WO2014084200A1 - Organic electroluminescent element, and image display device and lighting device provided with same - Google Patents

Organic electroluminescent element, and image display device and lighting device provided with same Download PDF

Info

Publication number
WO2014084200A1
WO2014084200A1 PCT/JP2013/081737 JP2013081737W WO2014084200A1 WO 2014084200 A1 WO2014084200 A1 WO 2014084200A1 JP 2013081737 W JP2013081737 W JP 2013081737W WO 2014084200 A1 WO2014084200 A1 WO 2014084200A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
organic
cathode
anode
layer
Prior art date
Application number
PCT/JP2013/081737
Other languages
French (fr)
Japanese (ja)
Inventor
祥貴 下平
祐介 山▲崎▼
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2014084200A1 publication Critical patent/WO2014084200A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present invention relates to an organic EL element, and an image display device and an illumination device including the organic EL element.
  • Organic EL elements have features such as a wide viewing angle, high-speed response, and clear self-luminous display. They are thin, lightweight, and have low power consumption. As expected. Organic EL elements are classified into a bottom emission type in which light is extracted from the support substrate side and a top emission type in which light is extracted from the opposite side of the support substrate, depending on the direction in which the light generated in the organic light emitting layer is extracted. .
  • a bottom emission type organic EL element In a bottom emission type organic EL element, light incident on the transparent substrate out of the light emitted from the light emitting layer passes through the transparent substrate and is extracted outside the element. Of the light emitted from the light-emitting layer, a small incident angle (incident light and incident light) below the critical angle at the interface between the transparent substrate (for example, glass (refractive index: 1.52)) and air (refractive index: 1.0) The light incident at an angle formed by the normal of the interface is refracted at the interface and extracted outside the device. In this specification, these lights are called external mode lights.
  • the light incident on the interface between the transparent substrate and air at an incident angle larger than the critical angle is totally reflected at the interface and is not taken out of the device, and finally Can be absorbed by the material.
  • this light is referred to as substrate mode light, and the loss due to this is referred to as substrate loss.
  • the light incident on the interface between the substrate and the cathode at an incident angle greater than the critical angle is also totally reflected at the interface and is not extracted outside the device, but is finally absorbed by the material. sell.
  • an anode made of a transparent conductive oxide (for example, indium tin oxide (ITO (refractive index: 1.82)) and a transparent substrate (for example, glass (refractive index: 1) .52)
  • ITO indium tin oxide
  • a transparent substrate for example, glass (refractive index: 1) .52)
  • waveguide mode light This loss is called waveguide loss.
  • the light is incident on the surface of the metal layer such as the metal cathode and coupled with free electron vibration of the metal cathode, and is captured on the surface of the metal cathode as surface plasmon polariton (SPP).
  • SPP surface plasmon polariton
  • the light extraction efficiency of the organic EL element is generally limited to about 20% (for example, Patent Document 1). That is, about 80% of the light emitted from the light emitting layer is lost, and it is a big problem to reduce these losses and improve the light extraction efficiency.
  • the extraction of the substrate mode light can be dealt with by providing a light diffusion sheet or the like on the transparent substrate (for example, Patent Document 2).
  • Patent Document 2 research on the reduction and extraction of guided mode light and SPP mode light, particularly reduction and extraction of SPP mode light, has just started.
  • Patent Document 3 discloses a configuration in which a high refractive index layer having a higher refractive index than that of an organic light emitting layer or a transparent electrode is inserted in the vicinity of the organic light emitting layer.
  • Patent Document 2 discloses a configuration in which the refractive index of the organic light emitting layer and the transparent electrode is equivalently lowered by dispersing fine particles having a refractive index lower than that of the organic light emitting layer and the transparent electrode in the organic light emitting layer and the transparent electrode. ing.
  • Patent Documents 4 and 5 disclose a configuration in which holes (cavities) are formed in an anode layer and a dielectric layer that are sequentially formed on a substrate. Light incident on the side surface of the cavity (interface extending perpendicular to the substrate) is refracted toward the substrate at this interface. With this effect, the ratio of light that causes total reflection can be reduced by changing the incident angle of the guided mode light to a small angle.
  • Patent Documents 6 to 9 As a method of extracting SPP mode light trapped on the surface of the metal layer, a configuration in which a periodic uneven structure is formed on the surface of the metal layer is known (Patent Documents 6 to 9).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an organic EL element in which SPP mode light is effectively extracted to improve light extraction efficiency, and an image display device and an illumination device including the organic EL element. To do.
  • the present inventors first assume a two-step light extraction mechanism in which SPP mode light is extracted as light into an organic layer, and then the light is extracted outside the device without being guided mode light. From a number of structures, an effective structure that improves the light extraction efficiency has been intensively studied based on simulations. Since it is difficult to directly measure the light extraction efficiency, we examined it based on simulation.
  • the two-step light extraction mechanism is a reflective electrode having a plurality of radiation starting points that are periodically arranged to generate SPP mode light and allow the generated SPP mode light to be extracted into the organic layer as propagating light It consists of a side structure and a transparent electrode side structure for extracting the propagation light to the outside.
  • the radiation starting point portion of the reflecting electrode side structure is a portion from which the SPP mode light captured on the reflecting electrode surface made of a light reflecting material such as metal is re-radiated.
  • the angular frequency of the SPP mode light generated on a flat metal surface
  • k sp the wave vector
  • this dispersion relation is expressed by the real part ⁇ m of the dielectric constant of the metal and the dielectric that contacts the metal surface. It is determined by the dielectric constant ⁇ d and is approximately given by the following equation (1) (c is the speed of incident light).
  • the magnitude of the wave number of light propagating in the dielectric is given by the following equation (2).
  • Equation (2) is smaller than the wave number k sp of SPP mode light and does not have an intersection with the dispersion curve of Equation (1). Therefore, the propagating light in the dielectric cannot excite the SPP mode light directly on the metal surface. Conversely, SPP mode light present on a flat metal surface cannot be extracted directly into the dielectric as propagating light.
  • the SPP mode light is not taken out into the organic layer but is lost.
  • a concave (convex) structure is provided on the reflective electrode surface, the SPP mode light is diffracted by the concave (convex) structure, and light is re-emitted as propagating light into the organic layer around the concave (convex) structure. That is, this concave (convex) structure of the reflective electrode side structure functions as a radiation starting point.
  • the transparent electrode side structure As the transparent electrode side structure, an interface having a refractive index perpendicular or nearly perpendicular to the transparent electrode was introduced. By this interface, the propagating light in the organic layer is refracted, and the incident angle to the transparent electrode surface opposite to the organic layer (the angle formed by the normal of the interface on which the light enters) and the exit angle from this surface are small. Become. More specifically, a structure having an interface (inner side surface of a hole) between a transparent electrode having a hole and a dielectric layer covering the hole was introduced on the transparent electrode side.
  • the present inventors refracted the reflection electrode side structure having a radiation starting point part and refracted the propagating light in the organic layer to the side opposite to the organic layer when viewed from the transparent electrode.
  • the transparent electrode side structure By combining the transparent electrode side structure with the interface, it has been found that the reflective electrode side structure and the transparent electrode side structure have a remarkable effect that cannot be predicted from the effect of improving the light extraction efficiency of the single electrode. Was completed.
  • the present invention employs the following configuration.
  • a transparent electrode, an organic layer including a light emitting layer made of an organic EL material, and a reflective electrode are sequentially provided, and the reflective electrode is a plurality of radiation origins periodically disposed on the surface of the organic layer.
  • the transparent electrode includes a plurality of holes whose inner surface is covered with a dielectric layer having a refractive index lower than that of the transparent electrode, and the organic layer includes the transparent electrode. And a layered portion disposed between the dielectric layer and the reflective electrode, wherein the radiation starting point portion is disposed at a position overlapping the hole portion in plan view.
  • EL element a layered portion disposed between the dielectric layer and the reflective electrode, wherein the radiation starting point portion is disposed at a position overlapping the hole portion in plan view.
  • the transparent electrode has a substrate on a surface opposite to the organic layer, and is configured to extract light from the transparent electrode side to the outside.
  • the transparent electrode is an anode
  • the reflective electrode is It is a cathode
  • An image display device comprising the organic EL element according to any one of (1) to (4).
  • An illuminating device comprising the organic EL element according to any one of (1) to (4).
  • an organic EL element in which the SPP mode light and the extracted propagation light in the organic layer are effectively extracted to improve the light extraction efficiency, and an image display device and an illumination device including the organic EL element.
  • FIG. 5A It is a part of manufacturing method of the organic EL element which concerns on one Embodiment of this invention, and is a cross-sectional schematic diagram for demonstrating the process after FIG. 5A. It is a figure which shows the result of computer simulation calculation of the light extraction efficiency (relative value) of the organic EL element (pitch: 500 nm) of one Embodiment of this invention, (a) is vertical propagation light, (b) is horizontal propagation light. belongs to. (A) is a cross-sectional schematic diagram for demonstrating the model structure which performed the computer simulation of FIG. 6, (b) is a cross-sectional schematic diagram for demonstrating the anti-phase model structure.
  • the structure of an organic EL element to which the present invention is applied, an image display apparatus and an illumination apparatus including the organic EL element will be described with reference to the drawings.
  • the drawings used in the following description in order to make the characteristics easy to understand, there are cases where the characteristic portions are enlarged for convenience.
  • the dimensional ratio of each component is not always the same as actual.
  • the materials, dimensions, and the like exemplified in the following description are merely examples, and the present invention is not limited to these, and can be appropriately modified and implemented without changing the gist thereof.
  • the organic EL element of the present invention may include a layer not described below within a range not impairing the effects of the present invention.
  • the configuration using the reflective electrode as the cathode and the transparent electrode as the anode will be described.
  • the present invention is not limited to this configuration, and the configuration in which the reflective electrode is used as the anode and the transparent electrode as the cathode is also applicable.
  • a bottom emission type organic EL element is used, but a top emission type organic EL element can also be used.
  • FIG. 1 is a schematic cross-sectional view for explaining an example of the organic EL element according to the first embodiment of the present invention.
  • An organic EL element 10 according to the first embodiment of the present invention includes an anode (transparent electrode) 2, an organic layer 3 including a light emitting layer made of an organic EL material, a cathode 4 (reflection electrode), on a substrate 1.
  • the cathode 4 has a plurality of radiation starting points 4a periodically arranged on the surface 4A on the organic layer side.
  • the anode 2 includes a plurality of anode hole portions 2A (see FIG.
  • the organic layer 3 has a layered portion 3 a arranged between the anode 2 and the dielectric layer 7 and the cathode 4.
  • the radiation starting point 4a is arranged at a position overlapping the anode hole 2A (see FIG. 5A (e)) in plan view.
  • the organic layer 3 further has a portion corresponding to the shape of the radiation starting point portion 4a (in the example of FIG. 1, a convex portion 3b).
  • the portion (3b) corresponding to the shape of the radiation starting point 4a is convex if the radiation starting point 4a is concave as shown in FIG.
  • the radiation starting point 4a is convex. If there is, it becomes concave.
  • the configuration shown in FIG. 1 is that of a bottom emission type organic EL element.
  • the substrate 1 is disposed on the side opposite to the organic layer 3 when viewed from the cathode 4.
  • the shape of the anode hole 2A is not particularly limited as long as it has an effect of refracting light toward the substrate on the inner surface thereof. From the viewpoint of refracting the guided mode light more vertically, a shape in which the bottom area on the cathode 4 side is larger than the bottom area on the substrate 1 side is preferable. From the viewpoint of taking out the light beam as shown by the arrow B1 (see FIG. 2) straight up to the substrate without being refracted, a shape in which the area on the substrate 1 side is larger than the bottom area on the cathode 4 side is preferable. From the viewpoint of strongly diffracting the guided mode light and taking it out with a smaller propagation distance, a shape having a surface area as large as possible is preferable. In order not to increase the sheet resistance of the anode, the bottom areas on the substrate 1 side and the cathode 4 side should be small.
  • the inner side surface 2 a of the anode hole 2 ⁇ / b> A is configured to be orthogonal to the substrate surface, but is not limited to this configuration.
  • the angle of the inner side surface of the anode hole with respect to the substrate surface is preferably 45 ° or more, more preferably 60 ° or more, and even more preferably 75 ° or more.
  • the substrate 1 is a bottom emission type organic EL element that extracts light emitted from the light emitting layer from the substrate side. Therefore, the substrate 1 is a light-transmitting substrate and usually needs to be transparent to visible light.
  • transparent to visible light means that it is only necessary to transmit visible light having a wavelength emitted from the light emitting layer, and does not need to be transparent over the entire visible light region.
  • a smooth substrate having a transmittance in visible light of 400 to 700 nm of 50% or more is preferable.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the transmittance is preferably 50% or more and more preferably 70% or more with respect to the wavelength at which light emission has the maximum intensity.
  • an opaque material can be used in addition to the same as described above.
  • Cu, Ag, Au, Pt, W, Ti, Ta, Nb, Al alone, an alloy containing these elements, or a metal material such as stainless steel, Si, SiC, AlN, GaN, Nonmetallic materials such as GaAs and sapphire, and other substrate materials usually used in top emission type organic EL elements can be used.
  • a material having high thermal conductivity is preferably used for the substrate.
  • the thickness of the substrate 1 is not limited because it depends on the required mechanical strength.
  • the thickness is preferably 0.01 mm to 10 mm, more preferably 0.05 mm to 2 mm.
  • the anode 2 has a plurality of anode hole portions 2A (see FIG. 5A (e)).
  • the inner side surface 2a of the anode hole 2A is covered with a dielectric layer 7 having a refractive index lower than that of the anode 2.
  • the dielectric layer 7 may be configured to fill the anode hole 2A or may be configured to partially fill.
  • the anode 2 is an electrode for applying a voltage to the cathode 4 and injecting holes from the anode 2 into the light emitting layer. It is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a high work function. It is preferable to use one having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (Highest Occupied Molecular Orbital) level of the organic layer in contact with the anode does not become excessive.
  • HOMO Highest Occupied Molecular Orbital
  • the material of the anode 2 is not particularly limited as long as it is a translucent and conductive material.
  • transparent inorganic oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide, zinc oxide, PEDOT: PSS (poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • a conductive polymer such as polyaniline and a conductive polymer doped with an arbitrary acceptor, and a transparent carbon material such as carbon nanotube, graphene, etc.
  • the anode 2 is formed on the substrate 1 by sputtering, for example. It can be formed by a method such as a vacuum evaporation method (resistance heating evaporation method or electron beam evaporation method), a CVD method, an ion plating method, or a coating method.
  • the thickness of the anode 2 is not limited, but is, for example, 10 to 2000 nm, preferably 50 to 1000 nm. If the thickness of the anode 2 is less than 10 nm, it is difficult to increase the volume of the dielectric layer 7 and the waveguide mode light is hardly scattered. This is because when the thickness of the anode 2 is greater than 2000 nm, the flatness of the organic layer 3 cannot be maintained and the transmittance of the anode is lowered.
  • the dielectric layer 7 covers the inner side surface 2 a of the anode hole 2 A of the anode 2 and is made of a material having a refractive index lower than that of the anode 2.
  • the configuration and material of the dielectric layer 7 is such that light incident on the inner surface 2a of the anode hole 2A from the anode 2 side toward the dielectric layer 7 is refracted toward the substrate 1 side at this interface, This is because by changing the incident angle into the substrate to a small angle, the ratio of light causing total reflection is reduced, and the light extraction efficiency is improved.
  • the material of the dielectric layer 7 is not particularly limited as long as it is a light-transmitting material and has a refractive index lower than that of the anode.
  • the material of the anode 2 is indium tin oxide (ITO (refractive index 1.82)), for example, spin-on glass (SOG (refractive index 1.25)), magnesium fluoride (MgF 2 (refractive index 1.38). )), Metal fluorides such as polytetrafluoroethylene (PTFE (refractive index 1.35)), silicon dioxide (SiO 2 (refractive index 1.45)), various low melting glass, various Examples include porous substances.
  • the thickness of the dielectric layer 7 is not limited, but is, for example, 10 to 2000 nm, and preferably 50 to 1000 nm. When the thickness of the dielectric layer 7 is less than 10 nm, the volume of the dielectric layer 7 with respect to the organic layer becomes small, and the guided mode light is hardly generated. If the thickness of the dielectric layer 7 is greater than 2000 nm, it is difficult to maintain the flatness of the organic layer 3.
  • the cathode 4 has a plurality of radiation starting points 4a periodically arranged on the surface 4A on the organic layer side.
  • the radiation starting point portion 4a is preferably arranged at a position overlapping the anode hole portion 2A in plan view.
  • the cathode 4 is an electrode for injecting electrons into the light emitting layer. It is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a low work function. It is preferable to use a work function of 1.9 eV or more and 5 eV or less so that the difference from the LUMO (LowestLowUnoccupied Molecular Orbital) level does not become excessive. Examples of such materials include simple substances such as Au, Ag, Cu, Zn, Al, Mg, alkali metals and alkaline earth metals, alloys of Au and Ag, alloys of Ag and Cu, and alloys such as brass. It is done.
  • the cathode 4 may have a laminated structure of two or more layers.
  • the thickness of the cathode 4 is not limited, but is, for example, 30 nm to 1 ⁇ m, and preferably 50 to 500 nm. If the thickness of the cathode 4 is less than 30 nm, the sheet resistance increases and the driving voltage rises. If the thickness of the cathode 4 is greater than 1 ⁇ m, heat and radiation damage during film formation and mechanical damage due to film stress accumulate in the electrode and the organic layer.
  • the radiation starting point portion 4a has a concave shape, but is not limited thereto, and may be a convex shape or an uneven shape. Each shape of the radiation starting point portion 4a when viewed in a plan view may be any of a line-shaped unevenness, a dot-shaped unevenness (unevenness that is discretely arranged), and the like.
  • One radiation starting point portion 4a (unit structure of the radiation starting point portion) may be composed of one concavo-convex structure or a plurality of concavo-convex structures.
  • One radiation starting point portion is preferably smaller than the size of the anode hole portion in plan view.
  • the distance (pitch) between the central axes orthogonal to the substrates of the adjacent radiation starting point portions 4a is preferably 10 ⁇ m or less in which the SPP mode light can propagate. By setting such a pitch, before the SPP mode light is dissipated as heat, the SPP mode light can be scattered by the radiation starting point portion 4a and re-radiated as propagating light.
  • the radiation starting point portion 4a is disposed at a position overlapping the anode hole portion 2A in plan view. However, it is not necessary for all the anode hole portions 2A to have the radiation starting point portions 4a at the overlapping positions in plan view. That is, you may have 2 A of anode holes which do not have the corresponding radiation origin part 4a.
  • the pitch of the adjacent radiation starting point portions 4a is the same as the distance (pitch) between the central axes orthogonal to the substrate of the adjacent anode hole portions 2A arranged at positions where they overlap each other. Furthermore, it is more preferable that the central axis of the radiation starting point portion 4a arranged at the overlapping position and the central axis of the anode hole portion 2A coincide.
  • the organic layer 3 includes a layered portion 3a disposed between the anode 2 and the dielectric layer 7 and the cathode 4, and a portion corresponding to the shape of the radiation starting point portion 4a (in the example of FIG. 1, a protruding portion 3b). It is what you have.
  • the organic layer 3 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like in addition to a light emitting layer (organic light emitting layer) made of an organic EL material.
  • the hole injection layer is a layer that assists hole injection from the anode 2 to the organic layer 3.
  • Such a hole injection layer is preferably a material that injects holes into the light emitting layer with lower electric field strength.
  • the material for forming the hole injection layer is not particularly limited as long as it can perform the above functions, and any material can be selected from known materials.
  • the hole transport layer is a layer that transports holes to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.5 eV or less.
  • the material to be formed as such a hole transport layer is not particularly limited as long as it has the above function, and any material can be selected and used from known materials.
  • the electron injection layer is a layer that assists electron injection from the cathode 4 to the organic layer 3.
  • Such an electron injection layer is preferably a material that injects electrons into the organic layer 3 with lower electric field strength.
  • the material for forming the electron injection layer is not particularly limited as long as it can perform the above function, and any material can be selected and used from known materials.
  • the electron transport layer is a layer that transports electrons to the light emitting region and has a high electron mobility.
  • the material for forming the electron transport layer is not particularly limited as long as it can perform the above function, and any material can be selected and used from known materials.
  • the organic layer 3 may be formed by a dry process such as an evaporation method or a transfer method, or may be formed by a wet process such as a spin coating method, a spray coating method, a die coating method, or a gravure printing method.
  • the thickness of the organic layer 3 is not limited, but is, for example, 50 to 2000 nm, and preferably 100 to 1000 nm. If the thickness of the organic layer 3 is less than 50 nm, quenching other than SPP coupling by metal, such as reduction of internal QE due to punch-through current or lossy surface coupling, occurs. When the thickness of the organic layer 3 is greater than 1000 nm, the drive voltage increases.
  • a part of the light emitted from the point A of the light emitting layer included in the organic layer 3 is captured by the surface 4A of the cathode 4 via the near field around the light emitting point (arrow A1), and becomes SPP mode light.
  • SPP mode light moves along the surface 4A of the cathode 4 (arrow A2) and is scattered by the radiation starting point portion 4a1 (4a).
  • the trapped SPP mode light is re-emitted as propagating light into the organic layer 3, passes through the dielectric layer 17 and the like, and becomes substrate mode light (arrows B1, B2, B3), and is taken out of the substrate.
  • the light emitted from the point A of the organic layer 3 travels in all directions, there is naturally light traveling in a direction other than the arrow A1 (for example, the anode side).
  • the arrow A1 merely schematically shows the propagation of part of the light in order to explain the effects of the present invention.
  • the light indicated by the arrow A2 and the arrows B1 to B3 is only schematically showing the propagation of part of the light.
  • the light B1 travels to the substrate side perpendicular to the substrate, and the organic layer 3 and the dielectric layer 7, without being refracted at the interface with the dielectric layer 7 and the interface between the dielectric layer 7 and the substrate 1.
  • the light B 2 is refracted at the interface between the organic layer 3 and the anode 2, enters the anode 2, and passes through the anode 2.
  • the transmitted light is refracted at the interface between the anode 2 and the dielectric layer 7 (the inner surface 2a of the anode hole 2A), refracted at the interface between the anode 2 and the substrate 1, and then passes through the substrate 1. Can be taken out to the outside.
  • the angle of incidence on the substrate 1 is small due to refraction at the interface between the dielectric layer 7 and the anode 2 (the inner surface 2a of the anode hole 2A). Changes to.
  • the light when the light is incident at an angle greater than the critical angle at the interface between the substrate (eg, glass) and air, total reflection occurs.
  • the incident angle on the substrate 1 is changed to a small angle due to refraction at the inner side surface 2a, light that can avoid total reflection at the interface between the substrate and air is increased, and light extraction efficiency is improved. That is, the light extraction efficiency is improved by having the configuration including the inner side surface 2a of the anode hole portion 2A.
  • the light B3 is also refracted to an angle at which the incident angle to the substrate 1 is small at the interface between the dielectric layer 7 and the anode 2 (the inner surface 2a of the anode hole 2A).
  • the organic EL device of the present invention even if the light emitted from the light emitting layer included in the organic layer is captured as SPP mode light on the cathode surface, the SPP mode light is emitted at the radiation starting point on the cathode surface. Can be taken out. Furthermore, the light extracted from the cathode surface is refracted in the front direction of the substrate at the interface between the dielectric layer and the anode (the inner surface of the anode hole) to increase the amount of light extracted in the front direction of the substrate. Can do.
  • FIG. 3 is a diagram illustrating an example of an image display device including the organic EL element.
  • the image display device 100 shown in FIG. 3 is a so-called passive matrix image display device.
  • an anode wiring 104, an anode auxiliary wiring 106, a cathode wiring 108, an insulating film 110, a cathode partition 112, a sealing plate 116, and a sealing material 118 are provided.
  • a plurality of anode wirings 104 are formed on the substrate 1 of the organic EL element 10.
  • the anode wirings 104 are arranged in parallel at a constant interval.
  • the anode wiring 104 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used.
  • the thickness of the anode wiring 104 can be set to 100 nm to 150 nm, for example.
  • An anode auxiliary wiring 106 is formed on the end of each anode wiring 104.
  • the anode auxiliary wiring 106 is electrically connected to the anode wiring 104. With this configuration, the anode auxiliary wiring 106 functions as a terminal for connecting to the external wiring on the end side of the substrate 1.
  • the anode auxiliary wiring 106 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
  • a plurality of cathode wirings 108 are provided on the organic EL element 10.
  • the plurality of cathode wirings 108 are arranged so as to be parallel to each other and orthogonal to the anode wiring 104.
  • Al or an Al alloy can be used for the cathode wiring 108.
  • the thickness of the cathode wiring 108 is, for example, 100 nm to 150 nm.
  • a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 108, similarly to the anode auxiliary wiring 106 for the anode wiring 104, and is electrically connected to the cathode wiring 108. Therefore, a current can flow between the cathode wiring 108 and the cathode auxiliary wiring.
  • an insulating film 110 is formed on the substrate 1 so as to cover the anode wiring 104.
  • a rectangular opening 120 is provided in the insulating film 110 so as to expose a part of the anode wiring 104.
  • the plurality of openings 120 are arranged in a matrix on the anode wiring 104.
  • the organic EL element 10 is provided between the anode wiring 104 and the cathode wiring 108. That is, each opening 120 becomes a pixel. Accordingly, a display area is formed corresponding to the opening 120.
  • the film thickness of the insulating film 110 can be set to, for example, 200 nm to 100 nm.
  • the size of the opening 120 can be, for example, 100 ⁇ m ⁇ 100 ⁇ m.
  • the organic EL element 10 is located between the anode wiring 104 and the cathode wiring 108 in the opening 120. In this case, the anode 2 of the organic EL element 10 is in contact with the anode wiring 104 and the cathode 4 is in contact with the cathode wiring 108.
  • the thickness of the organic EL element 10 can be set to, for example, 150 nm to 200 nm.
  • a plurality of cathode partition walls 112 are formed on the insulating film 110 along a direction perpendicular to the anode wiring 104.
  • the cathode partition 112 plays a role for spatially separating the plurality of cathode wirings 108 so that the wirings of the cathode wirings 108 do not conduct with each other. Accordingly, the cathode wiring 108 is disposed between the adjacent cathode partition walls 112.
  • the size of the cathode partition 112 for example, the one having a height of 2 ⁇ m to 3 ⁇ m and a width of 10 ⁇ m can be used.
  • the substrate 1 is bonded through a sealing plate 116 and a sealing material 118. Thereby, the space in which the organic EL element 10 is provided can be sealed, and the organic EL element 10 can be prevented from being deteriorated by moisture in the air.
  • a sealing plate 116 for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
  • a current can be supplied to the organic EL element 10 via the anode auxiliary wiring 106 and the cathode auxiliary wiring (not shown) by a driving device (not shown) to cause the light emitting layer to emit light. Then, light can be emitted from the substrate 1 through the substrate 1.
  • An image can be displayed on the image display device 100 by controlling the light emission and non-light emission of the organic EL element 10 corresponding to the above-described pixel by the control device.
  • FIG. 4 is a diagram illustrating an example of an illumination device including the organic EL element 10 described above.
  • the lighting apparatus 200 shown in FIG. 4 includes the organic EL element 10 described above, and a terminal 202 that is installed adjacent to the substrate 1 (see FIG. 1) of the organic EL element 10 and connected to the anode 2 (see FIG. 1).
  • the terminal 203 is connected to the cathode 4 (see FIG. 1), and the lighting circuit 201 is connected to the terminal 202 and the terminal 203 to drive the organic EL element 10.
  • the lighting circuit 201 has a DC power supply (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 2 and the cathode 4 of the organic EL element 10 through the terminal 202 and the terminal 203. Then, the organic EL element 10 is driven, the light emitting layer emits light, light is emitted from the substrate 1 through the support substrate 101, and is used as illumination light.
  • the light emitting layer may be made of a light emitting material that emits white light, and each of the organic EL elements 10 using light emitting materials that emit green light (G), blue light (B), and red light (R). A plurality of them may be provided so that the combined light is white.
  • an anode 2 is formed on a substrate 1.
  • a method for forming the anode 2 is not particularly limited, and for example, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or the like can be used.
  • the surface treatment includes high-frequency plasma treatment, sputtering treatment, corona treatment, UV ozone irradiation treatment, ultraviolet irradiation treatment, oxygen plasma treatment, and the like.
  • anode buffer layer (not shown) instead of or in addition to the surface treatment of the surface treatment of the anode 2.
  • anode buffer layer is applied by a wet process, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating
  • the film can be formed using a coating method such as a spray method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, or an inkjet printing method.
  • the anode buffer layer When the anode buffer layer is produced by a dry process, the anode buffer layer can be formed by using a plasma treatment or the like exemplified in Japanese Patent Application Laid-Open No. 2006-303412.
  • a method of forming a film of a single metal, a metal oxide, a metal nitride, or the like can be given.
  • an electron beam evaporation method, a sputtering method, a chemical reaction method, a coating method, a vacuum evaporation method, or the like can be used.
  • a method using photolithography can be used to form the anode hole 2A.
  • a positive resist solution is applied onto the anode 2 and the excess resist solution is removed by spin coating or the like to form a resist layer 9.
  • FIG. 5A (c) is obtained.
  • a predetermined pattern corresponding to the anode hole 2A is exposed on the resist layer 9 (exposed portion 9a).
  • the resist layer 9a in the exposed pattern portion is removed using a developer.
  • the surface of the anode 2 is exposed corresponding to the exposed pattern portion (FIG. 5A (d)).
  • a part of the exposed anode 2 is removed by etching using the remaining resist layer 9 as a mask to form an anode hole 2A.
  • etching method either dry etching or wet etching can be used.
  • the shape of the anode hole portion 2A can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE: Reactive Ion Etching) using inductively coupled plasma or capacitively coupled plasma can be used.
  • a solution of a metal salt such as an iron chloride aqueous solution or a method of immersing in an acid such as dilute hydrochloric acid or dilute sulfuric acid can be used.
  • the dielectric layer 7 is formed using the remaining resist layer 9 as a mask.
  • the dielectric layer 7 fills the anode hole 2A and covers the inner side surface 2a of the anode hole 2A, but only partially fills the inner side surface 2a of the anode hole 2A.
  • the structure to do may be sufficient.
  • the formation of the dielectric layer 7 is not limited in the same manner as the formation of the anode 2, but for example, resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, various coating methods, etc. Can be used.
  • an organic layer 3 including a light emitting layer made of an organic EL material is formed on the anode 2 and the dielectric layer.
  • polishing or etching for flattening may be appropriately performed.
  • a conventionally known method can be used and is not limited. For example, a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method can be used.
  • a concavo-convex structure is formed on the surface of the organic layer 3 so as to have a convex portion 3b at a position corresponding to the radiation starting point portion 4a of the cathode 4 to be formed later.
  • a method using photolithography can be used for forming the unevenness. In order to do this, as shown in FIG. 5B (g), first, a positive resist solution is applied onto the organic layer 3, and the excess resist solution is removed by spin coating or the like to form a resist layer 11. .
  • FIG. 5B (h) when a mask (not shown) on which a predetermined pattern for forming the convex portion 3b is drawn is applied and exposure is performed with ultraviolet rays (UV), electron beams (EB), etc., it is shown in FIG. 5B (h).
  • UV ultraviolet rays
  • EB electron beams
  • FIG. 5B (h) As described above, the resist layer 11 is exposed with a predetermined pattern corresponding to the radiation starting point portion 4a (exposed portion 11a). Then, the resist layer 11a in the exposed pattern portion is removed using a developer. Thus, the surface of the organic layer 3 is exposed corresponding to the exposed pattern portion (FIG. 5B (i)).
  • a portion of the exposed organic layer 3 is removed by etching to form a convex portion 3b.
  • etching either dry etching or wet etching can be used.
  • the shape of the convex portion 3b can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE), ashing treatment using oxygen plasma, or the like can be used.
  • wet etching there can be used a method of immersing in various organic solvents in addition to dilute hydrochloric acid and dilute sulfuric acid.
  • a concavo-convex structure including the convex portions 3 b corresponding to the radiation starting point portions 4 a can be formed on the surface of the organic layer 3 corresponding to the pattern. Since photolithography has alignment accuracy up to about 1 ⁇ m, it is possible to form the cathode radiation starting point portion 4a and the anode hole portion 2A so as to overlap in a plan view.
  • a cathode material is vapor-deposited on the organic layer 3, and the cathode 4 having the radiation starting point portion 4a is formed by following the uneven structure of the organic layer 3.
  • the organic EL element 10 can be manufactured by the above process. After these series of steps, it is preferable to use the organic EL element 10 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic EL element 10 from the outside.
  • a protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
  • As the protective cover a glass plate, a plastic plate whose surface is subjected to low water permeability treatment, a metal, or the like can be used.
  • the protective cover is preferably bonded to the substrate 1 with a thermosetting resin, a photocurable resin, frit glass or the like and sealed. At this time, it is preferable to place a spacer between the substrate 1 and the protective cover because a predetermined space can be maintained and the organic EL element 10 can be prevented from being damaged. If an inert gas such as nitrogen, argon or helium is sealed in this space, it becomes easy to prevent oxidation of the upper cathode 4. In particular, when helium is used, heat conduction is high, and thus heat generated from the organic EL element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable. Furthermore, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic EL element 10.
  • a desiccant such as barium oxide
  • 6 (a) and 6 (b) show the total radiant intensity using a finite difference time domain (FDTD) method in order to confirm the effect of the organic EL device of one embodiment of the present invention.
  • the result of computer simulation calculation is shown by using the radiation intensity of light into the substrate as the light extraction efficiency.
  • the FDTD method is an analysis method for differentiating Maxwell's equation describing a time change of an electromagnetic field spatially and temporally and tracking the time change of the electromagnetic field at each point in the space. More specifically, a calculation method is adopted in which light emission in the light emitting layer is regarded as radiation from a minute dipole, and time variation of the radiation (electromagnetic field) is tracked.
  • the simulation result shows the result of calculating the light extraction efficiency with respect to the light extracted up to the substrate.
  • a simulation of a bottom emission type organic EL element is performed, but the top emission type organic EL element also differs only in the direction of light extraction, and exhibits the effects of the present invention.
  • 6 (a) and 6 (b) respectively show the light extraction efficiency of the radiated light from the dipole vibrating in the horizontal direction (light propagating in the direction perpendicular to the substrate (hereinafter also referred to as vertical propagation light)),
  • the light extraction efficiency calculation result of the radiated light from the dipole vibrating in the vertical direction (light propagating in a direction parallel to the substrate (hereinafter sometimes referred to as horizontal propagation light)) is shown.
  • “In-phase” in the graphs shown in FIGS. 6A and 6B is an example of the present invention.
  • FIG. 7 (a) in the case of the present invention in which the radiation starting point of the cathode and the anode hole (or dielectric layer) overlap in plan view, in particular, the radiation starting point of the cathode This is a case where the central axis C1 orthogonal to the substrate coincides with the central axis C2 orthogonal to the substrate of the anode hole portion.
  • the “reverse phase” is a case where the radiation starting point portion of the cathode and the anode hole portion (or dielectric layer) do not overlap each other in plan view. This is a case where the center axis C1 of the radiation starting point portion and the center axis C2 of the anode hole portion are shifted by a half cycle, and is shown as a comparative example of the present invention.
  • the “cathode unevenness +“ in-phase ”” according to the graphs shown in FIGS. 6A and 6B means that the cathode emission starting portion and the anode hole portion have the above-described arrangement, and the cathode has a radiation starting portion.
  • “cathode unevenness +“ reverse phase ”” according to the graphs shown in FIGS. 6A and 6B is that the emission starting point portion and the anode hole portion of the cathode have the above-described arrangement and are emitted to the cathode.
  • the structure which has a recessed part of the shape mentioned later as a starting point part is meant.
  • the “cathode unevenness only” according to the graphs shown in FIGS. 6A and 6B is “cathode unevenness +“ in phase ”” except that the anode is a layered anode having no anode hole. It means the same structure as “cathode unevenness +“ reverse phase ”.” That is, the structure of the cathode (reflection electrode side structure) is the same as that of the present invention, but the structure of the anode (transparent electrode side structure) The configuration is different from that of the present invention.
  • the “standard” according to the graphs shown in FIGS. 6A and 6B is a layered anode in which the anode does not have an anode hole, and a cathode in which the cathode does not have a radiation starting point. Otherwise, it means the same structure as “cathode unevenness +“ in-phase ”” and “cathode unevenness +“ reverse phase ”.” That is, the structure of the cathode (reflection electrode side structure) and the structure of the anode (transparent electrode) The side structure is different from the present invention.
  • the substrate 1 is made of glass, and a refractive index of 1.5 is used.
  • the anode 2 is made of ITO, the refractive index is 1.82 + 0.009i at 550 nm, and other wavelengths are extrapolated by the Lorentz model.
  • the dielectric layer 7 is made of SOG, and the refractive index is 1.25.
  • the cathode 4 is made of aluminum (Al), the refractive index is 0.958 + 6.69i at 550 nm, and the other wavelengths are extrapolated by the Drude model. Thereafter, unless otherwise noted, the above values are used for the refractive indexes of glass, organic layer, and aluminum, respectively.
  • FIG. 8 shows the shape and size of each configuration, taking the configuration of FIG. 7A as an example.
  • the layer thicknesses of the anode 2 (or dielectric layer 7), the layered portion 3a of the organic layer 3, and the cathode 4 were 150 nm, 100 nm, and 200 nm, respectively.
  • the distance (pitch) between the central axes of the adjacent radiation starting point portions 4a was 500 nm
  • the depth of the concave portion forming the radiation starting point portion 4a was 100 nm
  • the width was 60 nm.
  • the distance (pitch) between the central axes of the adjacent anode hole portions 2A was set to 500 nm, similar to the pitch of the radiation starting point portions 4a of the cathode 4.
  • the width of the anode hole 2A was set to 1 ⁇ 2 (250 nm) of the pitch.
  • the radiation starting point portion 4a and the anode hole portion 2A have a translational symmetric structure in the depth direction of the drawing. That is, in a plan view, the convex portion and the hole have a line shape extending infinitely in one direction in the plane.
  • the light source is not translationally symmetric in the depth direction of the paper, but is placed in the form of dots in the organic layer layered region.
  • the relative positional relationship between the radiation starting point 4a of the cathode and the anode hole 2A greatly affects the light extraction efficiency of the vertical propagation light.
  • a higher light extraction efficiency than the conventional “standard” configuration and “cathode unevenness only” configuration can be obtained. It is done. Even if it is a combination of the cathode radiation origin portion and the anode hole portion, when the relative positions of the cathode radiation origin portion and the anode hole portion are combined in “reverse phase”, the conventional “standard” configuration, and The light extraction efficiency is lower than the “cathode unevenness only” configuration.
  • “Cathode unevenness only” configuration has almost the same light extraction efficiency as “Standard” configuration. This is because, even if the SPP mode light captured on the cathode surface is re-emitted into the organic layer by the radiation origin provided on the cathode surface in the “cathode unevenness only” configuration, the re-emitted light is extracted. When the anode side structure is not provided, the re-emitted light is confined in the element as guided mode light, which means that the light extraction efficiency to the substrate cannot be improved.
  • the light extraction efficiency was slightly lower in the range of 450 nm to 500 nm, but the light extraction efficiency was higher in the other wavelength ranges as compared with the case of the cathode irregularity + “reverse phase” configuration.
  • the “cathode unevenness +“ in-phase ”” configuration is more than the “standard” configuration, “cathode unevenness only” configuration, and “cathode unevenness +“ reverse phase ”” configuration. It turns out that it is effective for the improvement of efficiency. These are theoretically difficult to predict and can only be known after simulation.
  • FIGS. 9A and 9B show the model structure of the organic EL element having the same configuration as that of FIGS. 7 and 8, except that the pitch of the radiation starting point of the cathode and the pitch of the anode hole are set to 1000 nm.
  • FIG. 7 shows a result of simulation calculation similar to that shown in FIG. 6.
  • the “cathode unevenness only” configuration has almost the same light extraction efficiency as the “standard” configuration. This is because even if the “cathode concavity and convexity only” configuration can extract SPP mode light captured on the cathode surface to obtain guided mode light, it does not have a configuration for extracting the guided mode light. This means that the light extraction efficiency to the substrate cannot be improved.
  • the “cathode unevenness +“ in-phase ”” configuration is more than the “standard” configuration and the “cathode unevenness only” configuration.
  • a high light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm.
  • the difference from the standard “configuration” was larger than when the pitch was 500 nm.
  • the light extraction efficiency was slightly low in the range of 450 nm to 510 nm, but the light extraction efficiency was high in other wavelength ranges.
  • the “cathode unevenness +“ in-phase ”” configuration is more than the “standard” configuration, “cathode unevenness only” configuration, and “cathode unevenness +“ reverse phase ”” configuration. It turns out that it is effective for the improvement of efficiency. These are theoretically difficult to predict and can only be known after simulation.
  • FIG. 10A shows a configuration of “cathode unevenness +“ in phase ”” and a pitch of 500 nm (model structure shown in FIG. 7 and FIG. 8). ) Shows the simulation result of the intensity distribution of the magnetic field by the FDTD method, and the wavelength of the emitted light is 620 nm. The intensity distribution is shown with the substrate on the top and the cathode on the bottom. In the figure, the horizontally extending line is a horizontal interface between the layers, while the line extending perpendicularly indicates the inner surface. A concave portion disposed at a position facing the anode hole portion indicates a radiation starting point portion of the cathode. The same applies to FIG. FIG. 10B shows the result of simulation calculation corresponding to FIG. 10A for the “cathode concavity and convexity only” configuration.
  • FIG. 11A shows the result of simulation calculation by the FDTD method of the intensity distribution of the magnetic field of the radiation light (vertical propagation light) from the horizontal dipole for the same configuration as FIG. The wavelength of the emitted light was 550 nm.
  • FIG. 11B shows a simulation calculation result corresponding to FIG. 11A for the “cathode unevenness only” configuration.
  • the guided mode light remains over the entire range showing the results, whereas in the intensity distribution of FIG. You can see that it has been taken out.
  • This can be understood as an effect of the anode side structure of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescent element (10) is provided with, in order, anodes (2), an organic layer (3) that includes a light-emitting layer comprising an organic electroluminescent material, and a cathode (4). The cathode (4) has a plurality of emission starting point sections (4a) periodically disposed on a surface (4A) on the organic layer side. The anodes (2) are provided with a plurality of anode holes wherein the inner surfaces (2a) of the anodes (2) are covered by a dielectric layer (7) having a refractive index that is lower than the refractive index of the anodes (2). The organic layer (3) has a layered section (3a) disposed between the anodes (2) and the dielectric layer (7), and the cathode (4). The anode holes are characterized by being disposed in positions that overlap with the emission starting point sections (4a) in a plan view.

Description

有機EL素子並びにそれを備えた画像表示装置及び照明装置ORGANIC EL ELEMENT AND IMAGE DISPLAY DEVICE AND LIGHTING DEVICE EQUIPPED
 本発明は、有機EL素子並びにそれを備えた画像表示装置及び照明装置に関するものである。本願は、2012年11月27日に、日本に出願された特願2012-259010に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an organic EL element, and an image display device and an illumination device including the organic EL element. This application claims priority based on Japanese Patent Application No. 2012-259010 filed in Japan on November 27, 2012, the contents of which are incorporated herein by reference.
 有機EL素子は、広視野角、高速応答、鮮明な自発光表示等の特徴を有し、薄型軽量で低消費電力であること等の理由から、次世代の照明装置や画像表示装置等の柱として期待されている。
 有機EL素子は、有機発光層で発生した光が取り出される向きに応じて、支持基板側から光が取り出されるボトムエミッション型と、支持基板の反対側から光が取り出されるトップエミッション型とに分けられる。
Organic EL elements have features such as a wide viewing angle, high-speed response, and clear self-luminous display. They are thin, lightweight, and have low power consumption. As expected.
Organic EL elements are classified into a bottom emission type in which light is extracted from the support substrate side and a top emission type in which light is extracted from the opposite side of the support substrate, depending on the direction in which the light generated in the organic light emitting layer is extracted. .
 ボトムエミッション型の有機EL素子において、発光層で発光した光のうち、透明基板に垂直に入射した光は透明基板を透過して素子の外部に取り出される。発光層で発光した光のうち、透明基板(例えば、ガラス(屈折率:1.52))と空気(屈折率:1.0)との界面に臨界角以下の小さい入射角(入射光線と入射する界面の法線がなす角度)で入射した光は、その界面で屈折して素子の外部に取り出される。本明細書では、これらの光を外部モード(External Mode)光という。
 これに対して、発光層で発光した光のうち、透明基板と空気との界面に臨界角より大きい入射角で入射した光はその界面で全反射されて素子の外部に取り出されず、最終的に材料に吸収されうる。本明細書では、この光を基板モード(Substrate Mode)光といい、これによる損失を基板損失という。
 発光層で発光した光のうち、基板と陰極との間の界面に臨界角より大きい入射角で入射した光もその界面で全反射されて素子の外部に取り出されず、最終的に材料に吸収されうる。基板と陰極との間の界面としては、例えば、透明導電性酸化物からなる陽極(例えば、酸化インジウム錫(ITO(屈折率:1.82))と透明基板(例えば、ガラス(屈折率:1.52))との界面や陽極と陰極間に配置する高屈折率層と低屈折率層との界面等が挙げられる。本明細書では、この光を導波モード(Waveguide Mode)光といい、これによる損失を導波損失という。
 発光層で発光した光のうち、金属陰極等の金属層表面に入射して金属陰極の自由電子振動と結合し、表面プラズモンポラリトン(SPP;Surface Plasmon Polariton)として金属陰極の表面に捕捉された光も素子の外部に取り出されず、最終的に材料に吸収されうる。本明細書では、この光をSPPモード光といい、これによる損失をプラズモン損失という。
In a bottom emission type organic EL element, light incident on the transparent substrate out of the light emitted from the light emitting layer passes through the transparent substrate and is extracted outside the element. Of the light emitted from the light-emitting layer, a small incident angle (incident light and incident light) below the critical angle at the interface between the transparent substrate (for example, glass (refractive index: 1.52)) and air (refractive index: 1.0) The light incident at an angle formed by the normal of the interface is refracted at the interface and extracted outside the device. In this specification, these lights are called external mode lights.
On the other hand, of the light emitted from the light emitting layer, the light incident on the interface between the transparent substrate and air at an incident angle larger than the critical angle is totally reflected at the interface and is not taken out of the device, and finally Can be absorbed by the material. In this specification, this light is referred to as substrate mode light, and the loss due to this is referred to as substrate loss.
Of the light emitted from the light-emitting layer, light incident on the interface between the substrate and the cathode at an incident angle greater than the critical angle is also totally reflected at the interface and is not extracted outside the device, but is finally absorbed by the material. sell. As the interface between the substrate and the cathode, for example, an anode made of a transparent conductive oxide (for example, indium tin oxide (ITO (refractive index: 1.82)) and a transparent substrate (for example, glass (refractive index: 1) .52)), the interface between the high refractive index layer and the low refractive index layer disposed between the anode and the cathode, etc. In this specification, this light is referred to as waveguide mode light. This loss is called waveguide loss.
Of the light emitted from the light-emitting layer, the light is incident on the surface of the metal layer such as the metal cathode and coupled with free electron vibration of the metal cathode, and is captured on the surface of the metal cathode as surface plasmon polariton (SPP). Can not be taken out of the device and can be finally absorbed by the material. In this specification, this light is referred to as SPP mode light, and the resulting loss is referred to as plasmon loss.
 有機EL素子の光取り出し効率(発光層で発光した光に対して素子の外部に取り出される光の割合)は一般に20%程度に留まっている(例えば、特許文献1)。すなわち、発光層で発光した光のうち、約80%が損失となっており、これらの損失を低減して光の取り出し効率を向上させることが大きな課題となっている。
 ここで、基板モード光の取り出しについては透明基板上に光拡散シートなどを設けることで対処できる(例えば、特許文献2)。しかし、導波モード光及びSPPモード光の低減や取り出し、特にSPPモード光の低減や取り出しについては研究が緒に就いたばかりといえる。
The light extraction efficiency of the organic EL element (ratio of the light extracted outside the element with respect to the light emitted from the light emitting layer) is generally limited to about 20% (for example, Patent Document 1). That is, about 80% of the light emitted from the light emitting layer is lost, and it is a big problem to reduce these losses and improve the light extraction efficiency.
Here, the extraction of the substrate mode light can be dealt with by providing a light diffusion sheet or the like on the transparent substrate (for example, Patent Document 2). However, research on the reduction and extraction of guided mode light and SPP mode light, particularly reduction and extraction of SPP mode light, has just started.
 導波モード光は、光が高屈折率材料から低屈折率材料に入射する際に全反射が起きることにより生じる。そのため、導波モード光を低減するには全反射を起きにくくする、あるいは、全反射を生じる光の割合を低減することによって導波モード光を低減する方策が知られている。
 特許文献3には、有機発光層の近傍に有機発光層や透明電極よりも屈折率の高い高屈折率層を挿入する構成が開示されている。特許文献2には、有機発光層及び透明電極に有機発光層及び透明電極よりも低屈折率の微粒子を分散させることで、等価的に有機発光層及び透明電極の屈折率を下げる構成が開示されている。
The guided mode light is generated when total reflection occurs when light enters the low refractive index material from the high refractive index material. Therefore, in order to reduce the guided mode light, there are known measures for reducing the guided mode light by making the total reflection less likely to occur or by reducing the ratio of the light causing the total reflection.
Patent Document 3 discloses a configuration in which a high refractive index layer having a higher refractive index than that of an organic light emitting layer or a transparent electrode is inserted in the vicinity of the organic light emitting layer. Patent Document 2 discloses a configuration in which the refractive index of the organic light emitting layer and the transparent electrode is equivalently lowered by dispersing fine particles having a refractive index lower than that of the organic light emitting layer and the transparent electrode in the organic light emitting layer and the transparent electrode. ing.
 特許文献4及び特許文献5には、基板上に順に形成された陽極層及び誘電体層に孔(キャビティ)を有する構成が開示されている。
このキャビティの側面(基板に対して垂直に延びる界面)に入射する光は、この界面において基板側に屈折する。この効果により、導波モード光の入射角を小さい角度に変えることで全反射を生じる光の割合を低減することができる。
Patent Documents 4 and 5 disclose a configuration in which holes (cavities) are formed in an anode layer and a dielectric layer that are sequentially formed on a substrate.
Light incident on the side surface of the cavity (interface extending perpendicular to the substrate) is refracted toward the substrate at this interface. With this effect, the ratio of light that causes total reflection can be reduced by changing the incident angle of the guided mode light to a small angle.
 一方、金属層の表面に捕捉されたSPPモード光を取り出す方法として、金属層の表面に周期的な凹凸構造を形成する構成が知られている(特許文献6~9)。 On the other hand, as a method of extracting SPP mode light trapped on the surface of the metal layer, a configuration in which a periodic uneven structure is formed on the surface of the metal layer is known (Patent Documents 6 to 9).
特開2008-210717号公報JP 2008-210717A 特開2011-243625号公報JP 2011-243625 A 特開2011-233288号公報JP 2011-233288 A 特表2003-522371号公報Special table 2003-522371 特開2011-82192号公報JP 2011-82192 A 特開2006-313667号公報JP 2006-313667 A 特開2009-158478号公報JP 2009-158478 A 特表2005-535121号公報JP 2005-535121 Gazette 特開2004-31350号公報JP 2004-31350 A
 しかしながら、SPPモード光を有機層中まで取り出しても、その光を素子の外部に取り出すことができなければ、光取り出し効率を向上させることができない。 However, even if the SPP mode light is extracted into the organic layer, the light extraction efficiency cannot be improved unless the light can be extracted outside the device.
 本発明は、上記事情に鑑みなされたものであり、SPPモード光を効果的に取り出して光取り出し効率が向上した有機EL素子並びにそれを備えた画像表示装置及び照明装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an organic EL element in which SPP mode light is effectively extracted to improve light extraction efficiency, and an image display device and an illumination device including the organic EL element. To do.
 本発明者らは、まず、SPPモード光を有機層中に光として取り出し、その次に、その光を導波モード光とせずに素子の外部に取り出すという2ステップの光取り出し機構を想定して多数の構造の中から、シミュレーションに基づいて光取り出し効率を向上させる有効な構造を鋭意検討した。
 光取り出し効率を直接計測することは困難であるため、シミュレーションに基づいて検討を行った。
The present inventors first assume a two-step light extraction mechanism in which SPP mode light is extracted as light into an organic layer, and then the light is extracted outside the device without being guided mode light. From a number of structures, an effective structure that improves the light extraction efficiency has been intensively studied based on simulations.
Since it is difficult to directly measure the light extraction efficiency, we examined it based on simulation.
 2ステップの光取り出し機構は、SPPモード光を生成し、生成されたSPPモード光を有機層中に伝播光として取り出すことを可能にする周期的に配置する複数の放射起点部を備えた反射電極側構造と、その伝播光を外部に取り出すための透明電極側構造とからなる。 The two-step light extraction mechanism is a reflective electrode having a plurality of radiation starting points that are periodically arranged to generate SPP mode light and allow the generated SPP mode light to be extracted into the organic layer as propagating light It consists of a side structure and a transparent electrode side structure for extracting the propagation light to the outside.
 反射電極側構造の放射起点部とは、金属を始めとする光反射性の材料からなる反射電極表面に捕捉されたSPPモード光が再放射する起点になる部分である。
 平坦な金属表面に生成されるSPPモード光の角振動数をω、波数ベクトルをkspとすると、この分散関係は、金属の誘電率の実部εと、金属表面に接触する誘電体の誘電率εによって決まり、近似的に次の式(1)によって与えられる(cは入射光の速さ)。
Figure JPOXMLDOC01-appb-M000001
 一方誘電体中を伝播する光の波数の波数の大きさは次の式(2)によって与えられる。
Figure JPOXMLDOC01-appb-M000002
有機ELの反射電極として用いられる金属等の材料においては、ε<0なので、式(2)はSPPモード光の波数kspより小さく、式(1)の分散曲線と交点をもたない。そのため、誘電体中の伝播光では金属表面に直接SPPモード光を励起することはできない。逆に、平坦な金属表面に存在するSPPモード光を直接誘電体中に伝播光として取り出すことはできない。
The radiation starting point portion of the reflecting electrode side structure is a portion from which the SPP mode light captured on the reflecting electrode surface made of a light reflecting material such as metal is re-radiated.
When the angular frequency of the SPP mode light generated on a flat metal surface is ω and the wave vector is k sp , this dispersion relation is expressed by the real part ε m of the dielectric constant of the metal and the dielectric that contacts the metal surface. It is determined by the dielectric constant ε d and is approximately given by the following equation (1) (c is the speed of incident light).
Figure JPOXMLDOC01-appb-M000001
On the other hand, the magnitude of the wave number of light propagating in the dielectric is given by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
In a material such as a metal used as a reflective electrode of an organic EL, since ε m <0, Equation (2) is smaller than the wave number k sp of SPP mode light and does not have an intersection with the dispersion curve of Equation (1). Therefore, the propagating light in the dielectric cannot excite the SPP mode light directly on the metal surface. Conversely, SPP mode light present on a flat metal surface cannot be extracted directly into the dielectric as propagating light.
 有機EL素子においても、反射電極表面が平坦であって構造を有さない場合には、SPPモード光は有機層中に取り出されることなく熱損失となってしまう。しかし反射電極表面に凹(凸)構造を設けると、この凹(凸)構造によってSPPモード光が回折され、凹(凸)構造を中心として有機層中へ光が伝播光として再放射される。
すなわち、反射電極側構造のこの凹(凸)構造は放射起点部として機能する。
Even in the organic EL element, when the surface of the reflective electrode is flat and does not have a structure, the SPP mode light is not taken out into the organic layer but is lost. However, when a concave (convex) structure is provided on the reflective electrode surface, the SPP mode light is diffracted by the concave (convex) structure, and light is re-emitted as propagating light into the organic layer around the concave (convex) structure.
That is, this concave (convex) structure of the reflective electrode side structure functions as a radiation starting point.
 次に、透明電極側構造について以下に説明する。
 透明電極側構造としては、透明電極に対して垂直または垂直に近い屈折率の界面を導入した。この界面により、有機層中の伝播光が屈折して、有機層と反対側の透明電極表面への入射角(光線が入射する界面の法線がなす角度)およびこの表面からの出射角が小さくなる。
 より具体的には、透明電極側に、孔部を有する透明電極とその孔部を被覆する誘電体層との界面(孔部の内側面)を有する構造を導入した。
Next, the transparent electrode side structure will be described below.
As the transparent electrode side structure, an interface having a refractive index perpendicular or nearly perpendicular to the transparent electrode was introduced. By this interface, the propagating light in the organic layer is refracted, and the incident angle to the transparent electrode surface opposite to the organic layer (the angle formed by the normal of the interface on which the light enters) and the exit angle from this surface are small. Become.
More specifically, a structure having an interface (inner side surface of a hole) between a transparent electrode having a hole and a dielectric layer covering the hole was introduced on the transparent electrode side.
 本発明者らは、シミュレーションにより、放射起点部を有する反射電極側構造と、有機層内の伝播光を透明電極から見て有機層と反対側に屈折させる、基板に対して垂直または垂直に近い界面を備えた透明電極側構造とを組み合わせることにより、かかる反射電極側構造及び透明電極側構造の単独の光取り出し効率の向上効果からは予測できないほどの顕著な効果を奏することを見い出し、本発明を完成させた。 By simulation, the present inventors refracted the reflection electrode side structure having a radiation starting point part and refracted the propagating light in the organic layer to the side opposite to the organic layer when viewed from the transparent electrode. By combining the transparent electrode side structure with the interface, it has been found that the reflective electrode side structure and the transparent electrode side structure have a remarkable effect that cannot be predicted from the effect of improving the light extraction efficiency of the single electrode. Was completed.
 上記の目的を達成するために、本発明は以下の構成を採用した。
(1)透明電極と、有機EL材料からなる発光層を含む有機層と、反射電極とを順に具備し、前記反射電極は、その前記有機層側の表面に周期的に配置する複数の放射起点部を有するものであり、前記透明電極は、この透明電極の屈折率より低い屈折率を有する誘電体層によってその内側面を被覆された複数の孔部を備え、前記有機層は、前記透明電極及び前記誘電体層と前記反射電極との間に配置される層状部を有するものであり、前記前記放射起点部は、平面視して孔部に重なる位置に配置されることを特徴とする有機EL素子。
(2)前記透明電極の前記有機層とは反対の面に基板を有し、前記透明電極側から外部に光を取り出すように構成されており、前記透明電極が陽極であり、前記反射電極が陰極であることを特徴とする(1)に記載の有機EL素子。
(3)前記孔部と前記放射起点部とは基板に直交するそれぞれの中心軸が一致することを特徴とする(1)または(2)のいずれかに記載の有機EL素子。
(4)前記放射起点部は、凹部であることを特徴とする(1)~(3)のいずれか一項に記載の有機EL素子。
(5)(1)~(4)のいずれか一項に記載の有機EL素子を備えたことを特徴とする画像表示装置。
(6)(1)~(4)のいずれか一項に記載の有機EL素子を備えたことを特徴とする照明装置。
In order to achieve the above object, the present invention employs the following configuration.
(1) A transparent electrode, an organic layer including a light emitting layer made of an organic EL material, and a reflective electrode are sequentially provided, and the reflective electrode is a plurality of radiation origins periodically disposed on the surface of the organic layer. The transparent electrode includes a plurality of holes whose inner surface is covered with a dielectric layer having a refractive index lower than that of the transparent electrode, and the organic layer includes the transparent electrode. And a layered portion disposed between the dielectric layer and the reflective electrode, wherein the radiation starting point portion is disposed at a position overlapping the hole portion in plan view. EL element.
(2) The transparent electrode has a substrate on a surface opposite to the organic layer, and is configured to extract light from the transparent electrode side to the outside. The transparent electrode is an anode, and the reflective electrode is It is a cathode, The organic EL element as described in (1) characterized by the above-mentioned.
(3) The organic EL element according to any one of (1) and (2), wherein the hole portion and the radiation starting point portion have respective center axes orthogonal to the substrate.
(4) The organic EL element according to any one of (1) to (3), wherein the radiation starting point is a recess.
(5) An image display device comprising the organic EL element according to any one of (1) to (4).
(6) An illuminating device comprising the organic EL element according to any one of (1) to (4).
 本発明によれば、SPPモード光及び取り出された有機層内伝播光を効果的に取り出して光取り出し効率が向上した有機EL素子並びにそれを備えた画像表示装置及び照明装置を提供できる。 According to the present invention, it is possible to provide an organic EL element in which the SPP mode light and the extracted propagation light in the organic layer are effectively extracted to improve the light extraction efficiency, and an image display device and an illumination device including the organic EL element.
本発明の一実施形態に係る有機EL素子の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the organic EL element which concerns on one Embodiment of this invention. 図1に示した有機EL素子の作用効果を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the effect of the organic EL element shown in FIG. 本発明の有機EL素子を備えた画像表示装置の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the image display apparatus provided with the organic EL element of this invention. 本発明の有機EL素子を備えた照明装置の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the illuminating device provided with the organic EL element of this invention. 本発明の一実施形態に係る有機EL素子の製造方法の一部を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating a part of manufacturing method of the organic EL element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る有機EL素子の製造方法の一部であり、図5Aの後の工程を説明するための断面模式図である。It is a part of manufacturing method of the organic EL element which concerns on one Embodiment of this invention, and is a cross-sectional schematic diagram for demonstrating the process after FIG. 5A. 本発明の一実施形態の有機EL素子(ピッチ:500nm)の光取り出し効率(相対値)のコンピュータシミュレーション計算した結果を示す図であり、(a)はタテ伝播光、(b)はヨコ伝播光のものである。It is a figure which shows the result of computer simulation calculation of the light extraction efficiency (relative value) of the organic EL element (pitch: 500 nm) of one Embodiment of this invention, (a) is vertical propagation light, (b) is horizontal propagation light. belongs to. (a)は図6のコンピュータシミュレーションを行ったモデル構造を説明するための断面模式図であり、(b)は逆位相のモデル構造を説明するための断面模式図である。(A) is a cross-sectional schematic diagram for demonstrating the model structure which performed the computer simulation of FIG. 6, (b) is a cross-sectional schematic diagram for demonstrating the anti-phase model structure. 図6のコンピュータシミュレーションを行ったモデル構造の寸法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the dimension of the model structure which performed the computer simulation of FIG. 本発明の一実施形態の有機EL素子(ピッチ:1000nm)の光取り出し効率(相対値)のコンピュータシミュレーション計算した結果を示す図であり、(a)はタテ伝播光、(b)はヨコ伝播光のものである。It is a figure which shows the result of computer simulation calculation of the light extraction efficiency (relative value) of the organic EL element (pitch: 1000 nm) of one Embodiment of this invention, (a) is vertical propagation light, (b) is horizontal propagation light. belongs to. (a)本発明の一実施形態の有機EL素子について、垂直方向のダイポールからの放射光の磁場の強度分布をFDTD法のコンピュータシミュレーションで得られた結果を示すものであり、(b)は“陰極凹凸のみ”構成の場合の結果を示すものである。(A) About the organic EL element of one Embodiment of this invention, the result obtained by the computer simulation of FDTD method about the intensity distribution of the magnetic field of the radiation light from a perpendicular | vertical dipole is shown, (b) shows " The result in the case of the configuration of “cathode unevenness only” is shown. (a)本発明の一実施形態の有機EL素子について、水平方向のダイポールからの放射光の磁場の強度分布をFDTD法のコンピュータシミュレーションで得られた結果を示すものであり、(b)は“陰極凹凸のみ”構成の場合の結果を示すものである。(A) About the organic EL element of one Embodiment of this invention, the result obtained by the computer simulation of FDTD method about the intensity distribution of the magnetic field of the radiated light from a horizontal dipole is shown, (b) shows " The result in the case of the configuration of “cathode unevenness only” is shown.
 以下、本発明を適用した有機EL素子並びにそれを備えた画像表示装置及び照明装置について、図面を用いてその構成を説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。各構成要素の寸法比率などは実際と同じであるとは限らない。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。さらに、本発明の有機EL素子は本発明の効果を損ねない範囲で以下に記載していない層を備えてもよい。
以下では反射電極を陰極、透明電極を陽極とした構成について説明するが、かかる構成に限定されるものではなく、反射電極を陽極、透明電極を陰極とした場合の構成についても適用できる。以下の実施形態では、ボトムエミッション型の有機EL素子を用いているが、トップエミッション型の有機EL素子を用いることもできる。
Hereinafter, the structure of an organic EL element to which the present invention is applied, an image display apparatus and an illumination apparatus including the organic EL element will be described with reference to the drawings. In the drawings used in the following description, in order to make the characteristics easy to understand, there are cases where the characteristic portions are enlarged for convenience. The dimensional ratio of each component is not always the same as actual. The materials, dimensions, and the like exemplified in the following description are merely examples, and the present invention is not limited to these, and can be appropriately modified and implemented without changing the gist thereof. Furthermore, the organic EL element of the present invention may include a layer not described below within a range not impairing the effects of the present invention.
In the following description, the configuration using the reflective electrode as the cathode and the transparent electrode as the anode will be described. However, the present invention is not limited to this configuration, and the configuration in which the reflective electrode is used as the anode and the transparent electrode as the cathode is also applicable. In the following embodiments, a bottom emission type organic EL element is used, but a top emission type organic EL element can also be used.
(有機EL素子(第1の実施形態))
 図1は、本発明の第1の実施形態に係る有機EL素子の一例を説明するための断面模式図である。
 本発明の第1の実施形態に係る有機EL素子10は、基板1上に、陽極(透明電極)2と、有機EL材料からなる発光層を含む有機層3と、陰極4(反射電極)とを順に具備する。陰極4は、その有機層側の表面4Aに周期的に配置する複数の放射起点部4aを有するものである。前記陽極2は、その陽極2の屈折率より低い屈折率を有する誘電体層7によってその内側面2aを被覆された複数の陽極孔部2A(図5A(e)参照)を備える。有機層3は、陽極2及び前記誘電体層7と前記陰極4との間に配置される層状部3aを有するものである。前記放射起点部4aは、平面視して陽極孔部2A(図5A(e)参照)に重なる位置に配置される。
 有機層3はさらに、放射起点部4aの形状に対応する部分(図1の例では、凸部3b)を有する。有機層3のうち、放射起点部4aの形状に対応する部分(3b)は、図1のように放射起点部4aが凹状であれば、凸状になるし、放射起点部4aが凸状であれば、凹状になる。
図1に示す構成はボトムエミッション型の有機EL素子の場合のものである。トップエミッション型素子の場合は、基板1は、陰極4からみて有機層3とは反対側に配置される。
(Organic EL device (first embodiment))
FIG. 1 is a schematic cross-sectional view for explaining an example of the organic EL element according to the first embodiment of the present invention.
An organic EL element 10 according to the first embodiment of the present invention includes an anode (transparent electrode) 2, an organic layer 3 including a light emitting layer made of an organic EL material, a cathode 4 (reflection electrode), on a substrate 1. In order. The cathode 4 has a plurality of radiation starting points 4a periodically arranged on the surface 4A on the organic layer side. The anode 2 includes a plurality of anode hole portions 2A (see FIG. 5A (e)) whose inner surface 2a is covered with a dielectric layer 7 having a refractive index lower than that of the anode 2. The organic layer 3 has a layered portion 3 a arranged between the anode 2 and the dielectric layer 7 and the cathode 4. The radiation starting point 4a is arranged at a position overlapping the anode hole 2A (see FIG. 5A (e)) in plan view.
The organic layer 3 further has a portion corresponding to the shape of the radiation starting point portion 4a (in the example of FIG. 1, a convex portion 3b). Of the organic layer 3, the portion (3b) corresponding to the shape of the radiation starting point 4a is convex if the radiation starting point 4a is concave as shown in FIG. 1, and the radiation starting point 4a is convex. If there is, it becomes concave.
The configuration shown in FIG. 1 is that of a bottom emission type organic EL element. In the case of a top emission type device, the substrate 1 is disposed on the side opposite to the organic layer 3 when viewed from the cathode 4.
 陽極孔部2Aの形状はその内側面で光を基板側へ屈折させる効果を奏するものであれば特に限定はない。導波モード光をより垂直に屈折させる観点からは基板1側の底面積より陰極4側の底面積が大きい形状が好ましい。矢印B1のような光線(図2参照)を、屈折させることなくまっすぐ基板まで取り出す観点からは陰極4側の底面積より基板1側の面積が大きい形状が好ましい。導波モード光を強く回折させ、より少ない伝播距離で取り出す観点からは底面の面積ができるだけ大きい形状が好ましい。
 陽極のシート抵抗が高くならないためには、基板1側及び陰極4側の底面積は小さい方が良い。
The shape of the anode hole 2A is not particularly limited as long as it has an effect of refracting light toward the substrate on the inner surface thereof. From the viewpoint of refracting the guided mode light more vertically, a shape in which the bottom area on the cathode 4 side is larger than the bottom area on the substrate 1 side is preferable. From the viewpoint of taking out the light beam as shown by the arrow B1 (see FIG. 2) straight up to the substrate without being refracted, a shape in which the area on the substrate 1 side is larger than the bottom area on the cathode 4 side is preferable. From the viewpoint of strongly diffracting the guided mode light and taking it out with a smaller propagation distance, a shape having a surface area as large as possible is preferable.
In order not to increase the sheet resistance of the anode, the bottom areas on the substrate 1 side and the cathode 4 side should be small.
図1で示した例では、陽極孔部2Aの内側面2aは基板面に対して直交して配置する構成であるが、かかる構成に限定されない。陽極孔部の内側面が基板面に対する角度は45°以上が好ましく、60°以上がより好ましく、75°以上がより一層好ましい。陽極孔部2Aの内側面2aをこのような角度とすることにより、発光位置から陽極側へ向かう導波モード光とSPPモード光から再放射された導波モード光が陽極孔部2Aの内側面2aに外側から入射して基板側に屈折し、基板の外表面から外部へ取り出される。 In the example shown in FIG. 1, the inner side surface 2 a of the anode hole 2 </ b> A is configured to be orthogonal to the substrate surface, but is not limited to this configuration. The angle of the inner side surface of the anode hole with respect to the substrate surface is preferably 45 ° or more, more preferably 60 ° or more, and even more preferably 75 ° or more. By setting the inner side surface 2a of the anode hole portion 2A to such an angle, the guided mode light directed from the light emitting position toward the anode side and the guided mode light re-radiated from the SPP mode light are reflected on the inner side surface of the anode hole portion 2A. 2a is incident from the outside, refracted toward the substrate side, and taken out from the outer surface of the substrate.
 図1の有機EL素子10は、発光層で発光した光を基板側から取り出すボトムエミッション型の有機EL素子である。そのため、基板1は透光性の基板であり、通常、可視光に対して透明であることが必要である。ここで、「可視光に対し透明である」とは、発光層から発する波長の可視光を透過することができればよいという意味であり、可視光領域全域にわたり透明である必要はない。400~700nmの可視光における透過率が50%以上で、平滑な基板が好ましい。 1 is a bottom emission type organic EL element that extracts light emitted from the light emitting layer from the substrate side. Therefore, the substrate 1 is a light-transmitting substrate and usually needs to be transparent to visible light. Here, “transparent to visible light” means that it is only necessary to transmit visible light having a wavelength emitted from the light emitting layer, and does not need to be transparent over the entire visible light region. A smooth substrate having a transmittance in visible light of 400 to 700 nm of 50% or more is preferable.
 具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。ポリマー板としては、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
 発光光が可視光でない場合は、少なくとも発光波長領域に対して、可視光の場合と同様に透明であることが必要である。透過率としては、発光が最大強度となる波長に対し、50%以上であることが好ましく、70%以上であることが更に好ましい。
Specifically, a glass plate, a polymer plate, etc. are mentioned. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyether sulfide, and polysulfone.
When the emitted light is not visible light, it is necessary to be transparent at least with respect to the emission wavelength region as in the case of visible light. The transmittance is preferably 50% or more and more preferably 70% or more with respect to the wavelength at which light emission has the maximum intensity.
本実施形態に係る有機EL素子の構成がトップエミッション型のものである場合は、上記記載と同様なものの他に、不透明な材料も使用できる。具体的には、例えばCu、Ag、Au、Pt、W、Ti、Ta、Nb、Alの単体、またはこれらの元素を含んだ合金、あるいはステンレスなどの金属材料、Si、SiC、AlN、GaN、GaAs、サファイアなどの非金属材料、その他のトップエミッション型の有機EL素子で通常用いられる基板材料を用いることができる。素子の発光に伴い生じる熱を逃がすため、熱伝導率の高い材料を基板に用いることが好ましい。 When the configuration of the organic EL element according to this embodiment is a top emission type, an opaque material can be used in addition to the same as described above. Specifically, for example, Cu, Ag, Au, Pt, W, Ti, Ta, Nb, Al alone, an alloy containing these elements, or a metal material such as stainless steel, Si, SiC, AlN, GaN, Nonmetallic materials such as GaAs and sapphire, and other substrate materials usually used in top emission type organic EL elements can be used. In order to release heat generated by light emission of the element, a material having high thermal conductivity is preferably used for the substrate.
 基板1の厚さは、要求される機械的強度にもよるため、限定するものではない。好ましくは、0.01mm~10mm、より好ましくは0.05mm~2mmである。 The thickness of the substrate 1 is not limited because it depends on the required mechanical strength. The thickness is preferably 0.01 mm to 10 mm, more preferably 0.05 mm to 2 mm.
 陽極2は、複数の陽極孔部2A(図5A(e)参照)を備えている。この陽極孔部2Aの内側面2aは陽極2の屈折率より低い屈折率を有する誘電体層7によって被覆されている。誘電体層7は内側面2aを被覆していれば、陽極孔部2Aを充填する構成でも、一部を埋める構成でもよい。 The anode 2 has a plurality of anode hole portions 2A (see FIG. 5A (e)). The inner side surface 2a of the anode hole 2A is covered with a dielectric layer 7 having a refractive index lower than that of the anode 2. As long as the dielectric layer 7 covers the inner surface 2a, the dielectric layer 7 may be configured to fill the anode hole 2A or may be configured to partially fill.
 陽極2は陰極4との間で電圧を印加し、陽極2より発光層に正孔を注入するための電極である。仕事関数の大きい金属、合金、導電性化合物、あるいはこれらの混合物からなる材料を用いることが好ましい。陽極に接する有機層のHOMO(Highest Occupied Molecular Orbital)準位との差が過大にならないように仕事関数が4eV以上6eV以下のものを用いるのが好ましい。 The anode 2 is an electrode for applying a voltage to the cathode 4 and injecting holes from the anode 2 into the light emitting layer. It is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a high work function. It is preferable to use one having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (Highest Occupied Molecular Orbital) level of the organic layer in contact with the anode does not become excessive.
陽極2の材料としては透光性でかつ導電性の材料であれば特に制限はない。例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化錫、酸化亜鉛などの透明無機酸化物、PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブ、グラフェンなどの透明カーボン材料を挙げることができる。ここにおいて、陽極2は、基板1上に例えば、スパッタ法、真空蒸着法(抵抗加熱蒸着法や電子ビーム蒸着法)、CVD法、イオンプレーティング法、塗布法などによって形成することができる。 The material of the anode 2 is not particularly limited as long as it is a translucent and conductive material. For example, transparent inorganic oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide, zinc oxide, PEDOT: PSS (poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) In addition, a conductive polymer such as polyaniline and a conductive polymer doped with an arbitrary acceptor, and a transparent carbon material such as carbon nanotube, graphene, etc. Here, the anode 2 is formed on the substrate 1 by sputtering, for example. It can be formed by a method such as a vacuum evaporation method (resistance heating evaporation method or electron beam evaporation method), a CVD method, an ion plating method, or a coating method.
 陽極2の厚さは限定するものではないが、例えば10~2000nmであり、好ましくは50~1000nmである。陽極2の厚さが10nmより薄いと誘電体層7の体積を大きくしにくくなり、導波モード光の散乱がされにくくなる。陽極2の厚さが2000nmより厚いと有機層3の平坦度を保てなくなると共に、陽極の透過率が低下するからである。 The thickness of the anode 2 is not limited, but is, for example, 10 to 2000 nm, preferably 50 to 1000 nm. If the thickness of the anode 2 is less than 10 nm, it is difficult to increase the volume of the dielectric layer 7 and the waveguide mode light is hardly scattered. This is because when the thickness of the anode 2 is greater than 2000 nm, the flatness of the organic layer 3 cannot be maintained and the transmittance of the anode is lowered.
 誘電体層7は、陽極2の陽極孔部2Aの内側面2aを被覆しており、陽極2の屈折率より低い屈折率を有する材料からなる。
 誘電体層7をかかる構成及び材料とするのは、陽極孔部2Aの内側面2aに陽極2側から誘電体層7に向かって入射する光を、この界面において基板1側に屈折させて、基板中への入射角を小さい角度に変えることで全反射を生じる光の割合を低減させ、光取り出し効率を向上させるためである。
The dielectric layer 7 covers the inner side surface 2 a of the anode hole 2 A of the anode 2 and is made of a material having a refractive index lower than that of the anode 2.
The configuration and material of the dielectric layer 7 is such that light incident on the inner surface 2a of the anode hole 2A from the anode 2 side toward the dielectric layer 7 is refracted toward the substrate 1 side at this interface, This is because by changing the incident angle into the substrate to a small angle, the ratio of light causing total reflection is reduced, and the light extraction efficiency is improved.
 誘電体層7の材料としては、透光性でかつ陽極の屈折率より低い屈折率を有する材料であれば特に制限はない。陽極2の材料が酸化インジウム錫(ITO(屈折率1.82))である場合は、例えば、スピンオングラス(SOG(屈折率1.25))、フッ化マグネシウム(MgF(屈折率1.38))等の金属フッ化物、ポリテトラフルオロエチレン(PTFE(屈折率1.35))等の有機フッ素化合物、二酸化ケイ素(SiO(屈折率1.45))、各種の低融点ガラス、各種の多孔性物質等が挙げられる。
 誘電体層7の厚さは限定するものではないが、例えば10~2000nmであり、好ましくは50~1000nmである。誘電体層7の厚さが10nmより薄いと有機層に対する誘電体層7の体積が小さくなり、導波モード光がされにくくなる。誘電体層7の厚さが、2000nmより厚いと有機層3の平坦度を保ちにくくなる。
The material of the dielectric layer 7 is not particularly limited as long as it is a light-transmitting material and has a refractive index lower than that of the anode. When the material of the anode 2 is indium tin oxide (ITO (refractive index 1.82)), for example, spin-on glass (SOG (refractive index 1.25)), magnesium fluoride (MgF 2 (refractive index 1.38). )), Metal fluorides such as polytetrafluoroethylene (PTFE (refractive index 1.35)), silicon dioxide (SiO 2 (refractive index 1.45)), various low melting glass, various Examples include porous substances.
The thickness of the dielectric layer 7 is not limited, but is, for example, 10 to 2000 nm, and preferably 50 to 1000 nm. When the thickness of the dielectric layer 7 is less than 10 nm, the volume of the dielectric layer 7 with respect to the organic layer becomes small, and the guided mode light is hardly generated. If the thickness of the dielectric layer 7 is greater than 2000 nm, it is difficult to maintain the flatness of the organic layer 3.
 陰極4は、その有機層側の表面4Aに周期的に配置する複数の放射起点部4aを有する。その放射起点部4aは、平面視して陽極孔部2Aに重なる位置に配置することが好ましい。 The cathode 4 has a plurality of radiation starting points 4a periodically arranged on the surface 4A on the organic layer side. The radiation starting point portion 4a is preferably arranged at a position overlapping the anode hole portion 2A in plan view.
 陰極4は、発光層に電子を注入するための電極である。仕事関数の小さい金属、合金、導電性化合物、あるいはこれらの混合物からなる材料を用いることが好ましい。LUMO(Lowest Unoccupied Molecular Orbital)準位との差が過大にならないように仕事関数が1.9eV以上5eV以下のものを用いるのが好ましい。かかる材料としては例えば、Au、Ag、Cu、Zn、Al、Mg、アルカリ金属、アルカリ土類金属等の単体や、AuとAgとの合金、AgとCuとの合金、真鍮等の合金が挙げられる。陰極4は、2層以上の積層構造であってもよい。 The cathode 4 is an electrode for injecting electrons into the light emitting layer. It is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a low work function. It is preferable to use a work function of 1.9 eV or more and 5 eV or less so that the difference from the LUMO (LowestLowUnoccupied Molecular Orbital) level does not become excessive. Examples of such materials include simple substances such as Au, Ag, Cu, Zn, Al, Mg, alkali metals and alkaline earth metals, alloys of Au and Ag, alloys of Ag and Cu, and alloys such as brass. It is done. The cathode 4 may have a laminated structure of two or more layers.
 陰極4の厚さ(放射起点部4aを含めた厚さ)は限定するものではないが、例えば30nm~1μmであり、好ましくは50~500nmである。陰極4の厚さが30nmより薄いとシート抵抗が増加して、駆動電圧が上昇する。陰極4の厚さが1μmより厚いと製膜時の熱や放射線ダメージ、膜応力による機械的ダメージが電極や有機層に蓄積してしまう。 The thickness of the cathode 4 (thickness including the radiation starting point portion 4a) is not limited, but is, for example, 30 nm to 1 μm, and preferably 50 to 500 nm. If the thickness of the cathode 4 is less than 30 nm, the sheet resistance increases and the driving voltage rises. If the thickness of the cathode 4 is greater than 1 μm, heat and radiation damage during film formation and mechanical damage due to film stress accumulate in the electrode and the organic layer.
 放射起点部4aは凹形状を有するものであるが、これに限らず、凸形状、凹凸形状のいずれでもよい。平面視したときの放射起点部の4aの一つ一つの形状は、ライン状の凹凸、ドット状の凹凸(離散配置する凹凸)等のいずれでもよい。
 一つの放射起点部4a(放射起点部の単位構造)は、1個の凹凸構造からなるものでも、複数の凹凸構造からなるものでもよい。一つの放射起点部は平面視して陽極孔部のサイズより小さいことが好ましい。
The radiation starting point portion 4a has a concave shape, but is not limited thereto, and may be a convex shape or an uneven shape. Each shape of the radiation starting point portion 4a when viewed in a plan view may be any of a line-shaped unevenness, a dot-shaped unevenness (unevenness that is discretely arranged), and the like.
One radiation starting point portion 4a (unit structure of the radiation starting point portion) may be composed of one concavo-convex structure or a plurality of concavo-convex structures. One radiation starting point portion is preferably smaller than the size of the anode hole portion in plan view.
 隣接する放射起点部4aの基板に直交する中心軸間の距離(ピッチ)は、SPPモード光が伝播できる10μm以下であることが好ましい。このようなピッチとすることで、SPPモード光が熱として散逸する前に、放射起点部4aによってSPPモード光を散乱させ、伝播光として再放射させることが可能となる。
 放射起点部4aは平面視して陽極孔部2Aに重なる位置に配置する。ただし、全ての陽極孔部2Aについて、その平面視で重なる位置に放射起点部4aを有する必要はない。すなわち、対応する放射起点部4aを有しない陽極孔部2Aを有していてもよい。
隣接する放射起点部4aのピッチは、それぞれが重なる位置に配置された隣接する陽極孔部2Aの基板に直交する中心軸間距離(ピッチ)と同じであることが好ましい。さらに、重なる位置に配置された放射起点部4aの中心軸と陽極孔部2Aの中心軸が一致することがより好ましい。 
The distance (pitch) between the central axes orthogonal to the substrates of the adjacent radiation starting point portions 4a is preferably 10 μm or less in which the SPP mode light can propagate. By setting such a pitch, before the SPP mode light is dissipated as heat, the SPP mode light can be scattered by the radiation starting point portion 4a and re-radiated as propagating light.
The radiation starting point portion 4a is disposed at a position overlapping the anode hole portion 2A in plan view. However, it is not necessary for all the anode hole portions 2A to have the radiation starting point portions 4a at the overlapping positions in plan view. That is, you may have 2 A of anode holes which do not have the corresponding radiation origin part 4a.
It is preferable that the pitch of the adjacent radiation starting point portions 4a is the same as the distance (pitch) between the central axes orthogonal to the substrate of the adjacent anode hole portions 2A arranged at positions where they overlap each other. Furthermore, it is more preferable that the central axis of the radiation starting point portion 4a arranged at the overlapping position and the central axis of the anode hole portion 2A coincide.
 有機層3は、陽極2及び誘電体層7と陰極4との間に配置される層状部3aと、放射起点部4aの形状に対応する部分(図1の例では、凸部3b)とを有するものである。 The organic layer 3 includes a layered portion 3a disposed between the anode 2 and the dielectric layer 7 and the cathode 4, and a portion corresponding to the shape of the radiation starting point portion 4a (in the example of FIG. 1, a protruding portion 3b). It is what you have.
 発光層の材料としては、有機EL素子用の材料として知られる任意の材料を用いることができる。
 有機層3は、有機EL材料からなる発光層(有機発光層)の他、正孔注入層、正孔輸送層、電子注入層、電子輸送層等を備えてもよい。
As a material of the light emitting layer, any material known as a material for an organic EL element can be used.
The organic layer 3 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like in addition to a light emitting layer (organic light emitting layer) made of an organic EL material.
 正孔注入層は陽極2から有機層3への正孔注入を助ける層である。このような正孔注入層としてはより低い電界強度で正孔を発光層に注入する材料が好ましい。正孔注入層を、形成する材料としては、上記の機能を担えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。正孔輸送層は発光領域まで正孔を輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい。このような正孔輸送層として形成する材料は、上記の機能を備えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。 The hole injection layer is a layer that assists hole injection from the anode 2 to the organic layer 3. Such a hole injection layer is preferably a material that injects holes into the light emitting layer with lower electric field strength. The material for forming the hole injection layer is not particularly limited as long as it can perform the above functions, and any material can be selected from known materials. The hole transport layer is a layer that transports holes to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.5 eV or less. The material to be formed as such a hole transport layer is not particularly limited as long as it has the above function, and any material can be selected and used from known materials.
電子注入層は陰極4から有機層3への電子注入を助ける層である。このような電子注入層としてはより低い電界強度で電子を有機層3に注入する材料が好ましい。電子注入層を形成する材料としては、上記の機能を担えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。電子輸送層は発光領域まで電子を輸送する層であって、電子移動度が大きい。電子輸送層を形成する材料は、上記の機能を担えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。 The electron injection layer is a layer that assists electron injection from the cathode 4 to the organic layer 3. Such an electron injection layer is preferably a material that injects electrons into the organic layer 3 with lower electric field strength. The material for forming the electron injection layer is not particularly limited as long as it can perform the above function, and any material can be selected and used from known materials. The electron transport layer is a layer that transports electrons to the light emitting region and has a high electron mobility. The material for forming the electron transport layer is not particularly limited as long as it can perform the above function, and any material can be selected and used from known materials.
 有機層3は、蒸着法、転写法などの乾式プロセスによって成膜してもよいし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など、湿式プロセスによって成膜してもよい。
 有機層3の厚さは限定するものはないが、例えば50~2000nmであり、好ましくは100~1000nmである。有機層3の厚さが50nmより薄いと突き抜け電流による内部QEの低下や損失性表面カップリング(lossy surface Coupling)など、金属によるSPPカップリング以外の消光が起こる。有機層3の厚さが1000nmより厚いと駆動電圧が上昇する。
The organic layer 3 may be formed by a dry process such as an evaporation method or a transfer method, or may be formed by a wet process such as a spin coating method, a spray coating method, a die coating method, or a gravure printing method.
The thickness of the organic layer 3 is not limited, but is, for example, 50 to 2000 nm, and preferably 100 to 1000 nm. If the thickness of the organic layer 3 is less than 50 nm, quenching other than SPP coupling by metal, such as reduction of internal QE due to punch-through current or lossy surface coupling, occurs. When the thickness of the organic layer 3 is greater than 1000 nm, the drive voltage increases.
 次に、本実施形態の有機EL素子の作用効果を、図2を用いて模式的に説明する。図2に矢印で示した光の伝播の仕方は、作用効果の原理をわかりやすく説明するために摸式的に示したものである。 Next, the function and effect of the organic EL element of this embodiment will be schematically described with reference to FIG. The light propagation method indicated by the arrows in FIG. 2 is schematically shown in order to easily understand the principle of the effect.
 有機層3に含まれる発光層のA点で発光した光のうち一部は、発光点周りの近接場を介し、陰極4の表面4Aに捕捉され(矢印A1)、SPPモード光となる。このようなSPPモードへのエネルギー移動は、一般的な有機EL素子において、発光分子と金属層が近い場合に生じることが広く知られている。このSPPモード光は陰極4の表面4Aに沿って移動し(矢印A2)、放射起点部4a1(4a)で散乱される。これにより捕捉されたSPPモード光は、有機層3中に伝播光として再放射され、誘電体層17等を透過して基板モード光となって(矢印B1、B2、B3)、基板外に取り出される。
 ここで、有機層3のA点で発光した光は全方位に進むので矢印A1以外の方向(例えば、陽極側)に進む光も当然存在する。矢印A1は本発明の作用効果を説明するために、そのうちの一部の光の伝播を摸式的に示しているに過ぎない。矢印A2及び矢印B1~B3で示した光についても一部の光の伝播を摸式的に示しているに過ぎない。
A part of the light emitted from the point A of the light emitting layer included in the organic layer 3 is captured by the surface 4A of the cathode 4 via the near field around the light emitting point (arrow A1), and becomes SPP mode light. Such energy transfer to the SPP mode is widely known to occur when a light emitting molecule and a metal layer are close to each other in a general organic EL element. The SPP mode light moves along the surface 4A of the cathode 4 (arrow A2) and is scattered by the radiation starting point portion 4a1 (4a). The trapped SPP mode light is re-emitted as propagating light into the organic layer 3, passes through the dielectric layer 17 and the like, and becomes substrate mode light (arrows B1, B2, B3), and is taken out of the substrate. It is.
Here, since the light emitted from the point A of the organic layer 3 travels in all directions, there is naturally light traveling in a direction other than the arrow A1 (for example, the anode side). The arrow A1 merely schematically shows the propagation of part of the light in order to explain the effects of the present invention. The light indicated by the arrow A2 and the arrows B1 to B3 is only schematically showing the propagation of part of the light.
 放射起点部4a1(4a)で放射され、矢印B1~B3で示した方向に伝播する光のうち、光B1は基板に対して垂直に基板側に進む光であり、有機層3と誘電体層7との界面及び誘電体層7と基板1との界面でも屈折することなく、誘電体層7内、基板1内を進み、外部に取り出される。 Of the light radiated from the radiation starting point 4a1 (4a) and propagating in the directions indicated by the arrows B1 to B3, the light B1 travels to the substrate side perpendicular to the substrate, and the organic layer 3 and the dielectric layer 7, without being refracted at the interface with the dielectric layer 7 and the interface between the dielectric layer 7 and the substrate 1.
 光B2は、有機層3と陽極2との界面で屈折して陽極2に入り、陽極2を透過する。透過した光は、陽極2と誘電体層7との界面(陽極孔部2Aの内側面2a)で屈折して進み、陽極2と基板1との界面で屈折した後、基板1内を通って外部に取り出されうる。
 ここで、光B2が陽極2から誘電体層7へ進む際、誘電体層7と陽極2との界面(陽極孔部2Aの内側面2a)における屈折により、基板1への入射角が小さい角度に変わる。
通常、基板(例えば、ガラス)と空気との界面では臨界角以上の角度で入射すると全反射となる。しかし、この内側面2aでの屈折により基板1への入射角が小さい角度に変わるので、基板と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する。すなわち、陽極孔部2Aの内側面2aを備える構成を有することにより、光取り出し効率が向上する。
 光B3についても光B2と同様に、誘電体層7と陽極2との界面(陽極孔部2Aの内側面2a)において基板1への入射角が小さい角度に屈折する。この屈折により、基板と空気との界面での全反射を避けられる光が増えて光取り出し効率が向上する。
The light B 2 is refracted at the interface between the organic layer 3 and the anode 2, enters the anode 2, and passes through the anode 2. The transmitted light is refracted at the interface between the anode 2 and the dielectric layer 7 (the inner surface 2a of the anode hole 2A), refracted at the interface between the anode 2 and the substrate 1, and then passes through the substrate 1. Can be taken out to the outside.
Here, when the light B2 travels from the anode 2 to the dielectric layer 7, the angle of incidence on the substrate 1 is small due to refraction at the interface between the dielectric layer 7 and the anode 2 (the inner surface 2a of the anode hole 2A). Changes to.
In general, when the light is incident at an angle greater than the critical angle at the interface between the substrate (eg, glass) and air, total reflection occurs. However, since the incident angle on the substrate 1 is changed to a small angle due to refraction at the inner side surface 2a, light that can avoid total reflection at the interface between the substrate and air is increased, and light extraction efficiency is improved. That is, the light extraction efficiency is improved by having the configuration including the inner side surface 2a of the anode hole portion 2A.
Similarly to the light B2, the light B3 is also refracted to an angle at which the incident angle to the substrate 1 is small at the interface between the dielectric layer 7 and the anode 2 (the inner surface 2a of the anode hole 2A). By this refraction, the light that can avoid total reflection at the interface between the substrate and air increases, and the light extraction efficiency is improved.
 このように、本発明の有機EL素子では、有機層に含まれる発光層で発光した光が、陰極表面にSPPモード光として捕捉されても、そのSPPモード光は陰極表面の放射起点部で放射されて取り出すことができる。さらに、その陰極表面から取り出した光を、誘電体層と陽極との界面(陽極孔部の内側面)で基板の正面方向へ屈折させて基板の正面方向への光の取り出し量を増大させることができる。 As described above, in the organic EL device of the present invention, even if the light emitted from the light emitting layer included in the organic layer is captured as SPP mode light on the cathode surface, the SPP mode light is emitted at the radiation starting point on the cathode surface. Can be taken out. Furthermore, the light extracted from the cathode surface is refracted in the front direction of the substrate at the interface between the dielectric layer and the anode (the inner surface of the anode hole) to increase the amount of light extracted in the front direction of the substrate. Can do.
(画像表示装置)
 次に、上記の有機EL素子10を備えた画像表示装置について説明を行う。
 図3は、上記の有機EL素子を備えた画像表示装置の一例を説明した図である。
 図3に示した画像表示装置100は、いわゆるパッシブマトリクス型の画像表示装置である。有機EL素子10の他に、陽極配線104、陽極補助配線106、陰極配線108、絶縁膜110、陰極隔壁112、封止プレート116およびシール材118を備えている。
(Image display device)
Next, an image display apparatus provided with the organic EL element 10 will be described.
FIG. 3 is a diagram illustrating an example of an image display device including the organic EL element.
The image display device 100 shown in FIG. 3 is a so-called passive matrix image display device. In addition to the organic EL element 10, an anode wiring 104, an anode auxiliary wiring 106, a cathode wiring 108, an insulating film 110, a cathode partition 112, a sealing plate 116, and a sealing material 118 are provided.
 本実施の形態において、有機EL素子10の基板1上には、複数の陽極配線104が形成されている。陽極配線104は、一定の間隔を隔てて平行に配置される。陽極配線104は、透明導電膜により構成され、例えばITO(Indium Tin Oxide)を用いることができる。陽極配線104の厚さは例えば、100nm~150nmとすることができる。そして、それぞれの陽極配線104の端部の上には、陽極補助配線106が形成される。陽極補助配線106は陽極配線104と電気的に接続されている。このように構成することにより、陽極補助配線106は、基板1の端部側において外部配線と接続するための端子として機能する。これにより、外部に設けられた図示しない駆動回路から陽極補助配線106を介して陽極配線104に電流を供給することができる。陽極補助配線106は、例えば、厚さ500nm~600nmの金属膜によって構成される。 In the present embodiment, a plurality of anode wirings 104 are formed on the substrate 1 of the organic EL element 10. The anode wirings 104 are arranged in parallel at a constant interval. The anode wiring 104 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used. The thickness of the anode wiring 104 can be set to 100 nm to 150 nm, for example. An anode auxiliary wiring 106 is formed on the end of each anode wiring 104. The anode auxiliary wiring 106 is electrically connected to the anode wiring 104. With this configuration, the anode auxiliary wiring 106 functions as a terminal for connecting to the external wiring on the end side of the substrate 1. As a result, a current can be supplied to the anode wiring 104 via the anode auxiliary wiring 106 from a drive circuit (not shown) provided outside. The anode auxiliary wiring 106 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
 有機EL素子10上には、複数の陰極配線108が設けられている。複数の陰極配線108は、それぞれが平行となるよう、かつ、陽極配線104と直交するように配設されている。陰極配線108には、Al又はAl合金を使用することができる。陰極配線108の厚さは、例えば、100nm~150nmである。陰極配線108の端部には、陽極配線104に対する陽極補助配線106と同様に、図示しない陰極補助配線が設けられ、陰極配線108と電気的に接続されている。よって、陰極配線108と陰極補助配線との間に電流を流すことができる。 A plurality of cathode wirings 108 are provided on the organic EL element 10. The plurality of cathode wirings 108 are arranged so as to be parallel to each other and orthogonal to the anode wiring 104. For the cathode wiring 108, Al or an Al alloy can be used. The thickness of the cathode wiring 108 is, for example, 100 nm to 150 nm. A cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 108, similarly to the anode auxiliary wiring 106 for the anode wiring 104, and is electrically connected to the cathode wiring 108. Therefore, a current can flow between the cathode wiring 108 and the cathode auxiliary wiring.
 更に基板1上には、陽極配線104を覆うように絶縁膜110が形成される。絶縁膜110には、陽極配線104の一部を露出するように矩形状の開口部120が設けられている。複数の開口部120は、陽極配線104の上にマトリクス状に配置されている。この開口部120において、陽極配線104と陰極配線108の間に有機EL素子10が設けられる。すなわち、それぞれの開口部120が画素となる。従って、開口部120に対応して表示領域が形成される。ここで、絶縁膜110の膜厚は、例えば、200nm~100nmとすることができる。開口部120の大きさは、例えば、100μm×100μmとすることができる。 Further, an insulating film 110 is formed on the substrate 1 so as to cover the anode wiring 104. A rectangular opening 120 is provided in the insulating film 110 so as to expose a part of the anode wiring 104. The plurality of openings 120 are arranged in a matrix on the anode wiring 104. In the opening 120, the organic EL element 10 is provided between the anode wiring 104 and the cathode wiring 108. That is, each opening 120 becomes a pixel. Accordingly, a display area is formed corresponding to the opening 120. Here, the film thickness of the insulating film 110 can be set to, for example, 200 nm to 100 nm. The size of the opening 120 can be, for example, 100 μm × 100 μm.
 有機EL素子10は、開口部120において陽極配線104と陰極配線108の間に位置している。そしてこの場合、有機EL素子10の陽極2が陽極配線104と接触し、陰極4が陰極配線108と接触する。有機EL素子10の厚さは、例えば、150nm~200nmとすることができる。 The organic EL element 10 is located between the anode wiring 104 and the cathode wiring 108 in the opening 120. In this case, the anode 2 of the organic EL element 10 is in contact with the anode wiring 104 and the cathode 4 is in contact with the cathode wiring 108. The thickness of the organic EL element 10 can be set to, for example, 150 nm to 200 nm.
 絶縁膜110の上には、複数の陰極隔壁112が陽極配線104と垂直な方向に沿って形成されている。陰極隔壁112は、陰極配線108の配線同士が導通しないように、複数の陰極配線108を空間的に分離するための役割を担っている。従って、隣接する陰極隔壁112の間にそれぞれ陰極配線108が配置される。陰極隔壁112の大きさとしては、例えば、高さが2μm~3μm、幅が10μmのものを用いることができる。 A plurality of cathode partition walls 112 are formed on the insulating film 110 along a direction perpendicular to the anode wiring 104. The cathode partition 112 plays a role for spatially separating the plurality of cathode wirings 108 so that the wirings of the cathode wirings 108 do not conduct with each other. Accordingly, the cathode wiring 108 is disposed between the adjacent cathode partition walls 112. As the size of the cathode partition 112, for example, the one having a height of 2 μm to 3 μm and a width of 10 μm can be used.
 基板1は、封止プレート116とシール材118を介して貼り合わせられている。これにより、有機EL素子10が設けられた空間を封止することができ、有機EL素子10が空気中の水分により劣化するのを防ぐことができる。封止プレート116としては、例えば、厚さが0.7mm~1.1mmのガラス基板を使用することができる。 The substrate 1 is bonded through a sealing plate 116 and a sealing material 118. Thereby, the space in which the organic EL element 10 is provided can be sealed, and the organic EL element 10 can be prevented from being deteriorated by moisture in the air. As the sealing plate 116, for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
 このような構造の画像表示装置100において、図示しない駆動装置により、陽極補助配線106、図示しない陰極補助配線を介して、有機EL素子10に電流を供給し、発光層を発光させることができる。そして基板1から基板1を通し、光を出射させることができる。そして、上述の画素に対応した有機EL素子10の発光、非発光を制御装置により制御することにより、画像表示装置100に画像を表示させることができる。 In the image display device 100 having such a structure, a current can be supplied to the organic EL element 10 via the anode auxiliary wiring 106 and the cathode auxiliary wiring (not shown) by a driving device (not shown) to cause the light emitting layer to emit light. Then, light can be emitted from the substrate 1 through the substrate 1. An image can be displayed on the image display device 100 by controlling the light emission and non-light emission of the organic EL element 10 corresponding to the above-described pixel by the control device.
(照明装置)
 次に、上記の有機EL素子10を用いた照明装置について説明を行う。
 図4は、上記の有機EL素子10を備える照明装置の一例を説明した図である。
 図4に示した照明装置200は、上述した有機EL素子10と、有機EL素子10の基板1(図1参照)に隣接して設置され陽極2(図1参照)に接続される端子202と、陰極4(図1参照)に接続される端子203と、端子202と端子203とに接続し有機EL素子10を駆動するための点灯回路201とから構成される。
(Lighting device)
Next, a lighting device using the organic EL element 10 will be described.
FIG. 4 is a diagram illustrating an example of an illumination device including the organic EL element 10 described above.
The lighting apparatus 200 shown in FIG. 4 includes the organic EL element 10 described above, and a terminal 202 that is installed adjacent to the substrate 1 (see FIG. 1) of the organic EL element 10 and connected to the anode 2 (see FIG. 1). The terminal 203 is connected to the cathode 4 (see FIG. 1), and the lighting circuit 201 is connected to the terminal 202 and the terminal 203 to drive the organic EL element 10.
 点灯回路201は、図示しない直流電源と図示しない制御回路を内部に有し、端子202と端子203を通して、有機EL素子10の陽極層2と陰極4との間に電流を供給する。そして、有機EL素子10を駆動し、発光層を発光させて、基板1から支持基板101を通し、光を出射させ、照明光として利用する。発光層は白色光を出射する発光材料より構成されていてもよく、また緑色光(G)、青色光(B)、赤色光(R)を出射する発光材料を使用した有機EL素子10をそれぞれ複数個設け、その合成光が白色となるようにしてもよい。 The lighting circuit 201 has a DC power supply (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 2 and the cathode 4 of the organic EL element 10 through the terminal 202 and the terminal 203. Then, the organic EL element 10 is driven, the light emitting layer emits light, light is emitted from the substrate 1 through the support substrate 101, and is used as illumination light. The light emitting layer may be made of a light emitting material that emits white light, and each of the organic EL elements 10 using light emitting materials that emit green light (G), blue light (B), and red light (R). A plurality of them may be provided so that the combined light is white.
(有機EL素子の製造方法)
 次に、本発明の一実施形態である有機EL素子の製造方法について図5Aおよび図5Bを参照して説明する。
 まず、図5A(a)に示すように、基板1上に、陽極2を形成する。この陽極2の形成方法は、特に限定されるものではないが、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などを用いることができる。
(Manufacturing method of organic EL element)
Next, the manufacturing method of the organic EL element which is one Embodiment of this invention is demonstrated with reference to FIG. 5A and FIG. 5B.
First, as shown in FIG. 5A (a), an anode 2 is formed on a substrate 1. A method for forming the anode 2 is not particularly limited, and for example, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or the like can be used.
 陽極2を形成した後に、陽極2の表面処理を行うことで、オーバーコートされる層の性能(陽極2との密着性、表面平滑性、ホール注入障壁の低減化など)を改善することができる。表面処理を行うには高周波プラズマ処理を始めとしてスパッタリング処理、コロナ処理、UVオゾン照射処理、紫外線照射処理、または酸素プラズマ処理などがある。 By performing the surface treatment of the anode 2 after forming the anode 2, the performance of the overcoated layer (adhesion with the anode 2, surface smoothness, reduction of hole injection barrier, etc.) can be improved. . The surface treatment includes high-frequency plasma treatment, sputtering treatment, corona treatment, UV ozone irradiation treatment, ultraviolet irradiation treatment, oxygen plasma treatment, and the like.
 更に、陽極2の表面処理の表面処理を行う代わりに、もしくは表面処理に追加して、図示しない陽極バッファ層を形成することで表面処理と同様の効果が期待できる。そして、陽極バッファ層をウェットプロセスにて塗布して作製する場合には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法などを用いて成膜することができる。 Furthermore, the same effect as the surface treatment can be expected by forming an anode buffer layer (not shown) instead of or in addition to the surface treatment of the surface treatment of the anode 2. When the anode buffer layer is applied by a wet process, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating The film can be formed using a coating method such as a spray method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, or an inkjet printing method.
 陽極バッファ層をドライプロセスにて作製する場合は、特開2006-303412号公報に例示のプラズマ処理などを用いて成膜することができる。この他にも金属単体あるいは金属酸化物、金属窒化物等を成膜する方法が挙げられる。具体的な成膜方法としては、電子ビーム蒸着法、スパッタリング法、化学反応法、コーティング法、真空蒸着法などを用いることができる。 When the anode buffer layer is produced by a dry process, the anode buffer layer can be formed by using a plasma treatment or the like exemplified in Japanese Patent Application Laid-Open No. 2006-303412. In addition, a method of forming a film of a single metal, a metal oxide, a metal nitride, or the like can be given. As a specific film formation method, an electron beam evaporation method, a sputtering method, a chemical reaction method, a coating method, a vacuum evaporation method, or the like can be used.
 次に、陽極孔部2Aを形成するには例えば、フォトリソグラフィを用いた方法が使用できる。これを行うには、図5A(b)に示すように、まず陽極2の上にポジ型レジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層9を形成する。 Next, for example, a method using photolithography can be used to form the anode hole 2A. In order to do this, as shown in FIG. 5A (b), first, a positive resist solution is applied onto the anode 2 and the excess resist solution is removed by spin coating or the like to form a resist layer 9.
 そして、陽極孔部2Aを形成するための所定のパターンが描画されたマスク(図示せず)をかぶせ、紫外線(UV)、電子線(EB)等により露光を行うと、図5A(c)に示すように、レジスト層9に陽極孔部2Aに対応した所定のパターンが露光される(露光された部分9a)。そして現像液を用いて露光されたパターンの部分のレジスト層9aを除去する。これにより露光されたパターンの部分に対応して、陽極2の表面が露出する(図5A(d))。 Then, when a mask (not shown) on which a predetermined pattern for forming the anode hole 2A is drawn is applied and exposure is performed with ultraviolet rays (UV), electron beams (EB), etc., FIG. 5A (c) is obtained. As shown, a predetermined pattern corresponding to the anode hole 2A is exposed on the resist layer 9 (exposed portion 9a). Then, the resist layer 9a in the exposed pattern portion is removed using a developer. As a result, the surface of the anode 2 is exposed corresponding to the exposed pattern portion (FIG. 5A (d)).
 図5A(e)に示すように、残存したレジスト層9をマスクとして、露出した陽極2の一部をエッチング除去して陽極孔部2Aを形成する。エッチング方法としては、ドライエッチングとウェットエッチングの何れをも使用することができる。この際に等方性エッチングと異方性エッチングを組合せることで、陽極孔部2Aの形状の制御を行うことができる。ドライエッチングとしては、誘導結合プラズマや容量結合プラズマを用いた反応性イオンエッチング(RIE:Reactive Ion Etching)等が利用できる。ウェットエッチングとしては、塩化鉄水溶液をはじめとする金属塩の溶液や、希塩酸や希硫酸をはじめとする酸への浸漬を行う方法などが利用できる。このエッチングにより上記パターンに対応して、基板1の表面が露出する。 As shown in FIG. 5A (e), a part of the exposed anode 2 is removed by etching using the remaining resist layer 9 as a mask to form an anode hole 2A. As an etching method, either dry etching or wet etching can be used. At this time, the shape of the anode hole portion 2A can be controlled by combining isotropic etching and anisotropic etching. As the dry etching, reactive ion etching (RIE: Reactive Ion Etching) using inductively coupled plasma or capacitively coupled plasma can be used. As the wet etching, a solution of a metal salt such as an iron chloride aqueous solution or a method of immersing in an acid such as dilute hydrochloric acid or dilute sulfuric acid can be used. By this etching, the surface of the substrate 1 is exposed corresponding to the pattern.
 次に、図5A(f)に示すように、残存したレジスト層9をマスクとして、誘電体層7を形成する。図5A(f)において誘電体層7は陽極孔部2Aを充填して陽極孔部2Aの内側面2aを被覆する構成であるが、一部だけ埋めて陽極孔部2Aの内側面2aを被覆する構成でもよい。この誘電体層7の形成も陽極2の形成と同様に限定するものではないが、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法、各種の塗布方法などを用いることができる。 Next, as shown in FIG. 5A (f), the dielectric layer 7 is formed using the remaining resist layer 9 as a mask. In FIG. 5A (f), the dielectric layer 7 fills the anode hole 2A and covers the inner side surface 2a of the anode hole 2A, but only partially fills the inner side surface 2a of the anode hole 2A. The structure to do may be sufficient. The formation of the dielectric layer 7 is not limited in the same manner as the formation of the anode 2, but for example, resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, CVD, various coating methods, etc. Can be used.
 次に、レジスト層9を除去した後、図5B(g)に示すように、陽極2及び誘電体層7上に、有機EL材料からなる発光層を含む有機層3を形成する。ここで、有機層3を形成する下地となる陽極2及び誘電体層7の表面が凹凸状の場合は、平坦化するような研磨加工、エッチング処理などを適宜行ってもよい。
 有機層3の形成には従来公知の方法を用いることができ限定するものではないが、例えば、真空蒸着法、スピンコート法、キャスト法、LB法等の方法を用いることができる。
Next, after removing the resist layer 9, as shown in FIG. 5B (g), an organic layer 3 including a light emitting layer made of an organic EL material is formed on the anode 2 and the dielectric layer. Here, in the case where the surfaces of the anode 2 and the dielectric layer 7 serving as the foundation on which the organic layer 3 is formed are uneven, polishing or etching for flattening may be appropriately performed.
For forming the organic layer 3, a conventionally known method can be used and is not limited. For example, a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method can be used.
 次に、有機層3の表面に、この後に形成する陰極4の放射起点部4aに対応する位置に凸部3bを有するように凹凸構造を形成する。この凹凸形成には例えば、フォトリソグラフィを用いた方法を使用できる。これを行うには、図5B(g)に示すように、まず有機層3の上にポジ型レジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層11を形成する。 Next, a concavo-convex structure is formed on the surface of the organic layer 3 so as to have a convex portion 3b at a position corresponding to the radiation starting point portion 4a of the cathode 4 to be formed later. For example, a method using photolithography can be used for forming the unevenness. In order to do this, as shown in FIG. 5B (g), first, a positive resist solution is applied onto the organic layer 3, and the excess resist solution is removed by spin coating or the like to form a resist layer 11. .
 そして、凸部3bを形成するための所定のパターンが描画されたマスク(図示せず)をかぶせ、紫外線(UV)、電子線(EB)等により露光を行うと、図5B(h)に示すように、レジスト層11に放射起点部4aに対応した所定のパターンが露光される(露光された部分11a)。そして現像液を用いて露光されたパターンの部分のレジスト層11aを除去する。これにより露光されたパターンの部分に対応して、有機層3の表面が露出する(図5B(i))。 Then, when a mask (not shown) on which a predetermined pattern for forming the convex portion 3b is drawn is applied and exposure is performed with ultraviolet rays (UV), electron beams (EB), etc., it is shown in FIG. 5B (h). As described above, the resist layer 11 is exposed with a predetermined pattern corresponding to the radiation starting point portion 4a (exposed portion 11a). Then, the resist layer 11a in the exposed pattern portion is removed using a developer. Thus, the surface of the organic layer 3 is exposed corresponding to the exposed pattern portion (FIG. 5B (i)).
 次に、図5B(j)に示すように、残存したレジスト層11をマスクとして、露出した有機層3の一部をエッチング除去して凸部3bを形成する。エッチングとしては、ドライエッチングとウェットエッチングの何れをも使用することができる。この際に等方性エッチングと異方性エッチングを組合せることで、凸部3bの形状の制御を行うことができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion Etching)や、酸素プラズマによるアッシング処理等が利用できる。ウェットエッチングとしては、希塩酸や希硫酸などのほか、各種の有機溶媒への浸漬を行う方法などが利用できる。このエッチングにより上記パターンに対応して、放射起点部4aに対応する凸部3bを含む凹凸構造を有機層3の表面に形成することができる。
 フォトリソグラフィは1μm程度までは位置合わせ精度があるため、陰極の放射起点部4aと陽極孔部2Aとが平面視して重なるように形成することが可能となる。
Next, as shown in FIG. 5B (j), using the remaining resist layer 11 as a mask, a portion of the exposed organic layer 3 is removed by etching to form a convex portion 3b. As the etching, either dry etching or wet etching can be used. At this time, the shape of the convex portion 3b can be controlled by combining isotropic etching and anisotropic etching. As dry etching, reactive ion etching (RIE), ashing treatment using oxygen plasma, or the like can be used. As the wet etching, there can be used a method of immersing in various organic solvents in addition to dilute hydrochloric acid and dilute sulfuric acid. By this etching, a concavo-convex structure including the convex portions 3 b corresponding to the radiation starting point portions 4 a can be formed on the surface of the organic layer 3 corresponding to the pattern.
Since photolithography has alignment accuracy up to about 1 μm, it is possible to form the cathode radiation starting point portion 4a and the anode hole portion 2A so as to overlap in a plan view.
 次に、図5B(k)に示すように、陰極材料を有機層3上に蒸着して、有機層3の凹凸構造を追従させて放射起点部4aを有する陰極4を形成する。 Next, as shown in FIG. 5B (k), a cathode material is vapor-deposited on the organic layer 3, and the cathode 4 having the radiation starting point portion 4a is formed by following the uneven structure of the organic layer 3.
 以上の工程により、有機EL素子10を製造することができる。これら一連の工程後、有機EL素子10を長期安定的に用い、有機EL素子10を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等のシリコン化合物などを用いることができる。そして、これらの積層体も用いることができる。保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属などを用いることができる。この保護カバーは、熱硬化性樹脂、光硬化性樹脂、フリットガラス等で基板1と貼り合わせて密閉する方法を採ることが好ましい。またこの際に、基板1と前記保護カバーの間にスペーサを配置することで所定の空間を維持することができ、有機EL素子10が傷つくのを防止できるため好ましい。
そして、この空間に窒素、アルゴン、ヘリウムのような不活性なガスを封入すれば、上側の陰極4の酸化を防止しやすくなる。特にヘリウムを用いた場合、熱伝導が高いため、電圧印加時に有機EL素子10より発生する熱を効果的に保護カバーに伝えることができるため、好ましい。更に酸化バリウム等の乾燥剤をこの空間内に設置することにより上記一連の製造工程で吸着した水分が有機EL素子10にダメージを与えることを抑制しやすくなる。
The organic EL element 10 can be manufactured by the above process. After these series of steps, it is preferable to use the organic EL element 10 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic EL element 10 from the outside. As the protective layer, polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used. As the protective cover, a glass plate, a plastic plate whose surface is subjected to low water permeability treatment, a metal, or the like can be used. The protective cover is preferably bonded to the substrate 1 with a thermosetting resin, a photocurable resin, frit glass or the like and sealed. At this time, it is preferable to place a spacer between the substrate 1 and the protective cover because a predetermined space can be maintained and the organic EL element 10 can be prevented from being damaged.
If an inert gas such as nitrogen, argon or helium is sealed in this space, it becomes easy to prevent oxidation of the upper cathode 4. In particular, when helium is used, heat conduction is high, and thus heat generated from the organic EL element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable. Furthermore, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic EL element 10.
 以上の有機EL素子の製造方法では陽極側から作製する方法を説明したが、トップエミッション型の有機EL素子の場合等では、陰極側から作製してもよい。 In the above method for producing an organic EL element, the method for producing from the anode side has been described. However, in the case of a top emission type organic EL element, it may be produced from the cathode side.
 本発明の有機EL素子の実施例について以下に説明する。 Examples of the organic EL device of the present invention will be described below.
図6(a)及び(b)は、本発明の一実施形態の有機EL素子の効果を確認するために、有限差分時間領域(FDTD:Finite Difference Time Domain Method)法を用いて、全放射強度に対する基板中への光の放射強度を光取り出し効率として、コンピュータシミュレーション計算した結果を示す。FDTD法は、電磁界の時間変化を記述するMaxwellの方程式を空間的・時間的に差分化し、空間の各点における電磁界の時間変化を追跡する解析手法である。より具体的には、発光層における発光を微小ダイポールからの放射と捉えて、その放射(電磁界)の時間変化を追跡するという計算手法を採る。シミュレーション結果は、基板まで取り出された光に対する光取り出し効率を計算した結果を示すものである。
本実施形態ではボトムエミッション型の有機EL素子のシミュレーションを行っているが、トップエミッション型の有機EL素子の場合も光の取出す向きが異なるのみであり、本発明の作用効果を奏する。
6 (a) and 6 (b) show the total radiant intensity using a finite difference time domain (FDTD) method in order to confirm the effect of the organic EL device of one embodiment of the present invention. The result of computer simulation calculation is shown by using the radiation intensity of light into the substrate as the light extraction efficiency. The FDTD method is an analysis method for differentiating Maxwell's equation describing a time change of an electromagnetic field spatially and temporally and tracking the time change of the electromagnetic field at each point in the space. More specifically, a calculation method is adopted in which light emission in the light emitting layer is regarded as radiation from a minute dipole, and time variation of the radiation (electromagnetic field) is tracked. The simulation result shows the result of calculating the light extraction efficiency with respect to the light extracted up to the substrate.
In this embodiment, a simulation of a bottom emission type organic EL element is performed, but the top emission type organic EL element also differs only in the direction of light extraction, and exhibits the effects of the present invention.
 図6(a)及び(b)はそれぞれ、水平方向に振動するダイポールからの放射光(基板に対して垂直方向に伝播する光(以下、タテ伝播光ということがある))の光取り出し効率、垂直方向に振動するダイポールからの放射光(基板に対して平行方向に伝播する光(以下、ヨコ伝播光ということがある))の光取り出し効率計算結果を示す。 6 (a) and 6 (b) respectively show the light extraction efficiency of the radiated light from the dipole vibrating in the horizontal direction (light propagating in the direction perpendicular to the substrate (hereinafter also referred to as vertical propagation light)), The light extraction efficiency calculation result of the radiated light from the dipole vibrating in the vertical direction (light propagating in a direction parallel to the substrate (hereinafter sometimes referred to as horizontal propagation light)) is shown.
 図6(a)及び(b)に示したグラフに係る「同位相」とは本発明の実施例である。図7(a)に示すように、陰極の放射起点部と陽極孔部(あるいは、誘電体層)とが平面視して重なる配置の本発明の場合であって特に、陰極の放射起点部の基板に直交する中心軸C1と陽極孔部の基板に直交する中心軸C2が一致する配置の場合である。 “In-phase” in the graphs shown in FIGS. 6A and 6B is an example of the present invention. As shown in FIG. 7 (a), in the case of the present invention in which the radiation starting point of the cathode and the anode hole (or dielectric layer) overlap in plan view, in particular, the radiation starting point of the cathode This is a case where the central axis C1 orthogonal to the substrate coincides with the central axis C2 orthogonal to the substrate of the anode hole portion.
 「逆位相」とは、図7(b)に示すように、陰極の放射起点部と陽極孔部(あるいは、誘電体層)とが平面視して重ならない配置の場合であって特に、陰極の放射起点部の中心軸C1と陽極孔部の中心軸C2が半周期ずれて配置する場合であり、本発明の比較例として示したものである。 As shown in FIG. 7B, the “reverse phase” is a case where the radiation starting point portion of the cathode and the anode hole portion (or dielectric layer) do not overlap each other in plan view. This is a case where the center axis C1 of the radiation starting point portion and the center axis C2 of the anode hole portion are shifted by a half cycle, and is shown as a comparative example of the present invention.
 図6(a)及び(b)に示したグラフに係る“陰極凹凸+「同位相」”とは、陰極の放射起点部と陽極孔部とが上記の配置を有すると共に、陰極に放射起点部として後述する形状の凹部を有する構造を意味する。
 また、図6(a)及び(b)に示したグラフに係る“陰極凹凸+「逆位相」”とは、陰極の放射起点部と陽極孔部とが上記の配置を有すると共に、陰極に放射起点部として後述する形状の凹部を有する構造を意味する。
The “cathode unevenness +“ in-phase ”” according to the graphs shown in FIGS. 6A and 6B means that the cathode emission starting portion and the anode hole portion have the above-described arrangement, and the cathode has a radiation starting portion. The structure which has a recessed part of the shape mentioned later as follows.
Further, “cathode unevenness +“ reverse phase ”” according to the graphs shown in FIGS. 6A and 6B is that the emission starting point portion and the anode hole portion of the cathode have the above-described arrangement and are emitted to the cathode. The structure which has a recessed part of the shape mentioned later as a starting point part is meant.
 図6(a)及び(b)に示したグラフに係る“陰極凹凸のみ”とは、陽極が陽極孔部を有さない層状の陽極であること以外は“陰極凹凸+「同位相」”及び“陰極凹凸+「逆位相」”と同様の構造を意味する。すなわち、陰極の構成(反射電極側構造)は本発明のものと同様であるが、陽極の構成(透明電極側構造)については本発明と異なる構成である。 The “cathode unevenness only” according to the graphs shown in FIGS. 6A and 6B is “cathode unevenness +“ in phase ”” except that the anode is a layered anode having no anode hole. It means the same structure as “cathode unevenness +“ reverse phase ”.” That is, the structure of the cathode (reflection electrode side structure) is the same as that of the present invention, but the structure of the anode (transparent electrode side structure) The configuration is different from that of the present invention.
 図6(a)及び(b)に示したグラフに係る“標準”とは、陽極が陽極孔部を有さない層状の陽極であり、陰極が放射起点部を有さない層状の陰極であること以外は、“陰極凹凸+「同位相」”及び“陰極凹凸+「逆位相」”と同様の構造を意味する。すなわち、陰極の構成(反射電極側構造)と、陽極の構成(透明電極側構造)については本発明と異なる構成である。 The “standard” according to the graphs shown in FIGS. 6A and 6B is a layered anode in which the anode does not have an anode hole, and a cathode in which the cathode does not have a radiation starting point. Otherwise, it means the same structure as “cathode unevenness +“ in-phase ”” and “cathode unevenness +“ reverse phase ”.” That is, the structure of the cathode (reflection electrode side structure) and the structure of the anode (transparent electrode) The side structure is different from the present invention.
 図7(a)及び(b)は、シミュレーションで用いた実施形態の有機EL素子のモデル構造を示す断面図である。
 基板1はガラスからなるとして、屈折率としては1.5を用いた。陽極2はITOからなるとして、屈折率としては550nmで1.82+0.009iとし、その他の波長はローレンツモデルで外挿した。誘電体層7はSOGからなるとして、屈折率としては1.25を用いた。有機層3の屈折率としては1.72を用いた。陰極4はアルミニウム(Al)からなるとして、屈折率としては550nmで0.958+6.69iを用い、その他の波長はドルーデモデルで外挿した。以後、特に断りが無い場合、ガラス、有機層、アルミニウムの屈折率はそれぞれ上記の値を用いている。
7A and 7B are cross-sectional views showing a model structure of the organic EL element of the embodiment used in the simulation.
The substrate 1 is made of glass, and a refractive index of 1.5 is used. The anode 2 is made of ITO, the refractive index is 1.82 + 0.009i at 550 nm, and other wavelengths are extrapolated by the Lorentz model. The dielectric layer 7 is made of SOG, and the refractive index is 1.25. As the refractive index of the organic layer 3, 1.72 was used. The cathode 4 is made of aluminum (Al), the refractive index is 0.958 + 6.69i at 550 nm, and the other wavelengths are extrapolated by the Drude model. Thereafter, unless otherwise noted, the above values are used for the refractive indexes of glass, organic layer, and aluminum, respectively.
 図8に、図7(a)の構成を例にして各構成の形状およびサイズを示した。
 陽極2(又は誘電体層7)、有機層3の層状部3a、陰極4の層厚はそれぞれ、150nm、100nm、200nmとした。
 隣接する放射起点部4aの中心軸間の距離(ピッチ)は500nm、放射起点部4aをなす凹部の深さは100nm、幅は60nmとした。
隣接する陽極孔部2Aの中心軸間の距離(ピッチ)も陰極4の放射起点部4aのピッチと同様に、500nmとした。陽極孔部2Aの幅はそのピッチの1/2(250nm)とした。ここで、放射起点部4aおよび陽極孔部2Aは、紙面奥行き方向には並進対称な構造としている。すなわち、平面視で、凸部および孔部は面内の一方向を無限に伸びるライン状の形状をしている。ただし、光源は紙面奥行き方向に並進対称ではなく、有機層層状部領域中に点状に置いている。
FIG. 8 shows the shape and size of each configuration, taking the configuration of FIG. 7A as an example.
The layer thicknesses of the anode 2 (or dielectric layer 7), the layered portion 3a of the organic layer 3, and the cathode 4 were 150 nm, 100 nm, and 200 nm, respectively.
The distance (pitch) between the central axes of the adjacent radiation starting point portions 4a was 500 nm, the depth of the concave portion forming the radiation starting point portion 4a was 100 nm, and the width was 60 nm.
The distance (pitch) between the central axes of the adjacent anode hole portions 2A was set to 500 nm, similar to the pitch of the radiation starting point portions 4a of the cathode 4. The width of the anode hole 2A was set to ½ (250 nm) of the pitch. Here, the radiation starting point portion 4a and the anode hole portion 2A have a translational symmetric structure in the depth direction of the drawing. That is, in a plan view, the convex portion and the hole have a line shape extending infinitely in one direction in the plane. However, the light source is not translationally symmetric in the depth direction of the paper, but is placed in the form of dots in the organic layer layered region.
 図6(a)に示す通り、タテ伝播光については、本発明の実施例である“陰極凹凸+「同位相」”の構成の場合は、“標準”構成、“陰極凹凸のみ”構成、及び、“陰極凹凸+「逆位相」”の構成の場合のいずれの場合よりも、計算を行った全範囲である450nm~750nmの範囲にわたり、高い光取り出し効率が得られた。特に、450nm~650nmの範囲では10%以上高い光取り出し効率が得られた。
“陰極凹凸+「逆位相」”の構成の場合は、“標準”構成、及び、“陰極凹凸のみ”のいずれの場合よりも光取り出し効率が低かった。
As shown in FIG. 6A, in the case of the configuration of “cathode unevenness +“ in phase ””, which is an embodiment of the present invention, the “standard” configuration, the “cathode unevenness only” configuration, As compared with the case of the configuration of “cathode unevenness +“ reverse phase ””, high light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm, particularly 450 nm to 650 nm. In this range, a light extraction efficiency as high as 10% or more was obtained.
In the case of the “cathode unevenness +“ reverse phase ”” configuration, the light extraction efficiency was lower than in the “standard” configuration and “cathode unevenness only”.
 この結果から、陰極の放射起点部4aと陽極孔部2Aとの相対位置関係がタテ伝播光の光取り出し効率に大きく影響していることが分かる。陰極の放射起点部と陽極孔部との相対位置を「同位相」で組み合わせた構成とすることにより、従来の“標準”構成、及び、“陰極凹凸のみ”構成よりも高い光取り出し効率がえられる。陰極の放射起点部と陽極孔部との組み合わせであっても、陰極の放射起点部と陽極孔部との相対位置を「逆位相」で組み合わせた場合は、従来の“標準”構成、及び、“陰極凹凸のみ”構成よりも光取り出し効率が低くなる。従って、陰極の放射起点部と陽極孔部との相対位置を「同位相」として、陰極の放射起点部と組み合わせることが好ましいことが分かる。
 これらは、理論的には予測することが困難であり、シミュレーションを行って初めて知ることができたものである。
From this result, it can be seen that the relative positional relationship between the radiation starting point 4a of the cathode and the anode hole 2A greatly affects the light extraction efficiency of the vertical propagation light. By combining the relative positions of the cathode radiation start point and anode hole part in the same phase, a higher light extraction efficiency than the conventional “standard” configuration and “cathode unevenness only” configuration can be obtained. It is done. Even if it is a combination of the cathode radiation origin portion and the anode hole portion, when the relative positions of the cathode radiation origin portion and the anode hole portion are combined in “reverse phase”, the conventional “standard” configuration, and The light extraction efficiency is lower than the “cathode unevenness only” configuration. Therefore, it can be seen that it is preferable to combine the radiation starting point of the cathode with the radiation starting point of the cathode by setting the relative position of the anode starting hole and the anode hole to the same phase.
These are theoretically difficult to predict and can only be known after simulation.
 “陰極凹凸のみ”構成は“標準”構成の場合と光取り出し効率がほとんど変わらない。これは、“陰極凹凸のみ”構成中の陰極表面に備えられた放射起点によって、陰極表面に捕捉されたSPPモード光が有機層中に再放射されたとしても、その再放射光を取り出すための陽極側構造を備えていない場合には、再放射光は導波モード光として素子内に閉じ込められ、基板への光取り出し効率を向上させることができないことを意味している。 構成 “Cathode unevenness only” configuration has almost the same light extraction efficiency as “Standard” configuration. This is because, even if the SPP mode light captured on the cathode surface is re-emitted into the organic layer by the radiation origin provided on the cathode surface in the “cathode unevenness only” configuration, the re-emitted light is extracted. When the anode side structure is not provided, the re-emitted light is confined in the element as guided mode light, which means that the light extraction efficiency to the substrate cannot be improved.
