部に電力を供給可能であるとともに前記発電電動部にて発生し得る回生電力により充電可能な蓄電装置と、
     前記無人搬送車の積載重量を把握する重量把握部と、
     前記無人搬送車の走行パターンを把握する走行パターン把握部と、
     前記積載重量及び前記走行パターンに基づいて、予め定められた特定区間における前記蓄電装置の電力変動量を推定する推定部と、
     前記推定部により推定された前記電力変動量と前記蓄電装置の内部抵抗とに基づいて、前記蓄電装置の電圧の変動量を算出する電圧変動量算出部と、
     前記電圧変動量算出部の算出結果に基づいて、前記無人搬送車が前記特定区間に到達する前に前記蓄電装置の電圧を調整する電圧調整部と
    を備えている無人搬送車の駆動システム。
    A drive system for an automated guided vehicle,
    Engine,
    A generator motor that is capable of generating electric power with the driving force of the engine and is used for running the automatic guided vehicle;
    A power storage device capable of supplying power to the generator motor and being rechargeable by regenerative power that can be generated by the generator motor,
    A weight grasping unit for grasping a loading weight of the automatic guided vehicle;
    A traveling pattern grasping unit for grasping a traveling pattern of the automatic guided vehicle;
    An estimation unit configured to estimate a power fluctuation amount of the power storage device in a predetermined specific section based on the loaded weight and the traveling pattern;
    A voltage fluctuation amount calculation unit that calculates a voltage fluctuation amount of the power storage device based on the power fluctuation amount estimated by the estimation unit and an internal resistance of the power storage device;
    A drive system for an automatic guided vehicle comprising: a voltage adjusting unit that adjusts a voltage of the power storage device before the automatic guided vehicle reaches the specific section based on a calculation result of the voltage fluctuation amount calculating unit.
  2.  前記無人搬送車の始動時に、前記蓄電装置の内部抵抗を導出する内部抵抗導出部を備えている、請求項1に記載の無人搬送車の駆動システム。 The automatic guided vehicle drive system according to claim 1, further comprising an internal resistance deriving unit that derives an internal resistance of the power storage device when the automatic guided vehicle is started.
  3.  前記発電電動部は、前記蓄電装置の電力を用いて前記エンジンを駆動可能に構成されており、
     前記内部抵抗導出部は、前記エンジンの回転速度が調整されることにより生じる前記蓄電装置の電流の変動に対する前記蓄電装置の電圧の変動を測定し、その測定結果から前記蓄電装置の内部抵抗を導出する、請求項2に記載の無人搬送車の駆動システム。
    The generator motor unit is configured to be able to drive the engine using the power of the power storage device,
    The internal resistance deriving unit measures a change in the voltage of the power storage device with respect to a change in the current of the power storage device caused by adjusting the rotation speed of the engine, and derives the internal resistance of the power storage device from the measurement result The drive system for an automatic guided vehicle according to claim 2.
  4.  前記電圧調整部は、前記無人搬送車が前記特定区間に到達する前に、前記蓄電装置の電圧の許容範囲及び前記電圧変動量算出部の算出結果に基づいて導出される目標電圧に近づくように、前記蓄電装置の電圧を調整する、請求項1~3のうちいずれか一項に記載の無人搬送車の駆動システム。 The voltage adjustment unit approaches a target voltage derived based on a voltage allowable range of the power storage device and a calculation result of the voltage fluctuation amount calculation unit before the automatic guided vehicle reaches the specific section. The drive system for an automatic guided vehicle according to any one of claims 1 to 3, wherein the voltage of the power storage device is adjusted.
  5.  前記電圧調整部は、前記蓄電装置の充放電を制御することにより、前記蓄電装置の電圧を調整する、請求項1~4のうちいずれか一項に記載の無人搬送車の駆動システム。 The drive system for an automatic guided vehicle according to any one of claims 1 to 4, wherein the voltage adjusting unit adjusts the voltage of the power storage device by controlling charging and discharging of the power storage device.
  6.  無人搬送車の駆動システムであって、
     エンジンと、
     前記エンジンの駆動力で発電可能なものであって前記無人搬送車の走行に用いられる発電電動部と、
     前記発電電動部に電力を供給可能であるとともに前記発電電動部にて発生し得る回生電力により充電可能な蓄電装置と、
