WO2014069564A1 - Organic el element, and image display device and lighting device each of which is provided with same - Google Patents

Organic el element, and image display device and lighting device each of which is provided with same Download PDF

Info

Publication number
WO2014069564A1
WO2014069564A1 PCT/JP2013/079534 JP2013079534W WO2014069564A1 WO 2014069564 A1 WO2014069564 A1 WO 2014069564A1 JP 2013079534 W JP2013079534 W JP 2013079534W WO 2014069564 A1 WO2014069564 A1 WO 2014069564A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
organic
light
substrate
Prior art date
Application number
PCT/JP2013/079534
Other languages
French (fr)
Japanese (ja)
Inventor
祥貴 下平
祐介 山▲崎▼
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2014069564A1 publication Critical patent/WO2014069564A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to an organic EL element, and an image display device and an illumination device including the organic EL element.
  • This application claims priority based on Japanese Patent Application No. 2012-241337 filed in Japan on October 31, 2012 and Japanese Patent Application No. 2013-148022 filed in Japan on July 16, 2013 And the contents thereof are incorporated herein.
  • Organic EL elements have features such as a wide viewing angle, high-speed response, clear self-luminous display, etc., and they are thin, lightweight, and have low power consumption. It is expected as a pillar of Organic EL elements are classified into a bottom emission type in which light is extracted from the support substrate side and a top emission type in which light is extracted from the opposite side of the support substrate, depending on the direction in which the light generated in the organic light emitting layer is extracted. .
  • a bottom emission type organic EL device having a transparent electrode, an organic layer including a light emitting layer, and a metal electrode in this order on a transparent substrate.
  • the light emitted from the light emitting layer is critical at the interface between a transparent substrate (for example, glass (typical refractive index: 1.52)) and air (refractive index: 1.0).
  • a transparent substrate for example, glass (typical refractive index: 1.52)
  • air refractive index: 1.0
  • the light incident on the interface between the transparent substrate and air at an incident angle larger than the critical angle is totally reflected at the interface and is not taken out of the device, and finally Can be absorbed by the material.
  • this light is referred to as substrate mode light, and the loss due to this is referred to as substrate loss.
  • a transparent electrode for example, indium tin oxide (ITO (typical refractive index: 1.82)
  • a transparent substrate for example, glass (typical) made of a transparent conductive oxide.
  • the light extraction efficiency of the organic EL element is generally limited to about 20% (for example, Patent Document 1). That is, about 80% of the light emitted from the light emitting layer is lost, and it is a big problem to reduce these losses and improve the light extraction efficiency.
  • extraction of the substrate mode light can be dealt with by providing a light diffusion sheet or the like on the transparent substrate (for example, Patent Document 2). It can be said that research has just begun on the reduction and removal of odors.
  • Patent Document 3 discloses a configuration in which a high refractive index layer having a higher refractive index than that of an organic light emitting layer or a transparent electrode is inserted in the vicinity of the organic light emitting layer.
  • Patent Document 2 discloses a configuration in which the refractive index of the organic light emitting layer and the transparent electrode is equivalently lowered by dispersing fine particles having a lower refractive index than the organic light emitting layer and the transparent electrode in the organic light emitting layer and the transparent electrode. It is disclosed.
  • Patent Documents 4 and 5 disclose a configuration in which a cavity is provided in a transparent electrode layer and a dielectric layer that are sequentially formed on a substrate. Light incident on the side surface of the cavity (interface extending perpendicular to the substrate) is refracted toward the substrate at this interface. The light refracted to the substrate side can reduce the proportion of light that causes total reflection at the interface between the transparent electrode and the substrate and between the substrate and the air.
  • Patent Documents 6 to 9 As a method for extracting the SPP mode light trapped on the surface of the metal electrode, a configuration in which a periodic uneven structure is formed on the surface of the metal electrode is known (Patent Documents 6 to 9).
  • the light extraction efficiency cannot be improved unless the light becomes guided mode light and can be extracted outside the device.
  • the present invention has been made in view of the above circumstances, and provides an organic EL element in which SPP mode light and waveguide mode light are effectively extracted to improve light extraction efficiency, and an image display device and an illumination device including the organic EL element.
  • the purpose is to do.
  • the present inventors first assume a two-step light extraction mechanism in which SPP mode light is extracted as propagating light into an organic layer, and then the propagating light is extracted outside the device without being converted into guided mode light.
  • SPP mode light is extracted as propagating light into an organic layer
  • the propagating light is extracted outside the device without being converted into guided mode light.
  • the organic EL device of the present invention has a structure in which an organic layer including a light emitting layer is sandwiched between a first electrode and a second electrode.
  • the above-described two-step light extraction mechanism generates the SPP mode light
  • the second electrode side structure of the Otto type arrangement Non-Patent Document 1 that extracts the generated SPP mode light as the propagation light, and its propagation It consists of a first electrode side structure that takes out light without using it as guided mode light.
  • the inventors of the present invention have shown by simulation that a first electrode having an Otto-type arrangement of the second electrode side structure and an interface that is perpendicular or nearly perpendicular to the transparent substrate that refracts or directs guided mode light toward the transparent substrate.
  • the present invention having the outline adopts the following configuration.
  • a dielectric layer, an anode, an organic layer including a light emitting layer made of an organic EL material, and a cathode are sequentially formed on the substrate, and is configured to extract light from the anode side to the outside.
  • the organic EL device further comprises a low refractive index layer and a metal layer in order on the opposite side of the cathode from the organic layer, wherein the cathode is made of a translucent conductive material, and the low refractive index.
  • the refractive index of the refractive index layer is lower than the refractive index of the organic layer, and the dielectric layer has a refractive index lower than that of the anode and has a pattern having an opening so that the substrate is exposed.
  • the organic EL element wherein the anode, the organic layer, the cathode, the low refractive index layer, and the metal layer are formed so as to follow a pattern of the dielectric layer.
  • An organic EL device comprising a dielectric layer, a first electrode, an organic layer including a light emitting layer, and a second electrode in this order, and further, the second electrode on the opposite side of the organic layer.
  • a low refractive index layer having a thickness of 20 nm or more and 300 nm or less and a metal layer in order
  • the second electrode is made of a translucent conductive material
  • the refractive index of the low refractive index layer is
  • the dielectric layer is lower than the refractive index of the organic layer, and the dielectric layer has a refractive index different from that of the first electrode and has a pattern having an opening, and the first electrode is formed of the dielectric layer.
  • An organic EL element characterized by being formed so as to follow the pattern.
  • An organic EL device comprising a dielectric layer, a first electrode, an organic layer including a light emitting layer, and a second electrode in this order, and further, the second electrode on the opposite side of the organic layer.
  • a low refractive index layer having a thickness of 20 nm or more and 300 nm or less and a metal layer in order
  • the second electrode is made of a translucent conductive material, and the refractive index of the low refractive index layer is
  • the dielectric layer is lower than the refractive index of the organic layer, and the dielectric layer has a refractive index different from the refractive index of the first electrode and has a pattern having island-shaped dielectric island portions that are independent from each other in plan view.
  • the organic EL element is characterized in that the first electrode is formed along the pattern of the dielectric layer.
  • An organic EL device comprising a first electrode, an organic layer including a light emitting layer, and a second electrode on a substrate in order, and further, the second electrode on the opposite side of the organic layer.
  • a low refractive index layer having a thickness of 20 nm to 300 nm and a metal layer are provided in order, and the second electrode is made of a light-transmitting conductive material, and the refractive index of the low refractive index layer is the organic
  • the substrate has a refractive index lower than the refractive index of the layer, and the substrate has a refractive index different from the refractive index of the first electrode, and is independent of each other in a substrate opening or a plan view on a surface on which the first electrode is formed.
  • a pattern having island-shaped substrate island-shaped portions is formed, and the first electrode is formed along the pattern of the substrate.
  • the low refractive index layer is made of a material having a refractive index smaller by 0.2 or more than at least one of the cathode or the second electrode and the organic layer. ).
  • the period in which the opening or the island-shaped portion and the substrate opening or the substrate island-shaped portion are arranged in at least one direction within the substrate surface is 200 to 2000 nm ( The organic EL device according to any one of 1) to (9).
  • is the maximum peak wavelength of the photoluminescence spectrum of the light emitting layer.
  • An image display device comprising the organic EL element according to any one of (1) to (12).
  • An illuminating device comprising the organic EL element according to any one of (1) to (13).
  • an organic EL element in which SPP mode light and waveguide mode light are effectively extracted to improve light extraction efficiency, and an image display device and an illumination device including the organic EL element.
  • the portion of the Otto type arrangement structure is illustrated separately. It is a cross-sectional schematic diagram for demonstrating an example of the organic EL element which concerns on 2nd Embodiment of this invention.
  • (A) is a perspective view for demonstrating an example of the organic EL element which concerns on 2nd Embodiment of this invention
  • (b) is a perspective view of the organic EL element which reversed the uneven structure of the board
  • the portion of the Otto type arrangement structure is illustrated separately.
  • the refractive index of a low-refractive-index layer shall be 1.38
  • (a) is a figure which graphed Formula (16) at the time of making a metal layer into Al and (b) making a metal layer into Ag. It is a figure which shows the result of the computer simulation which investigated the period dependence about the light extraction efficiency of the organic EL element of the organic EL element which concerns on 1st Embodiment of this invention using a random dipole. It is a cross-sectional schematic diagram for demonstrating the structure of the organic EL element which performed the simulation of FIG.
  • one of the first electrode and the second electrode is an anode and the other is a cathode.
  • the first electrode is an anode and the second electrode is a cathode will be described as an example.
  • the organic EL element of this invention may be provided with the layer which is not described below in the range which does not impair the effect of this invention.
  • An organic EL element 10 shown in FIG. 1 includes a dielectric layer 7, an anode (first electrode) 2, an organic layer 3 including a light emitting layer, and a cathode (second electrode) 4 in this order on a substrate 1. It is an organic EL element.
  • a low refractive index layer 5 and a metal layer 6 are sequentially provided on the opposite side of the cathode 4 from the organic layer 3.
  • the cathode 4 is made of a transparent conductive material, the refractive index of the low refractive index layer 5 is lower than the refractive index of the organic layer 3, and the dielectric layer 7 has a refractive index different from the refractive index of the anode 2. And a pattern having an opening 7A.
  • FIG. 1A shows an organic EL element in which the refractive index of the dielectric layer 7 is higher than the refractive index of the anode 2
  • FIG. 1B shows the refractive index of the dielectric layer 7 that is the refractive index of the anode 2.
  • An organic EL element lower than the rate is shown.
  • the anode 2 is formed (conformal) along the pattern of the dielectric layer 7.
  • the refractive index of the organic layer 3 means the average refractive index of all the layers including the light emitting layer made of the organic EL material.
  • FIG. 2 is a perspective view for explaining an example of the organic EL element according to the first embodiment of the present invention.
  • FIG. 2A is a perspective view for explaining an organic EL element in which the openings 7A of the dielectric layer 7 are arranged in islands separated from each other in a plan view, and the anode 2 and the organic layer 3 are respectively formed thereon.
  • FIG. 2B shows an organic EL element in which the openings of the dielectric layer 17 are formed so as to be arrayed in a sea shape where all the openings are connected in a plan view, and the anode 12 and the organic layer 13 are formed thereon. It is a perspective view for demonstrating.
  • the dielectric island portion 17B of the dielectric layer 17 formed in a protruding shape has an effect of refracting light toward the substrate side, similarly to the opening portion 7A in FIG.
  • the shapes of the opening 7A and the dielectric island portion 17B shown in FIGS. 2A and 2B are substantially cylindrical shapes, but are not limited thereto.
  • the shape of the opening 7A or the dielectric island portion 17B may be a truncated cone, a polygonal column, or a stripe shape (line shape).
  • Anode protrusions 12B are formed along the pattern of dielectric layer 17 (conformal). This anode convex part 12B has the effect of refracting light toward the substrate, similarly to the anode concave part 2A in FIG. Therefore, in order to produce the same refraction effect regardless of whether the dielectric layer is a sea part or an island part of a sea-island structure, a description will be given below with reference to FIG.
  • the shape of the opening 7A has an effect of refracting light toward the substrate at the inner surface 7a.
  • the refractive index of the dielectric layer 7 is higher than the refractive index of the anode 2 as shown in FIG. 1A, from the viewpoint of refracting the guided mode light to the substrate 1 side, the opening 7A side of the substrate 1 side.
  • a shape in which the area of the upper surface on the cathode 4 side is larger than the area of the bottom of the substrate is preferable. In the example shown in FIG.
  • the inner surface 7a of the opening 7A is arranged substantially perpendicularly to the substrate surface, but the present invention is not limited to this configuration.
  • the angle formed between the inner surface 7a of the opening 7A and the substrate surface, and the angle ⁇ inside the opening 7A is preferably 90 ° to 135 °, more preferably 90 ° to 120 °, and still more preferably 90 ° to 105 °. .
  • the refractive index of the dielectric layer 7 is lower than the refractive index of the anode 2 as shown in FIG. 1B, from the viewpoint of refracting the guided mode light to the substrate 1 side, the substrate 1 in the opening 7A.
  • the inner side surface 7a of the opening 7A is arranged substantially perpendicular to the substrate surface, but is not limited to this configuration.
  • the angle between the inner surface 7a of the opening 7A and the substrate surface, and the angle ⁇ inside the opening 7A is preferably 45 ° to 90 °, more preferably 60 ° to 90 °, and even more preferably 75 ° to 90 °. .
  • the propagation light re-radiated from the SPP mode light and the light extracted as the guided mode light from the light emission position toward the anode side are within the opening 7A.
  • the light enters the side surface 7a and is refracted toward the substrate 1, and is easily taken out from the outer surface of the substrate.
  • the shape of the opening 7A exhibits a diffraction effect or a photonic crystal effect.
  • the inner side surface 7a of the opening 7A is perpendicular or nearly perpendicular to the substrate surface. This is because the inner side surface 7a of the opening 7A is an interface that is perpendicular or nearly perpendicular to the substrate surface, so that the refractive index modulation becomes steep in the in-plane direction across the inner side surface 7a of the dielectric layer 7. Because.
  • the photonic crystal When the refractive index is sharply modulated, the photonic crystal has a wider band gap frequency range in which light cannot propagate in the in-plane direction of the substrate, and more efficiently emits light emitted from the organic layer 3 from the outer surface of the substrate. Can be taken out. Further, when the refractive index is sharply modulated even in the diffraction grating, the light diffracting effect in the substrate direction is improved, and similarly, the light extraction to the outside of the element is improved. The same applies to the shape of the opening 7A as the dielectric island 17B. Although the bottom emission structure has been described above as an example, the same applies to the top emission structure.
  • the refractive index of the low refractive index layer is lower than the refractive index of the organic layer.
  • n L , n C , and n O refractive indexes of the low refractive index layer, the cathode, and the organic layer
  • B pattern n L ⁇ n O ⁇ n C
  • n L ⁇ There are three cases: n C ⁇ n O (hereinafter referred to as “C pattern”) and n C ⁇ n L ⁇ n O (hereinafter referred to as “D pattern”).
  • C pattern n C ⁇ n O
  • D pattern n C ⁇ n L ⁇ n O
  • the structure of the metal layer / low refractive index layer / cathode is an Otto type arrangement.
  • the configuration of the metal layer / low refractive index layer / cathode is an Otto type arrangement
  • the configuration of metal layer / low refractive index layer + cathode / organic layer is also an Otto type arrangement.
  • the configuration of the metal layer / low refractive index layer + cathode / organic layer is an Otto type arrangement.
  • the most preferable B to D pattern is the C pattern.
  • the structure of the metal layer / low refractive index layer / cathode (transparent conductive layer) is an Otto type arrangement, and the metal layer / low refractive index layer + cathode (transparent conductive layer) / organic layer Since the Otto configuration is also used in the configuration, re-radiation of SPP mode light is most likely to occur from the metal layer. Further, since the refractive index increases in the order of the low refractive index layer, the cathode (transparent conductive layer), and the organic layer, total reflection does not occur at each interface, and the re-radiated SPP mode light is extracted as it is to the substrate side.
  • the cathode is PEDOT: PSS (poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid), typical refractive index: 1.5), etc.
  • the transparent conductive material layer may be a case where the low refractive index layer is SOG (spin on glass) that satisfies the refractive index condition of air or C pattern. Next preferred is the B pattern.
  • the configuration of the metal layer / low refractive index layer / cathode (transparent conductive layer) is an Otto type arrangement, SPP mode light is re-radiated from the metal layer.
  • the refractive index of the organic layer is an intermediate value between the low refractive index layer and the cathode (transparent conductive layer)
  • some of the re-emitted SPP mode light is at the cathode (transparent conductive layer) / organic layer interface. And the remaining light is transmitted through the organic layer.
  • a-ITO amorphous ITO, typical refractive index: 2.1
  • a material having a lower refractive index than the material of the organic layer is selected from SOG as the material of the low refractive index layer.
  • the configuration of the metal layer / low refractive index layer / cathode (transparent conductive layer) is not an Otto type arrangement.
  • the Otto type arrangement is employed only in the configuration of metal layer / low refractive index layer + cathode (transparent conductive layer) / organic layer. Therefore, re-radiation of SPP mode light occurs from the metal layer, but re-radiation of SPP mode light is further reduced as compared with the case of the B pattern.
  • PEDOT: PSS is selected as the cathode material for the organic layer (typical refractive index: 1.7 to 1.8), and the refractive index n is selected as the material for the low refractive index layer.
  • a material in which L is between n C and n 2 O , for example, SOG satisfying the refractive index of the B pattern may be employed.
  • n O ⁇ n L ⁇ n C (hereinafter referred to as “A pattern”)
  • the metal layer / low refractive index layer / cathode is in an Otto type arrangement, and the re-emission of SPP mode light from the metal layer is
  • the refractive index of the organic layer is lower than that of the low refractive index layer
  • most of the re-radiated SPP mode light is totally reflected at the cathode (transparent conductive layer) / organic layer interface and propagates on the anode side. It is difficult to extract the light extracted as light.
  • This organic EL element can be applied to both a top emission type and a bottom emission type organic EL element as described above.
  • the substrate is a translucent substrate and usually needs to be transparent to visible light.
  • transparent to visible light means that it is only necessary to transmit visible light having a wavelength emitted from the light emitting layer, and it is not necessary to be transparent over the entire visible light region.
  • a smooth substrate having a transmittance in visible light of 400 to 700 nm of 50% or more is preferable.
  • Specific examples of the substrate 1 include a glass plate and a polymer plate.
  • the glass plate material examples include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the material for the polymer plate examples include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, polyether sulfide, and polysulfone.
  • the transmittance is preferably 50% or more and more preferably 70% or more with respect to the wavelength at which light emission has the maximum intensity.
  • an opaque one can also be used.
  • the thickness of the substrate 1 is not particularly limited because it depends on the required mechanical strength, but is preferably 0.01 mm to 10 mm, more preferably 0.05 mm to 2 mm.
  • the dielectric layer 7 of the organic EL element according to the first embodiment includes a plurality of openings 7A, and the inner surface 7a of the opening 7A is covered with the anode 2 having a refractive index different from that of the dielectric layer 7. ing.
  • the configuration and material of the dielectric layer 7 are such that the inner surface 7a of the opening 7A (the interface between the anode 2 and the dielectric layer 7 extending in a direction perpendicular to or nearly perpendicular to the substrate surface of the substrate 1).
  • the incident light is refracted toward the substrate 1 at this interface, and the incident angle of the propagating light in the organic layer to the outer surface of the substrate 1 (in this specification, the incident angle is the normal between the incident light and the incident surface). Is changed to a smaller angle. This is to reduce the proportion of light totally reflected at the interface between the anode 2 and the substrate 1 or the outer surface of the substrate 1 and improve the light extraction efficiency (see FIGS. 1A and 1B).
  • the material of the dielectric layer 7 is not particularly limited as long as it is a light-transmitting material and has a refractive index different from that of the anode 2.
  • the material of the anode 2 is an indium tin oxide alloy (ITO (typical refractive index: 1.82)
  • the material having a refractive index lower than that of the anode 2 is, for example, a spin-on glass that satisfies this refractive index condition
  • Metal fluorides such as SOG) and magnesium fluoride (MgF 2 (typical refractive index: 1.38)
  • organic fluorine compounds such as polytetrafluoroethylene (typical PTFE (refractive index: 1.35)) , Silicon dioxide (SiO 2 (typical refractive index: 1.45)
  • various low-melting glasses and porous materials.
  • Examples of materials having a higher refractive index than the anode 2 include silicon compounds such as silicon nitride (Si 3 N 4 ) (typical refractive index: 2.0), titanium oxide (TiO 2) (typical refraction). Metal oxides, including aluminum oxide (AlN) (typical refractive index: 2.2), aluminum oxynitride (AlON) (typical refraction) And metal oxynitrides such as silicon oxynitride and polymer compound resins such as polyethylene naphthalate (typical refractive index: 1.8).
  • the thickness of the dielectric layer 7 is not particularly limited. For example, it is 10 to 2000 nm, preferably 50 to 1000 nm.
  • the thickness is less than 10 nm, the ratio of the thickness of the dielectric layer 7 to the thickness of the organic layer is reduced, and the guided mode light is less likely to be refracted or diffracted. It becomes difficult to maintain the flatness of the side.
  • it is set as the structure which arrange
  • the SPP mode light extracted into the organic layer 3 at a predetermined angle by the cathode structure of the Otto type arrangement is diffracted by the diffraction grating formed by the opening 7A and the anode 2, and the diffracted light is diffracted by the substrate / It is preferable to select a period that satisfies the formula (1) so that the air interface is not totally reflected.
  • the anode 2 is an electrode for applying a voltage between the anode 4 and injecting holes into the organic layer 3 from the anode 2, and is made of a metal, an alloy, a conductive compound, or a mixture thereof having a high work function. It is preferable to use a material. It is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (High Occupied Molecular Orbital) level with the organic layer 3 in contact with the anode does not become excessive.
  • the material of the anode 2 is not particularly limited as long as it is a translucent and conductive material.
  • the anode 2 can be formed on the substrate 1 by, for example, a sputtering method, a vacuum deposition method, a coating method, a CVD method, an ion plating method, or the like.
  • the thickness of the anode 2 is not particularly limited.
  • the thickness is 10 to 2000 nm, preferably 50 to 1000 nm. If the thickness is less than 10 nm, the sheet resistance increases. If the thickness is 2000 nm or less, the flatness of the organic layer 3 on the cathode 4 side cannot be maintained, and the transmittance of the anode 2 decreases.
  • the anode recesses 2A are periodically arranged by periodically arranging the openings 7A of the dielectric layer, the period between the anode recesses 2A is selected so as to satisfy the formula (1) described later. It is preferable.
  • the SPP mode light extracted into the organic layer 3 at a predetermined angle by the cathode structure of the Otto type arrangement is diffracted by the diffraction grating formed by the anode recess 2A and the organic layer 3, and the diffracted light is diffracted by the substrate.
  • the organic layer 3 has an inner surface covering portion 3a that covers the inner surface 2a of the anode recess 2A, and a layered portion 3c that is disposed between the anode 2 and the cathode 4.
  • the organic layer 13 includes an outer surface covering portion 13b that covers the outer surface 12b of the anode convex portion 12B, and a layered portion 13c that is disposed between the anode 12 and the cathode 14.
  • the organic layer 3 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like.
  • the hole injection layer is a layer that assists hole injection from the anode 2 to the organic layer 3, and its ionization energy is usually as low as 5.5 eV or less.
  • Such a hole injection layer is preferably a material that injects holes into the organic layer 3 with a lower electric field strength.
  • the material to be formed is not particularly limited as long as it can perform the above functions, and is well known. Any one can be selected and used.
  • the hole transport layer is a layer that transports holes to the light emitting region and has a high hole mobility.
  • the material to be formed as such a hole transport layer is not particularly limited as long as it can perform the above function, and any material can be selected and used from known materials.
  • the electron injection layer is a layer that assists electron injection from the cathode 4 to the organic layer 3.
  • Such an electron injection layer is preferably a material that injects electrons into the organic layer 3 with lower electric field strength.
  • the material for forming these is not particularly limited as long as it can perform the above functions, and any material selected from known materials can be used.
  • the electron transport layer is a layer that transports electrons to the light emitting region and has a high electron mobility. The material for forming such an electron transport layer is not particularly limited as long as it can perform the above function, and any material can be selected and used from known materials.
  • the organic layer 3 may be formed by a dry process such as an evaporation method or a transfer method, or may be formed by a wet process such as a spin coating method, a spray coating method, a die coating method, or a gravure printing method.
  • the thickness of the layered portion 3c of the organic layer 3 is not particularly limited. For example, it is 50 to 2000 nm, preferably 100 to 1000 nm. If it is thinner than 50 nm, extinction other than SPP coupling occurs, such as a decrease in internal quantum efficiency due to punch-through current and lossy surface wave mode coupling due to metal layer 6, and if it is thicker than 2000 nm, it is driven The voltage rises.
  • the cathode 4 is an electrode for injecting electrons into the organic layer 3, and it is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a small work function. It is preferable to use a material having a work function of 1.9 eV or more and 5 eV or less so that the difference from the LUMO (Lower Unoccupied Molecular Orbital) level of the organic layer 3 does not become excessive.
  • LUMO Lower Unoccupied Molecular Orbital
  • the thickness of the cathode 4 is not particularly limited, but is, for example, 30 nm to 1 ⁇ m, and preferably 50 to 500 nm. If the thickness is less than 30 nm, the sheet resistance increases and the drive voltage increases. If it is thicker than 1 ⁇ m, heat and radiation damage during film formation and mechanical damage due to film stress accumulate in the electrode and organic layer.
  • the low refractive index layer 5 is provided on the opposite side of the cathode 4 from the organic layer 3, and is preferably made of a transparent material having a lower refractive index than the translucent conductive material constituting the cathode 4.
  • the material for the low refractive index layer 5 is not particularly limited as long as it is a material having a lower refractive index than the translucent conductive material constituting the cathode 4.
  • SOG satisfying this refractive index, metal fluoride such as magnesium fluoride (MgF 2 (typical refractive index: 1.38)), polytetrafluoroethylene (PTFE (typical refractive index: 1.35), etc. )) And the like, silicon dioxide (SiO 2 (typical refractive index: 1.45)), various low-melting glasses, and porous materials.
  • the low refractive index layer 5 is composed of a layer including an air layer, and may have a refractive index lower than that of the translucent conductive material constituting the cathode 4.
  • the low refractive index layer is preferably made of a material having a refractive index smaller by 0.2 or more than at least one of the cathode and the organic layer.
  • This corresponds to a high refractive index layer in which the cathode and the organic layer are in the Otto type arrangement, and if the difference in refractive index between the low refractive index layer and the high refractive index layer is 0.2 or more in the Otto type arrangement, the wave number of the SPP mode light This is because, since the in-plane component is small, the dispersion curve of the propagation light in the high refractive index layer and the SPP mode light crosses, and the extraction efficiency of the SPP mode light into the high refractive index layer by the Otto type arrangement increases. .
  • the thickness of the low refractive index layer 5 is preferably 20 nm to 300 nm. When the thickness is 20 nm or less, the film thickness of the low refractive index layer 5 is too thin, so that the metal layer and the high refractive index layer come close to each other and the in-plane wave number component of the SPP mode light becomes large. When the in-plane wave number component of the SPP mode light is increased, the dispersion curve does not intersect with the dispersion curve of the propagation light in the high refractive index layer, and the SPP mode light is not easily extracted into the high refractive index layer.
  • the film thickness of the low refractive index layer 5 is too thick, so that the evanescent wave does not reach the metal layer 6 and the SPP mode light is hardly extracted into the high refractive index layer. More preferably, it is 200 nm or less.
  • the metal layer 6 is provided on the opposite side of the cathode 4 from the organic layer 3 via a low refractive index layer 5.
  • any material or plasmon resonance can be used as long as plasmon resonance is generated by the light emitted from the light emitting layer.
  • a material having a negative real part of the complex dielectric constant and a large absolute value is preferable. Examples of such materials include simple substances such as gold, silver, copper, zinc, aluminum, and magnesium, alloys of gold and silver, alloys of silver and copper, and alloys such as brass.
  • the metal layer 6 may have a laminated structure of two or more layers.
  • the thickness of the metal layer 6 is not particularly limited. For example, it is 20 to 2000 nm, preferably 50 to 500 nm. When the thickness is less than 20 nm, the reflectance is lowered and the front luminance is lowered. When the thickness is more than 500 nm, heat, radiation damage, and mechanical damage due to film stress during film formation accumulate in the electrode and the organic layer.
  • FIG. 3 is a schematic cross-sectional view for explaining an example of the organic EL element according to the second embodiment of the present invention.
  • openings and islands are formed in the dielectric layer, and the anode is formed so as to conform to the concavo-convex pattern (conformal), whereas in the second embodiment, the substrate A substrate recess or substrate protrusion is formed on the substrate, and an anode is formed conformally along the uneven pattern.
  • the organic EL element 20 according to the second embodiment of the present invention includes an anode (first electrode) 22, an organic layer 23 including a light emitting layer, and a cathode (second electrode) 24 in this order on a substrate 21. It is an organic EL element.
  • a low refractive index layer 25 and a metal layer 26 are provided in this order on the opposite side of the cathode 24 from the organic layer 23.
  • the cathode 24 is made of a transparent conductive material.
  • the refractive index of the low refractive index layer 25 is lower than the refractive index of the organic layer 23, the substrate 21 is formed with a pattern on the surface on which the anode 22 is formed, and the anode 22 It is formed so as to conform to the pattern (conformal). That is, the organic EL element 20 according to the second embodiment corresponds to the case where the dielectric layer 7 is made of the same material as the substrate in the organic EL element according to the first embodiment.
  • the refractive index of the organic layer 23 means an average refractive index of all the layers including the light emitting layer made of the organic EL material.
  • FIG. 4 is a perspective view for explaining an example of the organic EL element according to the second embodiment of the present invention.
  • FIG. 4A shows a plurality of island-shaped substrate recesses (substrate openings) in the substrate 21.
  • FIG. It is a perspective view for demonstrating the organic EL element which processed the 21A and formed the anode 22 so that the pattern of the board
  • FIG. 4B shows an organic EL in which a plurality of island-shaped substrate convex portions (substrate island-shaped portions) 21B are processed on the substrate 21, and the anode 22 is formed so as to follow the pattern of the substrate 21 (conformal ridge). It is a perspective view for demonstrating an element.
  • This substrate convex portion 21B has an effect of refracting light toward the substrate 1 as in the case of the substrate concave portion 21A in FIG. Therefore, in the uneven portion of the substrate 21, even if the substrate portion forms the sea portion of the sea-island structure or the island portion has the same refraction effect, hereinafter, the substrate recess portion 21 ⁇ / b> A in FIG. It demonstrates based on the organic EL element which has.
  • the shape of the substrate recess 21A is not particularly limited as long as the inner side surface refracts light toward the substrate.
  • the refractive index of the substrate 21 is higher than the refractive index of the anode 22, from the viewpoint of refracting the guided mode light toward the substrate 21, the substrate recess 21 ⁇ / b> A has an upper surface on the cathode 24 side from the bottom area on the substrate outer surface side. A shape with a larger area is preferred. In the example shown in FIG.
  • the inner side surface 21 a of the substrate recess 21 ⁇ / b> A is arranged substantially perpendicularly to the substrate surface, but is not limited to this configuration.
  • the angle formed between the inner surface 21a of the substrate recess 21A and the substrate surface, and the inner angle of the substrate recess 21A is preferably 90 ° to 135 °, more preferably 90 ° to 120 °, and still more preferably 90 ° to 105 °.
  • the substrate recess 21A is located on the cathode 24 side from the bottom area on the substrate outer surface side.
  • the substrate recess inner side surface 21 a of the substrate recess 21 ⁇ / b> A is arranged substantially perpendicular to the substrate surface, but is not limited to this configuration.
  • the angle between the inner surface 21a of the substrate recess 21A and the substrate surface, and the angle inside the substrate recess is preferably 45 ° to 90 °, more preferably 60 ° to 90 °, and even more preferably 75 ° to 90 °.
  • the inner side surface 21a of the substrate recess By setting the inner side surface 21a of the substrate recess to the angle as described above, the light extracted as the propagating light re-radiated from the waveguide mode light and the SPP mode light from the light emitting position toward the anode side can be extracted. Is incident on the substrate 21 and refracted toward the substrate 21 side, and is easily taken out from the outer surface of the substrate.
  • the shape of the substrate recess 21A exhibits the effect of diffraction and the effect of photonic crystals. If it is, it will not be specifically limited. From the viewpoint of extracting emitted light to the substrate side, it is preferable that the substrate recess inner side surface 21a of the substrate recess 21A is perpendicular or nearly perpendicular to the substrate surface.
  • the substrate recess inner surface 21a of the substrate recess 21A is an interface that is perpendicular or nearly perpendicular to the substrate surface, so that the refractive index modulation is steep in the in-plane direction across the substrate recess inner surface 21a of the substrate 21. Because it becomes.
  • the refractive index modulation is steep, the band gap frequency at which light cannot propagate in the in-plane direction of the photonic crystal becomes wider, and the light emitted from the organic layer 23 can be extracted more efficiently to the outside. Because.
  • the refractive index is sharply modulated even in the diffraction grating, the light diffracting effect in the substrate direction is improved, and similarly, the light extraction to the outside of the element is improved. As described above, the same can be said regarding the shape of the substrate recess 21A as the substrate protrusion 21B.
  • the material be a material that can be processed more accurately.
  • quartz is mentioned.
  • FIGS. 5A and 5B are schematic cross-sectional views for explaining an example of the organic EL element according to the third embodiment of the present invention.
  • the anode is formed on the anode on which the unevenness is formed so that the anode side surface of the organic layer conforms to the uneven shape (conformal).
  • a flattening layer for flattening the uneven shape of the anode is provided between the anode and the organic layer, and both surfaces of the organic layer formed thereon have a flat shape.
  • An organic EL element 30 shown in FIGS. 5A and 5B includes a dielectric layer 37, an anode (first electrode) 32, an organic layer 33 including a light emitting layer, and a planarizing layer 38 on a substrate 31.
  • the cathode (second electrode) 34 in order.
  • a low refractive index layer 35 and a metal layer 36 are sequentially provided on the opposite side of the cathode 34 from the organic layer 33.
  • the cathode 34 is made of a transparent conductive material, the refractive index of the low refractive index layer 35 is lower than the refractive index of the organic layer 33, and the dielectric layer 37 has a refractive index different from the refractive index of the anode 32.
  • the planarizing layer 38 is formed so as to planarize the uneven shape of the anode 32.
  • FIG. 5A shows an organic EL element in which the planarizing layer 38 is formed so as to fill the concave portion of the anode 32.
  • FIG. 5B shows an organic EL element in which the planarizing layer 38 is formed so as to cover the entire anode 32.
  • the dielectric layer 37 and the substrate 31 may be made of the same material. In this case, as shown in the second embodiment, it can be considered that a substrate recess or substrate protrusion is formed on the substrate 31.
  • the openings of the dielectric layer are island-shaped that are independent from each other in plan view, or are connected to each other in the sea shape (the protrusions of the dielectric layer are independent in plan view). (Island shape).
  • the shape of the opening 37A is particularly effective as long as the inner surface has an effect of refracting light toward the substrate.
  • the inner side surface 37a of the opening 37A is arranged substantially perpendicularly to the substrate surface, but is not limited to such a configuration.
  • the opening 37A is an upper surface on the cathode 34 side from the bottom area on the substrate 31 side.
  • a shape with a larger area is preferred.
  • the angle formed by the inner surface 37a of the opening 37A and the substrate surface, and the angle inside the opening 37A is preferably 90 ° to 135 °, more preferably 90 ° to 120 °, and still more preferably 90 ° to 105 °.
  • the refractive index of the dielectric layer 37 is lower than the refractive index of the anode 32, the upper surface area on the cathode 34 side is smaller than the bottom area on the substrate 31 side from the viewpoint of refracting the guided mode light more toward the substrate 31 side. Shape is preferred.
  • the angle formed by the inner surface 37a of the opening 37A and the substrate surface, and the angle inside the opening 37A is preferably 45 ° to 90 °, more preferably 60 ° to 90 °, and even more preferably 75 ° to 90 °.
  • the inner side surface 37a of the opening 37A is preferably perpendicular or nearly perpendicular to the substrate surface. This is because the modulation of the refractive index becomes steep in the direction crossing the dielectric layer 37 in the in-plane direction of the substrate because the inner side surface 37a of the opening 37A is an interface perpendicular or nearly perpendicular to the substrate surface. is there.
  • the refractive index modulation is steep, the frequency range of the band gap is widened, and the light emitted from the organic layer 33 can be extracted from the outer surface of the substrate to the outside more efficiently. Further, when the refractive index is sharply modulated even in the diffraction grating, the light diffracting effect in the substrate direction is improved, and similarly, the light extraction to the outside of the element is improved.
  • the planarization layer 38 planarizes the surface facing the organic layer of the anode, and is formed so as to cover part or all of the surface. As shown in FIG. 5A, when covering a part of the surface of the anode, the planarizing layer 38 may or may not have conductivity, and may be transparent to visible light. 37 and the same material as the anode 32 can be used. On the other hand, as shown in FIG. 5B, in order to cover the whole anode surface, it is necessary to have conductivity. Various conductive materials such as the same material as the anode 32 can be used.
  • a dry process method such as a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or a wet process such as a coating method can be used.
  • a dry process method such as a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or a wet process such as a coating method can be used.
  • the operation effect of the second electrode side structure by the Otto type arrangement of the organic EL element of the present invention will be described below.
  • the following is a principle explanation based on the calculation formula, and therefore, the first electrode and the second electrode are not associated with either the anode or the cathode, respectively, and are described as the first electrode and the second electrode.
  • ⁇ sp be the angular frequency of surface plasmon polariton (SPP) generated on a flat metal surface
  • k sp be the real part of the in-plane component of the wave number.
  • This dispersion relationship (the relationship between the angular frequency and the wave number) is determined by the real part ⁇ 1 of the dielectric constant of the metal and the dielectric constant ⁇ 2 of the dielectric contacting the metal surface, and is approximately expressed by the following equation (2). (C is the speed of light in a vacuum).
  • the dispersion relation of normal propagation light is given by the following equation (3), where the angular frequency is ⁇ and the wave number vector is k.
  • the dispersion curve of surface plasmon polariton (SPP) does not intersect the normal dispersion light dispersion line. Therefore, normal propagating light cannot excite SPP on a flat metal surface, and propagating light cannot be extracted directly from SPP existing on the flat metal surface.
  • is an incident angle of incident light from the high refractive index dielectric layer to the low refractive index dielectric layer. Therefore, by changing the incident angle ⁇ , the SPP dispersion curve intersects with the dispersion line of the total reflection evanescent wave (hereinafter, simply referred to as “evanescent wave” as well as the total reflection).
  • the “incident angle ⁇ ” is the radiation angle of the SPP when viewed from the metal side.
  • the dispersion curve of the SPP and the dispersion line of the evanescent wave intersect each other. This means that only the SPP radiated at a predetermined angle is in a state where energy can be exchanged when the SPP and the evanescent wave resonate. And it becomes possible to take out SPP as propagation light radiated
  • a predetermined incident angle (SPP dispersion curve) of the light emitted from the organic light emitting layer is provided adjacent to the organic layer.
