WO2014103892A1 - Organic el element and image display device and lighting device provided with same - Google Patents

Organic el element and image display device and lighting device provided with same Download PDF

Info

Publication number
WO2014103892A1
WO2014103892A1 PCT/JP2013/084151 JP2013084151W WO2014103892A1 WO 2014103892 A1 WO2014103892 A1 WO 2014103892A1 JP 2013084151 W JP2013084151 W JP 2013084151W WO 2014103892 A1 WO2014103892 A1 WO 2014103892A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light
opening
substrate
anode
Prior art date
Application number
PCT/JP2013/084151
Other languages
French (fr)
Japanese (ja)
Inventor
祥貴 下平
祐介 山▲崎▼
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2014103892A1 publication Critical patent/WO2014103892A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic EL element, and an image display device and an illumination device including the organic EL element.
  • Organic EL elements have features such as a wide viewing angle, high-speed response, clear self-luminous display, etc., and they are thin, lightweight, and have low power consumption. It is expected as a pillar of Organic EL elements are classified into a bottom emission type in which light is extracted from the support substrate side and a top emission type in which light is extracted from the opposite side of the support substrate, depending on the direction in which the light generated in the organic light emitting layer is extracted. .
  • a bottom emission type organic EL element In a bottom emission type organic EL element, light incident on the transparent substrate out of the light emitted from the light emitting layer passes through the transparent substrate and is extracted outside the element. Of the light emitted from the light-emitting layer, a small incident angle (incident light and incident light) below the critical angle at the interface between the transparent substrate (for example, glass (refractive index: 1.52)) and air (refractive index: 1.0) The light incident at an angle formed by the normal line of the interface is also refracted at the interface and extracted outside the device. In this specification, these lights are called external mode lights.
  • the light incident on the interface between the transparent substrate and air at an incident angle larger than the critical angle is totally reflected at the interface and is not taken out of the device, and finally Can be absorbed by the material.
  • this light is referred to as substrate mode light, and the loss due to this is referred to as substrate loss.
  • an anode made of a transparent conductive oxide (for example, indium tin oxide (ITO (refractive index: 1.82)) and a transparent substrate (for example, glass (refractive index: 1.52))
  • a transparent conductive oxide for example, indium tin oxide (ITO (refractive index: 1.82)
  • a transparent substrate for example, glass (refractive index: 1.52)
  • the light is incident on the surface of the metal layer such as the metal cathode and coupled with free electron vibration of the metal cathode, and is captured on the surface of the metal cathode as surface plasmon polariton (SPP).
  • SPP surface plasmon polariton
  • the light extraction efficiency of the organic EL element is generally limited to about 20% (for example, Patent Document 1). That is, about 80% of the light emitted from the light emitting layer is lost, and it is a big problem to reduce these losses and improve the light extraction efficiency.
  • the extraction of the substrate mode light can be dealt with by providing a light diffusion sheet or the like on the transparent substrate (for example, Patent Document 2).
  • Patent Document 2 research on the reduction and extraction of guided mode light and SPP mode light, particularly reduction and extraction of SPP mode light, has just started.
  • Patent Document 3 discloses a configuration in which a high refractive index layer having a higher refractive index than that of an organic light emitting layer or a transparent electrode is inserted in the vicinity of the organic light emitting layer.
  • Patent Document 2 discloses a configuration in which the refractive index of the organic light emitting layer and the transparent electrode is equivalently lowered by dispersing fine particles having a refractive index lower than that of the organic light emitting layer and the transparent electrode in the organic light emitting layer and the transparent electrode. ing.
  • Patent Documents 4 and 5 disclose a configuration in which cavities are provided in an anode layer and a dielectric layer that are sequentially formed on a substrate. Light incident on the side surface of the cavity (interface extending perpendicular to the substrate) is refracted toward the substrate at this interface. The light refracted to the substrate side can reduce the proportion of light that causes total reflection at the interface between the anode and the substrate and the interface between the substrate and air.
  • Patent Documents 6 to 9 As a method of extracting SPP mode light trapped on the surface of the metal layer, a configuration in which a periodic uneven structure is formed on the surface of the metal layer is known (Patent Documents 6 to 9).
  • the light extraction efficiency cannot be improved unless the light becomes guided mode light and can be extracted outside the device.
  • the present invention has been made in view of the above circumstances, and provides an organic EL element in which SPP mode light and waveguide mode light are effectively extracted to improve light extraction efficiency, and an image display device and an illumination device including the organic EL element.
  • the purpose is to do.
  • the present inventors first assume a number of light extraction mechanisms that take out a SPP mode light as propagating light and then extract the propagating light to the outside of the device without making it a guided mode light.
  • the structures we have intensively studied effective structures that improve the light extraction efficiency. Since it is difficult to directly measure the light extraction efficiency, we examined it based on simulation.
  • the two-step light extraction mechanism is a first step including a plurality of emission start points periodically arranged to generate SPP mode light and allow the generated SPP mode light to be extracted into the organic layer as propagating light.
  • the structure includes a two-electrode side structure and a first electrode-side structure for extracting the light extracted as the propagating light to the outside without using the guided mode light.
  • the radiation starting point portion of the second electrode side structure is a portion serving as a starting point from which the SPP mode light captured on the surface of the second electrode made of a light reflective material such as metal is re-radiated as propagating light.
  • Equation (2) is smaller than the wave number k sp of the SPP mode light and does not have an intersection with the dispersion curve of Equation (1). Therefore, the propagating light in the dielectric cannot excite the SPP mode light directly on the metal surface. The SPP mode light present on the flat metal surface cannot be directly extracted into the dielectric as propagating light.
  • the SPP mode light is lost to the organic layer without being extracted.
  • a concavo-convex structure is provided on the surface of the second electrode, the SPP mode light is re-emitted as propagating light into the organic layer around the concavo-convex structure. That is, this uneven structure of the second electrode side structure functions as a radiation starting point.
  • the first electrode side structure As the first electrode side structure, an interface having a refractive index perpendicular or nearly perpendicular to the surface of the first electrode was introduced. By this interface, the re-radiated propagating light is refracted, and the incident angle to the first electrode surface opposite to the organic layer and the emission angle from the surface are reduced.
  • the present inventors by simulation, have a second electrode side structure having a radiation starting point portion and a first electrode that refracts propagating light re-radiated into the organic layer to the side opposite to the organic layer when viewed from the first electrode.
  • the first electrode side structure having an interface perpendicular or nearly perpendicular to the surface, it cannot be predicted from the effect of improving the light extraction efficiency of the second electrode side structure and the first electrode side structure alone. As a result, the present invention was completed.
  • the present invention employs the following configuration.
  • a first electrode, an organic layer including a light emitting layer made of an organic EL material, and a second electrode are sequentially provided on the substrate, and the light is extracted from the first electrode side to the outside.
  • the second electrode has a plurality of radiation starting points periodically arranged on the surface of the organic layer, and is between the first electrode and the second electrode.
  • a dielectric layer having a refractive index lower than that of the organic layer and having a plurality of openings, and the organic layer has an opening inner side surface covering portion that covers an inner side surface of the opening.
  • An organic EL element wherein a period in which the opening is arranged and a period in which the radiation starting point part is arranged coincide at least in one direction in the element plane.
  • An organic EL element that includes a first electrode, an organic layer including a light emitting layer made of an organic EL material, and a second electrode in order, and is configured to extract light from the first electrode side to the outside.
  • the second electrode has a plurality of radiation starting points periodically disposed on the surface of the organic layer, and the organic layer is interposed between the first electrode and the second electrode.
  • the first electrode includes a first electrode opening that communicates with the opening, and the organic layer further includes a first electrode opening inner surface covering portion that covers an inner surface of the first electrode opening.
  • the organic EL element according to (1) which has (4)
  • the first electrode includes a first electrode opening that communicates with the opening, and the organic layer further includes a first electrode opening inner surface covering portion that covers an inner surface of the first electrode opening.
  • the organic EL element according to (2) which has (5)
  • the substrate includes a recess communicating with the first electrode opening, and the organic layer further includes a concave inner surface covering portion that covers an inner surface of the recess.
  • the organic EL element of description (6)
  • the organic layer further includes a layered portion disposed between the dielectric layer and the opening inner side surface covering portion and the second electrode.
  • An image display device comprising the organic EL element according to any one of (1) to (7).
  • An illuminating device comprising the organic EL element according to any one of (1) to (7).
  • the present invention it is possible to effectively extract SPP mode light and waveguide mode light to provide an organic EL element with improved light extraction efficiency, and an image display device and an illumination device including the organic EL element.
  • (A) is a configuration in which the radiation starting point portion 14a and the opening portion 17A are both in a dot shape
  • (b) is a configuration in which the radiation starting point portion 14a is in a dot shape and the opening portion 17A is in a line shape.
  • (C) is a case where the radiation starting point portion 14a is in a line shape and the opening portion 17A is in a dot shape
  • (d) is a case in which both the radiation starting point portion 14a and the opening portion 17A are in a line shape.
  • FIG. 5 is a schematic cross-sectional view for explaining a model structure having an in-phase configuration with respect to the anti-phase configuration in FIG. 4. It is a cross-sectional schematic diagram for demonstrating the size of the model structure which performed the computer simulation of FIG. It is a figure which shows the result of the computer simulation of the light extraction efficiency of the organic EL element of the 3rd Embodiment of this invention, (a) is a thing with a period of 500 nm, (b) is a thing with a period of 1000 nm. . It is a cross-sectional schematic diagram for demonstrating the size of the model structure which performed the computer simulation of FIG.
  • the first electrode is an anode and the second electrode is a cathode
  • Either the top emission type or the bottom emission type may be applied to the organic EL element of the present invention.
  • a bottom emission type configuration will be described as an example.
  • the organic EL device of the present invention may include a layer not described below as long as the effects of the present invention are not impaired.
  • FIG. 1 is a schematic cross-sectional view for explaining an example of the organic EL element according to the first embodiment of the present invention.
  • An organic EL element 10 according to the first embodiment of the present invention includes an anode (first electrode) 12, an organic layer 13 including a light emitting layer made of an organic EL material, and a cathode (second electrode) on a substrate 11. 14 in order.
  • the cathode 14 has a plurality of radiation starting point portions 14a periodically disposed on the surface 14A on the organic layer side.
  • a dielectric layer 17 having a refractive index lower than that of the organic layer 13 and having a plurality of openings 17A (see FIG.
  • the organic layer 13 has an opening inner side surface covering portion 13a that covers the inner surface 7a of the opening portion 17A.
  • the period ⁇ 1 in which the opening 17A is arranged and the period ⁇ 2 in which the radiation starting point part 14a is arranged coincide at least in one direction in the element plane.
  • the anode 12 includes an anode opening (first electrode opening) 12A (see FIG. 8G) that communicates with the opening 17A, and the substrate 11 communicates with the anode opening 12A.
  • a recess 11A (see FIG. 8H) is provided.
  • the organic layer 13 is further provided with a portion corresponding to the shape of the radiation starting point portion 14a (in the example of FIG. 1, a convex portion 13e) and an anode opening inner side surface covering portion (first electrode) covering the inner side surface 12a of the anode opening portion 12A. (Opening inner side surface covering portion) 13b and concave inner side surface covering portion 13c covering inner surface 11a of concave portion 11A.
  • the portion 13e corresponding to the shape of the radiation starting point portion 14a is convex if the radiation starting point portion 14a is concave as shown in FIG. 1, and if the radiation starting point portion 14a is convex, , Become concave.
  • FIG. 1 The configuration shown in FIG.
  • the organic layer 13 is that of a bottom emission type organic EL element.
  • the substrate 11 is disposed on the opposite side of the cathode 14 from the organic layer 13.
  • the organic layer 13 further includes a dielectric layer 17 and a layered portion 13 d disposed between the opening inner side surface covering portion 13 a and the cathode 14.
  • the organic layer 13 may be configured to include all the portions indicated by reference numerals 13a to 13e, or may be configured to include the portions indicated by reference numerals 13a to 13c and 13e without the layered portion 13d.
  • the opening inner side surface covering part 13a, the anode opening inner side surface covering part 13b, and the concave inner side surface covering part 13c may be constituted by a part of the layers constituting the organic layer.
  • the refractive index of the organic layer refers to the average refractive index of all the layers including the light emitting layer made of the organic EL material. . The same applies to other embodiments described later.
  • the shape of the opening 17A, the anode opening 12A, and the recess 11A is not particularly limited as long as it has an effect of refracting light toward the substrate on the inner surface thereof. From the viewpoint of refracting the guided mode light closer to the vertical direction with respect to the anode surface, a shape in which the area on the opening on the cathode 14 side is smaller than the opening bottom area on the substrate 11 side is preferable. From the viewpoint of taking out the light straight to the substrate without refracting the light beam, a shape in which the opening bottom area on the substrate 11 side is smaller than the area on the opening on the cathode 14 side is preferable.
  • the area of both bottom surfaces of the opening is smaller.
  • the inner surfaces of the opening 17A, the anode opening 12A, and the recess 11A are arranged orthogonal to the anode surface and the substrate surface, but the present invention is not limited to such a configuration.
  • the angle between these inner surfaces and the substrate surface is preferably 45 ° or more, more preferably 60 ° or more, and even more preferably 75 ° or more.
  • This organic EL element 10 is a bottom emission type organic EL element that extracts light emitted from the light emitting layer from the substrate side. Therefore, the substrate 11 is a light-transmitting substrate and usually needs to be transparent to visible light.
  • transparent to visible light means that it is only necessary to transmit visible light having a wavelength emitted from the light emitting layer, and does not need to be transparent over the entire visible light region.
  • a smooth substrate having a transmittance in visible light of 400 to 700 nm of 50% or more is preferable.
  • the material of the substrate 11 include a glass plate and a polymer plate.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, polyether sulfide, and polysulfone.
  • the transmittance is preferably 50% or more and more preferably 70% or more with respect to the wavelength at which light emission has the maximum intensity.
  • an opaque material can be used in addition to the same material as described above.
  • a metal material such as stainless steel, Si, SiC, AlN, GaN, Nonmetallic materials such as GaAs and sapphire, and other substrate materials usually used in top emission type organic EL elements can be used.
  • a material having high thermal conductivity is preferably used for the substrate.
  • the thickness of the substrate 11 depends on the required mechanical strength and is not limited. The thickness is preferably 0.01 mm to 10 mm, more preferably 0.05 mm to 2 mm. However, in this embodiment, since the substrate 11 includes a plurality of recesses 11A, it is preferable that the substrate 11 be a material that can be processed more accurately. Although it does not limit as a preferable material, For example, quartz is mentioned.
  • Each of the plurality of recesses 11A communicates with the opening 17A of the dielectric layer 17 through the anode opening 12A, and therefore has the same arrangement as the opening 17A.
  • the concave portion 11A may be a dot-shaped concave portion (recesses that are discretely arranged), a line-shaped (parallel stripe shape) concave portion, or a combination of these in a plane.
  • the arrangement of the recesses 11A in the element plane direction may be a one-dimensional arrangement or a two-dimensional arrangement in accordance with the periodic arrangement of the radiation starting point portions 14a.
  • the anode 12 includes a plurality of anode openings 12A (see FIG. 8G).
  • the inner surface 12a of the anode opening 12A is covered with the organic layer 13 (anode opening inner surface covering portion 13b).
  • the upper surface of the anode 12 is covered with a dielectric layer 17.
  • the anode opening 12A may be filled or may be partially filled.
  • Each of the plurality of anode openings 12A communicates with the opening 17A, and thus has the same arrangement as the opening 17A.
  • the anode opening 12A may be any of dot-like openings (openings arranged in a discrete manner), line-like openings, and a combination of these in-plane.
  • the arrangement of the anode openings 12A in the element plane direction may be a one-dimensional arrangement or a two-dimensional arrangement in accordance with the periodic arrangement of the radiation starting point portions 14a.
  • the anode 12 is an electrode for applying a voltage between the anode 14 and injecting holes from the anode 12 into the light emitting layer. It is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a high work function. It is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (Highest Occupied Molecular Orbital) level of the organic layer 13 in contact with the anode 12 does not become excessive.
  • the material of the anode 12 is not particularly limited as long as it is a translucent and conductive material.
  • conductive high conductivity doped with transparent inorganic oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide, zinc oxide, conductive polymers such as PEDOT: PSS, polyaniline, and arbitrary acceptors.
  • transparent inorganic oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide, zinc oxide, conductive polymers such as PEDOT: PSS, polyaniline, and arbitrary acceptors.
  • transparent carbon materials such as molecules, carbon nanotubes, and graphene.
  • the anode 2 can be formed on the substrate 1 by, for example, sputtering, vacuum vapor deposition (resistance heating vapor deposition or electron beam vapor deposition), CVD, ion plating, coating, or the like.
  • the thickness of the anode 12 is not limited, but is, for example, 10 to 2000 nm, preferably 50 to 1000 nm. If the thickness of the anode 12 is less than 10 nm, it is difficult to increase the volume of the dielectric layer 17 and scattering of the waveguide mode light is difficult. If the thickness of the anode 12 is larger than 2000 nm, the flatness of the organic layer 13 cannot be maintained and the transmittance of the anode is lowered.
  • the dielectric layer 17 has a refractive index lower than that of the organic layer 13 and includes a plurality of openings 17A.
  • the inner side surface 17a of the opening 17A is covered with the organic layer 13 (opening inner side surface covering portion 13a). As long as the inner surface 17a of the opening covers the inner surface 17a, the opening 17A may be filled or may be partially filled.
  • Each of the plurality of openings 17A communicates with the recess 11A via the anode opening 12A. That is, the opening 17A may be a dot-like opening (opening arranged discretely), a line-like (parallel stripe-shaped) opening, or a combination of these in an in-plane manner.
  • the arrangement in the element plane direction of the openings 17A may be a one-dimensional arrangement or a two-dimensional arrangement in accordance with the periodic arrangement of the radiation starting point portions.
  • the material of the dielectric layer 17 is not particularly limited as long as it is a light-transmitting material and has a refractive index lower than that of the organic layer 13.
  • metal fluorides such as SOG (typical refractive index: 1.25), MgF 2 (typical refractive index: 1.38), organic fluorine compounds such as PTFE, SiO 2 (typical refractive index: 1.45), various low-melting-point glasses, and porous materials.
  • the thickness of the dielectric layer 17 is not limited, but is, for example, 10 to 2000 nm, and preferably 50 to 1000 nm.
  • the thickness of the dielectric layer 17 is less than 10 nm, the organic layer must also be formed thin, and thus a punch-through current is likely to be generated and the internal quantum efficiency is lowered.
  • the thickness of the dielectric layer 17 is greater than 2000 nm, it becomes difficult to maintain the flatness of the organic layer 13.
  • the cathode 14 has a plurality of radiation starting points 14a periodically disposed on the surface 14A on the organic layer side.
  • the radiation starting point portion 14a is arranged at a position overlapping with a portion other than the opening portion 17A of the dielectric layer 17 (substantial portion of the dielectric layer 17) 17B in plan view. It is not limited to this positional relationship.
  • the radiation starting point portion 14a further includes a portion other than the anode opening 12A of the anode 12 (substantial portion of the anode 12) 12B and a portion other than the recess 11A of the substrate 11 (on the substrate 11). (Substantial part) It is arranged at a position overlapping 11B, but is not particularly limited to this positional relationship.
  • the cathode 14 is an electrode for injecting electrons into the light emitting layer, and it is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a small work function. It is preferable to use a material having a work function of 1.9 eV or more and 5 eV or less so that the difference from the LUMO (Lowest Unoccupied Molecular Orbital) level of the organic layer 13 in contact with the cathode 14 does not become excessive.
  • Specific examples include materials such as Al, MgAg alloys, and alloys of Al and alkali (earth) metals such as AlLi and AlCa.
  • the thickness of the cathode 14 is not limited, but is, for example, 30 nm to 1 ⁇ m, and preferably 50 to 500 nm. If the thickness of the cathode 14 is less than 30 nm, the sheet resistance increases and the driving voltage rises. When the thickness of the cathode 14 is greater than 1 ⁇ m, damage due to heat and radiation during film formation and mechanical damage due to film stress accumulate in the electrode and the organic layer.
  • the shape is not limited to the concave shape, and may be a convex shape, an uneven shape, or the like.
  • Each shape of the radiation starting point portion 14a when seen in a plan view may be a shape such as a dot-shaped unevenness (unevenly arranged discretely), a line-shaped (parallel stripe-shaped) unevenness, or the like.
  • One radiation starting point portion 14a (unit structure of the radiation starting point portion) may be composed of one concave or convex structure, or may be composed of a concavo-convex structure forming a plurality of undulations.
  • one radiation starting point portion 14a is preferably smaller than the size of a portion other than the opening 17A of the dielectric layer 17 (substantial portion of the dielectric layer 17) in plan view.
  • the periodic array in the in-plane direction of the plurality of radiation starting point portions 14a may be a one-dimensional array or a two-dimensional array.
  • the period in which the plurality of radiation starting point portions 14a are arranged is preferably 10 ⁇ m or less in which the SPP mode light can propagate. With such a period, before the SPP mode light is dissipated as heat, the SPP mode light can be scattered by the radiation starting point portion 14a and re-radiated as propagating light.
  • the period of the arrangement of the radiation starting point portions 14a is the same as the period of the arrangement of the openings 17A in the dielectric layer 17 at least in one direction in the plane.
  • the same period in one direction in the plane means that one of the real lattice vectors corresponding to the periodic structure of the radiation starting point portion 14a and one of the real lattice vectors corresponding to the periodic structure of the opening 17A coincide with each other.
  • FIG. 2A is an example of the in-plane arrangement in the case where the radiation starting point portion 14a and the opening portion 17A are both in the form of dots. What is indicated by a solid line arrow in each figure is a real lattice vector common to the radiation starting point portion 14a and the opening portion 17A. In the case of this configuration, it is preferable that the radiation starting point portion 14a and the opening portion 17A coincide with each other with respect to another real lattice vector (dotted arrow) as shown in the left diagram of FIG.
  • FIG. 2B is an example of the in-plane arrangement in the case where the radiation starting point portion 14a has a dot shape and the opening portion 17A has a line shape.
  • FIG. 2C shows an example of in-plane arrangement in the case where the radiation starting point portion 14a is in a line shape and the opening portion 17A is in a dot shape.
  • a solid line arrow in each figure is a real lattice vector common to the radiation starting point portion 14a and the opening portion 17A.
  • the center of the opening portion 17A is located on the center line of the radiation starting point portion 14a or just between the adjacent opening portions 17A as shown in the three figures on the left side of FIG.
  • FIG. 2D shows an example of the in-plane arrangement in the case where the radiation starting point portion 14a and the opening portion 17A are both linear. What is indicated by a solid arrow in each figure is a real lattice vector common to the radiation starting point portion 14A and the opening portion 17A.
  • the center line of the radiation starting point portion 14a is preferably located on the center line of the opening portion 17A or just between the adjacent 17A.
  • the organic layer 13 includes an opening inner surface covering portion 13a that covers the inner surface 17a of the opening 17A, an anode opening inner surface covering portion 13b that covers the inner surface 12a of the anode opening 12A, and an inner surface 11a of the recess 11A. It has a concave inner side surface covering portion 13c to be covered and a portion 13e corresponding to the shape of the radiation starting point portion 14a.
  • the dielectric layer 17 and the layered portion 13 d disposed between the opening inner side surface covering portion 13 a and the cathode 14 are further provided.
  • any material known as a material for an organic EL element can be used as a material for an organic EL element.
  • the organic layer 13 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like in addition to a light emitting layer made of an organic EL material.
  • the hole injection layer is a layer that assists hole injection from the anode 12 to the light emitting layer 13.
  • Such a hole injection layer is preferably a material that injects holes into the light emitting layer with lower electric field strength.
  • the material for forming the hole injection layer is not particularly limited as long as it has the above function, and any material can be selected and used from known materials.
  • the hole transport layer is a layer that transports holes to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.5 eV or less.
  • the material for forming the hole transport layer is not particularly limited as long as it has the above-described function, and any material can be selected and used from known materials.
  • the electron injection layer is a layer that assists electron injection from the cathode 14 to the organic layer 13.
  • a material that injects electrons into the organic layer 13 with lower electric field strength is preferable.
  • the material for forming the electron injection layer is not particularly limited as long as it has the above function, and any material can be selected and used from known materials.
  • the electron transport layer is a layer that transports electrons to the light emitting region and has a high electron mobility.
  • the material for forming the electron transport layer is not particularly limited as long as it has the above functions, and any material can be selected and used from known materials.
  • the organic layer 13 may be formed by a dry process such as an evaporation method or a transfer method, or may be formed by a wet process such as a spin coating method, a spray coating method, a die coating method, or a gravure printing method.
  • the thickness of the organic layer 13 is not limited, but is, for example, 50 to 2000 nm, and preferably 100 to 1000 nm. If the thickness of the organic layer 13 is less than 50 nm, quenching other than SPP coupling by the cathode 14 occurs, such as a decrease in internal quantum efficiency due to a punch-through current or lossy surface wave mode coupling. When the thickness of the organic layer 13 is greater than 2000 nm, the drive voltage increases.
  • a part (AP1) of the light emitted from the AP point of the light emitting layer included in the organic layer 13 is captured as SPP mode light on the surface 14A of the cathode 14 through the near field around the light emitting point. It is well known that such energy transfer to SPP mode light occurs when a light emitting molecule and a metal layer are close to each other in a general organic EL element having a cathode made of a metal layer.
  • the SPP mode light moves along the surface 14A (arrow AP2) and is emitted from the radiation starting point portion 14a 1 (14a) to become propagating light.
  • the light passes through the dielectric layer 17 and the like and enters the substrate 11 (arrows BP1, BP2, BP3, BP4) and is taken out of the substrate.
  • the substrate 11 arrows BP1, BP2, BP3, BP4
  • the arrow AP1 schematically shows the propagation of a part of the light in order to explain the function and effect of the present invention.
  • the light indicated by the arrow AP2 and the arrows BP1 to BP4 and the light indicated by the arrows CP1 to CP4 to be described later are also schematically shown.
  • the light BP1 is light that travels perpendicularly to the substrate 11 toward the substrate. This light is not refracted at the interface between the organic layer 13 and the dielectric layer 17, the interface between the dielectric layer 17 and the anode 12, and the interface between the anode 12 and the substrate 11. Then, the substrate 11 is taken out and taken out to the outside.
  • the light BP2 re-radiated from the radiation starting point portion 14a 1 (14a) is refracted at the interface between the organic layer 13a (13) and the dielectric layer 17 (the inner side surface 17a of the opening 17A) and passes through the dielectric layer 17.
  • the light is totally reflected when it enters the interface between the anode 12 and the substrate 11 (for example, glass) or the interface between the substrate 11 and air at an angle greater than the critical angle, but the light is reflected by refraction at the inner surface 17a of the opening 17A.
  • the direction of travel changes toward the normal line of the substrate 11. Therefore, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and air is increased, and the light extraction efficiency is improved. That is, the light extraction efficiency is improved by having the configuration including the inner surface 17a of the opening 17A.
  • the light traveling direction of the light BP3 also changes closer to the normal line of the substrate 11 due to refraction at the interface between the organic layer 13a (13) and the dielectric layer 17 (the inner surface 17a of the opening 17A). Therefore, similarly to the light BP2, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and the air is increased, and the light extraction efficiency is improved. Further, even when the light BP4 is refracted at the interface between the organic layer 13c (13) and the convex portion 11B of the substrate 11 (the inner surface 11a of the concave portion 11A), the light traveling direction is normal to the substrate 11 due to this refraction. It changes to the side. Therefore, similarly, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and air is increased, and the effect of improving the light extraction efficiency can be obtained.
  • the vicinity of the shortest distance between the cathode 14 and the anode 12 has the highest current density and the amount of light emission increases.
  • the light emission at the CPl and CPr points of the light emitting layer included in the organic layer 13 schematically shows the light emission at the point where this light emission amount is large.
  • the light CP 1 is light that travels to the substrate side in the direction perpendicular to the substrate 11 and is refracted at the interface between the organic layer 13 and the substrate 11. Without going through the substrate 11, it is taken out.
  • the light CP2 is refracted at the interface between the organic layer 13a (13) and the dielectric layer 17B (17) (the inner surface 17a of the opening 17A), passes through the dielectric layer 17B (17), and passes through the dielectric layer 17B ( 17) and refracted at the interface between the anode 12 and the anode 12, and after being refracted at the interface between the anode 12 and the substrate 11, it can be taken out through the substrate 11.
  • the light CP2 travels from the organic layer 13 to the dielectric layer 17, the refraction at the interface between the organic layer 13a (13) and the dielectric layer 17B (17) (the inner surface 17a of the opening 17A)
  • the direction of travel changes toward the normal line of the substrate 11.
  • the light When light is incident at an angle greater than the critical angle at the interface between the anode 12 and the substrate 11 (for example, glass) or the interface between the substrate 11 and air, the light is totally reflected, but is refracted at the inner surface 17a of the opening 17A. As a result, the traveling direction of the light changes toward the normal line of the substrate 11. Therefore, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and air is increased, and the light extraction efficiency is improved. The same effect can be obtained for the light CP3.
  • the light CP4 traveling through the organic layer 13 from the CP1 point is refracted at the interface between the organic layer 13c and the convex portion 11B of the substrate 11 (inner side surface 11a of the concave portion 11A), the direction of travel of light due to this refraction. Changes toward the normal of the substrate 11. Therefore, similarly, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and air is increased, and the effect of improving the light extraction efficiency can be obtained. With respect to light emitted at the CPr point of the light emitting layer included in the organic layer 13, the same effect as the light emitted at the CPl point can be obtained.
  • the SPP mode light propagates at the radiation starting point on the cathode surface. It can be re-radiated as light and extracted. Further, the propagating light extracted from the cathode surface is applied to the substrate at the interface between the organic layer and the dielectric layer (the inner surface of the opening) and the interface between the organic layer and the convex portion of the substrate (the inner surface of the recess). The amount of light extracted from the substrate to the outside can be increased by refracting toward the linear direction.
  • FIG. 3 shows an organic EL having a configuration in which the relative position between the portion 17B other than the opening 17A of the dielectric layer 17 and the radiation starting point portion 14a of the cathode 14 is shifted by a half cycle.
  • FIG. 3 shows an element.
  • the radiation starting point portion 14a of the cathode 14 is positioned so as to overlap with a portion (substantial portion of the dielectric layer) 17B other than the opening portion 17A of the dielectric layer 17 in plan view. Has been placed.
  • FIG. 1 shows an organic EL having a configuration in which the relative position between the portion 17B other than the opening 17A of the dielectric layer 17 and the radiation starting point portion 14a of the cathode 14 is shifted by a half cycle.
  • the central axis L1 perpendicular to the substrate 11 of the radiation starting point portion 14a of the cathode 14 in the cross section perpendicular to the substrate surface is the portion 17B of the dielectric layer 17 other than the opening portion 17A. It coincides with the central axis L2.
  • the relative positional relationship between the radiation starting point of the cathode and the portion other than the opening of the dielectric layer (substantial portion of the dielectric layer 17) is as shown in FIG. 1, that is, the radiation starting point portion of the cathode 14.
  • a configuration in which 14a has a relative positional relationship overlapping with a substantial part of the dielectric layer in plan view may be referred to as “reverse phase”.
  • the radiation starting point portion 14a of the cathode 14 is formed in a portion (substantial portion of the dielectric layer) 17B other than the opening portion 17A of the dielectric layer 17 in plan view. It is arranged in a position that does not overlap.
  • the central axis L1 perpendicular to the substrate of the radiation starting point portion 14a of the cathode 14 in the cross section perpendicular to the substrate surface is the central axis L2 of the portion 17B of the dielectric layer 17 other than the opening 17A. The configuration is shifted by half a cycle.
  • the relative positional relationship between the radiation starting point portion 14a of the cathode 14 and a portion (substantial portion of the dielectric layer 17) 17B of the dielectric layer 17 other than the opening portion 17A is as shown in FIG.
  • a configuration in which the radiation starting point portion 14a of the cathode 14 has a relative positional relationship that does not overlap the substantial portion 17B of the dielectric layer 17 in plan view may be referred to as “in phase”.
  • the organic EL device of the present invention may have either “in-phase” or “reverse phase” configuration. As will be described later, approximately the same light extraction efficiency can be obtained between “in phase” and “reverse phase”.
  • FIG. 4 is a schematic cross-sectional view for explaining an example of the organic EL element according to the second embodiment of the present invention.
  • An organic EL element 20 according to the second embodiment of the present invention includes, on a substrate 21, an anode 22, an organic layer 23 including a light emitting layer made of an organic EL material, and a cathode 24 in this order.
  • the cathode 24 has a plurality of radiation starting points 24a periodically arranged on the surface 24A on the organic layer side.
  • a dielectric layer 27 having a refractive index lower than that of the organic layer 23 and having a plurality of openings 27A (see FIG. 9A) is provided.
  • the organic layer 23 has an opening inner side surface covering portion 23a that covers the inner side surface 27a of the opening 27A, and a period ⁇ 1 in which the opening 27A is disposed and a period ⁇ 2 in which the radiation starting point portion 24a is disposed are at least elements. Match in one direction in the plane.
  • the organic EL element according to the second embodiment is exemplified by a case where the emission starting point of the cathode has a “reverse phase” configuration having a relative positional relationship overlapping with a substantial part of the dielectric layer in plan view. I will explain.
  • the organic layer 23 further includes a portion (in the example of FIG. 4, a convex portion 23c) corresponding to the shape of the radiation starting point portion 24a.
  • the organic layer 23 further includes a dielectric layer 27 and a layered portion 23 b disposed between the opening inner side surface covering portion 23 a and the cathode 24.
  • the organic layer 23 may be configured to include all the portions indicated by reference numerals 23a to 23c, or may include the portions indicated by reference numerals 23a and 23c without the layered portion 23b.
  • the portion of the organic layer 23 corresponding to the shape of the radiation starting point 24a becomes a convex portion 23c if the radiation starting point 24a is concave as shown in FIG. 4, and if the radiation starting point 24a is convex. It becomes a recess.
  • the opening inner side surface covering portion 23 a may be constituted by a part of the layers constituting the organic layer 23.
  • the shape of the opening 27A is not particularly limited as long as it has an effect of refracting light toward the substrate on its inner surface. From the viewpoint of refracting the guided mode light closer to the vertical direction with respect to the anode surface, a shape in which the area on the opening on the cathode 24 side is smaller than the area on the bottom of the opening on the substrate 21 side is preferable. From the viewpoint of taking out the light straight to the substrate without refracting the light beam, a shape in which the opening bottom area on the substrate 21 side is smaller than the area on the opening on the cathode 24 side is preferable. From the viewpoint of refracting guided mode light and extracting it with a smaller propagation distance, the smaller the area of both bottom surfaces of the opening, the better.