     前記蓄電装置のSOCを把握するSOC把握部と、
     前記無人搬送車の積載重量を把握する重量把握部と、
     前記無人搬送車の走行パターンを把握する走行パターン把握部と、
     前記積載重量及び前記走行パターンに基づいて、予め定められた特定区間における前記蓄電装置のSOCの変動量を推定する推定部と、
     前記推定部により推定された前記変動量に基づいて、前記蓄電装置のSOCにおける予め定められた基準値からのずれ量を算出する算出部と、
     前記無人搬送車が前記特定区間に到達する前に、前記蓄電装置のSOCが前記基準値から前記ずれ量だけずれた目標値に近づくよう前記SOC把握部の把握結果に基づいて前記蓄電装置のSOCを調整するSOC調整部と、
    を備えている無人搬送車の駆動システム。
    A drive system for an automated guided vehicle,
    Engine,
    A generator motor that is capable of generating electric power with the driving force of the engine and is used for running the automatic guided vehicle;
    A power storage device capable of supplying power to the generator motor and being rechargeable by regenerative power that can be generated by the generator motor,
    An SOC grasping unit for grasping the SOC of the power storage device;
    A weight grasping unit for grasping a loading weight of the automatic guided vehicle;
    A traveling pattern grasping unit for grasping a traveling pattern of the automatic guided vehicle;
    An estimation unit for estimating the SOC variation amount of the power storage device in a predetermined specific section based on the loaded weight and the traveling pattern;
    A calculation unit that calculates a deviation amount from a predetermined reference value in the SOC of the power storage device based on the variation amount estimated by the estimation unit;
    Before the automatic guided vehicle reaches the specific section, the SOC of the power storage device is determined based on the grasping result of the SOC grasping unit so that the SOC of the power storage device approaches the target value shifted from the reference value by the shift amount. An SOC adjustment unit for adjusting
    A drive system for automated guided vehicles.
  7.  前記算出部は、前記ずれ量として前記変動量の1/2を算出する、請求項6に記載の無人搬送車の駆動システム。 The drive system of the automatic guided vehicle according to claim 6, wherein the calculation unit calculates 1/2 of the fluctuation amount as the deviation amount.
  8.  前記無人搬送車の走行経路の傾斜を把握する傾斜把握部を更に備え、
     前記推定部は、前記積載重量、前記走行パターン及び前記傾斜に基づいて、前記特定区間における前記蓄電装置のSOCの変動量を推定する、請求項6又は請求項7に記載の無人搬送車の駆動システム。
    Further comprising an inclination grasping portion for grasping the inclination of the traveling route of the automatic guided vehicle;
    The driving of the automatic guided vehicle according to claim 6 or 7, wherein the estimation unit estimates a variation amount of SOC of the power storage device in the specific section based on the loaded weight, the traveling pattern, and the inclination. system.
  9.  前記推定部による推定結果と、前記SOC把握部により把握された前記特定区間における前記蓄電装置のSOCの変動量とを比較する比較部を更に備えている請求項7~8のうちいずれか一項に記載の無人搬送車の駆動システム。 The comparison unit according to any one of claims 7 to 8, further comprising a comparison unit that compares the estimation result by the estimation unit and the amount of change in the SOC of the power storage device in the specific section ascertained by the SOC grasping unit. The drive system for automatic guided vehicles described in 1.
  10.  前記目標値は、前記特定区間が前記蓄電装置の充電が行われる区間である場合には前記基準値よりも低く設定され、前記特定区間が前記蓄電装置の放電が行われる区間である場合には前記基準値よりも高く設定される、請求項7~9のうちいずれか一項に記載の無人搬送車の駆動システム。 The target value is set lower than the reference value when the specific section is a section where the power storage device is charged, and when the specific section is a section where the power storage device is discharged. The automatic guided vehicle drive system according to any one of claims 7 to 9, wherein the drive system is set higher than the reference value.