  • SPP dispersion curve a predetermined incident angle of the light emitted from the organic light emitting layer.
  • the light incident on the interface of the high refractive index layer / low refractive index from the high refractive index dielectric layer at an angle where the dispersion line and the dispersion line of the evanescent wave intersect produces an evanescent wave.
  • the evanescent wave excites SPP mode light on the metal surface.
  • the SPP mode light excited on the metal surface can be extracted as propagating light radiated at a predetermined angle via the evanescent wave generated in the Otto type arrangement structure. That is, by introducing an Otto type arrangement structure in the organic EL element, it is possible to extract SPP mode light as propagating light emitted at a predetermined angle.
  • the excitation / extraction of the SPP mode light via the evanescent wave occurs when the low refractive index layer is sufficiently thin. This is because if the low refractive index layer is too thick, the evanescent wave oozes from the organic layer does not reach the metal layer, and the evanescent wave and the SPP mode light cannot exchange energy.
  • the metal layer and the high-refractive index layer come close to each other and the wave number of the SPP mode becomes larger than the formula (2), and the dispersion curve does not intersect with the propagation curve (3) of the propagation light. .
  • the light extracted from the SPP is emitted at a predetermined angle corresponding to the intersection of the SPP dispersion curve and the evanescent wave dispersion line.
  • the effect of the first electrode side structure of the organic EL element of the present invention will be described below.
  • the propagation light in the organic layer is refracted toward the substrate side, and the incident angle to the interface (the angle formed by the incident light and the normal line of the incident interface) is reduced.
  • an interface having a refractive index that is perpendicular or nearly perpendicular is introduced. More specifically, by providing a structure in which an opening is provided in the dielectric layer and the inner side surface thereof is covered with a first electrode made of a material having a refractive index different from that of the dielectric layer, An interface between the dielectric layer and the first electrode is introduced as an interface close to vertical.
  • the dielectric layer serves as an interface having a refractive index that is perpendicular or nearly perpendicular to the substrate surface. And an interface between the first electrode and the first electrode may be introduced.
  • the first electrode side structure may be a refractive index modulation structure having periodicity in the in-plane direction of the substrate or an aperiodic structure having no periodicity.
  • the first electrode side structure is a refractive index modulation structure having periodicity, that is, when the dielectric layers having different refractive indices and the first electrode are periodically arranged one-dimensionally or two-dimensionally.
  • diffraction effects effects in which light is directed at a predetermined angle with respect to the substrate surface
  • transmission diffraction gratings hereinafter simply referred to as “diffraction gratings”
  • effects by photonic crystals specific directions
  • the period (pitch) of the refractive index modulation structure of the first electrode side structure is sufficiently larger than the wavelength, refraction is considered to be the dominant mechanism and light is extracted.
  • the period of the refractive index modulation structure of the first electrode side structure is equal to or less than the wavelength, the effect of the diffraction grating or the effect of the photonic crystal becomes the dominant mechanism and light is extracted. Conceivable.
  • FIG. 6 is a schematic cross-sectional view of an organic EL element having a second electrode side structure having an Otto type arrangement. First, the principle of extracting SPP mode light as guided mode light by this second electrode side structure will be described with reference to FIG. In FIG. 6, the first electrode side structure is omitted.
  • n sub is the refractive index of the substrate
  • n OLED is the average refractive index of the first electrode, the organic layer, and the second electrode
  • n 2 is the refractive index of the low refractive index layer
  • ⁇ 2 is the dielectric of the low refractive index layer.
  • ⁇ 1 is the real part of the dielectric constant of the metal layer
  • k sp is the in-plane component of the wave number vector of the SPP mode light
  • k 0 is the wave number of light in vacuum (2 ⁇ / ⁇ ) ( ⁇ is from the light emitting layer) The wavelength of the emitted light in vacuum)
  • is the propagation angle of the light propagating through the high refractive index layer.
  • the in-plane components of the wave vector match between the SPP mode light and the extracted light, that is, the expression (6) needs to be satisfied. is there. From the equations (5) and (6), the SPP mode light is extracted as propagating light at an angle satisfying the following equation (7).
  • FIG. 7 is a partial schematic cross-sectional view including the first electrode side structure of the organic EL element having the first electrode side structure including the transmission diffraction grating. It is assumed that light extracted from the SPP mode light at a predetermined angle ⁇ is diffracted by a diffraction grating having a period (period of a refractive index modulation structure) p.
  • the conditions for diffracting to the substrate side at a predetermined angle ⁇ sub with respect to the substrate surface are the in-plane wave number of incident light incident on the diffraction grating (the magnitude of the component in the substrate surface direction of the wave number) and the in-plane wave number of diffracted light. Is the integer multiple of 2 ⁇ / p, and is represented by the following formula (8).
  • N 0, ⁇ 1,...
  • “OLED stack” indicates a layer through which guided mode light including the first electrode and the organic layer propagates, and the specific layer configuration is the specific configuration of the present invention.
  • Dependent. The position where the “diffraction grating” is provided depends on the specific configuration of the present invention.
  • Equation (9) is obtained from Equation (7) and Equation (8).
  • the condition under which total reflection does not occur at the interface between the substrate and air is to satisfy equation (10). Therefore, by providing a diffraction grating in which N exists such that the grating interval of the diffraction grating satisfies the following formula (11), total reflection does not occur at the interface between the substrate and air, and as a result, The light extraction efficiency is improved.
  • N in Formula (11) may be a positive integer.
  • the expression (11) approximately satisfies the following expression.
  • the maximum peak wavelength of the emission spectrum of the light emitting layer is adopted as ⁇ .
  • the maximum peak wavelength the maximum peak wavelength of the photoluminescence spectrum can be used.
  • N is a diffraction order and is an arbitrary integer, but if the diffraction order becomes too large, the directivity of the diffracted light decreases. Therefore, it is preferable to select the pitch p and the wavelength ⁇ so that N satisfying the formula (1) is in the range of 1 ⁇ N ⁇ 3.
  • the above theoretical analysis is a one-dimensional analysis.
  • a one-dimensional diffraction grating structure a diffraction grating structure in which refractive index modulation structures are arranged at regular intervals in a predetermined direction in the substrate surface
  • a diffraction effect based on the analysis is obtained. Since the one-dimensional diffraction grating structure does not have a refractive index modulation structure in a direction orthogonal to the one direction, a diffraction effect does not occur for light in the orthogonal direction (light component).
  • the two-dimensional diffraction grating structure has a diffraction grating structure in another direction in the substrate surface, and a diffraction effect is added also in that direction.
  • the diffraction effect is larger in the two-dimensional diffraction grating structure than in the one-dimensional diffraction grating structure. Therefore, in an organic EL element having a configuration in which a positive integer N that satisfies the condition of the formula (1) exists in a predetermined cross section, the light is emitted regardless of whether the configuration is a one-dimensional diffraction grating structure or a two-dimensional diffraction grating structure. An improvement in extraction efficiency is obtained.
  • a photonic crystal is a structure whose refractive index is periodically different, in particular, a structure whose period is equal to or less than a wavelength. This periodic structure forms a forbidden band (photonic band gap) in which light in a specific wavelength range cannot exist.
  • the first electrode side structure of the present invention is a periodic refractive index modulation structure and the period is equal to or less than the wavelength
  • the first electrode side structure is a one-dimensional or two-dimensional photonic crystal (respectively a substrate). It can be regarded as a photonic crystal structure in which lattices are arranged at regular intervals in a predetermined direction or two directions in a plane.
  • a one-dimensional photonic crystal In a one-dimensional photonic crystal, light having a wavelength corresponding to the photonic band gap cannot propagate in one direction having a periodic structure. For this reason, the propagation of light is redistributed in directions other than in-plane, and the light can be extracted to the transparent substrate side.
  • the one-dimensional photonic crystal structure does not have a periodic structure in the direction orthogonal to the one direction, there is no photonic band gap in this direction, and there may be no extraction effect due to this. Very small.
  • the two-dimensional photonic crystal structure since the two-dimensional photonic crystal structure has a lattice structure in two different directions in the plane, a photonic band gap is formed in these two directions, and light cannot propagate. Accordingly, in the two-dimensional photonic crystal, the direction in which light cannot propagate in the plane increases, and thus light is extracted to the transparent substrate more efficiently than the one-dimensional structure.
  • the first electrode side structure is a non-periodic structure having no periodicity in the in-plane direction of the substrate, light incident on the first electrode structure is diffracted at random positions and phases. Radiation angle light is not emitted intensifying each other. Therefore, by having such a structure on the first electrode side, relatively uniform (highly diffusible) orientation characteristics can be obtained. That is, in the case where the first electrode side structure is a periodic structure, it is possible to obtain an alignment characteristic in which the light intensity at a specific radiation angle is increased by the effect of strengthening the emitted light by the diffraction grating, When the first electrode side structure is an aperiodic structure, relatively uniform alignment characteristics can be obtained. Therefore, the first electrode side structure can be selected to be a structure having periodicity or a non-periodic structure according to a required light distribution characteristic.
  • one of the first electrode and the second electrode is an anode and the other is a cathode.
  • the first electrode is an anode and the second electrode is a cathode.
  • the light propagation method indicated by the arrows in FIGS. 1A and 1B is schematically shown in order to easily understand the principle of the effect of refraction.
  • the way of light propagation varies depending on the magnitude relationship between the refractive index of the dielectric layer 7 and the refractive index of the anode 2, and FIG. 1A is an explanatory diagram when the former is higher than the refractive index of the latter, and FIG. It is explanatory drawing when the former is lower than the refractive index of the latter.
  • the light traveling toward the cathode 4 side is between the cathode 4 and the low refractive index layer 5.
  • an evanescent wave (arrow A2) is generated in the low refractive index layer 5.
  • the generated evanescent wave oozes out to the interface between the metal layer 6 and the low refractive index layer 5, and the surface plasmon polariton SPP (arrow A3) is excited.
  • a light emission point (or light emission point) Ai indicates a light emission point at a position overlapping the opening 7A of the dielectric layer 7 in plan view (hereinafter, the light emission at this point is referred to as “in Sometimes referred to as “luminescence”.)
  • the light emission point Ao indicates a light emission point between the adjacent openings 7A in plan view (hereinafter, light emission at this point may be referred to as “out light emission”).
  • the light emission point Ae indicates light emission at the boundary between “in light emission” and “out light emission” (hereinafter, light emission at this point may be referred to as “in-out edge light emission”).
  • in-out edge light emission For “out emission” and “in-out edge emission”, the arrow indicating total reflected light at the interface between the cathode 4 and the low refractive index layer 5 is omitted.
  • the light propagation after SPP (arrow A3) excitation is also applied to “in emission” and “in-out end emission”. Is the same as in the case of “out emission”.
  • the light extracted from the cathode side structure (cathode 4, low refractive index layer 5, metal layer 6) to point A of the organic layer 3 is when the refractive index of the dielectric layer 7 is higher than the refractive index of the anode 2. Is propagated like the light AD1 in FIG. That is, the light AD1 traveling through the organic layer 3 from the point A further passes through the anode 2 and reaches the dielectric layer 7, and then is refracted at the inner side surface 7a of the opening 7A of the dielectric layer. The light passes through and can be taken out through the substrate 1.
  • the light AD1 travels from the dielectric layer 7 to the anode 2
  • the light AD1 is incident on the substrate 1 due to the difference in refraction at the interface between the dielectric layer 7 and the anode 2 (the inner surface 7a of the opening 7A).
  • the angle changes to a smaller angle (a direction closer to the normal of the substrate 1).
  • Light incident on the outer surface of the substrate 1 (interface between the substrate and air) at an angle greater than the critical angle is totally reflected and becomes substrate mode light that cannot be extracted to the outside, but at the interface between the anode 2 and the dielectric layer 7. ,
  • the incident angle of the light AD1 from the substrate 1 to the air changes to a smaller angle.
  • the light extraction efficiency is improved by having a configuration including the interface between the anode 2 and the dielectric layer 7. Furthermore, when the refractive index of the anode 2 is different from that of the inner side surface covering portion 3a of the organic layer, the light extracted into the organic layer 3 is also refracted at the interface between the anode 2 and the inner side surface covering portion 3a of the organic layer. More preferred.
  • the light PD1 is light that travels toward the substrate in a direction perpendicular to the substrate and travels through the substrate 1 without being refracted at the interface with the substrate 1. It advances and is taken out outside.
  • the light PD 2 can be refracted at the interface between the anode 2 and the dielectric layer 7, pass through the anode 2, and then be extracted outside through the substrate 1.
  • the light PD2 travels from the dielectric layer 7 to the anode 2, it is refracted at the interface between the anode 2 and the dielectric layer 7, and the incident angle of the light PD2 on the substrate 1 changes to a smaller angle.
  • the refractive index of the dielectric layer 7 is lower than the refractive index of the anode 2, the light extracted from the cathode side structure (cathode 4, low refractive index layer 5, metal layer 6) to the point A of the organic layer 3. Propagates like the light AD1 and is extracted to the substrate 1. That is, the light AD1 traveling through the organic layer 3 from the point A further passes through the anode 2 and is refracted at the inner surface 7a of the opening 7A, passes through the dielectric layer 7, passes through the substrate 1, and passes through the outside. Can be taken out.
  • the light AD1 travels from the anode 2 to the dielectric layer 7, the light AD1 is incident on the substrate 1 due to the difference in refraction at the interface between the anode 2 and the dielectric layer 7 (the inner surface 7a of the opening 7A).
  • the angle changes to a smaller angle.
  • Light incident on the outer surface of the substrate 1 (interface between the substrate and air) at an angle greater than the critical angle is totally reflected, becomes substrate mode light, and is not extracted outside.
  • the refraction at the interface between the anode 2 and the dielectric layer 7 changes the incident angle to the outer surface of the substrate 1 to a smaller angle, so that the light that can avoid this total reflection increases and the light extraction efficiency is improved.
  • the light extraction efficiency is improved by having a configuration including the interface between the anode 2 and the dielectric layer 7. Further, when the refractive index of the anode 2 is different from that of the inner side surface covering portion 3a of the organic layer, the light extracted to the organic layer 3 is also refracted at the interface between the anode 2 and the inner side surface covering portion 3a. preferable.
  • the light PD1 is light that travels toward the substrate in a direction perpendicular to the substrate and travels through the substrate 1 without being refracted at the interface with the substrate 1. It advances and is taken out outside. Further, the light PD 2 can be refracted at the interface between the anode 2 and the dielectric layer 7, pass through the dielectric layer 7, and be extracted outside through the substrate 1.
  • the angle of incidence of the light PD2 on the outer surface of the substrate 1 changes to a smaller angle due to refraction at the interface between the anode 2 and the dielectric layer 7.
  • the openings 7A are periodically arranged in at least one direction in the plane of the substrate 1 with a period equal to or less than the wavelength of the emitted light.
  • the function and effect of the diffraction grating will be schematically described with reference to FIG.
  • the light propagation method indicated by the arrows in FIG. 8A is schematically shown in order to easily understand the principle of the effect of the diffraction grating.
  • the light traveling toward the cathode 4 is incident on the interface between the cathode 4 and the low refractive index layer 5 at a large incident angle greater than the critical angle (arrow D1)
  • an evanescent wave (arrow D2) is generated in the low refractive index layer 5.
  • the generated evanescent wave oozes out to the interface between the metal layer 6 and the low refractive index layer 5, and the surface plasmon polariton SPP (arrow D3) is excited.
  • the excited SPP is radiated to the cathode 4 at a predetermined angle (arrow D5) through resonance with the evanescent wave (arrow D4), and can be extracted to the organic layer 3 as guided mode light.
  • the light extracted from the cathode side structure (cathode 4, low refractive index layer 5, metal layer 6) to point D of the organic layer 3 propagates through the organic layer and enters the diffraction grating.
  • the incident light is diffracted by the diffraction grating in a predetermined direction (a direction that satisfies the strengthening condition).
  • diffracted light is emitted at a certain predetermined angle because the diffracted light at each diffraction point is emitted while interfering.
  • the light incident on the outer surface of the substrate 1 at an incident angle equal to or less than the critical angle is extracted to the outside as it is.
  • the material of the metal layer 6 and the low refractive index layer 5 and the period (pitch) of the diffraction grating are set so as to satisfy the equation (1). It is preferable to select.
  • the intensity of the diffracted light is higher as the order N is smaller, it is preferable to select the diffraction grating period or the like so as to satisfy the formula (1) for N having the smallest absolute value.
  • the expression (1) is satisfied, the light re-radiated from the SPP mode light can be efficiently extracted from the substrate 1 to the outside by the diffraction grating, and the light extraction efficiency can be improved.
  • the refractive index of the anode 2 is different from that of the inner surface covering portion 3a of the organic layer, the anode 2 has a periodic refractive index structure when viewed in a cross section parallel to the substrate plane crossing the inner surface covering portion 3a. Since the portion also has a diffractive structure, and light can be extracted more efficiently, it is more preferable.
  • the organic EL element 10 in the case where the organic EL element 10 is periodically disposed in at least one direction in the plane of the anode hole portion with a period equal to or less than the wavelength of the emitted light, as described above. It can be considered that a diffraction grating is formed, and on the other hand, it can be regarded as forming a photonic crystal.
  • the effect by the photonic crystal will be schematically described with reference to FIG.
  • the way of light propagation indicated by arrows in FIG. 8B is schematically shown in order to easily understand the principle of the effect of the photonic crystal.
  • the light traveling to the cathode 4 side is incident on the interface between the cathode 4 and the low refractive index layer 5 at a large incident angle greater than the critical angle ( Arrow E1)
  • an evanescent wave (arrow E2) is generated in the low refractive index layer 5 and oozes out to the interface between the metal layer 6 and the low refractive index layer 5, and the surface plasmon polariton SPP (Arrow E3) is excited.
  • the excited SPP can be radiated to the cathode 4 at a predetermined angle (arrow E5) through resonance with the evanescent wave (arrow E4) and extracted to the organic layer 3 as guided mode light. The same applies to the light emitted at the Ei point and the Ee point.
  • the light extracted from the cathode side structure (cathode 4, low refractive index layer 5, metal layer 6) to point E of the organic layer 3 propagates through the organic layer, and the refractive index of the anode 2 and the dielectric layer 7 is large or small. Regardless of the relationship, it is extracted to the outside by the photonic crystal structure as follows. In a space where a refractive index modulation structure having a period equal to or less than the wavelength of light exists in a certain direction, a photonic band gap occurs in that direction, and light in the band gap frequency range cannot propagate (light confinement effect) .
  • the periodic structure is formed by the dielectric layer 7 and the anode 2 covering the opening 7A, where the photonic band gap can be generated in the direction of the arrow ED2 parallel to the substrate. It is. Therefore, propagation in the direction parallel to the substrate is prohibited for light in the band gap frequency range corresponding to the photonic band gap in the direction of ED2. On the other hand, no photonic band gap occurs in the direction perpendicular to the substrate because the periodic structure forming the photonic crystal structure is not formed. Accordingly, the SPP mode light extracted as propagating light in the organic layer 3 travels in a direction perpendicular to the substrate.
  • the photonic crystal structure When there is no photonic crystal structure, most of the light extracted into the organic layer 3 is totally reflected at the interface between the anode 2 (or the organic layer 3) and the substrate 1 to become guided mode light, or Although it is totally reflected on the outer surface and becomes substrate mode, the photonic crystal structure changes the light propagation direction in the organic layer to a direction close to perpendicular to the substrate surface, so total reflection at these interfaces is suppressed. The light extraction efficiency to the outside is improved. Further, when the refractive index of the anode 2 is different from that of the inner side surface covering portion 3a of the organic layer, the anode 2 has a periodic refractive index structure when viewed in a cross section parallel to the substrate plane crossing the inner side surface covering portion 3a. This planar portion also has a photonic crystal structure, which is more preferable because light can be extracted more efficiently.
  • the refraction effect will be equal if the period (pitch) and size of the irregularities are equal.
  • the effects of the diffraction grating and the photonic crystal are also the same.
  • FIG. 9 is a diagram illustrating an example of an image display device including the organic EL element 10 described above.
  • the organic EL element may have a bottom emission structure or a top emission structure, but in the following, an example of a bottom emission structure will be described.
  • the image display device 100 shown in FIG. 9 is a so-called passive matrix type image display device.
  • anode wiring 104 In addition to the organic EL element 10, the anode wiring 104, the anode auxiliary wiring 106, the cathode wiring 108, the insulating film 110, and the cathode partition 112 , A sealing plate 116 and a sealing material 118.
  • a plurality of anode wirings 104 are formed on the substrate 1 of the organic EL element 10.
  • the anode wirings 104 are arranged in parallel at a constant interval.
  • the anode wiring 104 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used.
  • the thickness of the anode wiring 104 can be set to 100 nm to 150 nm, for example.
  • An anode auxiliary wiring 106 is formed on the end of each anode wiring 104.
  • the anode auxiliary wiring 106 is electrically connected to the anode wiring 104.
  • the anode auxiliary wiring 106 functions as a terminal for connecting to the external wiring on the end portion side of the substrate 1, and the drive circuit (not shown) provided outside via the anode auxiliary wiring 106.
  • a current can be supplied to the anode wiring 104.
  • the anode auxiliary wiring 106 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
  • a plurality of cathode wirings 108 are provided on the organic EL element 10.
  • the plurality of cathode wirings 108 are arranged so as to be parallel to each other and orthogonal to the anode wiring 104.
  • Al or an Al alloy can be used for the cathode wiring 108.
  • the thickness of the cathode wiring 108 is, for example, 100 nm to 150 nm.
  • a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 108 and is electrically connected to the cathode wiring 108. Therefore, a current can flow between the cathode wiring 108 and the cathode auxiliary wiring.
  • an insulating film 110 is formed on the substrate 1 so as to cover the anode wiring 104.
  • a rectangular opening 120 is provided in the insulating film 110 so as to expose a part of the anode wiring 104.
  • the plurality of openings 120 are arranged in a matrix on the anode wiring 104.
  • the organic EL element 10 is provided between the anode wiring 104 and the cathode wiring 108. That is, each opening 120 becomes a pixel. Accordingly, a display area is formed corresponding to the opening 120.
  • the thickness of the insulating film 110 can be set to, for example, 200 nm to 10,000 nm, and the size of the opening 120 can be set to, for example, 100 ⁇ m ⁇ 100 ⁇ m.
  • the organic EL element 10 is located between the anode wiring 104 and the cathode wiring 108 in the opening 120. In this case, the anode 2 of the organic EL element 10 is in contact with the anode wiring 104 and the cathode 4 is in contact with the cathode wiring 108.
  • the thickness of the organic EL element 10 can be set to, for example, 150 nm to 200 nm.
  • a plurality of cathode partition walls 112 are formed along a direction orthogonal to the anode wiring 104 in plan view.
  • the cathode partition 112 plays a role for spatially separating the plurality of cathode wirings 108 so that the wirings of the cathode wirings 108 do not conduct with each other. Accordingly, the cathode wiring 108 is disposed between the adjacent cathode partition walls 112.
  • the size of the cathode partition 112 for example, the one having a height of 2 ⁇ m to 3 ⁇ m and a width of 10 ⁇ m can be used.
  • the substrate 1 is bonded to each other through a sealing plate 116 and a sealing material 118.
  • the space in which the organic EL element 10 is provided can be sealed, and the organic EL element 10 can be prevented from being deteriorated by moisture in the atmosphere.
  • the sealing plate 116 for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
  • the sealing plate 116 may not be transparent when light is extracted from the substrate 1 side as in the case of a bottom emission type element.
  • the sealing plate 116 needs to be transparent to at least a part of the light emission wavelength region.
  • a current can be supplied to the organic EL element 10 through a positive electrode auxiliary wiring 106 and a negative electrode auxiliary wiring (not shown) by a driving device (not shown) to cause the light emitting layer to emit light. Then, light can be emitted from the substrate 1 through the substrate 1.
  • An image can be displayed on the image display device 100 by controlling the light emission and non-light emission of the organic EL element 10 corresponding to the above-described pixel by the control device.
  • FIG. 10 is a diagram illustrating an example of an illumination device including the organic EL element 10 described above.
  • the illumination device 200 shown in FIG. 10 is provided on the organic EL element 10 described above, the substrate 1 of the organic EL element 10, the terminal 202 connected to the anode 2 (see FIG. 1), and the cathode 4 (see FIG. 1). And a lighting circuit 201 for driving the organic EL element 10 connected to the terminal 202 and the terminal 203.
  • the lighting circuit 201 has a DC power source (not shown) and a control circuit (not shown) inside, and supplies a current by applying a voltage between the anode 2 and the cathode 4 of the organic EL element 10 through the terminal 202 and the terminal 203. . Then, the organic EL element 10 is driven, the light emitting layer emits light, is emitted through the substrate 1, and is used as illumination light.
  • the light emitting layer may be made of a light emitting material that emits white light, and each of the organic EL elements 10 using light emitting materials that emit green light (G), blue light (B), and red light (R). A plurality of them may be provided so that the combined light is white.
  • the manufacturing method of the organic EL element according to the first embodiment of the present invention will be described with reference to the manufacturing method of the bottom emission type organic EL element shown in FIG.
  • the dielectric layer 7 is formed on the substrate 1.
  • the method for forming the dielectric layer 7 is not particularly limited.
  • various wet processes such as a coating method can be used.
  • a method using photolithography can be used.
  • a positive resist solution is applied onto the anode 2 and the excess resist solution is removed by spin coating or the like, thereby forming a resist layer 9.
  • FIG. 11C when a mask (not shown) on which a predetermined pattern for forming the opening 7A is drawn is applied and exposure is performed with ultraviolet rays (UV), electron beams (EB), etc., it is shown in FIG. 11C.
  • UV ultraviolet rays
  • EB electron beams
  • FIG. 11D the resist layer 9 is exposed to a predetermined pattern corresponding to the opening 7A.
  • the resist layer 9 in the exposed pattern portion is removed using a developer.
  • the surface of the dielectric film 7 is exposed corresponding to the exposed pattern portion (FIG. 11D).
  • the exposed portion of the dielectric film 7 is removed by etching to form an opening 7A.
  • etching either dry etching or wet etching can be used.
  • the shape of the opening 7A can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE) or inductively coupled plasma etching can be used.
  • RIE reactive ion etching
  • wet etching immersion in dilute hydrochloric acid, dilute sulfuric acid, hydrofluoric acid, phosphoric acid, or aqueous iron chloride is used. You can use the method of doing.
  • an opening 7A is formed corresponding to the pattern, and the surface of the substrate 1 is exposed.
  • the opening 7A can also be formed by direct processing by laser light irradiation. In this case, after forming the dielectric layer 7 on the substrate 1, the substrate 1 is irradiated with a laser beam to directly drill the dielectric layer 7, or the substrate 1 is irradiated with an interference pattern of laser light. Then, an opening 7A having the same pattern as the interference pattern is formed in the dielectric layer. Therefore, since the mask is not formed with a photoresist, the number of processing steps is reduced.
  • Examples of the laser used for processing include a pulse carbon dioxide laser, a Q switch Nd: YAG laser and its harmonics, a titanium sapphire laser, and an excimer laser.
  • a surface protective film may be formed on the dielectric layer 7 before laser irradiation.
  • the anode 2 is formed along the upper surface of the dielectric layer 7 having the opening 7A (conformally).
  • the formation method of this anode 2 is not specifically limited.
  • a wet process such as a coating method can be used.
  • the performance of the overcoated layer (adhesion with the anode 2, surface smoothness, reduction of hole injection barrier, etc.) can be improved.
  • Specific examples of the surface treatment include high-frequency plasma treatment, sputtering treatment, corona treatment, UV ozone irradiation treatment, ultraviolet irradiation treatment, and oxygen plasma treatment.
  • anode buffer layer (not shown) instead of or in addition to the surface treatment of the surface treatment of the anode 2.
  • the anode buffer layer can be prepared by applying a wet process.
  • Specific film forming methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, and roll coating. , Wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, coating method such as inkjet printing method, dipping method, electrochemical method and the like.
  • the anode buffer layer can be formed by using a plasma treatment or the like exemplified in JP-A-2006-30312.
  • a method of forming a film of a single metal, a metal oxide, a metal nitride, or the like can be mentioned.
  • Specific film forming methods include an electron beam evaporation method, a sputtering method, a chemical reaction method, a coating method, and a vacuum evaporation method. The method etc. can be used.
  • the organic layer 3 consists of the layer part 3c and the inner surface coating
  • the inner side surface covering portion 3a is configured to fill the anode recess 2A and cover the inner side surface 2a of the anode recess 2A, but may be configured to cover only the inner surface 2a of the anode recess 2A.
  • the method for forming the inner side surface covering portion 3a is not particularly limited as in the case of the anode 2, but a conventionally known method can be used, for example, vacuum deposition method, spin coating method, casting method, LB method, various coating methods Etc. can be used.
  • the organic layer 3 is also formed by forming the layered portion 3c of the organic layer 3, and the structure corresponding to FIG. Make it.
  • the cathode 4 is formed on the organic layer 3 as shown in FIG.
  • the cathode 4 can be formed by the same method as the formation of the anode 2 and is not particularly limited.
  • a resistance heating vapor deposition method an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or the like can be used.
  • a low refractive index layer 5 is formed on the cathode 4.
  • the method for forming the low refractive index layer 5 is not particularly limited. For example, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, and various coating methods can be used.
  • the low-refractive index layer 5 is a low-refractive index layer including an air layer, for example, after the SOG layer is formed, the SOG material is left at a predetermined position in the SOG layer using photolithography.
  • the low refractive index layer is formed by etching away the SOG layer so that the portion where the SOG layer is removed becomes an air layer.
  • a metal layer 6 is formed on the low refractive index layer 5.
  • the formation method of the metal layer 6 is not specifically limited. For example, vapor deposition or sputtering can be used.
  • a protective layer or a protective cover for driving the organic EL element 10 stably for a long period of time and protecting the organic EL element 10 from external moisture, oxygen, and the like.
  • the protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. It is also possible to use a metal having a relatively large ionization tendency such as zinc as a sacrificial layer (a protective layer to be removed in a subsequent process). And these laminated bodies can also be used.
  • the protective cover a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used. It is preferable to adopt a method in which the protective cover is sealed by being bonded to the substrate 1 with a thermosetting resin, a photocurable resin, or frit glass. At this time, a predetermined space can be maintained by using a spacer, and it is preferable because the protective cover can be prevented from being touched by an external force to damage the organic EL element 10. Then, if an inert gas such as nitrogen, argon or helium, or various inert liquids such as perfluorocarbon is sealed in this space, it is easy to prevent the upper metal layer 6 from being oxidized.
  • an inert gas such as nitrogen, argon or helium, or various inert liquids such as perfluorocarbon
  • the organic EL element whose sea-island structure is opposite to the anode described in FIG. 2B uses a negative resist in the process of FIG. 11B, or in the process of FIG. It can be manufactured by reversing the mask-shaped opening and the shielding portion.
  • the manufacturing method of the organic EL device according to the second embodiment of the present invention will be described with reference to the manufacturing method of the bottom emission type organic EL device shown in FIG.
  • a method using photolithography can be used.
  • a positive resist solution is applied onto the substrate 21, and the excess resist solution is removed by spin coating or the like to form a resist layer 29.
  • the exposed portion of the substrate 21 is removed by etching to form a substrate recess 21A.
  • etching either dry etching or wet etching can be used.
  • the shape of the substrate recess 21A can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE) or inductively coupled plasma etching can be used.
  • RIE reactive ion etching
  • wet etching for example, when glass is used for the substrate, a method of immersing in hydrofluoric acid can be used. By this etching, irregularities are formed on the surface of the substrate 21 corresponding to the pattern.
  • the substrate recess 21A can also be formed by direct processing by laser light irradiation.
  • a laser beam is irradiated onto the substrate 21 to directly drill the substrate 21, or a laser light interference pattern is irradiated onto the substrate 21, and the dielectric layer has the same pattern as the interference pattern.
  • a recess 21A is formed. Therefore, since the mask is not formed with a photoresist, the number of processing steps is reduced.
  • the laser used for processing include a pulse carbon dioxide laser, a Q switch Nd: YAG laser and its harmonics, a titanium sapphire laser, and an excimer laser.
  • a surface protective film may be formed on the substrate 21 before laser irradiation.
  • the anode 22 is formed along the substrate surface having the substrate recess 21A (conformal).
  • the anode 22 can be formed by a method similar to the method for forming the organic EL element of the first embodiment. Also, the surface treatment after the formation can be performed in the same manner as the organic EL element of the first embodiment.
  • the inner side surface covering portion 23a of the organic layer 23 is configured to fill the anode concave portion 22A and cover the inner side surface of the anode concave portion 22A.
  • covers an inner surface may be sufficient.
  • This organic layer can also be formed by a method similar to the method for forming the organic EL element of the first embodiment.
  • cathode 24, low-refractive index layer 25, and metal layer 26 on organic layer 23 The formation of cathode 24, low-refractive index layer 25, and metal layer 26 on organic layer 23 is similarly performed in the organic EL element of the first embodiment. The same processing can be performed. (Fig. 12 (g) to (i))
  • the organic EL element 20 can be manufactured by the above process. Moreover, after these series of processes, it is preferable to use the organic EL element 20 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic EL element 20 from the outside. As these protective layers, the same layers as those of the organic EL element 10 of the first embodiment can be used.
  • a method for manufacturing the bottom emission structure of the organic EL element according to the third embodiment of the present invention will be described with reference to the method for manufacturing the organic EL element shown in FIG. First, the same manufacturing method as the bottom emission structure of the first embodiment can be used until the step of forming the anode 32.
  • a planarizing layer 38 is formed on the anode 32, and the unevenness of the surface of the anode 32 on the side opposite to the dielectric layer is planarized.
  • the flattening layer 38 can be formed using the same material as that used for forming the dielectric layer 37 or the anode 32.
  • the planarization layer surface is subjected to sputtering treatment including high-frequency plasma treatment for the purpose of modifying the planarization layer surface (promoting hole injection into the organic layer and improving wettability).
  • Various surface treatments such as corona treatment, UV ozone irradiation treatment, ultraviolet irradiation treatment, and oxygen plasma treatment may be performed.
  • the planarization layer 38 is formed so as to cover the entire anode 32. However, the planarization layer 38 may be formed so as to fill only a part of the concave portion of the anode 32. Good.
  • the organic layer 33, the cathode 34, the low refractive index layer 35, and the metal layer 36 are formed in order.
  • the formation of the cathode 34, the low refractive index layer 35, and the metal layer 36 on the organic layer 33 can be similarly processed in the same manner as the organic EL element of the first embodiment. (Fig. 13 (b) to (e))
  • the organic EL element 30 can be manufactured. Moreover, after these series of processes, it is preferable to use the organic EL element 30 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic EL element 20 from the outside.
  • a protective layer and a protective cover (not shown) for protecting the organic EL element 20 from the outside.
  • these protective layers the same layers as those of the organic EL element 10 of the first embodiment can be used.
  • FIG. 14 shows the result of energy dissipation calculation in which the intensity of light emitted from the organic layer is developed with the wave number component in the organic EL element surface direction.
  • the horizontal axis represents the wave number of the light emitted from the organic layer, the organic EL element surface direction component divided by the vacuum wave number k 0 , that is, the effective refractive index, and the vertical axis represents the light intensity of the wave number, that is, the development.
  • the coefficient is shown.
  • the calculation was performed separately for the TM polarization component and the TE polarization component. This calculation shows the result of an organic EL element in which a flat anode, an organic layer, and a cathode (metal) are laminated on a substrate (glass).
  • the peak area on the highest wavenumber side of TM polarized light represents the intensity of the SPP mode light, but it can be seen that most of the light emitted from the organic layer is captured as the SPP mode light.
  • glass corresponds to the substrate
  • High-n corresponds to the organic layer including the anode and the light emitting layer made of ITO
  • metal corresponds to the cathode.
  • the film thicknesses of the anode and the organic layer are 150 nm and 100 nm, respectively.
  • FIG. 15 shows the dependence of the intensity of the light (TM polarization component) emitted from the organic layer on the energy dissipation calculation in the Otto type organic EL element, depending on the film thickness of the low refractive index layer.
  • the Otto type organic EL element has the same structure as the element shown in FIG. 14 in the substrate, anode, and organic layer, but a cathode (50 nm) made of ITO, which is a transparent conductive material, is formed on the organic layer. Further, a low refractive index layer and a metal layer are sequentially formed.
  • the refractive index of the low refractive index layer is 1.38
  • FIG. 15A shows the case where the metal layer is Al
  • FIG. 15B shows the case where the metal layer is Ag.
  • the numbers on the graph lines indicate the film thickness (nm) of the low refractive index layer.
  • the change of the peak will be described below with reference to FIGS.
  • the light is completely trapped on the surface of the metal layer as SPP mode light.
  • the SPP mode light and the waveguide mode light are mixed due to the Otto type arrangement. This means that the extracted SPP mode light becomes waveguide mode light, and is re-supplemented as SPP mode light by the metal layer again by interface reflection.
  • the peak width becomes gradually narrower.
  • the film thickness of the low refractive index layer becomes sufficiently large, it becomes as shown in FIG.
  • the Otto type arrangement is used, the evanescent wave at the light emitting point does not reach the metal layer and is not captured as SPP mode light.
  • the emitted light is captured as guided mode light. That is, when the film thickness of the low refractive index layer exceeds a certain thickness, the trapped light is only guided mode light, so the ease of attenuation does not change and the peak width also does not change.
  • FIG. 17 is a diagram showing a change in peak width (half width) with respect to the film thickness of the low refractive index layer.
  • the metal layer of FIG. 17 is Al
  • the peak width does not change when the film thickness of the low refractive index layer is 200 nm or more, and the emitted light is not captured as SPP mode light.
  • the metal layer is Ag
  • the peak width does not change when the film thickness of the low refractive index layer is 150 nm or more, and it is not captured as SPP mode light. That is, the film thickness captured as SPP mode light is 200 nm or less.
  • the surface plasmon polariton (SPP) trapped on the surface of the metal layer can be extracted by an evanescent wave generated by light totally reflected at the interface between the cathode and the low refractive index layer. That is, the wave number of this evanescent wave needs to have an intersection with the wave number k SPP of the surface plasmon polariton (SPP) generated on the surface of the metal layer.
  • the wave number k SPP of the surface plasmon polariton (SPP) generated on the surface of the metal layer can be expressed by the following formula (13).
  • ⁇ 1 is the dielectric constant of the metal layer
  • ⁇ 2 is the dielectric constant of the low refractive index layer
  • k 0 is the wave number of light in vacuum at the maximum peak wavelength of light emitted from the light emitting layer.
  • the real part can be expressed by the following equation (14).
  • SPP surface plasmon polariton
  • FIG. 18A is a graph showing the equation (16) when the metal layer is Al and (b) is Ag.
  • the surface plasmon polariton (SPP) generated on the surface of the metal layer is normalized as 1 in the equation (16). It can be seen that the peak width is saturated to a constant value at the thickness of the low refractive index layer where the intensity of the surface plasmon polariton (SPP) at the position propagated in the thickness direction of the low refractive index layer is 0.4 or less. That is, when the expression (16) is 0.4 or less, it can be said that the intensity of the surface plasmon polariton (SPP) that oozes out to the interface between the low refractive index layer and the cathode is reduced, and the light extraction effect by the Otto type arrangement is reduced.