  • the inner side surface of the opening is configured to be orthogonal to the substrate surface, but is not limited to this configuration.
  • the angle of the inner surface with respect to the substrate surface is preferably 45 ° or more, more preferably 60 ° or more, and even more preferably 75 ° or more.
  • the organic EL element 20 is a bottom emission type organic EL element, like the organic EL element 10 of the first embodiment, but may be a top emission type.
  • the material and thickness of the substrate 21 the same materials as those of the substrate 11 can be used.
  • the same materials as those in the first embodiment can be used.
  • the dielectric layer 27 has a refractive index lower than that of the organic layer 23 and includes a plurality of openings 27A.
  • the inner surface 27a of the opening 27A is covered with the organic layer 23 (opening inner surface covering portion 23a). As long as the inner surface 27a of the opening covers the inner surface 27a, the opening 27A may be filled or may be partially filled.
  • the same materials as those in the first embodiment can be used. Further, the shape and arrangement of the openings 27A can be the same as those in the first embodiment.
  • the organic layer 23 includes an opening inner surface covering portion 23a that covers the inner surface 27a of the opening 27A, a dielectric layer 27, a layered portion 23b disposed between the opening inner surface covering portion 23a, and the cathode 24, and radiation. And a convex portion 23c corresponding to the shape of the starting portion 24a.
  • the material of the light emitting layer any material known as a material for an organic EL element can be used as in the first embodiment.
  • the thickness of the organic layer 23 is the same as that in the first embodiment. Similar to the first embodiment, the organic layer 23 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like in addition to a light emitting layer made of an organic EL material.
  • the same materials as those in the first embodiment can be used.
  • the shape and arrangement of the radiation starting point 24a can be the same as those of the radiation starting point of the first embodiment.
  • a part (AQ1) of the light emitted from the AQ point of the light emitting layer included in the organic layer 23 is captured as SPP mode light on the surface 24A of the cathode 24 via the near field around the light emitting point.
  • the SPP mode light moves along the surface 24A (arrow AQ2), is re-radiated at the radiation starting point 24a 1 (24a) to become propagating light, and further passes through the dielectric layer 27 and the like and enters the substrate 21. , Taken out of the substrate.
  • the light emitted at the AQ point of the organic layer 23 travels in all directions, there is naturally light traveling in a direction other than the arrow AQ1.
  • An arrow AQ1 schematically shows the propagation of a part of the light in order to explain the function and effect of the present invention.
  • the light shown by the arrows AQ2 and BQ1 to BQ3 and the light shown by the arrows CQ1 to CQ3 described later are also schematically shown.
  • the light BQ1 is light that travels perpendicularly to the substrate 21 toward the substrate side, and the organic layer 23b (23) Without being refracted at the interface between the dielectric layer 27 and the dielectric layer 27, the interface between the dielectric layer 27 and the anode 22, and the interface between the anode 22 and the substrate 21, and proceeds through the dielectric layer 27, the anode 22 and the substrate 21, Take out to the outside.
  • the light BQ2 radiated from the radiation starting point 24a 1 (24a) is refracted at the interface between the organic layer 23a (23) and the dielectric layer 27B (27) (the inner side surface 27a of the opening 27A), and the dielectric layer 27B. (27) is transmitted, refracted at the interface between the dielectric layer 27B (27) and the anode 22, travels through the anode 22, refracts at the interface between the anode 22 and the substrate 21, and then passes through the substrate 21 to the outside. Can be taken out.
  • the light BQ2 travels from the organic layer 23a (23) to the dielectric layer 27, due to refraction at the interface between the organic layer 23a (23) and the dielectric layer 27B (27) (inner side surface 27a of the opening 27A).
  • the angle of incidence on the anode 22 and the substrate 21 changes to a small angle (an angle closer to the normal direction of the substrate 21).
  • the substrate 21 for example, glass
  • the critical angle the light is totally reflected.
  • the refraction at the inner surface 27a of the opening 27A causes the traveling direction of the light to be the substrate. It changes toward 21 normals.
  • the light extraction efficiency is improved by having the configuration including the inner side surface 27a of the opening 27A.
  • the light BQ3 also changes its traveling direction toward the normal line of the substrate 21 due to refraction at the interface between the organic layer 23a (23) and the dielectric layer 27B (27) (the inner surface 27a of the opening 27A). Therefore, as in the case of the light BQ2, there is an increase in light that can avoid total reflection at the interface between the anode 22 and the substrate 21 and at the interface between the substrate 21 and air, thereby improving the light extraction efficiency.
  • the light CQ1 is light that travels to the substrate side in a direction perpendicular to the substrate, and is not refracted at the interface between the organic layer 23 and the substrate 21. It proceeds through the substrate 21 and is taken out to the outside.
  • the light CQ2 is refracted at the interface between the organic layer 23a (23) and the dielectric layer 27 (the inner surface 27a of the opening 27A), passes through the dielectric layer 27, and is transmitted at the interface between the dielectric layer 27 and the anode 22. After being refracted and traveling through the anode 22 and refracting at the interface between the anode 22 and the substrate 21, it can be taken out through the substrate 21.
  • the light traveling direction is changed due to refraction at the interface between the organic layer 23a (23) and the dielectric layer 27 (the inner side surface 27a of the opening 27A). It changes closer to the normal line of the substrate 21.
  • the critical angle at the interface between the anode 22 and the substrate 21 for example, glass
  • the light is totally reflected, but refraction at the inner surface 27a of the opening 27A.
  • the traveling direction of the light changes toward the normal line of the substrate 21. Therefore, light that can avoid total reflection at the interface between the anode 22 and the substrate 21 and at the interface between the substrate 21 and air is increased, and the light extraction efficiency is improved. The same effect can be obtained for the light CQ3.
  • the SPP mode light propagates at the radiation starting point on the cathode surface. It can be re-radiated and extracted as light, and the propagating light extracted from the cathode surface is refracted toward the normal direction of the substrate at the interface between the organic layer and the dielectric layer (the inner surface of the opening). The amount of light extracted from the substrate to the outside can be increased.
  • FIG. 5 is a schematic cross-sectional view for explaining an example of the organic EL element according to the third embodiment of the present invention.
  • An organic EL device 30 according to the third embodiment of the present invention includes, on a substrate 31, an anode 32, an organic layer 33 including a light emitting layer made of an organic EL material, and a cathode 34 in this order.
  • the cathode 34 has a plurality of radiation starting point portions 34a periodically arranged on the surface 34A on the organic layer side.
  • a dielectric layer 37 having a refractive index lower than that of the organic layer 33 and having a plurality of openings 37A (see FIG.
  • the organic layer 33 has an opening inner side surface covering portion 33a that covers the inner surface 37a of the opening portion 37A, and a period ⁇ 1 in which the opening portion 37A is disposed and a period ⁇ 2 in which the radiation starting point portion 34a is disposed are at least elements. Match in one direction in the plane.
  • the anode 32 includes an anode opening 32A (see FIG. 10A) communicating with the opening 37A.
  • the organic EL device according to the third embodiment will be described by taking as an example a “reverse phase” configuration in which the emission starting point of the cathode has a relative positional relationship with the substantial part of the dielectric layer in plan view. .
  • the organic layer 33 further includes a portion corresponding to the shape of the radiation starting point portion 34a (a convex portion 33d in the example of FIG. 5) and an anode opening inner side surface covering portion 33b that covers the inner side surface 32a of the anode opening portion 32A. Is.
  • the organic layer 33 further includes a dielectric layer 37 and a layered portion 33 c disposed between the opening inner side surface covering portion 33 a and the cathode 34.
  • the organic layer 33 may be configured to include all the portions indicated by reference numerals 33a to 33d, or may include the portions indicated by reference numerals 33a, 33b, and 13d without the layered portion 33c.
  • the portion 33d corresponding to the shape of the radiation starting point 34a is convex if the radiation starting point 34a is concave as shown in FIG. 5, and if the radiation starting point 34a is convex. , Become concave.
  • the opening inner side surface covering portion and the anode opening inner side surface covering portion may be constituted by a part of the layers constituting the organic layer.
  • the shapes of the opening 37A and the anode opening 32A are not particularly limited as long as they have an effect of refracting light toward the substrate on the inner side surfaces thereof.
  • a shape in which the area on the opening on the cathode 34 side is smaller than the bottom area of the opening on the substrate 31 side is preferable.
  • a shape in which the bottom area of the opening on the substrate 31 side is smaller than the area on the opening on the cathode 34 side is preferable.
  • the inner surfaces of the opening and the anode opening are arranged so as to be orthogonal to the substrate surface.
  • the angle between these inner surfaces and the substrate surface is preferably 45 ° or more, more preferably 60 ° or more, and even more preferably 75 ° or more.
  • the organic EL element 30 is a bottom emission type organic EL element, like the organic EL element of the first embodiment, but may be a top emission type.
  • the material and thickness of the substrate 31 the same materials as those of the substrate 11 can be used.
  • the anode 32 includes a plurality of anode openings 32 ⁇ / b> A, and an inner surface 32 a of the anode openings 32 ⁇ / b> A is covered with an organic layer 33.
  • the anode opening 32A may be filled or may be partially filled.
  • the material and thickness of the anode 32 the same materials as those in the first embodiment can be used.
  • the shape and arrangement of the anode openings 32A can be the same as in the first embodiment.
  • the dielectric layer 37 has a refractive index lower than that of the organic layer 33 and includes a plurality of openings 37A.
  • the inner side surface 37a of the opening 37A is covered with an organic layer 33 (opening inner side surface covering portion 33a). As long as the inner surface 37a of the opening covers the inner surface 37a, the opening 37A may be filled or may be partially filled.
  • the material and thickness of the dielectric layer 37 the same materials as those in the first embodiment can be used.
  • the shape and arrangement of the openings 37A can be the same as in the first embodiment.
  • the organic layer 33 corresponds to the shape of the opening inner surface covering portion 33a covering the inner surface 37a of the opening 37A, the anode opening inner surface covering portion 33b covering the inner surface of the anode opening 32A, and the radiation starting point portion 34a. 33d. Further, the example shown in FIG. 5 further includes a dielectric layer 37 and a layered portion 33 c disposed between the opening inner side surface covering portion 33 a and the cathode 34.
  • the material of the light emitting layer any material known as a material for an organic EL element can be used as in the first embodiment.
  • the organic layer 33 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like in addition to the light emitting layer made of an organic EL material, as in the first embodiment.
  • the same materials as those in the first embodiment can be used.
  • the shape and arrangement of the radiation starting point 34a can be the same as those of the radiation starting point of the first embodiment.
  • a part (AR1) of the light emitted from the AR point of the light emitting layer included in the organic layer 33 is captured as SPP mode light on the surface 34A of the cathode 34 through the near field around the light emitting point.
  • the SPP mode light moves along the surface 34A (arrow AR2), is re-radiated at the radiation starting point 34a 1 (34a) to become propagating light, and further passes through the dielectric layer 37 and the like and enters the substrate 31. , Taken out of the substrate.
  • the arrow AR1 schematically shows the propagation of a part of the light in order to explain the function and effect of the present invention.
  • the light indicated by the arrow AR2 and the arrows BR1 to BR3 and the light indicated by the arrows CR1 to CR3 to be described later are also schematically shown.
  • the light BR1 is light that travels perpendicularly to the substrate 31 toward the substrate side.
  • the light passes through the dielectric layer 37, the anode 32, and the substrate 31 without being refracted at the interface with the layer 37, the interface between the dielectric layer 37 and the anode 32, and the interface between the anode 32 and the substrate 31. It is.
  • the light BR2 re-radiated at the radiation start point 34a 1 (34a) is refracted at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner side surface 37a of the opening 37A), and the dielectric layer 37, refracts at the interface between the dielectric layer 37 ⁇ / b> B (37) and the anode 32, travels through the anode 32, refracts at the interface between the anode 32 and the substrate 31, and then takes out through the substrate 31 to the outside. Can be.
  • the refraction at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) causes refraction of the anode 32.
  • the incident angle to the substrate 31 is changed to a small angle (an angle closer to the normal direction of the substrate 31).
  • the light extraction efficiency is improved by having the configuration including the inner side surface 37a of the opening 37A.
  • the light traveling direction changes closer to the normal line of the substrate 31 due to refraction at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner surface 37a of the opening 37A). Therefore, as in the case of the light BR2, there is an increase in light that can avoid total reflection at the interface between the substrate and air, and the light extraction efficiency can be improved.
  • the current density is highest near the shortest distance between the cathode 34 and the anode 32, and the amount of light emission is increased.
  • the light emission at the CRl and CRr points of the light emitting layer included in the organic layer 33 schematically shows the light emission at the point where the light emission amount is large.
  • the light CR1 is light traveling toward the substrate side in a direction perpendicular to the substrate 31, and is refracted at the interface between the organic layer 33 and the substrate 31. Without going through the substrate 31, it is taken out.
  • the light CR2 is refracted at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner surface 37a of the opening 37A), passes through the dielectric layer 37B (37), and passes through the dielectric layer 37B ( 37) and refracted at the interface between the anode 32 and the anode 32, and after being refracted at the interface between the anode 32 and the substrate 31, it can be taken out through the substrate 31 to the outside.
  • the light CR2 travels from the organic layer 33 to the dielectric layer 37, the refraction at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner surface 37a of the opening 37A) causes the light to pass through.
  • the direction of travel changes toward the normal line of the substrate 31.
  • the light is incident at an angle greater than the critical angle at the interface between the anode 32 and the substrate 31 (for example, glass) or the interface between the substrate 31 and air, the light is totally reflected, but refraction at the inner surface 37a of the opening 37A.
  • the traveling direction of the light changes toward the normal line of the substrate 31. Therefore, light that can avoid total reflection at the interface between the anode 32 and the substrate 31 and at the interface between the substrate 31 and air is increased, and the light extraction efficiency is improved.
  • the same effect can be obtained for the light CR3. With respect to light emitted at the CRr point of the light emitting layer included in the organic layer 33, the same effect as the light emitted at the CRl point can be obtained.
  • the organic EL device of the present invention even if light emitted from the light emitting layer included in the organic layer is captured as SPP mode light on the cathode surface, the SPP mode light is regenerated at the radiation starting point on the cathode surface.
  • the light extracted from the cathode surface is refracted from the normal direction of the substrate at the interface between the organic layer and the dielectric layer (inner side surface of the opening), and is extracted from the substrate. The amount of light extracted to the can be increased.
  • FIG. 6 is a diagram illustrating an example of an image display device including the organic EL element.
  • the image display device 100 shown in FIG. 6 is a so-called passive matrix type image display device.
  • the anode wiring 104, the anode auxiliary wiring 106, the cathode wiring 108, the insulating film 110, and the cathode partition 112 are used.
  • a sealing plate 116 and a sealing material 118 are used.
  • a plurality of anode wirings 104 are formed on the substrate 11 of the organic EL element 10.
  • the anode wirings 104 are arranged in parallel at a constant interval.
  • the anode wiring 104 is made of a transparent conductive film, and for example, ITO can be used.
  • the thickness of the anode wiring 104 can be set to 100 nm to 150 nm, for example.
  • An anode auxiliary wiring 106 is formed on the end of each anode wiring 104.
  • the anode auxiliary wiring 106 is electrically connected to the anode wiring 104.
  • the anode auxiliary wiring 106 functions as a terminal for connecting to the external wiring on the end side of the substrate 11, and is connected to an external driving circuit (not shown) via the anode auxiliary wiring 106.
  • a current can be supplied to the anode wiring 104.
  • the anode auxiliary wiring 106 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
  • a plurality of cathode wirings 108 are provided on the organic EL element 10.
  • the plurality of cathode wirings 108 are arranged so as to be parallel to each other and orthogonal to the anode wiring 104.
  • Al or an Al alloy can be used for the cathode wiring 108.
  • the thickness of the cathode wiring 108 is, for example, 100 nm to 150 nm.
  • a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 108, similarly to the anode auxiliary wiring 106 for the anode wiring 104, and is electrically connected to the cathode wiring 108. Therefore, a current can flow between the cathode wiring 108 and the cathode auxiliary wiring.
  • an insulating film 110 is formed on the substrate 11 so as to cover the anode wiring 104.
  • a rectangular opening 120 is provided in the insulating film 110 so as to expose a part of the anode wiring 104.
  • the plurality of openings 120 are arranged in a matrix on the anode wiring 104.
  • the organic EL element 10 is provided between the anode wiring 104 and the cathode wiring 108. That is, each opening 120 becomes a pixel. Accordingly, a display area is formed corresponding to the opening 120.
  • the film thickness of the insulating film 110 can be, for example, 200 nm to 100 nm, and the size of the opening 120 can be, for example, 100 ⁇ m ⁇ 100 ⁇ m.
  • the organic EL element 10 is located between the anode wiring 104 and the cathode wiring 108 in the opening 120.
  • the anode 12 of the organic EL element 10 is in contact with the anode wiring 104 and the cathode 14 is in contact with the cathode wiring 108.
  • the thickness of the organic EL element 10 can be set to, for example, 150 nm to 200 nm.
  • a plurality of cathode partition walls 112 are formed on the insulating film 110 along a direction perpendicular to the anode wiring 104.
  • the cathode partition 112 plays a role for spatially separating the plurality of cathode wirings 108 so that the wirings of the cathode wirings 108 do not conduct with each other. Accordingly, the cathode wiring 108 is disposed between the adjacent cathode partition walls 112.
  • the size of the cathode partition 112 for example, the one having a height of 2 ⁇ m to 3 ⁇ m and a width of 10 ⁇ m can be used.
  • the substrate 11 is bonded to each other with a sealing plate 116 and a sealing material 118 interposed therebetween. Thereby, the space in which the organic EL element 10 is provided can be sealed, and the organic EL element 10 can be prevented from being deteriorated by moisture in the air.
  • a sealing plate 116 for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
  • a current can be supplied to the organic EL element 10 via the anode auxiliary wiring 106 and the cathode auxiliary wiring (not shown) by a driving device (not shown) to cause the light emitting layer to emit light. Then, light can be emitted from the substrate 11 through the substrate 11.
  • An image can be displayed on the image display device 100 by controlling the light emission and non-light emission of the organic EL element 10 corresponding to the above-described pixel by the control device.
  • FIG. 7 is a diagram illustrating an example of an illumination device including the organic EL element 10 described above.
  • the illumination device 200 shown in FIG. 7 includes the organic EL element 10 described above, and a terminal 202 that is installed adjacent to the substrate 11 (see FIG. 1) of the organic EL element 10 and connected to the anode 12 (see FIG. 1).
  • the terminal 203 is connected to the cathode 14 (see FIG. 1), and the lighting circuit 201 is connected to the terminal 202 and the terminal 203 to drive the organic EL element 10.
  • the lighting circuit 201 has a DC power source (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 12 and the cathode 14 of the organic EL element 10 through the terminal 202 and the terminal 203. Then, the organic EL element 10 is driven to emit light from the light emitting layer, and light is emitted through the substrate 11 to be used as illumination light.
  • the light emitting layer may be made of a light emitting material that emits white light, and each of the organic EL elements 10 using light emitting materials that emit green light (G), blue light (B), and red light (R). A plurality of them may be provided so that the combined light is white.
  • the manufacturing method of the organic EL element according to the first embodiment of the present invention will be described with reference to FIG. First, as shown in FIG. 8A, the anode 12 and the dielectric layer 17 are formed in order on the substrate 11.
  • the method for forming the anode 12 and the dielectric layer 17 is not particularly limited. For example, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or the like can be used.
  • the surface treatment includes high-frequency plasma treatment, sputtering treatment, corona treatment, UV ozone irradiation treatment, ultraviolet irradiation treatment, oxygen plasma treatment, and the like.
  • anode buffer layer (not shown) instead of or in addition to the surface treatment of the anode 12.
  • anode buffer layer is applied by a wet process, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating
  • the film can be formed using a coating method such as a spray method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, or an inkjet printing method.
  • the anode opening 12A and the opening 17A communicating with each other are formed so as to penetrate the anode 12 and the dielectric layer 17 formed in the step of FIG.
  • a method using photolithography can be used.
  • a positive resist solution is applied on the dielectric layer 17, and the excess resist solution is removed by spin coating or the like to form a resist layer 19. To do.
  • FIG. 8C the resist layer 19 is exposed with a predetermined pattern corresponding to the opening 17A (see FIG. 8F) (exposed portion 19a). Then, the resist layer 19a in the exposed pattern portion of the resist layer 19 is removed using a developer. As a result, the surface of the dielectric layer 17 is exposed corresponding to the exposed pattern portion (FIG. 8D).
  • the dielectric layer 17 is etched away as shown in FIG.
  • the etching either dry etching or wet etching can be used.
  • the shape of the opening 17A can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE) using dielectric coupling plasma or capacitive coupling plasma can be used.
  • wet etching a solution of a metal salt such as an iron chloride aqueous solution or a method of immersing in an acid such as dilute hydrochloric acid or dilute sulfuric acid can be used. By this etching, the surface of the anode 12 is exposed corresponding to the pattern.
  • RIE reactive ion etching
  • wet etching a solution of a metal salt such as an iron chloride aqueous solution or a method of immersing in an acid such as dilute hydrochloric acid or dilute sulfuric acid can be used.
  • FIG. 8F a resist removing solution or the like
  • FIG. 8G the exposed portion of the anode 12 is removed using the dielectric layer 17 as a mask. Etch away.
  • a method similar to the method described with reference to FIG. 8F can be used.
  • the anode 12 is selectively selected without significantly affecting the dielectric layer 17 by changing the etching conditions. It can be etched. Thereby, the surface of the substrate 11 is exposed corresponding to the pattern, and the anode opening 12A is formed.
  • FIG. 8F and FIG. 8G can be regarded as a process of forming the opening 17A and the anode opening 12A that penetrate through the anode 12 and the dielectric layer 17 and communicate with each other.
  • the exposed portion of the substrate 11 is removed by etching using a portion other than the portion where the communicating opening 17A and the anode opening 12A are formed as a mask.
  • etching a method similar to the method described with reference to FIGS. 8F and 8G can be used, but the dielectric layer 17 and the anode 12 are not significantly affected by changing the etching conditions.
  • the substrate 11 can be selectively etched. Thereby, the concave portion 11A communicating with the opening 17A and the anode opening 12A can be formed corresponding to the pattern. Conversely, the portion other than the concave portion 11A becomes the convex portion 11B. According to this method, since it is not necessary to prepare a mask separately and perform photolithography, the concave portion 11A can be easily formed.
  • the inner surface 17a of the opening 17A, the inner surface 12a of the anode opening 12A, and the inner surface 11a of the recess 11A are covered, and the dielectric layer 17 and the opening inner surface are covered.
  • An organic layer 13 including a light emitting layer made of an organic EL material that covers the portion 13a is formed.
  • the organic layer 13 includes an opening inner side surface covering portion 13a, an anode opening inner side surface covering portion 13b, a concave inner side surface covering portion 13c, and a layered portion 13d.
  • a conventionally known method can be used to form the organic layer 13 and is not limited. For example, methods such as a vacuum deposition method, a spin coating method, a casting method, and an LB method can be used.
  • a concavo-convex structure is formed on the surface of the organic layer 13 so as to have a convex portion 13e (see FIG. 1) at a position corresponding to the radiation starting point portion 14a of the cathode 14 to be formed later.
  • a method using photolithography can be used for forming the unevenness. In order to do this, as shown in FIG. 8J, first, a positive resist solution is applied on the organic layer 13, and the excess resist solution is removed by spin coating or the like to form a resist layer 29. .
  • the exposed portion of the organic layer 13 is removed by etching to form a convex portion 13e.
  • etching either dry etching or wet etching can be used.
  • the shape of the convex portion 13e can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE), oxygen plasma ashing, or the like can be used.
  • wet etching a method of immersing in dilute hydrochloric acid, dilute sulfuric acid, or various organic solvents can be used.
  • a concavo-convex structure including a convex portion 13e corresponding to the radiation starting point portion 14a can be formed on the surface of the organic layer 13 corresponding to the pattern. Since photolithography has a positioning accuracy up to about 1 ⁇ m, it can be formed such that the radiation starting point of the cathode and the anode opening overlap in a plan view.
  • a cathode material is vapor-deposited on the organic layer 13, and the cathode 14 having the radiation starting point portion 14a is formed by following the uneven structure of the organic layer 13.
  • the organic EL element 10 can be manufactured by the above process. After these series of steps, it is preferable to use the organic EL element 10 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic EL element 10 from the outside.
  • a protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
  • As the protective cover a glass plate, a plastic plate whose surface is subjected to low water permeability treatment, a metal, or the like can be used.
  • the protective cover is sealed by being bonded to the substrate 11 with a thermosetting resin, a photocurable resin, low-melting glass, or the like.
  • a spacer because a predetermined space can be maintained and the organic EL element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon, or helium is sealed in this space, it becomes easy to prevent oxidation of the cathode metal above the element. In particular, when helium is used, heat conduction is high, and thus heat generated from the organic EL element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic EL element 10.
  • FIG. 9A corresponds to FIG. Similarly to FIG. 8E, the dielectric layer 27 is removed by etching using the remaining resist layer as a mask to form an opening 27A (FIG. 9A).
  • an opening inner side surface covering portion 23a that covers the inner side surface 27a of the opening 27A is formed, and the dielectric layer 27, the opening inner side surface covering portion 23a, and the cathode 24 are formed.
  • an organic layer including a light emitting layer made of an organic EL material is formed. A method similar to the manufacturing method of the first embodiment can be used for forming the organic layer.
  • the step of forming the cathode 24 having the radiation starting point portion 24a is performed in the same manner as in the manufacturing method of the first embodiment, and the organic EL element of the second embodiment shown in FIG. 9C is obtained.
  • the method of manufacturing from the anode side has been described, but it may be manufactured from the cathode side.
  • FIG. 10A corresponds to FIG. Similarly to FIG. 8F, the dielectric layer 37 is removed by etching using the remaining resist layer as a mask to form an opening 37A, and then the opening 37A is formed as shown in FIG.
  • the anode opening 32A is formed using the dielectric layer 37 as a mask.
  • an opening inner surface covering portion 33a covering the inner surface 37a of the opening 37A and an anode opening inner surface covering portion 33b covering the inner surface of the anode opening 32A are provided.
  • the dielectric layer 37 and the layered portion 33c disposed between the opening inner side surface covering portion 33a and the cathode 34 are formed to form the organic layer 33 including a light emitting layer made of an organic EL material.
  • a method similar to the manufacturing method of the first embodiment can be used.
  • the step of forming the cathode 34 having the radiation starting point portion 34a is performed in the same manner as in the manufacturing method of the first embodiment, and the organic EL device of the third embodiment shown in FIG. 10C is obtained.
  • the method of manufacturing from the anode side has been described, but it may be manufactured from the cathode side.
  • FIG. 10 shows a total emission using a finite difference time domain (FDTD) method in order to confirm the effect of the organic EL element 20 (see FIG. 4) of the second embodiment of the present invention.
  • the result of computer simulation calculation is shown with the light extraction efficiency as the light emission intensity into the substrate with respect to the intensity.
  • the FDTD method is an analysis method for differentiating Maxwell's equation describing a time change of an electromagnetic field spatially and temporally and tracking the time change of the electromagnetic field at each point in the space. More specifically, a calculation method is adopted in which light emission in the light emitting layer is regarded as radiation from a minute dipole, and time variation of the radiation (electromagnetic field) is tracked.
  • the simulation result shows the result of calculating the light extraction efficiency of the light extracted up to the substrate.
  • FIG. 11 shows the light extraction efficiency ( ⁇ ) of radiated light from an isotropic (random) dipole.
  • the “reverse phase” in the legend of FIG. 11 means that the radiation starting point of the cathode overlaps with a portion other than the opening of the dielectric layer (substantial portion of the dielectric layer) in plan view as shown in FIG. It means having a relative positional relationship. More specifically, the “reverse phase” in the graph shown in FIG. 11 refers to a portion (dielectric material) other than the radiation starting point 24a of the cathode 24 and the opening 27A of the dielectric layer 27, as shown in FIG.
  • the substantial axis of the dielectric layer 27 has a center axis L1 perpendicular to the substrate at the radiation starting point of the cathode. It means that the relationship coincides with the axis L2.
  • “The same phase” in the legend of FIG. 11 means that, as shown in FIG. 12, the radiation starting point of the cathode and the portion other than the opening of the dielectric layer (substantial portion of the dielectric layer) are viewed in plan view. It is in a relationship of non-overlapping arrangement, in particular, in a relationship in which the central axis L1 orthogonal to the substrate at the cathode radiation starting point portion is shifted from the central axis L2 of the substantial portion 27B of the dielectric layer 27 by a half period Means.
  • cathode concavity and convexity +“ reverse phase ” means that the radiation starting point of the cathode and the portion other than the opening of the dielectric layer (substantial portion of the dielectric layer) are in the above-described reversed phase. And a structure having a concave portion having a shape to be described later as a radiation starting point portion on the cathode.
  • cathode concavity and convexity +“ in phase ” means that the emission starting portion of the cathode and the portion other than the opening of the dielectric layer (substantial portion of the dielectric layer) are in the same phase. And a structure having a concave portion having a shape to be described later as a radiation starting point portion on the cathode.
  • cathode unevenness only means “cathode unevenness +“ in phase ”” and “cathode unevenness +“ reverse phase ””, cathode, organic layer, and anode opening having the same configuration as “cathode unevenness +“ reverse phase ””. It means a structure in which layered anodes not having a thickness are sequentially laminated with a thickness described later, that is, the cathode side structure is the same as that of the present invention, but the anode side structure is different from the present invention. .
  • “Standard” in the legend of FIG. 11 is a structure (solid structure) in which a layered cathode not having a radiation starting point, an organic layer, and a layered anode not having an anode opening are sequentially laminated at a thickness described later. ).
  • each component of the organic EL element of the second embodiment used in the computer simulation and its refractive index are as follows.
  • the substrate 21 is made of glass, and a refractive index of 1.52 is used.
  • the refractive index is 1.82 + 0.009i at 550 nm, and other wavelengths are extrapolated by the Lorentz model.
  • the dielectric layer 27 is made of SOG, and the refractive index is 1.25.
  • the cathode 24 is made of aluminum (Al), the refractive index is 0.649 + 4.32i at 550 nm, and the other wavelengths are extrapolated by the Drude model. Thereafter, unless otherwise noted, the above values are used for the refractive indexes of glass, organic layer, and aluminum, respectively.
  • FIG. 13 shows the size of each component of the organic EL element (cathode unevenness + “reverse phase” configuration) of the second embodiment used in the computer simulation.
  • the layer thicknesses of the anode 22, the organic layer 23 (23a and 23b), and the cathode 24 were 150 nm, 150 nm, and 200 nm, respectively.
  • the arrangement period of the plurality of radiation starting point portions was 500 nm, the depth of the concave portion forming the radiation starting point portion was 100 nm, and the width was 100 nm.
  • the distance (arrangement period) between the central axes of the adjacent dielectric layer 27 other than the opening 27A (substantial part of the dielectric layer) 27B is 500 nm, similarly to the arrangement period of the radiation starting point of the cathode. It was.
  • Each structure of “cathode concavity and convexity +“ in phase ”” has the same size.
  • the radiation starting point and the opening have a translational symmetric structure in the depth direction of the drawing. That is, in plan view, the convex portion and the opening have a line shape extending infinitely in one direction in the plane.
  • the light source is not translationally symmetric in the depth direction of the paper, but is placed in the form of dots in the layered region of the organic layer.
  • FIG. 11 shows the calculation result.
  • the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention, are more than those of the “standard” configuration and the “cathode unevenness only” configuration.
  • a high light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm.
  • the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention is in the range of 450 nm to 750 nm than in the case of the “standard” configuration.
  • a significantly higher light extraction efficiency was obtained.
  • the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention, is particularly 520 nm to 680 nm than the configuration of “cathode unevenness only”. In the range of, there was a big difference.
  • the above results show the effect of improving the light extraction efficiency of the cathode concavo-convex structure (second electrode side structure) and further combine with the anode side structure (first electrode side structure) as in the present invention to further increase the light extraction efficiency. It is shown that can be improved. Such a matter is theoretically difficult to predict, and can only be known after performing a simulation.
  • FIGS. 14A and 14B show the total emission of the organic EL device (see FIG. 5) according to the third embodiment of the present invention using a finite difference time domain (FDTD) method. The result of computer simulation calculation using the radiation intensity of light into the substrate with respect to the intensity as the light extraction efficiency is shown.
  • FIGS. 14A and 14B also show the light extraction efficiency ( ⁇ ) of radiated light from an isotropic (random) dipole.
  • FIGS. 14A and 14B are diagrams in which the period of arrangement of a plurality of radiation starting points is 500 nm and 1000 nm, respectively.
  • the materials and refractive indexes of the components of the organic EL element of the third embodiment used in the computer simulation are the same as those shown in FIG.
  • FIG. 15 shows the size of each component of the organic EL element (cathode unevenness + “reverse phase” configuration) of the third embodiment used in the computer simulation.
  • the layer thicknesses of the anode 32, the dielectric layer 37, the layered portion 33c of the organic layer 33, and the cathode 34 were 150 nm, 120 nm, 100 nm, and 200 nm, respectively.
  • the arrangement period of the plurality of radiation starting points was 500 nm (FIG. 14A) and 1000 nm (FIG. 14B), the depth of the concave portion forming the radiation starting point was 100 nm, and the width was 100 nm.
  • the distance (arrangement period) between the central axes of the parts other than the opening 37A of the adjacent dielectric layer 37 (substantial part of the dielectric layer) 37B is also 500 nm, similarly to the arrangement period of the radiation starting point part of the cathode. (FIG. 14A) and 1000 nm (FIG. 14B).
  • Each structure of “cathode concavity and convexity +“ in phase ”” has the same size.
  • FIG. 14A shows the calculation result when the period is 500 nm.
  • the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention are “standard” configuration and “cathode unevenness only” High light extraction efficiency was obtained over the entire range of 450 nm to 750 nm, which was the calculated range, compared with the case of the configuration of (5).
  • the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention differs as the wavelength increases compared to the “standard” configuration.
  • the difference in the range of 450 nm to 550 nm was larger than that in the case of the configuration of “cathode unevenness only.”
  • FIG. 14B shows the calculation result when the period is 1000 nm.
  • the configuration of “cathode unevenness +“ in phase ”” and “cathode unevenness +“ reverse phase ”” according to the embodiment of the present invention is “standard”.
  • a higher light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm than in the case of the configuration and the “cathode unevenness only” configuration.
  • the difference in light extraction efficiency was larger when the period was 500 nm than when 1000 nm. This indicates that the effect of the present invention can be increased by selecting the period.
  • the difference in the range of 450 nm to 550 nm was larger than in the case of the configuration of “cathode unevenness only.”
  • the organic material of the third embodiment shown in FIGS. The result in the case of the EL element is different from the result in the case of the organic EL element of the second embodiment shown in FIG. 11 in the wavelength range where the difference in light extraction efficiency is large.
  • Substrate 11A Recess 11a Inner side surface of recess 12, 22, 32 First electrode 12A, 32A First electrode opening 12a, 32a First electrode opening inner surface 13, 23, 33 Organic layers 14, 24 , 34 Second electrode 14a, 24a, 34a Radiation starting point 17, 27, 37 Dielectric layer 17A, 27A, 37A Opening 17a, 27a, 37a Inner side surface 10, 20, 30 Organic EL element 100 Image display device 200 Lighting device