  11.  前記目標値は、前記特定区間が前記蓄電装置の充電が行われる区間である場合、前記特定区間の通過中に前記蓄電装置のSOCが許容範囲の上限値を超えないように前記基準値よりも低く設定され、前記特定区間が前記蓄電装置の放電が行われる区間である場合には前記特定区間の通過中に前記蓄電装置のSOCが許容範囲の下限値を下回らないように前記基準値よりも高く設定される、請求項10に記載の無人搬送車の駆動システム。 When the specific section is a section in which the power storage device is charged, the target value is higher than the reference value so that the SOC of the power storage apparatus does not exceed the upper limit of the allowable range during the passage of the specific section. If the specific section is a section where the power storage device is discharged, the SOC of the power storage device does not fall below the lower limit of the allowable range during the passage of the specific section. The drive system of the automatic guided vehicle according to claim 10, which is set high.
  12.  前記発電電動部は、前記エンジンの駆動力で発電可能な第1発電電動機と、走行に用いられるものであって回生電力を発生可能な第2発電電動機とを含む、請求項1~11のうちいずれか一項に記載の無人搬送車の駆動システム。
     無人搬送車の駆動システムであって、
    The generator motor unit includes a first generator motor that can generate power with the driving force of the engine, and a second generator motor that is used for traveling and can generate regenerative power. The drive system of the automatic guided vehicle as described in any one of Claims.
    A drive system for an automated guided vehicle,
  13.  無人搬送車の駆動システムであって、
     エンジンと、
     前記エンジンの駆動力で発電可能なものであって前記無人搬送車の走行に用いられる発電電動部と、
     前記発電電動部に電力を供給可能であるとともに前記発電電動部にて発生し得る回生電力により充電可能な蓄電装置と、
     前記無人搬送車の積載重量を把握する重量把握部と、
     前記無人搬送車の走行パターンを把握する走行パターン把握部と、
     前記積載重量及び前記走行パターンに基づいて、予め定められた特定区間における前記蓄電装置の状態を示す特性値の変動量を推定する推定部と、
     少なくとも前記変動量に基づいて、前記蓄電装置の前記特性値に対応する値の変動量又は前記特性値における予め定められた基準値からのずれ量を算出する算出部と、
     前記変動量算出部の算出結果に基づいて前記無人搬送車が前記特定区間に到達する前に、前記蓄電装置の前記特性値に対応する値を調整するか又は前記蓄電装置の前記特性値が前記基準値から前記ずれ量だけずれた目標値に近づくように前記蓄電装置の前記特性値を調整する調整部と
    を備えている無人搬送車の駆動システム。
    A drive system for an automated guided vehicle,
    Engine,
    A generator motor that is capable of generating electric power with the driving force of the engine and is used for running the automatic guided vehicle;
    A power storage device capable of supplying power to the generator motor and being rechargeable by regenerative power that can be generated by the generator motor,
    A weight grasping unit for grasping a loading weight of the automatic guided vehicle;
    A traveling pattern grasping unit for grasping a traveling pattern of the automatic guided vehicle;
    An estimation unit that estimates a variation amount of a characteristic value indicating a state of the power storage device in a predetermined specific section based on the loaded weight and the traveling pattern;
    A calculation unit that calculates a fluctuation amount of a value corresponding to the characteristic value of the power storage device or a deviation amount from a predetermined reference value in the characteristic value based on at least the fluctuation amount;
    Before the automatic guided vehicle reaches the specific section based on the calculation result of the fluctuation amount calculation unit, the value corresponding to the characteristic value of the power storage device is adjusted, or the characteristic value of the power storage device is An automatic guided vehicle drive system comprising: an adjustment unit that adjusts the characteristic value of the power storage device so as to approach a target value that is shifted from the reference value by the shift amount.
PCT/JP2013/084301 2012-12-27 2013-12-20 Drive system for automated guided vehicle WO2014103948A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-286307 2012-12-27
JP2012286307A JP6116089B2 (en) 2012-12-27 2012-12-27 Driving system for automated guided vehicles
JP2013-001102 2013-01-08
JP2013001102A JP5962516B2 (en) 2013-01-08 2013-01-08 Driving system for automated guided vehicles