  • the light extraction effect by the Otto type arrangement can be sufficiently obtained when the thickness of the low refractive index layer is 0.4 or more in the equation (16).
  • the FDTD method is an analysis method for differentiating Maxwell's equation describing a time change of an electromagnetic field spatially and temporally and tracking the time change of the electromagnetic field at each point in the space. More specifically, it is a technique in which light emission in the light-emitting layer is regarded as radiation from a minute dipole and the time variation of the radiation (electromagnetic field) is tracked. The simulation result shows the result of light extraction to the substrate.
  • ⁇ on the horizontal axis is the wavelength in vacuum
  • ⁇ on the vertical axis is the light extraction efficiency (ratio of the light intensity extracted from the substrate to the total radiation intensity from the dipole).
  • the calculation was performed with a dipole as a light emission source being random (dipole moments are random in the x, y, and z directions).
  • the x and y directions are directions parallel to the substrate surface
  • the z direction is a direction perpendicular to the substrate surface.
  • the graphs of the light extraction efficiency calculation results shown below are all the calculation results for this random dipole.
  • FIG. 19 shows the result of calculating the dependence of the period in which the opening is arranged on the light extraction efficiency by computer simulation using the FDTD method in order to confirm the effect of the organic EL element of the present invention.
  • the light extraction efficiency obtained by the simulation is the light extraction efficiency when the light is extracted up to the substrate (the relative value of the light intensity extracted up to the substrate with respect to the total emission intensity) (the same applies to the following simulation results).
  • ⁇ on the horizontal axis represents the wavelength of the emitted light
  • ⁇ on the vertical axis represents the light extraction efficiency.
  • FIG. 20 is a cross-sectional view showing a model structure of the bottom emission type organic EL element 10 of the first embodiment used in the simulation.
  • the refractive index values used for the calculation are as follows.
  • the substrate 1 is made of glass, and a refractive index of 1.52 is used.
  • the refractive index is 1.82 + 0.009i at 550 nm, and other wavelengths are extrapolated by the Lorentz model.
  • 1.72 was used as the refractive index of the organic layer 3.
  • the cathode 4 is made of ITO, the refractive index is 1.82 + 0.009i at 550 nm, and other wavelengths are extrapolated by the Lorentz model.
  • the low refractive index layer 5 is made of a material containing spin-on-glass (SOG), and a refractive index of 1.25 is used. Further, assuming that the metal layer 6 is made of aluminum (Al), the refractive index is 0.649 + 4.32i at 550 nm, and other wavelengths are extrapolated by the Drude model.
  • the dielectric layer 7 is made of SiO2, and the refractive index is 1.45.
  • the layer thicknesses of the dielectric layer 7, the anode 2, the layered portion 3c of the organic layer 3, the cathode 4, the low refractive index layer 5, and the metal layer 6 were 100 nm, 150 nm, 100 nm, 50 nm, 50 nm, and 100 nm, respectively.
  • the layer thicknesses of the anode projection 2B and the anode layer 2c formed so as to conform to the pattern of the dielectric layer 7 are 100 nm and 50 nm, respectively. Further, calculation was performed for each of the period (P) (distance between the centers of adjacent openings) in which the adjacent openings 7A are arranged being 200 nm, 300 nm, 500 nm, 900 nm, 2000 nm, 4000 nm, and 8000 nm. Further, the opening 7A has a stripe shape (line shape), and the width (W) of the opening 7A in each period is set to 1/2 of the period (P). The opening 7A has a translational structure in the depth direction of the drawing.
  • the opening 7A has a line-like opening shape extending infinitely in the plane in plan view. This is because the light emission pattern corresponding to the period of the opening 7A can be seen more clearly when calculating the magnetic field strength distribution shape later.
  • a structure having a cathode-side structure with an Otto-type arrangement, but not having a first electrode-side structure for extracting propagating light extracted into the organic layer without using it as guided-mode light hereinafter referred to as a structure of the first electrode-side structure.
  • a structure of the first electrode-side structure There is also a structure that only has an Otto type arrangement”
  • there is no cathode side structure of the Otto type arrangement and there is no first electrode side structure that takes propagating light out of the waveguide mode light.
  • the standard structure means a structure in which an anode layer, an organic layer, and a cathode metal layer are formed in this order on a glass substrate.
  • the standard structure was such that the substrate was made of glass, the anode was made of ITO, the organic layer was sandwiched, and the cathode was made of Al.
  • Refractive indexes of 1.52, 1.82 + 0.009i, 1.72, and 0.649 + 4.32i were used, respectively, and the anode, organic layer, and cathode layer thicknesses were 150 nm, 100 nm, and 100 nm, respectively. It was.
  • FIG. 19 shows the wavelength dependence of the light extraction efficiency with the period (P) in which the opening 7A is disposed as a parameter. Also, the simulation results for the standard structure and the structure with only the Otto type arrangement are shown in the same graph.
  • FIG. 19 shows that the organic EL element of the present invention has a light extraction efficiency as a whole in the wavelength range of 200 nm to 2000 nm as compared with the structure having only the Otto type arrangement or the standard structure at a wavelength of 680 nm or less. The result was improved. In particular, when the period was 200 nm to 900 nm, the result that the light extraction efficiency was remarkably increased at a wavelength of 680 nm or less was obtained. This result cannot be predicted based on the structure of the cathode side structure of the Otto type arrangement and the anode side structure (refractive index modulation structure), but was first clarified by the simulation of the present invention. .
  • FIG. 21A shows the intensity distribution of the electric field of the radiated light from the horizontal dipole obtained by the simulation of the FDTD method in the case of the structure having only the Otto type arrangement.
  • the wavelength of the emitted light was 480 nm.
  • the distribution diagram shows the substrate on the upper side and the metal layer on the lower side.
  • the white line that crosses the electric field strength distribution is the boundary line between adjacent layers, and the distribution diagram corresponds to the electric field strength distribution in the substrate, anode, organic layer, cathode, low refractive index layer, metal layer, air layer in order from the top. Yes.
  • the light source is placed at the right end of the figure, and the electric field intensity distribution in the right half is omitted.
  • 21B and 21C respectively show the radiation from the horizontal dipole obtained by the simulation of the FDTD method when the period of the opening 7A in the organic EL element of the embodiment of the present invention is 500 nm and 900 nm. It shows the intensity distribution of the electric field of light. The wavelength of the emitted light was 480 nm.
  • the distribution diagram shows the substrate on the upper side and the metal layer on the lower side. 21 (b) and (c), the white line crossing the electric field intensity distribution is the boundary line between the adjacent layers, and the distribution diagram shows the substrate, dielectric layer, anode, organic layer, cathode, low refractive index layer, It corresponds to the electric field strength distribution in the metal layer and air layer.
  • a plurality of thin white lines running in the vertical direction in the dielectric layer represent the inner surface of the opening of the dielectric layer, and a plurality of rectangles drawn with white lines in the anode follow the shape of the opening. It represents the opening formed (conformal).
  • the light source is placed at the right end of the figure, and the electric field intensity distribution in the right half is omitted.
  • the electric field intensity distribution and the magnetic field intensity distribution shown in the following are illustrated for the organic EL elements similarly arranged.
  • each of FIGS. 21B and 21C using the organic EL element of the present invention is obtained from the dipole light source to the organic layer. After propagating in the left direction, light is emitted obliquely upward, and it can be confirmed that the light emission in a specific direction is intensified by the effect of the diffraction grating. This is difficult to predict even for those skilled in the art, and has been revealed only after simulation.
  • FIG. 22A shows the intensity distribution of the magnetic field of the emitted light from the dipole in the vertical (z) direction obtained by the simulation of the FDTD method in the case of the structure having only the Otto type arrangement.
  • the wavelength of the emitted light was 480 nm.
  • the distribution diagram shows the substrate on the upper side and the metal layer on the lower side.
  • FIGS. 22B and 22C show the electric field intensity distribution of the emitted light from the vertical dipole when the period of the opening 7A in the organic EL element of the embodiment is 500 nm and 900 nm, respectively, by simulation of the FDTD method. The obtained results are shown.
  • the wavelength of the emitted light was 480 nm.
  • the distribution diagram shows the substrate on the upper side and the metal layer on the lower side.
  • each of FIGS. 22B and 22C using the organic EL element of the present invention is light obliquely upward. Can be confirmed. Further, with respect to the period of the opening 7A, it can be confirmed that those having a period of 900 nm in FIG. This is difficult to predict even for those skilled in the art, and can be known only after simulation.
  • FIG. 23 shows the case where the period of the opening 7A of the organic EL element of the embodiment is (a) 200 nm, (b) 300 nm, (c) 500 nm, (d) 900 nm, (e) 2000 nm, and (f) 4000 nm.
  • This figure shows the intensity distribution of the electric field of the synchrotron radiation from the horizontal dipole obtained by FDTD simulation. The wavelength of the emitted light was 620 nm. The intensity distribution is shown with the substrate on the bottom and the metal layer on the top.
  • the period of the opening 7A of the organic EL element of the embodiment is (a) 200 nm, (b) 300 nm, (c) 500 nm, (d) 900 nm, (e) 2000 nm, and (f) 4000 nm.
  • This shows the intensity distribution of the magnetic field of synchrotron radiation from a vertical dipole obtained by FDTD simulation.
  • the wavelength of the emitted light was 620 nm.
  • the distribution diagram shows the substrate on the upper side and the metal layer on the lower side.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

This organic EL element is obtained by sequentially forming, on a substrate, a dielectric layer, a first electrode, an organic layer containing a light emitting layer, and a second electrode; and this organic EL element is configured such that light is extracted from the first electrode side to the outside. This organic EL element is characterized in that: a low refractive index layer and a metal layer are additionally and sequentially provided on a side of the second electrode, said side being on the reverse side of the organic layer side of the second electrode; the second electrode is formed of a transparent conductive material; the refractive index of the low refractive index layer is lower than the refractive index of the organic layer; the dielectric layer is formed of a pattern that has a refractive index lower than the refractive index of the first electrode and has an opening so that the substrate is exposed therefrom; and the first electrode, the organic layer, the second electrode, the low refractive index layer and the metal layer are formed so as to follow the pattern of the dielectric layer.

Description

有機EL素子並びにそれを備えた画像表示装置及び照明装置ORGANIC EL ELEMENT AND IMAGE DISPLAY DEVICE AND LIGHTING DEVICE EQUIPPED
本発明は、有機EL素子並びにそれを備えた画像表示装置及び照明装置に関するものである。
 本願は、2012年10月31日に、日本に出願された特願2012-241337号と、2013年7月16日に、日本に出願された特願2013-148022号とに基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an organic EL element, and an image display device and an illumination device including the organic EL element.
This application claims priority based on Japanese Patent Application No. 2012-241337 filed in Japan on October 31, 2012 and Japanese Patent Application No. 2013-148022 filed in Japan on July 16, 2013 And the contents thereof are incorporated herein.
 有機EL素子は、広視野角、高速応答、鮮明な自発光表示等の特徴を有し、また、薄型軽量で低消費電力であること等の理由から、次世代の照明装置や画像表示装置等の柱として期待されている。
有機EL素子は、有機発光層で発生した光が取り出される向きに応じて、支持基板側から光が取り出されるボトムエミッション型と、支持基板の反対側から光が取り出されるトップエミッション型とに分けられる。
Organic EL elements have features such as a wide viewing angle, high-speed response, clear self-luminous display, etc., and they are thin, lightweight, and have low power consumption. It is expected as a pillar of
Organic EL elements are classified into a bottom emission type in which light is extracted from the support substrate side and a top emission type in which light is extracted from the opposite side of the support substrate, depending on the direction in which the light generated in the organic light emitting layer is extracted. .
 例えば、透明基板上に、透明電極、発光層を含む有機層、金属電極を順に備えるボトムエミッション型有機EL素子を考える。このような有機EL素子において、発光層で発光した光のうち、透明基板(例えば、ガラス(代表的な屈折率:1.52))と空気(屈折率:1.0)との界面に臨界角以下の小さい入射角(入射光線と入射する界面の法線がなす角度)で入射した光は、その界面で屈折して素子の外部に取り出される。本明細書では、これらの光を外部モード(External Mode)光という。
 これに対して、発光層で発光した光のうち、透明基板と空気との界面に臨界角より大きい入射角で入射した光はその界面で全反射されて素子の外部に取り出されず、最終的に材料に吸収されうる。本明細書では、この光を基板モード(Substrate Mode)光といい、これによる損失を基板損失という。
 また、発光層で発光した光のうち、透明導電性酸化物からなる透明電極(例えば、酸化インジウム錫(ITO(代表的な屈折率:1.82))と透明基板(例えば、ガラス(代表的な屈折率:1.52))との界面に臨界角より大きい入射角で入射した光もその界面で全反射されて素子の外部に取り出されず、最終的に材料に吸収されうる。本明細書では、この光を導波モード(Waveguide Mode)光といい、これによる損失を導波損失という。
 また、発光層で発光した光のうち、金属電極に入射して金属電極の自由電子と結合し、表面プラズモンポラリトン(SPP;Surface Plasmon Polariton)として金属電極の表面に捕捉された光も素子の外部に取り出されず、最終的に材料に吸収されうる。本明細書では、この光をSPPモード光といい、これによる損失をプラズモン損失という。
For example, consider a bottom emission type organic EL device having a transparent electrode, an organic layer including a light emitting layer, and a metal electrode in this order on a transparent substrate. In such an organic EL element, the light emitted from the light emitting layer is critical at the interface between a transparent substrate (for example, glass (typical refractive index: 1.52)) and air (refractive index: 1.0). Light incident at a small incident angle (angle formed by the incident ray and the normal of the incident interface) is refracted at the interface and extracted outside the device. In this specification, these lights are called external mode lights.
On the other hand, of the light emitted from the light emitting layer, the light incident on the interface between the transparent substrate and air at an incident angle larger than the critical angle is totally reflected at the interface and is not taken out of the device, and finally Can be absorbed by the material. In this specification, this light is referred to as substrate mode light, and the loss due to this is referred to as substrate loss.
In addition, among the light emitted from the light emitting layer, a transparent electrode (for example, indium tin oxide (ITO (typical refractive index: 1.82))) and a transparent substrate (for example, glass (typical) made of a transparent conductive oxide. Further, light incident on the interface with a refractive index of 1.52)) with an incident angle larger than the critical angle is totally reflected at the interface and is not taken out of the element, but can be finally absorbed by the material. Then, this light is called waveguide mode light, and the loss due to this is called waveguide loss.
In addition, the light emitted from the light emitting layer is incident on the metal electrode and combined with the free electrons of the metal electrode, and the light captured on the surface of the metal electrode as surface plasmon polariton (SPP) is also outside the device. And can be finally absorbed into the material. In this specification, this light is referred to as SPP mode light, and the resulting loss is referred to as plasmon loss.
 有機EL素子の光取り出し効率(発光層で発光した光に対して素子の外部に取り出される光の割合)は一般に20%程度に留まっている(例えば、特許文献1)。すなわち、発光層で発光した光のうち、約80%が損失となっており、これらの損失を低減して光の取り出し効率を向上させることが大きな課題となっている。
ここで、基板モード光の取り出しについては透明基板上に光拡散シートなどを設けることで対処できる(例えば、特許文献2)が、導波モード光及びSPPモード光の低減や取り出し、特にSPPモード光の低減や取り出しについては研究が緒に就いたばかりといえる。
The light extraction efficiency of the organic EL element (ratio of the light extracted outside the element with respect to the light emitted from the light emitting layer) is generally limited to about 20% (for example, Patent Document 1). That is, about 80% of the light emitted from the light emitting layer is lost, and it is a big problem to reduce these losses and improve the light extraction efficiency.
Here, extraction of the substrate mode light can be dealt with by providing a light diffusion sheet or the like on the transparent substrate (for example, Patent Document 2). It can be said that research has just begun on the reduction and removal of odors.
導波モード光は、光が高屈折率材料から低屈折率材料に入射する際に全反射が起きることにより生じるので、導波モード光を低減するには全反射を起きにくくする、あるいは、全反射を生じる光の割合を低減することによって導波モード光を低減する方策が知られている。
特許文献3には、有機発光層の近傍に有機発光層や透明電極よりも屈折率の高い高屈折率層を挿入する構成が開示されている。また、特許文献2には、有機発光層及び透明電極に有機発光層及び透明電極よりも低屈折率の微粒子を分散させることで、等価的に有機発光層及び透明電極の屈折率を下げる構成が開示されている。
Since guided mode light is generated when total reflection occurs when light enters a low refractive index material from a high refractive index material, total reflection is less likely to occur in order to reduce guided mode light. There are known measures for reducing guided mode light by reducing the proportion of light that causes reflection.
Patent Document 3 discloses a configuration in which a high refractive index layer having a higher refractive index than that of an organic light emitting layer or a transparent electrode is inserted in the vicinity of the organic light emitting layer. Patent Document 2 discloses a configuration in which the refractive index of the organic light emitting layer and the transparent electrode is equivalently lowered by dispersing fine particles having a lower refractive index than the organic light emitting layer and the transparent electrode in the organic light emitting layer and the transparent electrode. It is disclosed.
また、特許文献4及び特許文献5には、基板上に順に形成された透明電極層及び誘電体層にキャビティを有する構成が開示されている。
このキャビティの側面(基板に対して垂直に延びる界面)に入射する光は、この界面において基板側に屈折する。基板側に屈折した光は、透明電極と基板の界面、及び基板と空気の界面で全反射を生じる光の割合を低減することができる。
Patent Documents 4 and 5 disclose a configuration in which a cavity is provided in a transparent electrode layer and a dielectric layer that are sequentially formed on a substrate.
Light incident on the side surface of the cavity (interface extending perpendicular to the substrate) is refracted toward the substrate at this interface. The light refracted to the substrate side can reduce the proportion of light that causes total reflection at the interface between the transparent electrode and the substrate and between the substrate and the air.
 一方、金属電極の表面に捕捉されたSPPモード光を取り出す方法として、金属電極の表面に周期的な凹凸構造を形成する構成が知られている(特許文献6~9)。 On the other hand, as a method for extracting the SPP mode light trapped on the surface of the metal electrode, a configuration in which a periodic uneven structure is formed on the surface of the metal electrode is known (Patent Documents 6 to 9).
特開2008-210717号公報JP 2008-210717A 特開2011-243625号公報JP 2011-243625 A 特開2011-233288号公報JP 2011-233288 A 特表2003-522371号公報Special table 2003-522371 特開2011-82192号公報JP 2011-82192 A 特開2006-313667号公報JP 2006-313667 A 特開2009-158478号公報JP 2009-158478 A 特表2005-535121号公報JP 2005-535121 Gazette 特開2004-31350号公報JP 2004-31350 A
 しかしながら、SPPモード光を伝播光として取り出しても、その光が導波モード光となって素子の外部に取り出すことができなければ、光取り出し効率を向上させることができない。 However, even if the SPP mode light is extracted as propagating light, the light extraction efficiency cannot be improved unless the light becomes guided mode light and can be extracted outside the device.
 本発明は、上記事情に鑑みなされたものであり、SPPモード光及び導波モード光を効果的に取り出して光取り出し効率が向上した有機EL素子並びにそれを備えた画像表示装置及び照明装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides an organic EL element in which SPP mode light and waveguide mode light are effectively extracted to improve light extraction efficiency, and an image display device and an illumination device including the organic EL element. The purpose is to do.
 本発明者らは、まず、SPPモード光を有機層中に伝播光として取り出し、その次に、その伝播光を導波モード光とせずに素子の外部に取り出すという2ステップの光取り出し機構を想定して多数の構造の中から、光取り出し効率を向上させる有効な構造を鋭意検討した。
 光取り出し効率を直接計測することは困難であるため、主にシミュレーションに基づいて検討を行った。
The present inventors first assume a two-step light extraction mechanism in which SPP mode light is extracted as propagating light into an organic layer, and then the propagating light is extracted outside the device without being converted into guided mode light. Thus, an effective structure for improving the light extraction efficiency has been intensively studied among a number of structures.
Since it is difficult to directly measure the light extraction efficiency, the investigation was mainly based on simulation.
本発明の有機EL素子は、発光層を含む有機層を第1電極と第2電極が挟持してなる構造のものである。ここで、上記の2ステップの光取り出し機構は、SPPモード光を生成し、生成されたSPPモード光を伝播光として取り出すOtto型配置(非特許文献1)の第2電極側構造と、その伝播光を導波モード光とせずに外部に取り出す第1電極側構造とからなる。 The organic EL device of the present invention has a structure in which an organic layer including a light emitting layer is sandwiched between a first electrode and a second electrode. Here, the above-described two-step light extraction mechanism generates the SPP mode light, and the second electrode side structure of the Otto type arrangement (Non-Patent Document 1) that extracts the generated SPP mode light as the propagation light, and its propagation It consists of a first electrode side structure that takes out light without using it as guided mode light.
 本発明者らは、シミュレーションにより、Otto型配置の第2電極側構造と、導波モード光を透明基板側に屈折又は指向させる、透明基板に対して垂直又は垂直に近い界面を備えた第1電極側構造とを組み合わせることにより、かかる第2電極側構造及び第1電極側構造の単独の光取り出し効率の向上効果からは予測できないほどの顕著な効果を奏することを見い出し、本発明を完成させた。 The inventors of the present invention have shown by simulation that a first electrode having an Otto-type arrangement of the second electrode side structure and an interface that is perpendicular or nearly perpendicular to the transparent substrate that refracts or directs guided mode light toward the transparent substrate. By combining with the electrode side structure, it has been found that the second electrode side structure and the first electrode side structure have a remarkable effect that cannot be predicted from the improvement effect of the single light extraction efficiency, and the present invention has been completed. It was.
 上記課題を解決するため、概要を説明した本発明は以下の構成を採用する。
(1)基板上に、誘電体層と、陽極と、有機EL材料からなる発光層を含む有機層と、陰極とが順に形成されてなり、前記陽極側から外部に光を取り出すように構成された有機EL素子であって、さらに、前記陰極の、前記有機層の反対側に、低屈折率層と金属層とを順に具備し、前記陰極は、透光性導電材料からなり、前記低屈折率層の屈折率は、前記有機層の屈折率よりも低く、前記誘電体層は、前記陽極の屈折率より低い屈折率を有すると共に前記基板が露出するように開口部を有するパターンで形成されており、前記陽極と、前記有機層、前記陰極、前記低屈折率層及び前記金属層は、前記誘電体層のパターンを追従するように形成されている、ことを特徴とする有機EL素子。
(2)誘電体層と、第1電極と、発光層を含む有機層と、第2電極とを順に具備する有機EL素子であって、さらに、前記第2電極の、前記有機層の反対側の面に、厚さ20nm以上300nm以下の低屈折率層と、金属層とを順に具備し、前記第2電極は、透光性導電材料からなり、前記低屈折率層の屈折率は、前記有機層の屈折率よりも低く、前記誘電体層は、前記第1電極の屈折率と異なる屈折率を有すると共に開口部を有するパターンで形成されており、前記第1電極は、前記誘電体層のパターンに沿うように形成されている、ことを特徴とする有機EL素子。
(3)誘電体層と、第1電極と、発光層を含む有機層と、第2電極とを順に具備する有機EL素子であって、さらに、前記第2電極の、前記有機層の反対側の面に、厚さ20nm以上300nm以下の低屈折率層と、金属層とを順に具備し、前記第2電極は、透光性導電材料からなり、前記低屈折率層の屈折率は、前記有機層の屈折率よりも低く、前記誘電体層は、前記第1電極の屈折率と異なる屈折率を有すると共に平面視で互いに独立した島状の誘電体島状部を有するパターンで形成されており、前記第1電極は、前記誘電体層のパターンに沿うように形成されている、ことを特徴とする有機EL素子。
(4)基板上に、第1電極と、発光層を含む有機層と、第2電極とを順に具備する有機EL素子であって、さらに、前記第2電極の、前記有機層の反対側の面に、厚さ20nm以上300nm以下の低屈折率層と、金属層とを順に具備し、前記第2電極は、透光性導電材料からなり、前記低屈折率層の屈折率は、前記有機層の屈折率よりも低く、前記基板は、前記第1電極の屈折率と異なる屈折率を有すると共に、前記第1電極が形成される側の面に、基板開口部または平面視で互いに独立した島状の基板島状部を有するパターンが形成されており、前記第1電極は、前記基板のパターンに沿うように形成されている、ことを特徴とする有機EL素子。
(5)前記陽極又は前記第1電極の屈折率は、前記有機層と異なることを特徴とする(1)~(4)のいずれか一項に記載の有機EL素子。
(6)前記陽極又は前記第1電極の有機層側の表面は導電体または誘電体からなる平坦化層によって平坦化されており、前記有機層は平坦であることを特徴とする(1)~(5)のいずれか一項に記載の有機EL素子。
(7)前記低屈折率層の屈折率はさらに、前記陰極又は前記第2電極の屈折率よりも低いことを特徴とする(1)~(6)のいずれか一項に記載の有機EL素子。
(8)前記陰極又は前記第2電極の屈折率は、前記有機層の屈折率よりも低いことを特徴とする(7)に記載の有機EL素子。
(9)前記低屈折率層は、前記陰極又は前記第2電極及び前記有機層のうちの少なくとも一方よりも屈折率が0.2以上小さい材料からなることを特徴とする(1)~(8)のいずれか一項に記載の有機EL素子。
(10)前記開口部または前記島状部、並びに、前記基板開口部または前記基板島状部が、基板面内の少なくとも一方向に配列される周期が200~2000nmであることを特徴とする(1)~(9)のいずれか一項に記載の有機EL素子。
(11)前記金属層の誘電率の実部ε、前記低屈折率層の誘電率ε、及び、前記誘電体層のパターン又は前記基板のパターンの少なくとも一方向の周期(p)が、ある整数N(1≦N≦3)に対して以下の式を満たすように選択されていることを特徴とする(1)~(9)のいずれか一項に記載の有機EL素子;
Figure JPOXMLDOC01-appb-M000002
 ここで、λは前記発光層のフォトルミネッセンス・スペクトルの最大ピーク波長である。
(12)前記周期が、200nm~2000nmであることを特徴とする(11)に記載の有機EL素子。
(13)(1)~(12)のいずれか一項に記載の有機EL素子を備えたことを特徴とする画像表示装置。
(14)(1)~(13)のいずれか一項に記載の有機EL素子を備えたことを特徴とする照明装置。
In order to solve the above-mentioned problems, the present invention having the outline adopts the following configuration.
(1) A dielectric layer, an anode, an organic layer including a light emitting layer made of an organic EL material, and a cathode are sequentially formed on the substrate, and is configured to extract light from the anode side to the outside. The organic EL device further comprises a low refractive index layer and a metal layer in order on the opposite side of the cathode from the organic layer, wherein the cathode is made of a translucent conductive material, and the low refractive index. The refractive index of the refractive index layer is lower than the refractive index of the organic layer, and the dielectric layer has a refractive index lower than that of the anode and has a pattern having an opening so that the substrate is exposed. The organic EL element, wherein the anode, the organic layer, the cathode, the low refractive index layer, and the metal layer are formed so as to follow a pattern of the dielectric layer.
(2) An organic EL device comprising a dielectric layer, a first electrode, an organic layer including a light emitting layer, and a second electrode in this order, and further, the second electrode on the opposite side of the organic layer. On the surface, a low refractive index layer having a thickness of 20 nm or more and 300 nm or less and a metal layer in order, the second electrode is made of a translucent conductive material, and the refractive index of the low refractive index layer is The dielectric layer is lower than the refractive index of the organic layer, and the dielectric layer has a refractive index different from that of the first electrode and has a pattern having an opening, and the first electrode is formed of the dielectric layer. An organic EL element characterized by being formed so as to follow the pattern.
(3) An organic EL device comprising a dielectric layer, a first electrode, an organic layer including a light emitting layer, and a second electrode in this order, and further, the second electrode on the opposite side of the organic layer. On the surface, a low refractive index layer having a thickness of 20 nm or more and 300 nm or less and a metal layer in order, the second electrode is made of a translucent conductive material, and the refractive index of the low refractive index layer is The dielectric layer is lower than the refractive index of the organic layer, and the dielectric layer has a refractive index different from the refractive index of the first electrode and has a pattern having island-shaped dielectric island portions that are independent from each other in plan view. The organic EL element is characterized in that the first electrode is formed along the pattern of the dielectric layer.
(4) An organic EL device comprising a first electrode, an organic layer including a light emitting layer, and a second electrode on a substrate in order, and further, the second electrode on the opposite side of the organic layer. On the surface, a low refractive index layer having a thickness of 20 nm to 300 nm and a metal layer are provided in order, and the second electrode is made of a light-transmitting conductive material, and the refractive index of the low refractive index layer is the organic The substrate has a refractive index lower than the refractive index of the layer, and the substrate has a refractive index different from the refractive index of the first electrode, and is independent of each other in a substrate opening or a plan view on a surface on which the first electrode is formed. A pattern having island-shaped substrate island-shaped portions is formed, and the first electrode is formed along the pattern of the substrate.
(5) The organic EL element according to any one of (1) to (4), wherein a refractive index of the anode or the first electrode is different from that of the organic layer.
(6) The surface on the organic layer side of the anode or the first electrode is flattened by a flattening layer made of a conductor or a dielectric, and the organic layer is flat (1) to The organic EL device according to any one of (5).
(7) The organic EL element according to any one of (1) to (6), wherein a refractive index of the low refractive index layer is further lower than a refractive index of the cathode or the second electrode. .
(8) The organic EL element according to (7), wherein a refractive index of the cathode or the second electrode is lower than a refractive index of the organic layer.
(9) The low refractive index layer is made of a material having a refractive index smaller by 0.2 or more than at least one of the cathode or the second electrode and the organic layer. ). The organic EL element as described in any one of 1).
(10) The period in which the opening or the island-shaped portion and the substrate opening or the substrate island-shaped portion are arranged in at least one direction within the substrate surface is 200 to 2000 nm ( The organic EL device according to any one of 1) to (9).
(11) A real part ε 1 of the dielectric constant of the metal layer, a dielectric constant ε 2 of the low refractive index layer, and a period (p) in at least one direction of the pattern of the dielectric layer or the pattern of the substrate, The organic EL element according to any one of (1) to (9), wherein the organic EL element is selected so as to satisfy the following formula for a certain integer N (1 ≦ N ≦ 3):
Figure JPOXMLDOC01-appb-M000002
Here, λ is the maximum peak wavelength of the photoluminescence spectrum of the light emitting layer.
(12) The organic EL element according to (11), wherein the period is 200 nm to 2000 nm.
(13) An image display device comprising the organic EL element according to any one of (1) to (12).
(14) An illuminating device comprising the organic EL element according to any one of (1) to (13).
 本発明によれば、SPPモード光及び導波モード光を効果的に取り出して光取り出し効率が向上した有機EL素子並びにそれを備えた画像表示装置及び照明装置を提供できる。 According to the present invention, it is possible to provide an organic EL element in which SPP mode light and waveguide mode light are effectively extracted to improve light extraction efficiency, and an image display device and an illumination device including the organic EL element.
本発明の第1実施形態に係る有機EL素子の一例を説明するための断面模式図であり、(a)は、誘電体層の屈折率が陽極の屈折率より高い有機EL素子であり、(b)は、誘電体層の屈折率が陽極の屈折率より低い有機EL素子である。It is a cross-sectional schematic diagram for demonstrating an example of the organic EL element which concerns on 1st Embodiment of this invention, (a) is an organic EL element whose refractive index of a dielectric material layer is higher than the refractive index of an anode, b) is an organic EL element in which the refractive index of the dielectric layer is lower than the refractive index of the anode. (a)は、本発明の第1実施形態に係る有機EL素子の一例を説明するための斜視図であり、(b)は、誘電体層の凹凸構造を逆にした有機EL素子の斜視図である。なお、発明の特徴を分かりやすく示すため、Otto型配置構造の部分を離して図示した。(A) is a perspective view for demonstrating an example of the organic EL element which concerns on 1st Embodiment of this invention, (b) is a perspective view of the organic EL element which reversed the uneven structure of the dielectric material layer. It is. In addition, in order to show the feature of the invention in an easy-to-understand manner, the portion of the Otto type arrangement structure is illustrated separately. 本発明の第2実施形態に係る有機EL素子の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the organic EL element which concerns on 2nd Embodiment of this invention. (a)は、本発明の第2実施形態に係る有機EL素子の一例を説明するための斜視図であり、(b)は、基板の凹凸構造を逆にした有機EL素子の斜視図である。なお、発明の特徴を分かりやすく示すため、Otto型配置構造の部分を離して図示した。(A) is a perspective view for demonstrating an example of the organic EL element which concerns on 2nd Embodiment of this invention, (b) is a perspective view of the organic EL element which reversed the uneven structure of the board | substrate. . In addition, in order to show the feature of the invention in an easy-to-understand manner, the portion of the Otto type arrangement structure is illustrated separately. 本発明の第3実施形態に係る有機EL素子の一例を説明するための断面模式図であり、(a)は、陽極表面の一部を平坦化層が覆っている図で、(b)は、陽極表面の全体を覆っている図である。It is a cross-sectional schematic diagram for demonstrating an example of the organic EL element which concerns on 3rd Embodiment of this invention, (a) is a figure where the planarization layer has covered a part of anode surface, (b) is It is the figure which has covered the whole anode surface. Otto型配置を有する第2電極側構造を備えた有機EL素子の断面模式図である。It is a cross-sectional schematic diagram of the organic EL element provided with the 2nd electrode side structure which has Otto type | mold arrangement | positioning. 透過型回折格子を備えた第1電極側構造を備えた有機EL素子の第1電極側構造を含む一部の断面模式図である。It is a partial cross-sectional schematic diagram including the 1st electrode side structure of the organic EL element provided with the 1st electrode side structure provided with the transmissive | pervious diffraction grating. 本発明の第1実施形態に係る有機EL素子における(a)回折の効果を説明するための断面模式図、(b)フォトニック結晶の効果を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the effect of the diffraction in the organic EL element which concerns on 1st Embodiment of this invention, (b) The cross-sectional schematic diagram for demonstrating the effect of a photonic crystal. 本発明の有機EL素子を備えた画像表示装置の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the image display apparatus provided with the organic EL element of this invention. 本発明の有機EL素子を備えた照明装置の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of the illuminating device provided with the organic EL element of this invention. 本発明の第1実施形態に係る有機EL素子の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the organic EL element which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る有機EL素子の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the organic EL element which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る有機EL素子の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the organic EL element which concerns on 3rd Embodiment of this invention. 基板上に、陽極と有機層と陰極(金属)とを有する一般の有機EL素子において、有機層で発光した光を有機EL素子面方向における波数で展開するエネルギー散逸計算を行った結果を示す。The result of having performed the energy dissipation calculation which expand | deploys the light light-emitted in the organic layer by the wave number in the organic EL element surface direction in the general organic EL element which has an anode, an organic layer, and a cathode (metal) on a board | substrate is shown. Otto型配置におけるエネルギー散逸計算の、低屈折率層の膜厚による依存性を示した図であり、低屈折率層の屈折率を1.38とし、(a)は金属層をAlとし、(b)は金属層をAgとした場合の結果を示した図である。It is the figure which showed the dependence by the film thickness of a low-refractive-index layer of energy dissipation calculation in an Otto type | mold arrangement | positioning, the refractive index of a low-refractive-index layer shall be 1.38, (a) makes a metal layer Al, ( b) is a diagram showing the results when the metal layer is Ag. 図15におけるピークの変化を説明するための、本発明の一実施形態に係る有機EL素子の断面模式図である。It is a cross-sectional schematic diagram of the organic EL element which concerns on one Embodiment of this invention for demonstrating the change of the peak in FIG. 図15におけるエネルギー散逸計算の結果において、低屈折率層の膜厚に対するピーク幅の変化を示した図である。In the result of energy dissipation calculation in FIG. 15, it is the figure which showed the change of the peak width with respect to the film thickness of a low refractive index layer. 本発明の一実施形態に係る有機EL素子において、(a)は金属層をAl、(b)は金属層をAgとした場合の式(16)をグラフ化した図である。In the organic EL element which concerns on one Embodiment of this invention, (a) is a figure which graphed Formula (16) at the time of making a metal layer into Al and (b) making a metal layer into Ag. 本発明の第1実施形態に係る有機EL素子の有機EL素子の光取り出し効率について、周期依存性をランダムなダイポールを用いて調べた、コンピュータシミュレーションの結果を示す図である。It is a figure which shows the result of the computer simulation which investigated the period dependence about the light extraction efficiency of the organic EL element of the organic EL element which concerns on 1st Embodiment of this invention using a random dipole. 図19のシミュレーションを行った有機EL素子の構造を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the organic EL element which performed the simulation of FIG. FDTD法シミュレーションで得られた、水平方向のダイポールからの放射光の電場の強度分布を示した図であり、(a)はOtto型配置の第2電極側構造を有し、伝播光を導波モード光とせずに外部に取り出す第1電極側構造を有さない場合、(b)はOtto型配置の第2電極側構造を有し、第1電極間周期(ピッチ)が500nmのもの、(c)はOtto型配置の第2電極側構造を有し、第1電極間周期(ピッチ)が900nmのものである。It is the figure which showed the intensity distribution of the electric field of the radiated light from the horizontal dipole obtained by FDTD method simulation, (a) has the 2nd electrode side structure of Otto type arrangement, and propagates propagation light In the case where the first electrode side structure extracted outside without using the mode light is not provided, (b) has the second electrode side structure of the Otto type arrangement, and the first electrode period (pitch) is 500 nm. c) has an Otto type second electrode side structure, and the first interelectrode period (pitch) is 900 nm. FDTD法シミュレーションで得られた、垂直方向のダイポールからの放射光の磁場の強度分布を示した図であり、(a)はOtto型配置の第2電極側構造を有し、伝播光を導波モード光とせずに外部に取り出す第1電極側構造を有さない場合、(b)はOtto型配置の第2電極側構造を有し、第1電極間周期(ピッチ)が500nmのもの、(c)はOtto型配置の第2電極側構造を有し、第1電極間周期(ピッチ)が900nmのものである。It is the figure which showed the intensity distribution of the magnetic field of the radiated light from the dipole of the perpendicular direction obtained by FDTD method simulation, (a) has the 2nd electrode side structure of Otto type arrangement, and propagates propagation light In the case where the first electrode side structure extracted outside without using the mode light is not provided, (b) has the second electrode side structure of the Otto type arrangement, and the first electrode period (pitch) is 500 nm. c) has an Otto type second electrode side structure, and the first interelectrode period (pitch) is 900 nm. FDTD法シュミュレーションで得られた、水平方向のダイポールからの放射光の電場の強度分布の第1電極間周期(ピッチ)による依存性を示した図であり、周期が(a)は200nm、(b)は300nm、(c)は500nm、(d)は900nm、(e)は2000nm、(f)は4000nmである。It is the figure which showed the dependence by the period (pitch) between the 1st electrodes of the intensity distribution of the electric field of the emitted light from the horizontal dipole obtained by the FDTD method simulation, (a) is 200 nm, ( b) is 300 nm, (c) is 500 nm, (d) is 900 nm, (e) is 2000 nm, and (f) is 4000 nm. FDTD法シュミュレーションで得られた、垂直方向のダイポールからの放射光の磁場の強度分布の第1電極間周期(ピッチ)による依存性を示した図であり、周期が(a)は200nm、(b)は300nm、(c)は500nm、(d)は900nm、(e)は2000nm、(f)は4000nmである。It is the figure which showed the dependence by the period (pitch) of the 1st electrode of the intensity distribution of the magnetic field of the radiated light from the dipole of the perpendicular direction obtained by FDTD method simulation, and the period (a) is 200 nm, ( b) is 300 nm, (c) is 500 nm, (d) is 900 nm, (e) is 2000 nm, and (f) is 4000 nm.
 以下、本発明を適用した有機EL素子並びにそれを備えた画像表示装置及び照明装置について、図面を用いてその構成を説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
本発明の有機EL素子は、いわゆるボトムエミッション構造でもトップエミッション構造でも、いずれを適用してもよい。
本発明において、第1電極及び第2電極は一方が陽極で他方が陰極であるが、以下では、第1電極を陽極、第2電極を陰極とする構成を例に挙げて説明する。
また、本発明の有機EL素子は本発明の効果を損ねない範囲で以下に記載していない層を備えてもよい。
Hereinafter, the structure of an organic EL element to which the present invention is applied, an image display apparatus and an illumination apparatus including the organic EL element will be described with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. . In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist thereof.
Any of the so-called bottom emission structure and top emission structure may be applied to the organic EL element of the present invention.
In the present invention, one of the first electrode and the second electrode is an anode and the other is a cathode. In the following description, a configuration in which the first electrode is an anode and the second electrode is a cathode will be described as an example.
Moreover, the organic EL element of this invention may be provided with the layer which is not described below in the range which does not impair the effect of this invention.
(有機EL素子)
 図1(a)、(b)は、本発明の第1実施形態に係る有機EL素子の一例を説明するための断面模式図である。
 図1に示す有機EL素子10は、基板1上に、誘電体層7と、陽極(第1電極)2と、発光層を含む有機層3と、陰極(第2電極)4とを順に具備する有機EL素子である。ここで、前記陰極4の、前記有機層3の反対側に、低屈折率層5と金属層6とを順に具備する。また陰極4は、透明導電材料からなり、前記低屈折率層5の屈折率は、前記有機層3の屈折率よりも低く、前記誘電体層7は、前記陽極2の屈折率と異なる屈折率を有すると共に開口部7Aを有するパターンで形成されている。ここで、図1(a)は誘電体層7の屈折率が陽極2の屈折率より高い有機EL素子を示し、一方、図1(b)は誘電体層7の屈折率が陽極2の屈折率より低い有機EL素子を示す。また陽極2は、前記誘電体層7のパターンに沿うように(conformalに)形成されている。
 上記のように陰極4側の構造について屈折率の比較を行う場合には、有機層3の屈折率とは、有機EL材料からなる発光層を含む全ての層の平均の屈折率をいう。
(Organic EL device)
1A and 1B are schematic cross-sectional views for explaining an example of an organic EL element according to the first embodiment of the present invention.
An organic EL element 10 shown in FIG. 1 includes a dielectric layer 7, an anode (first electrode) 2, an organic layer 3 including a light emitting layer, and a cathode (second electrode) 4 in this order on a substrate 1. It is an organic EL element. Here, a low refractive index layer 5 and a metal layer 6 are sequentially provided on the opposite side of the cathode 4 from the organic layer 3. The cathode 4 is made of a transparent conductive material, the refractive index of the low refractive index layer 5 is lower than the refractive index of the organic layer 3, and the dielectric layer 7 has a refractive index different from the refractive index of the anode 2. And a pattern having an opening 7A. Here, FIG. 1A shows an organic EL element in which the refractive index of the dielectric layer 7 is higher than the refractive index of the anode 2, while FIG. 1B shows the refractive index of the dielectric layer 7 that is the refractive index of the anode 2. An organic EL element lower than the rate is shown. The anode 2 is formed (conformal) along the pattern of the dielectric layer 7.
When comparing the refractive indexes of the structure on the cathode 4 side as described above, the refractive index of the organic layer 3 means the average refractive index of all the layers including the light emitting layer made of the organic EL material.
 図2は本発明の第1実施形態に係る有機EL素子の一例を説明するための斜視図である。図2(a)は、誘電体層7の開口部7Aが平面視で互いに分離した島状に配列しそれぞれその上に陽極2と有機層3を形成した有機EL素子を説明するための斜視図である。図2(b)は、誘電体層17の開口部が平面視で全て繋がった海状に配列しているように形成し、それぞれその上に陽極12と有機層13を形成した有機EL素子を説明するための斜視図である。突起状に形成された誘電体層17の誘電体島状部17Bは、図2(a)における開口部7Aと同様に、光を基板側に屈折させる効果を奏する。図2(a)、(b)に示す開口部7A及び誘電体島状部17Bの形状は略円柱形状であるが、これに限られるものではない。開口部7A又は誘電体島状部17Bの形状は、円錐台、多角柱、の他、ストライプ状(ライン状)であってもよい。誘電体層17のパターンに沿うように(conformalに)、陽極凸部12Bが形成される。この陽極凸部12Bは、図2(a)における陽極凹部2Aと同様に、光を基板側に屈折させる効果を奏する。従って、誘電体層が海島構造の海部であっても島部であっても同様の屈折の効果を奏するため、以下、図2(a)に基づき説明する。 FIG. 2 is a perspective view for explaining an example of the organic EL element according to the first embodiment of the present invention. FIG. 2A is a perspective view for explaining an organic EL element in which the openings 7A of the dielectric layer 7 are arranged in islands separated from each other in a plan view, and the anode 2 and the organic layer 3 are respectively formed thereon. It is. FIG. 2B shows an organic EL element in which the openings of the dielectric layer 17 are formed so as to be arrayed in a sea shape where all the openings are connected in a plan view, and the anode 12 and the organic layer 13 are formed thereon. It is a perspective view for demonstrating. The dielectric island portion 17B of the dielectric layer 17 formed in a protruding shape has an effect of refracting light toward the substrate side, similarly to the opening portion 7A in FIG. The shapes of the opening 7A and the dielectric island portion 17B shown in FIGS. 2A and 2B are substantially cylindrical shapes, but are not limited thereto. The shape of the opening 7A or the dielectric island portion 17B may be a truncated cone, a polygonal column, or a stripe shape (line shape). Anode protrusions 12B are formed along the pattern of dielectric layer 17 (conformal). This anode convex part 12B has the effect of refracting light toward the substrate, similarly to the anode concave part 2A in FIG. Therefore, in order to produce the same refraction effect regardless of whether the dielectric layer is a sea part or an island part of a sea-island structure, a description will be given below with reference to FIG.
 開口部7Aが基板面内の少なくとも一方向に配置される周期が発光光の波長以上の場合は、開口部7Aの形状はその内側面7aで光を基板側へ屈折させる効果を奏するものであれば特に限定はされない。しかし、図1(a)のように誘電体層7の屈折率が陽極2の屈折率より高い場合は、導波モード光をより基板1側に屈折させる観点から、開口部7Aの基板1側の底面積より陰極4側の上面面積のほうが大きい形状が好ましい。図1(a)で示した例では、開口部7Aの内側面7aを基板面に対してほぼ垂直に配置する構成であるが、かかる構成に限定されない。開口部7Aの内側面7aと基板面がなす角度で、開口部7Aの内側の角度θは90°~135°が好ましく、90°~120°がより好ましく、90°~105°がより一層好ましい。
一方、図1(b)のように誘電体層7の屈折率が陽極2の屈折率より低い場合は、導波モード光をより基板1側に屈折させる観点からは、開口部7Aの基板1側の底面積より陰極4側の上面面積が小さい形状が好ましい。図1(b)で示した例では、開口部7Aの内側面7aは基板面に対してほぼ垂直に配置する構成であるが、かかる構成に限定されない。開口部7Aの内側面7aと基板面がなす角度で、開口部7Aの内側の角度θは45°~90°が好ましく、60°~90°がより好ましく、75°~90°がより一層好ましい。
開口部7Aの内側面7aを上記のような角度とすることにより、SPPモード光から再放射された伝播光と発光位置から陽極側へ向かう導波モード光として取り出した光が開口部7Aの内側面7aに入射して基板1側に屈折し、基板の外表面から外部へ取り出されやすくなる。
When the period in which the opening 7A is arranged in at least one direction within the substrate surface is equal to or greater than the wavelength of the emitted light, the shape of the opening 7A has an effect of refracting light toward the substrate at the inner surface 7a. There is no particular limitation. However, when the refractive index of the dielectric layer 7 is higher than the refractive index of the anode 2 as shown in FIG. 1A, from the viewpoint of refracting the guided mode light to the substrate 1 side, the opening 7A side of the substrate 1 side. A shape in which the area of the upper surface on the cathode 4 side is larger than the area of the bottom of the substrate is preferable. In the example shown in FIG. 1A, the inner surface 7a of the opening 7A is arranged substantially perpendicularly to the substrate surface, but the present invention is not limited to this configuration. The angle formed between the inner surface 7a of the opening 7A and the substrate surface, and the angle θ inside the opening 7A is preferably 90 ° to 135 °, more preferably 90 ° to 120 °, and still more preferably 90 ° to 105 °. .
On the other hand, when the refractive index of the dielectric layer 7 is lower than the refractive index of the anode 2 as shown in FIG. 1B, from the viewpoint of refracting the guided mode light to the substrate 1 side, the substrate 1 in the opening 7A. A shape in which the upper surface area on the cathode 4 side is smaller than the bottom area on the side is preferable. In the example shown in FIG. 1B, the inner side surface 7a of the opening 7A is arranged substantially perpendicular to the substrate surface, but is not limited to this configuration. The angle between the inner surface 7a of the opening 7A and the substrate surface, and the angle θ inside the opening 7A is preferably 45 ° to 90 °, more preferably 60 ° to 90 °, and even more preferably 75 ° to 90 °. .
By setting the inner surface 7a of the opening 7A to the above angle, the propagation light re-radiated from the SPP mode light and the light extracted as the guided mode light from the light emission position toward the anode side are within the opening 7A. The light enters the side surface 7a and is refracted toward the substrate 1, and is easily taken out from the outer surface of the substrate.
 一方で、開口部7Aが基板面内の少なくとも一方向に配置される周期が光の波長と同等以下の場合においては、開口部7Aの形状は、回折の効果やフォトニック結晶による効果を奏するものであれば特に限定はされないが、発光した光をより基板側に取り出す観点からは、開口部7Aの内側面7aは基板面に対して垂直または垂直に近いことが好ましい。
 これは開口部7Aの内側面7aが基板面に対して垂直または垂直に近い界面であることによって、誘電体層7の内側面7aを横切る基板面内方向において、屈折率の変調が急峻になるためである。屈折率の変調が急峻な場合は、フォトニック結晶では基板面内方向に光が伝播できなくなるバンドギャップの周波数域が広くなり、より効率的に有機層3で発光した光を基板の外表面から外部へ取り出すことができる。また回折格子でも屈折率の変調が急峻な場合は、基板方向への光の回折効果が向上するため、同様に素子外部への光取り出しが向上する。上記開口部7Aを誘電体島状部17Bとしても形状に関して、同様のことが言える。
以上、ボトムエミッション構造を例に説明したが、これらのことはトップエミッション構造についても同様である。
On the other hand, when the period in which the opening 7A is arranged in at least one direction within the substrate surface is equal to or less than the wavelength of the light, the shape of the opening 7A exhibits a diffraction effect or a photonic crystal effect. However, from the viewpoint of extracting emitted light to the substrate side, it is preferable that the inner side surface 7a of the opening 7A is perpendicular or nearly perpendicular to the substrate surface.
This is because the inner side surface 7a of the opening 7A is an interface that is perpendicular or nearly perpendicular to the substrate surface, so that the refractive index modulation becomes steep in the in-plane direction across the inner side surface 7a of the dielectric layer 7. Because. When the refractive index is sharply modulated, the photonic crystal has a wider band gap frequency range in which light cannot propagate in the in-plane direction of the substrate, and more efficiently emits light emitted from the organic layer 3 from the outer surface of the substrate. Can be taken out. Further, when the refractive index is sharply modulated even in the diffraction grating, the light diffracting effect in the substrate direction is improved, and similarly, the light extraction to the outside of the element is improved. The same applies to the shape of the opening 7A as the dielectric island 17B.
Although the bottom emission structure has been described above as an example, the same applies to the top emission structure.
 本発明の有機EL素子に共通する陰極側の構成である、金属層/低屈折率層/陰極/有機層の積層構造において、低屈折率層の屈折率が有機層の屈折率よりも低い構成としては、低屈折率層、陰極、有機層の屈折率をそれぞれn、n、nとすると、n<n<nの場合(以下「Bパターン」という)、n<n<nの場合(以下「Cパターン」という)と、n<n<nの場合(以下「Dパターン」という)の3通りがある。ところで、Otto型配置では、金属層/低屈折率層/高屈折率層の順で層を配置する必要がある。ここで、Bパターンの場合は、金属層/低屈折率層/陰極の構成がOtto型配置になっている。また、Cパターンの場合は、金属層/低屈折率層/陰極の構成がOtto型配置である他、金属層/低屈折率層+陰極/有機層の構成もOtto型配置になっている。さらに、Dパターンの場合は、金属層/低屈折率層+陰極/有機層の構成がOtto型配置になっている。 In the laminated structure of the metal layer / low refractive index layer / cathode / organic layer, which is common to the organic EL device of the present invention, the refractive index of the low refractive index layer is lower than the refractive index of the organic layer. Assuming that the refractive indexes of the low refractive index layer, the cathode, and the organic layer are n L , n C , and n O , respectively, n L <n O <n C (hereinafter referred to as “B pattern”), n L < There are three cases: n C <n O (hereinafter referred to as “C pattern”) and n C <n L <n O (hereinafter referred to as “D pattern”). By the way, in the Otto type arrangement, it is necessary to arrange the layers in the order of metal layer / low refractive index layer / high refractive index layer. Here, in the case of the B pattern, the structure of the metal layer / low refractive index layer / cathode is an Otto type arrangement. In the case of the C pattern, the configuration of the metal layer / low refractive index layer / cathode is an Otto type arrangement, and the configuration of metal layer / low refractive index layer + cathode / organic layer is also an Otto type arrangement. Further, in the case of the D pattern, the configuration of the metal layer / low refractive index layer + cathode / organic layer is an Otto type arrangement.
 B~Dパターンで最も好ましいのは、Cパターンである。この場合は、まず、金属層/低屈折率層/陰極(透明導電層)の構成がOtto型配置になっていると共に、金属層/低屈折率層+陰極(透明導電層)/有機層の構成でもOtto型配置になっているため、金属層からSPPモード光の再放射が最も生じやすい。さらに、低屈折率層、陰極(透明導電層)、有機層の順に屈折率が高くなるため各界面で全反射が生じず、再放射されたSPPモード光がそのまま基板側へ取り出される。この具体的な構成としては、陰極(透明導電層)がPEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)、代表的な屈折率:1.5)などの透明導電材料層で、低屈折率層が空気やCパターンの屈折率条件を満たすSOG(スピンオングラス)である場合が挙げられる。
 次に好ましいのは、Bパターンである。この場合は、金属層/低屈折率層/陰極(透明導電層)の構成がOtto型配置になっているため、金属層からSPPモード光の再放射が生じる。但し、有機層の屈折率が低屈折率層と陰極(透明導電層)の中間の値なので再放射されたSPPモード光のうちの一部の光は陰極(透明導電層)/有機層の界面で全反射して、残りの光が有機層に透過する。この具体的な構成例としては、有機層(代表的な屈折率:1.7~1.8)に対し、陰極の材料としてa-ITO(アモルファスITO、代表的な屈折率:2.1)を選び、低屈折率層の材料としてSOGの中から有機層の材料より低屈折率のものを選ぶ場合が挙げられる。
次に好ましいのは、Dパターンである。この場合は、金属層/低屈折率層/陰極(透明導電層)の構成はOtto型配置になっていない。一方で、金属層/低屈折率層+陰極(透明導電層)/有機層の構成でだけOtto型配置になっている。そのため、金属層からSPPモード光の再放射が生じるが、Bパターンの場合よりもさらにSPPモード光の再放射が少なくなる。この具体的な構成としては、有機層(代表的な屈折率:1.7~1.8)に対し、陰極の材料としてPEDOT:PSSを選び、低屈折率層の材料として、その屈折率nがnとnの中間となるような材料、例えば、Bパターンの屈折率条件を満たすSOGを採用すればよい。
The most preferable B to D pattern is the C pattern. In this case, first, the structure of the metal layer / low refractive index layer / cathode (transparent conductive layer) is an Otto type arrangement, and the metal layer / low refractive index layer + cathode (transparent conductive layer) / organic layer Since the Otto configuration is also used in the configuration, re-radiation of SPP mode light is most likely to occur from the metal layer. Further, since the refractive index increases in the order of the low refractive index layer, the cathode (transparent conductive layer), and the organic layer, total reflection does not occur at each interface, and the re-radiated SPP mode light is extracted as it is to the substrate side. As this specific configuration, the cathode (transparent conductive layer) is PEDOT: PSS (poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid), typical refractive index: 1.5), etc. The transparent conductive material layer may be a case where the low refractive index layer is SOG (spin on glass) that satisfies the refractive index condition of air or C pattern.
Next preferred is the B pattern. In this case, since the configuration of the metal layer / low refractive index layer / cathode (transparent conductive layer) is an Otto type arrangement, SPP mode light is re-radiated from the metal layer. However, since the refractive index of the organic layer is an intermediate value between the low refractive index layer and the cathode (transparent conductive layer), some of the re-emitted SPP mode light is at the cathode (transparent conductive layer) / organic layer interface. And the remaining light is transmitted through the organic layer. As a specific configuration example, a-ITO (amorphous ITO, typical refractive index: 2.1) is used as a cathode material for an organic layer (typical refractive index: 1.7 to 1.8). And a material having a lower refractive index than the material of the organic layer is selected from SOG as the material of the low refractive index layer.
Next preferred is the D pattern. In this case, the configuration of the metal layer / low refractive index layer / cathode (transparent conductive layer) is not an Otto type arrangement. On the other hand, the Otto type arrangement is employed only in the configuration of metal layer / low refractive index layer + cathode (transparent conductive layer) / organic layer. Therefore, re-radiation of SPP mode light occurs from the metal layer, but re-radiation of SPP mode light is further reduced as compared with the case of the B pattern. Specifically, PEDOT: PSS is selected as the cathode material for the organic layer (typical refractive index: 1.7 to 1.8), and the refractive index n is selected as the material for the low refractive index layer. A material in which L is between n C and n 2 O , for example, SOG satisfying the refractive index of the B pattern may be employed.
 n<n<nの場合(以下「Eパターン」という)、n<n<nの場合(以下「Fパターン」ということがある)ではOtto型配置にはならない。また、n<n<nの場合(以下「Aパターン」という)では、金属層/低屈折率層/陰極がOtto型配置になっており、金属層からSPPモード光の再放射は生じるが、有機層の屈折率が低屈折率層よりも低いため、再放射されたSPPモード光のほとんどが陰極(透明導電層)/有機層の界面で全反射してしまい、陽極側の伝播光として取り出した光を取り出すことが困難である。 In the case of n O <n C <n L (hereinafter referred to as “E pattern”) and in the case of n C <n O <n L (hereinafter also referred to as “F pattern”), the Otto type arrangement is not achieved. In the case of n O <n L <n C (hereinafter referred to as “A pattern”), the metal layer / low refractive index layer / cathode is in an Otto type arrangement, and the re-emission of SPP mode light from the metal layer is However, since the refractive index of the organic layer is lower than that of the low refractive index layer, most of the re-radiated SPP mode light is totally reflected at the cathode (transparent conductive layer) / organic layer interface and propagates on the anode side. It is difficult to extract the light extracted as light.
 この有機EL素子は、上記のようにトップエミッション型、ボトムエミッション型の有機EL素子のいずれにも適用できる。
ボトムエミッション型に適用するためには、基板は透光性の基板であり、通常、可視光に対して透明であることが必要である。ここで、「可視光に対し透明である」とは、発光層から発する波長の可視光を透過することができればよいという意味であり、可視光領域全域にわたり透明である必要はない。400~700nmの可視光における透過率が50%以上で、平滑な基板が好ましい。
基板1としては、具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板の材料としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板の材料としては、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
発光光が可視光でない場合は、基板は少なくとも発光波長領域に対して透明であることが必要である。透過率としては、発光が最大強度となる波長に対し、50%以上であることが好ましく、70%以上であることが更に好ましい。
トップエミッション型に適用するためには、上記記載と同様なものの他に、不透明なものも使用できる。具体的には、例えば銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W),チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)の単体、またはこれらを含んだ合金、あるいはステンレスなどからなる材料からなる基板、その他のトップエミッション型の有機EL素子で通常用いられる基板を用いることができる。
This organic EL element can be applied to both a top emission type and a bottom emission type organic EL element as described above.
In order to be applied to the bottom emission type, the substrate is a translucent substrate and usually needs to be transparent to visible light. Here, “transparent to visible light” means that it is only necessary to transmit visible light having a wavelength emitted from the light emitting layer, and it is not necessary to be transparent over the entire visible light region. A smooth substrate having a transmittance in visible light of 400 to 700 nm of 50% or more is preferable.
Specific examples of the substrate 1 include a glass plate and a polymer plate. Examples of the glass plate material include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the material for the polymer plate include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, polyether sulfide, and polysulfone.
When the emitted light is not visible light, the substrate needs to be transparent at least in the emission wavelength region. The transmittance is preferably 50% or more and more preferably 70% or more with respect to the wavelength at which light emission has the maximum intensity.
In order to apply to the top emission type, in addition to the same as described above, an opaque one can also be used. Specifically, for example, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), aluminum (Al) Or a substrate made of a material made of stainless steel or the like, or a substrate usually used in other top emission type organic EL elements can be used.
 基板1の厚さは、要求される機械的強度にもよるため、特に限定はされないが、好ましくは、0.01mm~10mm、より好ましくは0.05mm~2mmである。 The thickness of the substrate 1 is not particularly limited because it depends on the required mechanical strength, but is preferably 0.01 mm to 10 mm, more preferably 0.05 mm to 2 mm.
 第1実施形態に係る有機EL素子の誘電体層7は、複数の開口部7Aを備えており、その開口部7Aの内側面7aは誘電体層7と異なる屈折率を有する陽極2によって被覆されている。
 誘電体層7をかかる構成及び材料としたのは、開口部7Aの内側面7a(基板1の基板面に対して垂直又は垂直に近い方向に延びる陽極2と誘電体層7との界面)に入射する光を、この界面において基板1側に屈折させて、有機層内の伝播光の基板1の外表面への入射角(本明細書において、入射角とは入射光と入射面の法線がなす角度をいう。)をより小さい角度に変える。これにより、陽極2と基板1の界面、もしくは基板1の外表面で全反射する光の割合を低減させ、光取り出し効率を向上させるためである(図1(a)、(b)参照)。
The dielectric layer 7 of the organic EL element according to the first embodiment includes a plurality of openings 7A, and the inner surface 7a of the opening 7A is covered with the anode 2 having a refractive index different from that of the dielectric layer 7. ing.
The configuration and material of the dielectric layer 7 are such that the inner surface 7a of the opening 7A (the interface between the anode 2 and the dielectric layer 7 extending in a direction perpendicular to or nearly perpendicular to the substrate surface of the substrate 1). The incident light is refracted toward the substrate 1 at this interface, and the incident angle of the propagating light in the organic layer to the outer surface of the substrate 1 (in this specification, the incident angle is the normal between the incident light and the incident surface). Is changed to a smaller angle. This is to reduce the proportion of light totally reflected at the interface between the anode 2 and the substrate 1 or the outer surface of the substrate 1 and improve the light extraction efficiency (see FIGS. 1A and 1B).
 誘電体層7の材料としては、透光性でかつ陽極2と異なる屈折率を有する材料であれば特に制限はない。陽極2の材料が酸化インジウム錫合金(ITO(代表的な屈折率:1.82))である場合は、陽極2より低い屈折率の材料としては、例えば、この屈折率条件を満たすスピンオングラス(SOG)、フッ化マグネシウム(MgF(代表的な屈折率:1.38))等の金属フッ化物、ポリテトラフルオロエチレン(代表的なPTFE(屈折率:1.35))等の有機フッ素化合物、二酸化ケイ素(SiO(代表的な屈折率:1.45))、各種の低融点ガラス、多孔性物質が挙げられる。また、陽極2より高屈折率の材料としては、例えば窒化ケイ素(Si)(代表的な屈折率:2.0)をはじめとするケイ素化合物、酸化チタン(TiO2)(代表的な屈折率:2.5)をはじめとする金属酸化物、窒化アルミニウム(AlN)(代表的な屈折率:2.2)をはじめとする金属窒化物、アルミニウム酸窒化物(AlON)(代表的な屈折率:1.8)やケイ素酸窒化物をはじめとする金属酸窒化物、ポリエチレンナフタレート(代表的な屈折率:1.8)をはじめとする高分子化合物樹脂、が挙げられる。
誘電体層7の厚さは特に限定はされない。例えば10~2000nmであり、好ましくは50~1000nmである。10nmより薄いと有機層の膜厚に対して誘電体層7の膜厚が占める割合が小さくなり、導波モード光が屈折または回折されにくくなり、また、2000nmより厚いと有機層3の陰極4側の平坦度を保ちにくくなる。
誘電体層の開口部7Aを周期的に配置する構成とする場合、開口部7A間の周期は、後述する式(1)を満たすように選択することが好ましい。すなわち、Otto型配置の陰極構造によって所定の角度で有機層3中に取り出されたSPPモード光は、開口部7A及び陽極2によって形成された回折格子によって回折されるが、その回折光が基板/空気界面で全反射されないように、式(1)を満たす周期を選択することが好ましい。
The material of the dielectric layer 7 is not particularly limited as long as it is a light-transmitting material and has a refractive index different from that of the anode 2. When the material of the anode 2 is an indium tin oxide alloy (ITO (typical refractive index: 1.82)), the material having a refractive index lower than that of the anode 2 is, for example, a spin-on glass that satisfies this refractive index condition ( Metal fluorides such as SOG) and magnesium fluoride (MgF 2 (typical refractive index: 1.38)), and organic fluorine compounds such as polytetrafluoroethylene (typical PTFE (refractive index: 1.35)) , Silicon dioxide (SiO 2 (typical refractive index: 1.45)), various low-melting glasses, and porous materials. Examples of materials having a higher refractive index than the anode 2 include silicon compounds such as silicon nitride (Si 3 N 4 ) (typical refractive index: 2.0), titanium oxide (TiO 2) (typical refraction). Metal oxides, including aluminum oxide (AlN) (typical refractive index: 2.2), aluminum oxynitride (AlON) (typical refraction) And metal oxynitrides such as silicon oxynitride and polymer compound resins such as polyethylene naphthalate (typical refractive index: 1.8).
The thickness of the dielectric layer 7 is not particularly limited. For example, it is 10 to 2000 nm, preferably 50 to 1000 nm. If the thickness is less than 10 nm, the ratio of the thickness of the dielectric layer 7 to the thickness of the organic layer is reduced, and the guided mode light is less likely to be refracted or diffracted. It becomes difficult to maintain the flatness of the side.
When it is set as the structure which arrange | positions the opening part 7A of a dielectric material layer periodically, it is preferable to select the period between the opening parts 7A so that Formula (1) mentioned later may be satisfy | filled. That is, the SPP mode light extracted into the organic layer 3 at a predetermined angle by the cathode structure of the Otto type arrangement is diffracted by the diffraction grating formed by the opening 7A and the anode 2, and the diffracted light is diffracted by the substrate / It is preferable to select a period that satisfies the formula (1) so that the air interface is not totally reflected.
陽極2は陰極4との間で電圧を印加し、陽極2より有機層3に正孔を注入するための電極であり、仕事関数の大きい金属、合金、導電性化合物、あるいはこれらの混合物からなる材料を用いることが好ましい。陽極に接する有機層3とのHOMO(Highest Occupied Molecular Orbital)準位との差が過大にならないように仕事関数が4eV以上6eV以下のものを用いるのが好ましい。陽極2の材料としては透光性でかつ導電性の材料であれば特に制限はないが、例えば、酸化インジウム錫合金(ITO)、酸化亜鉛錫合金(IZO)、酸化錫、酸化亜鉛などの透明無機酸化物(PEDOT:PSS)、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料、薄膜金属、薄膜状に形成した金属ナノワイヤ、これらを含む複合材料を挙げることができる。ここにおいて、陽極2は、基板1上に例えば、スパッタ法、真空蒸着法、塗布法、CVD法、イオンプレーティング法などによって形成することができる。
陽極2の厚さは特に限定はされない。例えば10~2000nmであり、好ましくは50~1000nmである。10nmより薄いとシート抵抗が増大し、また、2000nm以下であれば有機層3の陰極4側の平坦度を保てなくなると共に、陽極2の透過率が低下する。
誘電体層の開口部7Aを周期的に配置することにより、陽極凹部2Aを周期的に配置する構成とする場合、陽極凹部2A間の周期は、後述する式(1)を満たすように選択することが好ましい。すなわち、Otto型配置の陰極構造によって所定の角度で有機層3中に取り出されたSPPモード光は、陽極凹部2A及び有機層3によって形成された回折格子によって回折されるが、その回折光が基板/空気界面で全反射されないように、式(1)を満たす周期を選択することが好ましい。
The anode 2 is an electrode for applying a voltage between the anode 4 and injecting holes into the organic layer 3 from the anode 2, and is made of a metal, an alloy, a conductive compound, or a mixture thereof having a high work function. It is preferable to use a material. It is preferable to use a material having a work function of 4 eV or more and 6 eV or less so that the difference from the HOMO (High Occupied Molecular Orbital) level with the organic layer 3 in contact with the anode does not become excessive. The material of the anode 2 is not particularly limited as long as it is a translucent and conductive material. For example, transparent materials such as indium tin oxide alloy (ITO), zinc oxide tin alloy (IZO), tin oxide, and zinc oxide are available. Conductive polymers such as inorganic oxides (PEDOT: PSS), polyaniline and conductive polymers doped with any acceptor, conductive light-transmitting materials such as carbon nanotubes, thin film metals, metal nanowires formed into thin films And composite materials containing these. Here, the anode 2 can be formed on the substrate 1 by, for example, a sputtering method, a vacuum deposition method, a coating method, a CVD method, an ion plating method, or the like.
The thickness of the anode 2 is not particularly limited. For example, it is 10 to 2000 nm, preferably 50 to 1000 nm. If the thickness is less than 10 nm, the sheet resistance increases. If the thickness is 2000 nm or less, the flatness of the organic layer 3 on the cathode 4 side cannot be maintained, and the transmittance of the anode 2 decreases.
When the anode recesses 2A are periodically arranged by periodically arranging the openings 7A of the dielectric layer, the period between the anode recesses 2A is selected so as to satisfy the formula (1) described later. It is preferable. That is, the SPP mode light extracted into the organic layer 3 at a predetermined angle by the cathode structure of the Otto type arrangement is diffracted by the diffraction grating formed by the anode recess 2A and the organic layer 3, and the diffracted light is diffracted by the substrate. / It is preferable to select a period satisfying the formula (1) so as not to be totally reflected at the air interface.
 有機層3は、陽極凹部2Aの内側面2aを被覆する内側面被覆部3aと、陽極2と陰極4との間に配置する層状部3cを有するものである。また、有機層13は、陽極凸部12Bの外側面12bを被覆する外側面被覆部13bと、陽極12と陰極14との間に配置する層状部13cを有するものである。 The organic layer 3 has an inner surface covering portion 3a that covers the inner surface 2a of the anode recess 2A, and a layered portion 3c that is disposed between the anode 2 and the cathode 4. The organic layer 13 includes an outer surface covering portion 13b that covers the outer surface 12b of the anode convex portion 12B, and a layered portion 13c that is disposed between the anode 12 and the cathode 14.
発光層の材料としては、有機EL素子用の材料として知られる任意の材料を用いることができる。
また、有機層3は、発光層(有機発光層)の他、正孔注入層、正孔輸送層、電子注入層、電子輸送層等を備えてもよい。
正孔注入層は陽極2から有機層3への正孔注入を助ける層であり、イオン化エネルギーが通常5.5eV以下と低い。このような正孔注入層としてはより低い電界強度で正孔を有機層3に注入する材料が好ましいが、形成する材料としては、上記の機能を担えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。また、正孔輸送層は発光領域まで正孔を輸送する層であって、正孔移動度が大きい。このような正孔輸送層として形成する材料は、上記の機能を担えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。
電子注入層は陰極4から有機層3への電子注入を助ける層である。このような電子注入層としてはより低い電界強度で電子を有機層3に注入する材料が好ましい。これらを形成する材料としては、上記の機能を担えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。また、電子輸送層は発光領域まで電子を輸送する層であって、電子移動度が大きい。このような電子輸送層として形成する材料は、上記の機能を担えるものであれば特に制限はなく、公知のものの中から任意のものを選択して用いることができる。
As a material of the light emitting layer, any material known as a material for an organic EL element can be used.
In addition to the light emitting layer (organic light emitting layer), the organic layer 3 may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like.
The hole injection layer is a layer that assists hole injection from the anode 2 to the organic layer 3, and its ionization energy is usually as low as 5.5 eV or less. Such a hole injection layer is preferably a material that injects holes into the organic layer 3 with a lower electric field strength. However, the material to be formed is not particularly limited as long as it can perform the above functions, and is well known. Any one can be selected and used. The hole transport layer is a layer that transports holes to the light emitting region and has a high hole mobility. The material to be formed as such a hole transport layer is not particularly limited as long as it can perform the above function, and any material can be selected and used from known materials.
The electron injection layer is a layer that assists electron injection from the cathode 4 to the organic layer 3. Such an electron injection layer is preferably a material that injects electrons into the organic layer 3 with lower electric field strength. The material for forming these is not particularly limited as long as it can perform the above functions, and any material selected from known materials can be used. The electron transport layer is a layer that transports electrons to the light emitting region and has a high electron mobility. The material for forming such an electron transport layer is not particularly limited as long as it can perform the above function, and any material can be selected and used from known materials.
有機層3は、蒸着法、転写法などの乾式プロセスによって成膜してもよいし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など、湿式プロセスによって成膜してもよい。
有機層3の層状部3cの厚さは、特に限定されない。例えば50~2000nmであり、好ましくは100~1000nmである。50nmより薄いと突き抜け電流による内部量子効率の低下や、金属層6による損失性表面波モードカップリング(lossy surface wave mode coupling)など、SPPカップリング以外の消光が起こり、また、2000nmより厚いと駆動電圧が上昇する。
The organic layer 3 may be formed by a dry process such as an evaporation method or a transfer method, or may be formed by a wet process such as a spin coating method, a spray coating method, a die coating method, or a gravure printing method.
The thickness of the layered portion 3c of the organic layer 3 is not particularly limited. For example, it is 50 to 2000 nm, preferably 100 to 1000 nm. If it is thinner than 50 nm, extinction other than SPP coupling occurs, such as a decrease in internal quantum efficiency due to punch-through current and lossy surface wave mode coupling due to metal layer 6, and if it is thicker than 2000 nm, it is driven The voltage rises.
陰極4は、有機層3に電子を注入するための電極であり、仕事関数の小さい金属、合金、導電性化合物、あるいはこれらの混合物からなる材料を用いることが好ましい。有機層3のLUMO(Lowest Unoccupied Molecular Orbital)準位との差が過大にならないように仕事関数が1.9eV以上5eV以下のものを用いるのが好ましい。
陰極4の材料としては、Otto型配置の陰極側構造を形成するために、透光性の導電材料とする必要がある。そのため、上記の陽極材料として挙げたもののうち非金属材料を用いることができる。
陰極4の厚さは特に限定的はされないが、例えば30nm~1μmであり、好ましくは50~500nmである。厚さが30nmより薄いとシート抵抗が増加して、駆動電圧が上昇する。1μmより厚いと成膜時の熱や放射線ダメージ、膜応力による機械的ダメージが電極や有機層に蓄積する。
The cathode 4 is an electrode for injecting electrons into the organic layer 3, and it is preferable to use a material made of a metal, an alloy, a conductive compound, or a mixture thereof having a small work function. It is preferable to use a material having a work function of 1.9 eV or more and 5 eV or less so that the difference from the LUMO (Lower Unoccupied Molecular Orbital) level of the organic layer 3 does not become excessive.
As a material of the cathode 4, it is necessary to use a light-transmitting conductive material in order to form a cathode side structure with an Otto type arrangement. Therefore, a nonmetallic material can be used among what was mentioned as said anode material.
The thickness of the cathode 4 is not particularly limited, but is, for example, 30 nm to 1 μm, and preferably 50 to 500 nm. If the thickness is less than 30 nm, the sheet resistance increases and the drive voltage increases. If it is thicker than 1 μm, heat and radiation damage during film formation and mechanical damage due to film stress accumulate in the electrode and organic layer.
低屈折率層5は、陰極4の、有機層3とは反対側に備えられており、陰極4を構成する透光性導電材料より低い屈折率を有する透明材料からなることが好ましい。
発光層で発光した光が陰極側に伝播し、陰極4と低屈折率層5との界面に達したとき、臨界角以上の角度で入射したときに全反射が起きる。
The low refractive index layer 5 is provided on the opposite side of the cathode 4 from the organic layer 3, and is preferably made of a transparent material having a lower refractive index than the translucent conductive material constituting the cathode 4.
When light emitted from the light emitting layer propagates to the cathode side and reaches the interface between the cathode 4 and the low refractive index layer 5, total reflection occurs when incident at an angle greater than the critical angle.
このような低屈折率層5の材料としては、陰極4を構成する透光性導電材料より低い屈折率を有する材料であれば特に制限はない。例えば、この屈折率条件を満たすSOG、フッ化マグネシウム(MgF(代表的な屈折率:1.38))等の金属フッ化物、ポリテトラフルオロエチレン(PTFE(代表的な屈折率:1.35))等の有機フッ素化合物、二酸化ケイ素(SiO(代表的な屈折率:1.45))、各種の低融点ガラス、多孔性物質が挙げられる。また、低屈折率層5は空気層を含む層からなり、陰極4を構成する透光性導電材料より低い屈折率を有するものでもよい。 The material for the low refractive index layer 5 is not particularly limited as long as it is a material having a lower refractive index than the translucent conductive material constituting the cathode 4. For example, SOG satisfying this refractive index, metal fluoride such as magnesium fluoride (MgF 2 (typical refractive index: 1.38)), polytetrafluoroethylene (PTFE (typical refractive index: 1.35), etc. )) And the like, silicon dioxide (SiO 2 (typical refractive index: 1.45)), various low-melting glasses, and porous materials. Further, the low refractive index layer 5 is composed of a layer including an air layer, and may have a refractive index lower than that of the translucent conductive material constituting the cathode 4.
また低屈折率層は、陰極及び有機層のうちの少なくとも一方よりも屈折率が0.2以上小さい材料からなることが好ましい。これは陰極や有機層がOtto型配置の高屈折率層に相当し、Otto型配置で低屈折率層と高屈折率層の屈折率差が0.2以上あれば、SPPモード光の波数の面内成分が小さくなるため、高屈折率層中の伝播光とSPPモード光の分散曲線交わるようになり、Otto型配置によるSPPモード光の高屈折率層中への取出し効率が上がるためである。 The low refractive index layer is preferably made of a material having a refractive index smaller by 0.2 or more than at least one of the cathode and the organic layer. This corresponds to a high refractive index layer in which the cathode and the organic layer are in the Otto type arrangement, and if the difference in refractive index between the low refractive index layer and the high refractive index layer is 0.2 or more in the Otto type arrangement, the wave number of the SPP mode light This is because, since the in-plane component is small, the dispersion curve of the propagation light in the high refractive index layer and the SPP mode light crosses, and the extraction efficiency of the SPP mode light into the high refractive index layer by the Otto type arrangement increases. .