Abstract

This organic EL element (10) is provided with a first electrode (12), an organic layer (13) containing a light-emitting layer comprising an organic EL material, and a second electrode (14) in this order on a substrate (11), and is configured to pull light from the first electrode side to the outside. The second electrode (14) comprises a plurality of emission origin points that are cyclically arranged on the surface (14A) of the organic layer side thereof. A dielectric layer (17) that has a lower refractive index than the organic layer (13) and that comprises a plurality of openings is provided between the first electrode (12) and the second electrode (14). The organic layer (13) comprises an opening inner surface covering section (13a) that covers the inner surface of the openings (17A). A cycle (λ1) in which the openings (17A) are arranged and a cycle (λ2) in which the emission origin points (14a) are arranged correspond in at least one in-plane direction of the element.

Description

有機EL素子並びにそれを備えた画像表示装置及び照明装置ORGANIC EL ELEMENT AND IMAGE DISPLAY DEVICE AND LIGHTING DEVICE EQUIPPED
 本発明は、有機EL素子並びにそれを備えた画像表示装置及び照明装置に関するものである。本願は、2012年12月28日に、日本に出願された特願2012-288518に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an organic EL element, and an image display device and an illumination device including the organic EL element. This application claims priority based on Japanese Patent Application No. 2012-288518 filed in Japan on December 28, 2012, the contents of which are incorporated herein by reference.
 有機EL素子は、広視野角、高速応答、鮮明な自発光表示等の特徴を有し、また、薄型軽量で低消費電力であること等の理由から、次世代の照明装置や画像表示装置等の柱として期待されている。
 有機EL素子は、有機発光層で発生した光が取り出される向きに応じて、支持基板側から光が取り出されるボトムエミッション型と、支持基板の反対側から光が取り出されるトップエミッション型とに分けられる。
Organic EL elements have features such as a wide viewing angle, high-speed response, clear self-luminous display, etc., and they are thin, lightweight, and have low power consumption. It is expected as a pillar of
Organic EL elements are classified into a bottom emission type in which light is extracted from the support substrate side and a top emission type in which light is extracted from the opposite side of the support substrate, depending on the direction in which the light generated in the organic light emitting layer is extracted. .
 ボトムエミッション型の有機EL素子において、発光層で発光した光のうち、透明基板に垂直に入射した光は透明基板を透過して素子の外部に取り出される。発光層で発光した光のうち、透明基板(例えば、ガラス(屈折率:1.52))と空気(屈折率:1.0)との界面に臨界角以下の小さい入射角(入射光線と入射する界面の法線がなす角度)で入射した光も、その界面で屈折して素子の外部に取り出される。本明細書では、これらの光を外部モード(External Mode)光という。
 これに対して、発光層で発光した光のうち、透明基板と空気との界面に臨界角より大きい入射角で入射した光はその界面で全反射されて素子の外部に取り出されず、最終的に材料に吸収されうる。本明細書では、この光を基板モード(Substrate Mode)光といい、これによる損失を基板損失という。
 発光層で発光した光のうち、透明導電性酸化物からなる陽極(例えば、酸化インジウム錫(ITO(屈折率:1.82))と透明基板(例えば、ガラス(屈折率:1.52))との界面に臨界角より大きい入射角で入射した光もその界面で全反射されて素子の外部に取り出されず、最終的に材料に吸収されうる。本明細書では、この光を導波モード(Waveguide Mode)光といい、これによる損失を導波損失という。
 発光層で発光した光のうち、金属陰極等の金属層表面に入射して金属陰極の自由電子振動と結合し、表面プラズモンポラリトン(SPP;Surface Plasmon Polariton)として金属陰極の表面に捕捉された光も素子の外部に取り出されず、最終的に材料に吸収されうる。本明細書では、この光をSPPモード光(SPP Mode)といい、これによる損失をプラズモン損失という。
In a bottom emission type organic EL element, light incident on the transparent substrate out of the light emitted from the light emitting layer passes through the transparent substrate and is extracted outside the element. Of the light emitted from the light-emitting layer, a small incident angle (incident light and incident light) below the critical angle at the interface between the transparent substrate (for example, glass (refractive index: 1.52)) and air (refractive index: 1.0) The light incident at an angle formed by the normal line of the interface is also refracted at the interface and extracted outside the device. In this specification, these lights are called external mode lights.
On the other hand, of the light emitted from the light emitting layer, the light incident on the interface between the transparent substrate and air at an incident angle larger than the critical angle is totally reflected at the interface and is not taken out of the device, and finally Can be absorbed by the material. In this specification, this light is referred to as substrate mode light, and the loss due to this is referred to as substrate loss.
Of the light emitted from the light emitting layer, an anode made of a transparent conductive oxide (for example, indium tin oxide (ITO (refractive index: 1.82)) and a transparent substrate (for example, glass (refractive index: 1.52)) Light incident on the interface with the incident angle larger than the critical angle is also totally reflected at the interface and is not taken out of the element, but can be finally absorbed by the material. (Waveguide Mode) light, and the resulting loss is called waveguide loss.
Of the light emitted from the light-emitting layer, the light is incident on the surface of the metal layer such as the metal cathode and coupled with free electron vibration of the metal cathode, and is captured on the surface of the metal cathode as surface plasmon polariton (SPP). Can not be taken out of the device and can be finally absorbed by the material. In this specification, this light is called SPP mode light (SPP Mode), and the loss due to this is called plasmon loss.
 有機EL素子の光取り出し効率(発光層で発光した光に対して素子の外部に取り出される光の割合)は一般に20%程度に留まっている(例えば、特許文献1)。すなわち、発光層で発光した光のうち、約80%が損失となっており、これらの損失を低減して光の取り出し効率を向上させることが大きな課題となっている。
 ここで、基板モード光の取り出しについては透明基板上に光拡散シートなどを設けることで対処できる(例えば、特許文献2)。しかし、導波モード光及びSPPモード光の低減や取り出し、特にSPPモード光の低減や取り出しについては研究が緒に就いたばかりといえる。
The light extraction efficiency of the organic EL element (ratio of the light extracted outside the element with respect to the light emitted from the light emitting layer) is generally limited to about 20% (for example, Patent Document 1). That is, about 80% of the light emitted from the light emitting layer is lost, and it is a big problem to reduce these losses and improve the light extraction efficiency.
Here, the extraction of the substrate mode light can be dealt with by providing a light diffusion sheet or the like on the transparent substrate (for example, Patent Document 2). However, research on the reduction and extraction of guided mode light and SPP mode light, particularly reduction and extraction of SPP mode light, has just started.
 導波モード光は、光が高屈折率材料から低屈折率材料に入射する際に全反射が起きることにより生じる。そのため、導波モード光を低減するには全反射を起きにくくする、あるいは、全反射を生じる光の割合を低減することによって導波モード光を低減する方策が知られている。
 特許文献3には、有機発光層の近傍に有機発光層や透明電極よりも屈折率の高い高屈折率層を挿入する構成が開示されている。特許文献2には、有機発光層及び透明電極に有機発光層及び透明電極よりも低屈折率の微粒子を分散させることで、等価的に有機発光層及び透明電極の屈折率を下げる構成が開示されている。
The guided mode light is generated when total reflection occurs when light enters the low refractive index material from the high refractive index material. Therefore, in order to reduce the guided mode light, there are known measures for reducing the guided mode light by making the total reflection less likely to occur or by reducing the ratio of the light causing the total reflection.
Patent Document 3 discloses a configuration in which a high refractive index layer having a higher refractive index than that of an organic light emitting layer or a transparent electrode is inserted in the vicinity of the organic light emitting layer. Patent Document 2 discloses a configuration in which the refractive index of the organic light emitting layer and the transparent electrode is equivalently lowered by dispersing fine particles having a refractive index lower than that of the organic light emitting layer and the transparent electrode in the organic light emitting layer and the transparent electrode. ing.
 特許文献4及び特許文献5には、基板上に順に形成された陽極層及び誘電体層にキャビティを有する構成が開示されている。
このキャビティの側面(基板に対して垂直に延びる界面)に入射する光は、この界面において基板側に屈折する。基板側に屈折した光は、陽極と基板の界面、及び基板と空気の界面で全反射を生じる光の割合を低減することができる。
Patent Documents 4 and 5 disclose a configuration in which cavities are provided in an anode layer and a dielectric layer that are sequentially formed on a substrate.
Light incident on the side surface of the cavity (interface extending perpendicular to the substrate) is refracted toward the substrate at this interface. The light refracted to the substrate side can reduce the proportion of light that causes total reflection at the interface between the anode and the substrate and the interface between the substrate and air.
 一方、金属層の表面に捕捉されたSPPモード光を取り出す方法として、金属層の表面に周期的な凹凸構造を形成する構成が知られている(特許文献6~9)。 On the other hand, as a method of extracting SPP mode light trapped on the surface of the metal layer, a configuration in which a periodic uneven structure is formed on the surface of the metal layer is known (Patent Documents 6 to 9).
特開2008-210717号公報JP 2008-210717A 特開2011-243625号公報JP 2011-243625 A 特開2011-233288号公報JP 2011-233288 A 特表2003-522371号公報Special table 2003-522371 特開2011-82192号公報JP 2011-82192 A 特開2006-313667号公報JP 2006-313667 A 特開2009-158478号公報JP 2009-158478 A 特表2005-535121号公報JP 2005-535121 Gazette 特開2004-31350号公報JP 2004-31350 A
 しかしながら、SPPモード光を有機層中に伝播光として取り出しても、その光が導波モード光となって素子の外部に取り出すことができなければ、光取り出し効率を向上させることができない。 However, even if the SPP mode light is extracted as propagating light into the organic layer, the light extraction efficiency cannot be improved unless the light becomes guided mode light and can be extracted outside the device.
 本発明は、上記事情に鑑みなされたものであり、SPPモード光及び導波モード光を効果的に取り出して光取り出し効率が向上した有機EL素子並びにそれを備えた画像表示装置及び照明装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides an organic EL element in which SPP mode light and waveguide mode light are effectively extracted to improve light extraction efficiency, and an image display device and an illumination device including the organic EL element. The purpose is to do.
 本発明者らは、まず、SPPモード光を伝播光として取り出し、その次に、その伝播光を導波モード光とせずに素子の外部に取り出すという2ステップの光取り出し機構を想定して多数の構造の中から、光取り出し効率を向上させる有効な構造を鋭意検討した。
 光取り出し効率を直接計測することは困難であるため、シミュレーションに基づいて検討を行った。
The present inventors first assume a number of light extraction mechanisms that take out a SPP mode light as propagating light and then extract the propagating light to the outside of the device without making it a guided mode light. Among the structures, we have intensively studied effective structures that improve the light extraction efficiency.
Since it is difficult to directly measure the light extraction efficiency, we examined it based on simulation.
 2ステップの光取り出し機構は、SPPモード光を生成し、生成されたSPPモード光を有機層中に伝播光として取り出すことを可能にする周期的に配置される複数の放射起点部を備えた第2電極側構造と、その伝播光として取り出した光を導波モード光とせずに外部に取り出すための第1電極側構造とからなる。 The two-step light extraction mechanism is a first step including a plurality of emission start points periodically arranged to generate SPP mode light and allow the generated SPP mode light to be extracted into the organic layer as propagating light. The structure includes a two-electrode side structure and a first electrode-side structure for extracting the light extracted as the propagating light to the outside without using the guided mode light.
 第2電極側構造の放射起点部とは、金属をはじめとする光反射性の材料からなる第2電極表面に捕捉されたSPPモード光が伝播光として再放射される起点になる部分である。
 平坦な金属表面に生成されるSPPモード光の角振動数をω、波数ベクトルをkspとすると、この分散関係は、金属の誘電率の実部εと、金属表面に接触する誘電体の誘電率εによって決まる。近似的には、次式(1)によって与えられる(cは入射光の速さ)。
Figure JPOXMLDOC01-appb-M000001
一方、誘電体中を伝播する光の波数の大きさは次の式(2)によって与えられる。
Figure JPOXMLDOC01-appb-M000002
第2電極として用いられる金属等の材料においては、ε<0なので、式(2)はSPPモード光の波数kspより小さく、式(1)の分散曲線と交点をもたない。そのため、誘電体中の伝播光では金属表面に直接SPPモード光を励起することはできない。平坦な金属表面に存在するSPPモード光を直接、誘電体中に伝播光として取り出すこともできない。
The radiation starting point portion of the second electrode side structure is a portion serving as a starting point from which the SPP mode light captured on the surface of the second electrode made of a light reflective material such as metal is re-radiated as propagating light.
When the angular frequency of the SPP mode light generated on a flat metal surface is ω and the wave vector is k sp , this dispersion relation is expressed by the real part ε m of the dielectric constant of the metal and the dielectric that contacts the metal surface. It depends on the dielectric constant ε d . Approximately, it is given by the following equation (1) (c is the speed of incident light).
Figure JPOXMLDOC01-appb-M000001
On the other hand, the magnitude of the wave number of light propagating in the dielectric is given by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
In a material such as a metal used as the second electrode, since ε m <0, Equation (2) is smaller than the wave number k sp of the SPP mode light and does not have an intersection with the dispersion curve of Equation (1). Therefore, the propagating light in the dielectric cannot excite the SPP mode light directly on the metal surface. The SPP mode light present on the flat metal surface cannot be directly extracted into the dielectric as propagating light.
 有機EL素子においても、第2電極の有機層側表面が平坦であって凹凸構造を有さない場合には、SPPモード光は有機層に取り出されることなく熱損失となってしまう。しかし、第2電極表面に凹凸構造を設けると、この凹凸構造を中心として有機層中へSPPモード光が伝播光として再放射される。すなわち、第2電極側構造のこの凹凸構造は放射起点部として機能する。 Also in the organic EL element, when the surface of the second electrode on the organic layer side is flat and does not have an uneven structure, the SPP mode light is lost to the organic layer without being extracted. However, when a concavo-convex structure is provided on the surface of the second electrode, the SPP mode light is re-emitted as propagating light into the organic layer around the concavo-convex structure. That is, this uneven structure of the second electrode side structure functions as a radiation starting point.
 次に、第1電極側構造について以下に説明する。
 第1電極側構造としては、第1電極表面に対して垂直または垂直に近い屈折率の界面を導入した。この界面により、再放射された伝播光が屈折して、有機層と反対側の第1電極表面への入射角およびその表面からの出射角が小さくなる。
Next, the first electrode side structure will be described below.
As the first electrode side structure, an interface having a refractive index perpendicular or nearly perpendicular to the surface of the first electrode was introduced. By this interface, the re-radiated propagating light is refracted, and the incident angle to the first electrode surface opposite to the organic layer and the emission angle from the surface are reduced.
 本発明者らは、シミュレーションにより、放射起点部を有する第2電極側構造と、有機層中へ再放射された伝播光を第1電極から見て有機層と反対側に屈折させる、第1電極表面に対して垂直または垂直に近い界面を備えた第1電極側構造とを組み合わせることにより、かかる第2電極側構造及び第1電極側構造の単独の光取り出し効率の向上効果からは予測できないほどの顕著な効果を奏することを見い出し、本発明を完成させた。 The present inventors, by simulation, have a second electrode side structure having a radiation starting point portion and a first electrode that refracts propagating light re-radiated into the organic layer to the side opposite to the organic layer when viewed from the first electrode. By combining with the first electrode side structure having an interface perpendicular or nearly perpendicular to the surface, it cannot be predicted from the effect of improving the light extraction efficiency of the second electrode side structure and the first electrode side structure alone. As a result, the present invention was completed.
 上記の目的を達成するために、本発明は以下の構成を採用した。
(1)基板上に、第1電極と、有機EL材料からなる発光層を含む有機層と、第2電極とを順に具備し、前記第1電極側から外部に光を取り出すように構成された有機EL素子であって、前記第2電極は、その前記有機層側の表面に周期的に配置される複数の放射起点部を有するものであり、前記第1電極と前記第2電極との間に、前記有機層の屈折率より低い屈折率を有すると共に複数の開口部を備えた誘電体層を具備し、 前記有機層は、前記開口部の内側面を被覆する開口内側面被覆部を有し、前記開口部が配置される周期と前記放射起点部が配置される周期とが、少なくとも素子面内の一方向において一致することを特徴とする有機EL素子。
(2)第1電極と、有機EL材料からなる発光層を含む有機層と、第2電極とを順に具備し、前記第1電極側から外部に光を取り出すように構成された有機EL素子であって、前記第2電極は、その前記有機層側の表面に周期的に配置される複数の放射起点部を有するものであり、前記第1電極と前記第2電極との間に、前記有機層の屈折率より低い屈折率を有すると共に複数の開口部を備えた誘電体層を具備し、前記有機層は、前記開口部の内側面を被覆する開口内側面被覆部を有し、前記開口部が配置される周期と前記放射起点部が配置される周期とが,少なくとも素子面内の一方向において一致することを特徴とする有機EL素子。
(3)前記第1電極は、前記開口部に連通する第1電極開口部を備え、 前記有機層はさらに、前記第1電極開口部の内側面を被覆する第1電極開口内側面被覆部を有することを特徴とする(1)に記載の有機EL素子。
(4)前記第1電極は、前記開口部に連通する第1電極開口部を備え、 前記有機層はさらに、前記第1電極開口部の内側面を被覆する第1電極開口内側面被覆部を有することを特徴とする(2)に記載の有機EL素子。
(5)前記基板は、前記第1電極開口部に連通する凹部を備え、前記有機層はさらに、前記凹部の内側面を被覆する凹内側面被覆部を有することを特徴とする(3)に記載の有機EL素子。
(6)前記有機層はさらに、前記誘電体層及び前記開口内側面被覆部と前記第2電極との間に配置される層状部を有することを特徴とする(1)~(5)のいずれか一項に記載の有機EL素子。
(7)前記放射起点部は、凹状又は凸状に形成されてなることを特徴とする(1)~(6)のいずれか一項に記載の有機EL素子。
(8)(1)~(7)のいずれか一項に記載の有機EL素子を備えたことを特徴とする画像表示装置。
(9)(1)~(7)のいずれか一項に記載の有機EL素子を備えたことを特徴とする照明装置。
In order to achieve the above object, the present invention employs the following configuration.
(1) A first electrode, an organic layer including a light emitting layer made of an organic EL material, and a second electrode are sequentially provided on the substrate, and the light is extracted from the first electrode side to the outside. In the organic EL element, the second electrode has a plurality of radiation starting points periodically arranged on the surface of the organic layer, and is between the first electrode and the second electrode. A dielectric layer having a refractive index lower than that of the organic layer and having a plurality of openings, and the organic layer has an opening inner side surface covering portion that covers an inner side surface of the opening. An organic EL element, wherein a period in which the opening is arranged and a period in which the radiation starting point part is arranged coincide at least in one direction in the element plane.
(2) An organic EL element that includes a first electrode, an organic layer including a light emitting layer made of an organic EL material, and a second electrode in order, and is configured to extract light from the first electrode side to the outside. The second electrode has a plurality of radiation starting points periodically disposed on the surface of the organic layer, and the organic layer is interposed between the first electrode and the second electrode. A dielectric layer having a refractive index lower than the refractive index of the layer and having a plurality of openings, wherein the organic layer has an opening inner surface covering portion that covers an inner surface of the opening; An organic EL element characterized in that a period in which the portion is arranged coincides with a period in which the radiation starting point part is arranged at least in one direction in the element plane.
(3) The first electrode includes a first electrode opening that communicates with the opening, and the organic layer further includes a first electrode opening inner surface covering portion that covers an inner surface of the first electrode opening. The organic EL element according to (1), which has
(4) The first electrode includes a first electrode opening that communicates with the opening, and the organic layer further includes a first electrode opening inner surface covering portion that covers an inner surface of the first electrode opening. The organic EL element according to (2), which has
(5) The substrate includes a recess communicating with the first electrode opening, and the organic layer further includes a concave inner surface covering portion that covers an inner surface of the recess. The organic EL element of description.
(6) The organic layer further includes a layered portion disposed between the dielectric layer and the opening inner side surface covering portion and the second electrode. An organic EL device according to claim 1.
(7) The organic EL element according to any one of (1) to (6), wherein the radiation starting point portion is formed in a concave shape or a convex shape.
(8) An image display device comprising the organic EL element according to any one of (1) to (7).
(9) An illuminating device comprising the organic EL element according to any one of (1) to (7).
 本発明によれば、SPPモード光及び導波モード光を効果的に取り出して、光取り出し効率が向上した有機EL素子並びにそれを備えた画像表示装置及び照明装置を提供できる。 According to the present invention, it is possible to effectively extract SPP mode light and waveguide mode light to provide an organic EL element with improved light extraction efficiency, and an image display device and an illumination device including the organic EL element.
本発明の第1の実施形態に係る有機EL素子(逆位相の構成)を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the organic EL element (antiphase structure) which concerns on the 1st Embodiment of this invention. 放射起点部14aと開口部17Aの面内配置の例を示す平面模式図である。(a)は、放射起点部14aと開口部17Aが共にドット状となる構成の場合、(b)は、放射起点部14aがドット状であり、開口部17Aがライン状となる構成の場合、(c)は、放射起点部14aがライン状であり、開口部17Aがドット状となる構成の場合、(d)は、放射起点部14aと開口部17Aが共にライン状となる構成の場合の例である。It is a plane schematic diagram which shows the example of the in-plane arrangement | positioning of the radiation | emission origin part 14a and the opening part 17A. (A) is a configuration in which the radiation starting point portion 14a and the opening portion 17A are both in a dot shape, and (b) is a configuration in which the radiation starting point portion 14a is in a dot shape and the opening portion 17A is in a line shape. (C) is a case where the radiation starting point portion 14a is in a line shape and the opening portion 17A is in a dot shape, and (d) is a case in which both the radiation starting point portion 14a and the opening portion 17A are in a line shape. It is an example. 図1の逆位相の構成に対して、同位相の構成のモデル構造を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the model structure of the structure of the same phase with respect to the structure of the reverse phase of FIG. 本発明の第2の実施形態に係る有機EL素子(逆位相の構成)を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the organic EL element (structure of a reverse phase) which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る有機EL素子(逆位相の構成)を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the organic EL element (antiphase structure) which concerns on the 3rd Embodiment of this invention. 本発明の有機EL素子を備えた画像表示装置の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the image display apparatus provided with the organic EL element of this invention. 本発明の有機EL素子を備えた照明装置の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the illuminating device provided with the organic EL element of this invention. 本発明の第1の実施形態に係る有機EL素子の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the organic EL element which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る有機EL素子の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the organic EL element which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る有機EL素子の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the organic EL element which concerns on the 3rd Embodiment of this invention. 本発明の第2の実施形態の有機EL素子の光取り出し効率のコンピュータシミュレーションの結果を示す図である。It is a figure which shows the result of the computer simulation of the light extraction efficiency of the organic EL element of the 2nd Embodiment of this invention. 図4の逆位相の構成に対して、同位相の構成のモデル構造を説明するための断面模式図である。FIG. 5 is a schematic cross-sectional view for explaining a model structure having an in-phase configuration with respect to the anti-phase configuration in FIG. 4. 図11のコンピュータシミュレーションを行ったモデル構造のサイズを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the size of the model structure which performed the computer simulation of FIG. 本発明の第3の実施形態の有機EL素子の光取り出し効率のコンピュータシミュレーションの結果を示す図であり、(a)は周期が500nmのものであり、(b)は周期が1000nmのものである。It is a figure which shows the result of the computer simulation of the light extraction efficiency of the organic EL element of the 3rd Embodiment of this invention, (a) is a thing with a period of 500 nm, (b) is a thing with a period of 1000 nm. . 図14のコンピュータシミュレーションを行ったモデル構造のサイズを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the size of the model structure which performed the computer simulation of FIG.
 以下、本発明を適用した有機EL素子並びにそれを備えた画像表示装置及び照明装置について、図面を用いてその構成を説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。各構成要素の寸法比率などは実際と同じであるとは限らない。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 本発明において、第1電極及び第2電極は一方が陽極で他方が陰極であるが、以下では、第1電極を陽極、第2電極を陰極とする構成を例に挙げて説明する。
 本発明の有機EL素子は、トップエミッション型、ボトムエミッション型のいずれを適用してもよい。以下では、ボトムエミッション型の構成を例に挙げて説明する。
 本発明の有機EL素子は本発明の効果を損ねない範囲で以下に記載していない層を備えてもよい。
Hereinafter, the structure of an organic EL element to which the present invention is applied, an image display apparatus and an illumination apparatus including the organic EL element will be described with reference to the drawings. In the drawings used in the following description, in order to make the characteristics easy to understand, there are cases where the characteristic portions are enlarged for convenience. The dimensional ratio of each component is not always the same as actual. The materials, dimensions, and the like exemplified in the following description are merely examples, and the present invention is not limited to these, and can be appropriately modified and implemented without changing the gist thereof.
In the present invention, one of the first electrode and the second electrode is an anode and the other is a cathode. In the following description, a configuration in which the first electrode is an anode and the second electrode is a cathode will be described as an example.
Either the top emission type or the bottom emission type may be applied to the organic EL element of the present invention. Hereinafter, a bottom emission type configuration will be described as an example.
The organic EL device of the present invention may include a layer not described below as long as the effects of the present invention are not impaired.
(有機EL素子(第1の実施形態))
 図1は、本発明の第1の実施形態に係る有機EL素子の一例を説明するための断面模式図である。
 本発明の第1の実施形態に係る有機EL素子10は、基板11上に、陽極(第1電極)12と、有機EL材料からなる発光層を含む有機層13と、陰極(第2電極)14とを順に具備する。陰極14は、その有機層側の表面14Aに周期的に配置される複数の放射起点部14aを有する。陽極12と陰極14との間には、有機層13の屈折率より低い屈折率を有すると共に複数の開口部17A(図8(f)参照)を備えた誘電体層17を具備する。有機層13は、開口部17Aの内側面7aを被覆する開口内側面被覆部13aを有する。開口部17Aが配置される周期λ1と放射起点部14aが配置される周期λ2とは、少なくとも素子面内の一方向において一致する。
 図1に示す例では、陽極12は、開口部17Aに連通する陽極開口部(第1電極開口部)12A(図8(g)参照)を備え、基板11は、陽極開口部12Aに連通する凹部11A(図8(h)参照)を備える。
(Organic EL device (first embodiment))
FIG. 1 is a schematic cross-sectional view for explaining an example of the organic EL element according to the first embodiment of the present invention.
An organic EL element 10 according to the first embodiment of the present invention includes an anode (first electrode) 12, an organic layer 13 including a light emitting layer made of an organic EL material, and a cathode (second electrode) on a substrate 11. 14 in order. The cathode 14 has a plurality of radiation starting point portions 14a periodically disposed on the surface 14A on the organic layer side. A dielectric layer 17 having a refractive index lower than that of the organic layer 13 and having a plurality of openings 17A (see FIG. 8F) is provided between the anode 12 and the cathode. The organic layer 13 has an opening inner side surface covering portion 13a that covers the inner surface 7a of the opening portion 17A. The period λ1 in which the opening 17A is arranged and the period λ2 in which the radiation starting point part 14a is arranged coincide at least in one direction in the element plane.
In the example shown in FIG. 1, the anode 12 includes an anode opening (first electrode opening) 12A (see FIG. 8G) that communicates with the opening 17A, and the substrate 11 communicates with the anode opening 12A. A recess 11A (see FIG. 8H) is provided.
 有機層13はさらに、放射起点部14aの形状に対応する部分(図1の例では、凸部13e)と、陽極開口部12Aの内側面12aを被覆する陽極開口内側面被覆部(第1電極開口内側面被覆部)13bと、凹部11Aの内側面11aを被覆する凹内側面被覆部13cとを有するものである。有機層13のうち、放射起点部14aの形状に対応する部分13eは、図1のように放射起点部14aが凹状であれば、凸状になるし、放射起点部14aが凸状であれば、凹状になる。
 図1に示す構成はボトムエミッション型の有機EL素子の場合のものである。トップエミッション型素子の場合は、基板11は、陰極14の有機層13とは反対側に配置される。
 図1に示す例では、有機層13はさらに、誘電体層17及び開口内側面被覆部13aと陰極14との間に配置される層状部13dを有する。このように、有機層13は、符号13a~13eで示す部分全てを備える構成でも、層状部13dを有さず、符号13a~13c及び13eで示す部分を備える構成でもよい。
 開口内側面被覆部13a、陽極開口内側面被覆部13b及び凹内側面被覆部13cは、有機層を構成する層のうちの一部によって構成されていてもよい。
 上記のように誘電体層17の周辺の構造について屈折率の比較を行う場合には、有機層の屈折率とは、有機EL材料からなる発光層を含む全ての層の平均の屈折率をいう。後述する他の実施形態の場合も同様である。
The organic layer 13 is further provided with a portion corresponding to the shape of the radiation starting point portion 14a (in the example of FIG. 1, a convex portion 13e) and an anode opening inner side surface covering portion (first electrode) covering the inner side surface 12a of the anode opening portion 12A. (Opening inner side surface covering portion) 13b and concave inner side surface covering portion 13c covering inner surface 11a of concave portion 11A. In the organic layer 13, the portion 13e corresponding to the shape of the radiation starting point portion 14a is convex if the radiation starting point portion 14a is concave as shown in FIG. 1, and if the radiation starting point portion 14a is convex, , Become concave.
The configuration shown in FIG. 1 is that of a bottom emission type organic EL element. In the case of a top emission type device, the substrate 11 is disposed on the opposite side of the cathode 14 from the organic layer 13.
In the example shown in FIG. 1, the organic layer 13 further includes a dielectric layer 17 and a layered portion 13 d disposed between the opening inner side surface covering portion 13 a and the cathode 14. As described above, the organic layer 13 may be configured to include all the portions indicated by reference numerals 13a to 13e, or may be configured to include the portions indicated by reference numerals 13a to 13c and 13e without the layered portion 13d.
The opening inner side surface covering part 13a, the anode opening inner side surface covering part 13b, and the concave inner side surface covering part 13c may be constituted by a part of the layers constituting the organic layer.
As described above, when the refractive index of the structure around the dielectric layer 17 is compared, the refractive index of the organic layer refers to the average refractive index of all the layers including the light emitting layer made of the organic EL material. . The same applies to other embodiments described later.
 開口部17A、陽極開口部12A及び凹部11Aの形状はそれらの内側面で光を基板側へ屈折させる効果を奏するものであれば特に限定はされない。導波モード光を陽極面に対しより垂直方向寄りに屈折させる観点からは基板11側の開口部底面積より陰極14側の開口部上面積が小さい形状が好ましい。光線を屈折させることなくまっすぐ基板まで取り出す観点からは陰極14側の開口部上面積より基板11側の開口部底面積が小さい形状が好ましい。導波モード光を屈折させ、より少ない伝播距離で取り出す観点からは開口部両底面の面積が小さいほど好ましいので、これら形状自体のサイズが小さいことが望ましい。
 図1で示した例では、開口部17A、陽極開口部12A及び凹部11Aの内側面は陽極表面および基板面に対して直交して配置される構成であるが、かかる構成に限定されない。これらの内側面が基板面に対する角度は45°以上が好ましく、60°以上がより好ましく、75°以上がより一層好ましい。これらの内側面をこのような角度とすることにより、発光位置から陽極側へ向かう光(例えば、図1のCP1~CP3で示した光)とSPPモード光から再放射された伝播光(例えば、図1のBP1~BP4で示した光)がこれらの内側面に外側から入射して基板側に屈折し、基板の外表面から外部へ取り出される。
The shape of the opening 17A, the anode opening 12A, and the recess 11A is not particularly limited as long as it has an effect of refracting light toward the substrate on the inner surface thereof. From the viewpoint of refracting the guided mode light closer to the vertical direction with respect to the anode surface, a shape in which the area on the opening on the cathode 14 side is smaller than the opening bottom area on the substrate 11 side is preferable. From the viewpoint of taking out the light straight to the substrate without refracting the light beam, a shape in which the opening bottom area on the substrate 11 side is smaller than the area on the opening on the cathode 14 side is preferable. From the viewpoint of refracting the guided mode light and extracting it with a smaller propagation distance, it is preferable that the area of both bottom surfaces of the opening is smaller.
In the example shown in FIG. 1, the inner surfaces of the opening 17A, the anode opening 12A, and the recess 11A are arranged orthogonal to the anode surface and the substrate surface, but the present invention is not limited to such a configuration. The angle between these inner surfaces and the substrate surface is preferably 45 ° or more, more preferably 60 ° or more, and even more preferably 75 ° or more. By setting these inner surfaces to such an angle, light traveling from the light emitting position toward the anode side (for example, light indicated by CP1 to CP3 in FIG. 1) and propagating light re-radiated from the SPP mode light (for example, 1 is incident on these inner surfaces from the outside, refracted toward the substrate side, and extracted from the outer surface of the substrate to the outside.
 この有機EL素子10は、発光層で発光した光を基板側から取り出すボトムエミッション型の有機EL素子である。そのため、基板11は透光性の基板であり、通常、可視光に対して透明であることが必要である。ここで、「可視光に対し透明である」とは、発光層から発する波長の可視光を透過することができればよいという意味であり、可視光領域全域にわたり透明である必要はない。400~700nmの可視光における透過率が50%以上で、平滑な基板が好ましい。 This organic EL element 10 is a bottom emission type organic EL element that extracts light emitted from the light emitting layer from the substrate side. Therefore, the substrate 11 is a light-transmitting substrate and usually needs to be transparent to visible light. Here, “transparent to visible light” means that it is only necessary to transmit visible light having a wavelength emitted from the light emitting layer, and does not need to be transparent over the entire visible light region. A smooth substrate having a transmittance in visible light of 400 to 700 nm of 50% or more is preferable.
 基板11の材料として具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板としては、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
 発光光が可視光でない場合は、少なくとも発光波長領域に対して、可視光の場合と同様に透明であることが必要である。透過率としては、発光が最大強度となる波長に対し、50%以上であることが好ましく、70%以上であることが更に好ましい。
Specific examples of the material of the substrate 11 include a glass plate and a polymer plate. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, polyether sulfide, and polysulfone.
When the emitted light is not visible light, it is necessary to be transparent at least with respect to the emission wavelength region as in the case of visible light. The transmittance is preferably 50% or more and more preferably 70% or more with respect to the wavelength at which light emission has the maximum intensity.
本実施形態に係る有機EL素子の構成がトップエミッション型である場合は、上記と同様な材料の他に、不透明な材料も使用できる。具体的には、例えばCu、Ag、Au、Pt、W、Ti、Ta、Nb、Alの単体、またはこれらの元素を含んだ合金、あるいはステンレスなどの金属材料、Si、SiC、AlN、GaN、GaAs、サファイアなどの非金属材料、その他のトップエミッション型の有機EL素子で通常用いられる基板材料を用いることができる。素子の発光に伴い生じる熱を逃がすため、熱伝導率の高い材料を基板に用いることが好ましい。 When the configuration of the organic EL element according to this embodiment is a top emission type, an opaque material can be used in addition to the same material as described above. Specifically, for example, Cu, Ag, Au, Pt, W, Ti, Ta, Nb, Al alone, an alloy containing these elements, or a metal material such as stainless steel, Si, SiC, AlN, GaN, Nonmetallic materials such as GaAs and sapphire, and other substrate materials usually used in top emission type organic EL elements can be used. In order to release heat generated by light emission of the element, a material having high thermal conductivity is preferably used for the substrate.
 基板11の厚さは、要求される機械的強度にもよるし、限定されるものではない。好ましくは、0.01mm~10mm、より好ましくは0.05mm~2mmである。
 但し、本実施形態では、基板11は複数の凹部11Aを備えるので、より精確に加工しやすい材料であるのが好ましい。好ましい材料としては限定されるものではないが、例えば、石英が挙げられる。
 複数の凹部11Aはそれぞれ、陽極開口部12Aを介して、誘電体層17の開口部17Aに連通しているため、開口部17Aと同じ配列をとる。すなわち、凹部11Aは、平面視でドット状の凹部(離散配置する凹部)、ライン状(平行ストライプ状)の凹部、およびこれらを面内で複合したもののいずれでもよい。凹部11Aの素子面内方向の配列は放射起点部14aの周期配列に合わせて、1次元的な配列でも2次元的な配列でもよい。
The thickness of the substrate 11 depends on the required mechanical strength and is not limited. The thickness is preferably 0.01 mm to 10 mm, more preferably 0.05 mm to 2 mm.
However, in this embodiment, since the substrate 11 includes a plurality of recesses 11A, it is preferable that the substrate 11 be a material that can be processed more accurately. Although it does not limit as a preferable material, For example, quartz is mentioned.
Each of the plurality of recesses 11A communicates with the opening 17A of the dielectric layer 17 through the anode opening 12A, and therefore has the same arrangement as the opening 17A. That is, the concave portion 11A may be a dot-shaped concave portion (recesses that are discretely arranged), a line-shaped (parallel stripe shape) concave portion, or a combination of these in a plane. The arrangement of the recesses 11A in the element plane direction may be a one-dimensional arrangement or a two-dimensional arrangement in accordance with the periodic arrangement of the radiation starting point portions 14a.
 陽極12は、複数の陽極開口部12A(図8(g)参照)を備えている。その陽極開口部12Aの内側面12aが有機層13によって被覆されている(陽極開口内側面被覆部13b)。陽極12の上面は誘電体層17によって被覆されている。陽極開口内側面被覆部13bは内側面12aを被覆していれば、陽極開口部12Aを充填する構成でも、一部を埋める構成でもよい。
 複数の陽極開口部12Aはそれぞれ、開口部17Aに連通しているため、開口部17Aと同じ配列をとる。すなわち、陽極開口部12Aは、平面視でドット状の開口部(離散配置する開口部)、ライン状の開口部、およびこれらを面内で複合したもののいずれでもよい。陽極開口部12Aの素子面内方向の配列は放射起点部14aの周期配列に合わせて、1次元的な配列でも2次元的な配列でもよい。
The anode 12 includes a plurality of anode openings 12A (see FIG. 8G). The inner surface 12a of the anode opening 12A is covered with the organic layer 13 (anode opening inner surface covering portion 13b). The upper surface of the anode 12 is covered with a dielectric layer 17. As long as the inner surface 12a of the anode opening covers the inner surface 12a, the anode opening 12A may be filled or may be partially filled.
Each of the plurality of anode openings 12A communicates with the opening 17A, and thus has the same arrangement as the opening 17A. That is, the anode opening 12A may be any of dot-like openings (openings arranged in a discrete manner), line-like openings, and a combination of these in-plane. The arrangement of the anode openings 12A in the element plane direction may be a one-dimensional arrangement or a two-dimensional arrangement in accordance with the periodic arrangement of the radiation starting point portions 14a.
 陽極12は陰極14との間で電圧を印加し、陽極12より発光層に正孔を注入するための電極である。仕事関数の大きい金属、合金、導電性化合物、あるいはこれらの混合物からなる材料を用いることが好ましい。陽極12に接する有機層13のHOMO(Highest Occupied Molecular Orbital)準位との差が過大にならないように仕事関数が4eV以上6eV以下のものを用いるのが好ましい。陽極12の材料としては透光性でかつ導電性の材料であれば特に制限はない。例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化錫、酸化亜鉛などの透明無機酸化物、PEDOT:PSS、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブ、グラフェンなどの透明カーボン材料を挙げることができる。ここにおいて、陽極2は、基板1上に例えば、スパッタ法、真空蒸着法(抵抗加熱蒸着法や電子ビーム蒸着法)、CVD法、イオンプレーティング法、塗布法などによって形成することができる。 The anode 12 is an electrode for applying a voltage between the anode 14 and injecting holes from the anode 12 into the light emitting layer. It is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a high work function. It is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (Highest Occupied Molecular Orbital) level of the organic layer 13 in contact with the anode 12 does not become excessive. The material of the anode 12 is not particularly limited as long as it is a translucent and conductive material. For example, conductive high conductivity doped with transparent inorganic oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide, zinc oxide, conductive polymers such as PEDOT: PSS, polyaniline, and arbitrary acceptors. Examples thereof include transparent carbon materials such as molecules, carbon nanotubes, and graphene. Here, the anode 2 can be formed on the substrate 1 by, for example, sputtering, vacuum vapor deposition (resistance heating vapor deposition or electron beam vapor deposition), CVD, ion plating, coating, or the like.
 陽極12の厚さは限定されるものではないが、例えば10~2000nmであり、好ましくは50~1000nmである。陽極12の厚さが10nmより薄いと誘電体層17の体積を大きくしにくくなり、導波モード光の散乱がされにくくなる。陽極12の厚さが2000nmより厚いと有機層13の平坦度を保てなくなると共に、陽極の透過率が低下する。 The thickness of the anode 12 is not limited, but is, for example, 10 to 2000 nm, preferably 50 to 1000 nm. If the thickness of the anode 12 is less than 10 nm, it is difficult to increase the volume of the dielectric layer 17 and scattering of the waveguide mode light is difficult. If the thickness of the anode 12 is larger than 2000 nm, the flatness of the organic layer 13 cannot be maintained and the transmittance of the anode is lowered.
 誘電体層17は、有機層13の屈折率より低い屈折率を有すると共に複数の開口部17Aを備えている。この開口部17Aの内側面17aは有機層13によって被覆されている(開口内側面被覆部13a)。開口内側面被覆部13aは内側面17aを被覆していれば、開口部17Aを充填する構成でも、一部を埋める構成でもよい。
 複数の開口部17Aはそれぞれ、陽極開口部12Aを介して、凹部11Aに連通している。すなわち、開口部17Aは、平面視でドット状の開口部(離散配置する開口部)、ライン状(平行ストライプ状)の開口部、およびこれらを面内で複合したもののいずれでもよい。開口部17Aの素子面内方向の配列は放射起点部の周期配列に合わせて、1次元的な配列でも2次元的な配列でもよい。
The dielectric layer 17 has a refractive index lower than that of the organic layer 13 and includes a plurality of openings 17A. The inner side surface 17a of the opening 17A is covered with the organic layer 13 (opening inner side surface covering portion 13a). As long as the inner surface 17a of the opening covers the inner surface 17a, the opening 17A may be filled or may be partially filled.
Each of the plurality of openings 17A communicates with the recess 11A via the anode opening 12A. That is, the opening 17A may be a dot-like opening (opening arranged discretely), a line-like (parallel stripe-shaped) opening, or a combination of these in an in-plane manner. The arrangement in the element plane direction of the openings 17A may be a one-dimensional arrangement or a two-dimensional arrangement in accordance with the periodic arrangement of the radiation starting point portions.
 誘電体層17の材料としては、透光性でかつ有機層13の屈折率より低い屈折率を有する材料であれば特に制限はない。例えば、SOG(代表的な屈折率:1.25)、MgF(代表的な屈折率:1.38)等の金属フッ化物、PTFE等の有機フッ素化合物、SiO(代表的な屈折率:1.45)、各種の低融点ガラス、多孔性物質が挙げられる。
 誘電体層17の厚さは限定されるものではないが、例えば10~2000nmであり、好ましくは50~1000nmである。誘電体層17の厚さが10nmより薄いと有機層も薄く形成しなければならず、このため突き抜け電流を生じやすくなって内部量子効率が低下する。誘電体層17の厚さが2000nmより厚いと有機層13の平坦度を保ちにくくなる。
The material of the dielectric layer 17 is not particularly limited as long as it is a light-transmitting material and has a refractive index lower than that of the organic layer 13. For example, metal fluorides such as SOG (typical refractive index: 1.25), MgF 2 (typical refractive index: 1.38), organic fluorine compounds such as PTFE, SiO 2 (typical refractive index: 1.45), various low-melting-point glasses, and porous materials.
The thickness of the dielectric layer 17 is not limited, but is, for example, 10 to 2000 nm, and preferably 50 to 1000 nm. If the thickness of the dielectric layer 17 is less than 10 nm, the organic layer must also be formed thin, and thus a punch-through current is likely to be generated and the internal quantum efficiency is lowered. When the thickness of the dielectric layer 17 is greater than 2000 nm, it becomes difficult to maintain the flatness of the organic layer 13.
 陰極14は、その有機層側の表面14Aに周期的に配置される複数の放射起点部14aを有する。図1に示す例では、その放射起点部14aは、平面視して誘電体層17の開口部17A以外の部分(誘電体層17の実質的部分)17Bに重なる位置に配置されるが、特にこの位置関係に限定されない。図1に示す例では、放射起点部14aはさらに、平面視して陽極12の陽極開口部12A以外の部分(陽極12の実質的部分)12B及び基板11の凹部11A以外の部分(基板11の実質的部分)11Bに重なる位置に配置されるが、特にこの位置関係に限定されない。 The cathode 14 has a plurality of radiation starting points 14a periodically disposed on the surface 14A on the organic layer side. In the example shown in FIG. 1, the radiation starting point portion 14a is arranged at a position overlapping with a portion other than the opening portion 17A of the dielectric layer 17 (substantial portion of the dielectric layer 17) 17B in plan view. It is not limited to this positional relationship. In the example shown in FIG. 1, the radiation starting point portion 14a further includes a portion other than the anode opening 12A of the anode 12 (substantial portion of the anode 12) 12B and a portion other than the recess 11A of the substrate 11 (on the substrate 11). (Substantial part) It is arranged at a position overlapping 11B, but is not particularly limited to this positional relationship.
 陰極14は、発光層に電子を注入するための電極であり、仕事関数の小さい金属、合金、導電性化合物、あるいはこれらの混合物からなる材料を用いることが好ましい。陰極14に接する有機層13のLUMO(Lowest Unoccupied Molecular Orbital)準位との差が過大にならないように仕事関数が1.9eV以上5eV以下のものを用いるのが好ましい。具体的には、例えば、Al、MgAg合金、AlLiやAlCa等のAlとアルカリ(土類)金属との合金等の材料を例示することができる。
 陰極14の厚さ(放射起点部14aを含めた厚さ)は限定されるものではないが、例えば30nm~1μmであり、好ましくは50~500nmである。陰極14の厚さが、30nmより薄いとシート抵抗が増加して、駆動電圧が上昇する。陰極14の厚さが、1μmより厚いと成膜時の熱や放射線によるダメージ、膜応力による機械的ダメージが電極や有機層に蓄積する。
The cathode 14 is an electrode for injecting electrons into the light emitting layer, and it is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a small work function. It is preferable to use a material having a work function of 1.9 eV or more and 5 eV or less so that the difference from the LUMO (Lowest Unoccupied Molecular Orbital) level of the organic layer 13 in contact with the cathode 14 does not become excessive. Specific examples include materials such as Al, MgAg alloys, and alloys of Al and alkali (earth) metals such as AlLi and AlCa.
The thickness of the cathode 14 (thickness including the radiation starting point portion 14a) is not limited, but is, for example, 30 nm to 1 μm, and preferably 50 to 500 nm. If the thickness of the cathode 14 is less than 30 nm, the sheet resistance increases and the driving voltage rises. When the thickness of the cathode 14 is greater than 1 μm, damage due to heat and radiation during film formation and mechanical damage due to film stress accumulate in the electrode and the organic layer.
 図1に示す放射起点部14aは凹形状を有するものであるが、凹形状に限定されず、凸形状、凹凸形状などの形状でもよい。平面視したときの放射起点部14aの一つ一つの形状は、ドット状の凹凸(離散配置する凹凸)、ライン状(平行ストライプ状)の凹凸等の形状でもよい。
 一つの放射起点部14a(放射起点部の単位構造)は、1個の凹または凸構造からなるものでも、複数の起伏をなす凹凸構造からなるものでもよい。中でも、一つの放射起点部14aは、平面視して誘電体層17の開口部17A以外の部分(誘電体層17の実質的部分)のサイズより小さいことが好ましい。
 複数の放射起点部14aの面内方向の周期配列は、1次元的な配列でも2次元的な配列でもよい。
Although the radiation starting point portion 14a shown in FIG. 1 has a concave shape, the shape is not limited to the concave shape, and may be a convex shape, an uneven shape, or the like. Each shape of the radiation starting point portion 14a when seen in a plan view may be a shape such as a dot-shaped unevenness (unevenly arranged discretely), a line-shaped (parallel stripe-shaped) unevenness, or the like.
One radiation starting point portion 14a (unit structure of the radiation starting point portion) may be composed of one concave or convex structure, or may be composed of a concavo-convex structure forming a plurality of undulations. In particular, one radiation starting point portion 14a is preferably smaller than the size of a portion other than the opening 17A of the dielectric layer 17 (substantial portion of the dielectric layer 17) in plan view.
The periodic array in the in-plane direction of the plurality of radiation starting point portions 14a may be a one-dimensional array or a two-dimensional array.
 複数の放射起点部14aが配置される周期は、SPPモード光が伝播できる10μm以下であることが好ましい。このような周期とすることで、SPPモード光が熱として散逸する前に、放射起点部14aによってSPPモード光を散乱させ、伝播光として再放射させることが可能となる。
 放射起点部14aの配置の周期は、誘電体層17における開口部17Aの配置の周期と少なくとも面内の一方向について同じである。ここで、面内の一方向について周期が同じであるとは、放射起点部14aの周期構造に対応する実格子ベクトルの1つと、開口部17Aの周期構造に対する実格子ベクトルの一つが互いに一致していることを意味する。
The period in which the plurality of radiation starting point portions 14a are arranged is preferably 10 μm or less in which the SPP mode light can propagate. With such a period, before the SPP mode light is dissipated as heat, the SPP mode light can be scattered by the radiation starting point portion 14a and re-radiated as propagating light.
The period of the arrangement of the radiation starting point portions 14a is the same as the period of the arrangement of the openings 17A in the dielectric layer 17 at least in one direction in the plane. Here, the same period in one direction in the plane means that one of the real lattice vectors corresponding to the periodic structure of the radiation starting point portion 14a and one of the real lattice vectors corresponding to the periodic structure of the opening 17A coincide with each other. Means that
図2(a)は、放射起点部14aと開口部17Aが共にドット状となる構成の場合の面内配置の例である。各々の図中に実線の矢印で図示されているものが、放射起点部14aと開口部17Aとで共通する実格子ベクトルである。この構成の場合、放射起点部14aと開口部17Aは、図2(a)の左図のようにもう1つの実格子ベクトル(点線矢印)についても互いに一致していることが好ましい。
図2(b)は、放射起点部14aがドット状であり、開口部17Aがライン状となる構成の場合の面内配置の例である。各々の図中に実線の矢印で図示されているものが、放射起点部14aと開口部17Aとで共通する実格子ベクトルである。この構成の場合、図2(b)の左側の三つの図のように、放射起点部14aの中心が開口部17Aの中心線上、または隣り合う開口部17Aの丁度中間に位置することが好ましい。
図2(c)は、放射起点部14aがライン状であり、開口部17Aがドット状となる構成の場合の面内配置の例である。各々の図中に実線の矢印で図示されているものが、放射起点部14aと開口部17Aとで共通する実格子ベクトルである。この構成の場合、図2(c)の左側の三つの図のように、開口部17Aの中心が放射起点部14aの中心線上、または隣り合う開口部17Aの丁度中間に位置することが好ましい。
図2(d)は、放射起点部14aと開口部17Aが共にライン状となる構成の場合の面内配置の例である。各々の図中に実線の矢印で図示されているものが、放射起点部14Aと開口部17Aとで共通する実格子ベクトルである。この構成の場合、図2(d)の左側の二つの図のように、放射起点部14aの中心線は、開口部17Aの中心線上、または隣り合う17Aの丁度中間に位置することが好ましい。
FIG. 2A is an example of the in-plane arrangement in the case where the radiation starting point portion 14a and the opening portion 17A are both in the form of dots. What is indicated by a solid line arrow in each figure is a real lattice vector common to the radiation starting point portion 14a and the opening portion 17A. In the case of this configuration, it is preferable that the radiation starting point portion 14a and the opening portion 17A coincide with each other with respect to another real lattice vector (dotted arrow) as shown in the left diagram of FIG.
FIG. 2B is an example of the in-plane arrangement in the case where the radiation starting point portion 14a has a dot shape and the opening portion 17A has a line shape. What is indicated by a solid line arrow in each figure is a real lattice vector common to the radiation starting point portion 14a and the opening portion 17A. In the case of this configuration, as shown in the three figures on the left side of FIG. 2B, it is preferable that the center of the radiation starting point portion 14a is located on the center line of the opening portion 17A or just between the adjacent opening portions 17A.
FIG. 2C shows an example of in-plane arrangement in the case where the radiation starting point portion 14a is in a line shape and the opening portion 17A is in a dot shape. What is indicated by a solid line arrow in each figure is a real lattice vector common to the radiation starting point portion 14a and the opening portion 17A. In the case of this configuration, it is preferable that the center of the opening portion 17A is located on the center line of the radiation starting point portion 14a or just between the adjacent opening portions 17A as shown in the three figures on the left side of FIG.
FIG. 2D shows an example of the in-plane arrangement in the case where the radiation starting point portion 14a and the opening portion 17A are both linear. What is indicated by a solid arrow in each figure is a real lattice vector common to the radiation starting point portion 14A and the opening portion 17A. In the case of this configuration, as shown in the two figures on the left side of FIG. 2D, the center line of the radiation starting point portion 14a is preferably located on the center line of the opening portion 17A or just between the adjacent 17A.
 有機層13は、開口部17Aの内側面17aを被覆する開口内側面被覆部13aと、陽極開口部12Aの内側面12aを被覆する陽極開口内側面被覆部13bと、凹部11Aの内側面11aを被覆する凹内側面被覆部13cと、放射起点部14aの形状に対応する部分13eとを有する。図1に示す例ではさらに、誘電体層17及び開口内側面被覆部13aと陰極14との間に配置される層状部13dを有する。
 発光層の材料としては、有機EL素子用の材料として知られる任意の材料を用いることができる。
The organic layer 13 includes an opening inner surface covering portion 13a that covers the inner surface 17a of the opening 17A, an anode opening inner surface covering portion 13b that covers the inner surface 12a of the anode opening 12A, and an inner surface 11a of the recess 11A. It has a concave inner side surface covering portion 13c to be covered and a portion 13e corresponding to the shape of the radiation starting point portion 14a. In the example shown in FIG. 1, the dielectric layer 17 and the layered portion 13 d disposed between the opening inner side surface covering portion 13 a and the cathode 14 are further provided.
As a material of the light emitting layer, any material known as a material for an organic EL element can be used.
 有機層13は、有機EL材料からなる発光層の他、正孔注入層、正孔輸送層、電子注入層、電子輸送層等を備えてもよい。
 正孔注入層は陽極12から発光層13への正孔注入を助ける層である。このような正孔注入層としてはより低い電界強度で正孔を発光層に注入する材料が好ましい。正孔注入層を形成する材料としては、上記の機能を備えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。正孔輸送層は、発光領域まで正孔を輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい。正孔輸送層を形成する材料としては、上記の機能を備えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。
The organic layer 13 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like in addition to a light emitting layer made of an organic EL material.
The hole injection layer is a layer that assists hole injection from the anode 12 to the light emitting layer 13. Such a hole injection layer is preferably a material that injects holes into the light emitting layer with lower electric field strength. The material for forming the hole injection layer is not particularly limited as long as it has the above function, and any material can be selected and used from known materials. The hole transport layer is a layer that transports holes to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.5 eV or less. The material for forming the hole transport layer is not particularly limited as long as it has the above-described function, and any material can be selected and used from known materials.
 電子注入層は陰極14から有機層13への電子注入を助ける層である。このような電子注入層としてはより低い電界強度で電子を有機層13に注入する材料が好ましい。電子注入層を形成する材料としては、上記の機能を備えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。電子輸送層は発光領域まで、電子を輸送する層であって、電子移動度が大きい。電子輸送層を形成する材料としては、上記機能を備えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。 The electron injection layer is a layer that assists electron injection from the cathode 14 to the organic layer 13. As such an electron injection layer, a material that injects electrons into the organic layer 13 with lower electric field strength is preferable. The material for forming the electron injection layer is not particularly limited as long as it has the above function, and any material can be selected and used from known materials. The electron transport layer is a layer that transports electrons to the light emitting region and has a high electron mobility. The material for forming the electron transport layer is not particularly limited as long as it has the above functions, and any material can be selected and used from known materials.
 有機層13は、蒸着法、転写法などの乾式プロセスによって成膜してもよいし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など、湿式プロセスによって成膜してもよい。
 有機層13の厚さは限定されるものではないが、例えば50~2000nmであり、好ましくは100~1000nmである。有機層13の厚さが、50nmより薄いと突き抜け電流による内部量子効率の低下や損失性表面波モードカップリング(lossy surface wave mode coupling)など、陰極14によるSPPカップリング以外の消光が起こる。有機層13の厚さが、2000nmより厚いと駆動電圧が上昇する。
The organic layer 13 may be formed by a dry process such as an evaporation method or a transfer method, or may be formed by a wet process such as a spin coating method, a spray coating method, a die coating method, or a gravure printing method.
The thickness of the organic layer 13 is not limited, but is, for example, 50 to 2000 nm, and preferably 100 to 1000 nm. If the thickness of the organic layer 13 is less than 50 nm, quenching other than SPP coupling by the cathode 14 occurs, such as a decrease in internal quantum efficiency due to a punch-through current or lossy surface wave mode coupling. When the thickness of the organic layer 13 is greater than 2000 nm, the drive voltage increases.
 次に、本実施形態の有機EL素子の作用効果を、図1を用いて模式的に説明する。図1に矢印で示した光の伝播の仕方は、作用効果の原理をわかりやすく説明するために模式的に示したものである。 Next, the function and effect of the organic EL element of this embodiment will be schematically described with reference to FIG. The light propagation method indicated by the arrows in FIG. 1 is schematically shown in order to easily understand the principle of the effect.
 有機層13に含まれる発光層のAP点で発光した光のうち一部(AP1)は、発光点の周りの近接場を介し、陰極14の表面14AにSPPモード光として捕捉される。このようなSPPモード光へのエネルギー移動は、陰極が金属層からなる一般的な有機EL素子において、発光分子と金属層が近い場合に生じることが広く知られている。このSPPモード光は表面14Aに沿って移動して(矢印AP2)、放射起点部14a(14a)で放射されて伝播光となる。さらに誘電体層17等を透過して基板11に入射し(矢印BP1、BP2、BP3、BP4)、基板外に取り出される。
 ここで、有機層13のAP点で発光した光は全方位に進むので矢印AP1以外の方向に進む光も当然存在する。矢印AP1は本発明の作用効果を説明するために、そのうちの一部の光の伝播を模式的に示している。矢印AP2及び矢印BP1~BP4で示した光、並びに後述する矢印CP1~CP4で示した光についても一部の光の伝播を模式的に示している。
A part (AP1) of the light emitted from the AP point of the light emitting layer included in the organic layer 13 is captured as SPP mode light on the surface 14A of the cathode 14 through the near field around the light emitting point. It is well known that such energy transfer to SPP mode light occurs when a light emitting molecule and a metal layer are close to each other in a general organic EL element having a cathode made of a metal layer. The SPP mode light moves along the surface 14A (arrow AP2) and is emitted from the radiation starting point portion 14a 1 (14a) to become propagating light. Further, the light passes through the dielectric layer 17 and the like and enters the substrate 11 (arrows BP1, BP2, BP3, BP4) and is taken out of the substrate.
Here, since light emitted at the AP point of the organic layer 13 travels in all directions, there is naturally light traveling in a direction other than the arrow AP1. The arrow AP1 schematically shows the propagation of a part of the light in order to explain the function and effect of the present invention. The light indicated by the arrow AP2 and the arrows BP1 to BP4 and the light indicated by the arrows CP1 to CP4 to be described later are also schematically shown.
 放射起点部14a(14a)で再放射された、矢印BP1~BP4で示した伝播光のうち、光BP1は基板11に対して垂直に基板側に進む光である。この光は、有機層13と誘電体層17との界面、誘電体層17と陽極12との界面及び陽極12と基板11との界面でも屈折することなく、誘電体層17内、陽極12内、基板11内を進み、外部に取り出される。
 放射起点部14a(14a)で再放射された光BP2は、有機層13a(13)と誘電体層17との界面(開口部17Aの内側面17a)で屈折し、誘電体層17を透過し、誘電体層17と陽極12との界面で屈折して陽極12内を進み、陽極12と基板11との界面で屈折した後、基板11内を通って外部に取り出されうる。
 ここで、光BP2が有機層13から誘電体層17へ進む際、有機層13a(13)と誘電体層17との界面(開口部17Aの内側面17a)における屈折により、陽極12及び基板11への入射角が小さい角度(基板11の法線方向により近い角度)に変わる。陽極12と基板11(例えば、ガラス)の界面または基板11と空気との界面に臨界角以上の角度で入射すると光は全反射するが、この開口部17Aの内側面17aでの屈折により光の進行方向が基板11の法線寄りに変わる。そのため、陽極12と基板11の界面及び基板11と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する。すなわち、開口部17Aの内側面17aを備える構成を有することにより、光取り出し効率が向上する。
 光BP3も、有機層13a(13)と誘電体層17との界面(開口部17Aの内側面17a)における屈折により、光の進行方向が基板11の法線寄りに変わる。従って、光BP2と同様に、陽極12と基板11の界面及び基板11と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する効果が得られる。
 さらに、光BP4が、有機層13c(13)と基板11の凸部11Bとの界面(凹部11Aの内側面11a)で屈折する場合にも、この屈折により光の進行方向が基板11の法線寄りに変わる。従って、同様に、陽極12と基板11の界面及び基板11と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する効果が得られる。
Of the propagating light indicated by arrows BP1 to BP4 re-radiated at the radiation starting point portion 14a 1 (14a), the light BP1 is light that travels perpendicularly to the substrate 11 toward the substrate. This light is not refracted at the interface between the organic layer 13 and the dielectric layer 17, the interface between the dielectric layer 17 and the anode 12, and the interface between the anode 12 and the substrate 11. Then, the substrate 11 is taken out and taken out to the outside.
The light BP2 re-radiated from the radiation starting point portion 14a 1 (14a) is refracted at the interface between the organic layer 13a (13) and the dielectric layer 17 (the inner side surface 17a of the opening 17A) and passes through the dielectric layer 17. Then, after being refracted at the interface between the dielectric layer 17 and the anode 12 and proceeding through the anode 12 and refracting at the interface between the anode 12 and the substrate 11, it can be taken out through the substrate 11.
Here, when the light BP2 travels from the organic layer 13 to the dielectric layer 17, due to refraction at the interface between the organic layer 13a (13) and the dielectric layer 17 (the inner surface 17a of the opening 17A), the anode 12 and the substrate 11 The angle of incidence on is changed to a small angle (an angle closer to the normal direction of the substrate 11). Light is totally reflected when it enters the interface between the anode 12 and the substrate 11 (for example, glass) or the interface between the substrate 11 and air at an angle greater than the critical angle, but the light is reflected by refraction at the inner surface 17a of the opening 17A. The direction of travel changes toward the normal line of the substrate 11. Therefore, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and air is increased, and the light extraction efficiency is improved. That is, the light extraction efficiency is improved by having the configuration including the inner surface 17a of the opening 17A.
The light traveling direction of the light BP3 also changes closer to the normal line of the substrate 11 due to refraction at the interface between the organic layer 13a (13) and the dielectric layer 17 (the inner surface 17a of the opening 17A). Therefore, similarly to the light BP2, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and the air is increased, and the light extraction efficiency is improved.
Further, even when the light BP4 is refracted at the interface between the organic layer 13c (13) and the convex portion 11B of the substrate 11 (the inner surface 11a of the concave portion 11A), the light traveling direction is normal to the substrate 11 due to this refraction. It changes to the side. Therefore, similarly, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and air is increased, and the effect of improving the light extraction efficiency can be obtained.
 この構成においては、陰極14と陽極12との間の最短距離近傍が最も電流密度が高く、発光量が多くなる。有機層13に含まれる発光層のCPl及びCPr点での発光はこの発光量が多い点での発光を模式的に示すものである。
 有機層13に含まれる発光層のCPl点で発光した光のうち、光CP1は基板11に対して垂直方向に基板側に進む光であり、有機層13と基板11との界面で屈折することなく基板11内を進み、外部に取り出される。
 光CP2は、有機層13a(13)と誘電体層17B(17)との界面(開口部17Aの内側面17a)で屈折し、誘電体層17B(17)を透過し、誘電体層17B(17)と陽極12との界面で屈折して陽極12内を進み、陽極12と基板11との界面で屈折した後、基板11内を通って外部に取り出されうる。
 ここで、光CP2が有機層13から誘電体層17へ進む際、有機層13a(13)と誘電体層17B(17)との界面(開口部17Aの内側面17a)における屈折により、光の進行方向が基板11の法線寄りに変わる。光が、陽極12と基板11(例えば、ガラス)の界面または基板11と空気との界面では臨界角以上の角度で入射すると光は全反射するが、この開口部17Aの内側面17aでの屈折により光の進行方向が基板11の法線寄りに変わる。そのため、陽極12と基板11の界面及び基板11と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する。光CP3についても同様の効果が得られる。
 さらに、CPl点から有機層13を通って進む光CP4が有機層13cと基板11の凸部11Bとの界面(凹部11Aの内側面11a)で屈折する場合にも、この屈折により光の進行方向が基板11の法線寄りに変わる。従って、同様に、陽極12と基板11の界面及び基板11と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する効果が得られる。
 有機層13に含まれる発光層のCPr点で発光した光についても、CPl点で発光した光と同様な効果が得られる。
In this configuration, the vicinity of the shortest distance between the cathode 14 and the anode 12 has the highest current density and the amount of light emission increases. The light emission at the CPl and CPr points of the light emitting layer included in the organic layer 13 schematically shows the light emission at the point where this light emission amount is large.
Of the light emitted from the CP1 point of the light-emitting layer included in the organic layer 13, the light CP 1 is light that travels to the substrate side in the direction perpendicular to the substrate 11 and is refracted at the interface between the organic layer 13 and the substrate 11. Without going through the substrate 11, it is taken out.
The light CP2 is refracted at the interface between the organic layer 13a (13) and the dielectric layer 17B (17) (the inner surface 17a of the opening 17A), passes through the dielectric layer 17B (17), and passes through the dielectric layer 17B ( 17) and refracted at the interface between the anode 12 and the anode 12, and after being refracted at the interface between the anode 12 and the substrate 11, it can be taken out through the substrate 11.
Here, when the light CP2 travels from the organic layer 13 to the dielectric layer 17, the refraction at the interface between the organic layer 13a (13) and the dielectric layer 17B (17) (the inner surface 17a of the opening 17A) The direction of travel changes toward the normal line of the substrate 11. When light is incident at an angle greater than the critical angle at the interface between the anode 12 and the substrate 11 (for example, glass) or the interface between the substrate 11 and air, the light is totally reflected, but is refracted at the inner surface 17a of the opening 17A. As a result, the traveling direction of the light changes toward the normal line of the substrate 11. Therefore, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and air is increased, and the light extraction efficiency is improved. The same effect can be obtained for the light CP3.
Further, when the light CP4 traveling through the organic layer 13 from the CP1 point is refracted at the interface between the organic layer 13c and the convex portion 11B of the substrate 11 (inner side surface 11a of the concave portion 11A), the direction of travel of light due to this refraction. Changes toward the normal of the substrate 11. Therefore, similarly, the light that can avoid total reflection at the interface between the anode 12 and the substrate 11 and the interface between the substrate 11 and air is increased, and the effect of improving the light extraction efficiency can be obtained.
With respect to light emitted at the CPr point of the light emitting layer included in the organic layer 13, the same effect as the light emitted at the CPl point can be obtained.
 このように、本発明の有機EL素子では、有機層に含まれる発光層で発光した光が、陰極表面にSPPモード光として捕捉されても、そのSPPモード光は陰極表面の放射起点部で伝播光として再放射されて取り出すことができる。さらにその陰極表面から取り出した伝播光を、有機層と誘電体層との界面(開口部の内側面)、及び、有機層と基板の凸部との界面(凹部の内側面)で基板の法線方向寄りへ屈折させて、基板から外部への光の取り出し量を増大させることができる。 As described above, in the organic EL device of the present invention, even if the light emitted from the light emitting layer included in the organic layer is captured as SPP mode light on the cathode surface, the SPP mode light propagates at the radiation starting point on the cathode surface. It can be re-radiated as light and extracted. Further, the propagating light extracted from the cathode surface is applied to the substrate at the interface between the organic layer and the dielectric layer (the inner surface of the opening) and the interface between the organic layer and the convex portion of the substrate (the inner surface of the recess). The amount of light extracted from the substrate to the outside can be increased by refracting toward the linear direction.
 図3は、図1で示した有機EL素子10と比較すると、誘電体層17の開口部17A以外の部分17Bと陰極14の放射起点部14aとの相対位置が半周期ずれた構成の有機EL素子を示す断面模式図である。
 図1に示した有機EL素子10では、陰極14の放射起点部14aは、平面視して誘電体層17の開口部17A以外の部分(誘電体層の実質的な部分)17Bに重なる位置に配置されている。特に図1に示した例では、基板面に対し垂直な一断面において、陰極14の放射起点部14aの基板11に直交する中心軸L1が、誘電体層17の開口部17A以外の部分17Bの中心軸L2と一致する。以下において、陰極の放射起点と誘電体層の開口部以外の部分(誘電体層17の実質的な部分)との相対位置関係が図1で示すような構成、すなわち、陰極14の放射起点部14aが平面視して誘電体層の実質的な部分と重なる相対位置関係を有する構成を「逆位相」ということがある。
Compared with the organic EL element 10 shown in FIG. 1, FIG. 3 shows an organic EL having a configuration in which the relative position between the portion 17B other than the opening 17A of the dielectric layer 17 and the radiation starting point portion 14a of the cathode 14 is shifted by a half cycle. It is a cross-sectional schematic diagram which shows an element.
In the organic EL element 10 shown in FIG. 1, the radiation starting point portion 14a of the cathode 14 is positioned so as to overlap with a portion (substantial portion of the dielectric layer) 17B other than the opening portion 17A of the dielectric layer 17 in plan view. Has been placed. In particular, in the example shown in FIG. 1, the central axis L1 perpendicular to the substrate 11 of the radiation starting point portion 14a of the cathode 14 in the cross section perpendicular to the substrate surface is the portion 17B of the dielectric layer 17 other than the opening portion 17A. It coincides with the central axis L2. In the following, the relative positional relationship between the radiation starting point of the cathode and the portion other than the opening of the dielectric layer (substantial portion of the dielectric layer 17) is as shown in FIG. 1, that is, the radiation starting point portion of the cathode 14. A configuration in which 14a has a relative positional relationship overlapping with a substantial part of the dielectric layer in plan view may be referred to as “reverse phase”.
 これに対して、図3に示す有機EL素子では、陰極14の放射起点部14aは、平面視して誘電体層17の開口部17A以外の部分(誘電体層の実質的な部分)17Bに重ならない位置に配置されている。特に図3に示した例では、基板面に対し垂直な一断面において陰極14の放射起点部14aの基板に直交する中心軸L1が誘電体層17の開口部17A以外の部分17Bの中心軸L2と半周期ずれた構成である。以下において、陰極14の放射起点部14aと誘電体層17の開口部17A以外の部分(誘電体層17の実質的な部分)17Bとの相対位置関係が図3で示すような構成、すなわち、陰極14の放射起点部14aが平面視して誘電体層17の実質的な部分17Bと重ならない相対位置関係を有する構成を「同位相」ということがある。
 本発明の有機EL素子は、「同位相」、「逆位相」のいずれの構成でもよい。後述するように、「同位相」と「逆位相」とでほぼ同程度の光取り出し効率が得られる。
On the other hand, in the organic EL element shown in FIG. 3, the radiation starting point portion 14a of the cathode 14 is formed in a portion (substantial portion of the dielectric layer) 17B other than the opening portion 17A of the dielectric layer 17 in plan view. It is arranged in a position that does not overlap. In particular, in the example shown in FIG. 3, the central axis L1 perpendicular to the substrate of the radiation starting point portion 14a of the cathode 14 in the cross section perpendicular to the substrate surface is the central axis L2 of the portion 17B of the dielectric layer 17 other than the opening 17A. The configuration is shifted by half a cycle. In the following, the relative positional relationship between the radiation starting point portion 14a of the cathode 14 and a portion (substantial portion of the dielectric layer 17) 17B of the dielectric layer 17 other than the opening portion 17A is as shown in FIG. A configuration in which the radiation starting point portion 14a of the cathode 14 has a relative positional relationship that does not overlap the substantial portion 17B of the dielectric layer 17 in plan view may be referred to as “in phase”.
The organic EL device of the present invention may have either “in-phase” or “reverse phase” configuration. As will be described later, approximately the same light extraction efficiency can be obtained between “in phase” and “reverse phase”.
(有機EL素子(第2の実施形態))
 図4は、本発明の第2の実施形態に係る有機EL素子の一例を説明するための断面模式図である。
 本発明の第2の実施形態に係る有機EL素子20は、基板21上に、陽極22と、有機EL材料からなる発光層を含む有機層23と、陰極24とを順に具備する。陰極24は、その有機層側の表面24Aに周期的に配置される複数の放射起点部24aを有する。陽極22と陰極24との間には、有機層23の屈折率より低い屈折率を有すると共に複数の開口部27A(図9(a)参照)を備えた誘電体層27を具備する。有機層23は、開口部27Aの内側面27aを被覆する開口内側面被覆部23aを有し、開口部27Aが配置される周期λ1と放射起点部24aが配置される周期λ2とが、少なくとも素子面内の一方向において一致する。
 第2の実施形態に係る有機EL素子について、陰極の放射起点部が平面視して誘電体層の実質的な部分と重なる相対位置関係を有する「逆位相」の構成を備える場合を例に挙げて説明する。
(Organic EL device (second embodiment))
FIG. 4 is a schematic cross-sectional view for explaining an example of the organic EL element according to the second embodiment of the present invention.
An organic EL element 20 according to the second embodiment of the present invention includes, on a substrate 21, an anode 22, an organic layer 23 including a light emitting layer made of an organic EL material, and a cathode 24 in this order. The cathode 24 has a plurality of radiation starting points 24a periodically arranged on the surface 24A on the organic layer side. Between the anode 22 and the cathode 24, a dielectric layer 27 having a refractive index lower than that of the organic layer 23 and having a plurality of openings 27A (see FIG. 9A) is provided. The organic layer 23 has an opening inner side surface covering portion 23a that covers the inner side surface 27a of the opening 27A, and a period λ1 in which the opening 27A is disposed and a period λ2 in which the radiation starting point portion 24a is disposed are at least elements. Match in one direction in the plane.
The organic EL element according to the second embodiment is exemplified by a case where the emission starting point of the cathode has a “reverse phase” configuration having a relative positional relationship overlapping with a substantial part of the dielectric layer in plan view. I will explain.
 有機層23はさらに、放射起点部24aの形状に対応する部分(図4の例では、凸部23c)を備える。有機層23はさらに、誘電体層27及び開口内側面被覆部23aと陰極24との間に配置される層状部23bを有する。このように、有機層23は、符号23a~23cで示す部分全てを備える構成でも、層状部23bを有さず、符号23a及び23cで示す部分を備える構成でもよい。有機層23のうち、放射起点部24aの形状に対応する部分は、図4のように放射起点部24aが凹状であれば、凸部23cとなるし、放射起点部24aが凸状であれば、凹部となる。
 開口内側面被覆部23aは、有機層23を構成する層のうちの一部によって構成されていてもよい。
The organic layer 23 further includes a portion (in the example of FIG. 4, a convex portion 23c) corresponding to the shape of the radiation starting point portion 24a. The organic layer 23 further includes a dielectric layer 27 and a layered portion 23 b disposed between the opening inner side surface covering portion 23 a and the cathode 24. Thus, the organic layer 23 may be configured to include all the portions indicated by reference numerals 23a to 23c, or may include the portions indicated by reference numerals 23a and 23c without the layered portion 23b. The portion of the organic layer 23 corresponding to the shape of the radiation starting point 24a becomes a convex portion 23c if the radiation starting point 24a is concave as shown in FIG. 4, and if the radiation starting point 24a is convex. It becomes a recess.
The opening inner side surface covering portion 23 a may be constituted by a part of the layers constituting the organic layer 23.
 開口部27Aの形状はその内側面で光を基板側へ屈折させる効果を奏するものであれば特に限定はされない。導波モード光を陽極表面に対してより垂直方向寄りに屈折させる観点からは基板21側の開口部底面積より陰極24側の開口部上面積が小さい形状が好ましい。光線を屈折させることなくまっすぐ基板まで取り出す観点からは陰極24側の開口部上面積より基板21側の開口部底面積が小さい形状が好ましい。導波モード光を屈折させ、より少ない伝播距離で取り出す観点からは開口部の両底面の面積が小さいほど好ましいので、これら形状自体が小さいことが望ましい。
 図4で示した例では、開口部の内側面は基板面に対して直交して配置される構成であるが、かかる構成に限定されない。この内側面が基板面に対する角度は45°以上が好ましく、60°以上がより好ましく、75°以上がより一層好ましい。この内側面をこのような角度とすることにより、発光位置から陽極側へ向かう光(例えば、図4のCQ1~CQ3で示した光)とSPPモード光から再放射された伝播光(例えば、図4のBQ1~BQ3で示した光)がこの内側面に外側から入射して基板側に屈折し、基板の外表面から外部へ取り出される。
The shape of the opening 27A is not particularly limited as long as it has an effect of refracting light toward the substrate on its inner surface. From the viewpoint of refracting the guided mode light closer to the vertical direction with respect to the anode surface, a shape in which the area on the opening on the cathode 24 side is smaller than the area on the bottom of the opening on the substrate 21 side is preferable. From the viewpoint of taking out the light straight to the substrate without refracting the light beam, a shape in which the opening bottom area on the substrate 21 side is smaller than the area on the opening on the cathode 24 side is preferable. From the viewpoint of refracting guided mode light and extracting it with a smaller propagation distance, the smaller the area of both bottom surfaces of the opening, the better. Therefore, it is desirable that these shapes themselves are small.
In the example shown in FIG. 4, the inner side surface of the opening is configured to be orthogonal to the substrate surface, but is not limited to this configuration. The angle of the inner surface with respect to the substrate surface is preferably 45 ° or more, more preferably 60 ° or more, and even more preferably 75 ° or more. By setting the inner surface to such an angle, light traveling from the light emitting position toward the anode (for example, light indicated by CQ1 to CQ3 in FIG. 4) and propagating light re-radiated from the SPP mode light (for example, FIG. 4) (light indicated by BQ1 to BQ3) enters the inner side surface from the outside, is refracted toward the substrate side, and is extracted from the outer surface of the substrate to the outside.
 この有機EL素子20は、第1の実施形態の有機EL素子10と同様に、ボトムエミッション型の有機EL素子であるが、トップエミッション型であってもよい。基板21の材料及び厚さとしては、上記基板11と同様なものを用いることができる。 The organic EL element 20 is a bottom emission type organic EL element, like the organic EL element 10 of the first embodiment, but may be a top emission type. As the material and thickness of the substrate 21, the same materials as those of the substrate 11 can be used.
 陽極22の材料及び厚さとしては、第1の実施形態と同様なものを用いることができる。 As the material and thickness of the anode 22, the same materials as those in the first embodiment can be used.
 誘電体層27は、有機層23の屈折率より低い屈折率を有すると共に複数の開口部27Aを備えている。この開口部27Aの内側面27aは有機層23(開口内側面被覆部23a)によって被覆されている。開口内側面被覆部23aは内側面27aを被覆していれば、開口部27Aを充填する構成でも、一部を埋める構成でもよい。
 誘電体層27の材料及び厚さとしては、第1の実施形態と同様なものを用いることができる。また、開口部27Aの形状及び配列についても、第1の実施形態と同様とすることができる。
The dielectric layer 27 has a refractive index lower than that of the organic layer 23 and includes a plurality of openings 27A. The inner surface 27a of the opening 27A is covered with the organic layer 23 (opening inner surface covering portion 23a). As long as the inner surface 27a of the opening covers the inner surface 27a, the opening 27A may be filled or may be partially filled.
As the material and thickness of the dielectric layer 27, the same materials as those in the first embodiment can be used. Further, the shape and arrangement of the openings 27A can be the same as those in the first embodiment.
 有機層23は、開口部27Aの内側面27aを被覆する開口内側面被覆部23aと、誘電体層27及び開口内側面被覆部23aと陰極24との間に配置される層状部23bと、放射起点部24aの形状に対応する凸部23cとを有している。
 発光層の材料としては、第1の実施形態と同様に、有機EL素子用の材料として知られる任意の材料を用いることができる。
 有機層23の厚さも、第1の実施形態と同様である。
 有機層23は、有機EL材料からなる発光層の他、正孔注入層、正孔輸送層、電子注入層、電子輸送層等を備えてもよいことも第1の実施形態と同様である。
The organic layer 23 includes an opening inner surface covering portion 23a that covers the inner surface 27a of the opening 27A, a dielectric layer 27, a layered portion 23b disposed between the opening inner surface covering portion 23a, and the cathode 24, and radiation. And a convex portion 23c corresponding to the shape of the starting portion 24a.
As the material of the light emitting layer, any material known as a material for an organic EL element can be used as in the first embodiment.
The thickness of the organic layer 23 is the same as that in the first embodiment.
Similar to the first embodiment, the organic layer 23 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like in addition to a light emitting layer made of an organic EL material.
 陰極24の材料及び厚さとしては、第1の実施形態と同様なものを用いることができる。放射起点部24aの形状及び配列についても、第1の実施形態の放射起点部と同様とすることができる。 As the material and thickness of the cathode 24, the same materials as those in the first embodiment can be used. The shape and arrangement of the radiation starting point 24a can be the same as those of the radiation starting point of the first embodiment.
 次に、本実施形態の有機EL素子の作用効果を、図4を用いて模式的に説明する。図4に矢印で示した光の伝播の仕方は、作用効果の原理をわかりやすく説明するために模式的に示したものである。 Next, the function and effect of the organic EL element of this embodiment will be schematically described with reference to FIG. The light propagation method indicated by the arrows in FIG. 4 is schematically shown in order to explain the principle of the action effect in an easy-to-understand manner.
 有機層23に含まれる発光層のAQ点で発光した光のうち一部(AQ1)は、発光点周りの近接場を介し、陰極24の表面24AにSPPモード光として捕捉される。このSPPモード光は表面24Aに沿って移動して(矢印AQ2)、放射起点部24a(24a)で再放射されて伝播光となり、さらに誘電体層27等を透過して基板21に入射し、基板外に取り出される。
 ここで、有機層23のAQ点で発光した光は全方位に進むので矢印AQ1以外の方向に進む光も当然存在する。矢印AQ1は本発明の作用効果を説明するために、そのうちの一部の光の伝播を模式的に示している。矢印AQ2及び矢印BQ1~BQ3で示した光、並びに後述する矢印CQ1~CQ3で示した光についても一部の光の伝播を模式的に示している。
A part (AQ1) of the light emitted from the AQ point of the light emitting layer included in the organic layer 23 is captured as SPP mode light on the surface 24A of the cathode 24 via the near field around the light emitting point. The SPP mode light moves along the surface 24A (arrow AQ2), is re-radiated at the radiation starting point 24a 1 (24a) to become propagating light, and further passes through the dielectric layer 27 and the like and enters the substrate 21. , Taken out of the substrate.
Here, since the light emitted at the AQ point of the organic layer 23 travels in all directions, there is naturally light traveling in a direction other than the arrow AQ1. An arrow AQ1 schematically shows the propagation of a part of the light in order to explain the function and effect of the present invention. The light shown by the arrows AQ2 and BQ1 to BQ3 and the light shown by the arrows CQ1 to CQ3 described later are also schematically shown.
 放射起点部24a(24a)で再放射された、矢印BQ1~BQ3で示した伝播光のうち、光BQ1は基板21に対して垂直に基板側に進む光であり、有機層23b(23)と誘電体層27との界面、誘電体層27と陽極22との界面及び陽極22と基板21との界面でも屈折することなく、誘電体層27内、陽極22内、基板21内を進み、外部に取り出される。
 放射起点部24a(24a)で放射された光BQ2は、有機層23a(23)と誘電体層27B(27)との界面(開口部27Aの内側面27a)で屈折し、誘電体層27B(27)を透過し、誘電体層27B(27)と陽極22との界面で屈折して陽極22内を進み、陽極22と基板21との界面で屈折した後、基板21内を通って外部に取り出されうる。
 ここで、光BQ2が有機層23a(23)から誘電体層27へ進む際、有機層23a(23)と誘電体層27B(27)との界面(開口部27Aの内側面27a)における屈折により、陽極22及び基板21への入射角が小さい角度(基板21の法線方向により近い角度)に変わる。光が、陽極22と基板21(例えば、ガラス)と空気との界面に臨界角以上の角度で入射すると全反射するが、この開口部27Aの内側面27aでの屈折により光の進行方向が基板21の法線寄りに変わる。そのため陽極22と基板21の界面及び基板21と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する。すなわち、開口部27Aの内側面27aを備える構成を有することにより、光取り出し効率が向上する。
 光BQ3も、有機層23a(23)と誘電体層27B(27)との界面(開口部27Aの内側面27a)における屈折により、光の進行方向が基板21の法線寄りに変わる。従って、光BQ2と同様に、陽極22と基板21の界面及び基板21と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する効果が得られる。
Of the propagating light indicated by arrows BQ1 to BQ3 re-radiated at the radiation starting point 24a 1 (24a), the light BQ1 is light that travels perpendicularly to the substrate 21 toward the substrate side, and the organic layer 23b (23) Without being refracted at the interface between the dielectric layer 27 and the dielectric layer 27, the interface between the dielectric layer 27 and the anode 22, and the interface between the anode 22 and the substrate 21, and proceeds through the dielectric layer 27, the anode 22 and the substrate 21, Take out to the outside.
The light BQ2 radiated from the radiation starting point 24a 1 (24a) is refracted at the interface between the organic layer 23a (23) and the dielectric layer 27B (27) (the inner side surface 27a of the opening 27A), and the dielectric layer 27B. (27) is transmitted, refracted at the interface between the dielectric layer 27B (27) and the anode 22, travels through the anode 22, refracts at the interface between the anode 22 and the substrate 21, and then passes through the substrate 21 to the outside. Can be taken out.
Here, when the light BQ2 travels from the organic layer 23a (23) to the dielectric layer 27, due to refraction at the interface between the organic layer 23a (23) and the dielectric layer 27B (27) (inner side surface 27a of the opening 27A). The angle of incidence on the anode 22 and the substrate 21 changes to a small angle (an angle closer to the normal direction of the substrate 21). When light is incident on the interface between the anode 22 and the substrate 21 (for example, glass) and air at an angle greater than the critical angle, the light is totally reflected. The refraction at the inner surface 27a of the opening 27A causes the traveling direction of the light to be the substrate. It changes toward 21 normals. Therefore, light that can avoid total reflection at the interface between the anode 22 and the substrate 21 and at the interface between the substrate 21 and air is increased, and the light extraction efficiency is improved. That is, the light extraction efficiency is improved by having the configuration including the inner side surface 27a of the opening 27A.
The light BQ3 also changes its traveling direction toward the normal line of the substrate 21 due to refraction at the interface between the organic layer 23a (23) and the dielectric layer 27B (27) (the inner surface 27a of the opening 27A). Therefore, as in the case of the light BQ2, there is an increase in light that can avoid total reflection at the interface between the anode 22 and the substrate 21 and at the interface between the substrate 21 and air, thereby improving the light extraction efficiency.
 有機層23に含まれる発光層のCQ点で発光した光のうち、光CQ1は基板に対して垂直方向に基板側に進む光であり、有機層23と基板21との界面で屈折することなく基板21内を進み、外部に取り出される。
 光CQ2は、有機層23a(23)と誘電体層27との界面(開口部27Aの内側面27a)で屈折し、誘電体層27を透過し、誘電体層27と陽極22との界面で屈折して陽極22内を進み、陽極22と基板21との界面で屈折した後、基板21内を通って外部に取り出されうる。
 ここで、光CQ2が有機層23から誘電体層27へ進む際、有機層23a(23)と誘電体層27との界面(開口部27Aの内側面27a)における屈折により、光の進行方向が基板21の法線寄りに変わる。光が、陽極22と基板21(例えば、ガラス)の界面または基板21と空気との界面では臨界角以上の角度で入射すると光は全反射するが、この開口部27Aの内側面27aでの屈折により光の進行方向が基板21の法線寄りに変わる。そのため、陽極22と基板21の界面及び基板21と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する。光CQ3についても同様の効果が得られる。
Of the light emitted at the CQ point of the light emitting layer included in the organic layer 23, the light CQ1 is light that travels to the substrate side in a direction perpendicular to the substrate, and is not refracted at the interface between the organic layer 23 and the substrate 21. It proceeds through the substrate 21 and is taken out to the outside.
The light CQ2 is refracted at the interface between the organic layer 23a (23) and the dielectric layer 27 (the inner surface 27a of the opening 27A), passes through the dielectric layer 27, and is transmitted at the interface between the dielectric layer 27 and the anode 22. After being refracted and traveling through the anode 22 and refracting at the interface between the anode 22 and the substrate 21, it can be taken out through the substrate 21.
Here, when the light CQ2 travels from the organic layer 23 to the dielectric layer 27, the light traveling direction is changed due to refraction at the interface between the organic layer 23a (23) and the dielectric layer 27 (the inner side surface 27a of the opening 27A). It changes closer to the normal line of the substrate 21. When light is incident at an angle greater than the critical angle at the interface between the anode 22 and the substrate 21 (for example, glass) or the interface between the substrate 21 and air, the light is totally reflected, but refraction at the inner surface 27a of the opening 27A. As a result, the traveling direction of the light changes toward the normal line of the substrate 21. Therefore, light that can avoid total reflection at the interface between the anode 22 and the substrate 21 and at the interface between the substrate 21 and air is increased, and the light extraction efficiency is improved. The same effect can be obtained for the light CQ3.
 このように、本発明の有機EL素子では、有機層に含まれる発光層で発光した光が、陰極表面にSPPモード光として捕捉されても、そのSPPモード光は陰極表面の放射起点部で伝播光として再放射されて取り出すことができ、さらに、その陰極表面から取り出した伝播光を、有機層と誘電体層との界面(開口部の内側面)で基板の法線方向寄りへ屈折させて、基板から外部への光の取り出し量を増大させることができる。 As described above, in the organic EL device of the present invention, even if the light emitted from the light emitting layer included in the organic layer is captured as SPP mode light on the cathode surface, the SPP mode light propagates at the radiation starting point on the cathode surface. It can be re-radiated and extracted as light, and the propagating light extracted from the cathode surface is refracted toward the normal direction of the substrate at the interface between the organic layer and the dielectric layer (the inner surface of the opening). The amount of light extracted from the substrate to the outside can be increased.
(有機EL素子(第3の実施形態))
 図5は、本発明の第3の実施形態に係る有機EL素子の一例を説明するための断面模式図である。
 本発明の第3の実施形態に係る有機EL素子30は、基板31上に、陽極32と、有機EL材料からなる発光層を含む有機層33と、陰極34とを順に具備する。陰極34は、その有機層側の表面34Aに周期的に配置される複数の放射起点部34aを有する。陽極32と陰極34との間には、有機層33の屈折率より低い屈折率を有すると共に複数の開口部37A(図10(a)参照)を備えた誘電体層37を具備する。有機層33は、開口部37Aの内側面37aを被覆する開口内側面被覆部33aを有し、開口部37Aが配置される周期λ1と放射起点部34aが配置される周期λ2とが、少なくとも素子面内の一方向において一致する。
 図5に示す例では、陽極32は、開口部37Aに連通する陽極開口部32A(図10(a)参照)を備える。
 第3の実施形態に係る有機EL素子について、陰極の放射起点部が平面視して誘電体層の実質的な部分と重なる相対位置関係を有する「逆位相」の構成を例に挙げて説明する。
(Organic EL Element (Third Embodiment))
FIG. 5 is a schematic cross-sectional view for explaining an example of the organic EL element according to the third embodiment of the present invention.
An organic EL device 30 according to the third embodiment of the present invention includes, on a substrate 31, an anode 32, an organic layer 33 including a light emitting layer made of an organic EL material, and a cathode 34 in this order. The cathode 34 has a plurality of radiation starting point portions 34a periodically arranged on the surface 34A on the organic layer side. A dielectric layer 37 having a refractive index lower than that of the organic layer 33 and having a plurality of openings 37A (see FIG. 10A) is provided between the anode 32 and the cathode 34. The organic layer 33 has an opening inner side surface covering portion 33a that covers the inner surface 37a of the opening portion 37A, and a period λ1 in which the opening portion 37A is disposed and a period λ2 in which the radiation starting point portion 34a is disposed are at least elements. Match in one direction in the plane.
In the example shown in FIG. 5, the anode 32 includes an anode opening 32A (see FIG. 10A) communicating with the opening 37A.
The organic EL device according to the third embodiment will be described by taking as an example a “reverse phase” configuration in which the emission starting point of the cathode has a relative positional relationship with the substantial part of the dielectric layer in plan view. .
 有機層33はさらに、放射起点部34aの形状に対応する部分(図5の例では、凸部33d)と、陽極開口部32Aの内側面32aを被覆する陽極開口内側面被覆部33bとを有するものである。図5に示す例では、有機層33はさらに、誘電体層37及び開口内側面被覆部33aと陰極34との間に配置される層状部33cを有する。このように、有機層33は、符号33a~33dで示す部分全てを備える構成でも、層状部33cを有さず、符号33a、33b及び13dで示す部分を備える構成でもよい。有機層33のうち、放射起点部34aの形状に対応する部分33dは、図5のように放射起点部34aが凹状であれば、凸状になるし、放射起点部34aが凸状であれば、凹状になる。
 開口内側面被覆部及び陽極開口内側面被覆部は、有機層を構成する層のうちの一部によって構成されていてもよい。
 開口部37A及び陽極開口部32Aの形状はそれらの内側面で光を基板側へ屈折させる効果を奏するものであれば特に限定はされない。導波モード光を陽極表面に対してより垂直方向寄りに屈折させる観点からは基板31側の開口部底面積より陰極34側の開口部上面積が小さい形状が好ましい。光線を屈折させることなくまっすぐ基板まで取り出す観点からは陰極34側の開口部上面積より基板31側の開口部底面積が小さい形状が好ましい。導波モード光を屈折させ、より少ない伝播距離で取り出す観点からは開口部底面の面積が小さいほど好ましいので、これら形状自体が小さいことが望ましい。
 図5で示した例では、開口部及び陽極開口部の内側面は基板面に対して直交して配置する構成であるが、かかる構成に限定されない。これらの内側面が基板面に対する角度は45°以上が好ましく、60°以上がより好ましく、75°以上がより一層好ましい。これらの内側面をこのような角度とすることにより、発光位置から陽極側へ向かう光(例えば、図5のCR1~CR3)とSPPモード光から再放射された伝播光(例えば、図5のBR1~BR3)がこれらの内側面に外側から入射して基板側に屈折し、基板の外表面から外部へ取り出される。
The organic layer 33 further includes a portion corresponding to the shape of the radiation starting point portion 34a (a convex portion 33d in the example of FIG. 5) and an anode opening inner side surface covering portion 33b that covers the inner side surface 32a of the anode opening portion 32A. Is. In the example shown in FIG. 5, the organic layer 33 further includes a dielectric layer 37 and a layered portion 33 c disposed between the opening inner side surface covering portion 33 a and the cathode 34. Thus, the organic layer 33 may be configured to include all the portions indicated by reference numerals 33a to 33d, or may include the portions indicated by reference numerals 33a, 33b, and 13d without the layered portion 33c. Of the organic layer 33, the portion 33d corresponding to the shape of the radiation starting point 34a is convex if the radiation starting point 34a is concave as shown in FIG. 5, and if the radiation starting point 34a is convex. , Become concave.
The opening inner side surface covering portion and the anode opening inner side surface covering portion may be constituted by a part of the layers constituting the organic layer.
The shapes of the opening 37A and the anode opening 32A are not particularly limited as long as they have an effect of refracting light toward the substrate on the inner side surfaces thereof. From the viewpoint of refracting the guided mode light closer to the vertical direction with respect to the anode surface, a shape in which the area on the opening on the cathode 34 side is smaller than the bottom area of the opening on the substrate 31 side is preferable. From the viewpoint of taking out the light straight to the substrate without refracting the light beam, a shape in which the bottom area of the opening on the substrate 31 side is smaller than the area on the opening on the cathode 34 side is preferable. From the viewpoint of refracting guided mode light and extracting it with a smaller propagation distance, the smaller the bottom surface area of the opening, the better. Therefore, it is desirable that these shapes themselves are small.
In the example shown in FIG. 5, the inner surfaces of the opening and the anode opening are arranged so as to be orthogonal to the substrate surface. However, the present invention is not limited to such a configuration. The angle between these inner surfaces and the substrate surface is preferably 45 ° or more, more preferably 60 ° or more, and even more preferably 75 ° or more. By setting these inner side surfaces to such an angle, light (for example, CR1 to CR3 in FIG. 5) traveling from the light emitting position to the anode side and propagating light (for example, BR1 in FIG. 5) re-radiated from the SPP mode light. ˜BR3) are incident on these inner surfaces from the outside, refracted toward the substrate side, and taken out from the outer surface of the substrate.
 この有機EL素子30は、第1の実施形態の有機EL素子と同様に、ボトムエミッション型の有機EL素子であるが、トップエミッション型でもよい。基板31の材料及び厚さとしては、上記基板11と同様なものを用いることができる。 The organic EL element 30 is a bottom emission type organic EL element, like the organic EL element of the first embodiment, but may be a top emission type. As the material and thickness of the substrate 31, the same materials as those of the substrate 11 can be used.
 陽極32は第1の実施形態と同様に、複数の陽極開口部32Aを備えており、その陽極開口部32Aの内側面32aが有機層33によって被覆されている。陽極開口内側面被覆部33bは内側面32aを被覆していれば、陽極開口部32Aを充填する構成でも、一部を埋める構成でもよい。
 陽極32の材料及び厚さとしては、第1の実施形態と同様なものを用いることができる。陽極開口部32Aの形状及び配列についても、第1の実施形態と同様とすることができる。
Similar to the first embodiment, the anode 32 includes a plurality of anode openings 32 </ b> A, and an inner surface 32 a of the anode openings 32 </ b> A is covered with an organic layer 33. As long as the inner surface 32a of the anode opening covers the inner surface 32a, the anode opening 32A may be filled or may be partially filled.
As the material and thickness of the anode 32, the same materials as those in the first embodiment can be used. The shape and arrangement of the anode openings 32A can be the same as in the first embodiment.
 誘電体層37は、有機層33の屈折率より低い屈折率を有すると共に複数の開口部37Aを備えている。この開口部37Aの内側面37aは有機層33(開口内側面被覆部33a)によって被覆されている。開口内側面被覆部33aは内側面37aを被覆していれば、開口部37Aを充填する構成でも、一部を埋める構成でもよい。
 誘電体層37の材料及び厚さとしては、第1の実施形態と同様なものを用いることができる。また、開口部37Aの形状及び配列についても、第1の実施形態と同様とすることができる。
The dielectric layer 37 has a refractive index lower than that of the organic layer 33 and includes a plurality of openings 37A. The inner side surface 37a of the opening 37A is covered with an organic layer 33 (opening inner side surface covering portion 33a). As long as the inner surface 37a of the opening covers the inner surface 37a, the opening 37A may be filled or may be partially filled.
As the material and thickness of the dielectric layer 37, the same materials as those in the first embodiment can be used. The shape and arrangement of the openings 37A can be the same as in the first embodiment.
 有機層33は、開口部37Aの内側面37aを被覆する開口内側面被覆部33aと、陽極開口部32Aの内側面を被覆する陽極開口内側面被覆部33bと、放射起点部34aの形状に対応する部分33dとを有する。また、図5に示す例ではさらに、誘電体層37及び開口内側面被覆部33aと陰極34との間に配置される層状部33cを有している。
 発光層の材料としては、第1の実施形態と同様に、有機EL素子用の材料として知られる任意の材料を用いることができる。
 有機層33は、有機EL材料からなる発光層の他、正孔注入層、正孔輸送層、電子注入層、電子輸送層等を備えてもよいことも第1の実施形態と同様である。
The organic layer 33 corresponds to the shape of the opening inner surface covering portion 33a covering the inner surface 37a of the opening 37A, the anode opening inner surface covering portion 33b covering the inner surface of the anode opening 32A, and the radiation starting point portion 34a. 33d. Further, the example shown in FIG. 5 further includes a dielectric layer 37 and a layered portion 33 c disposed between the opening inner side surface covering portion 33 a and the cathode 34.
As the material of the light emitting layer, any material known as a material for an organic EL element can be used as in the first embodiment.
The organic layer 33 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like in addition to the light emitting layer made of an organic EL material, as in the first embodiment.
 陰極34の材料及び厚さとしては、第1の実施形態と同様なものを用いることができる。放射起点部34aの形状及び配列についても、第1の実施形態の放射起点部と同様とすることができる。 As the material and thickness of the cathode 34, the same materials as those in the first embodiment can be used. The shape and arrangement of the radiation starting point 34a can be the same as those of the radiation starting point of the first embodiment.
 次に、本実施形態の有機EL素子の作用効果を、図5を用いて模式的に説明する。図5に矢印で示した光の伝播の仕方は、作用効果の原理をわかりやすく説明するために模式的に示したものである。 Next, the function and effect of the organic EL element of this embodiment will be schematically described with reference to FIG. The light propagation method indicated by the arrows in FIG. 5 is schematically shown for easy understanding of the principle of the effect.
 有機層33に含まれる発光層のAR点で発光した光のうち一部(AR1)は、発光点周りの近接場を介し、陰極34の表面34AにSPPモード光として捕捉される。このSPPモード光は表面34Aに沿って移動して(矢印AR2)、放射起点部34a(34a)で再放射されて伝播光となり、さらに誘電体層37等を透過して基板31に入射し、基板外に取り出される。
 ここで、有機層33のAR点で発光した光は全方位に進むので矢印AR1以外の方向に進む光も当然存在する。矢印AR1は本発明の作用効果を説明するために、そのうちの一部の光の伝播を模式的に示している。矢印AR2及び矢印BR1~BR3で示した光、並びに後述する矢印CR1~CR3で示した光についても一部の光の伝播を模式的に示している。
A part (AR1) of the light emitted from the AR point of the light emitting layer included in the organic layer 33 is captured as SPP mode light on the surface 34A of the cathode 34 through the near field around the light emitting point. The SPP mode light moves along the surface 34A (arrow AR2), is re-radiated at the radiation starting point 34a 1 (34a) to become propagating light, and further passes through the dielectric layer 37 and the like and enters the substrate 31. , Taken out of the substrate.
Here, since light emitted from the AR point of the organic layer 33 travels in all directions, there is naturally light traveling in a direction other than the arrow AR1. The arrow AR1 schematically shows the propagation of a part of the light in order to explain the function and effect of the present invention. The light indicated by the arrow AR2 and the arrows BR1 to BR3 and the light indicated by the arrows CR1 to CR3 to be described later are also schematically shown.
 放射起点部34a(34a)で再放射された、矢印BR1~BR3で示した伝播光のうち、光BR1は基板31に対して垂直に基板側に進む光であり、有機層33と誘電体層37との界面、誘電体層37と陽極32との界面及び陽極32と基板31との界面でも屈折することなく、誘電体層37内、陽極32内、基板31内を進み、外部に取り出される。
 放射起点部34a(34a)で再放射された光BR2は、有機層33a(33)と誘電体層37B(37)との界面(開口部37Aの内側面37a)で屈折し、誘電体層37を透過し、誘電体層37B(37)と陽極32との界面で屈折して陽極32内を進み、陽極32と基板31との界面で屈折した後、基板31内を通って外部に取り出されうる。
 ここで、光BR2が有機層33から誘電体層37へ進む際、有機層33a(33)と誘電体層37B(37)との界面(開口部37Aの内側面37a)における屈折により、陽極32及び基板31への入射角が小さい角度(基板31の法線方向により近い角度)に変わる。光が、陽極32と基板31(例えば、ガラス)の界面または基板31と空気との界面に臨界角以上の角度で入射すると光は全反射するが、この開口部37Aの内側面37aでの屈折により光の進行方向が基板31の法線寄りに変わる。そのため、陽極32と基板31の界面及び基板31と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する。すなわち、開口部37Aの内側面37aを備える構成を有することにより、光取り出し効率が向上する。
 光BR3も、有機層33a(33)と誘電体層37B(37)との界面(開口部37Aの内側面37a)における屈折により、光の進行方向が基板31の法線寄りに変わる。従って、光BR2と同様に、基板と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する効果が得られる。
Of the propagating light indicated by arrows BR1 to BR3 re-radiated at the radiation starting point portion 34a 1 (34a), the light BR1 is light that travels perpendicularly to the substrate 31 toward the substrate side. The light passes through the dielectric layer 37, the anode 32, and the substrate 31 without being refracted at the interface with the layer 37, the interface between the dielectric layer 37 and the anode 32, and the interface between the anode 32 and the substrate 31. It is.
The light BR2 re-radiated at the radiation start point 34a 1 (34a) is refracted at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner side surface 37a of the opening 37A), and the dielectric layer 37, refracts at the interface between the dielectric layer 37 </ b> B (37) and the anode 32, travels through the anode 32, refracts at the interface between the anode 32 and the substrate 31, and then takes out through the substrate 31 to the outside. Can be.
Here, when the light BR2 travels from the organic layer 33 to the dielectric layer 37, the refraction at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner side surface 37a of the opening 37A) causes refraction of the anode 32. And the incident angle to the substrate 31 is changed to a small angle (an angle closer to the normal direction of the substrate 31). When light is incident on the interface between the anode 32 and the substrate 31 (for example, glass) or the interface between the substrate 31 and air at an angle greater than the critical angle, the light is totally reflected, but is refracted at the inner surface 37a of the opening 37A. As a result, the traveling direction of the light changes toward the normal line of the substrate 31. Therefore, light that can avoid total reflection at the interface between the anode 32 and the substrate 31 and at the interface between the substrate 31 and air is increased, and the light extraction efficiency is improved. That is, the light extraction efficiency is improved by having the configuration including the inner side surface 37a of the opening 37A.
In the light BR3 as well, the light traveling direction changes closer to the normal line of the substrate 31 due to refraction at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner surface 37a of the opening 37A). Therefore, as in the case of the light BR2, there is an increase in light that can avoid total reflection at the interface between the substrate and air, and the light extraction efficiency can be improved.
 この構成においては、陰極34と陽極32との間の最短距離近傍が最も電流密度が高く、発光量が多くなる。有機層33に含まれる発光層のCRl及びCRr点での発光はこの発光量が多い点での発光を模式的に示すものである。
 有機層33に含まれる発光層のCRl点で発光した光のうち、光CR1は基板31に対して垂直方向に基板側に進む光であり、有機層33と基板31との界面で屈折することなく基板31内を進み、外部に取り出される。
 光CR2は、有機層33a(33)と誘電体層37B(37)との界面(開口部37Aの内側面37a)で屈折し、誘電体層37B(37)を透過し、誘電体層37B(37)と陽極32との界面で屈折して陽極32内を進み、陽極32と基板31との界面で屈折した後、基板31内を通って外部に取り出されうる。
 ここで、光CR2が有機層33から誘電体層37へ進む際、有機層33a(33)と誘電体層37B(37)との界面(開口部37Aの内側面37a)における屈折により、光の進行方向が基板31の法線寄りに変わる。光が、陽極32と基板31(例えば、ガラス)の界面または基板31と空気との界面では臨界角以上の角度で入射すると光は全反射するが、この開口部37Aの内側面37aでの屈折により光の進行方向が基板31の法線寄りに変わる。そのため、陽極32と基板31の界面及び基板31と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する。光CR3についても同様の効果が得られる。
 有機層33に含まれる発光層のCRr点で発光した光についても、CRl点で発光した光と同様な効果が得られる。
In this configuration, the current density is highest near the shortest distance between the cathode 34 and the anode 32, and the amount of light emission is increased. The light emission at the CRl and CRr points of the light emitting layer included in the organic layer 33 schematically shows the light emission at the point where the light emission amount is large.
Of the light emitted from the CRl point of the light emitting layer included in the organic layer 33, the light CR1 is light traveling toward the substrate side in a direction perpendicular to the substrate 31, and is refracted at the interface between the organic layer 33 and the substrate 31. Without going through the substrate 31, it is taken out.
The light CR2 is refracted at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner surface 37a of the opening 37A), passes through the dielectric layer 37B (37), and passes through the dielectric layer 37B ( 37) and refracted at the interface between the anode 32 and the anode 32, and after being refracted at the interface between the anode 32 and the substrate 31, it can be taken out through the substrate 31 to the outside.
Here, when the light CR2 travels from the organic layer 33 to the dielectric layer 37, the refraction at the interface between the organic layer 33a (33) and the dielectric layer 37B (37) (the inner surface 37a of the opening 37A) causes the light to pass through. The direction of travel changes toward the normal line of the substrate 31. When light is incident at an angle greater than the critical angle at the interface between the anode 32 and the substrate 31 (for example, glass) or the interface between the substrate 31 and air, the light is totally reflected, but refraction at the inner surface 37a of the opening 37A. As a result, the traveling direction of the light changes toward the normal line of the substrate 31. Therefore, light that can avoid total reflection at the interface between the anode 32 and the substrate 31 and at the interface between the substrate 31 and air is increased, and the light extraction efficiency is improved. The same effect can be obtained for the light CR3.
With respect to light emitted at the CRr point of the light emitting layer included in the organic layer 33, the same effect as the light emitted at the CRl point can be obtained.
 このように、本発明の有機EL素子では、有機層に含まれる発光層で発光した光が、陰極表面にSPPモード光として捕捉されても、そのSPPモード光は陰極表面の放射起点部で再放射されて取り出すことができ、さらに、その陰極表面から取り出した光を、有機層と誘電体層との界面(開口部の内側面)で基板の法線方向よりへ屈折させて、基板から外部への光の取り出し量を増大させることができる。 As described above, in the organic EL device of the present invention, even if light emitted from the light emitting layer included in the organic layer is captured as SPP mode light on the cathode surface, the SPP mode light is regenerated at the radiation starting point on the cathode surface. The light extracted from the cathode surface is refracted from the normal direction of the substrate at the interface between the organic layer and the dielectric layer (inner side surface of the opening), and is extracted from the substrate. The amount of light extracted to the can be increased.
(画像表示装置)
 次に、上記の有機EL素子10を備えた画像表示装置について説明を行う。上記の有機EL素子20及び30を備えた画像表示装置も同様である。
 図6は、上記の有機EL素子を備えた画像表示装置の一例を説明した図である。
 図6に示した画像表示装置100は、いわゆるパッシブマトリクス型の画像表示装置であり、有機EL素子10の他に、陽極配線104、陽極補助配線106、陰極配線108、絶縁膜110、陰極隔壁112、封止プレート116、シール材118とを備えている。
(Image display device)
Next, an image display apparatus provided with the organic EL element 10 will be described. The same applies to the image display device including the organic EL elements 20 and 30 described above.
FIG. 6 is a diagram illustrating an example of an image display device including the organic EL element.
The image display device 100 shown in FIG. 6 is a so-called passive matrix type image display device. In addition to the organic EL element 10, the anode wiring 104, the anode auxiliary wiring 106, the cathode wiring 108, the insulating film 110, and the cathode partition 112 are used. , A sealing plate 116 and a sealing material 118.
 本実施の形態において、有機EL素子10の基板11上には、複数の陽極配線104が形成されている。陽極配線104は、一定の間隔を隔てて平行に配置される。陽極配線104は、透明導電膜により構成され、例えばITOを用いることができる。陽極配線104の厚さは例えば、100nm~150nmとすることができる。そして、それぞれの陽極配線104の端部の上には、陽極補助配線106が形成される。陽極補助配線106は陽極配線104と電気的に接続されている。このように構成することにより、陽極補助配線106は、基板11の端部側において外部配線と接続するための端子として機能し、外部に設けられた図示しない駆動回路から陽極補助配線106を介して陽極配線104に電流を供給することができる。陽極補助配線106は、例えば、厚さ500nm~600nmの金属膜によって構成される。 In the present embodiment, a plurality of anode wirings 104 are formed on the substrate 11 of the organic EL element 10. The anode wirings 104 are arranged in parallel at a constant interval. The anode wiring 104 is made of a transparent conductive film, and for example, ITO can be used. The thickness of the anode wiring 104 can be set to 100 nm to 150 nm, for example. An anode auxiliary wiring 106 is formed on the end of each anode wiring 104. The anode auxiliary wiring 106 is electrically connected to the anode wiring 104. With this configuration, the anode auxiliary wiring 106 functions as a terminal for connecting to the external wiring on the end side of the substrate 11, and is connected to an external driving circuit (not shown) via the anode auxiliary wiring 106. A current can be supplied to the anode wiring 104. The anode auxiliary wiring 106 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
 有機EL素子10上には、複数の陰極配線108が設けられている。複数の陰極配線108は、それぞれが平行となるよう、かつ、陽極配線104と直交するように配設されている。陰極配線108には、Al又はAl合金を使用することができる。陰極配線108の厚さは、例えば、100nm~150nmである。陰極配線108の端部には、陽極配線104に対する陽極補助配線106と同様に、図示しない陰極補助配線が設けられ、陰極配線108と電気的に接続されている。よって、陰極配線108と陰極補助配線との間に電流を流すことができる。 A plurality of cathode wirings 108 are provided on the organic EL element 10. The plurality of cathode wirings 108 are arranged so as to be parallel to each other and orthogonal to the anode wiring 104. For the cathode wiring 108, Al or an Al alloy can be used. The thickness of the cathode wiring 108 is, for example, 100 nm to 150 nm. A cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 108, similarly to the anode auxiliary wiring 106 for the anode wiring 104, and is electrically connected to the cathode wiring 108. Therefore, a current can flow between the cathode wiring 108 and the cathode auxiliary wiring.
 更に基板11上には、陽極配線104を覆うように絶縁膜110が形成される。絶縁膜110には、陽極配線104の一部を露出するように矩形状の開口部120が設けられている。複数の開口部120は、陽極配線104の上にマトリクス状に配置されている。この開口部120において、陽極配線104と陰極配線108の間に有機EL素子10が設けられる。すなわち、それぞれの開口部120が画素となる。従って、開口部120に対応して表示領域が形成される。ここで、絶縁膜110の膜厚は、例えば、200nm~100nmとすることができ、開口部120の大きさは、例えば、100μm×100μmとすることができる。 Further, an insulating film 110 is formed on the substrate 11 so as to cover the anode wiring 104. A rectangular opening 120 is provided in the insulating film 110 so as to expose a part of the anode wiring 104. The plurality of openings 120 are arranged in a matrix on the anode wiring 104. In the opening 120, the organic EL element 10 is provided between the anode wiring 104 and the cathode wiring 108. That is, each opening 120 becomes a pixel. Accordingly, a display area is formed corresponding to the opening 120. Here, the film thickness of the insulating film 110 can be, for example, 200 nm to 100 nm, and the size of the opening 120 can be, for example, 100 μm × 100 μm.
 有機EL素子10は、開口部120において陽極配線104と陰極配線108の間に位置している。そしてこの場合、有機EL素子10の陽極12が陽極配線104と接触し、陰極14が陰極配線108と接触する。有機EL素子10の厚さは、例えば、150nm~200nmとすることができる。 The organic EL element 10 is located between the anode wiring 104 and the cathode wiring 108 in the opening 120. In this case, the anode 12 of the organic EL element 10 is in contact with the anode wiring 104 and the cathode 14 is in contact with the cathode wiring 108. The thickness of the organic EL element 10 can be set to, for example, 150 nm to 200 nm.
 絶縁膜110の上には、複数の陰極隔壁112が陽極配線104と垂直な方向に沿って形成されている。陰極隔壁112は、陰極配線108の配線同士が導通しないように、複数の陰極配線108を空間的に分離するための役割を担っている。従って、隣接する陰極隔壁112の間にそれぞれ陰極配線108が配置される。陰極隔壁112の大きさとしては、例えば、高さが2μm~3μm、幅が10μmのものを用いることができる。 A plurality of cathode partition walls 112 are formed on the insulating film 110 along a direction perpendicular to the anode wiring 104. The cathode partition 112 plays a role for spatially separating the plurality of cathode wirings 108 so that the wirings of the cathode wirings 108 do not conduct with each other. Accordingly, the cathode wiring 108 is disposed between the adjacent cathode partition walls 112. As the size of the cathode partition 112, for example, the one having a height of 2 μm to 3 μm and a width of 10 μm can be used.
 基板11は、封止プレート116とシール材118を介して貼り合わせられている。これにより、有機EL素子10が設けられた空間を封止することができ、有機EL素子10が空気中の水分により劣化するのを防ぐことができる。封止プレート116としては、例えば、厚さが0.7mm~1.1mmのガラス基板を使用することができる。 The substrate 11 is bonded to each other with a sealing plate 116 and a sealing material 118 interposed therebetween. Thereby, the space in which the organic EL element 10 is provided can be sealed, and the organic EL element 10 can be prevented from being deteriorated by moisture in the air. As the sealing plate 116, for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
 このような構造の画像表示装置100において、図示しない駆動装置により、陽極補助配線106、図示しない陰極補助配線を介して、有機EL素子10に電流を供給し、発光層を発光させることができる。そして基板11から基板11を通し、光を出射させることができる。そして、上述の画素に対応した有機EL素子10の発光、非発光を制御装置により制御することにより、画像表示装置100に画像を表示させることができる。 In the image display device 100 having such a structure, a current can be supplied to the organic EL element 10 via the anode auxiliary wiring 106 and the cathode auxiliary wiring (not shown) by a driving device (not shown) to cause the light emitting layer to emit light. Then, light can be emitted from the substrate 11 through the substrate 11. An image can be displayed on the image display device 100 by controlling the light emission and non-light emission of the organic EL element 10 corresponding to the above-described pixel by the control device.
(照明装置)
 次に、上記の有機EL素子10を用いた照明装置について説明を行う。上記の有機EL素子20及び30を備えた照明装置についても同様である。
 図7は、上記の有機EL素子10を備える照明装置の一例を説明した図である。
 図7に示した照明装置200は、上述した有機EL素子10と、有機EL素子10の基板11(図1参照)に隣接して設置され陽極12(図1参照)に接続される端子202と、陰極14(図1参照)に接続される端子203と、端子202と端子203とに接続し有機EL素子10を駆動するための点灯回路201とから構成される。
(Lighting device)
Next, a lighting device using the organic EL element 10 will be described. The same applies to the illumination device including the organic EL elements 20 and 30 described above.
FIG. 7 is a diagram illustrating an example of an illumination device including the organic EL element 10 described above.
The illumination device 200 shown in FIG. 7 includes the organic EL element 10 described above, and a terminal 202 that is installed adjacent to the substrate 11 (see FIG. 1) of the organic EL element 10 and connected to the anode 12 (see FIG. 1). The terminal 203 is connected to the cathode 14 (see FIG. 1), and the lighting circuit 201 is connected to the terminal 202 and the terminal 203 to drive the organic EL element 10.
 点灯回路201は、図示しない直流電源と図示しない制御回路を内部に有し、端子202と端子203を通して、有機EL素子10の陽極層12と陰極14との間に電流を供給する。そして、有機EL素子10を駆動し発光層を発光させて、基板11を通して光を出射させ、照明光として利用する。発光層は白色光を出射する発光材料より構成されていてもよく、また緑色光(G)、青色光(B)、赤色光(R)を出射する発光材料を使用した有機EL素子10をそれぞれ複数個設け、その合成光が白色となるようにしてもよい。 The lighting circuit 201 has a DC power source (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 12 and the cathode 14 of the organic EL element 10 through the terminal 202 and the terminal 203. Then, the organic EL element 10 is driven to emit light from the light emitting layer, and light is emitted through the substrate 11 to be used as illumination light. The light emitting layer may be made of a light emitting material that emits white light, and each of the organic EL elements 10 using light emitting materials that emit green light (G), blue light (B), and red light (R). A plurality of them may be provided so that the combined light is white.
(有機EL素子の製造方法)
 次に、本発明の第1の実施形態に係る有機EL素子の製造方法について図8を参照して説明する。
 まず、図8(a)に示すように、基板11上に、陽極12、誘電体層17を順に形成する。この陽極12、誘電体層17の形成方法は、特に限定はされない。例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などを用いることができる。
 陽極12を形成した後に、陽極12の表面処理を行うことで、オーバーコートされる層の性能(陽極12との密着性、表面平滑性、ホール注入障壁の低減化など)を改善することができる。表面処理を行うには高周波プラズマ処理を始めとしてスパッタリング処理、コロナ処理、UVオゾン照射処理、紫外線照射処理、または酸素プラズマ処理などがある。
(Manufacturing method of organic EL element)
Next, the manufacturing method of the organic EL element according to the first embodiment of the present invention will be described with reference to FIG.
First, as shown in FIG. 8A, the anode 12 and the dielectric layer 17 are formed in order on the substrate 11. The method for forming the anode 12 and the dielectric layer 17 is not particularly limited. For example, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or the like can be used.
By performing the surface treatment of the anode 12 after forming the anode 12, the performance of the overcoated layer (adhesion with the anode 12, surface smoothness, reduction of the hole injection barrier, etc.) can be improved. . The surface treatment includes high-frequency plasma treatment, sputtering treatment, corona treatment, UV ozone irradiation treatment, ultraviolet irradiation treatment, oxygen plasma treatment, and the like.
 更に、陽極12の表面処理の表面処理を行う代わりに、もしくは表面処理に追加して、図示しない陽極バッファ層を形成することで表面処理と同様の効果が期待できる。そして、陽極バッファ層をウェットプロセスにて塗布して作製する場合には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法などを用いて成膜することができる。 Furthermore, the same effect as the surface treatment can be expected by forming an anode buffer layer (not shown) instead of or in addition to the surface treatment of the anode 12. When the anode buffer layer is applied by a wet process, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating The film can be formed using a coating method such as a spray method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, or an inkjet printing method.
 次に、図8(a)の工程で形成した陽極12及び誘電体層17を貫通する形で、互いに連通する陽極開口部12A及び開口部17Aの形成を行う。陽極開口部2A及び開口部17Aを形成するには、例えば、フォトリソグラフィを用いた方法が使用できる。これを行うには、図8(b)に示すように、まず誘電体層17の上にポジ型レジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層19を形成する。 Next, the anode opening 12A and the opening 17A communicating with each other are formed so as to penetrate the anode 12 and the dielectric layer 17 formed in the step of FIG. In order to form the anode opening 2A and the opening 17A, for example, a method using photolithography can be used. In order to do this, as shown in FIG. 8B, first, a positive resist solution is applied on the dielectric layer 17, and the excess resist solution is removed by spin coating or the like to form a resist layer 19. To do.
 そして、陽極開口部12A及び開口部17Aを形成するための所定のパターンが描画されたマスク(図示せず)をかぶせ、紫外線(UV)、電子線(EB)等により露光を行うと、図8(c)に示すように、レジスト層19に開口部17A(図8(f)参照)に対応した所定のパターンが露光される(露光された部分19a)。そして現像液を用いてレジスト層19の露光されたパターンの部分のレジスト層19aを除去する。これにより露光されたパターンの部分に対応して、誘電体層17の表面が露出する(図8(d))。 Then, when a mask (not shown) on which a predetermined pattern for forming the anode opening 12A and the opening 17A is drawn is applied and exposure is performed with ultraviolet rays (UV), electron beams (EB), etc., FIG. As shown in FIG. 8C, the resist layer 19 is exposed with a predetermined pattern corresponding to the opening 17A (see FIG. 8F) (exposed portion 19a). Then, the resist layer 19a in the exposed pattern portion of the resist layer 19 is removed using a developer. As a result, the surface of the dielectric layer 17 is exposed corresponding to the exposed pattern portion (FIG. 8D).
 残存したレジスト層19をマスクとして、図8(f)に示すように、誘電体層17の部分をエッチング除去する。エッチングとしては、ドライエッチングとウェットエッチングの何れをも使用することができる。この際に等方性エッチングと異方性エッチングを組合せることで、開口部17Aの形状の制御を行うことができる。ドライエッチングとしては、誘電結合プラズマや容量結合プラズマを用いた反応性イオンエッチング(RIE:Reactive Ion Etching)が利用できる。ウェットエッチングとしては、塩化鉄水溶液をはじめとする金属塩の溶液や、希塩酸や希硫酸をはじめとする酸への浸漬を行う方法などが利用できる。このエッチングにより上記パターンに対応して、陽極12の表面が露出する。 Using the remaining resist layer 19 as a mask, the dielectric layer 17 is etched away as shown in FIG. As the etching, either dry etching or wet etching can be used. In this case, the shape of the opening 17A can be controlled by combining isotropic etching and anisotropic etching. As dry etching, reactive ion etching (RIE) using dielectric coupling plasma or capacitive coupling plasma can be used. As the wet etching, a solution of a metal salt such as an iron chloride aqueous solution or a method of immersing in an acid such as dilute hydrochloric acid or dilute sulfuric acid can be used. By this etching, the surface of the anode 12 is exposed corresponding to the pattern.
 次に残ったレジスト層を、レジスト除去液等を用いて除去し(図8(f))、図8(g)に示すように、誘電体層17をマスクとして、露出した陽極12の部分をエッチング除去する。エッチングの方法としては、図8(f)で説明した方法と同様の方法を用いることができるが、エッチング条件の変更により、誘電体層17にあまり影響を及ぼさずに、陽極12を選択的にエッチングすることができる。これにより、上記パターンに対応して、基板11の表面が露出し、陽極開口部12Aが形成される。図8(f)および図8(g)で説明した各工程は、陽極12および誘電体層17を貫通し、連通する開口部17A及び陽極開口部12Aを形成する工程として捉えることができる。 Next, the remaining resist layer is removed using a resist removing solution or the like (FIG. 8F), and as shown in FIG. 8G, the exposed portion of the anode 12 is removed using the dielectric layer 17 as a mask. Etch away. As an etching method, a method similar to the method described with reference to FIG. 8F can be used. However, the anode 12 is selectively selected without significantly affecting the dielectric layer 17 by changing the etching conditions. It can be etched. Thereby, the surface of the substrate 11 is exposed corresponding to the pattern, and the anode opening 12A is formed. Each process described in FIG. 8F and FIG. 8G can be regarded as a process of forming the opening 17A and the anode opening 12A that penetrate through the anode 12 and the dielectric layer 17 and communicate with each other.
 次に、図8(h)に示すように、連通する開口部17A及び陽極開口部12Aを形成した部分以外の部分をマスクとして、露出した基板11の部分をエッチング除去する。エッチングとしては、図8(f)および図8(g)で説明した方法と同様の方法を用いることができるが、エッチング条件の変更により、誘電体層17及び陽極12にあまり影響を及ぼさずに、基板11を選択的にエッチングすることができる。これにより、上記パターンに対応して、開口部17A及び陽極開口部12Aに連通する凹部11Aを形成することができる。逆に、凹部11A以外の部分は凸部11Bとなる。この方法によれば、別途マスクを用意してフォトリソグラフィを行なう必要がないため、容易に凹部11Aを形成することが可能となる。 Next, as shown in FIG. 8H, the exposed portion of the substrate 11 is removed by etching using a portion other than the portion where the communicating opening 17A and the anode opening 12A are formed as a mask. As the etching, a method similar to the method described with reference to FIGS. 8F and 8G can be used, but the dielectric layer 17 and the anode 12 are not significantly affected by changing the etching conditions. The substrate 11 can be selectively etched. Thereby, the concave portion 11A communicating with the opening 17A and the anode opening 12A can be formed corresponding to the pattern. Conversely, the portion other than the concave portion 11A becomes the convex portion 11B. According to this method, since it is not necessary to prepare a mask separately and perform photolithography, the concave portion 11A can be easily formed.
 次に、図8(i)に示すように、開口部17Aの内側面17a、陽極開口部12Aの内側面12a、凹部11Aの内側面11aを被覆すると共に、誘電体層17及び開口内側面被覆部13a上を被覆する、有機EL材料からなる発光層を含む有機層13を形成する。有機層13は、開口内側面被覆部13aと、陽極開口内側面被覆部13bと、凹内側面被覆部13cと、層状部13dとを有する。有機層13の形成には従来公知の方法を用いることができ限定はされない。例えば、真空蒸着法、スピンコート法、キャスト法、LB法等の方法を用いることができる。 Next, as shown in FIG. 8 (i), the inner surface 17a of the opening 17A, the inner surface 12a of the anode opening 12A, and the inner surface 11a of the recess 11A are covered, and the dielectric layer 17 and the opening inner surface are covered. An organic layer 13 including a light emitting layer made of an organic EL material that covers the portion 13a is formed. The organic layer 13 includes an opening inner side surface covering portion 13a, an anode opening inner side surface covering portion 13b, a concave inner side surface covering portion 13c, and a layered portion 13d. A conventionally known method can be used to form the organic layer 13 and is not limited. For example, methods such as a vacuum deposition method, a spin coating method, a casting method, and an LB method can be used.
 次に、有機層13の表面に、この後に形成する陰極14の放射起点部14aに対応する位置に凸部13e(図1参照)を有するように凹凸構造を形成する。この凹凸形成には例えば、フォトリソグラフィを用いた方法を使用できる。これを行うには、図8(j)に示すように、まず有機層13の上にポジ型レジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層29を形成する。 Next, a concavo-convex structure is formed on the surface of the organic layer 13 so as to have a convex portion 13e (see FIG. 1) at a position corresponding to the radiation starting point portion 14a of the cathode 14 to be formed later. For example, a method using photolithography can be used for forming the unevenness. In order to do this, as shown in FIG. 8J, first, a positive resist solution is applied on the organic layer 13, and the excess resist solution is removed by spin coating or the like to form a resist layer 29. .
 そして、凸部13を形成するための所定のパターンが描画されたマスク(図示せず)をかぶせ、紫外線(UV)、電子線(EB)等により露光を行うと、図8(k)に示すように、レジスト層29に放射起点部14aに対応した所定のパターンが露光される(露光された部分29a)。そして現像液を用いて露光されたパターンの部分のレジスト層29aを除去する。これにより露光されたパターンの部分に対応して、有機層13の表面が露出する(図8(l))。 Then, when a mask (not shown) on which a predetermined pattern for forming the convex portion 13 is drawn is applied and exposure is performed with ultraviolet rays (UV), electron beams (EB), etc., it is shown in FIG. Thus, the resist layer 29 is exposed with a predetermined pattern corresponding to the radiation starting point portion 14a (exposed portion 29a). Then, the resist layer 29a in the exposed pattern portion is removed using a developer. Thus, the surface of the organic layer 13 is exposed corresponding to the exposed pattern portion (FIG. 8L).
 次に、図8(m)に示すように、残存したレジスト層29をマスクとして、露出した有機層13の部分をエッチング除去して凸部13e形成する。エッチングとしては、ドライエッチングとウェットエッチングの何れをも使用することができる。この際に等方性エッチングと異方性エッチングを組合せることで、凸部13eの形状の制御を行うことができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion Etching)、酸素プラズマアッシング処理等が利用できる。ウェットエッチングとしては、希塩酸や希硫酸、各種有機溶媒への浸漬を行う方法などが利用できる。このエッチングにより上記パターンに対応して、放射起点部14aに対応する凸部13eを含む凹凸構造を有機層13の表面に形成することができる。
 フォトリソグラフィは1μm程度までは位置合わせ精度があるため、陰極の放射起点部と陽極開口部とが平面視して重なるように形成することも可能となる。
Next, as shown in FIG. 8M, using the remaining resist layer 29 as a mask, the exposed portion of the organic layer 13 is removed by etching to form a convex portion 13e. As the etching, either dry etching or wet etching can be used. In this case, the shape of the convex portion 13e can be controlled by combining isotropic etching and anisotropic etching. As dry etching, reactive ion etching (RIE), oxygen plasma ashing, or the like can be used. As wet etching, a method of immersing in dilute hydrochloric acid, dilute sulfuric acid, or various organic solvents can be used. By this etching, a concavo-convex structure including a convex portion 13e corresponding to the radiation starting point portion 14a can be formed on the surface of the organic layer 13 corresponding to the pattern.
Since photolithography has a positioning accuracy up to about 1 μm, it can be formed such that the radiation starting point of the cathode and the anode opening overlap in a plan view.
 次に、図8(n)に示すように、陰極材料を有機層13上に蒸着して、有機層13の凹凸構造を追従させて放射起点部14aを有する陰極14を形成する。 Next, as shown in FIG. 8 (n), a cathode material is vapor-deposited on the organic layer 13, and the cathode 14 having the radiation starting point portion 14a is formed by following the uneven structure of the organic layer 13.
 以上の有機EL素子の製造方法では陽極側から作製する方法を説明したが、陰極側から作製してもよい。 In the above method for producing an organic EL element, the method for producing from the anode side has been described, but it may be produced from the cathode side.
 以上の工程により、有機EL素子10を製造することができる。これら一連の工程後、有機EL素子10を長期安定的に用い、有機EL素子10を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等のシリコン化合物などを用いることができる。そして、これらの積層体も用いることができる。保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属などを用いることができる。この保護カバーは、熱硬化性樹脂や光硬化性樹脂、低融点ガラス等で基板11と貼り合わせて密閉する方法を採ることが好ましい。この際に、スペーサを用いることで所定の空間を維持することができ、有機EL素子10が傷つくのを防止できるため好ましい。そして、この空間に窒素、アルゴン、ヘリウムのような不活性なガスを封入すれば、素子上部の陰極金属の酸化を防止しやすくなる。特にヘリウムを用いた場合、熱伝導が高いため、電圧印加時に有機EL素子10より発生する熱を効果的に保護カバーに伝えることができるため、好ましい。更に酸化バリウム等の乾燥剤をこの空間内に設置することにより上記一連の製造工程で吸着した水分が有機EL素子10にダメージを与えるのを抑制しやすくなる。 The organic EL element 10 can be manufactured by the above process. After these series of steps, it is preferable to use the organic EL element 10 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic EL element 10 from the outside. As the protective layer, polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used. As the protective cover, a glass plate, a plastic plate whose surface is subjected to low water permeability treatment, a metal, or the like can be used. It is preferable to adopt a method in which the protective cover is sealed by being bonded to the substrate 11 with a thermosetting resin, a photocurable resin, low-melting glass, or the like. At this time, it is preferable to use a spacer because a predetermined space can be maintained and the organic EL element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon, or helium is sealed in this space, it becomes easy to prevent oxidation of the cathode metal above the element. In particular, when helium is used, heat conduction is high, and thus heat generated from the organic EL element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic EL element 10.
 次に、本発明の第2の実施形態の有機EL素子の製造方法は、図9を参照して説明する。
 図8(a)~図8(e)までは、第1の実施形態の有機EL素子の製造方法と同様である。図9(a)は図8(f)に相当する。
 図8(e)と同様に、残存したレジスト層をマスクとして、誘電体層27をエッチング除去して開口部27Aを形成する(図9(a))。
Next, the manufacturing method of the organic EL element of the 2nd Embodiment of this invention is demonstrated with reference to FIG.
8A to 8E are the same as the method for manufacturing the organic EL element of the first embodiment. FIG. 9A corresponds to FIG.
Similarly to FIG. 8E, the dielectric layer 27 is removed by etching using the remaining resist layer as a mask to form an opening 27A (FIG. 9A).
 次に、図9(b)に示すように、開口部27Aの内側面27aを被覆する開口内側面被覆部23aを形成すると共に、誘電体層27及び開口内側面被覆部23aと陰極24との間に配置される層状部23bを形成するために、有機EL材料からなる発光層を含む有機層を成膜する。有機層の成膜には第1の実施形態の製造方法と同様な方法を用いることができる。 Next, as shown in FIG. 9B, an opening inner side surface covering portion 23a that covers the inner side surface 27a of the opening 27A is formed, and the dielectric layer 27, the opening inner side surface covering portion 23a, and the cathode 24 are formed. In order to form the layered portion 23b disposed therebetween, an organic layer including a light emitting layer made of an organic EL material is formed. A method similar to the manufacturing method of the first embodiment can be used for forming the organic layer.
 これ以降、放射起点部24aを有する陰極24を形成する工程は第1の実施形態の製造方法と同様に行って、図9(c)に示す第2の実施形態の有機EL素子を得る。
 以上の有機EL素子の製造方法では陽極側から作製する方法を説明したが、陰極側から作製してもよい。
Thereafter, the step of forming the cathode 24 having the radiation starting point portion 24a is performed in the same manner as in the manufacturing method of the first embodiment, and the organic EL element of the second embodiment shown in FIG. 9C is obtained.
In the above manufacturing method of the organic EL element, the method of manufacturing from the anode side has been described, but it may be manufactured from the cathode side.
 次に、本発明の第3の実施形態の有機EL素子の製造方法は、図10を参照して説明する。
 図8(a)~図8(f)までは、第1の実施形態の有機EL素子の製造方法と同様である。図10(a)は図8(g)に相当する。
 図8(f)と同様に、残存したレジスト層をマスクとして、誘電体層37をエッチング除去して開口部37Aを形成し、次いで、図10(a)に示すように、開口部37Aを形成した誘電体層37をマスクとして陽極開口部32Aを形成する。
Next, the manufacturing method of the organic EL element of the 3rd Embodiment of this invention is demonstrated with reference to FIG.
8A to 8F are the same as the method for manufacturing the organic EL element of the first embodiment. FIG. 10A corresponds to FIG.
Similarly to FIG. 8F, the dielectric layer 37 is removed by etching using the remaining resist layer as a mask to form an opening 37A, and then the opening 37A is formed as shown in FIG. The anode opening 32A is formed using the dielectric layer 37 as a mask.
 次に、図10(b)に示すように、開口部37Aの内側面37aを被覆する開口内側面被覆部33a、及び、陽極開口部32Aの内側面を被覆する陽極開口内側面被覆部33bを形成すると共に、誘電体層37及び開口内側面被覆部33aと陰極34との間に配置される層状部33cとを形成して、有機EL材料からなる発光層を含む有機層33を形成する。有機層33の形成には第1の実施形態の製造方法と同様な方法を用いることができる。 Next, as shown in FIG. 10B, an opening inner surface covering portion 33a covering the inner surface 37a of the opening 37A and an anode opening inner surface covering portion 33b covering the inner surface of the anode opening 32A are provided. At the same time, the dielectric layer 37 and the layered portion 33c disposed between the opening inner side surface covering portion 33a and the cathode 34 are formed to form the organic layer 33 including a light emitting layer made of an organic EL material. For the formation of the organic layer 33, a method similar to the manufacturing method of the first embodiment can be used.
 これ以降、放射起点部34aを有する陰極34を形成する工程は第1の実施形態の製造方法と同様に行って、図10(c)に示す第3の実施形態の有機EL素子を得る。
 以上の有機EL素子の製造方法では陽極側から作製する方法を説明したが、陰極側から作製してもよい。
Thereafter, the step of forming the cathode 34 having the radiation starting point portion 34a is performed in the same manner as in the manufacturing method of the first embodiment, and the organic EL device of the third embodiment shown in FIG. 10C is obtained.
In the above manufacturing method of the organic EL element, the method of manufacturing from the anode side has been described, but it may be manufactured from the cathode side.
 本発明の有機EL素子の実施例について以下に説明する。 Examples of the organic EL device of the present invention will be described below.
 図10は、本発明の第2の実施形態の有機EL素子20(図4参照)の効果を確認するために、有限差分時間領域(FDTD:Finite Difference Time Domain Method)法を用いて、全放射強度に対する基板中への光の放射強度を光取り出し効率として、コンピュータシミュレーション計算した結果を示す。FDTD法は、電磁界の時間変化を記述するMaxwellの方程式を空間的・時間的に差分化し、空間の各点における電磁界の時間変化を追跡する解析手法である。より具体的には、発光層における発光を微小ダイポールからの放射と捉えて、その放射(電磁界)の時間変化を追跡するという計算手法を採る。シミュレーション結果は、基板まで取り出した光の光取り出し効率を計算した結果を示すものである。
 図11は、等方(ランダム)のダイポールからの放射光の光取り出し効率(η)を示す。
FIG. 10 shows a total emission using a finite difference time domain (FDTD) method in order to confirm the effect of the organic EL element 20 (see FIG. 4) of the second embodiment of the present invention. The result of computer simulation calculation is shown with the light extraction efficiency as the light emission intensity into the substrate with respect to the intensity. The FDTD method is an analysis method for differentiating Maxwell's equation describing a time change of an electromagnetic field spatially and temporally and tracking the time change of the electromagnetic field at each point in the space. More specifically, a calculation method is adopted in which light emission in the light emitting layer is regarded as radiation from a minute dipole, and time variation of the radiation (electromagnetic field) is tracked. The simulation result shows the result of calculating the light extraction efficiency of the light extracted up to the substrate.
FIG. 11 shows the light extraction efficiency (η) of radiated light from an isotropic (random) dipole.
 図11の凡例における「逆位相」とは、図13に示すように、陰極の放射起点部が平面視して誘電体層の開口部以外の部分(誘電体層の実質的な部分)と重なる相対位置関係を有することを意味する。より具体的には、図11に示したグラフに係る「逆位相」とは、図4に示すように、陰極24の放射起点部24aと誘電体層27の開口部27A以外の部分(誘電体層の実質的な部分)27Bとが平面視して重なる配置の関係にあること、特に、陰極の放射起点部の基板に直交する中心軸L1が誘電体層27の実質的な部分27Bの中心軸L2と一致する関係にあることを意味する。 The “reverse phase” in the legend of FIG. 11 means that the radiation starting point of the cathode overlaps with a portion other than the opening of the dielectric layer (substantial portion of the dielectric layer) in plan view as shown in FIG. It means having a relative positional relationship. More specifically, the “reverse phase” in the graph shown in FIG. 11 refers to a portion (dielectric material) other than the radiation starting point 24a of the cathode 24 and the opening 27A of the dielectric layer 27, as shown in FIG. The substantial axis of the dielectric layer 27 has a center axis L1 perpendicular to the substrate at the radiation starting point of the cathode. It means that the relationship coincides with the axis L2.
 図11の凡例における「同位相」とは、図12に示すように、陰極の放射起点部と誘電体層の開口部以外の部分(誘電体層の実質的な部分)とが平面視して重ならない配置の関係にあること、特に、陰極の放射起点部の基板に直交する中心軸L1が誘電体層27の実質的な部分27Bの中心軸L2と半周期ずれて配置する関係にあることを意味する。 “The same phase” in the legend of FIG. 11 means that, as shown in FIG. 12, the radiation starting point of the cathode and the portion other than the opening of the dielectric layer (substantial portion of the dielectric layer) are viewed in plan view. It is in a relationship of non-overlapping arrangement, in particular, in a relationship in which the central axis L1 orthogonal to the substrate at the cathode radiation starting point portion is shifted from the central axis L2 of the substantial portion 27B of the dielectric layer 27 by a half period Means.
 図11の凡例における“陰極凹凸+「逆位相」”とは、陰極の放射起点部と誘電体層の開口部以外の部分(誘電体層の実質的な部分)とが上記の逆位相の配置の関係を有すると共に、陰極に放射起点部として後述する形状の凹部を有する構造を意味する。 In the legend of FIG. 11, “cathode concavity and convexity +“ reverse phase ”” means that the radiation starting point of the cathode and the portion other than the opening of the dielectric layer (substantial portion of the dielectric layer) are in the above-described reversed phase. And a structure having a concave portion having a shape to be described later as a radiation starting point portion on the cathode.
 図11の凡例における“陰極凹凸+「同位相」”とは、陰極の放射起点部と誘電体層の開口部以外の部分(誘電体層の実質的な部分)とが上記の同位相の配置の関係を有すると共に、陰極に放射起点部として後述する形状の凹部を有する構造を意味する。 In the legend of FIG. 11, “cathode concavity and convexity +“ in phase ”” means that the emission starting portion of the cathode and the portion other than the opening of the dielectric layer (substantial portion of the dielectric layer) are in the same phase. And a structure having a concave portion having a shape to be described later as a radiation starting point portion on the cathode.
 図11の凡例における“陰極凹凸のみ”とは、“陰極凹凸+「同位相」”及び“陰極凹凸+「逆位相」”と同様の構成の放射起点部を有する陰極、有機層、陽極開口部を有さない層状の陽極が順に、後述する厚さで積層された構造を意味する。すなわち、陰極側構造は本発明のものと同様であるが、陽極側構造は本発明と異なる構成である。 In the legend of FIG. 11, “cathode unevenness only” means “cathode unevenness +“ in phase ”” and “cathode unevenness +“ reverse phase ””, cathode, organic layer, and anode opening having the same configuration as “cathode unevenness +“ reverse phase ””. It means a structure in which layered anodes not having a thickness are sequentially laminated with a thickness described later, that is, the cathode side structure is the same as that of the present invention, but the anode side structure is different from the present invention. .
 図11の凡例における“標準”とは、放射起点部を有さない層状の陰極、有機層、陽極開口部を有さない層状の陽極が順に、後述する厚さで積層された構造(ベタ構造)を意味する。 “Standard” in the legend of FIG. 11 is a structure (solid structure) in which a layered cathode not having a radiation starting point, an organic layer, and a layered anode not having an anode opening are sequentially laminated at a thickness described later. ).
 コンピュータシミュレーションで用いた第2の実施形態の有機EL素子の各構成の材料及びその屈折率は以下の通りである。
 基板21はガラスからなるとして、屈折率としては1.52を用いた。陽極22はITOからなるとして、屈折率としては550nmで1.82+0.009iとし、その他の波長はローレンツモデルで外挿した。誘電体層27はSOGからなるとして、屈折率としては1.25を用いた。有機層23の屈折率としては1.72を用いた。陰極24はアルミニウム(Al)からなるとして、屈折率としては550nmで0.649+4.32iを用い、その他の波長はドルーデモデルで外挿した。以後、特に断りが無い場合、ガラス、有機層、アルミニウムの屈折率はそれぞれ上記の値を用いている。
The material of each component of the organic EL element of the second embodiment used in the computer simulation and its refractive index are as follows.
The substrate 21 is made of glass, and a refractive index of 1.52 is used. Assuming that the anode 22 is made of ITO, the refractive index is 1.82 + 0.009i at 550 nm, and other wavelengths are extrapolated by the Lorentz model. The dielectric layer 27 is made of SOG, and the refractive index is 1.25. As the refractive index of the organic layer 23, 1.72 was used. The cathode 24 is made of aluminum (Al), the refractive index is 0.649 + 4.32i at 550 nm, and the other wavelengths are extrapolated by the Drude model. Thereafter, unless otherwise noted, the above values are used for the refractive indexes of glass, organic layer, and aluminum, respectively.
 図13に、コンピュータシミュレーションで用いた第2の実施形態の有機EL素子(陰極凹凸+「逆位相」の構成)の各構成のサイズを示す。
 陽極22、有機層23(23a及び23bの部分)、陰極24の層厚はそれぞれ、150nm、150nm、200nmとした。
 複数の放射起点部の配置の周期は500nm、放射起点部をなす凹部の深さは100nm、幅は100nmとした。
 隣接する誘電体層27の開口部27A以外の部分(誘電体層の実質的な部分)27Bの中心軸間の距離(配置の周期)も陰極の放射起点部の配置の周期と同様に、500nmとした。
 “陰極凹凸+「同位相」”の各構成についても同様なサイズとした。
ここで、放射起点部および開口部は、紙面奥行き方向には並進対称な構造としている。すなわち、平面視で、凸部および開口部は面内の一方向を無限に伸びるライン状の形状をしている。ただし、光源は紙面奥行き方向に並進対称ではなく、有機層の層状部領域中に点状に置いている。
FIG. 13 shows the size of each component of the organic EL element (cathode unevenness + “reverse phase” configuration) of the second embodiment used in the computer simulation.
The layer thicknesses of the anode 22, the organic layer 23 (23a and 23b), and the cathode 24 were 150 nm, 150 nm, and 200 nm, respectively.
The arrangement period of the plurality of radiation starting point portions was 500 nm, the depth of the concave portion forming the radiation starting point portion was 100 nm, and the width was 100 nm.
The distance (arrangement period) between the central axes of the adjacent dielectric layer 27 other than the opening 27A (substantial part of the dielectric layer) 27B is 500 nm, similarly to the arrangement period of the radiation starting point of the cathode. It was.
Each structure of “cathode concavity and convexity +“ in phase ”” has the same size.
Here, the radiation starting point and the opening have a translational symmetric structure in the depth direction of the drawing. That is, in plan view, the convex portion and the opening have a line shape extending infinitely in one direction in the plane. However, the light source is not translationally symmetric in the depth direction of the paper, but is placed in the form of dots in the layered region of the organic layer.
 図11に計算結果を示す。本発明の実施例である“陰極凹凸+「同位相」”の構成、及び、“陰極凹凸+「逆位相」”の構成は、“標準”構成及び“陰極凹凸のみ”の構成の場合よりも、計算を行った全範囲である450nm~750nmの範囲にわたり、高い光取り出し効率が得られた。
 特に、本発明の実施例である“陰極凹凸+「同位相」”の構成、及び、“陰極凹凸+「逆位相」”の構成は、“標準”構成の場合よりも、450nm~750nmの範囲にわたり、顕著に高い光取り出し効率が得られた。
 本発明の実施例である“陰極凹凸+「同位相」”の構成、及び、“陰極凹凸+「逆位相」”の構成は、“陰極凹凸のみ”の構成の場合よりも特に、520nm~680nmの範囲では、大きな差が見られた。
 以上の結果は、陰極凹凸構造(第2電極側構造)の光取り出し効率の向上効果を示すとともに、本発明のように陽極側構造(第1電極側構造)と組み合わせることにより、さらに光取り出し効率を向上させることができることを示すものである。
 このようなことは、理論的には予測することが困難であり、シミュレーションを行って初めて知ることができたものである。
FIG. 11 shows the calculation result. The configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention, are more than those of the “standard” configuration and the “cathode unevenness only” configuration. A high light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm.
In particular, the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention, is in the range of 450 nm to 750 nm than in the case of the “standard” configuration. A significantly higher light extraction efficiency was obtained.
The configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention, is particularly 520 nm to 680 nm than the configuration of “cathode unevenness only”. In the range of, there was a big difference.
The above results show the effect of improving the light extraction efficiency of the cathode concavo-convex structure (second electrode side structure) and further combine with the anode side structure (first electrode side structure) as in the present invention to further increase the light extraction efficiency. It is shown that can be improved.
Such a matter is theoretically difficult to predict, and can only be known after performing a simulation.
 図14(a)及び(b)は、本発明の第3の実施形態の有機EL素子(図5参照)について、有限差分時間領域(FDTD:Finite Difference Time Domain Method)法を用いて、全放射強度に対する基板中への光の放射強度を光取り出し効率としてコンピュータシミュレーション計算した結果を示す。
 図14(a)及び(b)も等方(ランダム)のダイポールからの放射光の光取り出し効率(η)を示すものである。図14(a)、(b)はそれぞれ、複数の放射起点部の配置の周期が500nm、1000nmのものである。
FIGS. 14A and 14B show the total emission of the organic EL device (see FIG. 5) according to the third embodiment of the present invention using a finite difference time domain (FDTD) method. The result of computer simulation calculation using the radiation intensity of light into the substrate with respect to the intensity as the light extraction efficiency is shown.
FIGS. 14A and 14B also show the light extraction efficiency (η) of radiated light from an isotropic (random) dipole. FIGS. 14A and 14B are diagrams in which the period of arrangement of a plurality of radiation starting points is 500 nm and 1000 nm, respectively.
 コンピュータシミュレーションで用いた第3の実施形態の有機EL素子の各構成の材料及びその屈折率は図11で示したものと同様である。 The materials and refractive indexes of the components of the organic EL element of the third embodiment used in the computer simulation are the same as those shown in FIG.
 図15に、コンピュータシミュレーションで用いた第3の実施形態の有機EL素子(陰極凹凸+「逆位相」の構成)の各構成のサイズを示す。
 陽極32、誘電体層37、有機層33の層状部33c、陰極34の層厚はそれぞれ、150nm、120nm、100nm、200nmとした。
 複数の放射起点部の配置の周期は500nm(図14(a))、1000nm(図14(b))、放射起点部をなす凹部の深さは100nm、幅は100nmとした。
 隣接する誘電体層37の開口部37A以外の部分(誘電体層の実質的な部分)37Bの中心軸間の距離(配置の周期)も陰極の放射起点部の配置の周期と同様に、500nm(図14(a))、1000nm(図14(b))とした。
 “陰極凹凸+「同位相」”の各構成についても同様なサイズとした。
FIG. 15 shows the size of each component of the organic EL element (cathode unevenness + “reverse phase” configuration) of the third embodiment used in the computer simulation.
The layer thicknesses of the anode 32, the dielectric layer 37, the layered portion 33c of the organic layer 33, and the cathode 34 were 150 nm, 120 nm, 100 nm, and 200 nm, respectively.
The arrangement period of the plurality of radiation starting points was 500 nm (FIG. 14A) and 1000 nm (FIG. 14B), the depth of the concave portion forming the radiation starting point was 100 nm, and the width was 100 nm.
The distance (arrangement period) between the central axes of the parts other than the opening 37A of the adjacent dielectric layer 37 (substantial part of the dielectric layer) 37B is also 500 nm, similarly to the arrangement period of the radiation starting point part of the cathode. (FIG. 14A) and 1000 nm (FIG. 14B).
Each structure of “cathode concavity and convexity +“ in phase ”” has the same size.
 図14(a)に、周期が500nmの場合の計算結果を示す。周期が500nmの場合、本発明の実施例である“陰極凹凸+「同位相」”の構成、及び、“陰極凹凸+「逆位相」”の構成は、“標準”構成及び“陰極凹凸のみ”の構成の場合よりも、計算を行った全範囲である450nm~750nmの範囲にわたり、高い光取り出し効率が得られた。
 特に、本発明の実施例である“陰極凹凸+「同位相」”の構成、及び、“陰極凹凸+「逆位相」”の構成は、“標準”構成の場合に比べて高波長ほど差が大きかったのに対して、“陰極凹凸のみ”の構成の場合に比べると、450nm~550nmの範囲における差が大きかった。図11に示した結果に比べて、光取り出し効率の差が大きい波長範囲が異なる。
FIG. 14A shows the calculation result when the period is 500 nm. When the period is 500 nm, the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention, are “standard” configuration and “cathode unevenness only” High light extraction efficiency was obtained over the entire range of 450 nm to 750 nm, which was the calculated range, compared with the case of the configuration of (5).
In particular, the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention, differs as the wavelength increases compared to the “standard” configuration. On the other hand, the difference in the range of 450 nm to 550 nm was larger than that in the case of the configuration of “cathode unevenness only.” The wavelength range in which the difference in light extraction efficiency was larger than the result shown in FIG. Is different.
 図14(b)に、周期が1000nmの場合の計算結果を示す。周期が1000nmの場合も500nmの場合と同様に、本発明の実施例である“陰極凹凸+「同位相」”の構成、及び、“陰極凹凸+「逆位相」”の構成は、“標準”構成及び“陰極凹凸のみ”の構成の場合よりも、計算を行った全範囲である450nm~750nmの範囲にわたり、高い光取り出し効率が得られた。
 光取り出し効率の差は、周期が500nmの場合の方が1000nmの場合よりも大きかった。これは、周期の選択により、本発明の効果を大きくすることができることを示している。
FIG. 14B shows the calculation result when the period is 1000 nm. As in the case of 500 nm, the configuration of “cathode unevenness +“ in phase ”” and “cathode unevenness +“ reverse phase ”” according to the embodiment of the present invention is “standard”. A higher light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm than in the case of the configuration and the “cathode unevenness only” configuration.
The difference in light extraction efficiency was larger when the period was 500 nm than when 1000 nm. This indicates that the effect of the present invention can be increased by selecting the period.
 図11において、本発明の第2の実施形態の有機EL素子の場合は、“陰極凹凸+「同位相」”の構成、及び、“陰極凹凸+「逆位相」”の構成においては、450nm~750nmの全範囲にわたり、光取り出し効率の差はほとんどなかった。これに対して、図14(a)及び(b)において、本発明の第3の実施形態の有機EL素子の場合は、“陰極凹凸+「逆位相」”の構成の方が“陰極凹凸+「同位相」”の構成よりも高い光取り出し効率が得られた。
 これは、“陰極凹凸+「逆位相」”又は“陰極凹凸+「同位相」”の選択により、本発明の効果を大きくすることができることを示している。
 特に、本発明の実施例である“陰極凹凸+「同位相」”の構成、及び、“陰極凹凸+「逆位相」”の構成は、“標準”構成の場合に比べて高波長ほど差が大きかったのに対して、“陰極凹凸のみ”の構成の場合に比べると、450nm~550nmの範囲における差が大きかった。図14(a)及び(b)に示した第3の実施形態の有機EL素子の場合の結果は、図11に示した第2の実施形態の有機EL素子の場合の結果に比べて、光取り出し効率の差が大きい波長範囲が異なる。
In FIG. 11, in the case of the organic EL element of the second embodiment of the present invention, the structure of “cathode unevenness +“ in phase ”” and the structure of “cathode unevenness +“ reverse phase ”” are 450 nm to 14 (a) and 14 (b), in the case of the organic EL device according to the third embodiment of the present invention, the "cathode" is almost the same. Higher light extraction efficiency was obtained with the configuration of unevenness + "reverse phase" than that of "cathode unevenness +" in-phase "".
This indicates that the effect of the present invention can be increased by selecting “cathode unevenness +“ reverse phase ”” or “cathode unevenness +“ in phase ””.
In particular, the configuration of “cathode unevenness +“ in phase ”” and the configuration of “cathode unevenness +“ reverse phase ””, which is an embodiment of the present invention, differs as the wavelength increases compared to the “standard” configuration. On the other hand, the difference in the range of 450 nm to 550 nm was larger than in the case of the configuration of “cathode unevenness only.” The organic material of the third embodiment shown in FIGS. The result in the case of the EL element is different from the result in the case of the organic EL element of the second embodiment shown in FIG. 11 in the wavelength range where the difference in light extraction efficiency is large.
 以上の結果は、理論的には予測することが困難であり、シミュレーションを行って初めて知ることができたものである。 The above results are theoretically difficult to predict and can only be known after simulation.
 11、21、31 基板 11A 凹部 11a 凹部の内側面 12、22、32 第1電極 12A、32A 第1電極開口部 12a、32a 第1電極開口部の内側面 13、23、33 有機層 14、24、34 第2電極 14a、24a、34a 放射起点部 17、27、37 誘電体層 17A、27A、37A 開口部 17a、27a、37a 開口部の内側面 10、20、30 有機EL素子 100 画像表示装置 200 照明装置 11, 21, 31 Substrate 11A Recess 11a Inner side surface of recess 12, 22, 32 First electrode 12A, 32A First electrode opening 12a, 32a First electrode opening inner surface 13, 23, 33 Organic layers 14, 24 , 34 Second electrode 14a, 24a, 34a Radiation starting point 17, 27, 37 Dielectric layer 17A, 27A, 37A Opening 17a, 27a, 37a Inner side surface 10, 20, 30 Organic EL element 100 Image display device 200 Lighting device

Claims (9)

  1.  基板上に、第1電極と、有機EL材料からなる発光層を含む有機層と、第2電極とを順に具備し、前記第1電極側から外部に光を取り出すように構成された有機EL素子であって、
     前記第2電極は、その前記有機層側の表面に周期的に配置される複数の放射起点部を有するものであり、
     前記第1電極と前記第2電極との間に、前記有機層の屈折率より低い屈折率を有すると共に複数の開口部を備えた誘電体層を具備し、
     前記有機層は、前記開口部の内側面を被覆する開口内側面被覆部を有し、
     前記開口部が配置される周期と前記放射起点部が配置される周期とが、少なくとも素子面内の一方向において一致することを特徴とする有機EL素子。
    An organic EL element comprising a first electrode, an organic layer including a light emitting layer made of an organic EL material, and a second electrode in order on the substrate, and configured to extract light from the first electrode side to the outside. Because
    The second electrode has a plurality of radiation starting points that are periodically arranged on the surface of the organic layer.
    A dielectric layer having a refractive index lower than that of the organic layer and having a plurality of openings between the first electrode and the second electrode;
    The organic layer has an opening inner surface covering portion that covers an inner surface of the opening,
    An organic EL element, wherein a period in which the opening is arranged and a period in which the radiation starting point part is arranged coincide at least in one direction in the element plane.
  2.  第1電極と、有機EL材料からなる発光層を含む有機層と、第2電極とを順に具備し、前記第1電極側から外部に光を取り出すように構成された有機EL素子であって、
     前記第2電極は、その前記有機層側の表面に周期的に配置される複数の放射起点部を有するものであり、
     前記第1電極と前記第2電極との間に、前記有機層の屈折率より低い屈折率を有すると共に複数の開口部を備えた誘電体層を具備し、
     前記有機層は、前記開口部の内側面を被覆する開口内側面被覆部を有し、
     前記開口部が配置される周期と前記放射起点部が配置される周期とが,少なくとも素子面内の一方向において一致することを特徴とする有機EL素子。
    An organic EL element comprising a first electrode, an organic layer including a light emitting layer made of an organic EL material, and a second electrode in order, and configured to extract light from the first electrode side to the outside,
    The second electrode has a plurality of radiation starting points that are periodically arranged on the surface of the organic layer.
    A dielectric layer having a refractive index lower than that of the organic layer and having a plurality of openings between the first electrode and the second electrode;
    The organic layer has an opening inner surface covering portion that covers an inner surface of the opening,
    An organic EL element, wherein a period in which the opening is arranged and a period in which the radiation starting point part is arranged coincide at least in one direction in the element plane.
  3.  前記第1電極は、前記開口部に連通する第1電極開口部を備え、
     前記有機層はさらに、前記第1電極開口部の内側面を被覆する第1電極開口内側面被覆部を有することを特徴とする請求項1に記載の有機EL素子。
    The first electrode includes a first electrode opening that communicates with the opening.
    The organic EL device according to claim 1, wherein the organic layer further includes a first electrode opening inner surface covering portion that covers an inner surface of the first electrode opening.
  4.  前記第1電極は、前記開口部に連通する第1電極開口部を備え、
     前記有機層はさらに、前記第1電極開口部の内側面を被覆する第1電極開口内側面被覆部を有することを特徴とする請求項2に記載の有機EL素子。
    The first electrode includes a first electrode opening that communicates with the opening.
    The organic EL device according to claim 2, wherein the organic layer further includes a first electrode opening inner surface covering portion that covers an inner surface of the first electrode opening.
  5.  前記基板は、前記第1電極開口部に連通する凹部を備え、
     前記有機層はさらに、前記凹部の内側面を被覆する凹内側面被覆部を有することを特徴とする請求項3に記載の有機EL素子。
    The substrate includes a recess communicating with the first electrode opening,
    The organic EL device according to claim 3, wherein the organic layer further includes a concave inner surface covering portion that covers an inner surface of the recess.
  6.  前記有機層はさらに、前記誘電体層及び前記開口内側面被覆部と前記第2電極との間に配置される層状部を有することを特徴とする請求項1~5のいずれか一項に記載の有機EL素子。 The organic layer further includes a layered portion disposed between the dielectric layer and the opening inner side surface covering portion and the second electrode. Organic EL element.
  7.  前記放射起点部は、凹状又は凸状に形成されてなることを特徴とする請求項1~6のいずれか一項に記載の有機EL素子。 The organic EL element according to any one of claims 1 to 6, wherein the radiation starting point portion is formed in a concave shape or a convex shape.
  8.  請求項1~7のいずれか一項に記載の有機EL素子を備えたことを特徴とする画像表示装置。 An image display device comprising the organic EL element according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか一項に記載の有機EL素子を備えたことを特徴とする照明装置。 An illumination device comprising the organic EL element according to any one of claims 1 to 7.
PCT/JP2013/084151 2012-12-28 2013-12-19 Organic el element and image display device and lighting device provided with same WO2014103892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-288518 2012-12-28
JP2012288518 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103892A1 true WO2014103892A1 (en) 2014-07-03

Family

ID=51020979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084151 WO2014103892A1 (en) 2012-12-28 2013-12-19 Organic el element and image display device and lighting device provided with same

Country Status (1)

Country Link
WO (1) WO2014103892A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3172777A4 (en) * 2014-07-24 2018-03-28 Universal Display Corporation Oled device having enhancement layer(s)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313667A (en) * 2005-05-06 2006-11-16 Institute Of Physical & Chemical Research Organic el element
JP2011507196A (en) * 2007-12-17 2011-03-03 トランスパシフィック・インフィニティ,リミテッド・ライアビリティ・カンパニー Improved external efficiency of light emitting diodes
JP2011082192A (en) * 2009-07-21 2011-04-21 Showa Denko Kk Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
WO2011081057A1 (en) * 2009-12-28 2011-07-07 昭和電工株式会社 Electroluminescent element, method for manufacturing electroluminescent element, display device and illuminating device
JP2012243517A (en) * 2011-05-18 2012-12-10 Showa Denko Kk Organic light-emitting element, method for manufacturing the same, display device, and lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313667A (en) * 2005-05-06 2006-11-16 Institute Of Physical & Chemical Research Organic el element
JP2011507196A (en) * 2007-12-17 2011-03-03 トランスパシフィック・インフィニティ,リミテッド・ライアビリティ・カンパニー Improved external efficiency of light emitting diodes
JP2011082192A (en) * 2009-07-21 2011-04-21 Showa Denko Kk Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
WO2011081057A1 (en) * 2009-12-28 2011-07-07 昭和電工株式会社 Electroluminescent element, method for manufacturing electroluminescent element, display device and illuminating device
JP2012243517A (en) * 2011-05-18 2012-12-10 Showa Denko Kk Organic light-emitting element, method for manufacturing the same, display device, and lighting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3172777A4 (en) * 2014-07-24 2018-03-28 Universal Display Corporation Oled device having enhancement layer(s)
CN109037462A (en) * 2014-07-24 2018-12-18 环球展览公司 OLED device and its manufacturing method with enhancement layer
CN109037462B (en) * 2014-07-24 2020-09-04 环球展览公司 OLED device with enhancement layer and method of making the same

Similar Documents

Publication Publication Date Title
JP5219493B2 (en) Light emitting element and light emitting device using the same
TWI279159B (en) Organic EL display
US20170207414A1 (en) Dielectric layer, display substrate comprising the dielectric layer, and method for manufacturing the display substrate
WO2015143838A1 (en) Oled pixel structure and manufacturing method therefor, oled display panel and oled display
JP2004311419A (en) Light-emitting device and organic electroluminescent light-emitting device
KR20130026910A (en) Organic light emitting diode and manufacturing method of the same
WO2014069573A1 (en) Organic el element, and image display device and illumination device provided with same
WO2014069565A1 (en) Organic el element, and image display device and illumination device provided with same
JP2015144110A (en) light-emitting device
KR20200134752A (en) Light emitting display apparatus
JP2013054837A (en) Light-emitting device and manufacturing method therefor
JP2015088418A (en) Organic el element, and image display apparatus and illumination apparatus including the same
WO2014103892A1 (en) Organic el element and image display device and lighting device provided with same
WO2014069557A1 (en) Organic el element, and image display device and illumination device provided with same
WO2014084220A1 (en) Organic electroluminescent element, and image display device and lighting device provided with same
WO2009064021A1 (en) Display apparatus and method of producing same
JP2004119216A (en) Organic el light emission display
WO2014084200A1 (en) Organic electroluminescent element, and image display device and lighting device provided with same
JPWO2015004811A1 (en) ORGANIC EL ELEMENT AND ORGANIC EL LIGHTING DEVICE USING SAME
WO2015016176A1 (en) Organic el element, image display device, and illumination device
JP2015088388A (en) Organic el element, and image display apparatus and illumination apparatus including the same
JP2015095293A (en) Organic el element, image display device including organic el elements, and luminaire
WO2014104042A1 (en) Organic el element, and image display device and lighting device each of which is provided with same
WO2014069564A1 (en) Organic el element, and image display device and lighting device each of which is provided with same
WO2014084159A1 (en) Organic el element and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP