WO2014103798A1 - 尿素scr用尿素水消費量診断装置 - Google Patents
尿素scr用尿素水消費量診断装置 Download PDFInfo
- Publication number
- WO2014103798A1 WO2014103798A1 PCT/JP2013/083748 JP2013083748W WO2014103798A1 WO 2014103798 A1 WO2014103798 A1 WO 2014103798A1 JP 2013083748 W JP2013083748 W JP 2013083748W WO 2014103798 A1 WO2014103798 A1 WO 2014103798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- urea water
- urea
- scr
- purification rate
- amount
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/02—Catalytic activity of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/05—Systems for adding substances into exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/148—Arrangement of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1812—Flow rate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1814—Tank level
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1818—Concentration of the reducing agent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a urea SCR system that selectively reduces NOx in exhaust gas of an engine using urea water, and in particular, urea water consumption diagnosis for urea SCR that can accurately diagnose the amount of urea water injected by a dosing valve. It relates to the device.
- This SCR system supplies urea water stored in a urea water tank upstream of the exhaust gas of the SCR device, hydrolyzes urea water with the heat of the exhaust gas, generates ammonia, and this ammonia generates a catalyst in the SCR device. NOx is reduced and purified.
- the urea water is supplied upstream of the exhaust gas of the SCR by being injected from a dosing valve provided on the upstream side of the SCR device.
- the urea water is supplied to the dosing valve by a supply module including a supply module pump (SM pump) and a urea water pressure sensor.
- the supply module is connected to the urea water tank through the suction line, and supplies urea water sucked up from the urea water tank through the suction line to the dosing valve through a pressure feed line connecting the supply module and the dosing valve.
- the dosing valve is controlled by a DCU (dosing control unit), and the dosing valve is controlled to open and close in accordance with the detected value of a NOx sensor provided downstream of the SCR device to adjust the urea injection amount.
- the level of urea water in the urea water tank is detected by a urea water sensor provided in the urea water tank, and the remaining amount of urea water is detected from the level of urea water detected by the urea water sensor to replenish urea water.
- a urea water sensor provided in the urea water tank
- This consumption amount of urea water can be roughly estimated by detecting the level change of the urea water sensor in the urea water tank.
- the difference between the instructed injection amount of the urea water in the DCU and the actual injection amount in accordance with the instruction, that is, the consumption amount based on the detected value of the urea water sensor, is monitored, and the difference in the injection at the dosing valve is determined based on the difference.
- the detection accuracy of the urea water sensor detects the urea level step by step, and there is a problem that the detection accuracy is poor.
- the inventors of the present invention use the value when the consumption level changes more than the error range of the urea water sensor as the determination amount, and on the other hand, integrate the command injection amount with the DCU, and when the integrated command injection amount exceeds the determination amount In addition, the difference between the integrated command injection amount and the consumption amount due to the level change obtained from the urea water sensor is compared. Invented a diagnostic device that can determine the presence or absence of the above even if it is bad.
- the object of the present invention is to solve the above-mentioned problem, when it is impossible to detect the change in the amount of urea water replenished to the urea water tank, and even if the actual consumption amount cannot be detected, the pumping line or dosing valve is clogged or stuck by foreign matter Alternatively, it is an object to provide a urea water consumption diagnostic device for urea SCR capable of detecting a state in which urea water is continuously sprayed by a dosing valve.
- the present invention provides a urea SCR for sucking urea water in a urea water tank with a supply pump and injecting the urea water from a dosing valve provided on the upstream side of the SCR device via a pressure feed line.
- a NOx sensor provided on the downstream side of the SCR device and a detected value of the NOx sensor are input, and it is determined from the detected value whether the NOx purification rate is within a specified value.
- NOx purification rate determination means and the difference between the urea water injection amount injected from the dosing valve and the urea water consumption amount in the urea water tank, and the urea water pressure abnormality from the NOx purification rate in the NOx purification rate determination means
- An abnormality diagnosis means for judging whether or not the urea water is clogged in the pressure feed line or the dosing valve based on the presence or absence of urea water consumption for urea SCR It is the amount diagnostic equipment.
- Urea water injection amount instruction means is provided, the urea water injection amount instruction means determines the urea injection amount from the detection value of the NOx sensor, and the purification rate determination means determines the purification rate from the detection values of the NOx sensors provided before and after the SCR device. Is preferably determined.
- the abnormality diagnosing means preferably diagnoses an abnormality when the NOx purification rate is less than a prescribed value by the NOx purification rate determination means and the difference between the urea water injection amount and the urea water consumption amount is equal to or greater than a threshold value.
- the abnormality diagnosis unit is replenished with a small amount of urea water in the urea water tank. It is preferable not to perform abnormality diagnosis.
- the abnormality diagnosis unit determines that there is an abnormality regardless of the determination of the NOx purification rate determination unit. Diagnosis is preferred.
- the present invention monitors the NOx purification rate by the NOx sensor, determines whether the NOx purification rate is in a normal range, and then detects the difference between the commanded injection amount of urea water and the actual consumption amount, It is possible to detect the clogging of the pumping line and the failure to keep spraying due to the dosing valve being stuck open.
- FIG. 1 shows an outline of an SCR system.
- a SCR device 11 is connected to an exhaust pipe 10 of a diesel engine (not shown), and a dosing valve that injects urea water upstream of the SCR device 11. 12 is provided, and a NOx sensor 13 is provided downstream of the SCR device 11.
- a NOx sensor 13-1 for detecting the NOx value before NOx purification is also provided on the upstream side of the SCR device 11.
- the detection value of the NOx sensor 13 is input to a DCU (Dosing Control Unit) 14, and the dosing valve 12 is controlled to open and close by the DCU 14 so that the NOx purification rate falls within a predetermined range based on the detection value.
- DCU Dosing Control Unit
- the urea water U injected from the dosing valve 12 is stored in the urea water tank 15, sucked into the supply pump 18 of the supply module 17 from the suction line 16, foreign matter is removed from the supply pump 18 through the filter 19, and the pressure feed line 20. Is pumped to the dosing valve 12. Excess urea water U is returned from the pumping line 20 on the discharge side of the filter 19 into the urea water tank 15 through the return line 21.
- the urea water sensor 22 is provided in the urea water tank 15, and the urea water sensor 22 measures the level of the urea water in the urea water tank 15 and transmits it to the DCU 14.
- the pressure feed line 20 is provided with a urea water pressure sensor 23 for detecting the supply pressure of the urea water, and the detected pressure is transmitted to the DCU 14.
- the DCU 14 calculates the amount and timing of injecting urea water to the SCR device 11, drives the supply pump 18 to increase the urea water to a specified pressure, controls opening and closing of the dosing valve 12, and controls an appropriate amount at an appropriate timing. Spray.
- the NOx sensor 13 sends a measured value to the DCU 14 in order to monitor that the NOx value in the exhaust gas downstream of the SCR device 11 is steady due to the appropriate injection of urea water from the dosing valve 12. Send.
- the DCU 14 is connected to an ECM (engine control module) 26 that mainly performs fuel injection control. Vehicle speed and other driving information are input to the ECM 26, and these are transmitted from the ECM 26 to the DCU 14.
- ECM engine control module
- the battery 24 is connected to the DCU 14 and the ON / OFF signal of the ignition key 25 is input.
- the DCU 14 determines the injection amount of urea water to be injected from the dosing valve 12 based on the information of the ECM 26 so that the detected value of the NOx sensor 13 becomes steady, and the dosing valve 12 based on the determined value. Open / close control.
- the injection amount instruction means 30 for instructing the DCU 14 the amount of urea water to be injected from the dosing valve 12 based on the information of the ECM 26 and the detected value of the NOx sensor 13, and the injection amount instruction means From the command injection amount integration unit 31 that integrates the command injection amount instructed at 30, the consumption calculation unit 32 that calculates the total consumption D from the detection value input from the urea water sensor 22, and the command injection amount integration unit 31 And an abnormality diagnosing means 33 for comparing the accumulated instruction injection amount P with the accumulated consumption amount D from the consumption calculating means 32 to determine whether the urea water injection by the dosing valve 12 is normal or abnormal.
- the integrated command injection amount P of the command injection amount integration unit 31 is reset to zero, and at the same time, the consumption calculation unit 32 stores the level detected by the urea water sensor 22 as a level (S0). To do. Thereafter, when the vehicle travels and urea water is injected from the dosing valve 12, the command injection amount integration unit 31 sequentially integrates the command injection amount by the injection amount instruction unit 30 and stores the cumulative command injection amount P.
- the detection accuracy does not increase unless the urea water is consumed to some extent (for example, the consumption amount is several tens to several tens of liters). Consumed when the vehicle travels several times, that is, when the ignition key 25 is repeatedly turned on and off, and the integrated command injection amount P in the command injection amount integration means 31 exceeds a determination amount L (for example, 15 L).
- the integrated consumption amount D in the amount calculating means 32 and the integrated instruction injection amount P are compared, and it is determined whether or not
- the integrated consumption amount D and the integrated instruction injection amount P are the same, and if the urea solution sensor 22 is less than the value K1 determined by the level measurement error range, It is diagnosed as normal, and if it is K1 or more, it is determined as abnormal.
- the absolute value of the difference between the two is compared, so that D ⁇ P and DP are negative when there is no injection due to foreign matter or the like, and D >> P and D >> P when the dosing valve 12 continues to spray.
- -P becomes positive, and it can be determined from the plus or minus that clogging due to sticking and whether the dosing valve 12 remains sprayed.
- the consumption amount calculation means 32 detects the level of the level sensor by the urea water sensor 22 at the ON / OFF timing of the key switch, and the consumption amount calculating means 32 determines the replenishment amount. Judging. That is, the consumption calculating means 32 integrates the replenishment amount from the start of control to the time of diagnosis, and obtains the accumulated consumption amount D of urea water by adding the integrated replenishment amount to the actual level change.
- the replenishment amount when the replenishment amount is large, the replenishment amount can be integrated.
- the urea water when the urea water is replenished little by little, it cannot be detected by the level change by the urea water sensor 22, and if this is repeated, the indicated injection amount and There is a problem that the deviation from the integrated consumption becomes large.
- the NOx purification rate by the NOx sensor 22 is monitored by the NOx purification rate determination means 34, and the NOx purification rate is within the normal range and the consumption amount is less than the specified injection amount Q.
- the NOx purification rate is within the normal range and the consumption amount is less than the specified injection amount Q.
- the injection amount instruction means 30 determines the instruction injection amount of urea water so that the detected value of the NOx sensor 13 is in a steady range. However, even if the NOx sensor 13 can detect the NOx concentration on the downstream side of the SCR device 11, it cannot detect the NOx concentration in the exhaust gas flowing into the SCR device 11.
- the NOx purification rate determination means 34 obtains a purification rate from the NOx concentration ratio detected by the upstream NOx sensor 13-1 and the NOx sensor 13, and determines whether the purification rate is equal to or greater than a specified value Q. is there.
- the specified value Q of the purification rate is adjusted according to the engine characteristics, for example, Set to 90% or more.
- step S1 When the diagnosis is started in step S1 and the key switch is turned on (step S2), the initial level sensor position (S0) is read and stored by the urea water sensor (step S3).
- step S4 it is determined whether or not the vehicle speed is 0 km.
- the level sensor position (S0 ′) is repeatedly read, and if the urea water is supplemented during the stop, the level is S0 ′ is stored and updated with the maximum value (step S5).
- step S5 When the vehicle travels in this step S4 (No), the difference between the first stored level S0 and the level S0 ′ stored during the stop (S0′ ⁇ S0) is the detection accuracy of the urea water sensor.
- step S8 for starting the amount integration, and if the level S0 ′ is within the error range with respect to the first level S0 (No), the process proceeds to step S8.
- step S12 when the key switch is turned ON in step S11, it is determined in step S12 whether or not the cumulative command injection amount P by the previous travel has reached the determination amount L (P ⁇ L).
- This determination amount L is set to 15 L, for example, in the range of several L to several tens of L.
- step S12 If it is determined in step S12 that the cumulative instruction injection amount P of urea water has not reached the determination amount L (No), the process proceeds to step S13, and the level sensor position (S1 + n ) is read and stored.
- step S11 when the key switch is turned on in step S11, it is determined again in step S12 whether the urea water cumulative command injection amount P has reached the determination amount L or not.
- the process returns from step S13 to S19 to return to step S11 and continues to integrate the command integrated amount P.
- > K1, and when there is replenishment (No), in step S21, correction of D at the time of replenishment (D S2 + 1 ⁇ S1 + R ⁇ ) is performed, and the determination returns to step S22.
- step S22 If the urea water injection from the dosing valve is normal in the determination of step S22, the integrated consumption amount D and the integrated instruction injection amount P are substantially the same and are 0 and within the detection error value K1 (No). In step S23, it is determined that the consumption is normal, and the control is terminated (step S27).
- step S24 when the dosing valve is open and stuck, the cumulative consumption amount D is sufficiently larger than the cumulative command injection amount P (Yes), so it is determined in step S26 that the consumption amount is abnormal.
- step S25 When the integrated consumption amount D is smaller than the integrated command injection amount P, it is determined in step S25 whether the range of the NOx purification rate is equal to or greater than the specified value Q, and when the purification rate is less than the specified value Q (No). Since a dosing valve or the like is fixed, it is determined in step S26 that the consumption is abnormal.
- step S25 determines whether the replenishment amount has not been added to the integrated consumption amount D, and the control is terminated because there is no abnormality (step S27).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
ドージングバルブからの尿素水噴射の正常・異常を検出できる尿素SCR用尿素水消費量診断装置を提供する。 尿素水タンク15内の尿素水を、サプライポンプ18にて吸い込み、これを圧送ライン20を介してSCR装置11の上流側に設けたドージングバルブ12から噴射する尿素SCR用尿素水消費量診断装置おいて、SCR装置11の下流側に設けられたNOxセンサ13と、NOxセンサ13の検出値が入力され、その検出値からNOx浄化率が規定値内にあるかどうかを判定するNOx浄化率判定手段34と、ドージングバルブ12から噴射する尿素水噴射量と尿素水タンク内の尿素水消費量との差を判断すると共にNOx浄化率判定手段34でのNOx浄化率から圧送ライン20又はドージングバルブ12内での尿素水の詰まりの有無を判断する異常診断手段33とを備えたものである。
Description
本発明は、エンジンの排ガス中のNOxを尿素水を用いて選択還元する尿素SCRシステムに係り、特に、ドージングバルブで噴射した尿素水の尿素水量を的確に診断できる尿素SCR用尿素水消費量診断装置に関するものである。
ディーゼルエンジンの排気ガス中のNOxを浄化するための排気ガス浄化システムとして、選択還元触媒を用いた選択触媒還元(Selective Catalytic Reduction)システム(SCRシステム)が開発されている。
このSCRシステムは、尿素水タンクに貯留された尿素水をSCR装置の排気ガス上流に供給し、排気ガスの熱で尿素水を加水分解してアンモニアを生成し、このアンモニアによってSCR装置内の触媒でNOxを還元して浄化するものである。尿素水は、SCR装置の上流側に設けられたドージングバルブから噴射されることで、SCRの排気ガス上流に供給される。
ドージングバルブへの尿素水の供給は、サプライモジュールポンプ(SMポンプ)や尿素水圧力センサなどを備えたサプライモジュールによってなされる。サプライモジュールは、吸込ラインを介して尿素水タンクと接続されており、尿素水タンクから吸込ラインを通じて吸い上げた尿素水を、サプライモジュールとドージングバルブとを接続する圧送ラインを通じてドージングバルブに供給する。ドージングバルブは、DCU(ドージングコントロールユニット)により制御され、SCR装置の下流に設けたNOxセンサの検出値に応じてドージングバルブが開閉制御されて尿素噴射量が調整される。
尿素水タンク内の尿素水のレベルは、尿素水タンク内に設けた尿素水センサで検出され、尿素水センサで検出した尿素水のレベルから尿素水の残存量を検出し、尿素水の補充の目安としている。
ところで、尿素水をNOx触媒内に噴射するドージングバルブ内、およびそこに至る圧送ライン内が異物により詰まりが生じた場合、それを検出する手段がない。またドージングバルブが異物等の固着により、開状態で固着した場合にも同様に検出する手段がない問題がある。
この尿素水の消費量については、尿素水タンク内の尿素水センサのレベル変化を検出すれば、その消費量はおおよそ推測できる。
そこで、尿素水のDCUでの指示噴射量と、その指示に従って実際に噴いた量、すなわち尿素水センサの検出値に基づく消費量との差をモニタし、その差でドージングバルブでの噴射の異常の有無を検出できるが、尿素水センサの検出精度は、尿素レベルを段階的に検出するもので、検出精度が悪い問題がある。
本発明者等は、消費量が尿素水センサの誤差範囲以上のレベル変化したときの値を判定量とし、他方DCUで指示噴射量を積算し、その積算指示噴射量が判定量を超えたときに、積算指示噴射量と尿素水センサから求めたレベル変化による消費量との差を比較し、その差が閾値を超えた場合、消費量異常と判定することにより、尿素水センサの検出精度が悪くても以上の有無を判定できる診断装置を発明した。
この積算消費量が、判定量に達する間に、尿素水タンクへ尿素水の補充が行われた場合、その補充量を算出消費量から引く必要がある。補充量を検出する際、車両の傾きによる液面上昇、センサ自体の持つ設計誤差分等を考慮し、この両者の誤差範囲以上の値K1よりも多い変化があったときを補充と認識し、尿素水センサで検出した消費量に補充量を加算する必要がある。
しかし、値K1より少ない量の補充が行われた場合、その量は検出誤差となり、補充量とは見なされず、これが繰り返されると、実際に消費される消費量の誤差量が大となり誤判定となる問題を残す。
さらに、ドージングバルブが開状態で固着し、尿素水が噴きっぱなしになったときには、尿素水センサのレベル変化でこれを検出することは不可能である。
そこで、本発明の目的は、上記課題を解決し、尿素水タンクに補充される尿素水量変化を検出できなく、その実消費量を検出できなくとも圧送ラインやドージングバルブが異物により詰まったり固着したとき、或いはドージングバルブで尿素水が噴きっぱなしになった状態を検出できる尿素SCR用尿素水消費量診断装置を提供することにある。
上記目的を達成するために本発明は、尿素水タンク内の尿素水を、サプライポンプにて吸い込み、これを圧送ラインを介してSCR装置の上流側に設けたドージングバルブから噴射するための尿素SCR用尿素水消費量診断装置において、前記SCR装置の下流側に設けられたNOxセンサと、NOxセンサの検出値が入力され、その検出値からNOx浄化率が規定値内にあるかどうかを判定するNOx浄化率判定手段と、前記ドージングバルブから噴射する尿素水噴射量と尿素水タンク内の尿素水消費量との差を判断すると共にNOx浄化率判定手段でのNOx浄化率からの尿素水圧異常の有無から圧送ライン又はドージングバルブ内での尿素水の詰まりの有無を判断する異常診断手段とを備えたことを特徴とする尿素SCR用尿素水消費量診断装置である。
尿素水噴射量指示手段を備えると共に尿素水噴射量指示手段が前記NOxセンサの検出値から尿素噴射量を決定し、浄化率判定手段は、SCR装置前後に設けたNOxセンサの検出値から浄化率を決定するのが好ましい。
前記異常診断手段は、前記NOx浄化率判定手段でNOx浄化率が規定値未満で、尿素水噴射量と尿素水消費量との差が閾値以上のとき、異常と診断するのが好ましい。
前記異常診断手段は、前記NOx浄化率判定手段でNOx浄化率が規定値以上で、尿素水噴射量と尿素水消費量との差が閾値以上のとき、尿素水タンクへ尿素水が少量補充されたとして異常診断を行わないのが好ましい。
前記異常診断手段は、尿素水噴射量と尿素水消費量との差が閾値以上で、尿素消費量が尿素水噴射量に対して多いとき、前記NOx浄化率判定手段の判定によらず異常と診断するのが好ましい。
本発明は、NOxセンサによるNOx浄化率をモニタし、NOx浄化率が正常範囲かどうかを判断し、その上で尿素水の指示噴射量と実消費量の差を検出することにより、ドージングバルブや圧送ラインの詰まり、及びドージングバルブ開固着による噴きっぱなしの不具合の検出が可能となる。またDCUにて補充量有無を判定できない少量の補充が繰り返され、DCUによる尿素噴射量とレベルセンサーによる尿素消費量の差が閾値を超えた場合、浄化率が正常であれば、尿素消費量異常と判定せず、実際に尿素水噴射経路の詰まり等の異常時のみ異常判定が可能となる。
以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。
図1は、SCRシステムの概略を示したもので、ディーゼルエンジン(図示せず)の排気管10には、SCR装置11が接続され、そのSCR装置11の上流側に尿素水を噴射するドージングバルブ12が設けられ、SCR装置11の下流側には、NOxセンサ13が設けられる。また、SCR装置11の上流側にも、NOx浄化前のNOx値を検出するためのNOxセンサ13-1が設けられる。
NOxセンサ13の検出値はDCU(ドージングコントロールユニット)14に入力され、その検出値に基づいて、NOx浄化率が所定の範囲内になるようにDCU14によりドージングバルブ12が開閉制御される。
ドージングバルブ12から噴射される尿素水Uは、尿素水タンク15に溜められ、サクションライン16からサプライモジュール17のサプライポンプ18に吸引され、サプライポンプ18からフィルタ19を通して異物が除去され、圧送ライン20にてドージングバルブ12に圧送される。また余剰の尿素水Uは、フィルタ19の吐出側の圧送ライン20から戻しライン21にて尿素水タンク15内に戻される。
尿素水タンク15内には、尿素水センサ22が設けられ、尿素水センサ22が尿素水タンク15内の尿素水のレベルを計測し、DCU14へ送信する。また圧送ライン20には尿素水の供給圧力を検出する尿素水圧力センサ23が設けられ、その検出圧力がDCU14へ送信される。
DCU14は、SCR装置11へ尿素水を噴射する量、タイミングを算出し、サプライポンプ18を駆動させ尿素水を規定圧まで高め、ドージングバルブ12の開閉を制御し、適切な量を適切なタイミングで噴射する。
NOxセンサ13は、ドージングバルブ12から尿素水が適切に噴射されていることにより、SCR装置11の下流の排ガス中のNOx値が定常となっていることをモニタするために、DCU14へ計測値を送信する。
DCU14には、主に燃料噴射制御を行うECM(エンジンコントロールモジュール)26と接続される。ECM26には、車速、その他の運転情報が入力され、これらがECM26からDCU14へ送信される。
また、DCU14には、バッテリー24が接続されると共にイグニッションキー25のON、OFF信号が入力される。
このSCRシステムにおいて、DCU14は、ECM26の情報を基にNOxセンサ13の検出値が定常となるようドージングバルブ12から噴射する尿素水の噴射指示量を決定し、その決定値に基づいてドージングバルブ12を開閉制御する。
先ず、尿素水消費の異常診断おいては、DCU14に、ECM26の情報とNOxセンサ13の検出値に基づいてドージングバルブ12から噴射する尿素水量を指示する噴射量指示手段30と、噴射量指示手段30で指示した指示噴射量を積算する指示噴射量積算手段31と、尿素水センサ22から入力される検出値から積算消費量Dを算出する消費量算出手段32と、指示噴射量積算手段31からの積算指示噴射量Pと消費量算出手段32からの積算消費量Dを比較してドージングバルブ12による尿素水噴射が正常か異常かを判定する異常診断手段33とを備える。
異常診断を開始するときには、指示噴射量積算手段31の積算指示噴射量Pをゼロにリセットし、同時に、消費量算出手段32は、尿素水センサ22で検出されたレベルをレベル(S0)として記憶する。その後、車両が走行し、ドージングバルブ12から尿素水が噴射されたとき、指示噴射量積算手段31は、噴射量指示手段30による指示噴射量を順次積算し、積算指示噴射量Pを記憶する。
異常診断手段33での尿素水噴射が正常か異常かを検出するには、ある程度尿素水を消費(例えば消費量が数Lから十数L)したときでなければ、検出精度が高くならないため、車両走行が何回か行われたとき、すなわちイグニッションキー25がON・OFFを繰り返し、指示噴射量積算手段31での積算指示噴射量Pが判定量L(例えば15L)を超えたときに、消費量算出手段32での積算消費量Dと積算指示噴射量Pを比較し、|D-P|>K1かどうかを判断する。
この判断において、尿素水が適正に噴射されていれば、積算消費量Dと積算指示噴射量Pとは同じであり、尿素水センサ22のレベル測定の誤差範囲で決まる値K1以下であれば、正常と診断し、K1以上であれば異常と判断する。この際、両者の差の絶対値で比較することで、異物等で噴射がないときにはD≪Pで、D-Pはマイナスとなり、ドージングバルブ12が噴きっぱなしとなればD≫Pで、D-Pはプラスとなり、そのプラス・マイナスから固着による詰まりと、ドージングバルブ12の噴きっぱなしが判断できる。
また、尿素水タンク15には、尿素水の補充があるため、キースイッチのON・OFFのタイミングで尿素水センサ22によるレベルセンサのレベルを検出してその変化から消費量算出手段32が補充量を判断する。すなわち消費量算出手段32は、制御開始から診断時までその補充量を積算し、実際のレベル変化にその積算補充量を足して尿素水の積算消費量Dを求める。
しかし、補充量が多い場合には、その補充量を積算できるが、尿素水が少量ずつ補充された場合には、尿素水センサ22によるレベル変化で検出できず、これが繰り返されると指示噴射量と積算消費量との乖離が大きくなってしまう問題がある。
上記の問題を回避するため、NOxセンサ22によるNox浄化率を、NOx浄化率判定手段34がモニタし、NOx浄化率が正常範囲内で規定値Q以上、指示噴射量に対して消費量が少ないときは、少量補充が繰り返され、DCU指示噴射量と尿素水センサによる尿素水消費量に乖離が生じたと判断する。よって、NOx値が規定値Q未満で、かつ、指示噴射量に対して消費量が閾値を超えた場合のみ、消費量異常と判定する。
また、指示噴射量に対して消費量が大きな乖離率プラス側の消費量異常については、NOx浄化率によらず、尿素水指示量と消費量の乖離のみで判定する。
このNOx浄化率判定手段34の浄化率の判定を説明する。
噴射量指示手段30は、NOxセンサ13の検出値が定常の範囲となるように尿素水の指示噴射量を決定する。しかし、NOxセンサ13は、SCR装置11の下流側のNOx濃度は検出できても、SCR装置11内に流入する排ガス中のNOx濃度は検出できない。
NOx浄化率判定手段34は、上流側のNOxセンサ13-1とNOxセンサ13で検出されたNOx濃度比から浄化率を求めるもので、その浄化率が規定値Q以上かどうかを判定するものである。
入口側のNOx濃度はエンジンの運転状態により変動するものの、排気管10から放出されるNOx値が法規制以下であればよいため、浄化率の規定値Qを、エンジンの特性にあわせて、例えば90%以上に設定しておく。
次に本発明の診断を図2のフローチャートにより説明する。
ステップS1で診断が開始され、キースイッチがONされたとき(ステップS2)、尿素水センサで初期のレベルセンサ位置(S0)を読み込み、記憶する(ステップS3)。次にステップS4で、車速=0kmかどうかを判断し、車両が停止状態のとき(Yes)は、繰り返しレベルセンサ位置(S0’)を読み込み、その停止中に尿素水の補充があればそのレベルS0’を最大値として記憶更新する(ステップS5)。このステップS4で車両が走行したとき(No)、ステップS6の判断で、最初に記憶したレベルS0と停止中に記憶したレベルS0’の差(S0’-S0)が、尿素水センサの検出精度以上又は誤差範囲以上の値(K1)に対して大きいかどうか(S0’-S0>K1)を判断する。このステップS4の判断で、誤差範囲以上にレベルが上昇していたならば(Yes)、S0’-S0=Rp0とし、その補充量を積算補充量RΣに加算(ステップS7)して、指示噴射量積算開始のステップS8に移行し、また、レベルS0’が最初のレベルS0に対して誤差範囲であれば(No)、ステップS8に移行する。この指示噴射量積算開始のステップS8では、ステップS9のキースイッチOFFまで指示噴射量を積算すると共に尿素水はレベルS0として記憶する。ステップS9でキースイッチがOFFとされたときに、制御開始から一回目の走行後のレベルセンサ位置S1を読み込み、そのときの尿素水の積算消費量D(=S1-S0)を記憶する(ステップS10)。
次に、ステップS11で、キースイッチがONとされたとき、ステップS12の判断で、その前の走行による積算指示噴射量Pが判定量Lに達したかどうか(P≧L)を判定する。この判定量Lは、数L~十数Lの範囲で、例えば15Lに設定する。
このステップS12の判断で、尿素水の積算指示噴射量Pが判定量Lに達していないとき(No)、ステップS13に移行して、レベルセンサ位置(S1+n)を読み込んで記憶する。次にステップS14の判断で、その記憶したレベル(S1+1)とステップS11でキースイッチがONとされる前のレベルS1とを比較し、S1+n-S1>K1かどうかを判断して尿素水の補充の有無を判断し、補充がなければ(No)、ステップS17に移行し、補充があれば(Yes)、ステップS20で、S1+n-S1=R1を計算し、R1を補充量として記憶した後、ステップS15で補充量R1を積算補充量RΣに加算し、ステップS16に移行し、そのステップS16で、指示噴射量積算を継続する。その後ステップS18でキースイッチがOFFされたならば、ステップS19でレベルセンサ位置(S2+n)を読み込み、そのレベル(S2+n)を基に積算消費量D(=S2+n-S1)を計算して記憶すると共にステップS11の上流側に戻す。
次に、ステップS11でキースイッチがONとされたとき、ステップS12で、再度尿素水の積算指示噴射量Pが判定量Lに達したかどうかを判断する。積算指示噴射量Pが判定量Lに達していないときには、上述したステップS13~S19から、ステップS11に戻して指示積算量Pの積算を継続する。
このステップS12の判断で、積算指示噴射量Pが判定量Lに達したとき(Yes)、ステップS20で積算補充量RΣ=0かを判断し、補充がないとき(Yes)は、ステップS22で、|D-P|>K1を判断し、補充があるとき(No)は、ステップS21で、補充時のDの訂正(D=S2+1-S1+RΣ)を行ってステップS22の判断に戻す。
このステップS22の判断で、ドージングバルブからの尿素水の噴射が正常であれば、積算消費量Dと積算指示噴射量Pとは略同じで0で、検出誤差値K1以内であるため(No)、ステップS23で消費量正常と判定し、制御を終了(ステップS27)する。
ステップS22の絶対値(|D-P|)とK1の比較判断で、絶対値がK1より大きければ(YES)、ステップS24で、積算指示噴射量P>消費量Dかどうかを比較判断する。
このステップS24で、ドージングバルブが開固着で噴きっぱなしのときは、積算指示噴射量Pに対して積算消費量Dが十分に大きいため(Yes)、ステップS26で消費量異常と判定する。
また積算指示噴射量Pに対して積算消費量Dが小さいときは、ステップS25にてNOx浄化率の範囲が規定値Q以上かどうかを判断し、規定値Q未満の浄化率のとき(No)は、ドージングバルブ等が固着しているため、ステップS26で消費量異常と判定する。
また、ステップS25の判断で、規定値Q以上(Yes)ときは、補充量が積算消費量Dに加算されなかったときであり、異常では無いため制御を終了(ステップS27)する。
10 排気管
11 SCR装置
12 ドージングバルブ
13 NOxセンサ
15 尿素水タンク
22 尿素水センサ
23 尿素水圧力センサ
30 噴射量指示手段
31 指示噴射量積算手段
32 消費量算出手段
33 異常診断手段
34 NOx浄化率判定手段
11 SCR装置
12 ドージングバルブ
13 NOxセンサ
15 尿素水タンク
22 尿素水センサ
23 尿素水圧力センサ
30 噴射量指示手段
31 指示噴射量積算手段
32 消費量算出手段
33 異常診断手段
34 NOx浄化率判定手段
Claims (5)
- 尿素水タンク内の尿素水を、サプライポンプにて吸い込み、これを圧送ラインを介してSCR装置の上流側に設けたドージングバルブから噴射するための尿素SCR用尿素水消費量診断装置において、
前記SCR装置の下流側に設けられたNOxセンサと、
NOxセンサの検出値が入力され、その検出値からNOx浄化率が規定値内にあるかどうかを判定するNOx浄化率判定手段と、
前記ドージングバルブから噴射する尿素水噴射量と尿素水タンク内の尿素水消費量との差を判断すると共にNOx浄化率判定手段でのNOx浄化率から圧送ライン又はドージングバルブ内での尿素水の詰まりの有無を判断する異常診断手段と
を備えたことを特徴とする尿素SCR用尿素水消費量診断装置。 - 尿素水噴射量指示手段を備えると共に尿素水噴射量指示手段が前記NOxセンサの検出値から尿素噴射量を決定し、浄化率判定手段は、SCR装置前後に設けたNOxセンサの検出値から浄化率を決定する請求項1記載の尿素SCR用尿素水消費量診断装置。
- 前記異常診断手段は、前記NOx浄化率判定手段でNOx浄化率が規定値未満で、尿素水噴射量と尿素水消費量との差が閾値以上のとき、異常と診断する請求項1記載の尿素SCR用尿素水消費量診断装置。
- 前記異常診断手段は、前記NOx浄化率判定手段でNOx浄化率が規定値以上で、尿素水噴射量と尿素水消費量との差が閾値以上のとき、尿素水タンクへ尿素水が少量補充されたとして異常診断を行わない請求項1記載の尿素SCR用尿素水消費量診断装置。
- 前記異常診断手段は、尿素水噴射量と尿素水消費量との差が閾値以上で、尿素消費量が尿素水噴射量に対して多いとき、前記NOx浄化率判定手段の判定によらず異常と診断する請求項3又は4記載の尿素SCR用尿素水消費量診断装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380068481.3A CN104903555B (zh) | 2012-12-28 | 2013-12-17 | 尿素scr用尿素水消耗量诊断装置 |
EP13869233.0A EP2942502B1 (en) | 2012-12-28 | 2013-12-17 | Urea water consumption diagnostic device for urea scr |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-288067 | 2012-12-28 | ||
JP2012288067A JP6127510B2 (ja) | 2012-12-28 | 2012-12-28 | 尿素scr用尿素水消費量診断装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014103798A1 true WO2014103798A1 (ja) | 2014-07-03 |
Family
ID=51020885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/083748 WO2014103798A1 (ja) | 2012-12-28 | 2013-12-17 | 尿素scr用尿素水消費量診断装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2942502B1 (ja) |
JP (1) | JP6127510B2 (ja) |
CN (1) | CN104903555B (ja) |
WO (1) | WO2014103798A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112302771A (zh) * | 2020-11-06 | 2021-02-02 | 潍柴动力股份有限公司 | 检测尿素消耗量异常的方法、装置、设备及存储介质 |
CN114687839A (zh) * | 2022-03-18 | 2022-07-01 | 潍柴动力股份有限公司 | 尿素液位卡滞的确定方法、确定装置和车辆 |
US11448111B2 (en) | 2017-07-25 | 2022-09-20 | Continental Automotive France | Method for adapting an amount of reductant for controlling the nitrogen oxide pollution of gases in a motor exhaust line |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6437831B2 (ja) * | 2015-01-22 | 2018-12-12 | 日立建機株式会社 | 排気浄化装置 |
KR101666157B1 (ko) | 2016-03-18 | 2016-10-13 | (주)가온테크 | 요소수 보충을 강제하기 위한 배기 브레이크 제어모듈을 구비한 scr 장치 |
DE102016210619A1 (de) * | 2016-06-15 | 2017-12-21 | Robert Bosch Gmbh | Verfahren zur Diagnose eines Reagenzmittel-Dosiersystems, Vorrichtung zur Durchführung des Verfahrens, Computer-Programm sowie Computer-Programmprodukt |
CN106837485A (zh) * | 2016-12-26 | 2017-06-13 | 潍柴动力空气净化科技有限公司 | Scr喷射系统稳态控制精度的测试装置及其方法 |
EP3480048B1 (en) * | 2017-11-03 | 2020-04-29 | MEAS France | Tank tube bracket for a tank with a diverted discharge opening |
CN111075544A (zh) * | 2019-12-20 | 2020-04-28 | 一汽解放汽车有限公司 | 一种基于尿素液位传感器的尿素消耗偏差诊断方法 |
CN112412598B (zh) * | 2020-11-17 | 2021-06-25 | 南京依柯卡特排放技术股份有限公司 | 车辆尿素消耗偏差的判断方法、装置、系统及可读取介质 |
CN112963229B (zh) * | 2021-03-19 | 2021-09-28 | 南京依柯卡特排放技术股份有限公司 | 用于柴油发动机货车的尿素剩余量监控预警系统及方法 |
CN114458433B (zh) * | 2022-02-16 | 2023-05-23 | 潍柴动力股份有限公司 | 一种尿素喷嘴堵塞判断方法、scr系统及车辆 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006250117A (ja) * | 2005-03-14 | 2006-09-21 | Nissan Diesel Motor Co Ltd | 排気浄化システムの還元剤噴射状況判定装置 |
JP2008274765A (ja) * | 2007-04-25 | 2008-11-13 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2009079584A (ja) * | 2007-09-05 | 2009-04-16 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2009121413A (ja) * | 2007-11-16 | 2009-06-04 | Toyota Motor Corp | 排気浄化システムの異常診断装置 |
JP2010151094A (ja) * | 2008-12-26 | 2010-07-08 | Bosch Corp | 還元剤の漏れ検出装置及び漏れ検出方法 |
JP2011247137A (ja) | 2010-05-25 | 2011-12-08 | Isuzu Motors Ltd | Scrシステム |
JP2012002061A (ja) | 2010-05-17 | 2012-01-05 | Isuzu Motors Ltd | Scrシステム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4165896B2 (ja) * | 2007-02-19 | 2008-10-15 | ボッシュ株式会社 | 還元剤経路の詰まり判定装置及び還元剤経路の詰まり判定方法 |
CN102748101B (zh) * | 2012-07-10 | 2014-03-26 | 天津亿利汽车环保科技有限公司 | 用于降低发动机NOx排放的尿素喷射系统及其控制方法 |
-
2012
- 2012-12-28 JP JP2012288067A patent/JP6127510B2/ja not_active Expired - Fee Related
-
2013
- 2013-12-17 CN CN201380068481.3A patent/CN104903555B/zh active Active
- 2013-12-17 EP EP13869233.0A patent/EP2942502B1/en active Active
- 2013-12-17 WO PCT/JP2013/083748 patent/WO2014103798A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006250117A (ja) * | 2005-03-14 | 2006-09-21 | Nissan Diesel Motor Co Ltd | 排気浄化システムの還元剤噴射状況判定装置 |
JP2008274765A (ja) * | 2007-04-25 | 2008-11-13 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2009079584A (ja) * | 2007-09-05 | 2009-04-16 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2009121413A (ja) * | 2007-11-16 | 2009-06-04 | Toyota Motor Corp | 排気浄化システムの異常診断装置 |
JP2010151094A (ja) * | 2008-12-26 | 2010-07-08 | Bosch Corp | 還元剤の漏れ検出装置及び漏れ検出方法 |
JP2012002061A (ja) | 2010-05-17 | 2012-01-05 | Isuzu Motors Ltd | Scrシステム |
JP2011247137A (ja) | 2010-05-25 | 2011-12-08 | Isuzu Motors Ltd | Scrシステム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11448111B2 (en) | 2017-07-25 | 2022-09-20 | Continental Automotive France | Method for adapting an amount of reductant for controlling the nitrogen oxide pollution of gases in a motor exhaust line |
CN112302771A (zh) * | 2020-11-06 | 2021-02-02 | 潍柴动力股份有限公司 | 检测尿素消耗量异常的方法、装置、设备及存储介质 |
CN114687839A (zh) * | 2022-03-18 | 2022-07-01 | 潍柴动力股份有限公司 | 尿素液位卡滞的确定方法、确定装置和车辆 |
CN114687839B (zh) * | 2022-03-18 | 2023-06-23 | 潍柴动力股份有限公司 | 尿素液位卡滞的确定方法、确定装置和车辆 |
Also Published As
Publication number | Publication date |
---|---|
EP2942502B1 (en) | 2017-11-29 |
CN104903555B (zh) | 2017-08-29 |
JP6127510B2 (ja) | 2017-05-17 |
JP2014129766A (ja) | 2014-07-10 |
EP2942502A4 (en) | 2016-09-28 |
EP2942502A1 (en) | 2015-11-11 |
CN104903555A (zh) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6127510B2 (ja) | 尿素scr用尿素水消費量診断装置 | |
JP6136297B2 (ja) | 尿素scr用尿素水消費量診断装置 | |
JP6127509B2 (ja) | 尿素scr用尿素水消費量診断装置 | |
JP4964353B1 (ja) | 還元剤供給装置の異常診断装置及び還元剤供給装置 | |
US8006483B2 (en) | Exhaust emission purifying apparatus for engine | |
EP3150817B1 (en) | Reagent doser diagnostic method | |
JP4737312B2 (ja) | 排気浄化システムの異常診断装置及び排気浄化システム | |
JP6142530B2 (ja) | 尿素scr用尿素水消費量診断装置 | |
JP2011247137A (ja) | Scrシステム | |
JP6011332B2 (ja) | 尿素scr用尿素水消費量診断装置 | |
KR102443425B1 (ko) | Scr 시스템의 진단 방법 | |
JP6905910B2 (ja) | 診断装置及び診断方法 | |
RU2601691C2 (ru) | Система scr (избирательного каталитического восстановления) и способ очистки выхлопных газов в системе scr | |
KR20140006068A (ko) | Scr 시스템과 관련한 용기 내의 환원제의 잔류 체적을 결정하기 위한 방법 및 장치 | |
KR101864819B1 (ko) | Scr 시스템에서 주입된 환원제의 체적을 결정하기 위한 방법 및 장치 | |
CN113677876B (zh) | 用于柴油机排气处理液输送系统的控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13869233 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013869233 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013869233 Country of ref document: EP |