低屈折率層5の厚さは、20nm~300nmであることが好ましい。厚みが20nm以下では、低屈折率層5の膜厚が薄すぎるため、金属層と高屈折率層が接近してSPPモード光の面内波数成分が大きくなる。SPPモード光の面内波数成分が大きくなると、分散曲線が高屈折率層中の伝播光の分散曲線と交わらなくなり、SPPモード光が高屈折率層中に取り出されにくくなる。300nm以上では、低屈折率層5の膜厚が厚すぎるため、エバネッセント波が金属層6に届かなくなり、SPPモード光が高屈折率層中に取り出されにくくなる。200nm以下であることがより好ましい。 The thickness of the low refractive index layer 5 is preferably 20 nm to 300 nm. When the thickness is 20 nm or less, the film thickness of the low refractive index layer 5 is too thin, so that the metal layer and the high refractive index layer come close to each other and the in-plane wave number component of the SPP mode light becomes large. When the in-plane wave number component of the SPP mode light is increased, the dispersion curve does not intersect with the dispersion curve of the propagation light in the high refractive index layer, and the SPP mode light is not easily extracted into the high refractive index layer. When the thickness is 300 nm or more, the film thickness of the low refractive index layer 5 is too thick, so that the evanescent wave does not reach the metal layer 6 and the SPP mode light is hardly extracted into the high refractive index layer. More preferably, it is 200 nm or less.
金属層6は、陰極4の、有機層3とは反対側に低屈折率層5を介して備えられている。
金属層6の材料としては発光層における発光光によりプラズモン共鳴が生じるものであればよいのでほとんどの金属の単体または合金を用いることができる。複素誘電率の実部が負で、絶対値が大きな値を持つような材料が好ましい。かかる材料としては例えば、金、銀、銅、亜鉛、アルミニウム、マグネシウム等の単体や、金と銀との合金、銀と銅との合金、真鍮等の合金が挙げられる。また、金属層6は、2層以上の積層構造であってもよい。
金属層6の厚さは特に限定はされない。例えば20~2000nmであり、好ましくは50~500nmである。20nmより薄いと反射率が低くなり正面輝度が低下し、また、500nmより厚いと成膜時の熱や放射線ダメージ、膜応力による機械的ダメージが電極や有機層に蓄積する。
The metal layer 6 is provided on the opposite side of the cathode 4 from the organic layer 3 via a low refractive index layer 5.
As the material of the metal layer 6, any material or plasmon resonance can be used as long as plasmon resonance is generated by the light emitted from the light emitting layer. A material having a negative real part of the complex dielectric constant and a large absolute value is preferable. Examples of such materials include simple substances such as gold, silver, copper, zinc, aluminum, and magnesium, alloys of gold and silver, alloys of silver and copper, and alloys such as brass. Further, the metal layer 6 may have a laminated structure of two or more layers.
The thickness of the metal layer 6 is not particularly limited. For example, it is 20 to 2000 nm, preferably 50 to 500 nm. When the thickness is less than 20 nm, the reflectance is lowered and the front luminance is lowered. When the thickness is more than 500 nm, heat, radiation damage, and mechanical damage due to film stress during film formation accumulate in the electrode and the organic layer.
 図3は、本発明の第2実施形態に係る有機EL素子の一例を説明するための断面模式図である。第1実施形態は、誘電体層に開口部や島状部を形成し、この凹凸パターンに沿うように(conformal に)陽極を形成する構成であるのに対して、第2実施形態は、基板に基板凹部または基板凸部を形成し、この凹凸パターンに沿うように(conformal に)陽極を形成する構成である。本発明の第2実施形態に係る有機EL素子20は、基板21上に、陽極(第1電極)22と、発光層を含む有機層23と、陰極(第2電極)24とを順に具備する有機EL素子である。ここで、陰極24の、前記有機層23の反対側に、低屈折率層25と金属層26とを順に具備する。また陰極24は、透明導電材料からなる。前記低屈折率層25の屈折率は、前記有機層23の屈折率よりも低く、前記基板21は、前記陽極22が形成される側の面にパターンが形成されており、前記陽極22は、前記パターンに沿う(conformal に)ように形成されている。すなわち、第2の実施形態に係る有機EL素子20は、第1実施形態に係る有機EL素子において、誘電体層7が、基板と同一の材料からなる場合にあたる。
 上記のように陰極24側の構造について屈折率の比較を行う場合には、有機層23の屈折率とは、有機EL材料からなる発光層を含む全ての層の平均の屈折率をいう。
FIG. 3 is a schematic cross-sectional view for explaining an example of the organic EL element according to the second embodiment of the present invention. In the first embodiment, openings and islands are formed in the dielectric layer, and the anode is formed so as to conform to the concavo-convex pattern (conformal), whereas in the second embodiment, the substrate A substrate recess or substrate protrusion is formed on the substrate, and an anode is formed conformally along the uneven pattern. The organic EL element 20 according to the second embodiment of the present invention includes an anode (first electrode) 22, an organic layer 23 including a light emitting layer, and a cathode (second electrode) 24 in this order on a substrate 21. It is an organic EL element. Here, a low refractive index layer 25 and a metal layer 26 are provided in this order on the opposite side of the cathode 24 from the organic layer 23. The cathode 24 is made of a transparent conductive material. The refractive index of the low refractive index layer 25 is lower than the refractive index of the organic layer 23, the substrate 21 is formed with a pattern on the surface on which the anode 22 is formed, and the anode 22 It is formed so as to conform to the pattern (conformal). That is, the organic EL element 20 according to the second embodiment corresponds to the case where the dielectric layer 7 is made of the same material as the substrate in the organic EL element according to the first embodiment.
As described above, when comparing the refractive index of the structure on the cathode 24 side, the refractive index of the organic layer 23 means an average refractive index of all the layers including the light emitting layer made of the organic EL material.
 図4は本発明の第2実施形態に係る有機EL素子の一例を説明するための斜視図であるが、図4(a)は、基板21に複数の島状の基板凹部(基板開口部)21Aを加工し、その基板21のパターンに沿うように(conformal に)、陽極22を形成した有機EL素子を説明するための斜視図である。図4(b)は、基板21に複数の島状の基板凸部(基板島状部)21Bを加工し、その基板21のパターンに沿うように(conformal に)、陽極22を形成した有機EL素子を説明するための斜視図である。この基板凸部21Bは、図4(a)における基板凹部21Aと同様に、光を基板1側に屈折させる効果を奏する。従って、基板21の凹凸部において基板部分が海島構造の海部を構成しても、島部を構成しても同様の屈折の効果を有するため、以下では、図4(a)の基板凹部21Aを有する有機EL素子に基づき説明する。 FIG. 4 is a perspective view for explaining an example of the organic EL element according to the second embodiment of the present invention. FIG. 4A shows a plurality of island-shaped substrate recesses (substrate openings) in the substrate 21. FIG. It is a perspective view for demonstrating the organic EL element which processed the 21A and formed the anode 22 so that the pattern of the board | substrate 21 might be followed (conformal). FIG. 4B shows an organic EL in which a plurality of island-shaped substrate convex portions (substrate island-shaped portions) 21B are processed on the substrate 21, and the anode 22 is formed so as to follow the pattern of the substrate 21 (conformal ridge). It is a perspective view for demonstrating an element. This substrate convex portion 21B has an effect of refracting light toward the substrate 1 as in the case of the substrate concave portion 21A in FIG. Therefore, in the uneven portion of the substrate 21, even if the substrate portion forms the sea portion of the sea-island structure or the island portion has the same refraction effect, hereinafter, the substrate recess portion 21 </ b> A in FIG. It demonstrates based on the organic EL element which has.
 基板凹部21Aが基板面内の少なくとも一方向に配置される周期が発光光の波長以上の場合は、基板凹部21Aの形状はその内側面で光を基板側へ屈折させる効果を奏するものであれば特に限定はされない。
基板21の屈折率が陽極22の屈折率より高い場合は、導波モード光をより基板21側に屈折させる観点からは、基板凹部21Aは、基板外表面側の底面積より陰極24側の上面面積のほうが大きい形状が好ましい。
図3で示した例では、基板凹部21Aの内側面21aを基板面に対してほぼ垂直に配置する構成であるが、かかる構成に限定されない。基板凹部21Aの内側面21aと基板面がなす角度で、基板凹部21Aの内側の角度は90°~135°が好ましく、90°~120°がより好ましく、90°~105°がより一層好ましい。
一方、基板21の屈折率が陽極22の屈折率より低い場合は、導波モード光をより基板21側に屈折させる観点からは、基板凹部21Aは、基板外表面側の底面積より陰極24側の上面面積が小さい形状が好ましい。図3で示した例では、基板凹部21Aの基板凹部内側面21aは基板面に対してほぼ垂直に配置する構成であるが、かかる構成に限定されない。基板凹部21Aの内側面21aと基板面がなす角度で、基板凹部の内側の角度は45°~90°が好ましく、60°~90°がより好ましく、75°~90°がより一層好ましい。
基板凹部の内側面21aを上記のような角度とすることにより、発光位置から陽極側へ向かう導波モード光とSPPモード光から再放射された伝播光として取り出した光が基板凹部の内側面21aに入射して基板21側に屈折し、基板の外表面から外部へ取り出されやすくなる。
When the period in which the substrate recess 21A is arranged in at least one direction within the substrate surface is equal to or greater than the wavelength of the emitted light, the shape of the substrate recess 21A is not particularly limited as long as the inner side surface refracts light toward the substrate. There is no particular limitation.
When the refractive index of the substrate 21 is higher than the refractive index of the anode 22, from the viewpoint of refracting the guided mode light toward the substrate 21, the substrate recess 21 </ b> A has an upper surface on the cathode 24 side from the bottom area on the substrate outer surface side. A shape with a larger area is preferred.
In the example shown in FIG. 3, the inner side surface 21 a of the substrate recess 21 </ b> A is arranged substantially perpendicularly to the substrate surface, but is not limited to this configuration. The angle formed between the inner surface 21a of the substrate recess 21A and the substrate surface, and the inner angle of the substrate recess 21A is preferably 90 ° to 135 °, more preferably 90 ° to 120 °, and still more preferably 90 ° to 105 °.
On the other hand, when the refractive index of the substrate 21 is lower than the refractive index of the anode 22, from the viewpoint of refracting the guided mode light to the substrate 21 side, the substrate recess 21A is located on the cathode 24 side from the bottom area on the substrate outer surface side. A shape having a small upper surface area is preferred. In the example shown in FIG. 3, the substrate recess inner side surface 21 a of the substrate recess 21 </ b> A is arranged substantially perpendicular to the substrate surface, but is not limited to this configuration. The angle between the inner surface 21a of the substrate recess 21A and the substrate surface, and the angle inside the substrate recess is preferably 45 ° to 90 °, more preferably 60 ° to 90 °, and even more preferably 75 ° to 90 °.
By setting the inner side surface 21a of the substrate recess to the angle as described above, the light extracted as the propagating light re-radiated from the waveguide mode light and the SPP mode light from the light emitting position toward the anode side can be extracted. Is incident on the substrate 21 and refracted toward the substrate 21 side, and is easily taken out from the outer surface of the substrate.
 一方で、基板凹部21Aが基板面内の少なくとも一方向に配置される周期が光の波長と同等以下の場合においては、基板凹部21Aの形状は、回折の効果やフォトニック結晶による効果を奏するものであれば特に限定はされない。発光した光をより基板側に取り出す観点からは、基板凹部21Aの基板凹部内側面21aは基板面に対して垂直または垂直に近いことが好ましい。
 これは基板凹部21Aの基板凹部内側面21aが基板面に対して垂直又は垂直に近い界面であることによって、基板21の基板凹部内側面21aを横切る基板面内方向において、屈折率の変調が急峻になるためである。屈折率の変調が急峻な場合は、フォトニック結晶では基板面内方向に光が伝播できなくなるバンドギャップの周波数が広くなり、より効率的に有機層23で発光した光を外部へ取り出すことができるためである。また回折格子でも屈折率の変調が急峻な場合は、基板方向への光の回折効果が向上するため、同様に素子外部への光取り出しが向上する。
 上記のように、基板凹部21Aを基板凸部21Bとしても形状に関して、同様のことが言える。
On the other hand, when the period in which the substrate recess 21A is arranged in at least one direction within the substrate surface is equal to or less than the wavelength of light, the shape of the substrate recess 21A exhibits the effect of diffraction and the effect of photonic crystals. If it is, it will not be specifically limited. From the viewpoint of extracting emitted light to the substrate side, it is preferable that the substrate recess inner side surface 21a of the substrate recess 21A is perpendicular or nearly perpendicular to the substrate surface.
This is because the substrate recess inner surface 21a of the substrate recess 21A is an interface that is perpendicular or nearly perpendicular to the substrate surface, so that the refractive index modulation is steep in the in-plane direction across the substrate recess inner surface 21a of the substrate 21. Because it becomes. When the refractive index modulation is steep, the band gap frequency at which light cannot propagate in the in-plane direction of the photonic crystal becomes wider, and the light emitted from the organic layer 23 can be extracted more efficiently to the outside. Because. Further, when the refractive index is sharply modulated even in the diffraction grating, the light diffracting effect in the substrate direction is improved, and similarly, the light extraction to the outside of the element is improved.
As described above, the same can be said regarding the shape of the substrate recess 21A as the substrate protrusion 21B.
第2実施形態に係る有機EL素子では、基板21は複数の基板凹部21Aを備えるので、より精確に加工しやすい材料であることが好ましい。好ましい材料としては特に限定はされないが、例えば、石英が挙げられる。 In the organic EL element according to the second embodiment, since the substrate 21 includes a plurality of substrate recesses 21A, it is preferable that the material be a material that can be processed more accurately. Although it does not specifically limit as a preferable material, For example, quartz is mentioned.
 図5(a)、(b)は、本発明の第3実施形態に係る有機EL素子の一例を説明するための断面模式図である。第1実施形態および第2実施形態では、凹凸が形成された陽極上に、有機層の陽極側表面がこの凹凸形状に沿うように(conformal に)陽極が形成されているのに対し、本実施形態では、陽極と有機層の間に陽極の凹凸形状を平坦化する平坦化層を備えており、その上に形成される有機層の両表面は平坦な形状を有している。
 図5(a)、(b)に示す有機EL素子30は、基板31上に、誘電体層37と、陽極(第1電極)32と、発光層を含む有機層33と、平坦化層38と、陰極(第2電極)34とが順に具備する有機EL素子である。ここで、前記陰極34の、前記有機層33の反対側に、低屈折率層35と金属層36とを順に具備する。また陰極34は、透明導電材料からなり、前記低屈折率層35の屈折率は、前記有機層33の屈折率よりも低く、前記誘電体層37は、前記陽極32の屈折率と異なる屈折率を有すると共に開口部37Aを有するパターンで形成されている。また平坦化層38は、陽極32の凹凸形状を平坦化するように形成している。図5(a)は平坦化層38が陽極32の凹部を埋めるように形成されている有機EL素子を示している。図5(b)は平坦化層38が陽極32の全体を覆うように形成されている有機EL素子を示している。誘電体層37と基板31が同一の材料からなっていてもよい。この場合は、第2実施形態で示すように、基板31に基板凹部又は基板凸部を形成したものと見なすことができる。
5A and 5B are schematic cross-sectional views for explaining an example of the organic EL element according to the third embodiment of the present invention. In the first embodiment and the second embodiment, the anode is formed on the anode on which the unevenness is formed so that the anode side surface of the organic layer conforms to the uneven shape (conformal). In the embodiment, a flattening layer for flattening the uneven shape of the anode is provided between the anode and the organic layer, and both surfaces of the organic layer formed thereon have a flat shape.
An organic EL element 30 shown in FIGS. 5A and 5B includes a dielectric layer 37, an anode (first electrode) 32, an organic layer 33 including a light emitting layer, and a planarizing layer 38 on a substrate 31. And the cathode (second electrode) 34 in order. Here, a low refractive index layer 35 and a metal layer 36 are sequentially provided on the opposite side of the cathode 34 from the organic layer 33. The cathode 34 is made of a transparent conductive material, the refractive index of the low refractive index layer 35 is lower than the refractive index of the organic layer 33, and the dielectric layer 37 has a refractive index different from the refractive index of the anode 32. And a pattern having an opening 37A. The planarizing layer 38 is formed so as to planarize the uneven shape of the anode 32. FIG. 5A shows an organic EL element in which the planarizing layer 38 is formed so as to fill the concave portion of the anode 32. FIG. 5B shows an organic EL element in which the planarizing layer 38 is formed so as to cover the entire anode 32. The dielectric layer 37 and the substrate 31 may be made of the same material. In this case, as shown in the second embodiment, it can be considered that a substrate recess or substrate protrusion is formed on the substrate 31.
本実施形態においても、第1の実施形態と同様に、誘電体層の開口部は平面視で互いに独立した島状でも、互いに連結した海状(誘電体層の突起が、平面視で独立した島状)に形成されていてもよい。 Also in the present embodiment, as in the first embodiment, the openings of the dielectric layer are island-shaped that are independent from each other in plan view, or are connected to each other in the sea shape (the protrusions of the dielectric layer are independent in plan view). (Island shape).
 開口部37Aが基板面内の少なくとも一方向に配置される周期が光の波長以上の場合は、開口部37Aの形状はその内側面で光を基板側へ屈折させる効果を奏するものであれば特に限定はされない。つまり図5で示した例では、開口部37Aの内側面37aを基板面に対してほぼ垂直に配置する構成であるが、かかる構成に限定されない。
誘電体層37の屈折率が陽極32の屈折率より高い場合は、導波モード光をより基板31側に屈折させる観点からは、開口部37Aは基板31側の底面積より陰極34側の上面面積のほうが大きい形状が好ましい。開口部37Aの内側面37aと基板面がなす角度で、開口部37Aの内側の角度は90°~135°が好ましく、90°~120°がより好ましく、90°~105°がより一層好ましい。
一方、誘電体層37の屈折率が陽極32の屈折率より低い場合は、導波モード光をより基板31側に屈折させる観点からは基板31側の底面積より陰極34側の上面面積が小さい形状が好ましい。開口部37Aの内側面37aと基板面がなす角度で、開口部37Aの内側の角度は45°~90°が好ましく、60°~90°がより好ましく、75°~90°がより一層好ましい。
開口部37Aの内側面37aを上記のような角度とすることにより、SPPモード光から再放射された伝播光と発光位置から陽極側へ向かう光が開口部37Aの内側面37aに入射して基板側31に屈折し、基板の外表面から外部へ取り出される。
When the period in which the opening 37A is arranged in at least one direction within the substrate surface is equal to or greater than the wavelength of the light, the shape of the opening 37A is particularly effective as long as the inner surface has an effect of refracting light toward the substrate. There is no limitation. That is, in the example shown in FIG. 5, the inner side surface 37a of the opening 37A is arranged substantially perpendicularly to the substrate surface, but is not limited to such a configuration.
When the refractive index of the dielectric layer 37 is higher than the refractive index of the anode 32, from the viewpoint of refracting the guided mode light toward the substrate 31 side, the opening 37A is an upper surface on the cathode 34 side from the bottom area on the substrate 31 side. A shape with a larger area is preferred. The angle formed by the inner surface 37a of the opening 37A and the substrate surface, and the angle inside the opening 37A is preferably 90 ° to 135 °, more preferably 90 ° to 120 °, and still more preferably 90 ° to 105 °.
On the other hand, when the refractive index of the dielectric layer 37 is lower than the refractive index of the anode 32, the upper surface area on the cathode 34 side is smaller than the bottom area on the substrate 31 side from the viewpoint of refracting the guided mode light more toward the substrate 31 side. Shape is preferred. The angle formed by the inner surface 37a of the opening 37A and the substrate surface, and the angle inside the opening 37A is preferably 45 ° to 90 °, more preferably 60 ° to 90 °, and even more preferably 75 ° to 90 °.
By setting the inner side surface 37a of the opening 37A to the above angle, the propagating light re-radiated from the SPP mode light and the light traveling from the light emission position toward the anode side enter the inner side surface 37a of the opening 37A and enter the substrate. It is refracted to the side 31 and is taken out from the outer surface of the substrate.
 一方で、隣接する開口部37Aが基板面内の少なくとも一方向に配置される周期が光の波長と同等以下の場合においては、回折の効果やフォトニック結晶による効果を奏するものであれば特に限定はされない。発光した光をより基板側に取り出す観点からは、開口部37Aの内側面37aは基板面に対して垂直又は垂直に近いことが好ましい。
 これは開口部37Aの内側面37aが基板面に対して垂直又は垂直に近い界面であることによって、誘電体層37を基板面内方向に横切る方向において、屈折率の変調が急峻になるためである。屈折率の変調が急峻な場合はバンドギャップの周波数域が広くなり、より効率的に有機層33で発光した光を基板の外表面から外部へ取り出すことができる。また回折格子でも屈折率の変調が急峻な場合は、基板方向への光の回折効果が向上するため、同様に素子外部への光取り出しが向上する。
On the other hand, when the period in which the adjacent openings 37A are arranged in at least one direction in the substrate surface is equal to or less than the wavelength of the light, it is particularly limited as long as the effect of diffraction and the effect of the photonic crystal are exhibited. Not done. From the viewpoint of extracting emitted light to the substrate side, the inner side surface 37a of the opening 37A is preferably perpendicular or nearly perpendicular to the substrate surface.
This is because the modulation of the refractive index becomes steep in the direction crossing the dielectric layer 37 in the in-plane direction of the substrate because the inner side surface 37a of the opening 37A is an interface perpendicular or nearly perpendicular to the substrate surface. is there. When the refractive index modulation is steep, the frequency range of the band gap is widened, and the light emitted from the organic layer 33 can be extracted from the outer surface of the substrate to the outside more efficiently. Further, when the refractive index is sharply modulated even in the diffraction grating, the light diffracting effect in the substrate direction is improved, and similarly, the light extraction to the outside of the element is improved.
 平坦化層38は陽極の有機層に面した表面を平坦化するものであり、表面を一部または全て覆って形成されている。図5(a)で示すように、前記陽極表面の一部を覆う場合は、平坦化層38は導電性を有していてもいなくても、可視光で透明であればよく、誘電体層37および陽極32と同様の材料などを用いることができる。一方、図5(b)で示すように、前記陽極表面全体を覆う場合は、導電性を有している必要がある。陽極32と同様の材料などの、各種の導電性材料を用いることができる。平坦化層の形成方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などの乾式プロセス法のほか、塗布法などの湿式プロセスも用いることができる。 The planarization layer 38 planarizes the surface facing the organic layer of the anode, and is formed so as to cover part or all of the surface. As shown in FIG. 5A, when covering a part of the surface of the anode, the planarizing layer 38 may or may not have conductivity, and may be transparent to visible light. 37 and the same material as the anode 32 can be used. On the other hand, as shown in FIG. 5B, in order to cover the whole anode surface, it is necessary to have conductivity. Various conductive materials such as the same material as the anode 32 can be used. As a method for forming the planarizing layer, for example, a dry process method such as a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or a wet process such as a coating method can be used. .
本発明の有機EL素子の、Otto型配置による第2電極側構造の作用効果について以下に説明する。以下は、計算式に基づく原理的な説明であるため、第1電極と第2電極をそれぞれ陽極または陰極の一方に対応させることはせずに、第1電極と第2電極のまま記載する。
平坦な金属表面に生成される表面プラズモンポラリトン(SPP)の角振動数をωsp、波数の基板面内方向成分の実部をkspとする。この分散関係(角振動数と波数の間の関係)は、金属の誘電率の実部εと、金属表面に接触する誘電体の誘電率εによって決まり、近似的に次式(2)によって与えられる(cは真空中の光の速さ)。
Figure JPOXMLDOC01-appb-M000003
これに対して、通常の伝播光の分散関係は角振動数をω、波数ベクトルをkとして、次式(3)によって与えられる。
Figure JPOXMLDOC01-appb-M000004
表面プラズモンポラリトン(SPP)の分散曲線は通常の伝播光の分散直線と交差しない。そのため、通常の伝播光では平坦な金属表面にSPPを励起することはできず、また、平坦な金属表面に存在するSPPから直接伝播光を取り出すことはできない。
The operation effect of the second electrode side structure by the Otto type arrangement of the organic EL element of the present invention will be described below. The following is a principle explanation based on the calculation formula, and therefore, the first electrode and the second electrode are not associated with either the anode or the cathode, respectively, and are described as the first electrode and the second electrode.
Let ω sp be the angular frequency of surface plasmon polariton (SPP) generated on a flat metal surface, and k sp be the real part of the in-plane component of the wave number. This dispersion relationship (the relationship between the angular frequency and the wave number) is determined by the real part ε 1 of the dielectric constant of the metal and the dielectric constant ε 2 of the dielectric contacting the metal surface, and is approximately expressed by the following equation (2). (C is the speed of light in a vacuum).
Figure JPOXMLDOC01-appb-M000003
On the other hand, the dispersion relation of normal propagation light is given by the following equation (3), where the angular frequency is ω and the wave number vector is k.
Figure JPOXMLDOC01-appb-M000004
The dispersion curve of surface plasmon polariton (SPP) does not intersect the normal dispersion light dispersion line. Therefore, normal propagating light cannot excite SPP on a flat metal surface, and propagating light cannot be extracted directly from SPP existing on the flat metal surface.
 これに対して、Otto型配置、すなわち高屈折率誘電体層(誘電率ε)/低屈折率誘電体層(誘電率ε)/金属(誘電率ε)の積層構造を用いた場合について考える。ここで、高屈折率誘電体層側から臨界角より大きい入射角で入射した光は、高屈折率誘電体層と低屈折率誘電体層の界面で全反射する。この際、界面の低屈折率誘電体層側には非伝播光であるエバネッセント波が生じ、全反射の点から遠ざかるに連れてその光強度は減衰する(入射光は界面で全反射するが、その一部は界面から滲み出して存在していると見ることができる)。このエバネッセント波の分散曲線は、次式(4)によって与えられる。ここで、θは高屈折率誘電体層から低屈折率誘電体層への入射光の入射角である。
Figure JPOXMLDOC01-appb-M000005
 従って、入射角θを変えることにより、SPPの分散曲線と全反射によるエバネッセント波(以降、単に「エバネッセント波」という場合も、全て全反射によって生じたものをさすものとする)の分散直線に交点(ω=ωsp、k=ksp)を持たせることが可能となる。すなわち、エバネッセント波を用いれば、平坦な金属表面にSPPを励起することができる。また、平坦な金属表面に存在するSPPからエバネッセント波を介して伝播光として取り出すことが可能となる。ここで、「入射角θ」は金属側からみると、SPPの放射角度ということになる。
言い換えると、Otto型配置を用いると、SPPの分散曲線とエバネッセント波の分散直線とが交差するようになる。これは、所定の角度で放射されるSPPだけが、SPPとエバネッセント波とが共鳴することによりエネルギーをやり取りできる状態となることを意味する。そして、SPPを、エバネッセント波を介して所定の角度で放射される伝播光として取り出すことが可能となる。
On the other hand, in the case of using an Otto type arrangement, that is, a laminated structure of a high refractive index dielectric layer (dielectric constant ε 3 ) / low refractive index dielectric layer (dielectric constant ε 2 ) / metal (dielectric constant ε 1 ) think about. Here, light incident at an incident angle larger than the critical angle from the high refractive index dielectric layer side is totally reflected at the interface between the high refractive index dielectric layer and the low refractive index dielectric layer. At this time, an evanescent wave that is non-propagating light is generated on the low refractive index dielectric layer side of the interface, and the light intensity attenuates as the distance from the point of total reflection increases (incident light is totally reflected at the interface, Some of them can be seen oozing out of the interface). The dispersion curve of this evanescent wave is given by the following equation (4). Here, θ is an incident angle of incident light from the high refractive index dielectric layer to the low refractive index dielectric layer.
Figure JPOXMLDOC01-appb-M000005
Therefore, by changing the incident angle θ, the SPP dispersion curve intersects with the dispersion line of the total reflection evanescent wave (hereinafter, simply referred to as “evanescent wave” as well as the total reflection). (Ω = ω sp , k = k sp ) can be provided. That is, if evanescent waves are used, SPP can be excited on a flat metal surface. Moreover, it becomes possible to take out from the SPP existing on the flat metal surface as propagating light via the evanescent wave. Here, the “incident angle θ” is the radiation angle of the SPP when viewed from the metal side.
In other words, when the Otto type arrangement is used, the dispersion curve of the SPP and the dispersion line of the evanescent wave intersect each other. This means that only the SPP radiated at a predetermined angle is in a state where energy can be exchanged when the SPP and the evanescent wave resonate. And it becomes possible to take out SPP as propagation light radiated | emitted at a predetermined angle via an evanescent wave.
従って、有機EL素子において、例えば、有機層に隣接して高屈折率層/低屈折率層/金属層を設けると、有機発光層で発光した光のうち、所定の入射角(SPPの分散曲線とエバネッセント波の分散直線とが交点を有する角度)で高屈折率誘電体層から高屈折率層/低屈折率の界面へ入射した光はエバネッセント波を生じる。そのエバネッセント波が金属表面にSPPモード光を励起する。また、金属表面に励起されたSPPモード光はOtto型配置構造において生成されるエバネッセント波を介して所定の角度で放射される伝播光として取り出すことが可能となる。すなわち、有機EL素子において、Otto型配置構造を導入することにより、SPPモード光を所定の角度で放射される伝播光として取り出すことが可能となる。ただし、エバネッセント波を介したSPPモード光の励起・取り出しは上記低屈折率層が十分薄膜である場合に生じる。これは、低屈折率層が厚すぎると、有機層からのエバネッセント波の滲み出しが金属層まで到達せず、エバネッセント波とSPPモード光同士がエネルギーをやりとりできないためである。低屈折率層が薄すぎると、金属層と高屈折率層が接近してSPPモードの波数が(2)式より大きくなり、分散曲線が伝播光の分散曲線(3)と交わらなくなるためである。
こうしてSPPから取り出される光は上記の通り、SPPの分散曲線とエバネッセント波の分散直線との交点に対応する所定の角度を有して放射される。
Accordingly, in the organic EL element, for example, when a high refractive index layer / low refractive index layer / metal layer is provided adjacent to the organic layer, a predetermined incident angle (SPP dispersion curve) of the light emitted from the organic light emitting layer is provided. And the light incident on the interface of the high refractive index layer / low refractive index from the high refractive index dielectric layer at an angle where the dispersion line and the dispersion line of the evanescent wave intersect) produces an evanescent wave. The evanescent wave excites SPP mode light on the metal surface. Further, the SPP mode light excited on the metal surface can be extracted as propagating light radiated at a predetermined angle via the evanescent wave generated in the Otto type arrangement structure. That is, by introducing an Otto type arrangement structure in the organic EL element, it is possible to extract SPP mode light as propagating light emitted at a predetermined angle. However, the excitation / extraction of the SPP mode light via the evanescent wave occurs when the low refractive index layer is sufficiently thin. This is because if the low refractive index layer is too thick, the evanescent wave oozes from the organic layer does not reach the metal layer, and the evanescent wave and the SPP mode light cannot exchange energy. If the low-refractive index layer is too thin, the metal layer and the high-refractive index layer come close to each other and the wave number of the SPP mode becomes larger than the formula (2), and the dispersion curve does not intersect with the propagation curve (3) of the propagation light. .
As described above, the light extracted from the SPP is emitted at a predetermined angle corresponding to the intersection of the SPP dispersion curve and the evanescent wave dispersion line.
次に、本発明の有機EL素子の第1電極側構造の作用効果について以下に説明する。
第1電極側構造としては、有機層中の伝播光が基板側に屈折して界面への入射角(入射光線と入射する界面の法線がなす角度)が小さくなるように、基板面に対して垂直又は垂直に近い屈折率の界面を導入した。
より具体的には、誘電体層に開口部を設け、その内側面を誘電体層と異なる屈折率の材料からなる第1電極で被覆する構造とすることにより、基板面に対して、垂直又は垂直に近い界面として、誘電体層と第1電極との界面を導入する。また、誘電体層に誘電体島状部を設け、その外側面を第1電極で被覆する構造とすることにより、基板面に対して、垂直又は垂直に近い屈折率の界面として、誘電体層と第1 電極との界面を導入してもよい。
Next, the effect of the first electrode side structure of the organic EL element of the present invention will be described below.
As for the first electrode side structure, the propagation light in the organic layer is refracted toward the substrate side, and the incident angle to the interface (the angle formed by the incident light and the normal line of the incident interface) is reduced. Thus, an interface having a refractive index that is perpendicular or nearly perpendicular is introduced.
More specifically, by providing a structure in which an opening is provided in the dielectric layer and the inner side surface thereof is covered with a first electrode made of a material having a refractive index different from that of the dielectric layer, An interface between the dielectric layer and the first electrode is introduced as an interface close to vertical. Further, by providing a dielectric island-like portion on the dielectric layer and covering the outer surface with the first electrode, the dielectric layer serves as an interface having a refractive index that is perpendicular or nearly perpendicular to the substrate surface. And an interface between the first electrode and the first electrode may be introduced.
第1電極側構造は、基板面内方向に周期性を有する屈折率変調構造であっても、周期性を有さない非周期的な構造であってもよい。
第1電極側構造が周期性を有する屈折率変調構造体である場合、すなわち屈折率の互いに異なる誘電体層と第1電極が1次元的又は2次元的に周期的に並ぶ場合には、屈折の効果に加えて、透過型回折格子(以下、単に「回折格子」という)による回折効果(基板面に対して光が所定の角度に指向する効果)や、フォトニック結晶による効果(特定の方向・周波数の光の伝播を禁制する効果)によって、導波モード光を基板側に取り出すことが可能となる。
第1電極側構造の屈折率変調構造の周期(ピッチ)が波長より十分大きい場合は、屈折が支配的なメカニズムとなって、光が取り出されると考えられる。一方、第1電極側構造の屈折率変調構造の周期が波長と同等以下である時は、回折格子の効果やフォトニック結晶の効果が支配的なメカニズムとなって、光が取り出されていると考えられる。
The first electrode side structure may be a refractive index modulation structure having periodicity in the in-plane direction of the substrate or an aperiodic structure having no periodicity.
When the first electrode side structure is a refractive index modulation structure having periodicity, that is, when the dielectric layers having different refractive indices and the first electrode are periodically arranged one-dimensionally or two-dimensionally, In addition to the effects described above, diffraction effects (effects in which light is directed at a predetermined angle with respect to the substrate surface) by transmission diffraction gratings (hereinafter simply referred to as “diffraction gratings”) and effects by photonic crystals (specific directions) (Effect of prohibiting propagation of light of frequency) It is possible to extract guided mode light to the substrate side.
When the period (pitch) of the refractive index modulation structure of the first electrode side structure is sufficiently larger than the wavelength, refraction is considered to be the dominant mechanism and light is extracted. On the other hand, when the period of the refractive index modulation structure of the first electrode side structure is equal to or less than the wavelength, the effect of the diffraction grating or the effect of the photonic crystal becomes the dominant mechanism and light is extracted. Conceivable.
 第1電極側構造が屈折率の周期性を有し、透過型回折格子として機能する場合について、光取り出し効率が向上する原理を、図6及び図7を用いてより具体的に説明する。
 図6は、Otto型配置を有する第2電極側構造を備えた有機EL素子の断面模式図である。図6を用いて、この第2電極側構造によりSPPモード光を導波モード光として取り出す原理についてまず説明する。尚、図6では第1電極側構造については省略している。
 ここで、nsubは基板の屈折率、nOLEDは第1電極、有機層及び第2電極の平均の屈折率、nは低屈折率層の屈折率、εは低屈折率層の誘電率、ε1は金属層の誘電率の実部、kspはSPPモード光の波数ベクトルの基板面内方向成分、kは真空中の光の波数(2π/λ)(λは発光層から放射される光の真空中の波長)、θは高屈折率層中を伝播する光の伝播角とする。
 SPPモード光の波数kspは式(2)から、以下の式(5)によって与えられる。
Figure JPOXMLDOC01-appb-M000006
 ただし、ε=n 2である。SPPモード光とそれが再放射され、伝播光として取り出されるためには、SPPモード光とその取り出される光とで波数ベクトルの面内成分が一致する、すなわち、式(6)が成立する必要がある。
Figure JPOXMLDOC01-appb-M000007
 式(5)及び式(6)から、SPPモード光は以下の式(7)を満たす角度で伝播光として取り出される。
Figure JPOXMLDOC01-appb-M000008
The principle of improving the light extraction efficiency when the first electrode side structure has a refractive index periodicity and functions as a transmissive diffraction grating will be described more specifically with reference to FIGS.
FIG. 6 is a schematic cross-sectional view of an organic EL element having a second electrode side structure having an Otto type arrangement. First, the principle of extracting SPP mode light as guided mode light by this second electrode side structure will be described with reference to FIG. In FIG. 6, the first electrode side structure is omitted.
Here, n sub is the refractive index of the substrate, n OLED is the average refractive index of the first electrode, the organic layer, and the second electrode, n 2 is the refractive index of the low refractive index layer, and ε 2 is the dielectric of the low refractive index layer. Ε 1 is the real part of the dielectric constant of the metal layer, k sp is the in-plane component of the wave number vector of the SPP mode light, k 0 is the wave number of light in vacuum (2π / λ) (λ is from the light emitting layer) The wavelength of the emitted light in vacuum), θ is the propagation angle of the light propagating through the high refractive index layer.
The wave number k sp of the SPP mode light is given by the following equation (5) from the equation (2).
Figure JPOXMLDOC01-appb-M000006
However, ε 2 = n 2 2 . In order for the SPP mode light and it to be re-radiated and extracted as propagating light, the in-plane components of the wave vector match between the SPP mode light and the extracted light, that is, the expression (6) needs to be satisfied. is there.
Figure JPOXMLDOC01-appb-M000007
From the equations (5) and (6), the SPP mode light is extracted as propagating light at an angle satisfying the following equation (7).
Figure JPOXMLDOC01-appb-M000008
次に、回折格子によって、そのSPPモード光から取り出された光を外部に取り出す原理について説明する。
 図7は、透過型回折格子を備えた第1電極側構造を備えた有機EL素子の第1電極側構造を含む一部の断面模式図である。
 SPPモード光から所定の角度θで取り出された光が周期(屈折率変調構造の周期)pを有する回折格子によって回折されるとする。基板面に対して所定の角度θsubで基板側に回折する条件は、回折格子に入射する入射光の面内波数(波数の、基板面内方向成分の大きさ)と回折光の面内波数との差が2π/pの整数倍であることであり、以下の式(8)で表される。ここで、N=0、±1、・・・である。
 なお、図7において、「OLED積層部」とは、第1電極及び有機層を含む導波モード光が伝播する層を示すものであり、具体的な層構成は本発明の具体的な構成に依存する。また、「回折格子」を備える位置は本発明の具体的な構成に依存する。
Figure JPOXMLDOC01-appb-M000009
 式(7)及び式(8)から、式(9)が得られる。
Figure JPOXMLDOC01-appb-M000010
 基板と空気の界面で全反射が起きない条件は、式(10)を満たすことである。
Figure JPOXMLDOC01-appb-M000011
 従って、回折格子の格子間隔が以下の式(11)を満たすようなNが存在するような回折格子を設けることにより、回折光に基板と空気の界面で全反射を生じさせず、その結果、光取り出し効率は向上する。
Figure JPOXMLDOC01-appb-M000012
ここで、SPP共鳴を生じる周波数域においては、ε<0、ε<|ε|であるため、
Figure JPOXMLDOC01-appb-M000013
式(11)中のNは正の整数としてよい。
さらに、基板と空気の界面でのフレネル反射を抑えるためには、式(11)はおおよそ次の式を満たしていることが望ましい。また、実際の有機EL素子の発光波長はスペクトル分布をもつため、このλとしては発光層の発光スペクトルの最大ピーク波長を採用する。最大ピーク波長としては、フォトルミネセンス・スペクトルの最大ピーク波長を用いることができる。
Figure JPOXMLDOC01-appb-M000014
Nは回折次数であり、任意の整数であるが、回折次数が大きくなりすぎると、回折光の指向性が低下する。そこで、式(1)を満たすようなNが1≦N≦3の範囲にあるようにピッチpと波長λを選ぶことが好ましい。
Next, the principle of extracting the light extracted from the SPP mode light to the outside by the diffraction grating will be described.
FIG. 7 is a partial schematic cross-sectional view including the first electrode side structure of the organic EL element having the first electrode side structure including the transmission diffraction grating.
It is assumed that light extracted from the SPP mode light at a predetermined angle θ is diffracted by a diffraction grating having a period (period of a refractive index modulation structure) p. The conditions for diffracting to the substrate side at a predetermined angle θ sub with respect to the substrate surface are the in-plane wave number of incident light incident on the diffraction grating (the magnitude of the component in the substrate surface direction of the wave number) and the in-plane wave number of diffracted light. Is the integer multiple of 2π / p, and is represented by the following formula (8). Here, N = 0, ± 1,...
In FIG. 7, “OLED stack” indicates a layer through which guided mode light including the first electrode and the organic layer propagates, and the specific layer configuration is the specific configuration of the present invention. Dependent. The position where the “diffraction grating” is provided depends on the specific configuration of the present invention.
Figure JPOXMLDOC01-appb-M000009
Equation (9) is obtained from Equation (7) and Equation (8).
Figure JPOXMLDOC01-appb-M000010
The condition under which total reflection does not occur at the interface between the substrate and air is to satisfy equation (10).
Figure JPOXMLDOC01-appb-M000011
Therefore, by providing a diffraction grating in which N exists such that the grating interval of the diffraction grating satisfies the following formula (11), total reflection does not occur at the interface between the substrate and air, and as a result, The light extraction efficiency is improved.
Figure JPOXMLDOC01-appb-M000012
Here, since ε l <0 and ε 2 <| ε l | in the frequency region where the SPP resonance occurs,
Figure JPOXMLDOC01-appb-M000013
N in Formula (11) may be a positive integer.
Furthermore, in order to suppress Fresnel reflection at the interface between the substrate and air, it is desirable that the expression (11) approximately satisfies the following expression. Further, since the actual emission wavelength of the organic EL element has a spectrum distribution, the maximum peak wavelength of the emission spectrum of the light emitting layer is adopted as λ. As the maximum peak wavelength, the maximum peak wavelength of the photoluminescence spectrum can be used.
Figure JPOXMLDOC01-appb-M000014
N is a diffraction order and is an arbitrary integer, but if the diffraction order becomes too large, the directivity of the diffracted light decreases. Therefore, it is preferable to select the pitch p and the wavelength λ so that N satisfying the formula (1) is in the range of 1 ≦ N ≦ 3.
以上の理論的な解析は1次元的な解析であり、1次元回折格子構造(基板面内の所定の一方向に規則的な間隔で屈折率変調構造が配置する回折格子構造)については、この解析に基づく回折効果が得られる。1次元回折格子構造では、その一方向に直交する方向については屈折率変調構造を有さないため、その直交方向の光(光の成分)に対しては回折効果を生じない。これに対して、2次元回折格子構造では、基板面内の更に別の一方向に対しても回折格子構造を有し、その方向についても回折効果が追加されることになる。よって、2次元回折格子構造では1次元回折格子構造よりも回折効果が大きい。
 従って、所定の断面において、式(1)の条件を満たす正の整数Nが存在するような構成を備えた有機EL素子では、その構成が1次元回折格子構造でも2次元回折格子構造でも、光取り出し効率の向上が得られるのである。
The above theoretical analysis is a one-dimensional analysis. For a one-dimensional diffraction grating structure (a diffraction grating structure in which refractive index modulation structures are arranged at regular intervals in a predetermined direction in the substrate surface) A diffraction effect based on the analysis is obtained. Since the one-dimensional diffraction grating structure does not have a refractive index modulation structure in a direction orthogonal to the one direction, a diffraction effect does not occur for light in the orthogonal direction (light component). On the other hand, the two-dimensional diffraction grating structure has a diffraction grating structure in another direction in the substrate surface, and a diffraction effect is added also in that direction. Therefore, the diffraction effect is larger in the two-dimensional diffraction grating structure than in the one-dimensional diffraction grating structure.
Therefore, in an organic EL element having a configuration in which a positive integer N that satisfies the condition of the formula (1) exists in a predetermined cross section, the light is emitted regardless of whether the configuration is a one-dimensional diffraction grating structure or a two-dimensional diffraction grating structure. An improvement in extraction efficiency is obtained.
次に、フォトニック結晶の効果による光の取り出し効率の向上について説明する。
フォトニック結晶は、屈折率が周期的に異なる構造体で、特にその周期が波長と同等以下である構造体のことである。この周期的構造により、特定の波長範囲の光が存在できない禁制帯(フォトニックバンドギャップ)が形成される。本発明の第1電極側構造が周期的な屈折率変調構造で、その周期が波長と同等以下である場合には、第1電極側構造を1次元もしくは2次元のフォトニック結晶(それぞれ、基板面内の所定の一方向または二方向に規則的な間隔で格子が配列するフォトニック結晶構造)と見なすことができる。1次元のフォトニック結晶では、周期構造を有する一方向に対しては、フォトニックバンドギャップに相当する波長の光は伝播することができない。このため、面内以外の方向へ光の伝播が再分配され、光を透明基板側に取り出すことができる。ただし、1次元フォトニック結晶構造では、その一方向に直交する方向については周期構造を有しないため、この方向についてはフォトニックバンドギャップが存在せず、これによる取り出し効果はないか、あるとしても非常に小さい。
一方、2次元フォトニック結晶構造では面内の互いに異なる2方向に対して格子構造を有するため、この2方向に対してはフォトニックバンドギャップが形成され、光が伝播できないことになる。よって、2次元のフォトニック結晶では面内で光が伝播できない方向が増大するため、1次元構造よりもより効率的に透明基板へ光が取り出される。
Next, improvement in light extraction efficiency due to the effect of the photonic crystal will be described.
A photonic crystal is a structure whose refractive index is periodically different, in particular, a structure whose period is equal to or less than a wavelength. This periodic structure forms a forbidden band (photonic band gap) in which light in a specific wavelength range cannot exist. When the first electrode side structure of the present invention is a periodic refractive index modulation structure and the period is equal to or less than the wavelength, the first electrode side structure is a one-dimensional or two-dimensional photonic crystal (respectively a substrate). It can be regarded as a photonic crystal structure in which lattices are arranged at regular intervals in a predetermined direction or two directions in a plane. In a one-dimensional photonic crystal, light having a wavelength corresponding to the photonic band gap cannot propagate in one direction having a periodic structure. For this reason, the propagation of light is redistributed in directions other than in-plane, and the light can be extracted to the transparent substrate side. However, since the one-dimensional photonic crystal structure does not have a periodic structure in the direction orthogonal to the one direction, there is no photonic band gap in this direction, and there may be no extraction effect due to this. Very small.
On the other hand, since the two-dimensional photonic crystal structure has a lattice structure in two different directions in the plane, a photonic band gap is formed in these two directions, and light cannot propagate. Accordingly, in the two-dimensional photonic crystal, the direction in which light cannot propagate in the plane increases, and thus light is extracted to the transparent substrate more efficiently than the one-dimensional structure.
第1電極側構造が、基板面内方向に周期性を有さない非周期的な構造の場合は、この第1電極構造に入射した光がランダムな位置・位相で回折されるため、特定の放射角度光が強め合って放射されることはない。従って、第1電極側にこのような構造を持つことによって、比較的均一な(拡散性の高い)配向特性を得ることができる。
つまり、第1電極側構造が周期的な構造の場合は、回折格子による出射光の強め合いの効果により、ある特定の放射角の光強度が強くなる配向特性を得ることができるのに対し、第1電極側構造が非周期的な構造の場合は、比較的均一な配向特性を得ることができる。
そのため、第1電極側構造は、必要とされる配光特性に応じて周期性を有する構造にするか、非周期的な構造にするかを選択することができる。
When the first electrode side structure is a non-periodic structure having no periodicity in the in-plane direction of the substrate, light incident on the first electrode structure is diffracted at random positions and phases. Radiation angle light is not emitted intensifying each other. Therefore, by having such a structure on the first electrode side, relatively uniform (highly diffusible) orientation characteristics can be obtained.
That is, in the case where the first electrode side structure is a periodic structure, it is possible to obtain an alignment characteristic in which the light intensity at a specific radiation angle is increased by the effect of strengthening the emitted light by the diffraction grating, When the first electrode side structure is an aperiodic structure, relatively uniform alignment characteristics can be obtained.
Therefore, the first electrode side structure can be selected to be a structure having periodicity or a non-periodic structure according to a required light distribution characteristic.
次に、本発明の第1実施形態の有機EL素子の屈折の作用効果を、図1(a)、(b)を用いて模式的に説明する。本発明において、第1電極及び第2電極は一方が陽極で他方が陰極であるが、以下では、第1電極を陽極、第2電極を陰極とする構成を例に挙げて説明する。
ここで、図1(a)、(b)に矢印で示した光の伝播の仕方は、屈折による作用効果の原理をわかりやすく説明するために模式的に示したものである。光の伝播の仕方は誘電体層7の屈折率と陽極2の屈折率の大小関係によって異なり、図1(a)は前者が後者の屈折率より高い場合の説明図、図1(b)は前者が後者の屈折率より低い場合の説明図である。
Next, the effect of refraction of the organic EL element according to the first embodiment of the present invention will be schematically described with reference to FIGS. In the present invention, one of the first electrode and the second electrode is an anode and the other is a cathode. In the following description, a configuration in which the first electrode is an anode and the second electrode is a cathode will be described as an example.
Here, the light propagation method indicated by the arrows in FIGS. 1A and 1B is schematically shown in order to easily understand the principle of the effect of refraction. The way of light propagation varies depending on the magnitude relationship between the refractive index of the dielectric layer 7 and the refractive index of the anode 2, and FIG. 1A is an explanatory diagram when the former is higher than the refractive index of the latter, and FIG. It is explanatory drawing when the former is lower than the refractive index of the latter.
本発明の第1実施形態の有機EL素子10で、有機層3に含まれる発光層のAo点で発光した光のうち、陰極4側に進んだ光が陰極4と低屈折率層5との界面に臨界角以上の大きい角度で入射して(矢印A1)全反射した場合(矢印A1r)、低屈折率層5中にエバネッセント波(矢印A2)が発生する。発生したエバネッセント波は、金属層6と低屈折率層5との界面まで滲み出し、表面プラズモンポラリトンSPP(矢印A3)が励起される。
励起されたSPPモード光は、エバネッセント波(矢印A4)との共鳴を介して、所定の角度で陰極4に再放射され(矢印A5)、伝播光として有機層3に取り出されうる。
図1(a)において、発光点(あるいは発光箇所)Aiは平面視して誘電体層7の開口部7Aと重なる位置の発光点を示すものである(以下、この点での発光を「in発光」ということがある。)。発光点Aoは平面視して隣接する開口部7Aの間の発光点を示すものである(以下、この点での発光を「out発光」ということがある。)。また、発光点Aeは「in発光」と「out発光」との境界位置での発光を示すもの(以下、この点での発光を「in-out端発光」ということがある。)である。「out発光」及び「in-out端発光」については、陰極4と低屈折率層5との界面での全反射光を示す矢印は省略している。
また、この作用効果の説明では「out発光」の場合についてのみ詳細に説明しているが、「in発光」及び「in-out端発光」についても、SPP(矢印A3)励起後の光の伝播は「out発光」の場合と同様である。
なお、隣接する開口部7Aの間の上に位置する陽極2の部分と陰極4の間の電流密度の方が、開口部7Aの上に位置する陽極凹部2Aと陰極4の間の電流密度よりも高いため、「out発光」の方が「in発光」より発光量が多い。
Of the light emitted at the point Ao of the light emitting layer included in the organic layer 3 in the organic EL element 10 according to the first embodiment of the present invention, the light traveling toward the cathode 4 side is between the cathode 4 and the low refractive index layer 5. When the light is incident on the interface at a larger angle than the critical angle (arrow A1) and totally reflected (arrow A1r), an evanescent wave (arrow A2) is generated in the low refractive index layer 5. The generated evanescent wave oozes out to the interface between the metal layer 6 and the low refractive index layer 5, and the surface plasmon polariton SPP (arrow A3) is excited.
The excited SPP mode light is re-emitted to the cathode 4 at a predetermined angle (arrow A5) via resonance with the evanescent wave (arrow A4), and can be extracted to the organic layer 3 as propagating light.
In FIG. 1A, a light emission point (or light emission point) Ai indicates a light emission point at a position overlapping the opening 7A of the dielectric layer 7 in plan view (hereinafter, the light emission at this point is referred to as “in Sometimes referred to as “luminescence”.) The light emission point Ao indicates a light emission point between the adjacent openings 7A in plan view (hereinafter, light emission at this point may be referred to as “out light emission”). The light emission point Ae indicates light emission at the boundary between “in light emission” and “out light emission” (hereinafter, light emission at this point may be referred to as “in-out edge light emission”). For “out emission” and “in-out edge emission”, the arrow indicating total reflected light at the interface between the cathode 4 and the low refractive index layer 5 is omitted.
In addition, in the description of this function and effect, only the case of “out emission” is described in detail, but the light propagation after SPP (arrow A3) excitation is also applied to “in emission” and “in-out end emission”. Is the same as in the case of “out emission”.
It should be noted that the current density between the anode 2 portion located above the adjacent opening 7A and the cathode 4 is greater than the current density between the anode recess 2A located above the opening 7A and the cathode 4. Therefore, “out emission” emits more light than “in emission”.
また、陰極側構造(陰極4、低屈折率層5、金属層6)から有機層3のA点にまで取り出された光は、誘電体層7の屈折率が陽極2の屈折率より高い場合は、図1(a)の光AD1のように伝播して基板1まで取り出される。
すなわち、A点から有機層3を通って進む光AD1は、さらに陽極2も透過して誘電体層7に到達したのち、誘電体層の開口部7Aの内側面7aで屈折し、陽極2を透過し、基板1内を通って外部に取り出されうる。
ここで、光AD1が誘電体層7から陽極2へ進む際、誘電体層7と陽極2との界面(開口部7Aの内側面7a)における屈折の差により、光AD1の基板1への入射角はより小さい角度(基板1の法線により近い方向)に変わる。基板1の外表面(基板と空気との界面)に臨界角以上の角度で入射する光は全反射し、基板モード光となり外部に取り出せないが、この陽極2と誘電体層7との界面での屈折により、基板1から空気への光AD1の入射角がより小さい角度に変わる。そのため、全反射をしない光が増えて、光AD1が基板モード光となるのを防ぐことができる。すなわち、陽極2と誘電体層7との界面を備える構成を有することにより、光取り出し効率が向上する。
さらに、陽極2の屈折率が有機層の内側面被覆部3aと異なる場合、有機層3に取り出された光が、この陽極2と有機層の内側面被覆部3aとの界面でも屈折するため、より好ましい。
Further, the light extracted from the cathode side structure (cathode 4, low refractive index layer 5, metal layer 6) to point A of the organic layer 3 is when the refractive index of the dielectric layer 7 is higher than the refractive index of the anode 2. Is propagated like the light AD1 in FIG.
That is, the light AD1 traveling through the organic layer 3 from the point A further passes through the anode 2 and reaches the dielectric layer 7, and then is refracted at the inner side surface 7a of the opening 7A of the dielectric layer. The light passes through and can be taken out through the substrate 1.
Here, when the light AD1 travels from the dielectric layer 7 to the anode 2, the light AD1 is incident on the substrate 1 due to the difference in refraction at the interface between the dielectric layer 7 and the anode 2 (the inner surface 7a of the opening 7A). The angle changes to a smaller angle (a direction closer to the normal of the substrate 1). Light incident on the outer surface of the substrate 1 (interface between the substrate and air) at an angle greater than the critical angle is totally reflected and becomes substrate mode light that cannot be extracted to the outside, but at the interface between the anode 2 and the dielectric layer 7. , The incident angle of the light AD1 from the substrate 1 to the air changes to a smaller angle. Therefore, it is possible to prevent the light AD1 from becoming substrate mode light due to an increase in light that is not totally reflected. That is, the light extraction efficiency is improved by having a configuration including the interface between the anode 2 and the dielectric layer 7.
Furthermore, when the refractive index of the anode 2 is different from that of the inner side surface covering portion 3a of the organic layer, the light extracted into the organic layer 3 is also refracted at the interface between the anode 2 and the inner side surface covering portion 3a of the organic layer. More preferred.
有機層3に含まれる発光層のP点で発光した光のうち、光PD1は基板に対して垂直方向に基板側に進む光であり、基板1との界面で屈折することなく基板1内を進み、外部に取り出される。
また、光PD2は、陽極2と誘電体層7との界面で屈折し、陽極2を透過した後、基板1内を通って外部に取り出されうる。
ここで、光PD2が誘電体層7から陽極2へ進む際、陽極2と誘電体層7との界面で屈折し、光PD2の基板1への入射角がより小さい角度に変わる。基板の外表面に臨界角以上の角度で入射する光は全反射し、基板モード光となり外部へ取り出されない。光PD2は、この陽極2と誘電体層7との界面での屈折により、光PD2の基板1の外表面への入射角がより小さい角度に変わるので、この全反射しない光が増えて光取り出し効率が向上する。光PD3についても同様の効果が得られる。
Of the light emitted at the point P of the light emitting layer included in the organic layer 3, the light PD1 is light that travels toward the substrate in a direction perpendicular to the substrate and travels through the substrate 1 without being refracted at the interface with the substrate 1. It advances and is taken out outside.
The light PD 2 can be refracted at the interface between the anode 2 and the dielectric layer 7, pass through the anode 2, and then be extracted outside through the substrate 1.
Here, when the light PD2 travels from the dielectric layer 7 to the anode 2, it is refracted at the interface between the anode 2 and the dielectric layer 7, and the incident angle of the light PD2 on the substrate 1 changes to a smaller angle. Light incident on the outer surface of the substrate at an angle greater than the critical angle is totally reflected and becomes substrate mode light and is not extracted outside. The light PD2 is refracted at the interface between the anode 2 and the dielectric layer 7, so that the incident angle of the light PD2 to the outer surface of the substrate 1 is changed to a smaller angle. Efficiency is improved. Similar effects can be obtained with the optical PD3.
また、誘電体層7の屈折率が陽極2の屈折率より低い場合は、陰極側構造(陰極4、低屈折率層5、金属層6)から有機層3のA点にまで取り出された光は、光AD1のように伝播して基板1まで取り出される。
すなわち、A点から有機層3を通って進む光AD1は、さらに陽極2も透過したのち、開口部7Aの内側面7aで屈折し、誘電体層7を透過し、基板1内を通って外部に取り出されうる。
ここで、光AD1が陽極2から誘電体層7へ進む際、陽極2と誘電体層7との界面(開口部7Aの内側面7a)における屈折の差により、光AD1の基板1への入射角がより小さい角度に変わる。基板1の外表面(基板と空気との界面)に臨界角以上の角度で入射する光は全反射し、基板モード光となり外部に取り出されない。この陽極2と誘電体層7との界面での屈折により基板1の外表面への入射角がより小さい角度に変わるので、この全反射を避けられる光が増えて光取り出し効率が向上する。すなわち、陽極2と誘電体層7との界面を備える構成を有することにより、光取り出し効率が向上する。
さらに、陽極2の屈折率が有機層の内側面被覆部3aと異なる場合、有機層3に取り出された光が、この陽極2と有機層3の内側面被覆部3a界面でも屈折するため、より好ましい。
Further, when the refractive index of the dielectric layer 7 is lower than the refractive index of the anode 2, the light extracted from the cathode side structure (cathode 4, low refractive index layer 5, metal layer 6) to the point A of the organic layer 3. Propagates like the light AD1 and is extracted to the substrate 1.
That is, the light AD1 traveling through the organic layer 3 from the point A further passes through the anode 2 and is refracted at the inner surface 7a of the opening 7A, passes through the dielectric layer 7, passes through the substrate 1, and passes through the outside. Can be taken out.
Here, when the light AD1 travels from the anode 2 to the dielectric layer 7, the light AD1 is incident on the substrate 1 due to the difference in refraction at the interface between the anode 2 and the dielectric layer 7 (the inner surface 7a of the opening 7A). The angle changes to a smaller angle. Light incident on the outer surface of the substrate 1 (interface between the substrate and air) at an angle greater than the critical angle is totally reflected, becomes substrate mode light, and is not extracted outside. The refraction at the interface between the anode 2 and the dielectric layer 7 changes the incident angle to the outer surface of the substrate 1 to a smaller angle, so that the light that can avoid this total reflection increases and the light extraction efficiency is improved. That is, the light extraction efficiency is improved by having a configuration including the interface between the anode 2 and the dielectric layer 7.
Further, when the refractive index of the anode 2 is different from that of the inner side surface covering portion 3a of the organic layer, the light extracted to the organic layer 3 is also refracted at the interface between the anode 2 and the inner side surface covering portion 3a. preferable.
有機層3に含まれる発光層のP点で発光した光のうち、光PD1は基板に対して垂直方向に基板側に進む光であり、基板1との界面で屈折することなく基板1内を進み、外部に取り出される。
また、光PD2は、陽極2と誘電体層7との界面で屈折し、誘電体層7を透過し、基板1内を通って外部に取り出されうる。
ここで、光PD2が陽極2から誘電体層7へ進む際、陽極2と誘電体層7との界面における屈折により、光PD2の基板1の外表面への入射角がより小さい角度に変わる。基板1の外表面では臨界角以上の角度で入射する光は全反射し、基板モード光となり取り出されないが、光PD2はこの陽極2と誘電体層7との界面での屈折により基板1への入射角がより小さい角度に変わるので、この全反射しない光が増えて光取り出し効率が向上する。光PD3についても同様の効果が得られる。
Of the light emitted at the point P of the light emitting layer included in the organic layer 3, the light PD1 is light that travels toward the substrate in a direction perpendicular to the substrate and travels through the substrate 1 without being refracted at the interface with the substrate 1. It advances and is taken out outside.
Further, the light PD 2 can be refracted at the interface between the anode 2 and the dielectric layer 7, pass through the dielectric layer 7, and be extracted outside through the substrate 1.
Here, when the light PD2 travels from the anode 2 to the dielectric layer 7, the angle of incidence of the light PD2 on the outer surface of the substrate 1 changes to a smaller angle due to refraction at the interface between the anode 2 and the dielectric layer 7. Light incident at an angle greater than the critical angle is totally reflected on the outer surface of the substrate 1 and is not extracted as substrate mode light, but the light PD2 is refracted at the interface between the anode 2 and the dielectric layer 7 to the substrate 1. Since the incident angle is changed to a smaller angle, the light that is not totally reflected increases and the light extraction efficiency is improved. Similar effects can be obtained with the optical PD3.
次に、本発明の第1実施形態の有機EL素子10において、開口部7Aが基板1の面内の少なくとも1方向に発光光の波長と同等以下の周期で周期的に配置することによって、誘電体7と開口部7Aを被覆する陽極2とが回折格子をなす場合について、その回折格子による作用効果を、図8(a)を用いて模式的に説明する。図8(a)に矢印で示した光の伝播の仕方は、回折格子による作用効果の原理をわかりやすく説明するために模式的に示したものである。 Next, in the organic EL element 10 according to the first embodiment of the present invention, the openings 7A are periodically arranged in at least one direction in the plane of the substrate 1 with a period equal to or less than the wavelength of the emitted light. In the case where the body 7 and the anode 2 covering the opening 7A form a diffraction grating, the function and effect of the diffraction grating will be schematically described with reference to FIG. The light propagation method indicated by the arrows in FIG. 8A is schematically shown in order to easily understand the principle of the effect of the diffraction grating.
有機層3に含まれる発光層のDo点で発光した光のうち、陰極4側に進んだ光が陰極4と低屈折率層5との界面に臨界角以上の大きな入射角で入射して(矢印D1)全反射した場合(矢印D1r)、低屈折率層5中にエバネッセント波(矢印D2)が発生する。発生したエバネッセント波は、金属層6と低屈折率層5との界面まで滲み出し、表面プラズモンポラリトンSPP(矢印D3)が励起される。
励起されたSPPは、エバネッセント波(矢印D4)との共鳴を介して、上述したように所定の角度で陰極4に放射され(矢印D5)、導波モード光として有機層3に取り出されうる。
Di点及びDe点で発光した光についても同様である。
Of the light emitted from the Do point of the light emitting layer included in the organic layer 3, the light traveling toward the cathode 4 is incident on the interface between the cathode 4 and the low refractive index layer 5 at a large incident angle greater than the critical angle ( Arrow D1) In the case of total reflection (arrow D1r), an evanescent wave (arrow D2) is generated in the low refractive index layer 5. The generated evanescent wave oozes out to the interface between the metal layer 6 and the low refractive index layer 5, and the surface plasmon polariton SPP (arrow D3) is excited.
The excited SPP is radiated to the cathode 4 at a predetermined angle (arrow D5) through resonance with the evanescent wave (arrow D4), and can be extracted to the organic layer 3 as guided mode light.
The same applies to the light emitted at the Di point and the De point.
陰極側構造(陰極4、低屈折率層5、金属層6)から有機層3のD点にまで取り出された光は有機層を伝搬し、回折格子に入射する。入射した光は、回折格子によって、ある所定の方向(強め合う条件を満たす方向)に回折光が放射される。
回折光は、通常の屈折光と比べて、回折点毎の回折光が干渉しながら放出されているため、ある所定の角度に非常に強く光が取り出される。
ここで、矢印DD1や矢印DD2で示すように、基板1の外表面に、臨界角以下の入射角で入射する光は、そのまま外部に取り出される。この矢印DD1や矢印DD2で示す光は上記のように干渉により、他の伝搬方向に比べ強め合っているため、ある特定の角度に強度が強い光を取り出すことが可能となり、光の取り出し効率が向上する。
一方で、矢印DD3で示すように、基板の外表面に、臨界角以上の入射角度で入射する光は、全反射(矢印DD3r)して基板モード光となり、基板外部に取り出すことができない。
このように全反射する光を減らし、効率的に光を取り出すためには、式(1)を満たすうに、金属層6及び低屈折率層5の材料、並びに、回折格子の周期(ピッチ)を選択することが好ましい。特に次数Nが小さいほど回折光の強度が高いので、できるだけ絶対値の小さいNに対し、式(1)を満たすように回折格子の周期等を選択することが好ましい。言い換えると、式(1)を満たすようにすれば、回折格子により、SPPモード光から再放射された光を効率よく基板1から外部へ取り出すことができ、光の取り出し効率を向上することができる。
さらに、陽極2の屈折率が有機層の内側面被覆部3aと異なる場合、内側面被覆部3aを横切る基板平面に平行な断面で見ると周期的な屈折率構造を有しており、この平面部分においても回折構造を有することになり、さらに効率的に光を取り出すことができるようになるので、より好ましい。
The light extracted from the cathode side structure (cathode 4, low refractive index layer 5, metal layer 6) to point D of the organic layer 3 propagates through the organic layer and enters the diffraction grating. The incident light is diffracted by the diffraction grating in a predetermined direction (a direction that satisfies the strengthening condition).
Compared with ordinary refracted light, diffracted light is emitted at a certain predetermined angle because the diffracted light at each diffraction point is emitted while interfering.
Here, as indicated by arrows DD1 and DD2, the light incident on the outer surface of the substrate 1 at an incident angle equal to or less than the critical angle is extracted to the outside as it is. Since the light indicated by the arrows DD1 and DD2 is intensified by interference as compared with other propagation directions as described above, it is possible to extract light having a high intensity at a specific angle, and the light extraction efficiency is improved. improves.
On the other hand, as indicated by arrow DD3, light incident on the outer surface of the substrate at an incident angle greater than the critical angle is totally reflected (arrow DD3r) to become substrate mode light and cannot be extracted outside the substrate.
In order to reduce the total reflected light and extract the light efficiently in this way, the material of the metal layer 6 and the low refractive index layer 5 and the period (pitch) of the diffraction grating are set so as to satisfy the equation (1). It is preferable to select. In particular, since the intensity of the diffracted light is higher as the order N is smaller, it is preferable to select the diffraction grating period or the like so as to satisfy the formula (1) for N having the smallest absolute value. In other words, if the expression (1) is satisfied, the light re-radiated from the SPP mode light can be efficiently extracted from the substrate 1 to the outside by the diffraction grating, and the light extraction efficiency can be improved. .
Further, when the refractive index of the anode 2 is different from that of the inner surface covering portion 3a of the organic layer, the anode 2 has a periodic refractive index structure when viewed in a cross section parallel to the substrate plane crossing the inner surface covering portion 3a. Since the portion also has a diffractive structure, and light can be extracted more efficiently, it is more preferable.
次に、本発明の第1実施形態の有機EL素子10において、陽極孔部の面内の少なくとも1方向に発光光の波長と同程度以下の周期で周期的に配置場合は、前述のように回折格子を形成していると見なせるとともに、一方ではフォトニック結晶を形成していると見ることもできる。そのフォトニック結晶による作用効果を、図8(b)を用いて模式的に説明する。図8(b)に矢印で示した光の伝播の仕方は、フォトニック結晶による作用効果の原理をわかりやすく説明するために模式的に示したものである。 Next, in the organic EL element 10 according to the first embodiment of the present invention, in the case where the organic EL element 10 is periodically disposed in at least one direction in the plane of the anode hole portion with a period equal to or less than the wavelength of the emitted light, as described above. It can be considered that a diffraction grating is formed, and on the other hand, it can be regarded as forming a photonic crystal. The effect by the photonic crystal will be schematically described with reference to FIG. The way of light propagation indicated by arrows in FIG. 8B is schematically shown in order to easily understand the principle of the effect of the photonic crystal.
有機層3に含まれる発光層のEo点で発光した光のうち、陰極4側に進んだ光が陰極4と低屈折率層5との界面に臨界角以上の大きな入射角で入射して(矢印E1)全反射した場合(矢印E1r)、低屈折率層5中にエバネッセント波(矢印E2)が発生して、金属層6と低屈折率層5との界面まで滲み出し、表面プラズモンポラリトンSPP(矢印E3)が励起される。
励起されたSPPは、エバネッセント波(矢印E4)との共鳴を介して、上述したように所定の角度で陰極4に放射され(矢印E5)、導波モード光として有機層3に取り出されうる。
Ei点及びEe点で発光した光についても同様である。
Of the light emitted at the Eo point of the light emitting layer included in the organic layer 3, the light traveling to the cathode 4 side is incident on the interface between the cathode 4 and the low refractive index layer 5 at a large incident angle greater than the critical angle ( Arrow E1) When totally reflected (arrow E1r), an evanescent wave (arrow E2) is generated in the low refractive index layer 5 and oozes out to the interface between the metal layer 6 and the low refractive index layer 5, and the surface plasmon polariton SPP (Arrow E3) is excited.
The excited SPP can be radiated to the cathode 4 at a predetermined angle (arrow E5) through resonance with the evanescent wave (arrow E4) and extracted to the organic layer 3 as guided mode light.
The same applies to the light emitted at the Ei point and the Ee point.
陰極側構造(陰極4、低屈折率層5、金属層6)から有機層3のE点にまで取り出された光は有機層を伝搬し、陽極2と誘電体層7との屈折率の大小関係によらず、以下のようにフォトニック結晶構造によって外部に取り出される。ある方向に光の波長と同等以下の周期を有する屈折率変調構造体が存在する空間では、その方向にはフォトニックバンドギャップを生じ、バンドギャップ周波数域内の光は伝播できなくなる(光閉じ込め効果)。
本発明の第1実施形態において、周期構造は誘電体層7と開口部7Aを被覆する陽極2によって形成されており、ここでフォトニックバンドギャップを生じうるのは基板と平行な矢印ED2の方向である。したがって、ED2の方向のフォトニックバンドギャップに対応するバンドギャップ周波数域内の光に対しては、この基板と平行な方向への伝播は禁制される。
一方で、基板に垂直な方向については、フォトニック結晶構造をなす周期構造が形成されていないので、フォトニックバンドギャップは生じない。したがって、有機層3中に伝播光として取り出されたSPPモード光はこの基板に垂直な方向に、進むことになる。 
フォトニック結晶構造がない場合、有機層3中に取り出された光は大部分が陽極2(あるいは有機層3)と基板1の界面で全反射されて導波モード光になるか、基板1の外表面で全反射されて基板モードとなるが、フォトニック結晶構造によって有機層中の光伝播方向が基板面に対して垂直に近い方向に変えられるため、これらの界面での全反射が抑えられ、外部への光取り出し効率が向上する。
さらに、陽極2の屈折率が有機層の内側面被覆部3aと異なる場合、内側面被覆部3aを横切る基板平面に平行な断面で見ると周期的な屈折率構造を有している。この平面部分においてもフォトニック結晶構造を有することになり、さらに効率的に光を取り出すことができるようになるので、より好ましい。
The light extracted from the cathode side structure (cathode 4, low refractive index layer 5, metal layer 6) to point E of the organic layer 3 propagates through the organic layer, and the refractive index of the anode 2 and the dielectric layer 7 is large or small. Regardless of the relationship, it is extracted to the outside by the photonic crystal structure as follows. In a space where a refractive index modulation structure having a period equal to or less than the wavelength of light exists in a certain direction, a photonic band gap occurs in that direction, and light in the band gap frequency range cannot propagate (light confinement effect) .
In the first embodiment of the present invention, the periodic structure is formed by the dielectric layer 7 and the anode 2 covering the opening 7A, where the photonic band gap can be generated in the direction of the arrow ED2 parallel to the substrate. It is. Therefore, propagation in the direction parallel to the substrate is prohibited for light in the band gap frequency range corresponding to the photonic band gap in the direction of ED2.
On the other hand, no photonic band gap occurs in the direction perpendicular to the substrate because the periodic structure forming the photonic crystal structure is not formed. Accordingly, the SPP mode light extracted as propagating light in the organic layer 3 travels in a direction perpendicular to the substrate.
When there is no photonic crystal structure, most of the light extracted into the organic layer 3 is totally reflected at the interface between the anode 2 (or the organic layer 3) and the substrate 1 to become guided mode light, or Although it is totally reflected on the outer surface and becomes substrate mode, the photonic crystal structure changes the light propagation direction in the organic layer to a direction close to perpendicular to the substrate surface, so total reflection at these interfaces is suppressed. The light extraction efficiency to the outside is improved.
Further, when the refractive index of the anode 2 is different from that of the inner side surface covering portion 3a of the organic layer, the anode 2 has a periodic refractive index structure when viewed in a cross section parallel to the substrate plane crossing the inner side surface covering portion 3a. This planar portion also has a photonic crystal structure, which is more preferable because light can be extracted more efficiently.
第1実施形態の誘電体層を有する場合と、第2実施形態の基板に凹凸を有する場合とで、凹凸部の周期(ピッチ)とサイズが等しければ、屈折の効果も等しくなる。また回折格子やフォトニック結晶の効果も同様である。 If the dielectric layer of the first embodiment and the substrate of the second embodiment have irregularities, the refraction effect will be equal if the period (pitch) and size of the irregularities are equal. The effects of the diffraction grating and the photonic crystal are also the same.
(画像表示装置)
次に、上記の有機EL素子を備えた画像表示装置について説明を行う。上記の有機EL素子10、20、または30を備えた画像表示装置は有機EL素子による違いはないため、以下では各有機EL素子を代表して有機EL素子10として説明する。図9は、上記の有機EL素子10を備えた画像表示装置の一例を説明した図である。また、有機EL素子はボトムエミッション構造でもトップエミッション構造でも良いが、以下ではボトムエミッション構造の例で説明を行う。
図9に示した画像表示装置100は、いわゆるパッシブマトリクス型の画像表示装置であり、有機EL素子10の他に、陽極配線104、陽極補助配線106、陰極配線108、絶縁膜110、陰極隔壁112、封止プレート116、シール材118とを備えている。
(Image display device)
Next, an image display apparatus provided with the above organic EL element will be described. Since the image display apparatus provided with the organic EL element 10, 20, or 30 is not different depending on the organic EL element, the organic EL element 10 will be described below as a representative of each organic EL element. FIG. 9 is a diagram illustrating an example of an image display device including the organic EL element 10 described above. In addition, the organic EL element may have a bottom emission structure or a top emission structure, but in the following, an example of a bottom emission structure will be described.
The image display device 100 shown in FIG. 9 is a so-called passive matrix type image display device. In addition to the organic EL element 10, the anode wiring 104, the anode auxiliary wiring 106, the cathode wiring 108, the insulating film 110, and the cathode partition 112 , A sealing plate 116 and a sealing material 118.
本実施の形態において、有機EL素子10の基板1上には、複数の陽極配線104が形成されている。陽極配線104は、一定の間隔を隔てて平行に配置される。陽極配線104は、透明導電膜により構成され、例えばITO(Indium Tin Oxide)を用いることができる。また陽極配線104の厚さは例えば、100nm~150nmとすることができる。そして、それぞれの陽極配線104の端部の上には、陽極補助配線106が形成される。陽極補助配線106は陽極配線104と電気的に接続されている。このように構成することにより、陽極補助配線106は、基板1の端部側において外部配線と接続するための端子として機能し、外部に設けられた図示しない駆動回路から陽極補助配線106を介して陽極配線104に電流を供給することができる。陽極補助配線106は、例えば、厚さ500nm~600nmの金属膜によって構成される。 In the present embodiment, a plurality of anode wirings 104 are formed on the substrate 1 of the organic EL element 10. The anode wirings 104 are arranged in parallel at a constant interval. The anode wiring 104 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used. The thickness of the anode wiring 104 can be set to 100 nm to 150 nm, for example. An anode auxiliary wiring 106 is formed on the end of each anode wiring 104. The anode auxiliary wiring 106 is electrically connected to the anode wiring 104. With this configuration, the anode auxiliary wiring 106 functions as a terminal for connecting to the external wiring on the end portion side of the substrate 1, and the drive circuit (not shown) provided outside via the anode auxiliary wiring 106. A current can be supplied to the anode wiring 104. The anode auxiliary wiring 106 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
また、有機EL素子10上には、複数の陰極配線108が設けられている。複数の陰極配線108は、それぞれが平行となるよう、かつ、陽極配線104と直交するように配設されている。陰極配線108には、Al又はAl合金を使用することができる。陰極配線108の厚さは、例えば、100nm~150nmである。また、陰極配線108の端部には、陽極配線104に対する陽極補助配線106と同様に、図示しない陰極補助配線が設けられ、陰極配線108と電気的に接続されている。よって、陰極配線108と陰極補助配線との間に電流を流すことができる。 A plurality of cathode wirings 108 are provided on the organic EL element 10. The plurality of cathode wirings 108 are arranged so as to be parallel to each other and orthogonal to the anode wiring 104. For the cathode wiring 108, Al or an Al alloy can be used. The thickness of the cathode wiring 108 is, for example, 100 nm to 150 nm. Further, similarly to the anode auxiliary wiring 106 for the anode wiring 104, a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 108 and is electrically connected to the cathode wiring 108. Therefore, a current can flow between the cathode wiring 108 and the cathode auxiliary wiring.
更に基板1上には、陽極配線104を覆うように絶縁膜110が形成される。絶縁膜110には、陽極配線104の一部を露出するように矩形状の開口部120が設けられている。複数の開口部120は、陽極配線104の上にマトリクス状に配置されている。この開口部120において、陽極配線104と陰極配線108の間に有機EL素子10が設けられる。すなわち、それぞれの開口部120が画素となる。従って、開口部120に対応して表示領域が形成される。ここで、絶縁膜110の膜厚は、例えば、200nm~10000nmとすることができ、開口部120の大きさは、例えば、100μm×100μmとすることができる。 Further, an insulating film 110 is formed on the substrate 1 so as to cover the anode wiring 104. A rectangular opening 120 is provided in the insulating film 110 so as to expose a part of the anode wiring 104. The plurality of openings 120 are arranged in a matrix on the anode wiring 104. In the opening 120, the organic EL element 10 is provided between the anode wiring 104 and the cathode wiring 108. That is, each opening 120 becomes a pixel. Accordingly, a display area is formed corresponding to the opening 120. Here, the thickness of the insulating film 110 can be set to, for example, 200 nm to 10,000 nm, and the size of the opening 120 can be set to, for example, 100 μm × 100 μm.
有機EL素子10は、開口部120において陽極配線104と陰極配線108の間に位置している。そしてこの場合、有機EL素子10の陽極2が陽極配線104と接触し、陰極4が陰極配線108と接触する。有機EL素子10の厚さは、例えば、150nm~200nmとすることができる。 The organic EL element 10 is located between the anode wiring 104 and the cathode wiring 108 in the opening 120. In this case, the anode 2 of the organic EL element 10 is in contact with the anode wiring 104 and the cathode 4 is in contact with the cathode wiring 108. The thickness of the organic EL element 10 can be set to, for example, 150 nm to 200 nm.
絶縁膜110の上には、複数の陰極隔壁112が陽極配線104と平面視で直交する方向に沿って形成されている。陰極隔壁112は、陰極配線108の配線同士が導通しないように、複数の陰極配線108を空間的に分離するための役割を担っている。従って、隣接する陰極隔壁112の間にそれぞれ陰極配線108が配置される。陰極隔壁112の大きさとしては、例えば、高さが2μm~3μm、幅が10μmのものを用いることができる。 On the insulating film 110, a plurality of cathode partition walls 112 are formed along a direction orthogonal to the anode wiring 104 in plan view. The cathode partition 112 plays a role for spatially separating the plurality of cathode wirings 108 so that the wirings of the cathode wirings 108 do not conduct with each other. Accordingly, the cathode wiring 108 is disposed between the adjacent cathode partition walls 112. As the size of the cathode partition 112, for example, the one having a height of 2 μm to 3 μm and a width of 10 μm can be used.
また、基板1は、封止プレート116とシール材118を介して貼り合わせられている。これにより、有機EL素子10が設けられた空間を封止することができ、有機EL素子10が大気中の水分により劣化するのを防ぐことができる。封止プレート116としては、例えば、厚さが0.7mm~1.1mmのガラス基板を使用することができる。封止プレート116は、素子がボトムエミッション型のように光を基板1側から取り出す場合は、透明でなくてもよい。一方、素子がトップエミッション型のように光を封止プレート116側から取り出す場合は封止プレート116は発光波長域の少なくとも一部の波長に対して透明である必要がある。 In addition, the substrate 1 is bonded to each other through a sealing plate 116 and a sealing material 118. Thereby, the space in which the organic EL element 10 is provided can be sealed, and the organic EL element 10 can be prevented from being deteriorated by moisture in the atmosphere. As the sealing plate 116, for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used. The sealing plate 116 may not be transparent when light is extracted from the substrate 1 side as in the case of a bottom emission type element. On the other hand, in the case where light is extracted from the sealing plate 116 side as in the top emission type, the sealing plate 116 needs to be transparent to at least a part of the light emission wavelength region.
このような構造の画像表示装置100において、図示しない駆動装置により、陽極補助配線106、図示しない陰極補助配線を介して、有機EL素子10に電流を供給し、発光層を発光させることができる。そして基板1から基板1を通し、光を出射させることができる。そして、上述の画素に対応した有機EL素子10の発光、非発光を制御装置により制御することにより、画像表示装置100に画像を表示させることができる。 In the image display apparatus 100 having such a structure, a current can be supplied to the organic EL element 10 through a positive electrode auxiliary wiring 106 and a negative electrode auxiliary wiring (not shown) by a driving device (not shown) to cause the light emitting layer to emit light. Then, light can be emitted from the substrate 1 through the substrate 1. An image can be displayed on the image display device 100 by controlling the light emission and non-light emission of the organic EL element 10 corresponding to the above-described pixel by the control device.
(照明装置)
次に、上記の有機EL素子を備えた画像表示装置について説明を行う。上記の有機EL素子10、20、または30を備えた画像表示装置は有機EL素子による違いはないため以下では各有機EL素子を代表して有機EL素子10として説明する。また、有機EL素子はボトムエミッション構造でもトップエミッション構造でも良いが、以下ではボトムエミッション構造の例で説明を行う。
図10は、上記の有機EL素子10を備える照明装置の一例を説明した図である。
図10に示した照明装置200は、上述した有機EL素子10と、有機EL素子10の基板1上に設置され、陽極2(図1参照)に接続される端子202と、陰極4(図1参照)に接続される端子203と、端子202と端子203とに接続し、有機EL素子10を駆動するための点灯回路201とから構成される。
(Lighting device)
Next, an image display apparatus provided with the above organic EL element will be described. The image display apparatus provided with the organic EL element 10, 20, or 30 is not different depending on the organic EL element. In addition, the organic EL element may have a bottom emission structure or a top emission structure, but in the following, an example of a bottom emission structure will be described.
FIG. 10 is a diagram illustrating an example of an illumination device including the organic EL element 10 described above.
The illumination device 200 shown in FIG. 10 is provided on the organic EL element 10 described above, the substrate 1 of the organic EL element 10, the terminal 202 connected to the anode 2 (see FIG. 1), and the cathode 4 (see FIG. 1). And a lighting circuit 201 for driving the organic EL element 10 connected to the terminal 202 and the terminal 203.
点灯回路201は、図示しない直流電源と図示しない制御回路を内部に有し、端子202と端子203を通して、有機EL素子10の陽極2と陰極4との間に電圧を印加して電流を供給する。そして、有機EL素子10を駆動し、発光層を発光させて、基板1を通して出射させ、照明光として利用する。発光層は白色光を出射する発光材料より構成されていてもよく、また緑色光(G)、青色光(B)、赤色光(R)を出射する発光材料を使用した有機EL素子10をそれぞれ複数個設け、その合成光が白色となるようにしてもよい。 The lighting circuit 201 has a DC power source (not shown) and a control circuit (not shown) inside, and supplies a current by applying a voltage between the anode 2 and the cathode 4 of the organic EL element 10 through the terminal 202 and the terminal 203. . Then, the organic EL element 10 is driven, the light emitting layer emits light, is emitted through the substrate 1, and is used as illumination light. The light emitting layer may be made of a light emitting material that emits white light, and each of the organic EL elements 10 using light emitting materials that emit green light (G), blue light (B), and red light (R). A plurality of them may be provided so that the combined light is white.
(有機EL素子の製造方法)
本発明の第1実施形態に係る有機EL素子の製造方法は、図11で示したボトムエミッション型の有機EL素子の製造方法を参照して説明する。
まず、図11(a)に示すように、基板1上に、誘電体層7を形成する。この誘電体層7の形成方法は特に限定はされない。例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などの乾式プロセス法のほか、塗布法など各種の湿式プロセスも用いることができる。
(Manufacturing method of organic EL element)
The manufacturing method of the organic EL element according to the first embodiment of the present invention will be described with reference to the manufacturing method of the bottom emission type organic EL element shown in FIG.
First, as shown in FIG. 11A, the dielectric layer 7 is formed on the substrate 1. The method for forming the dielectric layer 7 is not particularly limited. For example, in addition to a dry process method such as a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, and a CVD method, various wet processes such as a coating method can be used.
 開口部7Aを形成するには、例えば、フォトリソグラフィを用いた方法が使用できる。これを行うには、図11(b)に示すように、まず陽極2の上にポジ型レジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層9を形成する。 In order to form the opening 7A, for example, a method using photolithography can be used. In order to do this, as shown in FIG. 11B, first, a positive resist solution is applied onto the anode 2 and the excess resist solution is removed by spin coating or the like, thereby forming a resist layer 9.
そして、開口部7Aを形成するための所定のパターンが描画されたマスク(図示せず)をかぶせ、紫外線(UV)、電子線(EB)等により露光を行うと、図11(c)に示すように、レジスト層9に開口部7Aに対応した所定のパターンが露光される。そして現像液を用いて露光されたパターンの部分のレジスト層9を除去する。これにより露光されたパターンの部分に対応して、誘電体膜7の表面が露出する(図11(d))。 Then, when a mask (not shown) on which a predetermined pattern for forming the opening 7A is drawn is applied and exposure is performed with ultraviolet rays (UV), electron beams (EB), etc., it is shown in FIG. 11C. Thus, the resist layer 9 is exposed to a predetermined pattern corresponding to the opening 7A. Then, the resist layer 9 in the exposed pattern portion is removed using a developer. Thus, the surface of the dielectric film 7 is exposed corresponding to the exposed pattern portion (FIG. 11D).
図11(e)に示すように、残存したレジスト層9をマスクとして、露出した誘電体膜7の部分をエッチング除去して開口部7Aを形成する。エッチングとしては、ドライエッチングとウェットエッチングの何れをも使用することができる。またこの際に等方性エッチングと異方性エッチングを組合せることで、開口部7Aの形状の制御を行うことができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion Etching)や誘導結合プラズマエッチングが利用でき、またウェットエッチングとしては、希塩酸や希硫酸、フッ化水素酸、リン酸、塩化鉄水溶液への浸漬を行う方法などが利用できる。このエッチングにより上記パターンに対応して開口部7Aが形成され、基板1の表面が露出する。
また、開口部7Aはレーザー光照射による直接加工でも形成することができる。この場合、基板1に誘電体層7を形成した後、レーザービームを基板1上に照射して直接誘電体層7に穴開け加工を行うか、又はレーザー光の干渉パターンを基板1上に照射して誘電体層に干渉パターンと同パターンの開口部7Aを形成する。従って、フォトレジストによるマスク形成を行わないため、加工工程数が減少する。加工に用いるレーザーとしては、パルス炭酸ガスレーザー、QスイッチNd:YAGレーザーとその高調波、チタンサファイアレーザー、エキシマレーザーなどが挙げられる。尚、レーザー照射による誘電体層7の損傷を防ぐために、レーザーを照射する前に、誘電体層7上に表面保護膜を形成してもよい。
As shown in FIG. 11E, using the remaining resist layer 9 as a mask, the exposed portion of the dielectric film 7 is removed by etching to form an opening 7A. As the etching, either dry etching or wet etching can be used. In this case, the shape of the opening 7A can be controlled by combining isotropic etching and anisotropic etching. As dry etching, reactive ion etching (RIE) or inductively coupled plasma etching can be used. As wet etching, immersion in dilute hydrochloric acid, dilute sulfuric acid, hydrofluoric acid, phosphoric acid, or aqueous iron chloride is used. You can use the method of doing. By this etching, an opening 7A is formed corresponding to the pattern, and the surface of the substrate 1 is exposed.
The opening 7A can also be formed by direct processing by laser light irradiation. In this case, after forming the dielectric layer 7 on the substrate 1, the substrate 1 is irradiated with a laser beam to directly drill the dielectric layer 7, or the substrate 1 is irradiated with an interference pattern of laser light. Then, an opening 7A having the same pattern as the interference pattern is formed in the dielectric layer. Therefore, since the mask is not formed with a photoresist, the number of processing steps is reduced. Examples of the laser used for processing include a pulse carbon dioxide laser, a Q switch Nd: YAG laser and its harmonics, a titanium sapphire laser, and an excimer laser. In order to prevent damage to the dielectric layer 7 due to laser irradiation, a surface protective film may be formed on the dielectric layer 7 before laser irradiation.
 次に、レジスト層9を除去した後、図11(f)において示すように、開口部7Aを有した誘電体層7の上面に沿うように(conformalに)陽極2を形成する。この陽極2の形成方法は特に限定されない。例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などの乾式プロセス法のほか、塗布法などの湿式プロセスも用いることができる。 Next, after removing the resist layer 9, as shown in FIG. 11 (f), the anode 2 is formed along the upper surface of the dielectric layer 7 having the opening 7A (conformally). The formation method of this anode 2 is not specifically limited. For example, in addition to a dry process method such as a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, and a CVD method, a wet process such as a coating method can be used.
陽極2を形成した後に、陽極2の表面処理を行うことで、オーバーコートされる層の性能(陽極2との密着性、表面平滑性、ホール注入障壁の低減化など)を改善することができる。表面処理の具体例としては、高周波プラズマ処理を始めとしてスパッタリング処理、コロナ処理、UVオゾン照射処理、紫外線照射処理、または酸素プラズマ処理などが挙げられる。 By performing the surface treatment of the anode 2 after forming the anode 2, the performance of the overcoated layer (adhesion with the anode 2, surface smoothness, reduction of hole injection barrier, etc.) can be improved. . Specific examples of the surface treatment include high-frequency plasma treatment, sputtering treatment, corona treatment, UV ozone irradiation treatment, ultraviolet irradiation treatment, and oxygen plasma treatment.
更に、陽極2の表面処理の表面処理を行う代わりに、もしくは表面処理に追加して、図示しない陽極バッファ層を形成することで表面処理と同様の効果が期待できる。そして、陽極バッファ層はウェットプロセスにて塗布して作製することができ、具体的な成膜方法としてはスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法、浸漬法、電気化学的方法などが挙げられる。 Furthermore, the same effect as the surface treatment can be expected by forming an anode buffer layer (not shown) instead of or in addition to the surface treatment of the surface treatment of the anode 2. The anode buffer layer can be prepared by applying a wet process. Specific film forming methods include spin coating, casting, micro gravure coating, gravure coating, bar coating, and roll coating. , Wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, coating method such as inkjet printing method, dipping method, electrochemical method and the like.
また、陽極バッファ層をドライプロセスにて作製する場合は、特開2006-30312号公報に例示のプラズマ処理などを用いて成膜することができる。この他にも金属単体あるいは金属酸化物、金属窒化物等を成膜する方法が挙げられ、具体的な成膜方法としては、電子ビーム蒸着法、スパッタリング法、化学反応法、コーティング法、真空蒸着法などを用いることができる。 In the case where the anode buffer layer is formed by a dry process, the anode buffer layer can be formed by using a plasma treatment or the like exemplified in JP-A-2006-30312. In addition, a method of forming a film of a single metal, a metal oxide, a metal nitride, or the like can be mentioned. Specific film forming methods include an electron beam evaporation method, a sputtering method, a chemical reaction method, a coating method, and a vacuum evaporation method. The method etc. can be used.
次に、図11(g)において、有機層3は層状部3cと内側面被覆部3aから成る。内側面被覆部3aは陽極凹部2Aを充填して陽極凹部2Aの内側面2aを被覆する構成であるが、一部だけ埋めて陽極凹部2Aの内側面2aを被覆する構成でもよい。この内側面被覆部3aの形成方法も陽極2と同様に特に限定されないが、従来公知の方法を用いることができ、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、各種の塗布法等の方法を用いることができる。
上記のように有機層3の内側面被覆部3aを形成すると共に、さらに、有機層3の層状部3cも形成して、有機層3の形成を行い、図11(g)に対応する構造を作製する。
Next, in FIG.11 (g), the organic layer 3 consists of the layer part 3c and the inner surface coating | coated part 3a. The inner side surface covering portion 3a is configured to fill the anode recess 2A and cover the inner side surface 2a of the anode recess 2A, but may be configured to cover only the inner surface 2a of the anode recess 2A. The method for forming the inner side surface covering portion 3a is not particularly limited as in the case of the anode 2, but a conventionally known method can be used, for example, vacuum deposition method, spin coating method, casting method, LB method, various coating methods Etc. can be used.
In addition to forming the inner surface covering portion 3a of the organic layer 3 as described above, the organic layer 3 is also formed by forming the layered portion 3c of the organic layer 3, and the structure corresponding to FIG. Make it.
次に、図11(h)に示すように、有機層3上に陰極4を形成する。陰極4の形成も陽極2の形成と同様の方法を用いることができ、特に限定はされない。例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法などを用いることができる。 Next, the cathode 4 is formed on the organic layer 3 as shown in FIG. The cathode 4 can be formed by the same method as the formation of the anode 2 and is not particularly limited. For example, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, or the like can be used.
 次に、図11(i)に示すように、陰極4上に低屈折率層5を形成する。低屈折率層5の形成方法は特に限定はされない。例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法、CVD法、各種の塗布法などを用いることができる。
 低屈折率層5を、空気層を含んでなる低屈折率層とする場合は、例えば、SOG層を形成した後に、SOG層のうち、フォトリソグラフィを用いて所定箇所だけSOG材料を残すようにSOG層をエッチング除去して、SOG層を除去した部分が空気層となるようにして、低屈折率層を形成する。
Next, as shown in FIG. 11 (i), a low refractive index layer 5 is formed on the cathode 4. The method for forming the low refractive index layer 5 is not particularly limited. For example, a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputtering method, an ion plating method, a CVD method, and various coating methods can be used.
When the low-refractive index layer 5 is a low-refractive index layer including an air layer, for example, after the SOG layer is formed, the SOG material is left at a predetermined position in the SOG layer using photolithography. The low refractive index layer is formed by etching away the SOG layer so that the portion where the SOG layer is removed becomes an air layer.
次に、図11(j)に示すように、低屈折率層5上に金属層6を形成する。金属層6の形成方法は特に限定されない。例えば、蒸着法、スパッタリングを用いることができる。 Next, as shown in FIG. 11 (j), a metal layer 6 is formed on the low refractive index layer 5. The formation method of the metal layer 6 is not specifically limited. For example, vapor deposition or sputtering can be used.
有機EL素子10を長期安定的に駆動し、有機EL素子10を外部の水分、酸素等から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等のシリコン化合物などを用いることができる。また、亜鉛等の比較的イオン化傾向の比較的大きい金属を犠牲層(その後の工程で除去する保護層)として用いることも可能である。そして、これらの積層体も用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属などを用いることができる。この保護カバーは、熱硬化性樹脂や光硬化性樹脂、フリットガラスで基板1と貼り合わせて密閉する方法を採ることが好ましい。またこの際に、スペーサを用いることで所定の空間を維持することができ、外部からの力により保護カバーが接触し有機EL素子10が傷つくのを防止できるため好ましい。そして、この空間に窒素、アルゴン、ヘリウムのような不活性なガス、またはパーフルオロカーボンなど各種の不活性液体を封入すれば、上側の金属層6の酸化を防止しやすくなる。特にヘリウムを用いた場合、熱伝導が高いため、電圧印加時に有機EL素子10より発生する熱を効果的に保護カバーに伝えることができるため、好ましい。更に酸化バリウム等の乾燥剤をこの空間内に設置することにより上記一連の製造工程で吸着した水分が有機EL素子10にダメージを与えるのを抑制しやすくなる。 It is preferable to attach a protective layer or a protective cover (not shown) for driving the organic EL element 10 stably for a long period of time and protecting the organic EL element 10 from external moisture, oxygen, and the like. As the protective layer, polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. It is also possible to use a metal having a relatively large ionization tendency such as zinc as a sacrificial layer (a protective layer to be removed in a subsequent process). And these laminated bodies can also be used. Further, as the protective cover, a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used. It is preferable to adopt a method in which the protective cover is sealed by being bonded to the substrate 1 with a thermosetting resin, a photocurable resin, or frit glass. At this time, a predetermined space can be maintained by using a spacer, and it is preferable because the protective cover can be prevented from being touched by an external force to damage the organic EL element 10. Then, if an inert gas such as nitrogen, argon or helium, or various inert liquids such as perfluorocarbon is sealed in this space, it is easy to prevent the upper metal layer 6 from being oxidized. In particular, when helium is used, heat conduction is high, and thus heat generated from the organic EL element 10 when voltage is applied can be effectively transmitted to the protective cover, which is preferable. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic EL element 10.
 なお、図2(b)において説明した陽極とは海島構造が逆になる有機EL素子は、図11(b)の工程において、ネガ型のレジストを用いるか、図11(c)の工程において、マスクの形状の開口部と遮蔽部を逆にすることで作製することができる。 The organic EL element whose sea-island structure is opposite to the anode described in FIG. 2B uses a negative resist in the process of FIG. 11B, or in the process of FIG. It can be manufactured by reversing the mask-shaped opening and the shielding portion.
本発明の第2実施形態に係る有機EL素子の製造方法は、図12で示したボトムエミッション型有機EL素子の製造方法を参照して説明する。
まず、基板21上に、凹凸形状を形成するには、例えば、フォトリソグラフィを用いた方法が使用できる。これを行うには、図12(a)に示すように、まず基板21の上にポジ型レジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層29を形成する。
The manufacturing method of the organic EL device according to the second embodiment of the present invention will be described with reference to the manufacturing method of the bottom emission type organic EL device shown in FIG.
First, in order to form an uneven shape on the substrate 21, for example, a method using photolithography can be used. In order to do this, as shown in FIG. 12A, first, a positive resist solution is applied onto the substrate 21, and the excess resist solution is removed by spin coating or the like to form a resist layer 29.
そして、凹凸形状を形成するための所定のパターンが描画されたマスク(図示せず)をかぶせ、紫外線(UV)、電子線(EB)等により露光を行うと、図12(b)に示すように、レジスト層29に対応した所定のパターンが露光される。そして現像液を用いて露光されたパターンの部分のレジスト層29aを除去する。これにより露光されたパターンの部分に対応して、基板21の表面が露出する(図12(c))。 Then, when a mask (not shown) on which a predetermined pattern for forming the concavo-convex shape is applied and exposure is performed with ultraviolet rays (UV), electron beams (EB), etc., as shown in FIG. Then, a predetermined pattern corresponding to the resist layer 29 is exposed. Then, the resist layer 29a in the exposed pattern portion is removed using a developer. As a result, the surface of the substrate 21 is exposed corresponding to the exposed pattern portion (FIG. 12C).
図12(d)に示すように、残存したレジスト層29をマスクとして、露出した基板21の部分をエッチング除去して基板凹部21Aを形成する。エッチングとしては、ドライエッチングとウェットエッチングの何れをも使用することができる。またこの際に等方性エッチングと異方性エッチングを組合せることで、基板凹部21Aの形状の制御を行うことができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion Etching)や誘導結合プラズマエッチングが利用できる。またウェットエッチングとしては、例えば、基板にガラスを用いる場合にはフッ化水素酸への浸漬を行う方法などが利用できる。このエッチングにより上記パターンに対応して、基板21の表面に凹凸が形成される。
また、基板凹部21Aはレーザー光照射による直接加工でも形成することができる。この場合、レーザービームを基板21上に照射して直接基板21に穴開け加工を行うか、又はレーザー光の干渉パターンを基板21上に照射して、誘電体層に干渉パターンと同パターンの基板凹部21Aを形成する。従って、フォトレジストによるマスク形成を行わないため、加工工程数が減少する。加工に用いるレーザーとしては、パルス炭酸ガスレーザー、QスイッチNd:YAGレーザーとその高調波、チタンサファイアレーザー、エキシマレーザーなどが挙げられる。尚、レーザー照射による基板21の損傷を防ぐために、レーザーを照射する前に、基板21上に表面保護膜を形成してもよい。
As shown in FIG. 12D, using the remaining resist layer 29 as a mask, the exposed portion of the substrate 21 is removed by etching to form a substrate recess 21A. As the etching, either dry etching or wet etching can be used. In this case, the shape of the substrate recess 21A can be controlled by combining isotropic etching and anisotropic etching. As dry etching, reactive ion etching (RIE) or inductively coupled plasma etching can be used. As wet etching, for example, when glass is used for the substrate, a method of immersing in hydrofluoric acid can be used. By this etching, irregularities are formed on the surface of the substrate 21 corresponding to the pattern.
The substrate recess 21A can also be formed by direct processing by laser light irradiation. In this case, a laser beam is irradiated onto the substrate 21 to directly drill the substrate 21, or a laser light interference pattern is irradiated onto the substrate 21, and the dielectric layer has the same pattern as the interference pattern. A recess 21A is formed. Therefore, since the mask is not formed with a photoresist, the number of processing steps is reduced. Examples of the laser used for processing include a pulse carbon dioxide laser, a Q switch Nd: YAG laser and its harmonics, a titanium sapphire laser, and an excimer laser. In order to prevent damage to the substrate 21 due to laser irradiation, a surface protective film may be formed on the substrate 21 before laser irradiation.
 次に、レジスト層29を除去した後、図12(e)において示すように、基板凹部21Aを有した基板表面に沿うように(conformalに)陽極22を形成する。この陽極22の形成は第1実施形態の有機EL素子の形成方法と同様の方法が用いることができる。また、形成後の表面処理等も、第1実施形態の有機EL素子と同様の処理を行うことができる。 Next, after removing the resist layer 29, as shown in FIG. 12E, the anode 22 is formed along the substrate surface having the substrate recess 21A (conformal). The anode 22 can be formed by a method similar to the method for forming the organic EL element of the first embodiment. Also, the surface treatment after the formation can be performed in the same manner as the organic EL element of the first embodiment.
次に、図12(f)において、有機層23の内側面被覆部23aは陽極凹部22Aを充填して陽極凹部22Aの内側面を被覆する構成であるが、一部だけ埋めて陽極凹部22Aの内側面を被覆する構成でもよい。この有機層の形成も、第1実施形態の有機EL素子の形成方法と同様の方法が用いることができる。 Next, in FIG. 12F, the inner side surface covering portion 23a of the organic layer 23 is configured to fill the anode concave portion 22A and cover the inner side surface of the anode concave portion 22A. The structure which coat | covers an inner surface may be sufficient. This organic layer can also be formed by a method similar to the method for forming the organic EL element of the first embodiment.
有機層23上に陰極24、低屈折率層25、金属層26を形成有機層23上に陰極24、低屈折率層25、金属層26の形成も、同様に第1実施形態の有機EL素子と同様の処理を行うことができる。(図12(g)~(i)) Formation of cathode 24, low-refractive index layer 25, and metal layer 26 on organic layer 23 The formation of cathode 24, low-refractive index layer 25, and metal layer 26 on organic layer 23 is similarly performed in the organic EL element of the first embodiment. The same processing can be performed. (Fig. 12 (g) to (i))
以上の工程により、有機EL素子20を製造することができる。また、これら一連の工程後、有機EL素子20を長期安定的に用い、有機EL素子20を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。これらの保護層としても第1実施形態の有機EL素子10と同様のものを使用することができる。 The organic EL element 20 can be manufactured by the above process. Moreover, after these series of processes, it is preferable to use the organic EL element 20 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic EL element 20 from the outside. As these protective layers, the same layers as those of the organic EL element 10 of the first embodiment can be used.
本発明の第3実施形態に係る有機EL素子のボトムエミッション構造の製造方法は、図13で示した有機EL素子の製造方法を参照して説明する。
まず、陽極32を形成する工程までは、第1実施形態のボトムエミッション構造と同じ製造方法を用いることができる。
A method for manufacturing the bottom emission structure of the organic EL element according to the third embodiment of the present invention will be described with reference to the method for manufacturing the organic EL element shown in FIG.
First, the same manufacturing method as the bottom emission structure of the first embodiment can be used until the step of forming the anode 32.
図13(a)で示すように、陽極32上に、平坦化層38を形成し、陽極32の、誘電体層と反対側の表面の凹凸を平坦化する。この平坦化層38の形成は、誘電体層37または陽極32の形成で用いたものと同様のものを用いることができる。また、平坦化層38形成した後に、平坦化層の表面を改質(有機層へのホール注入促進、ぬれ性向上)する目的で、平坦化層表面に、高周波プラズマ処理をはじめとしてスパッタリング処理、コロナ処理、UVオゾン照射処理、紫外線照射処理、酸素プラズマ処理などの各種の表面処理を施しても良い。なお、図13(a)は陽極32の全体を覆うように、平坦化層38を形成しているが、陽極32の一部の凹部のみを埋めるように、平坦化層38を形成してもよい。 As shown in FIG. 13A, a planarizing layer 38 is formed on the anode 32, and the unevenness of the surface of the anode 32 on the side opposite to the dielectric layer is planarized. The flattening layer 38 can be formed using the same material as that used for forming the dielectric layer 37 or the anode 32. In addition, after the planarization layer 38 is formed, the planarization layer surface is subjected to sputtering treatment including high-frequency plasma treatment for the purpose of modifying the planarization layer surface (promoting hole injection into the organic layer and improving wettability). Various surface treatments such as corona treatment, UV ozone irradiation treatment, ultraviolet irradiation treatment, and oxygen plasma treatment may be performed. In FIG. 13A, the planarization layer 38 is formed so as to cover the entire anode 32. However, the planarization layer 38 may be formed so as to fill only a part of the concave portion of the anode 32. Good.
次に有機層33、陰極34、低屈折率層35、金属層36を順に形成する。有層33上に陰極34、低屈折率層35、金属層36の形成も、同様に第1実施形態の有機EL素子と同様の処理を行うことができる。(図13(b)~(e)) Next, the organic layer 33, the cathode 34, the low refractive index layer 35, and the metal layer 36 are formed in order. The formation of the cathode 34, the low refractive index layer 35, and the metal layer 36 on the organic layer 33 can be similarly processed in the same manner as the organic EL element of the first embodiment. (Fig. 13 (b) to (e))
以上の工程により、有機EL素子30を製造することができる。また、これら一連の工程後、有機EL素子30を長期安定的に用い、有機EL素子20を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。これらの保護層としても第1実施形態の有機EL素子10と同様のものを使用することができる。 Through the above steps, the organic EL element 30 can be manufactured. Moreover, after these series of processes, it is preferable to use the organic EL element 30 stably for a long period of time and to attach a protective layer and a protective cover (not shown) for protecting the organic EL element 20 from the outside. As these protective layers, the same layers as those of the organic EL element 10 of the first embodiment can be used.
(Otto型配置におけるSPP取り出し)
本発明における有機EL素子のOtto型配置による金属層表面に捕捉された表面プラズモンポラリトン(SPP)を取り出すことが可能な低屈折率層の膜厚を検討する。
(SPP extraction in Otto type arrangement)
The film thickness of the low refractive index layer capable of taking out surface plasmon polariton (SPP) trapped on the surface of the metal layer by the Otto type arrangement of the organic EL element in the present invention will be examined.
図14に、有機層で発光した光の強度を、有機EL素子面方向における波数成分で展開するエネルギー散逸計算を行った結果を示す。横軸が、有機層で発光した光の波数の、有機EL素子面方向成分を真空の波数kで割ったもの、すなわち有効屈折率であり、縦軸がその波数の光の強度、すなわち展開係数を示している。計算は、TM偏光成分、TE偏光成分に分けて行った。この計算は基板(ガラス)上に、各層が平坦な陽極と有機層と陰極(金属)とを積層した有機EL素子の結果を示している。この場合、TM偏光の最も高波数側のピーク面積がSPPモード光の強度を表しているが、有機層で発光した光の多くがSPPモード光として捕捉されているのが分かる。図14に示す有機EL素子では、glassが基板に、High-nがITOからなる陽極と発光層を含む有機層に、metalが陰極に対応する。陽極と有機層の膜厚は、それぞれ150nm、100nmである。 FIG. 14 shows the result of energy dissipation calculation in which the intensity of light emitted from the organic layer is developed with the wave number component in the organic EL element surface direction. The horizontal axis represents the wave number of the light emitted from the organic layer, the organic EL element surface direction component divided by the vacuum wave number k 0 , that is, the effective refractive index, and the vertical axis represents the light intensity of the wave number, that is, the development. The coefficient is shown. The calculation was performed separately for the TM polarization component and the TE polarization component. This calculation shows the result of an organic EL element in which a flat anode, an organic layer, and a cathode (metal) are laminated on a substrate (glass). In this case, the peak area on the highest wavenumber side of TM polarized light represents the intensity of the SPP mode light, but it can be seen that most of the light emitted from the organic layer is captured as the SPP mode light. In the organic EL element shown in FIG. 14, glass corresponds to the substrate, High-n corresponds to the organic layer including the anode and the light emitting layer made of ITO, and metal corresponds to the cathode. The film thicknesses of the anode and the organic layer are 150 nm and 100 nm, respectively.
一方で、Otto型配置の有機EL素子におけるエネルギー散逸計算による有機層で発光した光(TM偏光成分)の強度の、低屈折率層の膜厚による依存性を示した図を図15に示す。Otto型配置の有機EL素子は、基板、陽極、有機層は図14の素子と同じ構成であるが、有機層上に透明導電材料であるITOからなる陰極(50nm)が形成され、さらにその上に低屈折率層、金属層が順に形成された構成から成る。
低屈折率層の屈折率を1.38とし、図15(a)は金属層をAlとし、図15(b)は金属層をAgとした場合である。グラフ線の数字は低屈折率層の膜厚(nm)を示す。
On the other hand, FIG. 15 shows the dependence of the intensity of the light (TM polarization component) emitted from the organic layer on the energy dissipation calculation in the Otto type organic EL element, depending on the film thickness of the low refractive index layer. The Otto type organic EL element has the same structure as the element shown in FIG. 14 in the substrate, anode, and organic layer, but a cathode (50 nm) made of ITO, which is a transparent conductive material, is formed on the organic layer. Further, a low refractive index layer and a metal layer are sequentially formed.
The refractive index of the low refractive index layer is 1.38, FIG. 15A shows the case where the metal layer is Al, and FIG. 15B shows the case where the metal layer is Ag. The numbers on the graph lines indicate the film thickness (nm) of the low refractive index layer.
図15(a)、(b)共に、低屈折率層の膜厚が厚くなるに従って、ピーク波数が小さくなり、かつピーク幅が狭くなるようにシフトしていることが分かる。また膜厚が厚くなるに従って、ピーク波数のシフトはわずかになり、ピーク幅も一定に近づいていることが確認できる。なお、ピーク波数が小さくなることは、金属層に接した低屈折率層の膜厚が大きくなり、SPPの波数がこの低屈折率層の屈折率の影響で小さくなることを示しており、ピーク幅が狭くなることは、SPPとして捕捉されていた光が伝播光として取り出され、光の減衰が小さくなっていることを示している。これについて、次に説明する。 15 (a) and 15 (b), it can be seen that as the film thickness of the low refractive index layer is increased, the peak wave number is decreased and the peak width is decreased. Further, it can be confirmed that as the film thickness increases, the peak wave number shifts slightly and the peak width approaches a constant value. Note that the decrease in the peak wave number indicates that the film thickness of the low refractive index layer in contact with the metal layer increases, and the wave number of the SPP decreases due to the influence of the refractive index of the low refractive index layer. The narrowing of the width indicates that the light captured as the SPP is taken out as propagating light and the attenuation of the light is small. This will be described next.
図16(a)、(b)、(c)を用いてピークの変化について、以下に説明する。図16(a)は、SPPモード光として光が完全に金属層表面に捕捉されている。これは、低屈折率層の膜厚が0nmの時を表しており、SPPモード光は金属層と陰極の界面を面内方向に伝播しながら急速に減衰するため、ピーク幅が大きくなっている。
次に、低屈折率層の膜厚が厚くなるにつれて、図16(b)のようになり、Otto型配置によってSPPモード光と導波モード光が混在した状態となる。これは、取り出されたSPPモード光が導波モード光となり、界面反射により再度金属層にSPPモード光として再補足されることを意味している。この場合、光は図16(a)のSPPモード光に比べ減衰しにくいため、ピーク幅は次第に狭くなる。
最後に、低屈折率層の膜厚が十分厚くなると、図16(c)のようになる。この場合、Otto型配置をしているが、発光点におけるエバネッセント波が金属層に届かなくなり、SPPモード光として捕捉されない。この場合、発光した光は導波モード光として、捕捉されることとなる。つまり、低屈折率層の膜厚がある厚みを超えると、捕捉された光は導波モード光のみとなるため、減衰のしやすさは変わらなくなり、ピーク幅にも変化が生じなくなる。
The change of the peak will be described below with reference to FIGS. In FIG. 16A, the light is completely trapped on the surface of the metal layer as SPP mode light. This represents a time when the film thickness of the low refractive index layer is 0 nm, and the SPP mode light attenuates rapidly while propagating in the in-plane direction through the interface between the metal layer and the cathode, and thus the peak width is large. .
Next, as the film thickness of the low refractive index layer is increased, as shown in FIG. 16B, the SPP mode light and the waveguide mode light are mixed due to the Otto type arrangement. This means that the extracted SPP mode light becomes waveguide mode light, and is re-supplemented as SPP mode light by the metal layer again by interface reflection. In this case, since the light is less likely to attenuate than the SPP mode light of FIG. 16A, the peak width becomes gradually narrower.
Finally, when the film thickness of the low refractive index layer becomes sufficiently large, it becomes as shown in FIG. In this case, although the Otto type arrangement is used, the evanescent wave at the light emitting point does not reach the metal layer and is not captured as SPP mode light. In this case, the emitted light is captured as guided mode light. That is, when the film thickness of the low refractive index layer exceeds a certain thickness, the trapped light is only guided mode light, so the ease of attenuation does not change and the peak width also does not change.
図17は、低屈折率層の膜厚に対する、ピーク幅(半値幅)の変化を示した図である。図17の金属層がAlの場合に、低屈折率層の膜厚が200nm以上でピーク幅の変化がなくなり、発光した光がSPPモード光として捕捉されなくなっていることが分かる。また、金属層がAgの場合に、低屈折率層の膜厚が150nm以上でピーク幅の変化がなくなり、SPPモード光として捕捉されていないことが分かる。
つまりSPPモード光として捕捉される膜厚は200nm以下である。本検討は低屈折率層の屈折率をn=1.38の場合を計算しているが、屈折率は1.38に限定されるものではなく、金属層もAgとAlに限定されるものではない。
FIG. 17 is a diagram showing a change in peak width (half width) with respect to the film thickness of the low refractive index layer. When the metal layer of FIG. 17 is Al, it can be seen that the peak width does not change when the film thickness of the low refractive index layer is 200 nm or more, and the emitted light is not captured as SPP mode light. Further, it can be seen that when the metal layer is Ag, the peak width does not change when the film thickness of the low refractive index layer is 150 nm or more, and it is not captured as SPP mode light.
That is, the film thickness captured as SPP mode light is 200 nm or less. This study calculates the case where the refractive index of the low refractive index layer is n = 1.38, but the refractive index is not limited to 1.38, and the metal layer is also limited to Ag and Al. is not.
また、Otto型配置において、金属層表面に捕捉された表面プラズモンポラリトン(SPP)は、陰極と低屈折率層の界面で全反射した光によって発生するエバネッセント波によって取り出すことができる。すなわち、このエバネッセント波の波数が、金属層表面に生成される表面プラズモンポラリトン(SPP)の波数kSPPと交点を持つ必要がある。 In the Otto type arrangement, the surface plasmon polariton (SPP) trapped on the surface of the metal layer can be extracted by an evanescent wave generated by light totally reflected at the interface between the cathode and the low refractive index layer. That is, the wave number of this evanescent wave needs to have an intersection with the wave number k SPP of the surface plasmon polariton (SPP) generated on the surface of the metal layer.
金属層表面に生成される表面プラズモンポラリトン(SPP)の波数kSPPは以下の式(13)で表すことができる。但し、εは金属層の誘電率であり、εは低屈折率層の誘電率であり、kは前記発光層で発光する光の最大ピーク波長における真空中の光の波数である。
Figure JPOXMLDOC01-appb-M000015
 またその実数部は以下の式(14)で表すことができる。
Figure JPOXMLDOC01-appb-M000016
The wave number k SPP of the surface plasmon polariton (SPP) generated on the surface of the metal layer can be expressed by the following formula (13). Where ε 1 is the dielectric constant of the metal layer, ε 2 is the dielectric constant of the low refractive index layer, and k 0 is the wave number of light in vacuum at the maximum peak wavelength of light emitted from the light emitting layer.
Figure JPOXMLDOC01-appb-M000015
The real part can be expressed by the following equation (14).
Figure JPOXMLDOC01-appb-M000016
 一方で、金属層表面に生成される表面プラズモンポラリトン(SPP)が、金属層に垂直な方向に伝播することを考えると、誘電体層中における表面プラズモンポラリトンの波数の垂直成分は以下の式(16)で表すことができる。
Figure JPOXMLDOC01-appb-M000017
On the other hand, considering that surface plasmon polariton (SPP) generated on the surface of the metal layer propagates in a direction perpendicular to the metal layer, the vertical component of the wave number of the surface plasmon polariton in the dielectric layer is expressed by the following equation ( 16).
Figure JPOXMLDOC01-appb-M000017
 金属層表面に生成される表面プラズモンポラリトン(SPP)を1として規格化すると、金属層に垂直な方向に伝播することによって指数関数的に減衰していき、低屈折率層の厚み(h)を伝搬した位置での表面プラズモンポラリトン(SPP)の強度は、各界面での反射が無視できる場合、近似的に
Figure JPOXMLDOC01-appb-M000018
となる。
但し、κSPPは表面プラズモンポラリトン(SPP)の波数の基板面内方向成分の実部を真空中の光の波数kで割った値とする。つまり、式(16)が十分大きければ、金属層の表面に生成される表面プラズモンポラリトン(SPP)の電磁場が陰極や有機層に滲み出し、陰極と低屈折率層の界面での全反射により生じたエバネッセント波とカップリングして、取り出すことができる。
 図18(a)は金属層をAl、(b)は金属層をAgとした場合の式(16)をグラフ化した図である。
When the surface plasmon polariton (SPP) generated on the surface of the metal layer is normalized as 1, it is attenuated exponentially by propagating in the direction perpendicular to the metal layer, and the thickness (h 2 ) of the low refractive index layer The intensity of the surface plasmon polariton (SPP) at the position where it propagates is approximately when the reflection at each interface can be ignored.
Figure JPOXMLDOC01-appb-M000018
It becomes.
However, κ SPP is a value obtained by dividing the real part of the in-plane direction component of the surface plasmon polariton (SPP) wave number by the wave number k 0 of light in vacuum. That is, if the equation (16) is sufficiently large, the electromagnetic field of surface plasmon polariton (SPP) generated on the surface of the metal layer oozes out to the cathode or organic layer, and is caused by total reflection at the interface between the cathode and the low refractive index layer. It can be coupled with evanescent waves and taken out.
FIG. 18A is a graph showing the equation (16) when the metal layer is Al and (b) is Ag.
この結果を、図15(a)、(b)と比較すると、式(16)において、金属層表面に生成される表面プラズモンポラリトン(SPP)を1として規格化した。低屈折率層の厚み方向に伝搬した位置での表面プラズモンポラリトン(SPP)の強度が0.4以下となる低屈折率層の厚みで、ピーク幅が一定値に飽和していることが分かる。すなわち、式(16)が0.4以下となるときには、低屈折率層と陰極界面にまで滲み出す表面プラズモンポラリトン(SPP)の強度が小さくなり、Otto型配置による光取り出し効果は少なくなると言える。逆に言えば、低屈折率層の膜厚は、式(16)が0.4以上となれば、Otto型配置による光取り出し効果を十分に得ることができることが分かる。
本検討は低屈折率層の屈折率をn=1.38の場合を計算しているが、屈折率は1.38に限定されるものではなく、金属層もAgとAlに限定されるものではない。式(16)で表わされる、低屈折率層と陰極界面でのSPPの強度が一定値(例えば0.4)より大きいという条件を満たせば、Otto配置によってSPPモード光を有機層中に取り出すことができ、この条件を満たす限り、低屈折率層の屈折率や陰極の材料は限定されるものではない。
When this result is compared with FIGS. 15A and 15B, the surface plasmon polariton (SPP) generated on the surface of the metal layer is normalized as 1 in the equation (16). It can be seen that the peak width is saturated to a constant value at the thickness of the low refractive index layer where the intensity of the surface plasmon polariton (SPP) at the position propagated in the thickness direction of the low refractive index layer is 0.4 or less. That is, when the expression (16) is 0.4 or less, it can be said that the intensity of the surface plasmon polariton (SPP) that oozes out to the interface between the low refractive index layer and the cathode is reduced, and the light extraction effect by the Otto type arrangement is reduced. In other words, it can be understood that the light extraction effect by the Otto type arrangement can be sufficiently obtained when the thickness of the low refractive index layer is 0.4 or more in the equation (16).
This study calculates the case where the refractive index of the low refractive index layer is n = 1.38, but the refractive index is not limited to 1.38, and the metal layer is also limited to Ag and Al. is not. If the condition that the intensity of SPP at the interface between the low refractive index layer and the cathode represented by formula (16) is larger than a certain value (for example, 0.4) is satisfied, the SPP mode light is extracted into the organic layer by the Otto arrangement. As long as this condition is satisfied, the refractive index of the low refractive index layer and the material of the cathode are not limited.
本発明の有機EL素子の実施例について以下に説明する。 Examples of the organic EL device of the present invention will be described below.
本発明においては、各実施形態の有機EL素子の光取り出し効率への効果の確認をシミュレーションにより行った。最初に、シミュレーションに用いた有限差分時間領域法(FDTD method:Finite Difference Time Domain  Method)について説明する。FDTD法は、電磁界の時間変化を記述するMaxwellの方程式を空間的・時間的に差分化し、空間の各点における電磁界の時間変化を追跡する解析手法である。より具体的には、発光層における発光を微小ダイポールからの放射と捉えて、その放射(電磁界)の時間変化を追跡するという手法である。シミュレーション結果は、基板まで光取り出しを行った結果を示す。横軸のλは真空中の波長、縦軸のηは光取り出し効率(ダイポールからの全放射強度に対する基板取り出し光強度の割合)である。以下の図においても同じである。
計算は、現実に近い発光現象をシミュレートするために、発光源であるダイポールをランダム(ダイポールのモーメントがx、y、z方向にランダム)として行った。ここで、x及びy方向は、基板面に平行な方向であり、z方向は基板面に垂直な方向である。以下に示す光取り出し効率の計算結果のグラフ図は全てこのランダムなダイポールに対する計算結果である。
In the present invention, the effect on the light extraction efficiency of the organic EL element of each embodiment was confirmed by simulation. First, the finite difference time domain method (FDTD method) used for the simulation will be described. The FDTD method is an analysis method for differentiating Maxwell's equation describing a time change of an electromagnetic field spatially and temporally and tracking the time change of the electromagnetic field at each point in the space. More specifically, it is a technique in which light emission in the light-emitting layer is regarded as radiation from a minute dipole and the time variation of the radiation (electromagnetic field) is tracked. The simulation result shows the result of light extraction to the substrate. Λ on the horizontal axis is the wavelength in vacuum, and η on the vertical axis is the light extraction efficiency (ratio of the light intensity extracted from the substrate to the total radiation intensity from the dipole). The same applies to the following drawings.
In order to simulate a light emission phenomenon close to reality, the calculation was performed with a dipole as a light emission source being random (dipole moments are random in the x, y, and z directions). Here, the x and y directions are directions parallel to the substrate surface, and the z direction is a direction perpendicular to the substrate surface. The graphs of the light extraction efficiency calculation results shown below are all the calculation results for this random dipole.
図19は、本発明の有機EL素子の効果を確認するために、FDTD法を用いて、光取り出し効率への開口部が配置される周期の依存性をコンピュータシミュレーションで求めた結果を示す。シミュレーションで求めた光取り出し効率は、基板までの光取り出しを行った場合の光取り出し効率(全発光強度に対する基板まで取り出された光強度の相対値)である(以下のシミュレーション結果についても同様)。グラフの横軸のλは発光光の波長、縦軸のηは光取り出し効率である。 FIG. 19 shows the result of calculating the dependence of the period in which the opening is arranged on the light extraction efficiency by computer simulation using the FDTD method in order to confirm the effect of the organic EL element of the present invention. The light extraction efficiency obtained by the simulation is the light extraction efficiency when the light is extracted up to the substrate (the relative value of the light intensity extracted up to the substrate with respect to the total emission intensity) (the same applies to the following simulation results). In the graph, λ on the horizontal axis represents the wavelength of the emitted light, and η on the vertical axis represents the light extraction efficiency.
図20は、シミュレーションで用いた、第1実施形態のボトムエミッション型の有機EL素子10のモデル構造を示す断面図である。
計算に用いた屈折率の値は以下の通りである。基板1はガラスからなるとして、屈折率としては1.52を用いた。陽極2はITOからなるとして、屈折率としては550nmで1.82+0.009iを用い、その他の波長はローレンツモデルで外挿した。また、有機層3の屈折率としては1.72を用いた。また、陰極4はITOからなるとして、屈折率としては550nmで1.82+0.009iを用い、その他の波長はローレンツモデルで外挿した。低屈折率層5はスピンオングラス(SOG)を含むものからなるとして、屈折率としては1.25を用いた。また、金属層6はアルミニウム(Al)からなるとして、屈折率としては550nmで0.649+4.32iを用い、その他の波長はドルーデモデルで外挿した。誘電体層7はSiO2からなるとして、屈折率としては1.45を用いた。
また、誘電体層7、陽極2、有機層3の層状部3c、陰極4、低屈折率層5、金属層6の層厚はそれぞれ、100nm、150nm、100nm、50nm、50nm、100nmとした。誘電体層7のパターンに沿うように(conformalに)形成される陽極凸部2B、陽極層状部2cの層厚はそれぞれ、100nm、50nmである。
また、隣接する開口部7Aが配置される周期(P)(隣接する開口部の中心間距離)が200nm、300nm、500nm、900nm、2000nm、4000nm、8000nmのそれぞれについて計算した。また、開口部7Aはストライプ状(ライン状)の形状であり、各周期の場合の開口部7Aの幅(W)はそれぞれ周期(P)の1/2とした。開口部7Aは、紙面奥行き方向には並進構造としている。すなわち、平面視で、開口部7Aは面内を無限に伸びるライン状の開口部形状をしている。これは、あとで磁場強度分布形状も計算する際に、開口部7Aの周期に対応した光放射パターンをより鮮明に見るためである。
さらに、比較のために、Otto型配置の陰極側構造を有するが、有機層中まで取り出された伝播光を導波モード光とせずに外部に取り出す第1電極側構造は有さない構造(以下、「Otto型配置のみ構造」ということがある)と、Otto型配置の陰極側構造を有さず、且つ伝播光を導波モード光とせずに外部に取り出す第1電極側構造も有さない構造(以下、「標準構造」ということがある)の場合も計算した。
標準構造は基板のガラス上に、陽極層、有機層、陰極金属層の順に形成された構造を意味する。シミュレーションにおいては、標準構造は基板がガラスからなり、陽極がITOからなり、有機層を挟んで、陰極はAlからなるものを用いた。それぞれ、屈折率としては、1.52、1.82+0.009i、1.72、0.649+4.32iを用い、陽極、有機層、陰極の層厚はそれぞれ、150nm、100nm、100nmとした。
FIG. 20 is a cross-sectional view showing a model structure of the bottom emission type organic EL element 10 of the first embodiment used in the simulation.
The refractive index values used for the calculation are as follows. The substrate 1 is made of glass, and a refractive index of 1.52 is used. Assuming that the anode 2 is made of ITO, the refractive index is 1.82 + 0.009i at 550 nm, and other wavelengths are extrapolated by the Lorentz model. Further, 1.72 was used as the refractive index of the organic layer 3. Further, assuming that the cathode 4 is made of ITO, the refractive index is 1.82 + 0.009i at 550 nm, and other wavelengths are extrapolated by the Lorentz model. The low refractive index layer 5 is made of a material containing spin-on-glass (SOG), and a refractive index of 1.25 is used. Further, assuming that the metal layer 6 is made of aluminum (Al), the refractive index is 0.649 + 4.32i at 550 nm, and other wavelengths are extrapolated by the Drude model. The dielectric layer 7 is made of SiO2, and the refractive index is 1.45.
The layer thicknesses of the dielectric layer 7, the anode 2, the layered portion 3c of the organic layer 3, the cathode 4, the low refractive index layer 5, and the metal layer 6 were 100 nm, 150 nm, 100 nm, 50 nm, 50 nm, and 100 nm, respectively. The layer thicknesses of the anode projection 2B and the anode layer 2c formed so as to conform to the pattern of the dielectric layer 7 are 100 nm and 50 nm, respectively.
Further, calculation was performed for each of the period (P) (distance between the centers of adjacent openings) in which the adjacent openings 7A are arranged being 200 nm, 300 nm, 500 nm, 900 nm, 2000 nm, 4000 nm, and 8000 nm. Further, the opening 7A has a stripe shape (line shape), and the width (W) of the opening 7A in each period is set to 1/2 of the period (P). The opening 7A has a translational structure in the depth direction of the drawing. That is, the opening 7A has a line-like opening shape extending infinitely in the plane in plan view. This is because the light emission pattern corresponding to the period of the opening 7A can be seen more clearly when calculating the magnetic field strength distribution shape later.
Furthermore, for comparison, a structure having a cathode-side structure with an Otto-type arrangement, but not having a first electrode-side structure for extracting propagating light extracted into the organic layer without using it as guided-mode light (hereinafter referred to as a structure of the first electrode-side structure). “There is also a structure that only has an Otto type arrangement”), and there is no cathode side structure of the Otto type arrangement, and there is no first electrode side structure that takes propagating light out of the waveguide mode light. Calculations were also made for the structure (hereinafter sometimes referred to as “standard structure”).
The standard structure means a structure in which an anode layer, an organic layer, and a cathode metal layer are formed in this order on a glass substrate. In the simulation, the standard structure was such that the substrate was made of glass, the anode was made of ITO, the organic layer was sandwiched, and the cathode was made of Al. Refractive indexes of 1.52, 1.82 + 0.009i, 1.72, and 0.649 + 4.32i were used, respectively, and the anode, organic layer, and cathode layer thicknesses were 150 nm, 100 nm, and 100 nm, respectively. It was.
図19には、開口部7Aが配置される周期(P)をパラメータとして、光取り出し効率の波長依存性を示す。また、標準構造及びOtto型配置のみ構造についてのシミュレーション結果も同じグラフに示す。図19から、680nm以下の波長において、Otto型配置のみ構造や標準構造と比較して、本発明の有機EL素子は、開口部7Aの周期が200nm~2000nmの範囲では、全体として光取り出し効率が向上しているという結果が得られた。特に、周期が200nm~900nmにおいては、680nm以下の波長で顕著に光取り出し効率が上がっているという結果が得られた。
この結果はOtto型配置の陰極側構造と、陽極側構造(屈折率変調構造)とのそれぞれの構造に基づいては予測ができるものではなく、本発明のシミュレーションによって初めて明らかになったものである。
FIG. 19 shows the wavelength dependence of the light extraction efficiency with the period (P) in which the opening 7A is disposed as a parameter. Also, the simulation results for the standard structure and the structure with only the Otto type arrangement are shown in the same graph. FIG. 19 shows that the organic EL element of the present invention has a light extraction efficiency as a whole in the wavelength range of 200 nm to 2000 nm as compared with the structure having only the Otto type arrangement or the standard structure at a wavelength of 680 nm or less. The result was improved. In particular, when the period was 200 nm to 900 nm, the result that the light extraction efficiency was remarkably increased at a wavelength of 680 nm or less was obtained.
This result cannot be predicted based on the structure of the cathode side structure of the Otto type arrangement and the anode side structure (refractive index modulation structure), but was first clarified by the simulation of the present invention. .
 図21(a)は、Otto型配置のみ構造の場合について、FDTD法のシミュレーションで得られた水平方向のダイポールからの放射光の電場の強度分布を示すものである。放射光の波長は480nmを用いた。分布図は、基板が上側、金属層が下側で示している。電場強度分布を横切る白線は隣り合う積層の境界線であり、分布図は上から順に基板、陽極、有機層、陰極、低屈折率層、金属層、空気層中の電場強度分布に対応している。また光源は図の右端に置かれており、右半分の電場強度分布は省略している。
 図21(b)、(c)はそれぞれ、本発明の実施形態の有機EL素子における開口部7Aの周期が500nm、900nmの場合について、FDTD法のシミュレーションで得られた水平方向のダイポールからの放射光の電場の強度分布を示すものである。放射光の波長は480nmを用いた。分布図は、基板が上側、金属層が下側で示している。図21(b)、(c)において電場強度分布を横切る白線は隣り合う積層の境界線であり、分布図は上から順に基板、誘電体層、陽極、有機層、陰極、低屈折率層、金属層、空気層中の電場強度分布に対応している。また、誘電体層中を上下方向に走る複数の細い白線は誘電体層の開口部内側面を表しており、陽極の中に白線で描かれた複数の長方形は前記開口部の形状に沿うように(conformalに)形成された開口部を表している。
図21(a)と同様に光源は図の右端に置かれており、右半分の電場強度分布は省略している。以降で図示する電場強度分布および磁場強度分布も同様に配置された有機EL素子について図示している。
FIG. 21A shows the intensity distribution of the electric field of the radiated light from the horizontal dipole obtained by the simulation of the FDTD method in the case of the structure having only the Otto type arrangement. The wavelength of the emitted light was 480 nm. The distribution diagram shows the substrate on the upper side and the metal layer on the lower side. The white line that crosses the electric field strength distribution is the boundary line between adjacent layers, and the distribution diagram corresponds to the electric field strength distribution in the substrate, anode, organic layer, cathode, low refractive index layer, metal layer, air layer in order from the top. Yes. The light source is placed at the right end of the figure, and the electric field intensity distribution in the right half is omitted.
FIGS. 21B and 21C respectively show the radiation from the horizontal dipole obtained by the simulation of the FDTD method when the period of the opening 7A in the organic EL element of the embodiment of the present invention is 500 nm and 900 nm. It shows the intensity distribution of the electric field of light. The wavelength of the emitted light was 480 nm. The distribution diagram shows the substrate on the upper side and the metal layer on the lower side. 21 (b) and (c), the white line crossing the electric field intensity distribution is the boundary line between the adjacent layers, and the distribution diagram shows the substrate, dielectric layer, anode, organic layer, cathode, low refractive index layer, It corresponds to the electric field strength distribution in the metal layer and air layer. Also, a plurality of thin white lines running in the vertical direction in the dielectric layer represent the inner surface of the opening of the dielectric layer, and a plurality of rectangles drawn with white lines in the anode follow the shape of the opening. It represents the opening formed (conformal).
As in FIG. 21A, the light source is placed at the right end of the figure, and the electric field intensity distribution in the right half is omitted. The electric field intensity distribution and the magnetic field intensity distribution shown in the following are illustrated for the organic EL elements similarly arranged.
 シミュレーション結果から、図21(a)のOtto型配置のみ構造の場合と比較して、本発明の有機EL素子を用いた図21(b)、図21(c)それぞれは、ダイポール光源から有機層中を左方向に伝播した後、斜め上方向に光が放射されており、回折格子の効果により特定の方向への光放射が強められていることが確認できる。
これは、当業者であっても予測することが困難であり、シミュレーションを行って初めて明らかになったものである。
From the simulation results, as compared with the case of the structure of only the Otto type arrangement of FIG. 21A, each of FIGS. 21B and 21C using the organic EL element of the present invention is obtained from the dipole light source to the organic layer. After propagating in the left direction, light is emitted obliquely upward, and it can be confirmed that the light emission in a specific direction is intensified by the effect of the diffraction grating.
This is difficult to predict even for those skilled in the art, and has been revealed only after simulation.
図22(a)はOtto型配置のみ構造の場合について、FDTD法のシミュレーションで得られた垂直(z)方向のダイポールからの放射光の磁場の強度分布を示すものである。放射光の波長は480nmを用いた。分布図は基板が上側、金属層が下側で示している。
 図22(b)、(c)はそれぞれ,実施形態の有機EL素子における開口部7Aの周期が500nm、900nmの場合の垂直方向のダイポールからの放射光の電場の強度分布をFDTD法のシミュレーションで得られた結果を示すものである。放射光の波長は480nmを用いた。分布図は、基板が上側、金属層が下側で示している。
FIG. 22A shows the intensity distribution of the magnetic field of the emitted light from the dipole in the vertical (z) direction obtained by the simulation of the FDTD method in the case of the structure having only the Otto type arrangement. The wavelength of the emitted light was 480 nm. The distribution diagram shows the substrate on the upper side and the metal layer on the lower side.
FIGS. 22B and 22C show the electric field intensity distribution of the emitted light from the vertical dipole when the period of the opening 7A in the organic EL element of the embodiment is 500 nm and 900 nm, respectively, by simulation of the FDTD method. The obtained results are shown. The wavelength of the emitted light was 480 nm. The distribution diagram shows the substrate on the upper side and the metal layer on the lower side.
シミュレーション結果から、図22(a)のOtto型配置のみ構造の場合と比較して、本発明の有機EL素子を用いた図22(b)、図22(c)それぞれは、斜め上方向に光が放射されていることが確認できる。また、開口部7Aの周期に関しては、図22(b)の周期900nmのものが強く放射されていることが確認できる。
これは、当業者であっても予測することが困難であり、シミュレーションを行って初めて知ることができたものである。
From the simulation results, as compared with the case of the structure having only the Otto type arrangement of FIG. 22A, each of FIGS. 22B and 22C using the organic EL element of the present invention is light obliquely upward. Can be confirmed. Further, with respect to the period of the opening 7A, it can be confirmed that those having a period of 900 nm in FIG.
This is difficult to predict even for those skilled in the art, and can be known only after simulation.
 図23は、実施形態の有機EL素子の開口部7Aの周期が(a)200nm、(b)300nm、(c)500nm、(d)900nm、(e)2000nm、(f)4000nmそれぞれの場合について、FDTD法のシミュレーションで得られた水平方向のダイポールからの放射光の電場の強度分布を示すものである。放射光の波長は620nmを用いた。強度分布は基板が下側、金属層が上側で示している。
図24は、実施形態の有機EL素子の開口部7Aの周期が(a)200nm、(b)300nm、(c)500nm、(d)900nm、(e)2000nm、(f)4000nmそれぞれの場合について、FDTD法のシミュレーションで得られた垂直方向のダイポールからの放射光の磁場の強度分布を示すものである。放射光の波長は620nmを用いた。分布図は、基板が上側、金属層が下側で示している。
FIG. 23 shows the case where the period of the opening 7A of the organic EL element of the embodiment is (a) 200 nm, (b) 300 nm, (c) 500 nm, (d) 900 nm, (e) 2000 nm, and (f) 4000 nm. This figure shows the intensity distribution of the electric field of the synchrotron radiation from the horizontal dipole obtained by FDTD simulation. The wavelength of the emitted light was 620 nm. The intensity distribution is shown with the substrate on the bottom and the metal layer on the top.
FIG. 24 shows the case where the period of the opening 7A of the organic EL element of the embodiment is (a) 200 nm, (b) 300 nm, (c) 500 nm, (d) 900 nm, (e) 2000 nm, and (f) 4000 nm. This shows the intensity distribution of the magnetic field of synchrotron radiation from a vertical dipole obtained by FDTD simulation. The wavelength of the emitted light was 620 nm. The distribution diagram shows the substrate on the upper side and the metal layer on the lower side.
シミュレーション結果から、開口部7Aの周期が検討のすべての場合において、電場、磁場共に、斜め方向に放射されていることが確認できる。 From the simulation results, it can be confirmed that both the electric field and the magnetic field are radiated in an oblique direction in all cases in which the period of the opening 7A is examined.
10、20、30 有機EL素子
1、11、21、31 基板
21a 基板凹部内側面
21A 基板凹部
21B 基板凸部
2、12、22、32 陽極
2A 陽極凹部
2B、12B 陽極凸部
3、13、23、33 有機層
3a 内側面被覆部
3c 層状部
4、14、24、34 陰極
5、15、25、35 低屈折率層
6、16、26、36 金属層
7、17、37 誘電体層
7a 内側面
7A 開口部
17B 誘電体島状部
38 平坦化層
9、29、39 レジスト
9a、29a レジスト変性部
100 画像表示装置
104 陽極配線
106 陽極補助配線
108 陰極配線
110 絶縁膜
112 陰極隔壁
116 封止プレート
118 シール材
120 開口部
200 照明装置
201 点灯回路
202 端子
203 端子
10, 20, 30 Organic EL elements 1, 11, 21, 31 Substrate 21a Inner side surface of substrate recess 21A Substrate recess 21B Substrate convex portion 2, 12, 22, 32 Anode 2A Anode concave portion 2B, 12B Anode convex portion 3, 13, 23 33 Organic layer 3a Inner side surface covering portion 3c Layered portion 4, 14, 24, 34 Cathode 5, 15, 25, 35 Low refractive index layer 6, 16, 26, 36 Metal layer 7, 17, 37 Inside dielectric layer 7a Side surface 7A Opening portion 17B Dielectric island-shaped portion 38 Planarizing layer 9, 29, 39 Resist 9a, 29a Resist modification portion 100 Image display device 104 Anode wiring 106 Anode auxiliary wiring 108 Cathode wiring 110 Insulating film 112 Cathode partition wall 116 Sealing plate 118 Sealant 120 Opening 200 Lighting Device 201 Lighting Circuit 202 Terminal 203 Terminal

Claims (14)

  1.  基板上に、誘電体層と、陽極と、有機EL材料からなる発光層を含む有機層と、陰極とが順に形成されてなり、前記陽極側から外部に光を取り出すように構成された有機EL素子であって、
     さらに、前記陰極の、前記有機層の反対側に、低屈折率層と金属層とを順に具備し、
     前記陰極は、透光性導電材料からなり、
    前記低屈折率層の屈折率は、前記有機層の屈折率よりも低く、
    前記誘電体層は、前記陽極の屈折率より低い屈折率を有すると共に前記基板が露出するように開口部を有するパターンで形成されており、
    前記陽極と、前記有機層、前記陰極、前記低屈折率層及び前記金属層は、前記誘電体層のパターンを追従するように形成されている、ことを特徴とする有機EL素子。
    On the substrate, a dielectric layer, an anode, an organic layer including a light emitting layer made of an organic EL material, and a cathode are sequentially formed, and an organic EL configured to extract light from the anode side to the outside. An element,
    Furthermore, the cathode is provided with a low refractive index layer and a metal layer in this order on the opposite side of the organic layer,
    The cathode is made of a translucent conductive material,
    The refractive index of the low refractive index layer is lower than the refractive index of the organic layer,
    The dielectric layer has a refractive index lower than the refractive index of the anode and is formed in a pattern having an opening so that the substrate is exposed,
    The organic EL element, wherein the anode, the organic layer, the cathode, the low refractive index layer, and the metal layer are formed so as to follow a pattern of the dielectric layer.
  2.  誘電体層と、第1電極と、発光層を含む有機層と、第2電極とを順に具備する有機EL素子であって、
     さらに、前記第2電極の、前記有機層の反対側の面に、厚さ20nm以上300nm以下の低屈折率層と、金属層とを順に具備し、
     前記第2電極は、透光性導電材料からなり、
    前記低屈折率層の屈折率は、前記有機層の屈折率よりも低く、
    前記誘電体層は、前記第1電極の屈折率と異なる屈折率を有すると共に開口部を有するパターンで形成されており、
    前記第1電極は、前記誘電体層のパターンに沿うように形成されている、ことを特徴とする有機EL素子。
    An organic EL element comprising a dielectric layer, a first electrode, an organic layer including a light emitting layer, and a second electrode in order,
    Furthermore, on the surface opposite to the organic layer of the second electrode, a low refractive index layer having a thickness of 20 nm to 300 nm and a metal layer are sequentially provided.
    The second electrode is made of a translucent conductive material,
    The refractive index of the low refractive index layer is lower than the refractive index of the organic layer,
    The dielectric layer has a refractive index different from the refractive index of the first electrode and is formed in a pattern having an opening,
    The organic EL element, wherein the first electrode is formed along a pattern of the dielectric layer.
  3.  誘電体層と、第1電極と、発光層を含む有機層と、第2電極とを順に具備する有機EL素子であって、
     さらに、前記第2電極の、前記有機層の反対側の面に、厚さ20nm以上300nm以下の低屈折率層と、金属層とを順に具備し、
     前記第2電極は、透光性導電材料からなり、
    前記低屈折率層の屈折率は、前記有機層の屈折率よりも低く、
    前記誘電体層は、前記第1電極の屈折率と異なる屈折率を有すると共に平面視で互いに独立した島状の誘電体島状部を有するパターンで形成されており、
    前記第1電極は、前記誘電体層のパターンに沿うように形成されている、ことを特徴とする有機EL素子。
    An organic EL element comprising a dielectric layer, a first electrode, an organic layer including a light emitting layer, and a second electrode in order,
    Furthermore, on the surface opposite to the organic layer of the second electrode, a low refractive index layer having a thickness of 20 nm to 300 nm and a metal layer are sequentially provided.
    The second electrode is made of a translucent conductive material,
    The refractive index of the low refractive index layer is lower than the refractive index of the organic layer,
    The dielectric layer has a refractive index different from the refractive index of the first electrode and is formed in a pattern having island-shaped dielectric island portions that are independent from each other in plan view,
    The organic EL element, wherein the first electrode is formed along a pattern of the dielectric layer.
  4.  基板上に、第1電極と、発光層を含む有機層と、第2電極とを順に具備する有機EL素子であって、
     さらに、前記第2電極の、前記有機層の反対側の面に、厚さ20nm以上300nm以下の低屈折率層と、金属層とを順に具備し、
     前記第2電極は、透光性導電材料からなり、
    前記低屈折率層の屈折率は、前記有機層の屈折率よりも低く、
    前記基板は、前記第1電極の屈折率と異なる屈折率を有すると共に、
    前記第1電極が形成される側の面に、基板開口部または平面視で互いに独立した島状の基板島状部を有するパターンが形成されており、
    前記第1電極は、前記基板のパターンに沿うように形成されている、ことを特徴とする有機EL素子。
    An organic EL element comprising, on a substrate, a first electrode, an organic layer including a light emitting layer, and a second electrode in order,
    Furthermore, on the surface opposite to the organic layer of the second electrode, a low refractive index layer having a thickness of 20 nm to 300 nm and a metal layer are sequentially provided.
    The second electrode is made of a translucent conductive material,
    The refractive index of the low refractive index layer is lower than the refractive index of the organic layer,
    The substrate has a refractive index different from that of the first electrode;
    A pattern having island-shaped substrate islands that are independent of each other in a substrate opening or a plan view is formed on the surface on which the first electrode is formed,
    The organic EL element, wherein the first electrode is formed along a pattern of the substrate.
  5. 前記陽極又は前記第1電極の屈折率は、前記有機層と異なることを特徴とする請求項1~4のいずれか一項に記載の有機EL素子。 The organic EL element according to any one of claims 1 to 4, wherein a refractive index of the anode or the first electrode is different from that of the organic layer.
  6. 前記陽極又は前記第1電極の有機層側の表面は導電体または誘電体からなる平坦化層によって平坦化されており、前記有機層は平坦であることを特徴とする請求項1~5のいずれか一項に記載の有機EL素子。 The surface of the anode or the first electrode on the organic layer side is flattened by a flattening layer made of a conductor or a dielectric, and the organic layer is flat. An organic EL device according to claim 1.
  7.  前記低屈折率層の屈折率はさらに、前記陰極又は前記第2電極の屈折率よりも低いことを特徴とする請求項1~6のいずれか一項に記載の有機EL素子。 The organic EL element according to any one of claims 1 to 6, wherein the refractive index of the low refractive index layer is further lower than the refractive index of the cathode or the second electrode.
  8.  前記陰極又は前記第2電極の屈折率は、前記有機層の屈折率よりも低いことを特徴とする請求項7に記載の有機EL素子。 The organic EL element according to claim 7, wherein a refractive index of the cathode or the second electrode is lower than a refractive index of the organic layer.
  9.  前記低屈折率層は、前記陰極又は前記第2電極及び前記有機層のうちの少なくとも一方よりも屈折率が0.2以上小さい材料からなることを特徴とする請求項1~8のいずれか一項に記載の有機EL素子。 The low refractive index layer is made of a material having a refractive index smaller by 0.2 or more than at least one of the cathode, the second electrode, and the organic layer. The organic EL device according to Item.
  10. 前記開口部または前記島状部、並びに、前記基板開口部または前記基板島状部が、基板面内の少なくとも一方向に配列される周期が200~2000nmであることを特徴とする請求項1~9のいずれか一項に記載の有機EL素子。 The period in which the opening or the island-shaped portion and the substrate opening or the substrate island-shaped portion are arranged in at least one direction within the substrate surface is 200 to 2000 nm. The organic EL device according to any one of 9.
  11. 前記金属層の誘電率の実部ε、前記低屈折率層の誘電率ε、及び、前記誘電体層のパターン又は前記基板のパターンの少なくとも一方向の周期(p)が、ある整数N(1≦N≦3)に対して以下の式を満たすように選択されていることを特徴とする請求項1~9のいずれか一項に記載の有機EL素子;
    Figure JPOXMLDOC01-appb-M000001
     ここで、λは前記発光層のフォトルミネッセンス・スペクトルの最大ピーク波長である。
    A real part ε 1 of the dielectric constant of the metal layer, a dielectric constant ε 2 of the low refractive index layer, and a period (p) in at least one direction of the pattern of the dielectric layer or the pattern of the substrate is an integer N 10. The organic EL device according to claim 1, wherein the organic EL device is selected so as to satisfy the following formula with respect to (1 ≦ N ≦ 3):
    Figure JPOXMLDOC01-appb-M000001
    Here, λ is the maximum peak wavelength of the photoluminescence spectrum of the light emitting layer.
  12.  前記周期が、200nm~2000nmであることを特徴とする請求項11に記載の有機EL素子。 12. The organic EL element according to claim 11, wherein the period is 200 nm to 2000 nm.
  13.  請求項1~12のいずれか一項に記載の有機EL素子を備えたことを特徴とする画像表示装置。 An image display device comprising the organic EL element according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか一項に記載の有機EL素子を備えたことを特徴とする照明装置。 An illumination device comprising the organic EL element according to any one of claims 1 to 12.
PCT/JP2013/079534 2012-10-31 2013-10-31 Organic el element, and image display device and lighting device each of which is provided with same WO2014069564A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012241337 2012-10-31
JP2012-241337 2012-10-31
JP2013-148022 2013-07-16
JP2013148022 2013-07-16

Publications (1)

Publication Number Publication Date
WO2014069564A1 true WO2014069564A1 (en) 2014-05-08

Family

ID=50627462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079534 WO2014069564A1 (en) 2012-10-31 2013-10-31 Organic el element, and image display device and lighting device each of which is provided with same

Country Status (1)

Country Link
WO (1) WO2014069564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312795A (en) * 2020-04-02 2020-06-19 武汉华星光电半导体显示技术有限公司 Display device, display panel and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307266A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Organic luminescent element
JP2004022176A (en) * 2002-06-12 2004-01-22 Dainippon Printing Co Ltd Electroluminescent element
JP2006108093A (en) * 2004-10-05 2006-04-20 Samsung Sdi Co Ltd Organic light-emitting element and method for manufacturing the same
US20080284320A1 (en) * 2005-06-15 2008-11-20 Braggone Oy Optical Device Structure
JP2011233289A (en) * 2010-04-26 2011-11-17 Konica Minolta Holdings Inc Organic light-emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307266A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Organic luminescent element
JP2004022176A (en) * 2002-06-12 2004-01-22 Dainippon Printing Co Ltd Electroluminescent element
JP2006108093A (en) * 2004-10-05 2006-04-20 Samsung Sdi Co Ltd Organic light-emitting element and method for manufacturing the same
US20080284320A1 (en) * 2005-06-15 2008-11-20 Braggone Oy Optical Device Structure
JP2011233289A (en) * 2010-04-26 2011-11-17 Konica Minolta Holdings Inc Organic light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312795A (en) * 2020-04-02 2020-06-19 武汉华星光电半导体显示技术有限公司 Display device, display panel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5219493B2 (en) Light emitting element and light emitting device using the same
US8779424B2 (en) Sheet and light-emitting device
JP4511440B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
US20230094133A1 (en) Enhanced oled outcoupling by suppressing surface plasmon modes
EP2975909A1 (en) Organic electroluminescent element and lighting device using same
JP6310638B2 (en) Organic light-emitting device substrate with improved light extraction efficiency, manufacturing method thereof, and organic light-emitting device including the same
WO2014069573A1 (en) Organic el element, and image display device and illumination device provided with same
JP2009509314A (en) OLED device with improved light output
JP2012221811A (en) Display device
JP2015088418A (en) Organic el element, and image display apparatus and illumination apparatus including the same
US8389980B2 (en) Light emitting apparatus
WO2014069557A1 (en) Organic el element, and image display device and illumination device provided with same
CN111430574A (en) Organic light-emitting device, preparation method thereof and display panel
JP2015088388A (en) Organic el element, and image display apparatus and illumination apparatus including the same
WO2014069564A1 (en) Organic el element, and image display device and lighting device each of which is provided with same
WO2015016176A1 (en) Organic el element, image display device, and illumination device
WO2009064021A1 (en) Display apparatus and method of producing same
JP2015095293A (en) Organic el element, image display device including organic el elements, and luminaire
WO2014084220A1 (en) Organic electroluminescent element, and image display device and lighting device provided with same
WO2014084358A1 (en) Organic el element, and image display device and lighting device equipped with same
KR101602470B1 (en) Porous glass substrate for displays and method of fabricating thereof
WO2014084200A1 (en) Organic electroluminescent element, and image display device and lighting device provided with same
JP2012221687A (en) Display device
JP2013073887A (en) Display device
WO2014103892A1 (en) Organic el element and image display device and lighting device provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP