WO2014103666A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2014103666A1
WO2014103666A1 PCT/JP2013/082840 JP2013082840W WO2014103666A1 WO 2014103666 A1 WO2014103666 A1 WO 2014103666A1 JP 2013082840 W JP2013082840 W JP 2013082840W WO 2014103666 A1 WO2014103666 A1 WO 2014103666A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
pulse control
control signal
capacitive element
lighting device
Prior art date
Application number
PCT/JP2013/082840
Other languages
French (fr)
Japanese (ja)
Inventor
正利 米山
伸哉 三木
淳弥 若原
司 八木
将積 直樹
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014533725A priority Critical patent/JP5637341B1/en
Publication of WO2014103666A1 publication Critical patent/WO2014103666A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light

Definitions

  • the present invention relates to an illumination device including a plurality of light emitting elements connected in series to a constant current source.
  • Patent Document 1 JP-T-2010-524221 discloses an invention relating to a method for driving a light emitting diode. This driving method shows a configuration in which the luminance of light-emitting diodes connected in series can be individually adjusted.
  • a drive system that adjusts the amount of current flowing through each light emitting diode connected in series by supplying the main current and controlling the current drawn from the intermediate electrode between the light emitting diodes with respect to the main current Is disclosed.
  • Patent Document 1 JP-T-2010-524221
  • the current flowing through the light emitting diode at the final stage is regulated by the current flowing through the light emitting diode at the previous stage, so that calculation adjustment is necessary, and the circuit configuration becomes complicated. is there.
  • An object of the present invention is to provide a lighting device that can easily adjust the amount of current flowing through each light emitting element in a configuration in which a plurality of light emitting elements are connected in series.
  • An illumination device includes a plurality of light emitting elements connected in series, each having a different emission spectrum, and a plurality of light emitting elements provided corresponding to the plurality of light emitting elements, each for driving the corresponding light emitting element.
  • Drive device Each driving device has a first capacitor according to a power supply voltage applied to an input node of the first capacitor element based on a first capacitor element provided for the corresponding light emitting element and a periodic pulse control signal.
  • the amount of current flowing through each light emitting element can be easily adjusted individually.
  • FIG. 7 is a timing chart illustrating pulse control signals ⁇ 1 to ⁇ 3, / ⁇ 3 for driving charge pump circuit 20A. It is a figure explaining the state of switch S1-S6 which turns on / off according to a pulse control signal. It is a figure explaining the structure of the illuminating device according to the modification of this Embodiment.
  • FIG. 7 is a timing chart illustrating pulse control signals ⁇ 1 to ⁇ 3, / ⁇ 3 for driving charge pump circuit 20A. It is a figure explaining the state of switch S1-S6 which turns on / off according to a pulse control signal. It is a figure explaining the structure of the illuminating device according to the modification of this Embodiment.
  • 11 is a timing chart illustrating pulse control signals ⁇ 1 to ⁇ 3, / ⁇ 3 for driving charge pump circuit 20 # in the present modification. It is a figure explaining the state of switch S1-S7 which turns on / off according to a pulse control signal.
  • FIG. 1 is a schematic block diagram illustrating a configuration of lighting apparatus 1 according to the present embodiment.
  • lighting device 1 includes lighting panel 2, lighting unit 4 including a light emitting element, and controller 6 that controls lighting device 1 as a whole.
  • the illumination panel 2 irradiates the light emitted from the light emitting element of the illumination unit 4 as uniform light. In addition, you may make it irradiate a specific spot area
  • the illumination unit 4 includes a plurality of light emitting elements each having a different emission spectrum.
  • a case where three types of light emitting elements are provided will be described as an example. Specifically, a light-emitting element having a light emission spectrum of red (Red), green (Green), and blue (Blue) is provided. In this example, three types of light emitting elements will be described.
  • the present invention is not limited to this, and any configuration may be adopted as long as a plurality (two or more) are connected in series. Further, a structure in which a light-emitting element is provided can be employed.
  • examples of light-emitting elements constituting these include organic EL (also referred to as OLED: Organic Light Emitting Diode, or Organic Electroluminescence). Alternatively, a light emitting diode (LED) may be used.
  • the illumination device 1 may further include other light emitting elements in addition to these.
  • the controller 6 instructs the illumination unit 4 to perform light emission control. Specifically, a control signal for adjusting the luminance of the illumination unit 4 is output to the illumination unit 4 in accordance with an instruction from the outside (instruction for luminance adjustment).
  • FIG. 2 is a schematic configuration diagram of light emitting element group 15 of illumination unit 4 according to the present embodiment.
  • the case where organic EL is used as a light emitting element is shown as an example.
  • a red light emitting element (red light emitting layer) 10 a green light emitting element (green light emitting layer) 12, and a blue light emitting element (blue light emitting layer) 14 are laminated, and the light emitting layer of each color light emitting element is an electrode 15A, It is clamped by 15B, 15C, and 15D, respectively.
  • each color light emitting layer emits light.
  • the drive unit group 17 drives the current supplied to the electrodes 15A, 15B, 15C, and 15D according to the control from the controller 6, thereby adjusting the luminance balance of the light emitting elements of each color and emitting light from the lighting device 1. The dimming and toning of the emitted light can be controlled.
  • FIG. 3 is a diagram illustrating a specific configuration of illumination unit 4 according to the present embodiment.
  • the illumination unit 4 includes a light emitting element group 15 and a drive unit group 17.
  • the light emitting element group 15 includes a plurality of light emitting elements connected in series as described above.
  • the drive unit group 17 includes a plurality of drive units 10A to 10C.
  • the organic ELs 8A to 8C connected in series with different emission spectra will be described.
  • the organic EL may be a single element or a string configuration in which a plurality of elements are connected.
  • a drive unit is provided for each organic EL.
  • a drive unit is provided so as to be connected to the anode side and cathode side of each of the organic ELs 8A to 8C.
  • drive units 10A to 10C are provided corresponding to the organic ELs 8A to 8C, respectively.
  • each drive unit Since the configuration of each drive unit is the same, in this example, the drive unit 10A which is one of them will be described as an example.
  • FIG. 4 is a diagram illustrating a specific configuration of drive unit 10A according to the present embodiment. Referring to FIG. 4, here, a configuration in which a driving unit 10A is provided corresponding to the organic EL 8A is shown. The organic EL 8A is connected to the drive unit 10A, and the drive unit 10A controls light emission of the organic EL 8A according to an instruction from the controller 6.
  • the drive unit 10A includes a charge pump circuit 20A, an amplifier 12A, a resistance element 14A, a comparator 16A, and an oscillator 18A.
  • the organic EL 8A is provided between the positive node N5 which is an output node of the driving unit 10A and the negative node N6.
  • the charge pump circuit 20A includes switches S1 to S6 and capacitors C1 and C2.
  • the switches S1 to S6 form a switch element group.
  • Switch S1 is connected between nodes N0 and N2, and operates in accordance with pulse control signal ⁇ 1. Specifically, pulse control signal ⁇ 1 is turned on (conductive) according to the H level. On the other hand, pulse control signal ⁇ 1 is turned off (non-conducting) according to the L level. Other switches are also turned on according to the H level and turned off according to the L level. In this example, a switch that turns on in accordance with the H level and turns off in accordance with the L level will be described. However, the present invention is not limited to this, and a switch that turns on and off when the logic is inverted may be used. As an example of the switch, an NMOS transistor or the like can be used. However, the switch may be mechanically or electromagnetically turned on / off, and the configuration is not limited.
  • the capacitor C1 is connected between the node N2 and the node N1.
  • the switch S2 is connected in parallel with the switch S1 between the node N0 and the node N1.
  • the switch S2 operates according to the pulse control signal ⁇ 2.
  • Switch S3 is connected between nodes N2 and N3, and operates in accordance with pulse control signal ⁇ 2.
  • Switch S4 is connected between nodes N1 and N4 and operates in accordance with pulse control signal ⁇ 1.
  • the capacitor C2 is provided in parallel with the capacitor C1, and is connected between the node N3 and the node N4.
  • Switch S5 is connected between nodes N4 and N6 and operates in accordance with pulse control signal ⁇ 3.
  • Switch S6 is connected between node N4 and ground voltage GND, and operates in accordance with pulse control signal / ⁇ 3.
  • the symbol “/” means an inverted signal as an example. Specifically, when pulse control signal ⁇ 3 is at the H level, pulse control signal / ⁇ 3 is at the L level.
  • Resistance element 14A is connected between nodes N3 and N5.
  • the amplifier 12A is connected between the resistance elements 14A, measures the voltage (potential difference) across the resistance element 14A based on the current value passing through the resistance element 14A, amplifies it, and outputs the amplified voltage to the comparator 16A.
  • the system which changes and measures an electric current value into a voltage value is demonstrated, it is an example, you may make it measure an electric current value directly, and the method is not specifically limited.
  • the comparator 16A compares the voltage output from the amplifier 12A with the reference voltage V1 for defining the amount of current to pass, and outputs a control voltage based on the comparison result to the oscillator 18A. It is assumed that the reference voltage V1 is output from the controller 6. In this example, a configuration for outputting the reference voltage V1 from the controller 6 will be described as an example. However, the configuration is not particularly limited to this configuration. For example, the controller 6 instructs a reference voltage generation circuit (not shown). It is also possible to output the reference voltage V1 from the reference voltage generation circuit.
  • the oscillator 18A generates and outputs pulse control signals ⁇ 1 to ⁇ 3, / ⁇ 3 according to the control voltage. Pulse control signals ⁇ 1 to ⁇ 3 are activated independently (H level) continuously in one period.
  • the pulse control signal / ⁇ 3 is obtained by inverting the pulse control signal ⁇ 3 through, for example, an inverter, and does not need to be generated independently.
  • the power supply voltage VDD is boosted by the above-described charge pump circuit 20A, which is a booster circuit, and the boosted boosted voltage is output to the organic EL 8A.
  • FIG. 5 is a timing chart for explaining the pulse control signals ⁇ 1 to ⁇ 3, / ⁇ 3 for driving the charge pump circuit 20A.
  • FIG. 6 is a diagram for explaining the states of the switches S1 to S6 that are turned ON / OFF according to the pulse control signal.
  • pulse control signal ⁇ 1 is set to the H level.
  • Pulse control signals ⁇ 2 and ⁇ 3 are set to L level. Accordingly, the switches S1, S4, S6 are set to ON, and the switches S2, S3, S5 are set to OFF.
  • the node N2 of the capacitor C1 is connected to the power supply voltage VDD, and the capacitor C1 is charged. That is, the potential of the node N2 is set to the power supply voltage VDD level.
  • the pulse control signal ⁇ 2 is set to the H level.
  • Pulse control signals ⁇ 1 and ⁇ 3 are set to L level. Accordingly, the switches S2, S3, S6 are set to ON, and the switches S1, S4, S5 are set to OFF.
  • the node N1 of the capacitor C1 is connected to the power supply voltage VDD.
  • the potential of the node N2 of the capacitor C1 is set to the power supply voltage 2VDD level, and the capacitor C2 is charged.
  • the charge accumulated in the capacitor C1 is transferred to the capacitor C2 (pump operation), and the capacitor C2 accumulates the charge corresponding to the boosted voltage boosted to the power supply voltage 2VDD level.
  • the pulse control signal ⁇ 3 is set to the H level.
  • Pulse control signals ⁇ 1 and ⁇ 2 are set to L level. Accordingly, the switch S5 is set to ON, and the switches S1, S2, S3, S4, and S6 are set to OFF.
  • the capacitor C2 is connected to the organic EL 8A as a load.
  • the boosted voltage boosted is output to the organic EL 8A, and a current flows through the organic EL 8A as a load.
  • pulse control signal ⁇ 1 is set to the H level again at the same time as time t1. Thereafter, the pulse control signal ⁇ 2 is set to the H level, and then the pulse control signal ⁇ 3 is set to the H level.
  • the pulse control signals ⁇ 1 to ⁇ 3 are periodically activated to repeat the pump operation and the like. With this operation, a boosted voltage is output to the organic EL 8A, and a current according to the boosted voltage flows to the organic EL 8A. At this time, since only the switch S5 is ON, the organic EL 8A is supplied with a current in a floating state.
  • the current amount is measured, and the pulse control signal is adjusted so that a desired current is supplied to the organic EL 8A.
  • the cycle of the pump operation becomes shorter and the amount of current increases.
  • the frequency of the pulse control signal is lowered, the cycle of the pump operation becomes longer and the amount of current decreases.
  • the desired current value can be obtained. Judge whether or not. Specifically, if the amplified voltage at both ends is lower than the reference voltage V1, it is determined that the current value of the passing current is lower than the desired current value. On the other hand, if the amplified voltage at both ends is higher than the reference voltage V1, it is determined that the current value of the passing current is higher than the desired current value.
  • the oscillator 18A is a V / f conversion circuit that adjusts the oscillation frequency output according to the voltage level of the control voltage from the comparator 16A.
  • the comparator 16A raises the voltage level of the control voltage to increase the oscillation frequency.
  • the voltage level of the control voltage is lowered to lower the oscillation frequency.
  • the oscillator 18A adjusts the oscillation frequency so that the amplified voltage from the amplifier 12A is the same as the reference voltage that defines the amount of current passing through the organic EL 8A.
  • a desired current can be supplied to the organic EL 8A, and control can be performed with a simple configuration.
  • the circuit is not limited to the V / f conversion circuit, and a circuit that can generate a periodic pulse control signal and adjust the frequency of the pulse control signal. Anything can be used.
  • the controller 6 outputs a reference voltage for defining the amount of current passing through each organic EL to each drive unit.
  • the controller 6 outputs the reference voltage V1 to define the amount of current flowing through the organic EL 8A to the drive unit 10A.
  • the controller 6 outputs a reference voltage V2 to define the amount of current flowing through the organic EL 8B to the drive unit 10B.
  • the controller 6 outputs a reference voltage V3 to the drive unit 10C in order to define the amount of current flowing through the organic EL 8C.
  • the current amount is measured for each driving unit, and the pulse control signal is adjusted so that a desired current is supplied to the organic ELs 8A to 8C.
  • the controller 6 sets the reference voltages V1 to V3 for the respective driving units, so that the current flowing through the organic ELs 8A to 8C can be adjusted independently, and is drawn from the intermediate electrode as in the conventional configuration. It is not necessary to calculate the current that flows and control the current flowing through each organic EL, and it is possible to control with a simple configuration.
  • the organic ELs 8A to 8C are in a floating state with respect to the power source. Independent current control is possible even when the anode or cathode of ⁇ 8C is clipped to a specific potential.
  • the power supply voltage is boosted using the charge pump circuit 20A that is a booster circuit, and the boosted voltage is output to the organic EL 8A.
  • the power supply voltage may be stored in the capacitor C2 without being boosted, and the stored charge may be supplied to the organic EL 8A as a load.
  • the switches S1, S2, S4 and the capacitor C1 are deleted, and the power supply voltage VDD is connected to the node N2.
  • the switches S3 and S6 are turned on to accumulate (charge) charges in the capacitor C2.
  • the switch S5 is turned on to electrically connect the capacitor C2 and the organic EL 8A.
  • a current may be supplied in a floating state to the organic EL 8A as a load according to the electric charge accumulated in the capacitor C2.
  • a pulsating flow may occur if the amount of current increases.
  • the pulsating flow may cause flickering when the organic EL emits light.
  • FIG. 7 is a diagram for describing a configuration of a lighting apparatus according to a modification of the present embodiment.
  • the present embodiment is different in that a drive unit 10 # is provided instead of the drive unit 10A described in FIG.
  • Drive unit 10 # differs from drive unit 10A in that charge pump circuit 20A is replaced with charge pump circuit 20 #.
  • the charge pump circuit 20 # is different from the charge pump circuit 20A in that a switch S7 and a capacitor C3 are further provided.
  • the switch S7 is connected between the node N3 and the node N7, and operates according to the pulse control signal ⁇ 3.
  • Capacitor C3 is provided in parallel with capacitor C2, and is provided between nodes N7 and N6.
  • the switch S7 operates in the same manner as the switch S5, and controls the electrical connection between the capacitor C2 in which charges are stored and the organic EL 8A on the load side.
  • the above-described charge pump circuit 20 # which is a booster circuit, boosts the power supply voltage VDD and outputs the boosted boosted voltage to the organic EL 8A.
  • FIG. 8 is a timing chart illustrating the pulse control signals ⁇ 1 to ⁇ 3, / ⁇ 3 for driving the charge pump circuit 20 # in the present modification.
  • FIG. 9 is a diagram for explaining the states of the switches S1 to S7 that are turned ON / OFF according to the pulse control signal.
  • the pulse control signals ⁇ 1 to ⁇ 3, / ⁇ 3 and the activation timing are the same as described in FIG.
  • switches S1 to S6 that operate according to pulse control signals ⁇ 1 to ⁇ 3, / ⁇ 3 are the same as those described in FIG.
  • the switch S7 operates in the same manner as the switch S5 as described above, and at time t1, t2, the pulse control signal ⁇ 3 is set to OFF because it is at the L level. At time t3, pulse control signal ⁇ 3 is set to H level, and switch S7 is turned on.
  • the capacitor C2 is connected to the organic EL 8A that is a load.
  • the boosted voltage boosted is output to the organic EL 8A, and a current flows through the organic EL 8A as a load.
  • the organic EL 8A is supplied with a current in a floating state.
  • Adjustment of the amount of current to the organic EL 8A is the same as described above.
  • the switch S7 is turned on, and the capacitor C2 is connected to the organic EL 8A and the capacitor C3 connected in parallel.
  • the capacitor C3 functions as a stabilizing capacitor that stabilizes the voltage of the positive electrode side node of the organic EL 8A. Therefore, it is possible to suppress a pulsating flow caused by a change in the voltage of the node on the positive electrode side of the organic EL 8A. Therefore, it is possible to emit stable light while suppressing fluctuation (flickering) of the luminance of the organic EL 8A due to pulsating flow (noise).
  • the method of mainly adjusting the oscillation frequency of the pulse control signal in the oscillator 18 has been described.
  • the duty ratio of the pulse control signal may be adjusted instead of the oscillation frequency. That is, it is also possible to adjust the amount of current passing through the organic EL by adjusting the duty ratio to adjust the charging time for storing the electric charge in the capacitor.
  • 1 lighting device 2 lighting panel, 4 lighting unit, 6 controller, 8, 8A-8C organic EL, 10 #, 10A-10C driving unit, 12 amplifier, 14 resistance element, 16 comparator, 17 driving unit group, 18 oscillator .

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

This lighting device is provided with the following: a plurality of light-emitting elements that are connected in series and have different emission spectra; and a plurality of drive devices that correspond respectively to the plurality of light-emitting elements and each drive the corresponding light-emitting element. Each drive device contains the following: a first capacitance element provided for the corresponding light-emitting element; a group of switching elements that, on the basis of a periodic pulsed control signal, charge the first capacitance element in accordance with a power-supply voltage applied to the input node of said first capacitance element and electrically connect the charged first capacitance element to the corresponding light-emitting element, thereby supplying current to said light-emitting element; and a pulsed-signal control circuit that regulates the period of and outputs the pulsed control signal.

Description

照明装置Lighting device
 本発明は、定電流源に直列接続された複数の発光素子を備える照明装置に関する。 The present invention relates to an illumination device including a plurality of light emitting elements connected in series to a constant current source.
 特表2010-524221号公報(特許文献1)は、発光ダイオードの駆動方法に関する発明を開示している。この駆動方法は、直列接続の発光ダイオードの輝度を個々に調整可能な構成が示されている。 JP-T-2010-524221 (Patent Document 1) discloses an invention relating to a method for driving a light emitting diode. This driving method shows a configuration in which the luminance of light-emitting diodes connected in series can be individually adjusted.
 具体的には、主電流を供給して、当該主電流に対して発光ダイオード間の中間電極から引かれる電流を制御することにより、直列接続された各発光ダイオードに流れる電流量を調整する駆動方式が開示されている。 Specifically, a drive system that adjusts the amount of current flowing through each light emitting diode connected in series by supplying the main current and controlling the current drawn from the intermediate electrode between the light emitting diodes with respect to the main current Is disclosed.
特表2010-524221号公報Special table 2010-524221
 しかしながら、当該特表2010-524221号公報(特許文献1)に開示される駆動方式では、主電流に対して中間電極から引かれる電流を常に演算して制御する必要がある。特に3つの発光ダイオードを直列接続する場合、最終段の発光ダイオードに流す電流は、前段の発光ダイオードに流れる電流に律則されるため演算調整が必要であり、回路構成が複雑になるという問題がある。 However, in the driving method disclosed in JP-T-2010-524221 (Patent Document 1), it is necessary to always calculate and control the current drawn from the intermediate electrode with respect to the main current. In particular, when three light emitting diodes are connected in series, the current flowing through the light emitting diode at the final stage is regulated by the current flowing through the light emitting diode at the previous stage, so that calculation adjustment is necessary, and the circuit configuration becomes complicated. is there.
 本発明は、複数の発光素子が直列に接続された構成において、簡易に各発光素子に流れる電流量を個々に調整することが可能な照明装置を提供することを目的とする。 An object of the present invention is to provide a lighting device that can easily adjust the amount of current flowing through each light emitting element in a configuration in which a plurality of light emitting elements are connected in series.
 本発明のある局面に従う照明装置は、直列に接続された発光スペクトルが各々異なる複数の発光素子と、複数の発光素子にそれぞれ対応して設けられ、各々が対応する発光素子を駆動するための複数の駆動装置とを備える。各駆動装置は、対応する発光素子に対して設けられた第1の容量素子と、周期的なパルス制御信号に基づき、第1の容量素子の入力ノードに印加された電源電圧に従って第1の容量素子にチャージし、チャージされた第1の容量素子と対応する発光素子とを電気的に接続して対応する発光素子に電流を供給するためのスイッチ素子群と、パルス制御信号の周期を調整して出力するパルス信号制御回路とを含む。 An illumination device according to an aspect of the present invention includes a plurality of light emitting elements connected in series, each having a different emission spectrum, and a plurality of light emitting elements provided corresponding to the plurality of light emitting elements, each for driving the corresponding light emitting element. Drive device. Each driving device has a first capacitor according to a power supply voltage applied to an input node of the first capacitor element based on a first capacitor element provided for the corresponding light emitting element and a periodic pulse control signal. A switch element group for charging the element, electrically connecting the charged first capacitor element and the corresponding light emitting element to supply current to the corresponding light emitting element, and adjusting a cycle of the pulse control signal Output pulse signal control circuit.
 複数の発光素子が直列に接続された構成において、簡易に各発光素子に流れる電流量を個々に調整することが可能である。 In a configuration in which a plurality of light emitting elements are connected in series, the amount of current flowing through each light emitting element can be easily adjusted individually.
本実施の形態に従う照明装置1の構成を説明する概略ブロック図である。It is a schematic block diagram explaining the structure of the illuminating device 1 according to this Embodiment. 本実施の形態に従う照明部4の発光素子群15の概略構成図である。It is a schematic block diagram of the light emitting element group 15 of the illumination part 4 according to this Embodiment. 本実施の形態に従う照明装置1の具体的構成について説明する図である。It is a figure explaining the specific structure of the illuminating device 1 according to this Embodiment. 本実施の形態に従う駆動部10Aの具体的構成について説明する図である。It is a figure explaining the specific structure of 10 A of drive parts according to this Embodiment. チャージポンプ回路20Aを駆動するためのパルス制御信号φ1~φ3,/φ3について説明するタイミングチャート図である。FIG. 7 is a timing chart illustrating pulse control signals φ1 to φ3, / φ3 for driving charge pump circuit 20A. パルス制御信号に従ってON/OFFするスイッチS1~S6の状態を説明する図である。It is a figure explaining the state of switch S1-S6 which turns on / off according to a pulse control signal. 本実施の形態の変形例に従う照明装置の構成について説明する図である。It is a figure explaining the structure of the illuminating device according to the modification of this Embodiment. 本変形例におけるチャージポンプ回路20#を駆動するためのパルス制御信号φ1~φ3,/φ3について説明するタイミングチャート図である。FIG. 11 is a timing chart illustrating pulse control signals φ1 to φ3, / φ3 for driving charge pump circuit 20 # in the present modification. パルス制御信号に従ってON/OFFするスイッチS1~S7の状態を説明する図である。It is a figure explaining the state of switch S1-S7 which turns on / off according to a pulse control signal.
 本実施の形態について、以下、図面を参照しながら説明する。実施の形態の説明において、個数および量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数およびその量などに限定されない。実施の形態の説明において、同一の部品および相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。特に制限が無い限り、実施の形態に示す構成に示す構成を適宜組み合わせて用いることは、当初から予定されていることである。 This embodiment will be described below with reference to the drawings. In the description of the embodiments, when the number and amount are referred to, the scope of the present invention is not necessarily limited to the number and amount unless otherwise specified. In the description of the embodiments, the same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated. Unless there is a restriction | limiting in particular, it is planned from the beginning to use suitably combining the structure shown in the structure shown to embodiment.
 (全体構成)
 図1は、本実施の形態に従う照明装置1の構成を説明する概略ブロック図である。
(overall structure)
FIG. 1 is a schematic block diagram illustrating a configuration of lighting apparatus 1 according to the present embodiment.
 図1を参照して、照明装置1は、照明パネル2と、発光素子を含む照明部4と、照明装置1全体を制御するコントローラ6とを含む。 Referring to FIG. 1, lighting device 1 includes lighting panel 2, lighting unit 4 including a light emitting element, and controller 6 that controls lighting device 1 as a whole.
 照明パネル2は、照明部4の発光素子から発光された光を均一にした光として照射する。なお、レンズ等を設けて指向性を持たせることにより特定のスポット領域を照射するようにしても良い。 The illumination panel 2 irradiates the light emitted from the light emitting element of the illumination unit 4 as uniform light. In addition, you may make it irradiate a specific spot area | region by providing a lens etc. and giving directivity.
 照明部4は、発光スペクトラムが各々異なる複数の発光素子を含む。本例においては、一例として3種類の発光素子が設けられる場合について説明する。具体的には、赤(Red)、緑(Green)、青(Blue)色の発光スペクトラムを有する発光素子を有する。なお、本例においては、3種類の発光素子について説明するが、特にこれに限られず、複数(2以上)が直列に接続される構成であれば、どのような構成を採用しても良く、さらに発光素子を設ける構成とすることが可能である。 The illumination unit 4 includes a plurality of light emitting elements each having a different emission spectrum. In this example, a case where three types of light emitting elements are provided will be described as an example. Specifically, a light-emitting element having a light emission spectrum of red (Red), green (Green), and blue (Blue) is provided. In this example, three types of light emitting elements will be described. However, the present invention is not limited to this, and any configuration may be adopted as long as a plurality (two or more) are connected in series. Further, a structure in which a light-emitting element is provided can be employed.
 なお、これらを構成する発光素子としては、有機EL(OLED:Organic Light Emitting Diode、若しくはOrganic Electroluminescenceともいう)等が挙げられる。あるいは、発光ダイオード(LED:Light Emitting Diode)等であってもよい。照明装置1は、これらに加えて他の発光素子をさらに備えていてもよい。 Note that examples of light-emitting elements constituting these include organic EL (also referred to as OLED: Organic Light Emitting Diode, or Organic Electroluminescence). Alternatively, a light emitting diode (LED) may be used. The illumination device 1 may further include other light emitting elements in addition to these.
 コントローラ6は、照明部4に対して発光制御を指示する。具体的には、外部からの指示(輝度調整の指示)に従って照明部4の輝度を調整するための制御信号を照明部4に出力する。 The controller 6 instructs the illumination unit 4 to perform light emission control. Specifically, a control signal for adjusting the luminance of the illumination unit 4 is output to the illumination unit 4 in accordance with an instruction from the outside (instruction for luminance adjustment).
 図2は、本実施の形態に従う照明部4の発光素子群15の概略構成図である。
 図2を参照して、本例においては、一例として発光素子として有機ELを用いた場合が示されている。具体的には、赤色発光素子(赤色発光層)10、緑色発光素子(緑色発光層)12および青色発光素子(青色発光層)14が積層されており、各色発光素子の発光層が電極15A,15B,15C,15Dでそれぞれ挟持されている。
FIG. 2 is a schematic configuration diagram of light emitting element group 15 of illumination unit 4 according to the present embodiment.
With reference to FIG. 2, in this example, the case where organic EL is used as a light emitting element is shown as an example. Specifically, a red light emitting element (red light emitting layer) 10, a green light emitting element (green light emitting layer) 12, and a blue light emitting element (blue light emitting layer) 14 are laminated, and the light emitting layer of each color light emitting element is an electrode 15A, It is clamped by 15B, 15C, and 15D, respectively.
 各電極15A,15B,15C,15Dに駆動部群17を介して外部電源から給電することにより、各色発光層が発光する。このとき、各電極15A,15B,15C,15Dに供給される電流を駆動部群17がコントローラ6からの制御に従って駆動することにより、各色発光素子の輝度バランスを調光し、照明装置1から発光される光の調光および調色を制御することができる。 When each electrode 15A, 15B, 15C, 15D is supplied with power from an external power source via the drive unit group 17, each color light emitting layer emits light. At this time, the drive unit group 17 drives the current supplied to the electrodes 15A, 15B, 15C, and 15D according to the control from the controller 6, thereby adjusting the luminance balance of the light emitting elements of each color and emitting light from the lighting device 1. The dimming and toning of the emitted light can be controlled.
 (具体的構成)
 図3は、本実施の形態に従う照明部4の具体的構成について説明する図である。
(Specific configuration)
FIG. 3 is a diagram illustrating a specific configuration of illumination unit 4 according to the present embodiment.
 図3を参照して、照明部4は、発光素子群15と駆動部群17とを含む。発光素子群15は、上述したように直列に接続された複数の発光素子を含む。駆動部群17は、複数の駆動部10A~10Cで構成される。 Referring to FIG. 3, the illumination unit 4 includes a light emitting element group 15 and a drive unit group 17. The light emitting element group 15 includes a plurality of light emitting elements connected in series as described above. The drive unit group 17 includes a plurality of drive units 10A to 10C.
 本例においては、発光スペクトラムがそれぞれ異なる直列に接続された有機EL8A~8Cについて説明する。当該有機ELは、単体の素子でもよいし、複数の素子が接続されたストリングスの構成であっても良い。 In this example, the organic ELs 8A to 8C connected in series with different emission spectra will be described. The organic EL may be a single element or a string configuration in which a plurality of elements are connected.
 当該構成においては、各有機ELに対して駆動部を設ける。各有機EL8A~8Cのアノード側およびカソード側と接続されるように駆動部を設ける。 In this configuration, a drive unit is provided for each organic EL. A drive unit is provided so as to be connected to the anode side and cathode side of each of the organic ELs 8A to 8C.
 具体的には、有機EL8A~8Cにそれぞれ対応して、駆動部10A~10Cを設ける。 Specifically, drive units 10A to 10C are provided corresponding to the organic ELs 8A to 8C, respectively.
 各駆動部の構成については、同様の構成であるため本例においては、そのうちの1つである駆動部10Aを例に挙げて説明する。 Since the configuration of each drive unit is the same, in this example, the drive unit 10A which is one of them will be described as an example.
 図4は、本実施の形態に従う駆動部10Aの具体的構成について説明する図である。
 図4を参照して、ここでは、有機EL8Aに対応して駆動部10Aが設けられた構成が示されている。有機EL8Aは、駆動部10Aと接続され、駆動部10Aは、コントローラ6からの指示により有機EL8Aを発光制御する。
FIG. 4 is a diagram illustrating a specific configuration of drive unit 10A according to the present embodiment.
Referring to FIG. 4, here, a configuration in which a driving unit 10A is provided corresponding to the organic EL 8A is shown. The organic EL 8A is connected to the drive unit 10A, and the drive unit 10A controls light emission of the organic EL 8A according to an instruction from the controller 6.
 駆動部10Aは、チャージポンプ回路20Aと、増幅器12Aと、抵抗素子14Aと、比較器16Aと、発振器18Aとを含む。 The drive unit 10A includes a charge pump circuit 20A, an amplifier 12A, a resistance element 14A, a comparator 16A, and an oscillator 18A.
 有機EL8Aは、駆動部10Aの出力ノードである正極ノードN5と、負極ノードN6との間に設けられる。 The organic EL 8A is provided between the positive node N5 which is an output node of the driving unit 10A and the negative node N6.
 チャージポンプ回路20Aは、スイッチS1~S6と、コンデンサC1、C2とを含む。スイッチS1~S6は、スイッチ素子群を形成する。 The charge pump circuit 20A includes switches S1 to S6 and capacitors C1 and C2. The switches S1 to S6 form a switch element group.
 電源電圧VDDは、ノードN0と接続される。
 スイッチS1は、ノードN0とノードN2との間に接続され、パルス制御信号φ1に従って動作する。具体的には、パルス制御信号φ1がHレベルに従ってON(導通)となる。一方、パルス制御信号φ1がLレベルに従ってOFF(非導通)となる。他のスイッチについてもHレベルに従ってON、Lレベルに従ってOFFする。なお、本例においては、Hレベルに従ってONし、Lレベルに従ってOFFするスイッチについて説明するが特にこれに限られず、論理が反転した場合にON、OFFするスイッチとすることも可能である。スイッチとしては、一例としてNMOSトランジスタ等を用いることが可能であるが、機械的あるいは電磁的にON/OFFさせるスイッチとしても良く、当該構成については限定されない。
Power supply voltage VDD is connected to node N0.
Switch S1 is connected between nodes N0 and N2, and operates in accordance with pulse control signal φ1. Specifically, pulse control signal φ1 is turned on (conductive) according to the H level. On the other hand, pulse control signal φ1 is turned off (non-conducting) according to the L level. Other switches are also turned on according to the H level and turned off according to the L level. In this example, a switch that turns on in accordance with the H level and turns off in accordance with the L level will be described. However, the present invention is not limited to this, and a switch that turns on and off when the logic is inverted may be used. As an example of the switch, an NMOS transistor or the like can be used. However, the switch may be mechanically or electromagnetically turned on / off, and the configuration is not limited.
 コンデンサC1は、ノードN2とノードN1との間に接続される。スイッチS2は、ノードN0とノードN1との間にスイッチS1と並列に接続される。そして、スイッチS2は、パルス制御信号φ2に従って動作する。スイッチS3は、ノードN2とノードN3との間に接続され、パルス制御信号φ2に従って動作する。スイッチS4は、ノードN1とノードN4との間に接続され、パルス制御信号φ1に従って動作する。 The capacitor C1 is connected between the node N2 and the node N1. The switch S2 is connected in parallel with the switch S1 between the node N0 and the node N1. The switch S2 operates according to the pulse control signal φ2. Switch S3 is connected between nodes N2 and N3, and operates in accordance with pulse control signal φ2. Switch S4 is connected between nodes N1 and N4 and operates in accordance with pulse control signal φ1.
 コンデンサC2は、コンデンサC1と並列に設けられ、ノードN3とノードN4との間に接続される。スイッチS5は、ノードN4とノードN6との間に接続され、パルス制御信号φ3に従って動作する。スイッチS6は、ノードN4と接地電圧GNDとの間に接続され、パルス制御信号/φ3に従って動作する。なお、「/」の記号は、一例として、反転信号を意味するものとする。具体的には、パルス制御信号φ3がHレベルの場合には、パルス制御信号/φ3はLレベルとなる。 The capacitor C2 is provided in parallel with the capacitor C1, and is connected between the node N3 and the node N4. Switch S5 is connected between nodes N4 and N6 and operates in accordance with pulse control signal φ3. Switch S6 is connected between node N4 and ground voltage GND, and operates in accordance with pulse control signal / φ3. Note that the symbol “/” means an inverted signal as an example. Specifically, when pulse control signal φ3 is at the H level, pulse control signal / φ3 is at the L level.
 チャージポンプ回路20Aの動作については後述する。
 抵抗素子14Aは、ノードN3とノードN5との間に接続される。増幅器12Aは、抵抗素子14A間に接続され、抵抗素子14Aと通過する電流値に基づく抵抗素子14Aの両端電圧(電位差)を計測して、それを増幅して比較器16Aに出力する。なお、電流値を電圧値に変更して計測する方式について説明しているが、一例であり、電流値を直接計測するようにしてもよく、当該方式については特に限定されない。
The operation of the charge pump circuit 20A will be described later.
Resistance element 14A is connected between nodes N3 and N5. The amplifier 12A is connected between the resistance elements 14A, measures the voltage (potential difference) across the resistance element 14A based on the current value passing through the resistance element 14A, amplifies it, and outputs the amplified voltage to the comparator 16A. In addition, although the system which changes and measures an electric current value into a voltage value is demonstrated, it is an example, you may make it measure an electric current value directly, and the method is not specifically limited.
 比較器16Aは、増幅器12Aから出力された電圧と、通過する電流量を規定するための基準電圧V1とを比較して比較結果に基づく制御電圧を発振器18Aに出力する。基準電圧V1はコントローラ6から出力されるものとする。なお、本例においては、一例として、基準電圧V1をコントローラ6から出力する構成について説明するが、特に、当該構成に限定する必要は無く、例えば、コントローラ6が図示しない基準電圧生成回路に指示して当該基準電圧生成回路から基準電圧V1を出力するようにすることも可能である。 The comparator 16A compares the voltage output from the amplifier 12A with the reference voltage V1 for defining the amount of current to pass, and outputs a control voltage based on the comparison result to the oscillator 18A. It is assumed that the reference voltage V1 is output from the controller 6. In this example, a configuration for outputting the reference voltage V1 from the controller 6 will be described as an example. However, the configuration is not particularly limited to this configuration. For example, the controller 6 instructs a reference voltage generation circuit (not shown). It is also possible to output the reference voltage V1 from the reference voltage generation circuit.
 発振器18Aは、制御電圧に従ってパルス制御信号φ1~φ3,/φ3を生成して出力する。パルス制御信号φ1~φ3は、1周期の期間において連続的に独立して活性化(Hレベル)される。なお、パルス制御信号/φ3はパルス制御信号φ3を例えばインバータを介して反転させたものであり、独立して生成する必要は無い。 The oscillator 18A generates and outputs pulse control signals φ1 to φ3, / φ3 according to the control voltage. Pulse control signals φ1 to φ3 are activated independently (H level) continuously in one period. The pulse control signal / φ3 is obtained by inverting the pulse control signal φ3 through, for example, an inverter, and does not need to be generated independently.
 (駆動方式の説明)
 本実施の形態においては、昇圧回路であるである上述したチャージポンプ回路20Aにより電源電圧VDDを昇圧して、昇圧した昇圧電圧を有機EL8Aに対して出力する。
(Description of drive system)
In the present embodiment, the power supply voltage VDD is boosted by the above-described charge pump circuit 20A, which is a booster circuit, and the boosted boosted voltage is output to the organic EL 8A.
 図5は、チャージポンプ回路20Aを駆動するためのパルス制御信号φ1~φ3,/φ3について説明するタイミングチャート図である。 FIG. 5 is a timing chart for explaining the pulse control signals φ1 to φ3, / φ3 for driving the charge pump circuit 20A.
 図6は、パルス制御信号に従ってON/OFFするスイッチS1~S6の状態を説明する図である。 FIG. 6 is a diagram for explaining the states of the switches S1 to S6 that are turned ON / OFF according to the pulse control signal.
 図5および図6を参照して、時刻t1において、パルス制御信号φ1は、Hレベルに設定される。パルス制御信号φ2,φ3はLレベルに設定される。これに伴い、スイッチS1,S4,S6はON、スイッチS2,S3,S5はOFFに設定される。 Referring to FIGS. 5 and 6, at time t1, pulse control signal φ1 is set to the H level. Pulse control signals φ2 and φ3 are set to L level. Accordingly, the switches S1, S4, S6 are set to ON, and the switches S2, S3, S5 are set to OFF.
 これにより、コンデンサC1のノードN2は、電源電圧VDDと接続され、コンデンサC1は充電される。すなわち、ノードN2の電位は電源電圧VDDレベルに設定される。 Thereby, the node N2 of the capacitor C1 is connected to the power supply voltage VDD, and the capacitor C1 is charged. That is, the potential of the node N2 is set to the power supply voltage VDD level.
 次に、時刻t2において、パルス制御信号φ2は、Hレベルに設定される。パルス制御信号φ1,φ3はLレベルに設定される。これに伴い、スイッチS2,S3,S6はON、スイッチS1,S4,S5はOFFに設定される。 Next, at time t2, the pulse control signal φ2 is set to the H level. Pulse control signals φ1 and φ3 are set to L level. Accordingly, the switches S2, S3, S6 are set to ON, and the switches S1, S4, S5 are set to OFF.
 これにより、コンデンサC1のノードN1は、電源電圧VDDと接続される。これによりコンデンサC1のノードN2の電位は電源電圧2VDDレベルに設定され、コンデンサC2に充電される。 Thereby, the node N1 of the capacitor C1 is connected to the power supply voltage VDD. As a result, the potential of the node N2 of the capacitor C1 is set to the power supply voltage 2VDD level, and the capacitor C2 is charged.
 したがって、コンデンサC1に蓄積された電荷をコンデンサC2に転送(ポンプ動作)してコンデンサC2には電源電圧2VDDレベルに昇圧された昇圧電圧分の電荷が蓄積される。 Therefore, the charge accumulated in the capacitor C1 is transferred to the capacitor C2 (pump operation), and the capacitor C2 accumulates the charge corresponding to the boosted voltage boosted to the power supply voltage 2VDD level.
 次に、時刻t3において、パルス制御信号φ3は、Hレベルに設定される。パルス制御信号φ1,φ2はLレベルに設定される。これに伴い、スイッチS5はON、スイッチS1,S2,S3,S4,S6はOFFに設定される。 Next, at time t3, the pulse control signal φ3 is set to the H level. Pulse control signals φ1 and φ2 are set to L level. Accordingly, the switch S5 is set to ON, and the switches S1, S2, S3, S4, and S6 are set to OFF.
 これによりコンデンサC2は、負荷である有機EL8Aと接続される。これにより昇圧された昇圧電圧が有機EL8Aに出力され、負荷である有機EL8Aに電流が流れる。 Thereby, the capacitor C2 is connected to the organic EL 8A as a load. As a result, the boosted voltage boosted is output to the organic EL 8A, and a current flows through the organic EL 8A as a load.
 なお、図5を参照して、再び、時刻t1と同様にパルス制御信号φ1がHレベルに設定される。以降、パルス制御信号φ2がHレベルに設定され、次に、パルス制御信号φ3がHレベルに設定される。当該パルス制御信号φ1~φ3が周期的に活性化されてポンプ動作等を繰り返す。当該動作により昇圧電圧が有機EL8Aに対して出力され、当該昇圧電圧に従う電流が有機EL8Aに流れる。このとき、スイッチS5のみがONであるため有機EL8Aはフローティング状態で電流が供給される。 Referring to FIG. 5, pulse control signal φ1 is set to the H level again at the same time as time t1. Thereafter, the pulse control signal φ2 is set to the H level, and then the pulse control signal φ3 is set to the H level. The pulse control signals φ1 to φ3 are periodically activated to repeat the pump operation and the like. With this operation, a boosted voltage is output to the organic EL 8A, and a current according to the boosted voltage flows to the organic EL 8A. At this time, since only the switch S5 is ON, the organic EL 8A is supplied with a current in a floating state.
 本実施例においては、当該電流量を計測して、所望の電流が有機EL8Aに供給されるようにパルス制御信号を調整する。 In this embodiment, the current amount is measured, and the pulse control signal is adjusted so that a desired current is supplied to the organic EL 8A.
 例えば、パルス制御信号の周波数を高くすることによりポンプ動作の周期が短くなり電流量が増加する。一方、パルス制御信号の周波数を低くすればポンプ動作の周期が長くなり電流量が減少する。 For example, by increasing the frequency of the pulse control signal, the cycle of the pump operation becomes shorter and the amount of current increases. On the other hand, if the frequency of the pulse control signal is lowered, the cycle of the pump operation becomes longer and the amount of current decreases.
 したがって、有機EL8Aに流れる電流、すなわち抵抗素子14Aに流れる通過電流を計測して当該電流値に基づく増幅された両端電圧と、基準電圧V1とを比較器16Aで比較することにより所望の電流値か否かを判断する。具体的には、増幅した両端電圧が基準電圧V1よりも低ければ通過電流の電流値が所望の電流値よりも低いと判断する。一方、増幅した両端電圧が基準電圧V1よりも高ければ通過電流の電流値が所望の電流値よりも高いと判断する。 Therefore, by measuring the current flowing through the organic EL 8A, that is, the passing current flowing through the resistance element 14A, and comparing the amplified both-ends voltage based on the current value with the reference voltage V1, the desired current value can be obtained. Judge whether or not. Specifically, if the amplified voltage at both ends is lower than the reference voltage V1, it is determined that the current value of the passing current is lower than the desired current value. On the other hand, if the amplified voltage at both ends is higher than the reference voltage V1, it is determined that the current value of the passing current is higher than the desired current value.
 発振器18Aは、比較器16Aからの制御電圧の電圧レベルに従って出力する発振周波数を調整するV/f変換回路である。比較器16Aは、通過電流が所望の電流値よりも低い場合には、制御電圧の電圧レベルを上げて発振周波数を高くする。一方、通過電流が所望の電流値よりも大きい場合には、制御電圧の電圧レベルを下げて発振周波数を低くする。 The oscillator 18A is a V / f conversion circuit that adjusts the oscillation frequency output according to the voltage level of the control voltage from the comparator 16A. When the passing current is lower than the desired current value, the comparator 16A raises the voltage level of the control voltage to increase the oscillation frequency. On the other hand, when the passing current is larger than the desired current value, the voltage level of the control voltage is lowered to lower the oscillation frequency.
 すなわち、発振器18Aは、増幅器12Aからの増幅された電圧が有機EL8Aを通過する電流量を規定する基準電圧と同じとなるように発振周波数を調整する。これにより有機EL8Aに所望の電流を供給することが可能であり、簡易な構成で制御することが可能である。 That is, the oscillator 18A adjusts the oscillation frequency so that the amplified voltage from the amplifier 12A is the same as the reference voltage that defines the amount of current passing through the organic EL 8A. As a result, a desired current can be supplied to the organic EL 8A, and control can be performed with a simple configuration.
 なお、発振器18Aに関してV/f変換回路の構成を一例として説明したが、特にV/f変換回路に限られず、周期的なパルス制御信号を生成して当該パルス制御信号の周波数を調整可能な回路であればどのようなものでもよい。 Although the configuration of the V / f conversion circuit has been described as an example with respect to the oscillator 18A, the circuit is not limited to the V / f conversion circuit, and a circuit that can generate a periodic pulse control signal and adjust the frequency of the pulse control signal. Anything can be used.
 上記においては、駆動部10Aについて説明したが、他の駆動部10B,10Cについても同様である。 In the above description, the drive unit 10A has been described, but the same applies to the other drive units 10B and 10C.
 再び、図3を参照して、コントローラ6は、各駆動部に対して、それぞれの有機ELを通過する電流量を規定するための基準電圧を出力する。本例においては、コントローラ6は、駆動部10Aに対して有機EL8Aに流れる電流量を規定するために基準電圧V1を出力する。また、コントローラ6は、駆動部10Bに対して有機EL8Bに流れる電流量を規定するために基準電圧V2を出力する。また、コントローラ6は、駆動部10Cに対して有機EL8Cに流れる電流量を規定するために基準電圧V3を出力する。 Referring to FIG. 3 again, the controller 6 outputs a reference voltage for defining the amount of current passing through each organic EL to each drive unit. In this example, the controller 6 outputs the reference voltage V1 to define the amount of current flowing through the organic EL 8A to the drive unit 10A. Further, the controller 6 outputs a reference voltage V2 to define the amount of current flowing through the organic EL 8B to the drive unit 10B. Further, the controller 6 outputs a reference voltage V3 to the drive unit 10C in order to define the amount of current flowing through the organic EL 8C.
 当該構成においては、各駆動部毎に、当該電流量を計測して、所望の電流が有機EL8A~8Cに対して供給されるようにパルス制御信号を調整する。 In this configuration, the current amount is measured for each driving unit, and the pulse control signal is adjusted so that a desired current is supplied to the organic ELs 8A to 8C.
 コントローラ6がそれぞれの駆動部に対して基準電圧V1~V3をそれぞれ設定することにより独立してそれぞれの有機EL8A~8Cに流れる電流を調整することが可能であり、従来構成の如く中間電極から引かれる電流を演算して個々の有機ELに流れる電流を制御する必要はなく、簡易な構成で制御することが可能である。 The controller 6 sets the reference voltages V1 to V3 for the respective driving units, so that the current flowing through the organic ELs 8A to 8C can be adjusted independently, and is drawn from the intermediate electrode as in the conventional configuration. It is not necessary to calculate the current that flows and control the current flowing through each organic EL, and it is possible to control with a simple configuration.
 すなわち、各有機EL8A~8Cに並列に接続されたチャージポンプ回路20A~20Cを用いて電流を供給するため、電流供給時、各有機EL8A~8Cは、電源に対してフローティング状態となり、各有機EL8A~8Cのアノード又はカソードが特定電位にクリップされても独立した電流制御が可能である。 That is, since the current is supplied using the charge pump circuits 20A to 20C connected in parallel to the organic ELs 8A to 8C, when the current is supplied, the organic ELs 8A to 8C are in a floating state with respect to the power source. Independent current control is possible even when the anode or cathode of ˜8C is clipped to a specific potential.
 なお、本実施の形態においては、昇圧回路であるチャージポンプ回路20Aを用いて電源電圧を昇圧して、昇圧した昇圧電圧を有機EL8Aに対して出力する構成について説明したが、特に、昇圧電圧を出力する構成に限定する必要はなく、例えば、昇圧することなく電源電圧をコンデンサC2に蓄積して、当該蓄積された電荷を負荷である有機EL8Aに供給する構成としても良い。その場合、スイッチS1,S2,S4およびコンデンサC1を削除するととともに、ノードN2に電源電圧VDDを接続する。そして、まず、スイッチS3,S6をONしてコンデンサC2に電荷を蓄積(チャージ)する。次に、スイッチS5をONして、コンデンサC2と有機EL8Aとを電気的に接続する。これによりコンデンサC2に蓄積された電荷に従って負荷である有機EL8Aにフローティング状態で電流を供給するようにしても良い。なお、他のチャージポンプ回路についても同様である。 In the present embodiment, the power supply voltage is boosted using the charge pump circuit 20A that is a booster circuit, and the boosted voltage is output to the organic EL 8A. There is no need to limit the output configuration. For example, the power supply voltage may be stored in the capacitor C2 without being boosted, and the stored charge may be supplied to the organic EL 8A as a load. In that case, the switches S1, S2, S4 and the capacitor C1 are deleted, and the power supply voltage VDD is connected to the node N2. First, the switches S3 and S6 are turned on to accumulate (charge) charges in the capacitor C2. Next, the switch S5 is turned on to electrically connect the capacitor C2 and the organic EL 8A. Thus, a current may be supplied in a floating state to the organic EL 8A as a load according to the electric charge accumulated in the capacitor C2. The same applies to other charge pump circuits.
 [実施の形態の変形例]
 本変形例においては、有機ELに流れる電流を安定化させる方式について説明する。
[Modification of Embodiment]
In this modification, a method for stabilizing the current flowing through the organic EL will be described.
 駆動部から負荷である有機ELに昇圧電圧を印加して電流を供給する場合、電流量が大きくなれば脈流(ノイズ)が発生する可能性がある。当該脈流(ノイズ)により有機ELの発光の際にちらつきが生じる可能性がある。 When supplying a current by applying a boosted voltage to the organic EL as a load from the drive unit, a pulsating flow (noise) may occur if the amount of current increases. The pulsating flow (noise) may cause flickering when the organic EL emits light.
 本変形例においては、当該脈流(ノイズ)を抑制する方式について説明する。
 図7は、本実施の形態の変形例に従う照明装置の構成について説明する図である。
In this modification, a method for suppressing the pulsating flow (noise) will be described.
FIG. 7 is a diagram for describing a configuration of a lighting apparatus according to a modification of the present embodiment.
 図7を参照して、本例においては、図4で説明した駆動部10Aの代わりに駆動部10#を設けた点が異なる。駆動部10#は、駆動部10Aと比較してチャージポンプ回路20Aをチャージポンプ回路20#に置換した点が異なる。 Referring to FIG. 7, the present embodiment is different in that a drive unit 10 # is provided instead of the drive unit 10A described in FIG. Drive unit 10 # differs from drive unit 10A in that charge pump circuit 20A is replaced with charge pump circuit 20 #.
 具体的には、チャージポンプ回路20#は、チャージポンプ回路20Aと比較して、スイッチS7およびコンデンサC3をさらに設けた点が異なる。 Specifically, the charge pump circuit 20 # is different from the charge pump circuit 20A in that a switch S7 and a capacitor C3 are further provided.
 スイッチS7は、ノードN3とノードN7との間に接続され、パルス制御信号φ3に従って動作する。コンデンサC3は、コンデンサC2と並列に設けられ、ノードN7とノードN6との間に設けられる。 The switch S7 is connected between the node N3 and the node N7, and operates according to the pulse control signal φ3. Capacitor C3 is provided in parallel with capacitor C2, and is provided between nodes N7 and N6.
 スイッチS7は、スイッチS5と同様に動作し、電荷が蓄積されたコンデンサC2と負荷側の有機EL8Aとの電気的な接続を制御する。 The switch S7 operates in the same manner as the switch S5, and controls the electrical connection between the capacitor C2 in which charges are stored and the organic EL 8A on the load side.
 (駆動方式の説明)
 本実施の形態の変形例においても昇圧回路であるである上述したチャージポンプ回路20#により電源電圧VDDを昇圧して、昇圧した昇圧電圧を有機EL8Aに対して出力する。
(Description of drive system)
Also in the modification of the present embodiment, the above-described charge pump circuit 20 #, which is a booster circuit, boosts the power supply voltage VDD and outputs the boosted boosted voltage to the organic EL 8A.
 図8は、本変形例におけるチャージポンプ回路20#を駆動するためのパルス制御信号φ1~φ3,/φ3について説明するタイミングチャート図である。 FIG. 8 is a timing chart illustrating the pulse control signals φ1 to φ3, / φ3 for driving the charge pump circuit 20 # in the present modification.
 図9は、パルス制御信号に従ってON/OFFするスイッチS1~S7の状態を説明する図である。 FIG. 9 is a diagram for explaining the states of the switches S1 to S7 that are turned ON / OFF according to the pulse control signal.
 図8を参照して、パルス制御信号φ1~φ3,/φ3および活性化するタイミングについては図4で説明したのと同様である。 Referring to FIG. 8, the pulse control signals φ1 to φ3, / φ3 and the activation timing are the same as described in FIG.
 また、図9を参照して、パルス制御信号φ1~φ3,/φ3に従って動作するスイッチS1~S6については図5で説明したのと同様である。スイッチS7は、上述したようにスイッチS5と同様に動作し、時刻t1,t2において、パルス制御信号φ3は、LレベルであるためOFFに設定される。時刻t3において、パルス制御信号φ3は、Hレベルに設定され、スイッチS7はONとなる。 Referring to FIG. 9, switches S1 to S6 that operate according to pulse control signals φ1 to φ3, / φ3 are the same as those described in FIG. The switch S7 operates in the same manner as the switch S5 as described above, and at time t1, t2, the pulse control signal φ3 is set to OFF because it is at the L level. At time t3, pulse control signal φ3 is set to H level, and switch S7 is turned on.
 上記したように、時刻t3において、コンデンサC2は、負荷である有機EL8Aと接続される。これにより昇圧された昇圧電圧が有機EL8Aに出力され、負荷である有機EL8Aに電流が流れる。このとき、スイッチS5およびS7のみがONしであるため有機EL8Aはフローティング状態で電流が供給される。 As described above, at time t3, the capacitor C2 is connected to the organic EL 8A that is a load. As a result, the boosted voltage boosted is output to the organic EL 8A, and a current flows through the organic EL 8A as a load. At this time, since only the switches S5 and S7 are ON, the organic EL 8A is supplied with a current in a floating state.
 有機EL8Aへの電流量の調整等については上記で説明したのと同様である。
 本変形例においては、スイッチS7がONし、コンデンサC2が有機EL8Aおよび並列に接続されたコンデンサC3と接続されることになる。
Adjustment of the amount of current to the organic EL 8A is the same as described above.
In this modification, the switch S7 is turned on, and the capacitor C2 is connected to the organic EL 8A and the capacitor C3 connected in parallel.
 コンデンサC3は、有機EL8Aの正極側のノードの電圧を安定化させる安定化容量として機能する。したがって、有機EL8Aの正極側のノードの電圧が変動することにより生じる脈流を抑制することが可能である。したがって、脈流(ノイズ)により有機EL8Aの輝度が変動する(ちらつく)ことを抑制して安定した光を発光することが可能である。 The capacitor C3 functions as a stabilizing capacitor that stabilizes the voltage of the positive electrode side node of the organic EL 8A. Therefore, it is possible to suppress a pulsating flow caused by a change in the voltage of the node on the positive electrode side of the organic EL 8A. Therefore, it is possible to emit stable light while suppressing fluctuation (flickering) of the luminance of the organic EL 8A due to pulsating flow (noise).
 なお、本実施の形態においては、発振器18において、主にパルス制御信号の発振周波数を調整する方式について説明したが、発振周波数ではなく、パルス制御信号のデューティ比を調整するようにしても良い。すなわち、デューティ比を調整してコンデンサに電荷を蓄電する充電時間を調整して有機ELを通過する電流量を調整するようにすることも可能である。 In the present embodiment, the method of mainly adjusting the oscillation frequency of the pulse control signal in the oscillator 18 has been described. However, the duty ratio of the pulse control signal may be adjusted instead of the oscillation frequency. That is, it is also possible to adjust the amount of current passing through the organic EL by adjusting the duty ratio to adjust the charging time for storing the electric charge in the capacitor.
 以上、本発明に基づいた実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although embodiment based on this invention was described, embodiment disclosed this time is an illustration and restrictive at no points. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 照明装置、2 照明パネル、4 照明部、6 コントローラ、8,8A~8C 有機EL、10#,10A~10C 駆動部、12 増幅器、14 抵抗素子、16 比較器、17 駆動部群、18 発振器。 1 lighting device, 2 lighting panel, 4 lighting unit, 6 controller, 8, 8A-8C organic EL, 10 #, 10A-10C driving unit, 12 amplifier, 14 resistance element, 16 comparator, 17 driving unit group, 18 oscillator .

Claims (8)

  1.  直列に接続された発光スペクトルが各々異なる複数の発光素子と、
     前記複数の発光素子にそれぞれ対応して設けられ、各々が対応する発光素子を駆動するための複数の駆動装置とを備え、
     各前記駆動装置は、
     対応する発光素子に対して設けられた第1の容量素子と、
     周期的なパルス制御信号に基づき、前記第1の容量素子の入力ノードに印加された電源電圧に従って前記第1の容量素子にチャージし、チャージされた前記第1の容量素子と前記対応する発光素子とを電気的に接続して前記対応する発光素子に電流を供給するためのスイッチ素子群と、
     前記パルス制御信号の周期を調整して出力するためのパルス信号制御回路とを含む、照明装置。
    A plurality of light emitting devices each having a different emission spectrum connected in series;
    A plurality of driving devices provided corresponding to the plurality of light emitting elements, each driving a corresponding light emitting element;
    Each of the drive devices
    A first capacitive element provided for a corresponding light emitting element;
    Based on a periodic pulse control signal, the first capacitive element is charged according to a power supply voltage applied to an input node of the first capacitive element, and the charged first capacitive element and the corresponding light emitting element And a switch element group for supplying a current to the corresponding light emitting element by electrically connecting
    And a pulse signal control circuit for adjusting and outputting a cycle of the pulse control signal.
  2.  各前記駆動装置は、前記発光素子に流れる電流を計測する計測回路をさらに含み、
     前記パルス信号制御回路は、前記計測回路の計測結果に基づいて前記パルス制御信号の周期を調整する、請求項1記載の照明装置。
    Each of the driving devices further includes a measurement circuit that measures a current flowing through the light emitting element,
    The lighting device according to claim 1, wherein the pulse signal control circuit adjusts a cycle of the pulse control signal based on a measurement result of the measurement circuit.
  3.  前記パルス信号制御回路は、連続的に活性化される第1~第3のパルス制御信号を生成し、
     各前記駆動装置は、前記第1の容量素子と並列に設けられる第2の容量素子をさらに含み、
     前記スイッチ素子群は、
     前記第1のパルス制御信号に基づき、前記第2の容量素子の入力ノードに印加された電源電圧に従って前記第2の容量素子にチャージする第1のスイッチ素子と、
     前記第2のパルス制御信号に基づき、前記第2の容量素子の入力ノードに印加された電源電圧および前記第2の容量素子に前記チャージされた電源電圧を前記第1の容量素子の入力ノードに印加し、前記第1の容量素子にチャージする第2のスイッチ素子と、
     前記第3のパルス制御信号に従って、チャージされた前記第1の容量素子と前記対応する発光素子とを電気的に接続する第3のスイッチ素子とを有する、請求項1記載の照明装置。
    The pulse signal control circuit generates first to third pulse control signals that are activated continuously,
    Each of the driving devices further includes a second capacitive element provided in parallel with the first capacitive element,
    The switch element group is:
    A first switch element that charges the second capacitive element according to a power supply voltage applied to an input node of the second capacitive element based on the first pulse control signal;
    Based on the second pulse control signal, the power supply voltage applied to the input node of the second capacitive element and the power supply voltage charged to the second capacitive element are applied to the input node of the first capacitive element. A second switch element that applies and charges the first capacitive element;
    The lighting device according to claim 1, further comprising: a third switch element that electrically connects the charged first capacitor element and the corresponding light emitting element in accordance with the third pulse control signal.
  4.  各前記駆動装置は、前記発光素子に流れる電流を計測する計測回路をさらに含み、
     前記パルス信号制御回路は、前記計測回路の計測結果に基づいて前記第1~第3のパルス制御信号の周波数を調整する、請求項3記載の照明装置。
    Each of the driving devices further includes a measurement circuit that measures a current flowing through the light emitting element,
    The lighting device according to claim 3, wherein the pulse signal control circuit adjusts the frequency of the first to third pulse control signals based on a measurement result of the measurement circuit.
  5.  前記パルス制御信号回路は、前記第1~第3のパルス制御信号のデューティ比を調整する、請求項3記載の照明装置。 The lighting device according to claim 3, wherein the pulse control signal circuit adjusts a duty ratio of the first to third pulse control signals.
  6.  前記駆動装置は、前記発光素子に出力する際に電圧を安定化するための安定化容量素子をさらに含む、請求項1~5のいずれか一項に記載の照明装置。 The lighting device according to any one of claims 1 to 5, wherein the driving device further includes a stabilizing capacitive element for stabilizing a voltage when output to the light emitting element.
  7.  前記複数の発光素子は、赤色、緑色、青色発光素子を含む、請求項1~6のいずれか一項に記載の照明装置。 The lighting device according to any one of claims 1 to 6, wherein the plurality of light emitting elements include red, green, and blue light emitting elements.
  8.  前記複数の発光素子の各々は有機ELであり、前記複数の発光素子が積層されており、前記発光素子の各々が電極で挟持されている、請求項1~7のいずれか一項に記載の照明装置。 8. Each of the plurality of light emitting elements is an organic EL, the plurality of light emitting elements are stacked, and each of the light emitting elements is sandwiched between electrodes. Lighting device.
PCT/JP2013/082840 2012-12-28 2013-12-06 Lighting device WO2014103666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014533725A JP5637341B1 (en) 2012-12-28 2013-12-06 Lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-287339 2012-12-28
JP2012287339 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103666A1 true WO2014103666A1 (en) 2014-07-03

Family

ID=51020758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082840 WO2014103666A1 (en) 2012-12-28 2013-12-06 Lighting device

Country Status (2)

Country Link
JP (1) JP5637341B1 (en)
WO (1) WO2014103666A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125284A1 (en) 2016-01-21 2017-07-27 Philips Lighting Holding B.V. A driver and method for driving at least two sets of solid state lighting elements
CN109548227A (en) * 2017-09-22 2019-03-29 株式会社小糸制作所 Lamp circuit and lamps apparatus for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351496A (en) * 2005-06-16 2006-12-28 Yoji Mukuda Control method for back light using light emitting diode, element and control device
JP2007242427A (en) * 2006-03-09 2007-09-20 Hitachi Displays Ltd Led lighting system, and liquid crystal display device using it
JP2010526696A (en) * 2006-11-10 2010-08-05 フィリップス ソリッド−ステート ライティング ソリューションズ インコーポレイテッド Method and apparatus for controlling LEDs connected in series
JP2010529590A (en) * 2007-06-15 2010-08-26 シャープ株式会社 Solid state lighting device
JP2012099337A (en) * 2010-11-02 2012-05-24 Mitsubishi Electric Corp Light source lighting device and lighting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351496A (en) * 2005-06-16 2006-12-28 Yoji Mukuda Control method for back light using light emitting diode, element and control device
JP2007242427A (en) * 2006-03-09 2007-09-20 Hitachi Displays Ltd Led lighting system, and liquid crystal display device using it
JP2010526696A (en) * 2006-11-10 2010-08-05 フィリップス ソリッド−ステート ライティング ソリューションズ インコーポレイテッド Method and apparatus for controlling LEDs connected in series
JP2010529590A (en) * 2007-06-15 2010-08-26 シャープ株式会社 Solid state lighting device
JP2012099337A (en) * 2010-11-02 2012-05-24 Mitsubishi Electric Corp Light source lighting device and lighting system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125284A1 (en) 2016-01-21 2017-07-27 Philips Lighting Holding B.V. A driver and method for driving at least two sets of solid state lighting elements
CN108476571A (en) * 2016-01-21 2018-08-31 飞利浦照明控股有限公司 Driver for driving at least two groups solid-state lighting elements and method
JP2018537827A (en) * 2016-01-21 2018-12-20 フィリップス ライティング ホールディング ビー ヴィ Driver and method for driving at least two sets of solid state lighting elements
US10531529B2 (en) 2016-01-21 2020-01-07 Signify Holding B.V. Driver and method for driving at least two sets of solid state lighting elements
RU2731256C2 (en) * 2016-01-21 2020-08-31 Филипс Лайтинг Холдинг Б.В. Exciter and method of exciting at least two sets of solid-state lighting elements
CN108476571B (en) * 2016-01-21 2020-11-06 昕诺飞控股有限公司 Driver and method for driving at least two groups of solid state lighting elements
US11019702B2 (en) 2016-01-21 2021-05-25 Signify Holding B.V. Driver and method for driving at least two sets of solid state lighting elements
CN109548227A (en) * 2017-09-22 2019-03-29 株式会社小糸制作所 Lamp circuit and lamps apparatus for vehicle

Also Published As

Publication number Publication date
JP5637341B1 (en) 2014-12-10
JPWO2014103666A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5735825B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic equipment using the same
US9491820B2 (en) Hybrid dimming control techniques for LED drivers
JP5054465B2 (en) lighting equipment
CN107148105B (en) Power supply comprising a plurality of outputs for a lighting device of a motor vehicle
US20120133289A1 (en) AC LED Light Source with Reduced Flicker
WO2016051739A1 (en) Light switch device
KR20110118574A (en) Control circuit and control method of switching power supply and light emitting apparatus and electronic device using the same
JP2011119738A (en) Light-emitting apparatus
JP2011035112A (en) Light-emitting diode driver circuit and lighting apparatus
US9210748B2 (en) Systems and methods of driving multiple outputs
JP2016213017A (en) Drive circuit for light source and control circuit thereof, method for driving light source, lighting system, and electronic apparatus
WO2011152480A1 (en) Light-emitting device
JP2017107779A (en) Light emitting device, luminaire and method of adjusting light emitting device
JP5960982B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic device using the same
TWI436691B (en) Light emitting diode circuit, light emitting diode driving circuit, voltage selection circuit, and method for driving thereof
JP2017107774A (en) Light emitting device and luminaire
JP5637341B1 (en) Lighting device
WO2018198594A1 (en) Led driver, and led drive circuit device and electronic equipment that use said led driver
JP6557245B2 (en) Driver device
JP5895189B2 (en) Lighting device and lighting system using the same
CN102469665B (en) Drive system and drive method of light-emitting diode
WO2020071067A1 (en) Led driving circuit device and electronic instrument
JP6516311B2 (en) Driver and method for driving at least two sets of solid state lighting elements
JP2011009253A (en) Load driving circuit
JP2011114131A (en) Led driver circuit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014533725

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867506

Country of ref document: EP

Kind code of ref document: A1