Publications (1)

Publication Number Publication Date
WO2014103948A1 true WO2014103948A1 (en) 2014-07-03

Family

ID=51021032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084301 WO2014103948A1 (en) 2012-12-27 2013-12-20 Drive system for automated guided vehicle

Country Status (1)

Country Link
WO (1) WO2014103948A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025723A (en) * 2014-07-18 2016-02-08 株式会社豊田自動織機 Conveyance system of unmanned carrier
US11442447B2 (en) * 2016-10-28 2022-09-13 Toyota Jidosha Kabushiki Kaisha Vehicle control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355402A (en) * 1999-06-16 2000-12-26 Nippon Yusoki Co Ltd Control device and method for automatic guided vehicle
JP2003111209A (en) * 2001-10-03 2003-04-11 Nissan Motor Co Ltd Control system for hybrid vehicle
JP2004153938A (en) * 2002-10-31 2004-05-27 Nippon Sharyo Seizo Kaisha Ltd Large-sized transport vehicle
JP2004227995A (en) * 2003-01-24 2004-08-12 Nissan Motor Co Ltd Charge/discharge control device for hybrid vehicle
JP2006049198A (en) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd Capacity adjusting device of battery pack
JP2010052493A (en) * 2008-08-26 2010-03-11 Toyota Industries Corp Hybrid vehicle
JP2013531959A (en) * 2010-05-18 2013-08-08 ゴットヴァルト ポート テクノロジー ゲーエムベーハー Method for energy-optimized operation of a floorbound large transport vehicle that can be run with rubber tires and has an electric travel drive

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355402A (en) * 1999-06-16 2000-12-26 Nippon Yusoki Co Ltd Control device and method for automatic guided vehicle
JP2003111209A (en) * 2001-10-03 2003-04-11 Nissan Motor Co Ltd Control system for hybrid vehicle
JP2004153938A (en) * 2002-10-31 2004-05-27 Nippon Sharyo Seizo Kaisha Ltd Large-sized transport vehicle
JP2004227995A (en) * 2003-01-24 2004-08-12 Nissan Motor Co Ltd Charge/discharge control device for hybrid vehicle
JP2006049198A (en) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd Capacity adjusting device of battery pack
JP2010052493A (en) * 2008-08-26 2010-03-11 Toyota Industries Corp Hybrid vehicle
JP2013531959A (en) * 2010-05-18 2013-08-08 ゴットヴァルト ポート テクノロジー ゲーエムベーハー Method for energy-optimized operation of a floorbound large transport vehicle that can be run with rubber tires and has an electric travel drive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025723A (en) * 2014-07-18 2016-02-08 株式会社豊田自動織機 Conveyance system of unmanned carrier
US11442447B2 (en) * 2016-10-28 2022-09-13 Toyota Jidosha Kabushiki Kaisha Vehicle control system

Similar Documents

Publication Publication Date Title
JP6317031B2 (en) Battery control device and vehicle system
US10675983B2 (en) Method and arrangement for determining a value of the state of energy of a battery in a vehicle
JP5482798B2 (en) Vehicle and vehicle control method
JP5772965B2 (en) Non-aqueous secondary battery control device and control method
EP2424070B1 (en) Battery control system and vehicle system with battery control system
US9007028B2 (en) Control device for electric power storage device and vehicle equipped with the same
US20130241466A1 (en) Regenerative power supply system
US20220089054A1 (en) Estimation of charging duration for electric vehicles
JP2009071986A (en) Calculation device for deterioration degree of in-vehicle battery
JP2005261034A (en) Controller of electric storage mechanism
JP2016199225A (en) Drive system of unmanned carrier
JP6087870B2 (en) vehicle
JP2014082923A (en) Diagnostic device and diagnosis system
WO2014103948A1 (en) Drive system for automated guided vehicle
JP3865189B2 (en) Self-powered electric vehicle battery control method
US11180051B2 (en) Display apparatus and vehicle including the same
JP5092903B2 (en) Vehicle battery charge / discharge control device
JP5842607B2 (en) Non-aqueous secondary battery control device and control method
JP5958427B2 (en) Driving system for automated guided vehicles
JP5962516B2 (en) Driving system for automated guided vehicles
US20210382119A1 (en) Battery system
JP4930434B2 (en) Secondary battery module controller
JP6116089B2 (en) Driving system for automated guided vehicles
JP6229317B2 (en) Driving system for automated guided vehicles
JP2021072680A (en) Battery control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869686

Country of ref document: EP

Kind code of ref document: A1