 次に、図6(b)に示す通り、ヨコ伝播光については、本発明の実施例である“陰極凹凸+「同位相」”の構成の場合は、“標準”構成、及び、“陰極凹凸のみ”構成のいずれの場合よりも、計算を行った全範囲である450nm~750nmの範囲にわたり、高い光取り出し効率が得られた。特に、標準”構成と比較すると、数倍以上の高い光取り出し効率が得られた。“陰極凹凸のみ”構成と比較すると、450nm~580nm、及び、670nm~750nmにおいてより高い光取り出し効率が得られた。陰極凹凸+「逆位相」”の構成の場合に比べて、450nm~500nmの範囲では光取り出し効率はやや低いものの、それ以外の波長範囲では光取り出し効率は高かった。
 ヨコ伝播光についても、“陰極凹凸+「同位相」”の構成は、“標準”構成、“陰極凹凸のみ”構成、“陰極凹凸+「逆位相」”の構成のいずれの場合よりも光取り出し効率の向上に有効であることが分かる。
 これらは、理論的には予測することが困難であり、シミュレーションを行って初めて知ることができたものである。
Next, as shown in FIG. 6B, in the case of the configuration of “cathode unevenness +“ in phase ”” which is an embodiment of the present invention, the “standard” configuration and the “cathode unevenness” Only in the “configuration”, high light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm. In particular, the light extraction efficiency was several times higher than that in the standard configuration. Efficiency was obtained. Compared with the “cathode concavity and convexity only” configuration, higher light extraction efficiency was obtained at 450 nm to 580 nm and 670 nm to 750 nm. The light extraction efficiency was slightly lower in the range of 450 nm to 500 nm, but the light extraction efficiency was higher in the other wavelength ranges as compared with the case of the cathode irregularity + “reverse phase” configuration.
Also for horizontal propagation light, the “cathode unevenness +“ in-phase ”” configuration is more than the “standard” configuration, “cathode unevenness only” configuration, and “cathode unevenness +“ reverse phase ”” configuration. It turns out that it is effective for the improvement of efficiency.
These are theoretically difficult to predict and can only be known after simulation.
 図9(a)及び(b)は、陰極の放射起点部のピッチ及び陽極孔部のピッチを1000nmとした以外は、図7及び図8と同様の構成とした有機EL素子のモデル構造について、図6で示したものと同様なシミュレーション計算した結果を示すものである。 FIGS. 9A and 9B show the model structure of the organic EL element having the same configuration as that of FIGS. 7 and 8, except that the pitch of the radiation starting point of the cathode and the pitch of the anode hole are set to 1000 nm. FIG. 7 shows a result of simulation calculation similar to that shown in FIG. 6. FIG.
 図9(a)に示す通り、タテ伝播光について、図6(a)に示したピッチが500nmの場合と同様に、“陰極凹凸+「同位相」”の構成の場合は “標準”構成、“陰極凹凸のみ”構成、及び、陰極凹凸+「逆位相」”のいずれの場合よりも、計算を行った全範囲である450nm~750nmの範囲にわたり、高い光取り出し効率が得られた。特に、500nm~620nmの範囲では10%以上高い光取り出し効率が得られた。
“陰極凹凸+「逆位相」”の構成の場合は、450nm~560nmの範囲では標準”構成、及び、“陰極凹凸のみ”の場合と同程度の光取り出し効率が得られた。しかし560nm~750nmの範囲で“標準”構成、及び、“陰極凹凸のみ”のいずれの場合よりも光取り出し効率が低かった。
 これらは、理論的には予測することが困難であり、シミュレーションを行って初めて知ることができたものである。
As shown in FIG. 9 (a), in the case of the configuration of “cathode unevenness +“ in phase ””, the “standard” configuration for the vertical propagation light, as in the case where the pitch shown in FIG. 6 (a) is 500 nm. Higher light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm than in the case of the “cathode unevenness only” configuration and the cathode unevenness + “reverse phase”. In the range of 500 nm to 620 nm, a light extraction efficiency as high as 10% or more was obtained.
In the case of “cathode unevenness +“ reverse phase ””, light extraction efficiency comparable to that of the “standard” configuration in the range of 450 nm to 560 nm and “cathode unevenness only” was obtained. However, the light extraction efficiency was lower in the range of 560 nm to 750 nm than in the cases of the “standard” configuration and “cathode unevenness only”.
These are theoretically difficult to predict and can only be known after simulation.
 ピッチが1000nmの場合も、“陰極凹凸のみ”構成は“標準”構成の場合と光取り出し効率がほとんど変わらない。これは、“陰極凹凸のみ”構成が陰極表面に捕捉されたSPPモード光を取り出して導波モード光とすることができたとしても、その導波モード光を取り出すための構成を備えていない場合には、基板への光取り出し効率を向上させることができないことを意味している。 Even when the pitch is 1000 nm, the “cathode unevenness only” configuration has almost the same light extraction efficiency as the “standard” configuration. This is because even if the “cathode concavity and convexity only” configuration can extract SPP mode light captured on the cathode surface to obtain guided mode light, it does not have a configuration for extracting the guided mode light. This means that the light extraction efficiency to the substrate cannot be improved.
 また、図9(b)に示す通り、ヨコ伝播光については、“陰極凹凸+「同位相」”の構成の場合は“標準”構成、及び、“陰極凹凸のみ”構成のいずれの場合よりも、計算を行った全範囲である450nm~750nmの範囲にわたり、高い光取り出し効率が得られた。特に、標準”構成との差はピッチが500nmの場合よりも大きかった。“陰極凹凸+「逆位相」”の構成の場合に比べて、450nm~510nmの範囲では光取り出し効率はやや低いものの、それ以外の波長範囲では光取り出し効率は高かった。
 ヨコ伝播光についても、“陰極凹凸+「同位相」”の構成は、“標準”構成、“陰極凹凸のみ”構成、“陰極凹凸+「逆位相」”の構成のいずれの場合よりも光取り出し効率の向上に有効であることが分かる。
 これらは、理論的には予測することが困難であり、シミュレーションを行って初めて知ることができたものである。
Further, as shown in FIG. 9B, for the horizontal propagation light, the “cathode unevenness +“ in-phase ”” configuration is more than the “standard” configuration and the “cathode unevenness only” configuration. A high light extraction efficiency was obtained over the entire calculated range of 450 nm to 750 nm. In particular, the difference from the standard “configuration” was larger than when the pitch was 500 nm. Compared with the configuration of “cathode unevenness +“ reverse phase ””, the light extraction efficiency was slightly low in the range of 450 nm to 510 nm, but the light extraction efficiency was high in other wavelength ranges.
Also for horizontal propagation light, the “cathode unevenness +“ in-phase ”” configuration is more than the “standard” configuration, “cathode unevenness only” configuration, and “cathode unevenness +“ reverse phase ”” configuration. It turns out that it is effective for the improvement of efficiency.
These are theoretically difficult to predict and can only be known after simulation.
 図10(a)は、“陰極凹凸+「同位相」”の構成でピッチを500nmとした場合(図7及び図8で示したモデル構造)の垂直方向のダイポールからの放射光(ヨコ伝播光)の磁場の強度分布のFDTD法によるシミュレーション結果を示すものである。放射光の波長は620nmを用いた。
 強度分布は基板が上側、陰極が下側の配置で示している。図中において、水平に延びる線は層と層との間の水平な界面であり、それに対して垂直に延びる線は内側面を示すものである。陽極孔部に対向する位置に配置する凹部は陰極の放射起点部を示す。これらは図11についても同様である。
 図10(b)は、“陰極凹凸のみ”構成について、図10(a)に対応するシミュレーション計算した結果を示すものである。
FIG. 10A shows a configuration of “cathode unevenness +“ in phase ”” and a pitch of 500 nm (model structure shown in FIG. 7 and FIG. 8). ) Shows the simulation result of the intensity distribution of the magnetic field by the FDTD method, and the wavelength of the emitted light is 620 nm.
The intensity distribution is shown with the substrate on the top and the cathode on the bottom. In the figure, the horizontally extending line is a horizontal interface between the layers, while the line extending perpendicularly indicates the inner surface. A concave portion disposed at a position facing the anode hole portion indicates a radiation starting point portion of the cathode. The same applies to FIG.
FIG. 10B shows the result of simulation calculation corresponding to FIG. 10A for the “cathode concavity and convexity only” configuration.
 図10(a)の強度分布を図10(b)の強度分布と比べると、全体として、ヨコ伝播光がタテにたっているのが分かる。これは基板方向への光取り出しが大きいことを示している。SPPモード光が放射起点部である凹部で放射光(導波モード光)に変換しているのが分かる。 When comparing the intensity distribution of FIG. 10 (a) with the intensity distribution of FIG. 10 (b), it can be seen that the horizontal propagation light is vertical. This indicates that light extraction toward the substrate is large. It can be seen that the SPP mode light is converted into radiated light (guided mode light) in the concave portion which is the radiation starting point.
 図11(a)は、図10(a)と同じ構成について、水平方向のダイポールからの放射光(タテ伝播光)の磁場の強度分布のFDTD法によるシミュレーション計算した結果を示すものである。放射光の波長は550nmを用いた。
 図11(b)は、“陰極凹凸のみ”構成について、図11(a)に対応するシミュレーション計算した結果を示すものである。
FIG. 11A shows the result of simulation calculation by the FDTD method of the intensity distribution of the magnetic field of the radiation light (vertical propagation light) from the horizontal dipole for the same configuration as FIG. The wavelength of the emitted light was 550 nm.
FIG. 11B shows a simulation calculation result corresponding to FIG. 11A for the “cathode unevenness only” configuration.
 図11(b)の強度分布においては、結果を示した全範囲にわたって導波モード光が残っているのに対して、図11(a)の強度分布においては、導波モード光がほとんど基板側に取り出されていることがわかる。これは、本発明の陽極側構造による効果であると理解できる。
 この結果は、陰極凹凸によって陰極表面に捕捉されたSPPモード光を取り出して導波モード光とすることができたとしても、その導波モード光を取り出すための構成を備えていない場合には、基板への光取り出し効率を向上させることができないことを意味している。
 これらは、理論的には予測することが困難であり、シミュレーションを行って初めて知ることができたものである。
In the intensity distribution of FIG. 11B, the guided mode light remains over the entire range showing the results, whereas in the intensity distribution of FIG. You can see that it has been taken out. This can be understood as an effect of the anode side structure of the present invention.
As a result, even if the SPP mode light captured on the cathode surface by the cathode unevenness can be extracted to be a guided mode light, if the configuration for extracting the guided mode light is not provided, This means that the light extraction efficiency to the substrate cannot be improved.
These are theoretically difficult to predict and can only be known after simulation.
 1 基板 2 陽極(透明電極) 2a 内側面 2A 陽極孔部(孔部) 3 有機層 4 陰極(反射電極) 4a 放射起点部 7 誘電体層 9 レジスト層 10 有機EL素子 11 レジスト層 100 画像表示装置 200 照明装置 DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Anode (transparent electrode) 2a Inner side surface 2A Anode hole part (hole part) 3 Organic layer 4 Cathode (reflective electrode) 4a Radiation origin part 7 Dielectric layer 9 Resist layer 10 Organic EL element 11 Resist layer 100 Image display apparatus 200 Lighting device

Claims (6)

  1.  透明電極と、有機EL材料からなる発光層を含む有機層と、反射電極とを順に具備し
     前記反射電極は、その前記有機層側の表面に周期的に配置する複数の放射起点部を有するものであり、
    前記透明電極は、この透明電極の屈折率より低い屈折率を有する誘電体層によってその内側面を被覆された複数の孔部を備え、 前記有機層は、前記透明電極及び前記誘電体層と前記反射電極との間に配置される層状部を有するものであり、
     前記放射起点部は、平面視して孔部に重なる位置に配置されることを特徴とする有機EL素子。
    A transparent electrode, an organic layer including a light emitting layer made of an organic EL material, and a reflective electrode are provided in this order, and the reflective electrode has a plurality of radiation starting points arranged periodically on the surface of the organic layer. And
    The transparent electrode includes a plurality of holes whose inner surfaces are covered with a dielectric layer having a refractive index lower than that of the transparent electrode, and the organic layer includes the transparent electrode, the dielectric layer, and the It has a layered portion arranged between the reflective electrode,
    The radiation starting point portion is disposed at a position overlapping the hole portion in plan view.
  2.  前記透明電極の前記有機層とは反対の面に基板を有し、
     前記透明電極側から外部に光を取り出すように構成されており、
     前記透明電極が陽極であり、前記反射電極が陰極であることを特徴とする請求項1に記載の有機EL素子。
    Having a substrate on the surface of the transparent electrode opposite to the organic layer;
    It is configured to extract light from the transparent electrode side to the outside,
    2. The organic EL device according to claim 1, wherein the transparent electrode is an anode and the reflective electrode is a cathode.
  3.  前記孔部と前記放射起点部とは基板に直交するそれぞれの中心軸が一致することを特徴とする請求項1または2のいずれかに記載の有機EL素子。 3. The organic EL element according to claim 1, wherein the hole portion and the radiation starting point portion have respective center axes orthogonal to the substrate.
  4.  前記放射起点部は、凹部であることを特徴とする請求項1~請求項3のいずれか一項に記載の有機EL素子。 The organic EL element according to any one of claims 1 to 3, wherein the radiation starting point is a recess.
  5.  請求項1~4のいずれか一項に記載の有機EL素子を備えたことを特徴とする画像表示装置。 An image display device comprising the organic EL element according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか一項に記載の有機EL素子を備えたことを特徴とする照明装置。 An illumination device comprising the organic EL element according to any one of claims 1 to 4.
PCT/JP2013/081737 2012-11-27 2013-11-26 Organic electroluminescent element, and image display device and lighting device provided with same WO2014084200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012259010 2012-11-27
JP2012-259010 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084200A1 true WO2014084200A1 (en) 2014-06-05

Family

ID=50827836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081737 WO2014084200A1 (en) 2012-11-27 2013-11-26 Organic electroluminescent element, and image display device and lighting device provided with same

Country Status (1)

Country Link
WO (1) WO2014084200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860232A (en) * 2017-11-30 2019-06-07 乐金显示有限公司 Electroluminescence display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013921A2 (en) * 2002-08-02 2004-02-12 Qinetiq Limited Optoelectronic devices
JP2007080774A (en) * 2005-09-16 2007-03-29 Konica Minolta Holdings Inc Organic electroluminescent element
JP2007234254A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Organic electroluminescent element and its manufacturing method
US20090152533A1 (en) * 2007-12-17 2009-06-18 Winston Kong Chan Increasing the external efficiency of light emitting diodes
WO2011108562A1 (en) * 2010-03-02 2011-09-09 独立行政法人物質・材料研究機構 Electromagnetic wave resonator, method of manufacturing same, and electromagnetic wave generator element employing same
US20120032585A1 (en) * 2010-08-06 2012-02-09 Canon Kabushiki Kaisha Light emitting element

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013921A2 (en) * 2002-08-02 2004-02-12 Qinetiq Limited Optoelectronic devices
AU2003248993A1 (en) * 2002-08-02 2004-02-23 Qinetiq Limited Optoelectronic devices
EP1525629A2 (en) * 2002-08-02 2005-04-27 Qinetiq Limited Optoelectronic devices
JP2005535121A (en) * 2002-08-02 2005-11-17 キネティック リミテッド Photoelectric device
US20050269578A1 (en) * 2002-08-02 2005-12-08 Barnes William L Optoelectronic devices
US20110024778A1 (en) * 2002-08-02 2011-02-03 Qinetiq Limited Optoelectronic device
JP2007080774A (en) * 2005-09-16 2007-03-29 Konica Minolta Holdings Inc Organic electroluminescent element
JP2007234254A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Organic electroluminescent element and its manufacturing method
WO2009079396A1 (en) * 2007-12-17 2009-06-25 Transpacific Ip Ltd. Increasing the external efficiency of light emitting diodes
EP2223358A1 (en) * 2007-12-17 2010-09-01 Transpacific Infinity, LLC Increasing the external efficiency of light emitting diodes
CN101946341A (en) * 2007-12-17 2011-01-12 宇飞科技有限公司 Increasing the external efficiency of light emitting diodes
US20090152533A1 (en) * 2007-12-17 2009-06-18 Winston Kong Chan Increasing the external efficiency of light emitting diodes
JP2011507196A (en) * 2007-12-17 2011-03-03 トランスパシフィック・インフィニティ,リミテッド・ライアビリティ・カンパニー Improved external efficiency of light emitting diodes
WO2011108562A1 (en) * 2010-03-02 2011-09-09 独立行政法人物質・材料研究機構 Electromagnetic wave resonator, method of manufacturing same, and electromagnetic wave generator element employing same
US20120326702A1 (en) * 2010-03-02 2012-12-27 National Institute For Materials Science Electromagnetic wave resonator and its fabrication process as well as electromagnetic wave generator
EP2544042A1 (en) * 2010-03-02 2013-01-09 National Institute for Materials Science Electromagnetic wave resonator, method of manufacturing same, and electromagnetic wave generator element employing same
US20120032585A1 (en) * 2010-08-06 2012-02-09 Canon Kabushiki Kaisha Light emitting element
JP2012038542A (en) * 2010-08-06 2012-02-23 Canon Inc Light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860232A (en) * 2017-11-30 2019-06-07 乐金显示有限公司 Electroluminescence display device

Similar Documents

Publication Publication Date Title
JP5219493B2 (en) Light emitting element and light emitting device using the same
CN104733501B (en) The production method of dot structure, display device and dot structure
TWI278253B (en) Organic electroluminescent display panel and production method thereof
US10741784B2 (en) Patterned organic light emitting diode (OLED) with enhanced light extraction
US20070252155A1 (en) Composite electrode for light-emitting device
KR20130026910A (en) Organic light emitting diode and manufacturing method of the same
JP2008515130A (en) Organic EL display device
US20170207414A1 (en) Dielectric layer, display substrate comprising the dielectric layer, and method for manufacturing the display substrate
WO2014069565A1 (en) Organic el element, and image display device and illumination device provided with same
WO2014069573A1 (en) Organic el element, and image display device and illumination device provided with same
KR20200134752A (en) Light emitting display apparatus
KR101466831B1 (en) Light extraction substrate for oled, method of fabricating thereof and oled including the same
JP2015088418A (en) Organic el element, and image display apparatus and illumination apparatus including the same
KR101579457B1 (en) Method of fabricating light extraction substrate, light extraction substrate for oled and oled including the same
WO2014077093A1 (en) Electroluminescent element and lighting apparatus provided with same
WO2014084220A1 (en) Organic electroluminescent element, and image display device and lighting device provided with same
WO2014084200A1 (en) Organic electroluminescent element, and image display device and lighting device provided with same
WO2014069557A1 (en) Organic el element, and image display device and illumination device provided with same
WO2015016176A1 (en) Organic el element, image display device, and illumination device
JP2015088388A (en) Organic el element, and image display apparatus and illumination apparatus including the same
WO2014103892A1 (en) Organic el element and image display device and lighting device provided with same
JP2015095293A (en) Organic el element, image display device including organic el elements, and luminaire
JP2015090799A (en) Organic el element, and image display device and illumination device including the same
WO2014104042A1 (en) Organic el element, and image display device and lighting device each of which is provided with same
WO2014069564A1 (en) Organic el element, and image display device and lighting device each of which is provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP