WO2011152480A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2011152480A1
WO2011152480A1 PCT/JP2011/062665 JP2011062665W WO2011152480A1 WO 2011152480 A1 WO2011152480 A1 WO 2011152480A1 JP 2011062665 W JP2011062665 W JP 2011062665W WO 2011152480 A1 WO2011152480 A1 WO 2011152480A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
solid
emitting device
control means
Prior art date
Application number
PCT/JP2011/062665
Other languages
French (fr)
Japanese (ja)
Inventor
裕 岩堀
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011152480A1 publication Critical patent/WO2011152480A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices

Definitions

  • the present invention relates to a light emitting device using a solid light emitting element such as a light emitting diode as a light source.
  • Patent Literature 1 describes an LED display device that lights and displays a battery capacity.
  • a series circuit of a plurality of light emitting diodes is connected between the positive and negative electrodes of a battery, and a switch is connected between the positive electrode of the battery and the cathode of each light emitting diode, and the number of switches that are simultaneously turned on is determined.
  • the battery capacity is displayed by switching and increasing / decreasing the number of light emitting diodes.
  • Patent Document 1 instead of providing a power supply circuit for stabilizing the battery voltage, a current limiting resistor is connected in series to a series circuit of light emitting diodes, thereby stabilizing the current flowing through the light emitting diodes. Embodiments that are intended to be disclosed are also disclosed.
  • JP 2004-279668 A (see paragraphs 0049 to 0053 and FIG. 4)
  • Patent Document 1 requires a power supply circuit and a current limiting resistor in order to stabilize the current (driving current) flowing through the light emitting diode.
  • driving current tends to increase as the output of light emitting diodes increases, and as the driving current increases, electronic components used in power supply circuits (especially passive components such as inductors and transformers) increase in size.
  • passive components especially passive components such as inductors and transformers
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a light emitting device capable of suppressing a change in loss with respect to a fluctuation in power supply voltage and simplifying a circuit configuration.
  • the light-emitting device of the present invention comprises a light source comprising a plurality of solid-state light-emitting elements connected in series, a solid-state light-emitting element that causes a driving current to flow in the light source, and a selection unit that selects a solid-state light-emitting element that does not pass the driving current; A detection unit that detects a state of the light source; a solid-state light-emitting element that controls the selection unit so as to suppress a change in the detection result when a change occurs in the detection result of the detection unit; And a control means for selecting a solid state light emitting element that does not pass a driving current.
  • the detection means detects the drive current, and the control means controls the selection means so as to suppress fluctuations in the drive current detected by the detection means.
  • the detection unit detects a light output of the light source, and the control unit controls the selection unit so as to suppress a variation in the light output detected by the detection unit.
  • the detection means detects an input voltage input to the light source, and the control means controls the selection means so as to suppress fluctuations in the input voltage detected by the detection means. Is preferred.
  • the detection unit detects input power input to the light source, and the control unit controls the selection unit so as to suppress fluctuations in the input power detected by the detection unit. Is preferred.
  • the selection means has one or more switch elements for short-circuiting both ends of the solid-state light-emitting element, and the control means controls on / off of the switch elements to flow a driving current. It is preferable to select a solid light-emitting element and a solid light-emitting element that does not pass the driving current.
  • the switch element is provided for every solid light emitting element.
  • the selection unit includes one or more switch elements that are connected to one end of the light source and one end of the solid-state light-emitting element and short-circuit both ends of the solid-state light-emitting element
  • the control unit includes the control unit It is preferable to select a solid-state light-emitting element that allows a drive current to flow by controlling on / off of the switch element and a solid-state light-emitting element that does not flow the drive current.
  • the light-emitting device includes an inductor connected in series with the light source, and the selection unit includes one or more switch elements that collectively short-circuit the plurality of solid-state light-emitting elements connected in series. It is preferable that the means select a solid light-emitting element that allows a drive current to flow by controlling on / off of the switch element and a solid light-emitting element that does not flow the drive current.
  • the number of the solid-state light-emitting elements constituting the light source is preferably a number such that the sum of forward voltages of the solid-state light-emitting elements is larger than the maximum value of the input voltage.
  • the number of the solid-state light-emitting elements that are collectively short-circuited by the switch element is preferably such that the total forward voltage of the solid-state light-emitting elements is larger than the fluctuation value of the input voltage.
  • the solid-state light-emitting element includes a mounting substrate on which the solid-state light-emitting element is mounted, the solid-state light-emitting element that is collectively short-circuited by the switch element, and the solid-state light-emitting element that is not short-circuited collectively by the switch element It is preferable that the mounting surfaces of the mounting substrate are arranged substantially evenly.
  • the inductor is preferably composed of a plurality of inductance elements connected in series with the solid state light emitting element.
  • control means performs on / off control of the plurality of switch elements in a time division manner.
  • control unit performs on / off control so that a sum of ON periods of the plurality of switch elements is substantially constant.
  • the switch element is turned on / off by an optical signal output from the control means.
  • control means controls an on-duty ratio of the switch element.
  • control means sequentially switches the switch elements to be turned on / off.
  • control means randomly switches the switch elements to be turned on / off.
  • control unit performs on / off control so that a sum of ON periods of the plurality of switch elements is substantially constant.
  • control means obtains an operating power supply from both ends of the one or more solid-state light-emitting elements via rectifier elements.
  • the light emitting device includes voltage conversion means for converting a power supply voltage of an external power source into an input voltage of the light source.
  • the voltage converting means includes one or more capacitors charged by the external power source, a switching element that opens and closes a charging path to the capacitor and a discharging path from the capacitor, and the switching element. It is preferable that an open / close control means for performing open / close control is provided, and a discharge voltage of the capacitor is used as an input voltage of the light source.
  • the voltage converting means includes one or more capacitors charged by the external power source, a switching element that opens and closes a charging path to the capacitor and a discharging path from the capacitor, and the switching element. It is preferable that an open / close control means for performing open / close control is provided, and a voltage obtained by superimposing a discharge voltage of the capacitor on a power supply voltage of the external power supply is used as an input voltage of the light source.
  • the capacitor is preferably connected in series with the light source with respect to the external power source during charging.
  • the light-emitting device of the present invention has an effect of suppressing a change in loss with respect to fluctuations in power supply voltage and simplifying the circuit configuration.
  • Embodiment 1 of the present invention where (a) is a circuit configuration diagram and (b) is a circuit configuration diagram of a control unit. It is a truth table for demonstrating operation
  • the solid state light emitting element constituting the light source is not limited to the light emitting diode, and may be, for example, an organic EL element.
  • the light emitting device of this embodiment includes a light source 1 composed of a plurality of light emitting diodes LD1, LD2,..., LDn-1, LDn connected in series, and a drive current ILD in the light source 1.
  • a control means 4 for selecting a light emitting diode LDi for flowing the driving current ILD and a light emitting diode LDj for not flowing the driving current ILD.
  • the anode of the light emitting diode LDn at one end is connected to the positive electrode of the external power source PS composed of a DC power source, and the cathode of the light emitting diode LD1 at the other end is connected to the negative electrode of the external power source PS.
  • the external power supply PS is created by rectifying and smoothing a commercial AC power supply, for example, and the power supply voltage Vs varies with the power supply voltage fluctuation of the commercial AC power supply.
  • the selection means 2 includes a plurality (four in the illustrated example) of switch elements S1 to S4 for short-circuiting both ends (anode and cathode) of the plurality of (four in the illustrated example) light emitting diodes LD1 to LD4. Yes.
  • the switch elements S1 to S4 in the present embodiment are composed of phototransistors and are turned on / off by an optical signal output from the control means 4 as described later.
  • control means is configured to control the selection means, whereby the control means causes the selection means to select a solid light emitting element that passes a driving current and a solid light emitting element that does not pass a driving current. .
  • the solid-state light emitting element through which the drive current flows 1 solid-state light emitting device.
  • a solid light emitting element that does not flow the driving current flows.
  • a solid state light emitting device defined as a second solid state light emitting device.
  • the detection means 3 detects the magnitude of the drive current ILD that flows through the light source 1, and is constituted by a small resistance (not shown) inserted between the negative electrode of the external power source PS and the light source 1, for example. ing. That is, since a voltage drop proportional to the magnitude of the drive current ILD occurs at both ends of the resistor, the detection means 3 outputs the voltage drop to the control means 4 as a detection voltage.
  • the control unit 4 includes a control unit 40 and a plurality (four in the illustrated example) of light emitting elements (light emitting diodes) 41 that are controlled to blink by the control unit 40. These four light emitting elements 41 are optically coupled to the switch elements S1 to S4 of the selection means 2, respectively.
  • the control unit 40 includes an amplifier that amplifies the detection voltage of the detection means 3, a microcontroller (hereinafter abbreviated as a microcomputer) MC, and a plurality (four in the illustrated example) of logic circuits. (And gates) G1 to G4.
  • the amplifier is an inverting amplifier including an operational amplifier OP and resistors R1 and R2.
  • the detection voltage amplified by the amplifier is input to the input port P0 of the microcomputer MC.
  • One input terminals of AND gates G1 to G4 are connected to the output ports P1 to P4 of the microcomputer MC, respectively.
  • the timer output port P5 of the microcomputer MC is connected to the other input terminals of the AND gates G1 to G4, and the light emitting element 41 is connected to the output terminals of the AND gates G1 to G4, respectively. That is, the light emitting element 41 does not emit light when the outputs of the AND gates G1 to G4 are L level, and the light emitting element 41 emits light only when the outputs of the AND gates G1 to G4 are H level. Light emitted from the light emitting element 41 is input as an optical signal to the switch elements S1 to S4, and the switch elements S1 to S4 to which the optical signal is input are turned on to short-circuit both ends of the light emitting diodes LD1 to LD4.
  • the input voltage of the light source 1 when the power supply voltage Vs of the external power supply PS decreases, the input voltage of the light source 1 also decreases. As a result, the drive current ILD flowing through the light source 1 decreases and the detection voltage of the detection means 3 also increases. descend.
  • the detection voltage of the detection means 3 when the power supply voltage Vs of the external power supply PS is equal to the rated voltage is V0, and the detected voltage becomes V1, V2, V3, as the power supply voltage Vs fluctuates and falls below the rated voltage. It is assumed that the voltage drops to V4 (however, V0> V1> V2> V3> V4).
  • the control means 4 turns on the number of switch elements S1 to S4 corresponding to the degree of the decrease. Specifically, as shown in the truth table of FIG. 2, the microcomputer MC of the control means 4 sets all the output ports P1 to P4 to L level when the detection voltage is V0, and outputs when the detection voltage is V1.
  • the microcomputer MC of the control means 4 sets all the output ports P1 to P4 to L level when the detection voltage is V0, and outputs when the detection voltage is V1.
  • the detection voltage is V2
  • the output ports P1, P2 are at H level
  • the detection voltage is V3
  • the detection voltage is V4 Sets all the output ports P1 to P4 to the H level.
  • the control means 4 increases as the fluctuation amount of the power supply voltage Vs (decrease amount with respect to the rated voltage) increases.
  • the number of light emitting diodes LDi selected (short-circuited) by the selection means 2 so as not to flow the driving current ILD is increased, and the number of light emitting diodes LDj selected to flow the driving current ILD is decreased.
  • the resistance component inherent in the light emitting diode LD is utilized as a current limiting element, and the light emitting diode in which the drive current ILD flows according to the amount of change in the input voltage (power supply voltage Vs) as described above. Since the number of LDj is reduced, a change (increase) in loss with respect to fluctuations in the power supply voltage Vs can be suppressed, and the circuit configuration can be simplified.
  • the switch elements S1 to S4 of the selection means 2 are controlled to be turned on / off by the optical signal output from the control means 4, and the selection means 2 and the control means 4 are electrically insulated. Therefore, it is possible to prevent the occurrence of a problem that the drive current ILD erroneously flows into the control means 4 and destroys the microcomputer MC.
  • the selection means 2 in the present embodiment is selected by connecting the switch elements S1 to S4 only to a part of the light emitting diodes LD1 to LDn (four light emitting diodes LD1 to LD4) constituting the light source 1. .
  • the switch elements S1 to Sn may be connected to all the light emitting diodes LD1 to LDn constituting the light source 1. As described above, if the selection unit 2 selects all the light emitting diodes LD1 to LDn, it is possible to cope with a larger power supply voltage fluctuation.
  • the selection means 2 in the present embodiment selects whether to short-circuit each light emitting diode LDi in a one-to-one correspondence with the switch element Si and the light emitting diode LDi.
  • the same number of switch elements Si must be kept on. Therefore, as shown in FIG. 4, one end of the switch elements S1 to S4 is connected to one end of the light source 1 (the cathode of the light emitting diode LD1), and the other end of the switch elements S1 to S4 is connected to the anode of the light emitting diodes LD1 to LD4, respectively. You may connect.
  • the switch element Si of the selection means 2 is separately connected to both ends (between the anode and the cathode) of the plurality of light emitting diodes LDi as shown in FIG.
  • the switch elements Si that are turned on every predetermined time (for example, several seconds) may be changed. That is, after the switch elements S1 and S2 are turned on for the first time, when a predetermined time elapses, the switch elements S3 and S4 are turned on instead of the switch elements S1 and S2, and each time the predetermined time elapses, the switch element S5 , S6, S7, S8,...
  • the switch elements Si to be turned on may be switched at random according to a random number generated by the microcomputer MC.
  • the switch element Si that is turned on at an arbitrary time is replaced, and the sum of the periods during which the switch element Si is turned on per unit time is substantially constant.
  • the control unit 4 may perform on / off control of the selection unit 2.
  • the on-duty ratio of the switch element Si may be controlled by the control means 4.
  • the control means 4 For example, as shown in FIG. 5, when the horizontal axis is the detection voltage and the vertical axis is the on-duty ratio of the timer output port P5, the on-duty ratio of the timer output port P5 is increased as the detection voltage decreases.
  • the period during which the driving current ILD is not passed through the light emitting diode LDi by turning on the element Si may be lengthened. In this way, it is possible to finely adjust the drive current ILD in accordance with the on-duty ratio of the switch element Si as compared to the case where the switch element Si is simply turned on.
  • the operation power source of the microcomputer MC constituting the control means 4 is obtained from both ends of one or a plurality of light emitting diodes LDi via rectifier elements, there is no need to provide a separate operation power source, and the circuit configuration can be reduced. It can be simplified.
  • the light emitting device includes the light source 1, the selection unit 2, the detection unit 3, and the control unit 4.
  • the light source 1 has a plurality of solid state light emitting elements (light emitting diodes LD) connected in series.
  • the selection unit 2 is configured to select a solid state light emitting element (light emitting diode LD) that causes the driving current ILD to flow in the light source 1 and a solid state light emitting element (light emitting diode LD) that does not cause the driving current ILD to flow.
  • the detection means 3 detects the state of the light source 1.
  • the control unit 4 controls the selection unit 2 so as to suppress the variation of the detection result when the detection result of the detection unit 3 varies.
  • control unit 4 causes the selection unit 2 to select a solid light emitting element (light emitting diode LD) that allows the driving current ILD to flow and a solid light emitting element (light emitting diode LD) that does not cause the driving current ILD to flow.
  • the detection means 3 is configured to detect the drive current ILD.
  • the detection unit 3 detects the drive current ILD that flows through the light source 1 as the state of the light source 1. More specifically, the detection unit 3 detects the magnitude of the drive current ILD flowing through the light source 1 as the state of the light source 1.
  • the control means 4 controls the selection means 2 so as to suppress fluctuations in the drive current ILD detected by the detection means 3.
  • the selection means 2 has a plurality of switch elements Si for short-circuiting both ends of the solid state light emitting element (light emitting diode LD).
  • the control means 4 controls on / off of the switch element Si to select a solid state light emitting element (light emitting diode LD) that allows the driving current ILD to flow and a solid state light emitting element (light emitting diode LD) that does not cause the driving current ILD to flow.
  • control means 4 controls a solid-state light-emitting element (light-emitting diode LD) that allows the drive current ILD to flow by controlling on / off of the switch element Si, and a solid-state light-emitting element (light-emitting diode LD) that does not flow the drive current ILD.
  • the selection means 2 is made to select.
  • the light-emitting device of the present embodiment has a plurality of switch elements Si. However, at least one switch element Si is sufficient. That is, the selection unit 2 only needs to include one or more switch elements Si that individually short-circuit both ends of the solid-state light emitting element (light emitting diode LD). This also applies to the embodiments described below.
  • the switch elements S1 to S4 are provided for the light emitting diodes LD1 to LD4.
  • the switch element Si may be provided for every solid light emitting element (light emitting diode LD).
  • the selection unit 2 includes one or more switch elements Si that are connected to one end of the light source 1 and one end of the solid state light emitting element (light emitting diode LD) and short-circuit both ends of the solid state light emitting element (light emitting diode LD). .
  • the control means 4 controls on / off of the switch element Si to select a solid state light emitting element (light emitting diode LD) that allows the driving current ILD to flow and a solid state light emitting element (light emitting diode LD) that does not cause the driving current ILD to flow.
  • control means 4 controls the solid-state light emitting element (light emitting diode LD) that flows the driving current ILD by controlling the switching element Si on and off, and the solid light emitting element (light emitting diode LD) that does not flow the driving current ILD,
  • the selection means 2 is made to select.
  • the switch element Si is turned on / off by the optical signal output from the control means 4.
  • control means 4 may sequentially change the switch elements Si to be turned on / off.
  • the light emitting device of this embodiment is characterized in that it includes an inductor L connected in series with the light source 1 as shown in FIG.
  • the same reference numerals are given to the common components, and description and illustration are omitted as appropriate.
  • the selection means 2 in this embodiment is composed of a switch element S that collectively short-circuits the five light emitting diodes LD1 to LD5 as shown in FIG.
  • the switch element S is composed of a field effect transistor and is controlled to be turned on / off by the control means 4 (microcomputer MC).
  • the microcomputer MC When the detection voltage of the detection means 3 falls below a predetermined threshold due to the fluctuation (decrease) in the power supply voltage Vs, the microcomputer MC turns on the switch element S of the selection means 2 and sets both ends of the five light emitting diodes LD1 to LD5. Short circuit. At this time, the drive current ILD gradually increases due to the action of the inductor L inserted between the external power supply Vs and the light source 1. On the other hand, when the fluctuation of the power supply voltage Vs is settled and the detection voltage of the detection means 3 falls below a predetermined threshold value, the microcomputer MC turns on the switch element S of the selection means 2 and turns on the five light emitting diodes LD1 to LD5. A drive current ILD is passed. At this time, the drive current ILD gradually decreases due to the action of the inductor L inserted between the external power supply Vs and the light source 1.
  • the drive current ILD is gradually changed to emit light from the light source 1. Changes in the amount can be made inconspicuous. However, as shown in FIG. 7, all six light emitting diodes LD1 to LD18 constituting the light source 1 are divided into three groups, and three switch elements S1, S2, and S3 that are short-circuited for each group are provided. It may be provided. Further, as shown in FIG. 7, the control means 4 may perform on / off control of these three switch elements S1, S2, and S3 with an optical signal.
  • the number n of the light emitting diodes LD constituting the light source 1 is desirably set to a number that makes the sum of the forward voltages (forward voltages) of the light emitting diodes LD larger than the maximum value of the input voltage (power supply voltage Vs). . Further, the number of light emitting diodes LD that are short-circuited at one time by one switch element S is the sum of the forward voltages of the light-emitting diodes LD that are short-circuited at once, the fluctuation value (rated value) of the input voltage (power supply voltage Vs). It is desirable that the number be greater than the difference between the minimum value and the minimum value.
  • the selection means 2 has a plurality of (three in the illustrated example) switch elements S1 to S3 as shown in FIG. 7, one control means 4 or one control means 4 according to the detection voltage of the detection means 3 is provided.
  • the switch elements S1 to S3 When the two switch elements S1 to S3 are turned on, the switch elements S1 to S3 that are turned on every predetermined time (for example, several seconds) may be replaced.
  • the switch elements S1 to S3 to be turned on may be randomly switched according to a random number generated by the microcomputer MC.
  • the switch elements S1 to S3 that are turned on every predetermined time, the switch elements S1 to S3 that are turned on at an arbitrary time are replaced and the switch elements S1 to S3 are turned on per unit time.
  • the control means 4 may perform on / off control of the selection means 2 so that the sum is substantially constant.
  • one inductor L is connected between the light source 1 and the external power source PS.
  • an inductance element (inductor) is connected between the light emitting diodes LDi constituting the light source 1. It doesn't matter.
  • the inductance value of each inductance element be a value that makes the combined impedance equal to one inductor L. As a result, the shape of each inductance element can be reduced, and a thinner circuit implementation can be realized.
  • the light source 1 is configured by mounting a plurality of light emitting diodes LD1 to LDn on a mounting substrate (not shown).
  • a group of light emitting diodes LD hereinafter referred to as a first group
  • a light emitting diode in which the switch element S of the selection means 2 is not connected in parallel.
  • the LD groups hereinafter referred to as the second group
  • the second group are arranged substantially evenly on the mounting surface of the mounting board.
  • the second group of light emitting diodes LD is arranged on both sides of the first group of light emitting diodes LD, and the light emission of the same group is arranged on both sides obliquely.
  • a diode LD may be disposed. In this way, when the light emitting diodes LD of the first group are short-circuited by the switch element S, the light emission luminance on the mounting surface of the mounting board can be equalized.
  • the detection unit 3 detects the magnitude of the drive current ILD as the state of the light source 1, but the magnitude of the input voltage applied to the light source 1 and the input input to the light source 1.
  • the magnitude of power or the light output (luminance or illuminance) of the light source 1 may be detected.
  • the detection means may detect the magnitude of the input voltage input to the light source 1 as the state of the light source.
  • the detection means may detect the magnitude of the input voltage input to the light source 1 as the state of the light source.
  • the detection means may detect the luminance of light emitted from the light source 1 as the light output of the light source. Further, the detection means may detect the illuminance of the light emitted from the light source 1 as the light output of the light source.
  • the light output of a light source is defined as the state of the light source. This point is not limited to this embodiment, and can be applied to other embodiments.
  • the light emitting device of this embodiment has the same configuration as that of the first embodiment.
  • the light emitting device further includes an inductor L.
  • the inductor L is connected in series with the light source 1.
  • the selection unit 2 includes one to a plurality of switch elements Si that collectively short-circuit a plurality of the solid state light emitting elements (light emitting diodes LD) connected in series.
  • the control means 4 controls on / off of the switch element Si so as to select a solid light emitting element (light emitting diode LD) that passes a driving current and a solid light emitting element (light emitting diode LD) that does not pass the driving current.
  • control means 4 selects a solid light emitting element (light emitting diode LD) that allows a driving current to flow by controlling on / off of the switch element Si and a solid light emitting element (light emitting diode LD) that does not flow a driving current. Let 2 select.
  • the drive current gradually decreases due to the action of the inductor L inserted between the external power source and the light source 1. Therefore, when the switch element Si of the selection unit 2 is switched from on to off and from off to on, the drive current can be changed gently to make the change in the light emission amount of the light source 1 less noticeable.
  • the number of the solid state light emitting elements (light emitting diodes LD) constituting the light source 1 is preferably such that the total forward voltage of the solid state light emitting elements (light emitting diodes LD) is larger than the maximum value of the input voltage. .
  • the number of the solid state light emitting elements (light emitting diodes LD) constituting the light source 1 is preferably such that the total forward voltage of the solid state light emitting elements (light emitting diodes LD) is larger than the maximum value of the input voltage. .
  • the inductor L may be a plurality of inductance elements connected in series with a solid state light emitting element (light emitting diode LD).
  • each inductance element can be reduced and a thinner circuit can be realized.
  • each inductance element is preferably a value that makes the combined impedance equal to one inductor L.
  • control means 4 may perform on / off control of the plurality of switch elements Si in a time-sharing manner.
  • control means 4 may perform on / off control so that the sum of the on periods of the plurality of switch elements Si is substantially constant.
  • control means 4 may sequentially change the switch elements Si to be turned on / off.
  • control means 4 may randomly switch the switch element Si to be turned on / off.
  • control means 4 may perform on / off control so that the sum of the on periods of the plurality of switch elements Si is substantially constant.
  • the light emitting device of this embodiment is characterized in that it includes voltage conversion means 5 that converts (boosts or steps down) the power supply voltage Vs of the external power supply PS to obtain the input voltage of the light source 1.
  • voltage conversion means 5 that converts (boosts or steps down) the power supply voltage Vs of the external power supply PS to obtain the input voltage of the light source 1.
  • the same components are denoted by the same reference numerals, and illustration and description thereof are omitted as appropriate. .
  • the voltage converting means 5 includes a pair of switching elements SW1 and SW2 connected in series between the positive and negative electrodes of the external power supply PS, and a diode having an anode connected to a connection point between the positive electrode of the external power supply PS and the switching element SW1.
  • a boosted (double voltage) type switched capacitor circuit (hereinafter abbreviated as an SC circuit) comprising D1 and a capacitor (capacitor) C1 inserted between the cathode of the diode D1 and the connection point of the switching elements SW1 and SW2. Consists of.
  • the open / close elements SW1 and SW2 are composed of semiconductor switching elements such as transistors, and are individually controlled to open and close by the open / close control means. However, since the opening / closing control means can be shared by the microcomputer MC constituting the control means 4, the illustration is omitted.
  • the open / close control means closes (turns on) the low-side open / close element SW2 with the high-side open / close element SW1 open
  • a closed circuit (charging path) of the negative electrode is formed.
  • the capacitor C1 is charged by the current (direct current) flowing through the closed circuit.
  • the switching control means closes (turns on) the high-side switching element SW1 and opens (turns off) the low-side switching element SW2, the capacitor C1, the light source 1, the external power supply PS, the switching element SW1, and the capacitor C1 A closed circuit (discharge path) is formed.
  • the charge voltage of the capacitor C1 is equal to the power supply voltage Vs of the external power supply PS, the voltage obtained by superimposing the charge voltage of the capacitor C1 on the power supply voltage Vs of the external power supply PS at both ends of the light source 1, that is, the power supply voltage Vs. Twice the voltage (input voltage).
  • the open / close control means alternately opens and closes the pair of open / close elements SW1 and SW2, whereby the input voltage twice the power supply voltage Vs can be stably supplied to the light source 1.
  • the voltage conversion means 5 doubles the power supply voltage Vs and applies it to the light source 1, so that the number of light emitting diodes LD constituting the light source 1 is determined by the light emitting diode LD. Can be increased until the total sum of the forward voltages becomes higher than the power supply voltage Vs of the external power supply PS (a maximum of 2 times).
  • an inductor L may be inserted between the voltage conversion means 5 and the light source 1 as shown in FIG.
  • the configuration of the selection unit 2 is not limited to the illustrated one, and any configuration of the selection unit 2 described in the first and second embodiments can be applied.
  • the light emitting device of the present embodiment has the configuration described in the first and second embodiments.
  • the light emitting device further includes voltage conversion means for converting the power supply voltage of the external power supply into the input voltage of the light source 1.
  • the voltage conversion means includes one or more capacitors charged by the external power source, open / close elements SW1 and SW2 that open and close a charge path to the capacitors and a discharge path from the capacitors, and the open / close elements SW1 and SW1, respectively.
  • An open / close control means for controlling open / close of SW2, and a voltage obtained by superimposing a discharge voltage of the capacitor on a power supply voltage of the external power supply is used as an input voltage of the light source 1.
  • the voltage can be stably supplied to the light source 1.
  • the voltage conversion means 5 includes a pair of diodes D2 and D3 connected in series between the positive and negative electrodes of the external power supply PS with the cathode as the positive electrode side, and a negative electrode of the external power supply PS and an anode of the low-side diode D3.
  • a step-down SC circuit comprising a pair of switching elements SW3 and SW4 connected in series, and a capacitor (capacitor) C2 inserted between the connection point of the diodes D2 and D3 and the connection point of the switching elements SW3 and SW4.
  • the open / close elements SW3 and SW4 are composed of semiconductor switching elements such as transistors, and are individually controlled to open and close by the open / close control means. However, since the opening / closing control means can be shared by the microcomputer MC constituting the control means 4, the illustration is omitted.
  • the open / close control means closes (turns on) the open / close element SW3 with the open / close element SW4 open
  • the positive electrode of the external power source PS ⁇ the light source 1 ⁇ the diode D3 ⁇ the capacitor C2 ⁇ the open / close element SW3 ⁇ the negative electrode of the external power source PS.
  • a closed circuit (charging path) is formed.
  • the capacitor C2 is charged by the current (drive current ILD) flowing through the closed circuit.
  • the capacitor C2 is charged to a voltage obtained by subtracting the sum of forward voltages of the light emitting diodes LD1 to LD18 constituting the light source 1 from the power supply voltage Vs.
  • the switching control means closes (turns on) the switching element SW4 and opens (turns off) the switching element SW3, the closed circuit (discharge path) of the capacitor C2, the diode D2, the light source 1, the switching element SW4, and the capacitor C2.
  • the charging voltage of the capacitor C2 is applied to the light source 1 as an input voltage.
  • the charging voltage of the capacitor C2 needs to be higher than the sum of the forward voltages of the light emitting diodes LD1 to LD18.
  • the power supply voltage Vs of the external power supply PS needs to be at least twice the sum of the forward voltages of the light emitting diodes LD1 to LD18.
  • the open / close control means alternately opens and closes the pair of open / close elements SW3 and SW4, so that an input voltage approximately half the power supply voltage Vs can be stably supplied to the light source 1.
  • an inductor L may be inserted between the voltage conversion means 5 and the light source 1 as shown in FIG.
  • the configuration of the selection unit 2 is not limited to the illustrated one, and any configuration of the selection unit 2 described in the first and second embodiments can be applied.
  • the light emitting device of the present embodiment has the configuration described in the first and second embodiments.
  • the light emitting device further includes voltage conversion means for converting the power supply voltage of the external power supply into the input voltage of the light source 1.
  • the voltage conversion means includes one or more capacitors charged by the external power source, open / close elements SW1 and SW2 that open and close a charge path to the capacitor and a discharge path from the capacitor, and the open / close element SW1. , SW2 for controlling opening / closing of SW2, and the discharge voltage of the capacitor is used as the input voltage of the light source 1.
  • the voltage can be stably supplied to the light source 1.
  • the voltage conversion means 5 in this embodiment includes a series circuit of a capacitor C3 and a diode D3, a series circuit of a diode D4 and a capacitor C4, a diode D5 inserted between the midpoints of these two series circuits, and an external power source PS. And a switching element SW5 inserted between one end of the capacitor C3 and the cathode of the diode D4, and a switching element SW6 inserted between one end of the light source 1, one end of the capacitor C3 and the cathode of the diode D4.
  • the step-down SC circuit is configured such that the anode of the diode D3 and one end of the capacitor C4 are connected to the negative electrode of the external power source PS and the other end of the light source 1.
  • the open / close elements SW5 and SW6 are composed of semiconductor switching elements such as transistors, and are individually controlled to open and close by the open / close control means. However, since the opening / closing control means can be shared by the microcomputer MC constituting the control means 4, the illustration is omitted.
  • the open / close control means closes (turns on) the open / close element SW5 with the open / close element SW6 open
  • the positive electrode of the external power supply PS ⁇ the open / close element SW5 ⁇ the capacitor C3 ⁇ the diode D5 ⁇ the capacitor C4 ⁇ the negative electrode of the external power supply PS.
  • a closed circuit (charging path) is formed.
  • the capacitors C3 and C4 are charged by the current flowing through the closed circuit.
  • the capacitors C3 and C4 are charged to voltages obtained by dividing the power supply voltage Vs into two equal parts.
  • the switching control means closes (turns on) the switching element SW6 and opens (turns off) the switching element SW5, the closed circuit (discharge path) of the capacitor C3 ⁇ the switching element SW6 ⁇ the light source 1 ⁇ the diode D3 ⁇ the capacitor C3. Then, a closed circuit (discharge path) of capacitor C4 ⁇ diode D4 ⁇ switching element SW6 ⁇ light source 1 ⁇ capacitor C4 is formed, and charging voltages of capacitors C3 and C4 are applied to light source 1 as input voltages, respectively.
  • the charging voltage of the capacitors C3 and C4 needs to be higher than the sum of the forward voltages of the light emitting diodes LD1 to LD18. Accordingly, the power supply voltage Vs of the external power supply PS needs to be at least twice the sum of the forward voltages of the light emitting diodes LD1 to LD18.
  • the open / close control means alternately opens and closes the pair of open / close elements SW5 and SW6, whereby an input voltage that is half the power supply voltage Vs can be stably supplied to the light source 1.
  • an inductor L may be inserted between the voltage conversion means 5 and the light source 1 as shown in FIG.
  • the configuration of the selection unit 2 is not limited to the illustrated one, and any configuration of the selection unit 2 described in the first and second embodiments can be applied.

Abstract

In the disclosed light-emitting device, when the power source voltage fluctuates (decreases), the drive voltage of the light source decreases. However, as the amount of fluctuation of the power source voltage (amount of decrease relative to the standard voltage) increases, a control means increases the number of light-emitting diodes selected (short circuited) by a selection means not to be supplied with a drive current, and reduces the number of light-emitting diodes selected to be supplied with a drive current. In other words, because the light-emitting device uses the resistance component in the light-emitting diodes as a current limiting element and the number of light-emitting diodes with a drive current is decreased in response to the fluctuation amount of the input voltage (power source voltage), changes (increases) in the loss due to fluctuation in power source voltage can be suppressed and the circuit configuration can be simplified.

Description

発光装置Light emitting device
 本発明は、発光ダイオードのような固体発光素子を光源とする発光装置に関する。 The present invention relates to a light emitting device using a solid light emitting element such as a light emitting diode as a light source.
 従来、固体発光素子の1種である発光ダイオードを光源とした発光装置が種種提供されている。例えば、特許文献1には、バッテリの容量を点灯表示するLED表示装置が記載されている。この従来装置は、バッテリの正負両極間に複数個の発光ダイオードの直列回路が接続されるとともに、バッテリの正極と各発光ダイオードのカソードの間にそれぞれスイッチが接続され、同時にオンするスイッチの個数を切り換えて発光ダイオードの発光個数を増減することにより、バッテリの容量を表示するものである。なお、特許文献1には、バッテリの電圧を安定化するための電源回路を設ける代わりに、発光ダイオードの直列回路に限流用の抵抗を直列接続することにより、発光ダイオードに流れる電流の安定化を図るようにした実施形態も開示されている。 Conventionally, various types of light emitting devices using light emitting diodes which are one type of solid state light emitting elements as light sources have been provided. For example, Patent Literature 1 describes an LED display device that lights and displays a battery capacity. In this conventional device, a series circuit of a plurality of light emitting diodes is connected between the positive and negative electrodes of a battery, and a switch is connected between the positive electrode of the battery and the cathode of each light emitting diode, and the number of switches that are simultaneously turned on is determined. The battery capacity is displayed by switching and increasing / decreasing the number of light emitting diodes. In Patent Document 1, instead of providing a power supply circuit for stabilizing the battery voltage, a current limiting resistor is connected in series to a series circuit of light emitting diodes, thereby stabilizing the current flowing through the light emitting diodes. Embodiments that are intended to be disclosed are also disclosed.
特開2004-279668号公報(段落0049~段落0053及び図4参照)JP 2004-279668 A (see paragraphs 0049 to 0053 and FIG. 4)
 しかしながら、特許文献1記載の従来装置では、発光ダイオードに流す電流(駆動電流)を安定化するために電源回路や限流抵抗が必要である。近年、発光ダイオードの高出力化に伴って駆動電流も増加する傾向に有り、駆動電流の増加に伴って、電源回路に使用される電子部品(特に、インダクタやトランスなどの受動部品)が大型化するとともに電源回路の回路構成が複雑化するといった問題や、電源電圧変動によって限流抵抗の損失が大きく変化するといった問題があった。 However, the conventional device described in Patent Document 1 requires a power supply circuit and a current limiting resistor in order to stabilize the current (driving current) flowing through the light emitting diode. In recent years, the driving current tends to increase as the output of light emitting diodes increases, and as the driving current increases, electronic components used in power supply circuits (especially passive components such as inductors and transformers) increase in size. In addition, there is a problem that the circuit configuration of the power supply circuit becomes complicated, and a loss of the current limiting resistor greatly changes due to power supply voltage fluctuation.
 本発明は、上記課題に鑑みて為されたものであり、電源電圧の変動に対する損失の変化を抑制するとともに回路構成の簡素化を図ることができる発光装置の提供を目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a light emitting device capable of suppressing a change in loss with respect to a fluctuation in power supply voltage and simplifying a circuit configuration.
 本発明の発光装置は、直列接続された複数個の固体発光素子からなる光源と、前記光源において駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択する選択手段と、前記光源の状態を検出する検出手段と、当該検出手段の検出結果に変動が生じたときに当該検出結果の変動を抑制するように前記選択手段を制御して、駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択させる制御手段とを備えたを特徴とする。 The light-emitting device of the present invention comprises a light source comprising a plurality of solid-state light-emitting elements connected in series, a solid-state light-emitting element that causes a driving current to flow in the light source, and a selection unit that selects a solid-state light-emitting element that does not pass the driving current; A detection unit that detects a state of the light source; a solid-state light-emitting element that controls the selection unit so as to suppress a change in the detection result when a change occurs in the detection result of the detection unit; And a control means for selecting a solid state light emitting element that does not pass a driving current.
 この発光装置において、前記検出手段は、前記駆動電流を検出し、前記制御手段は、前記検出手段が検出する前記駆動電流の変動を抑制するように前記選択手段を制御することが好ましい。 In this light-emitting device, it is preferable that the detection means detects the drive current, and the control means controls the selection means so as to suppress fluctuations in the drive current detected by the detection means.
 この発光装置において、前記検出手段は、前記光源の光出力を検出し、前記制御手段は、前記検出手段が検出する前記光出力の変動を抑制するように前記選択手段を制御することが好ましい。 In this light-emitting device, it is preferable that the detection unit detects a light output of the light source, and the control unit controls the selection unit so as to suppress a variation in the light output detected by the detection unit.
 この発光装置において、前記検出手段は、前記光源に入力される入力電圧を検出し、前記制御手段は、前記検出手段が検出する前記入力電圧の変動を抑制するように前記選択手段を制御することが好ましい。 In this light emitting device, the detection means detects an input voltage input to the light source, and the control means controls the selection means so as to suppress fluctuations in the input voltage detected by the detection means. Is preferred.
 この発光装置において、前記検出手段は、前記光源に入力される入力電力を検出し、前記制御手段は、前記検出手段が検出する前記入力電力の変動を抑制するように前記選択手段を制御することが好ましい。 In the light emitting device, the detection unit detects input power input to the light source, and the control unit controls the selection unit so as to suppress fluctuations in the input power detected by the detection unit. Is preferred.
 この発光装置において、前記選択手段は、前記固体発光素子の両端を各別に短絡する1乃至複数のスイッチ要素を有し、前記制御手段は、前記スイッチ要素をオン・オフ制御して駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択させることが好ましい。 In this light-emitting device, the selection means has one or more switch elements for short-circuiting both ends of the solid-state light-emitting element, and the control means controls on / off of the switch elements to flow a driving current. It is preferable to select a solid light-emitting element and a solid light-emitting element that does not pass the driving current.
 この発光装置において、前記スイッチ要素が全ての前記固体発光素子毎に設けられていることが好ましい。 In this light emitting device, it is preferable that the switch element is provided for every solid light emitting element.
 この発光装置において、前記選択手段は、前記光源の一端と前記固体発光素子の一端に接続されて当該固体発光素子の両端を短絡する1乃至複数のスイッチ要素を有し、前記制御手段は、前記スイッチ要素をオン・オフ制御して駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択させることが好ましい。 In this light-emitting device, the selection unit includes one or more switch elements that are connected to one end of the light source and one end of the solid-state light-emitting element and short-circuit both ends of the solid-state light-emitting element, and the control unit includes the control unit It is preferable to select a solid-state light-emitting element that allows a drive current to flow by controlling on / off of the switch element and a solid-state light-emitting element that does not flow the drive current.
 この発光装置において、前記光源と直列に接続されるインダクタを備え、前記選択手段は、直列接続された複数の前記固体発光素子を一括して短絡する1乃至複数のスイッチ要素を有し、前記制御手段は、前記スイッチ要素をオン・オフ制御して駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択させることが好ましい。 The light-emitting device includes an inductor connected in series with the light source, and the selection unit includes one or more switch elements that collectively short-circuit the plurality of solid-state light-emitting elements connected in series. It is preferable that the means select a solid light-emitting element that allows a drive current to flow by controlling on / off of the switch element and a solid light-emitting element that does not flow the drive current.
 この発光装置において、前記光源を構成する前記固体発光素子の個数は、当該固体発光素子の順電圧の総和が入力電圧の最大値よりも大きくなる個数であることが好ましい。 In this light-emitting device, the number of the solid-state light-emitting elements constituting the light source is preferably a number such that the sum of forward voltages of the solid-state light-emitting elements is larger than the maximum value of the input voltage.
 この発光装置において、前記スイッチ要素で一括して短絡される前記固体発光素子の個数は、当該固体発光素子の順電圧の総和が入力電圧の変動値よりも大きくなる個数であることが好ましい。 In this light-emitting device, the number of the solid-state light-emitting elements that are collectively short-circuited by the switch element is preferably such that the total forward voltage of the solid-state light-emitting elements is larger than the fluctuation value of the input voltage.
 この発光装置において、前記固体発光素子が実装される実装基板を備え、前記スイッチ要素で一括して短絡される前記固体発光素子と、前記スイッチ要素で一括して短絡されない前記固体発光素子とが前記実装基板の実装面に略均等に配置されることが好ましい。 In this light-emitting device, the solid-state light-emitting element includes a mounting substrate on which the solid-state light-emitting element is mounted, the solid-state light-emitting element that is collectively short-circuited by the switch element, and the solid-state light-emitting element that is not short-circuited collectively by the switch element It is preferable that the mounting surfaces of the mounting substrate are arranged substantially evenly.
 この発光装置において、前記インダクタは、前記固体発光素子と直列に接続された複数のインダクタンス要素からなることが好ましい。 In this light emitting device, the inductor is preferably composed of a plurality of inductance elements connected in series with the solid state light emitting element.
 この発光装置において、前記制御手段は、複数の前記スイッチ要素を時分割でオン・オフ制御することが好ましい。 In this light emitting device, it is preferable that the control means performs on / off control of the plurality of switch elements in a time division manner.
 この発光装置において、前記制御手段は、複数の前記スイッチ要素のオン期間の総和が略一定となるようにオン・オフ制御することが好ましい。 In this light emitting device, it is preferable that the control unit performs on / off control so that a sum of ON periods of the plurality of switch elements is substantially constant.
 この発光装置において、前記スイッチ要素は、前記制御手段から出力される光信号によってオン・オフすることが好ましい。 In this light emitting device, it is preferable that the switch element is turned on / off by an optical signal output from the control means.
 この発光装置において、前記制御手段は、前記スイッチ要素のオンデューティ比を制御することが好ましい。 In this light emitting device, it is preferable that the control means controls an on-duty ratio of the switch element.
 この発光装置において、前記制御手段は、オン・オフ制御する前記スイッチ要素を逐次交替させることが好ましい。 In this light emitting device, it is preferable that the control means sequentially switches the switch elements to be turned on / off.
 この発光装置において、前記制御手段は、オン・オフ制御する前記スイッチ要素をランダムに切り換えることが好ましい。 In this light emitting device, it is preferable that the control means randomly switches the switch elements to be turned on / off.
 この発光装置において、前記制御手段は、複数の前記スイッチ要素のオン期間の総和が略一定となるようにオン・オフ制御することが好ましい。 In this light emitting device, it is preferable that the control unit performs on / off control so that a sum of ON periods of the plurality of switch elements is substantially constant.
 この発光装置において、前記制御手段は、1乃至複数個の前記固体発光素子の両端から整流素子を介して動作電源を得ることが好ましい。 In this light-emitting device, it is preferable that the control means obtains an operating power supply from both ends of the one or more solid-state light-emitting elements via rectifier elements.
 この発光装置において、外部電源の電源電圧を変換して前記光源の入力電圧とする電圧変換手段を備えたことが好ましい。 Preferably, the light emitting device includes voltage conversion means for converting a power supply voltage of an external power source into an input voltage of the light source.
 この発光装置において、前記電圧変換手段は、前記外部電源によって充電される1乃至複数のキャパシタと、当該キャパシタへの充電経路と当該キャパシタからの放電経路をそれぞれ開閉する開閉素子と、前記開閉素子を開閉制御する開閉制御手段とを有し、前記キャパシタの放電電圧を前記光源の入力電圧とすることが好ましい。 In this light emitting device, the voltage converting means includes one or more capacitors charged by the external power source, a switching element that opens and closes a charging path to the capacitor and a discharging path from the capacitor, and the switching element. It is preferable that an open / close control means for performing open / close control is provided, and a discharge voltage of the capacitor is used as an input voltage of the light source.
 この発光装置において、前記電圧変換手段は、前記外部電源によって充電される1乃至複数のキャパシタと、当該キャパシタへの充電経路と当該キャパシタからの放電経路をそれぞれ開閉する開閉素子と、前記開閉素子を開閉制御する開閉制御手段とを有し、前記キャパシタの放電電圧を前記外部電源の電源電圧に重畳した電圧を前記光源の入力電圧とすることが好ましい。 In this light emitting device, the voltage converting means includes one or more capacitors charged by the external power source, a switching element that opens and closes a charging path to the capacitor and a discharging path from the capacitor, and the switching element. It is preferable that an open / close control means for performing open / close control is provided, and a voltage obtained by superimposing a discharge voltage of the capacitor on a power supply voltage of the external power supply is used as an input voltage of the light source.
 この発光装置において、前記キャパシタは、充電時に前記外部電源に対して前記光源と直列に接続されることが好ましい。 In this light emitting device, the capacitor is preferably connected in series with the light source with respect to the external power source during charging.
 本発明の発光装置は、電源電圧の変動に対する損失の変化を抑制するとともに回路構成の簡素化を図ることができるという効果がある。 The light-emitting device of the present invention has an effect of suppressing a change in loss with respect to fluctuations in power supply voltage and simplifying the circuit configuration.
本発明の実施形態1を示し、(a)は回路構成図、(b)は制御部の回路構成図である。1 shows Embodiment 1 of the present invention, where (a) is a circuit configuration diagram and (b) is a circuit configuration diagram of a control unit. 同上における制御部の動作を説明するための真理値表である。It is a truth table for demonstrating operation | movement of the control part in the same as the above. 同上の別構成の選択手段を含む回路構成図である。It is a circuit block diagram containing the selection means of another structure same as the above. 同上の別構成の選択手段を含む回路構成図である。It is a circuit block diagram containing the selection means of another structure same as the above. 同上における制御部の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the control part in the same as the above. 本発明の実施形態2を示す回路構成図である。It is a circuit block diagram which shows Embodiment 2 of this invention. 同上の別構成の選択手段を含む回路構成図である。It is a circuit block diagram containing the selection means of another structure same as the above. 本発明の実施形態3を示す回路構成図である。It is a circuit block diagram which shows Embodiment 3 of this invention. 同上にインダクタを追加した回路構成図である。It is a circuit block diagram which added the inductor to the same as the above. 本発明の実施形態4を示す回路構成図である。It is a circuit block diagram which shows Embodiment 4 of this invention. 同上にインダクタを追加した回路構成図である。It is a circuit block diagram which added the inductor to the same as the above. 本発明の実施形態5を示す回路構成図である。It is a circuit block diagram which shows Embodiment 5 of this invention. 同上にインダクタを追加した回路構成図である。It is a circuit block diagram which added the inductor to the same as the above.
 以下、固体発光素子として発光ダイオードを用いた実施形態について説明する。但し、光源を構成する固体発光素子は発光ダイオードに限定されるものではなく、例えば、有機EL素子などであっても構わない。 Hereinafter, embodiments using light-emitting diodes as solid-state light-emitting elements will be described. However, the solid state light emitting element constituting the light source is not limited to the light emitting diode, and may be, for example, an organic EL element.
 (実施形態1)
 本実施形態の発光装置は、図1(a)に示すように直列接続された複数個の発光ダイオードLD1,LD2,…,LDn-1,LDnからなる光源1と、光源1において駆動電流ILDを流す発光ダイオードLDi(i=1,2,…,n-1,n)と駆動電流ILDを流さない発光ダイオードLDj(j=1,2,…,n-1,n、但し、i+j≦n)を選択する選択手段2と、光源1の状態を検出する検出手段3と、検出手段3の検出結果に変動が生じたときに検出結果3の変動を抑制するように選択手段2を制御して、駆動電流ILDを流す発光ダイオードLDiと駆動電流ILDを流さない発光ダイオードLDjを選択させる制御手段4とを備えている。
(Embodiment 1)
As shown in FIG. 1A, the light emitting device of this embodiment includes a light source 1 composed of a plurality of light emitting diodes LD1, LD2,..., LDn-1, LDn connected in series, and a drive current ILD in the light source 1. A light emitting diode LDi (i = 1, 2,..., N−1, n) that flows and a light emitting diode LDj that does not flow a driving current ILD (j = 1, 2,..., N−1, n, where i + j ≦ n) A selection means 2 for selecting the light source, a detection means 3 for detecting the state of the light source 1, and a control means for controlling the selection means 2 so as to suppress the fluctuation of the detection result 3 when the detection result of the detection means 3 changes. , And a control means 4 for selecting a light emitting diode LDi for flowing the driving current ILD and a light emitting diode LDj for not flowing the driving current ILD.
 光源1は、直流電源からなる外部電源PSの正極に、一方の末端の発光ダイオードLDnのアノードが接続され、外部電源PSの負極に、他方の末端の発光ダイオードLD1のカソードが接続されている。但し、これら複数個の発光ダイオードLD1~LDnは、全て同一定格のものを使用することが望ましい。また、外部電源PSは、例えば、商用交流電源を整流平滑して作成されるものであって、商用交流電源の電源電圧変動に伴って電源電圧Vsが変動する。 In the light source 1, the anode of the light emitting diode LDn at one end is connected to the positive electrode of the external power source PS composed of a DC power source, and the cathode of the light emitting diode LD1 at the other end is connected to the negative electrode of the external power source PS. However, it is desirable that all of the plurality of light emitting diodes LD1 to LDn have the same rating. Further, the external power supply PS is created by rectifying and smoothing a commercial AC power supply, for example, and the power supply voltage Vs varies with the power supply voltage fluctuation of the commercial AC power supply.
 選択手段2は、複数個(図示例では4個)の発光ダイオードLD1~LD4の両端(アノードとカソード)を各別に短絡する複数(図示例では4つ)のスイッチ要素S1~S4を有している。なお、本実施形態におけるスイッチ要素S1~S4はフォトトランジスタで構成されており、後述するように制御手段4から出力される光信号によってオン・オフされる。 The selection means 2 includes a plurality (four in the illustrated example) of switch elements S1 to S4 for short-circuiting both ends (anode and cathode) of the plurality of (four in the illustrated example) light emitting diodes LD1 to LD4. Yes. Note that the switch elements S1 to S4 in the present embodiment are composed of phototransistors and are turned on / off by an optical signal output from the control means 4 as described later.
 言い換えると、制御手段は、選択手段を制御するように構成されており、これにより、制御手段は選択手段に対して駆動電流を流す固体発光素子と駆動電流を流さない固体発光素子とを選択させる。なお、選択手段によって選択されて駆動電流が流れる固体発光素子を、選択手段によって選択されて駆動電流を流されない固体発光素子と区別するため、駆動電流が流れる固体発光素子は、駆動電流が流れる第1の固体発光素子として定義される。また、選択手段によって選択されて駆動電流が流れる固体発光素子を、選択手段によって選択されて駆動電流を流されない固体発光素子と区別するため、駆動電流が流れない固体発光素子は、駆動電流が流れる第2の固体発光素子として定義される。 In other words, the control means is configured to control the selection means, whereby the control means causes the selection means to select a solid light emitting element that passes a driving current and a solid light emitting element that does not pass a driving current. . In order to distinguish a solid-state light emitting element selected by the selection unit and through which the drive current flows, from a solid-state light emitting element selected by the selection unit and through which the drive current does not flow, the solid-state light emitting element through which the drive current flows 1 solid-state light emitting device. Further, in order to distinguish a solid light emitting element that is selected by the selecting means and that is driven by the driving current from a solid light emitting element that is selected by the selecting means and is not supplied with the driving current, a solid light emitting element that does not flow the driving current flows. Defined as a second solid state light emitting device.
 検出手段3は光源1に流れる駆動電流ILDの大きさを検出するものであって、例えば、外部電源PSの負極と光源1との間に挿入される微少な抵抗(図示せず)で構成されている。すなわち、前記抵抗の両端には駆動電流ILDの大きさに比例した電圧降下が生じるので、検出手段3では前記電圧降下を検出電圧として制御手段4に出力している。 The detection means 3 detects the magnitude of the drive current ILD that flows through the light source 1, and is constituted by a small resistance (not shown) inserted between the negative electrode of the external power source PS and the light source 1, for example. ing. That is, since a voltage drop proportional to the magnitude of the drive current ILD occurs at both ends of the resistor, the detection means 3 outputs the voltage drop to the control means 4 as a detection voltage.
 制御手段4は制御部40と、制御部40によって点滅制御される複数(図示例では4つ)の発光素子(発光ダイオード)41とを具備している。これら4つの発光素子41は、選択手段2のスイッチ要素S1~S4とそれぞれ光結合されている。 The control unit 4 includes a control unit 40 and a plurality (four in the illustrated example) of light emitting elements (light emitting diodes) 41 that are controlled to blink by the control unit 40. These four light emitting elements 41 are optically coupled to the switch elements S1 to S4 of the selection means 2, respectively.
 制御部40は、図1(b)に示すように検出手段3の検出電圧を増幅する増幅器と、マイクロコントローラ(以下、マイコンと略す。)MCと、複数(図示例では4つ)の論理回路(アンドゲート)G1~G4とを具備している。増幅器はオペアンプOPと抵抗R1,R2からなる反転増幅器である。増幅器で増幅された検出電圧は、マイコンMCの入力ポートP0に入力される。マイコンMCの出力ポートP1~P4にはそれぞれアンドゲートG1~G4の一方の入力端が接続されている。また、アンドゲートG1~G4の他方の入力端にはマイコンMCのタイマ出力ポートP5が接続され、アンドゲートG1~G4の出力端にそれぞれ発光素子41が接続されている。つまり、アンドゲートG1~G4の出力がLレベルのときは発光素子41が発光せず、アンドゲートG1~G4の出力がHレベルのときにのみ発光素子41が発光する。そして、発光素子41が発する光が光信号としてスイッチ要素S1~S4に入力され、光信号が入力されたスイッチ要素S1~S4がオンして発光ダイオードLD1~LD4の両端を短絡する。 As shown in FIG. 1B, the control unit 40 includes an amplifier that amplifies the detection voltage of the detection means 3, a microcontroller (hereinafter abbreviated as a microcomputer) MC, and a plurality (four in the illustrated example) of logic circuits. (And gates) G1 to G4. The amplifier is an inverting amplifier including an operational amplifier OP and resistors R1 and R2. The detection voltage amplified by the amplifier is input to the input port P0 of the microcomputer MC. One input terminals of AND gates G1 to G4 are connected to the output ports P1 to P4 of the microcomputer MC, respectively. Further, the timer output port P5 of the microcomputer MC is connected to the other input terminals of the AND gates G1 to G4, and the light emitting element 41 is connected to the output terminals of the AND gates G1 to G4, respectively. That is, the light emitting element 41 does not emit light when the outputs of the AND gates G1 to G4 are L level, and the light emitting element 41 emits light only when the outputs of the AND gates G1 to G4 are H level. Light emitted from the light emitting element 41 is input as an optical signal to the switch elements S1 to S4, and the switch elements S1 to S4 to which the optical signal is input are turned on to short-circuit both ends of the light emitting diodes LD1 to LD4.
 次に、検出手段3の検出結果(検出電圧)に応じた制御手段4の制御動作について説明する。 Next, the control operation of the control unit 4 according to the detection result (detection voltage) of the detection unit 3 will be described.
 本実施形態の発光装置においては、外部電源PSの電源電圧Vsが低下すると、光源1の入力電圧も低下し、その結果、光源1に流れる駆動電流ILDが減少して検出手段3の検出電圧も低下する。ここで、外部電源PSの電源電圧Vsが定格電圧に等しいときの検出手段3の検出電圧をV0とし、電源電圧Vsが変動して定格電圧よりも低下するにつれて検出電圧がV1、V2、V3、V4と低下すると想定する(但し、V0>V1>V2>V3>V4)。制御手段4は、検出手段3の検出電圧が低下すると、その低下の度合いに応じた個数のスイッチ要素S1~S4をオンする。具体的には、制御手段4のマイコンMCは、図2の真理値表に示すように検出電圧がV0のときは全ての出力ポートP1~P4をLレベルとし、検出電圧がV1のときは出力ポートP1のみをHレベルとし、検出電圧がV2のときは出力ポートP1,P2をHレベルとし、検出電圧がV3のときは出力ポートP1,P2,P3をHレベルとし、検出電圧がV4のときは全ての出力ポートP1~P4をHレベルとする。 In the light emitting device of the present embodiment, when the power supply voltage Vs of the external power supply PS decreases, the input voltage of the light source 1 also decreases. As a result, the drive current ILD flowing through the light source 1 decreases and the detection voltage of the detection means 3 also increases. descend. Here, the detection voltage of the detection means 3 when the power supply voltage Vs of the external power supply PS is equal to the rated voltage is V0, and the detected voltage becomes V1, V2, V3, as the power supply voltage Vs fluctuates and falls below the rated voltage. It is assumed that the voltage drops to V4 (however, V0> V1> V2> V3> V4). When the detection voltage of the detection means 3 decreases, the control means 4 turns on the number of switch elements S1 to S4 corresponding to the degree of the decrease. Specifically, as shown in the truth table of FIG. 2, the microcomputer MC of the control means 4 sets all the output ports P1 to P4 to L level when the detection voltage is V0, and outputs when the detection voltage is V1. When only the port P1 is at H level, when the detection voltage is V2, the output ports P1, P2 are at H level, when the detection voltage is V3, the output ports P1, P2, P3 are at H level, and the detection voltage is V4 Sets all the output ports P1 to P4 to the H level.
 而して、電源電圧Vsが変動(低下)すると光源1に流れる駆動電流ILDが減少するが、上述のように電源電圧Vsの変動量(定格電圧に対する低下量)が大きくなるにつれて、制御手段4が選択手段2によって駆動電流ILDを流さない方に選択(短絡)する発光ダイオードLDiの個数を増やすとともに駆動電流ILDを流す方に選択する発光ダイオードLDjの個数を減らしている。つまり、本実施形態の発光装置では、発光ダイオードLDに内在する抵抗成分を限流要素として活用し、上述のように入力電圧(電源電圧Vs)の変動量に応じて駆動電流ILDが流れる発光ダイオードLDjの個数を減らしているので、電源電圧Vsの変動に対する損失の変化(増大)を抑制するとともに回路構成の簡素化を図ることができる。 Thus, when the power supply voltage Vs fluctuates (decreases), the drive current ILD flowing through the light source 1 decreases. As described above, the control means 4 increases as the fluctuation amount of the power supply voltage Vs (decrease amount with respect to the rated voltage) increases. However, the number of light emitting diodes LDi selected (short-circuited) by the selection means 2 so as not to flow the driving current ILD is increased, and the number of light emitting diodes LDj selected to flow the driving current ILD is decreased. That is, in the light emitting device of this embodiment, the resistance component inherent in the light emitting diode LD is utilized as a current limiting element, and the light emitting diode in which the drive current ILD flows according to the amount of change in the input voltage (power supply voltage Vs) as described above. Since the number of LDj is reduced, a change (increase) in loss with respect to fluctuations in the power supply voltage Vs can be suppressed, and the circuit configuration can be simplified.
 また、本実施形態では選択手段2のスイッチ要素S1~S4を制御手段4から出力する光信号でオン・オフ制御する構成とし、選択手段2と制御手段4との間を電気的に絶縁しているので、駆動電流ILDが誤って制御手段4に流れてマイコンMCが破壊されてしまうような不具合の発生を防ぐことができる。 In this embodiment, the switch elements S1 to S4 of the selection means 2 are controlled to be turned on / off by the optical signal output from the control means 4, and the selection means 2 and the control means 4 are electrically insulated. Therefore, it is possible to prevent the occurrence of a problem that the drive current ILD erroneously flows into the control means 4 and destroys the microcomputer MC.
 ところで、本実施形態における選択手段2は、光源1を構成する発光ダイオードLD1~LDnの一部(4個の発光ダイオードLD1~LD4)のみにスイッチ要素S1~S4を接続して選択の対象としている。しかしながら、図3に示すように光源1を構成する全ての発光ダイオードLD1~LDnにスイッチ要素S1~Snを接続してもよい。このように選択手段2が全ての発光ダイオードLD1~LDnを選択対象とすれば、より大きな電源電圧変動に対処することができる。 Incidentally, the selection means 2 in the present embodiment is selected by connecting the switch elements S1 to S4 only to a part of the light emitting diodes LD1 to LDn (four light emitting diodes LD1 to LD4) constituting the light source 1. . However, as shown in FIG. 3, the switch elements S1 to Sn may be connected to all the light emitting diodes LD1 to LDn constituting the light source 1. As described above, if the selection unit 2 selects all the light emitting diodes LD1 to LDn, it is possible to cope with a larger power supply voltage fluctuation.
 また、本実施形態における選択手段2は、スイッチ要素Siと発光ダイオードLDiとを1対1に対応させて各発光ダイオードLDi毎に短絡させるか否かを選択している。しかしながら、この構成においては複数の発光ダイオードLDiを短絡するためにそれと同数のスイッチ要素Siをオンし続けなければならない。そこで、図4に示すようにスイッチ要素S1~S4の一端を光源1の一端(発光ダイオードLD1のカソード)に接続するとともに、スイッチ要素S1~S4の他端を発光ダイオードLD1~LD4のアノードにそれぞれ接続してもよい。この構成であれば、複数の発光ダイオードLDiを短絡する場合でもスイッチ要素S2~S4の何れか1つのみをオンすればよいので、制御手段4や選択手段2における電力消費が削減できるという利点がある。 Further, the selection means 2 in the present embodiment selects whether to short-circuit each light emitting diode LDi in a one-to-one correspondence with the switch element Si and the light emitting diode LDi. However, in this configuration, in order to short-circuit the plurality of light emitting diodes LDi, the same number of switch elements Si must be kept on. Therefore, as shown in FIG. 4, one end of the switch elements S1 to S4 is connected to one end of the light source 1 (the cathode of the light emitting diode LD1), and the other end of the switch elements S1 to S4 is connected to the anode of the light emitting diodes LD1 to LD4, respectively. You may connect. With this configuration, even when a plurality of light emitting diodes LDi are short-circuited, only one of the switch elements S2 to S4 needs to be turned on, so that the power consumption in the control means 4 and the selection means 2 can be reduced. is there.
 ところで、図1(a)や図3に示すように選択手段2のスイッチ要素Siが複数個の発光ダイオードLDiの両端(アノード-カソード間)に各別に接続されている場合において、例えば、検出手段3の検出電圧に応じて2つのスイッチ要素Siをオンするとき、所定時間(例えば、数秒間)毎にオンするスイッチ要素Siを交替させてもよい。つまり、最初にスイッチ要素S1,S2をオンした後、所定時間が経過したら、スイッチ要素S1,S2に替えてスイッチ要素S3,S4をオンし、同様に所定時間が経過する毎に、スイッチ要素S5,S6、S7,S8、…というように順番に交替させればよい。このようにすれば、発光ダイオードLDi間並びにスイッチ要素Si間の寿命のばらつきを抑えることができる。なお、上述のようにスイッチ要素Siを順番にオンする代わりに、マイコンMCで発生させた乱数に応じて、オンするスイッチ要素Siをランダムに切り換えても構わない。但し、所定時間毎にオンするスイッチ要素Siを交替させる代わりに、任意の時間でオンするスイッチ要素Siを交替させるとともに単位時間当たりにスイッチ要素Siがオンしている期間の総和が略一定となるように制御手段4が選択手段2をオン・オフ制御しても構わない。 By the way, in the case where the switch element Si of the selection means 2 is separately connected to both ends (between the anode and the cathode) of the plurality of light emitting diodes LDi as shown in FIG. When the two switch elements Si are turned on according to the detected voltage 3, the switch elements Si that are turned on every predetermined time (for example, several seconds) may be changed. That is, after the switch elements S1 and S2 are turned on for the first time, when a predetermined time elapses, the switch elements S3 and S4 are turned on instead of the switch elements S1 and S2, and each time the predetermined time elapses, the switch element S5 , S6, S7, S8,... In this way, it is possible to suppress variations in lifetime between the light emitting diodes LDi and between the switch elements Si. Instead of sequentially turning on the switch elements Si as described above, the switch elements Si to be turned on may be switched at random according to a random number generated by the microcomputer MC. However, instead of replacing the switch element Si that is turned on every predetermined time, the switch element Si that is turned on at an arbitrary time is replaced, and the sum of the periods during which the switch element Si is turned on per unit time is substantially constant. As described above, the control unit 4 may perform on / off control of the selection unit 2.
 さらに、制御手段4によってスイッチ要素Siのオンデューティ比を制御しても構わない。例えば、図5に示すように横軸を検出電圧、縦軸をタイマ出力ポートP5のオンデューティ比としたとき、検出電圧が低下するにつれてタイマ出力ポートP5のオンデューティ比を高くする、すなわち、スイッチ要素Siをオンして発光ダイオードLDiに駆動電流ILDを流さない期間を長くすればよい。このようにすれば、単純にスイッチ要素Siをオンするだけの場合と比較して、スイッチ要素Siのオンデューティ比に応じて駆動電流ILDを細かく調整することができる。 Furthermore, the on-duty ratio of the switch element Si may be controlled by the control means 4. For example, as shown in FIG. 5, when the horizontal axis is the detection voltage and the vertical axis is the on-duty ratio of the timer output port P5, the on-duty ratio of the timer output port P5 is increased as the detection voltage decreases. The period during which the driving current ILD is not passed through the light emitting diode LDi by turning on the element Si may be lengthened. In this way, it is possible to finely adjust the drive current ILD in accordance with the on-duty ratio of the switch element Si as compared to the case where the switch element Si is simply turned on.
 ここで、制御手段4を構成するマイコンMCの動作電源を、1乃至複数個の発光ダイオードLDiの両端から整流素子を介して得るようにすれば、別途動作電源を設ける必要が無く、回路構成を簡素化することができる。 Here, if the operation power source of the microcomputer MC constituting the control means 4 is obtained from both ends of one or a plurality of light emitting diodes LDi via rectifier elements, there is no need to provide a separate operation power source, and the circuit configuration can be reduced. It can be simplified.
 以上述べたように、本実施形態の発光装置は、光源1と、選択手段2と、検出手段3と、制御手段4とを有している。光源1は、直列接続された複数個の固体発光素子(発光ダイオードLD)を有する。選択手段2は、光源1において駆動電流ILDを流す固体発光素子(発光ダイオードLD)と当該駆動電流ILDを流さない固体発光素子(発光ダイオードLD)を選択するように構成されている。検出手段3は、光源1の状態を検出する。制御手段4は、検出手段3の検出結果に変動が生じたときに当該検出結果の変動を抑制するように前記選択手段2を制御する。これにより、制御手段4は、選択手段2に、駆動電流ILDを流す固体発光素子(発光ダイオードLD)と当該駆動電流ILDを流さない固体発光素子(発光ダイオードLD)を選択させる。 As described above, the light emitting device according to the present embodiment includes the light source 1, the selection unit 2, the detection unit 3, and the control unit 4. The light source 1 has a plurality of solid state light emitting elements (light emitting diodes LD) connected in series. The selection unit 2 is configured to select a solid state light emitting element (light emitting diode LD) that causes the driving current ILD to flow in the light source 1 and a solid state light emitting element (light emitting diode LD) that does not cause the driving current ILD to flow. The detection means 3 detects the state of the light source 1. The control unit 4 controls the selection unit 2 so as to suppress the variation of the detection result when the detection result of the detection unit 3 varies. Accordingly, the control unit 4 causes the selection unit 2 to select a solid light emitting element (light emitting diode LD) that allows the driving current ILD to flow and a solid light emitting element (light emitting diode LD) that does not cause the driving current ILD to flow.
 この場合、電源電圧の変動に対する損失の変化を抑制するとともに回路構成の簡素化を図ることができる発光装置が得られる。 In this case, it is possible to obtain a light emitting device that can suppress a change in loss with respect to fluctuations in the power supply voltage and can simplify the circuit configuration.
 また、検出手段3は、駆動電流ILDを検出するように構成されている。言い換えると、検出手段3は、光源1に流れる駆動電流ILDを、光源1の状態として検出する。より詳しく説明すると、検出手段3は、光源1に流れる駆動電流ILDの大きさを、光源1の状態として検出する。制御手段4は、検出手段3が検出する前記駆動電流ILDの変動を抑制するように前記選択手段2を制御する。 Further, the detection means 3 is configured to detect the drive current ILD. In other words, the detection unit 3 detects the drive current ILD that flows through the light source 1 as the state of the light source 1. More specifically, the detection unit 3 detects the magnitude of the drive current ILD flowing through the light source 1 as the state of the light source 1. The control means 4 controls the selection means 2 so as to suppress fluctuations in the drive current ILD detected by the detection means 3.
 この場合、電源電圧Vsの変動に対する損失の変化(増大)を抑制するとともに回路構成の簡素化を図ることができる。 In this case, it is possible to suppress a change (increase) in loss with respect to fluctuations in the power supply voltage Vs and simplify the circuit configuration.
 また、選択手段2は、前記固体発光素子(発光ダイオードLD)の両端を各別に短絡する複数のスイッチ要素Siを有している。制御手段4は、前記スイッチ要素Siをオン・オフ制御して駆動電流ILDを流す固体発光素子(発光ダイオードLD)と当該駆動電流ILDを流さない固体発光素子(発光ダイオードLD)を選択させる。より詳しくは、制御手段4は、前記スイッチ要素Siをオン・オフ制御して駆動電流ILDを流す固体発光素子(発光ダイオードLD)と駆動電流ILDを流さない固体発光素子(発光ダイオードLD)とを、選択手段2に選択させる。 Further, the selection means 2 has a plurality of switch elements Si for short-circuiting both ends of the solid state light emitting element (light emitting diode LD). The control means 4 controls on / off of the switch element Si to select a solid state light emitting element (light emitting diode LD) that allows the driving current ILD to flow and a solid state light emitting element (light emitting diode LD) that does not cause the driving current ILD to flow. More specifically, the control means 4 controls a solid-state light-emitting element (light-emitting diode LD) that allows the drive current ILD to flow by controlling on / off of the switch element Si, and a solid-state light-emitting element (light-emitting diode LD) that does not flow the drive current ILD. The selection means 2 is made to select.
 この場合、電源電圧変動に対処することができる。 In this case, it is possible to deal with power supply voltage fluctuations.
 なお、本実施形態の発光装置は、複数のスイッチ要素Siを有している。しかしながら、スイッチ要素Siは、少なくとも1つ以上あればよい。すなわち、選択手段2は、前記固体発光素子(発光ダイオードLD)の両端を各別に短絡する1ないし複数のスイッチ要素Siを有していればよい。この点は、以下に説明される実施形態においても同様である。 Note that the light-emitting device of the present embodiment has a plurality of switch elements Si. However, at least one switch element Si is sufficient. That is, the selection unit 2 only needs to include one or more switch elements Si that individually short-circuit both ends of the solid-state light emitting element (light emitting diode LD). This also applies to the embodiments described below.
 また、図1に示すように、スイッチ要素S1~S4は、発光ダイオードLD1~LD4毎に設けられている。しかしながら、図3に示すように、スイッチ要素Siが全ての前記固体発光素子(発光ダイオードLD)毎に設けられていてもよい。 As shown in FIG. 1, the switch elements S1 to S4 are provided for the light emitting diodes LD1 to LD4. However, as shown in FIG. 3, the switch element Si may be provided for every solid light emitting element (light emitting diode LD).
 この場合、より大きな電源電圧変動に対処することができる。 In this case, it is possible to cope with larger power supply voltage fluctuations.
 また、選択手段2は、光源1の一端と前記固体発光素子(発光ダイオードLD)の一端に接続されて当該固体発光素子(発光ダイオードLD)の両端を短絡する1乃至複数のスイッチ要素Siを有する。制御手段4は、前記スイッチ要素Siをオン・オフ制御して駆動電流ILDを流す固体発光素子(発光ダイオードLD)と当該駆動電流ILDを流さない固体発光素子(発光ダイオードLD)を選択させる。より詳しくは、制御手段4は、前記スイッチ要素Siをオン・オフ制御して駆動電流ILDを流す固体発光素子(発光ダイオードLD)と駆動電流ILDを流さない固体発光素子(発光ダイオードLD)を、選択手段2に選択させる。 The selection unit 2 includes one or more switch elements Si that are connected to one end of the light source 1 and one end of the solid state light emitting element (light emitting diode LD) and short-circuit both ends of the solid state light emitting element (light emitting diode LD). . The control means 4 controls on / off of the switch element Si to select a solid state light emitting element (light emitting diode LD) that allows the driving current ILD to flow and a solid state light emitting element (light emitting diode LD) that does not cause the driving current ILD to flow. More specifically, the control means 4 controls the solid-state light emitting element (light emitting diode LD) that flows the driving current ILD by controlling the switching element Si on and off, and the solid light emitting element (light emitting diode LD) that does not flow the driving current ILD, The selection means 2 is made to select.
 また、スイッチ要素Siは、前記制御手段4から出力される光信号によってオン・オフする。 The switch element Si is turned on / off by the optical signal output from the control means 4.
 この場合、駆動電流ILDが誤って制御手段4に流れて制御手段4が破壊されてしまうような不具合の発生を防ぐことができる。 In this case, it is possible to prevent the occurrence of a problem such that the drive current ILD erroneously flows into the control means 4 and the control means 4 is destroyed.
 また、制御手段4は、オン・オフ制御する前記スイッチ要素Siを逐次交替させてもよい。 Further, the control means 4 may sequentially change the switch elements Si to be turned on / off.
 この場合、発光ダイオードLDi間並びにスイッチ要素Si間の寿命のばらつきを抑えることができる。 In this case, it is possible to suppress variations in lifetime between the light emitting diodes LDi and between the switch elements Si.
 (実施形態2)
 本実施形態の発光装置は、図6に示すように光源1と直列に接続されるインダクタLを備えた点に特徴がある。但し、本実施形態の基本構成は実施形態1とほぼ共通であるから、共通の構成要素には同一の符号を付して説明及び図示は適宜省略する。
(Embodiment 2)
The light emitting device of this embodiment is characterized in that it includes an inductor L connected in series with the light source 1 as shown in FIG. However, since the basic configuration of the present embodiment is substantially the same as that of the first embodiment, the same reference numerals are given to the common components, and description and illustration are omitted as appropriate.
 本実施形態における選択手段2は、図6に示すように5個の発光ダイオードLD1~LD5を一括して短絡するスイッチ要素Sで構成されている。このスイッチ要素Sは電界効果トランジスタからなり、制御手段4(マイコンMC)によってオン・オフ制御される。 The selection means 2 in this embodiment is composed of a switch element S that collectively short-circuits the five light emitting diodes LD1 to LD5 as shown in FIG. The switch element S is composed of a field effect transistor and is controlled to be turned on / off by the control means 4 (microcomputer MC).
 マイコンMCは、電源電圧Vsの変動(低下)によって検出手段3の検出電圧が所定のしきい値を下回ると、選択手段2のスイッチ要素Sをオンして5個の発光ダイオードLD1~LD5の両端を短絡する。このとき、外部電源Vsと光源1の間に挿入されているインダクタLの作用により、駆動電流ILDは徐々に増加する。一方、電源電圧Vsの変動が収まって検出手段3の検出電圧が所定のしきい値を下回ると、マイコンMCは、選択手段2のスイッチ要素Sをオンして5個の発光ダイオードLD1~LD5に駆動電流ILDを流す。このとき、外部電源Vsと光源1の間に挿入されているインダクタLの作用により、駆動電流ILDは徐々に減少する。 When the detection voltage of the detection means 3 falls below a predetermined threshold due to the fluctuation (decrease) in the power supply voltage Vs, the microcomputer MC turns on the switch element S of the selection means 2 and sets both ends of the five light emitting diodes LD1 to LD5. Short circuit. At this time, the drive current ILD gradually increases due to the action of the inductor L inserted between the external power supply Vs and the light source 1. On the other hand, when the fluctuation of the power supply voltage Vs is settled and the detection voltage of the detection means 3 falls below a predetermined threshold value, the microcomputer MC turns on the switch element S of the selection means 2 and turns on the five light emitting diodes LD1 to LD5. A drive current ILD is passed. At this time, the drive current ILD gradually decreases due to the action of the inductor L inserted between the external power supply Vs and the light source 1.
 上述のように光源1と直列にインダクタLを接続したことにより、選択手段2のスイッチ要素Sをオンからオフ及びオフからオンに切り換えたときに駆動電流ILDを緩やかに変化させて光源1の発光量の変化を目立ちにくくすることができる。但し、図7に示すように光源1を構成する全ての発光ダイオードLD1~LD18を6個ずつ3つのグループに振り分け、それぞれのグループ毎に一括して短絡する3つのスイッチ要素S1,S2,S3を設けてもよい。また、図7に示すように制御手段4がこれら3つのスイッチ要素S1,S2,S3を光信号でオン・オフ制御するようにしても構わない。 By connecting the inductor L in series with the light source 1 as described above, when the switch element S of the selection unit 2 is switched from on to off and from off to on, the drive current ILD is gradually changed to emit light from the light source 1. Changes in the amount can be made inconspicuous. However, as shown in FIG. 7, all six light emitting diodes LD1 to LD18 constituting the light source 1 are divided into three groups, and three switch elements S1, S2, and S3 that are short-circuited for each group are provided. It may be provided. Further, as shown in FIG. 7, the control means 4 may perform on / off control of these three switch elements S1, S2, and S3 with an optical signal.
 ここで、光源1を構成する発光ダイオードLDの個数nは、発光ダイオードLDの順電圧(順方向電圧)の総和が入力電圧(電源電圧Vs)の最大値よりも大きくなる個数とすることが望ましい。また、1つのスイッチ要素Sで一括して短絡される発光ダイオードLDの個数は、これら一括して短絡される発光ダイオードLDの順電圧の総和が入力電圧(電源電圧Vs)の変動値(定格値と最小値との差分)よりも大きくなる個数とすることが望ましい。 Here, the number n of the light emitting diodes LD constituting the light source 1 is desirably set to a number that makes the sum of the forward voltages (forward voltages) of the light emitting diodes LD larger than the maximum value of the input voltage (power supply voltage Vs). . Further, the number of light emitting diodes LD that are short-circuited at one time by one switch element S is the sum of the forward voltages of the light-emitting diodes LD that are short-circuited at once, the fluctuation value (rated value) of the input voltage (power supply voltage Vs). It is desirable that the number be greater than the difference between the minimum value and the minimum value.
 ところで、図7に示すように選択手段2が複数(図示例では3つ)のスイッチ要素S1~S3を有している場合において、検出手段3の検出電圧に応じて制御手段4が1つ又は2つのスイッチ要素S1~S3をオンするときに所定時間(例えば、数秒間)毎にオンするスイッチ要素S1~S3を交替させてもよい。あるいは、スイッチ要素S1~S3を順番にオンする代わりに、マイコンMCで発生させた乱数に応じて、オンするスイッチ要素S1~S3をランダムに切り換えても構わない。但し、所定時間毎にオンするスイッチ要素S1~S3を交替させる代わりに、任意の時間でオンするスイッチ要素S1~S3を交替させるとともに単位時間当たりにスイッチ要素S1~S3がオンしている期間の総和が略一定となるように制御手段4が選択手段2をオン・オフ制御しても構わない。 Incidentally, when the selection means 2 has a plurality of (three in the illustrated example) switch elements S1 to S3 as shown in FIG. 7, one control means 4 or one control means 4 according to the detection voltage of the detection means 3 is provided. When the two switch elements S1 to S3 are turned on, the switch elements S1 to S3 that are turned on every predetermined time (for example, several seconds) may be replaced. Alternatively, instead of sequentially turning on the switch elements S1 to S3, the switch elements S1 to S3 to be turned on may be randomly switched according to a random number generated by the microcomputer MC. However, instead of replacing the switch elements S1 to S3 that are turned on every predetermined time, the switch elements S1 to S3 that are turned on at an arbitrary time are replaced and the switch elements S1 to S3 are turned on per unit time. The control means 4 may perform on / off control of the selection means 2 so that the sum is substantially constant.
 なお、本実施形態では1つのインダクタLを光源1と外部電源PSの間に接続したが、図7に示す構成において、光源1を構成する発光ダイオードLDi間にそれぞれインダクタンス要素(インダクタ)を接続しても構わない。この場合、それぞれのインダクタンス要素のインダクタンス値は、その合成インピーダンスが1つのインダクタLと等しくなる値とすることが望ましい。このことにより、個々のインダクタンス要素の形状を小型化し、より薄型の回路実装が実現できる。 In the present embodiment, one inductor L is connected between the light source 1 and the external power source PS. However, in the configuration shown in FIG. 7, an inductance element (inductor) is connected between the light emitting diodes LDi constituting the light source 1. It doesn't matter. In this case, it is desirable that the inductance value of each inductance element be a value that makes the combined impedance equal to one inductor L. As a result, the shape of each inductance element can be reduced, and a thinner circuit implementation can be realized.
 ところで、光源1は複数の発光ダイオードLD1~LDnが実装基板(図示せず)に実装されて構成されている。この場合、選択手段2のスイッチ要素Sが並列に接続されている発光ダイオードLDのグループ(以下、第1グループと呼ぶ。)と、選択手段2のスイッチ要素Sが並列に接続されていない発光ダイオードLDのグループ(以下、第2グループと呼ぶ。)とが、実装基板の実装面に略均等に配置されることが望ましい。例えば、全ての発光ダイオードLDが実装面に縦横に並べて配置される場合、第1グループの発光ダイオードLDの縦横両隣には第2グループの発光ダイオードLDを配置し、斜め両隣には同じグループの発光ダイオードLDを配置すればよい。このようにすれば、第1グループの発光ダイオードLDがスイッチ要素Sによって短絡されたとき、実装基板の実装面における発光輝度を均斉化することができる。 Incidentally, the light source 1 is configured by mounting a plurality of light emitting diodes LD1 to LDn on a mounting substrate (not shown). In this case, a group of light emitting diodes LD (hereinafter referred to as a first group) in which the switch element S of the selection means 2 is connected in parallel, and a light emitting diode in which the switch element S of the selection means 2 is not connected in parallel. It is desirable that the LD groups (hereinafter referred to as the second group) are arranged substantially evenly on the mounting surface of the mounting board. For example, when all the light emitting diodes LD are arranged side by side on the mounting surface, the second group of light emitting diodes LD is arranged on both sides of the first group of light emitting diodes LD, and the light emission of the same group is arranged on both sides obliquely. A diode LD may be disposed. In this way, when the light emitting diodes LD of the first group are short-circuited by the switch element S, the light emission luminance on the mounting surface of the mounting board can be equalized.
 ところで上述した実施形態1,2では、検出手段3が光源1の状態として駆動電流ILDの大きさを検出しているが、光源1に印加される入力電圧の大きさや光源1に入力される入力電力の大きさ、あるいは光源1の光出力(輝度あるいは照度)を検出するようにしても構わない。 In the first and second embodiments described above, the detection unit 3 detects the magnitude of the drive current ILD as the state of the light source 1, but the magnitude of the input voltage applied to the light source 1 and the input input to the light source 1. The magnitude of power or the light output (luminance or illuminance) of the light source 1 may be detected.
 すなわち、検出手段は、光源1に入力される入力電圧の大きさを光源の状態として検出してもよい。また、検出手段は、光源1に入力される入力電圧の大きさを、光源の状態として検出しても良い。また、検出手段は、光源1が発する光の輝度を光源の光出力として検出してもよい。また、検出手段は、光源1が発する光の照度を光源の光出力として検出してもよい。光源の光出力は、光源の状態として定義される。この点は、本実施形態に限られず、他の実施形態においても適用可能である。 That is, the detection means may detect the magnitude of the input voltage input to the light source 1 as the state of the light source. The detection means may detect the magnitude of the input voltage input to the light source 1 as the state of the light source. The detection means may detect the luminance of light emitted from the light source 1 as the light output of the light source. Further, the detection means may detect the illuminance of the light emitted from the light source 1 as the light output of the light source. The light output of a light source is defined as the state of the light source. This point is not limited to this embodiment, and can be applied to other embodiments.
 以上述べたように、本実施形態の発光装置は、実施形態1と同様の構成を有している。 As described above, the light emitting device of this embodiment has the same configuration as that of the first embodiment.
 また、発光装置は、さらにインダクタLを備える。インダクタLは、光源1と直列に接続されている。選択手段2は、直列接続された複数の前記固体発光素子(発光ダイオードLD)を一括して短絡する1乃至複数のスイッチ要素Siを有する。制御手段4は、前記スイッチ要素Siをオン・オフ制御して駆動電流を流す固体発光素子(発光ダイオードLD)と当該駆動電流を流さない固体発光素子(発光ダイオードLD)を選択させる。より詳しくは、制御手段4は、スイッチ要素Siをオン・オフ制御して駆動電流を流す固体発光素子(発光ダイオードLD)と駆動電流を流さない固体発光素子(発光ダイオードLD)とを、選択手段2に選択させる。 The light emitting device further includes an inductor L. The inductor L is connected in series with the light source 1. The selection unit 2 includes one to a plurality of switch elements Si that collectively short-circuit a plurality of the solid state light emitting elements (light emitting diodes LD) connected in series. The control means 4 controls on / off of the switch element Si so as to select a solid light emitting element (light emitting diode LD) that passes a driving current and a solid light emitting element (light emitting diode LD) that does not pass the driving current. More specifically, the control means 4 selects a solid light emitting element (light emitting diode LD) that allows a driving current to flow by controlling on / off of the switch element Si and a solid light emitting element (light emitting diode LD) that does not flow a driving current. Let 2 select.
 この場合、外部電源と光源1の間に挿入されているインダクタLの作用により、駆動電流は徐々に減少する。したがって、選択手段2のスイッチ要素Siをオンからオフ及びオフからオンに切り換えたときに駆動電流を緩やかに変化させて光源1の発光量の変化を目立ちにくくすることができる。 In this case, the drive current gradually decreases due to the action of the inductor L inserted between the external power source and the light source 1. Therefore, when the switch element Si of the selection unit 2 is switched from on to off and from off to on, the drive current can be changed gently to make the change in the light emission amount of the light source 1 less noticeable.
 また、光源1を構成する前記固体発光素子(発光ダイオードLD)の個数は、当該固体発光素子(発光ダイオードLD)の順電圧の総和が入力電圧の最大値よりも大きくなる個数であることが好ましい。 Further, the number of the solid state light emitting elements (light emitting diodes LD) constituting the light source 1 is preferably such that the total forward voltage of the solid state light emitting elements (light emitting diodes LD) is larger than the maximum value of the input voltage. .
 また、光源1を構成する前記固体発光素子(発光ダイオードLD)の個数は、当該固体発光素子(発光ダイオードLD)の順電圧の総和が入力電圧の最大値よりも大きくなる個数であることが好ましい。 Further, the number of the solid state light emitting elements (light emitting diodes LD) constituting the light source 1 is preferably such that the total forward voltage of the solid state light emitting elements (light emitting diodes LD) is larger than the maximum value of the input voltage. .
 また、インダクタLは、固体発光素子(発光ダイオードLD)と直列に接続された複数のインダクタンス要素でもよい。 Further, the inductor L may be a plurality of inductance elements connected in series with a solid state light emitting element (light emitting diode LD).
 この場合、個々のインダクタンス要素の形状を小型化し、より薄型の回路実装が実現できる。 In this case, the shape of each inductance element can be reduced and a thinner circuit can be realized.
 なお、それぞれのインダクタンス要素のインダクタンス値は、その合成インピーダンスが1つのインダクタLと等しくなる値とすることが望ましい。 It should be noted that the inductance value of each inductance element is preferably a value that makes the combined impedance equal to one inductor L.
 また、制御手段4は、複数の前記スイッチ要素Siを時分割でオン・オフ制御してもよい。 Further, the control means 4 may perform on / off control of the plurality of switch elements Si in a time-sharing manner.
 また、制御手段4は、複数の前記スイッチ要素Siのオン期間の総和が略一定となるようにオン・オフ制御してもよい。 Further, the control means 4 may perform on / off control so that the sum of the on periods of the plurality of switch elements Si is substantially constant.
 また、制御手段4は、オン・オフ制御する前記スイッチ要素Siを逐次交替させてもよい。 Further, the control means 4 may sequentially change the switch elements Si to be turned on / off.
 また、制御手段4は、オン・オフ制御する前記スイッチ要素Siをランダムに切り換えてもよい。 Further, the control means 4 may randomly switch the switch element Si to be turned on / off.
 また、制御手段4は、複数の前記スイッチ要素Siのオン期間の総和が略一定となるようにオン・オフ制御してもよい。 Further, the control means 4 may perform on / off control so that the sum of the on periods of the plurality of switch elements Si is substantially constant.
 この場合、発光ダイオード間並びにスイッチ要素Si間の寿命のばらつきを抑えることができる。 In this case, it is possible to suppress variations in the lifetime between the light emitting diodes and between the switch elements Si.
 (実施形態3)
 本実施形態の発光装置は、図8に示すように外部電源PSの電源電圧Vsを変換(昇圧又は降圧)して光源1の入力電圧とする電圧変換手段5を備えた点に特徴がある。但し、光源1や選択手段2、検出手段3、制御手段4については、実施形態1又は2と共通であるから、共通する構成要素には同一の符号を付して適宜図示並びに説明を省略する。
(Embodiment 3)
As shown in FIG. 8, the light emitting device of this embodiment is characterized in that it includes voltage conversion means 5 that converts (boosts or steps down) the power supply voltage Vs of the external power supply PS to obtain the input voltage of the light source 1. However, since the light source 1, the selection unit 2, the detection unit 3, and the control unit 4 are the same as those in the first or second embodiment, the same components are denoted by the same reference numerals, and illustration and description thereof are omitted as appropriate. .
 本実施形態における電圧変換手段5は、外部電源PSの正負両極間に直列接続された一対の開閉素子SW1,SW2と、外部電源PSの正極と開閉素子SW1の接続点にアノードが接続されたダイオードD1と、ダイオードD1のカソードと開閉素子SW1,SW2の接続点の間に挿入されたキャパシタ(コンデンサ)C1とを具備した昇圧(倍電圧)型のスイッチトキャパシタ回路(以下、SC回路と略す。)からなる。開閉素子SW1,SW2はトランジスタなどの半導体スイッチング素子からなり、開閉制御手段によって各別に開閉制御される。但し、この開閉制御手段は、制御手段4を構成するマイコンMCで兼用できるため、図示は省略している。 In the present embodiment, the voltage converting means 5 includes a pair of switching elements SW1 and SW2 connected in series between the positive and negative electrodes of the external power supply PS, and a diode having an anode connected to a connection point between the positive electrode of the external power supply PS and the switching element SW1. A boosted (double voltage) type switched capacitor circuit (hereinafter abbreviated as an SC circuit) comprising D1 and a capacitor (capacitor) C1 inserted between the cathode of the diode D1 and the connection point of the switching elements SW1 and SW2. Consists of. The open / close elements SW1 and SW2 are composed of semiconductor switching elements such as transistors, and are individually controlled to open and close by the open / close control means. However, since the opening / closing control means can be shared by the microcomputer MC constituting the control means 4, the illustration is omitted.
 次に、電圧変換手段5の動作を説明する。まず、開閉制御手段がハイサイドの開閉素子SW1を開いた状態でローサイドの開閉素子SW2を閉じる(オンする)と、外部電源PSの正極→ダイオードD1→キャパシタC1→開閉素子SW2→外部電源PSの負極の閉回路(充電経路)が形成される。そして、この閉回路を流れる電流(直流電流)によってキャパシタC1が充電される。続いて、開閉制御手段がハイサイドの開閉素子SW1を閉じる(オンする)とともにローサイドの開閉素子SW2を開く(オフする)と、キャパシタC1→光源1→外部電源PS→開閉素子SW1→キャパシタC1の閉回路(放電経路)が形成される。このとき、キャパシタC1の充電電圧は外部電源PSの電源電圧Vsと等しいので、光源1の両端には外部電源PSの電源電圧VsにキャパシタC1の充電電圧が重畳された電圧、すなわち、電源電圧Vsの2倍の電圧(入力電圧)が印加されることになる。以降、開閉制御手段が一対の開閉素子SW1,SW2を交互に開閉することにより、電源電圧Vsの2倍の入力電圧を光源1に安定して供給することができる。 Next, the operation of the voltage conversion means 5 will be described. First, when the open / close control means closes (turns on) the low-side open / close element SW2 with the high-side open / close element SW1 open, the positive electrode of the external power supply PS → diode D1 → capacitor C1 → open / close element SW2 → external power supply PS A closed circuit (charging path) of the negative electrode is formed. The capacitor C1 is charged by the current (direct current) flowing through the closed circuit. Subsequently, when the switching control means closes (turns on) the high-side switching element SW1 and opens (turns off) the low-side switching element SW2, the capacitor C1, the light source 1, the external power supply PS, the switching element SW1, and the capacitor C1 A closed circuit (discharge path) is formed. At this time, since the charge voltage of the capacitor C1 is equal to the power supply voltage Vs of the external power supply PS, the voltage obtained by superimposing the charge voltage of the capacitor C1 on the power supply voltage Vs of the external power supply PS at both ends of the light source 1, that is, the power supply voltage Vs. Twice the voltage (input voltage). Thereafter, the open / close control means alternately opens and closes the pair of open / close elements SW1 and SW2, whereby the input voltage twice the power supply voltage Vs can be stably supplied to the light source 1.
 上述のように本実施形態によれば、電圧変換手段5によって電源電圧Vsを2倍に昇圧して光源1に印加しているので、光源1を構成する発光ダイオードLDの個数を、発光ダイオードLDの順方向電圧の総和が外部電源PSの電源電圧Vsよりも高くなる(最大2倍)まで増やすことができる。なお、図9に示すように電圧変換手段5と光源1との間にインダクタLを挿入しても構わない。また、選択手段2の構成は図示したものに限定する趣旨ではなく、実施形態1,2で説明した何れの選択手段2の構成でも適用可能である。 As described above, according to the present embodiment, the voltage conversion means 5 doubles the power supply voltage Vs and applies it to the light source 1, so that the number of light emitting diodes LD constituting the light source 1 is determined by the light emitting diode LD. Can be increased until the total sum of the forward voltages becomes higher than the power supply voltage Vs of the external power supply PS (a maximum of 2 times). Note that an inductor L may be inserted between the voltage conversion means 5 and the light source 1 as shown in FIG. Further, the configuration of the selection unit 2 is not limited to the illustrated one, and any configuration of the selection unit 2 described in the first and second embodiments can be applied.
 すなわち、本実施形態の発光装置は、実施形態1や実施形態2で説明された構成を有している。 That is, the light emitting device of the present embodiment has the configuration described in the first and second embodiments.
 また、発光装置は、外部電源の電源電圧を変換して前記光源1の入力電圧とする電圧変換手段をさらに備える。 The light emitting device further includes voltage conversion means for converting the power supply voltage of the external power supply into the input voltage of the light source 1.
 また、電圧変換手段は、前記外部電源によって充電される1乃至複数のキャパシタと、当該キャパシタへの充電経路と当該キャパシタからの放電経路をそれぞれ開閉する開閉素子SW1,SW2と、前記開閉素子SW1,SW2を開閉制御する開閉制御手段とを有し、前記キャパシタの放電電圧を前記外部電源の電源電圧に重畳した電圧を前記光源1の入力電圧とする。 The voltage conversion means includes one or more capacitors charged by the external power source, open / close elements SW1 and SW2 that open and close a charge path to the capacitors and a discharge path from the capacitors, and the open / close elements SW1 and SW1, respectively. An open / close control means for controlling open / close of SW2, and a voltage obtained by superimposing a discharge voltage of the capacitor on a power supply voltage of the external power supply is used as an input voltage of the light source 1.
 この場合、電圧を光源1に安定して供給することができる。 In this case, the voltage can be stably supplied to the light source 1.
 (実施形態4)
 本実施形態における電圧変換手段5は、外部電源PSの正負両極間にカソードを正極側として直列接続された一対のダイオードD2,D3と、外部電源PSの負極とローサイドのダイオードD3のアノードの間に直列接続された一対の開閉素子SW3,SW4と、ダイオードD2,D3の接続点と開閉素子SW3,SW4の接続点の間に挿入されたキャパシタ(コンデンサ)C2とを具備した降圧型のSC回路からなる。開閉素子SW3,SW4はトランジスタなどの半導体スイッチング素子からなり、開閉制御手段によって各別に開閉制御される。但し、この開閉制御手段は、制御手段4を構成するマイコンMCで兼用できるため、図示は省略している。
(Embodiment 4)
In the present embodiment, the voltage conversion means 5 includes a pair of diodes D2 and D3 connected in series between the positive and negative electrodes of the external power supply PS with the cathode as the positive electrode side, and a negative electrode of the external power supply PS and an anode of the low-side diode D3. From a step-down SC circuit comprising a pair of switching elements SW3 and SW4 connected in series, and a capacitor (capacitor) C2 inserted between the connection point of the diodes D2 and D3 and the connection point of the switching elements SW3 and SW4. Become. The open / close elements SW3 and SW4 are composed of semiconductor switching elements such as transistors, and are individually controlled to open and close by the open / close control means. However, since the opening / closing control means can be shared by the microcomputer MC constituting the control means 4, the illustration is omitted.
 次に、電圧変換手段5の動作を説明する。まず、開閉制御手段が開閉素子SW4を開いた状態で開閉素子SW3を閉じる(オンする)と、外部電源PSの正極→光源1→ダイオードD3→キャパシタC2→開閉素子SW3→外部電源PSの負極の閉回路(充電経路)が形成される。そして、この閉回路を流れる電流(駆動電流ILD)によってキャパシタC2が充電される。このとき、キャパシタC2は、電源電圧Vsから光源1を構成する発光ダイオードLD1~LD18の順電圧の総和を差し引いた電圧まで充電される。続いて、開閉制御手段が開閉素子SW4を閉じる(オンする)とともに開閉素子SW3を開く(オフする)と、キャパシタC2→ダイオードD2→光源1→開閉素子SW4→キャパシタC2の閉回路(放電経路)が形成され、キャパシタC2の充電電圧が入力電圧として光源1に印加される。このとき、キャパシタC2から光源1に駆動電流ILDを流すためには、キャパシタC2の充電電圧が発光ダイオードLD1~LD18の順電圧の総和よりも高いことが必要である。したがって、外部電源PSの電源電圧Vsは発光ダイオードLD1~LD18の順電圧の総和の2倍以上であることが必要である。以降、開閉制御手段が一対の開閉素子SW3,SW4を交互に開閉することにより、電源電圧Vsの略半分の入力電圧を光源1に安定して供給することができる。 Next, the operation of the voltage conversion means 5 will be described. First, when the open / close control means closes (turns on) the open / close element SW3 with the open / close element SW4 open, the positive electrode of the external power source PS → the light source 1 → the diode D3 → the capacitor C2 → the open / close element SW3 → the negative electrode of the external power source PS. A closed circuit (charging path) is formed. The capacitor C2 is charged by the current (drive current ILD) flowing through the closed circuit. At this time, the capacitor C2 is charged to a voltage obtained by subtracting the sum of forward voltages of the light emitting diodes LD1 to LD18 constituting the light source 1 from the power supply voltage Vs. Subsequently, when the switching control means closes (turns on) the switching element SW4 and opens (turns off) the switching element SW3, the closed circuit (discharge path) of the capacitor C2, the diode D2, the light source 1, the switching element SW4, and the capacitor C2. And the charging voltage of the capacitor C2 is applied to the light source 1 as an input voltage. At this time, in order for the driving current ILD to flow from the capacitor C2 to the light source 1, the charging voltage of the capacitor C2 needs to be higher than the sum of the forward voltages of the light emitting diodes LD1 to LD18. Accordingly, the power supply voltage Vs of the external power supply PS needs to be at least twice the sum of the forward voltages of the light emitting diodes LD1 to LD18. Thereafter, the open / close control means alternately opens and closes the pair of open / close elements SW3 and SW4, so that an input voltage approximately half the power supply voltage Vs can be stably supplied to the light source 1.
 なお、図11に示すように電圧変換手段5と光源1との間にインダクタLを挿入しても構わない。また、選択手段2の構成は図示したものに限定する趣旨ではなく、実施形態1,2で説明した何れの選択手段2の構成でも適用可能である。 Note that an inductor L may be inserted between the voltage conversion means 5 and the light source 1 as shown in FIG. Further, the configuration of the selection unit 2 is not limited to the illustrated one, and any configuration of the selection unit 2 described in the first and second embodiments can be applied.
 すなわち、本実施形態の発光装置は、実施形態1や実施形態2で説明された構成を有している。 That is, the light emitting device of the present embodiment has the configuration described in the first and second embodiments.
 また、発光装置は、外部電源の電源電圧を変換して前記光源1の入力電圧とする電圧変換手段をさらに備える。 The light emitting device further includes voltage conversion means for converting the power supply voltage of the external power supply into the input voltage of the light source 1.
 そして、前記電圧変換手段は、前記外部電源によって充電される1乃至複数のキャパシタと、当該キャパシタへの充電経路と当該キャパシタからの放電経路をそれぞれ開閉する開閉素子SW1,SW2と、前記開閉素子SW1,SW2を開閉制御する開閉制御手段とを有し、前記キャパシタの放電電圧を前記光源1の入力電圧とする。 The voltage conversion means includes one or more capacitors charged by the external power source, open / close elements SW1 and SW2 that open and close a charge path to the capacitor and a discharge path from the capacitor, and the open / close element SW1. , SW2 for controlling opening / closing of SW2, and the discharge voltage of the capacitor is used as the input voltage of the light source 1.
 この場合、電圧を光源1に安定して供給することができる。 In this case, the voltage can be stably supplied to the light source 1.
 (実施形態5)
 本実施形態における電圧変換手段5は、キャパシタC3とダイオードD3の直列回路と、ダイオードD4とキャパシタC4の直列回路と、これら2つの直列回路の中点間に挿入されたダイオードD5と、外部電源PSの正極とキャパシタC3の一端及びダイオードD4のカソードの間に挿入された開閉素子SW5と、光源1の一端とキャパシタC3の一端及びダイオードD4のカソードの間に挿入された開閉素子SW6とを具備し、ダイオードD3のアノードとキャパシタC4の一端が外部電源PSの負極及び光源1の他端に接続された降圧型のSC回路で構成されている。開閉素子SW5,SW6はトランジスタなどの半導体スイッチング素子からなり、開閉制御手段によって各別に開閉制御される。但し、この開閉制御手段は、制御手段4を構成するマイコンMCで兼用できるため、図示は省略している。
(Embodiment 5)
The voltage conversion means 5 in this embodiment includes a series circuit of a capacitor C3 and a diode D3, a series circuit of a diode D4 and a capacitor C4, a diode D5 inserted between the midpoints of these two series circuits, and an external power source PS. And a switching element SW5 inserted between one end of the capacitor C3 and the cathode of the diode D4, and a switching element SW6 inserted between one end of the light source 1, one end of the capacitor C3 and the cathode of the diode D4. The step-down SC circuit is configured such that the anode of the diode D3 and one end of the capacitor C4 are connected to the negative electrode of the external power source PS and the other end of the light source 1. The open / close elements SW5 and SW6 are composed of semiconductor switching elements such as transistors, and are individually controlled to open and close by the open / close control means. However, since the opening / closing control means can be shared by the microcomputer MC constituting the control means 4, the illustration is omitted.
 次に、電圧変換手段5の動作を説明する。まず、開閉制御手段が開閉素子SW6を開いた状態で開閉素子SW5を閉じる(オンする)と、外部電源PSの正極→開閉素子SW5→キャパシタC3→ダイオードD5→キャパシタC4→外部電源PSの負極の閉回路(充電経路)が形成される。そして、この閉回路を流れる電流によってキャパシタC3,C4が充電される。このとき、キャパシタC3,C4は互いに静電容量値が等しいので、電源電圧Vsを2等分した電圧までそれぞれ充電される。続いて、開閉制御手段が開閉素子SW6を閉じる(オンする)とともに開閉素子SW5を開く(オフする)と、キャパシタC3→開閉素子SW6→光源1→ダイオードD3→キャパシタC3の閉回路(放電経路)と、キャパシタC4→ダイオードD4→開閉素子SW6→光源1→キャパシタC4の閉回路(放電経路)とが形成され、キャパシタC3,C4の充電電圧がそれぞれ入力電圧として光源1に印加される。このとき、キャパシタC3,C4から光源1に駆動電流ILDを流すためには、キャパシタC3,C4の充電電圧が発光ダイオードLD1~LD18の順電圧の総和よりも高いことが必要である。したがって、外部電源PSの電源電圧Vsは発光ダイオードLD1~LD18の順電圧の総和の2倍以上であることが必要である。以降、開閉制御手段が一対の開閉素子SW5,SW6を交互に開閉することにより、電源電圧Vsの半分の入力電圧を光源1に安定して供給することができる。 Next, the operation of the voltage conversion means 5 will be described. First, when the open / close control means closes (turns on) the open / close element SW5 with the open / close element SW6 open, the positive electrode of the external power supply PS → the open / close element SW5 → the capacitor C3 → the diode D5 → the capacitor C4 → the negative electrode of the external power supply PS. A closed circuit (charging path) is formed. The capacitors C3 and C4 are charged by the current flowing through the closed circuit. At this time, since the capacitance values of the capacitors C3 and C4 are equal to each other, the capacitors C3 and C4 are charged to voltages obtained by dividing the power supply voltage Vs into two equal parts. Subsequently, when the switching control means closes (turns on) the switching element SW6 and opens (turns off) the switching element SW5, the closed circuit (discharge path) of the capacitor C3 → the switching element SW6 → the light source 1 → the diode D3 → the capacitor C3. Then, a closed circuit (discharge path) of capacitor C4 → diode D4 → switching element SW6 → light source 1 → capacitor C4 is formed, and charging voltages of capacitors C3 and C4 are applied to light source 1 as input voltages, respectively. At this time, in order for the drive current ILD to flow from the capacitors C3 and C4 to the light source 1, the charging voltage of the capacitors C3 and C4 needs to be higher than the sum of the forward voltages of the light emitting diodes LD1 to LD18. Accordingly, the power supply voltage Vs of the external power supply PS needs to be at least twice the sum of the forward voltages of the light emitting diodes LD1 to LD18. Thereafter, the open / close control means alternately opens and closes the pair of open / close elements SW5 and SW6, whereby an input voltage that is half the power supply voltage Vs can be stably supplied to the light source 1.
 なお、図13に示すように電圧変換手段5と光源1との間にインダクタLを挿入しても構わない。また、選択手段2の構成は図示したものに限定する趣旨ではなく、実施形態1,2で説明した何れの選択手段2の構成でも適用可能である。 Note that an inductor L may be inserted between the voltage conversion means 5 and the light source 1 as shown in FIG. Further, the configuration of the selection unit 2 is not limited to the illustrated one, and any configuration of the selection unit 2 described in the first and second embodiments can be applied.
 1 光源
 2 選択手段
 3 検出手段
 4 制御手段
 LD 発光ダイオード(固体発光素子)
 PS 外部電源
DESCRIPTION OF SYMBOLS 1 Light source 2 Selection means 3 Detection means 4 Control means LD Light emitting diode (solid light emitting element)
PS External power supply

Claims (25)

  1.  直列接続された複数個の固体発光素子からなる光源と、前記光源において駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択する選択手段と、前記光源の状態を検出する検出手段と、当該検出手段の検出結果に変動が生じたときに当該検出結果の変動を抑制するように前記選択手段を制御して、駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択させる制御手段とを備えたことを特徴とする発光装置。
    A light source composed of a plurality of solid state light emitting elements connected in series, a solid state light emitting element that passes a driving current in the light source, a selection means that selects a solid state light emitting element that does not pass the driving current, and a detection that detects the state of the light source And a solid-state light emitting element that controls the selection means so as to suppress the fluctuation of the detection result when a fluctuation occurs in the detection result of the detection means and a solid-state light emission that does not pass the driving current A light-emitting device comprising: control means for selecting an element.
  2.  前記検出手段は、前記駆動電流を検出し、前記制御手段は、前記検出手段が検出する前記駆動電流の変動を抑制するように前記選択手段を制御することを特徴とする請求項1記載の発光装置。
    The light emission according to claim 1, wherein the detection unit detects the drive current, and the control unit controls the selection unit so as to suppress fluctuations in the drive current detected by the detection unit. apparatus.
  3.  前記検出手段は、前記光源の光出力を検出し、前記制御手段は、前記検出手段が検出する前記光出力の変動を抑制するように前記選択手段を制御することを特徴とする請求項1記載の発光装置。
    The said detection means detects the light output of the said light source, The said control means controls the said selection means so that the fluctuation | variation of the said light output which the said detection means detects is controlled. Light-emitting device.
  4.  前記検出手段は、前記光源に入力される入力電圧を検出し、前記制御手段は、前記検出手段が検出する前記入力電圧の変動を抑制するように前記選択手段を制御することを特徴とする請求項1記載の発光装置。
    The detection means detects an input voltage input to the light source, and the control means controls the selection means so as to suppress fluctuations in the input voltage detected by the detection means. Item 2. The light emitting device according to Item 1.
  5.  前記検出手段は、前記光源に入力される入力電力を検出し、前記制御手段は、前記検出手段が検出する前記入力電力の変動を抑制するように前記選択手段を制御することを特徴とする請求項1記載の発光装置。
    The detection means detects input power input to the light source, and the control means controls the selection means so as to suppress fluctuations in the input power detected by the detection means. Item 2. The light emitting device according to Item 1.
  6.  前記選択手段は、前記固体発光素子の両端を各別に短絡する1乃至複数のスイッチ要素を有し、前記制御手段は、前記スイッチ要素をオン・オフ制御して駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択させることを特徴とする請求項1~5の何れか1項に記載の発光装置。
    The selection means includes one or more switch elements that individually short-circuit both ends of the solid-state light-emitting element, and the control means includes a solid-state light-emitting element that controls on / off of the switch element and allows a drive current to flow. 6. The light emitting device according to claim 1, wherein a solid light emitting element that does not pass a driving current is selected.
  7.  前記スイッチ要素が全ての前記固体発光素子毎に設けられていることを特徴とする請求項6記載の発光装置。
    The light emitting device according to claim 6, wherein the switch element is provided for every solid state light emitting element.
  8.  前記選択手段は、前記光源の一端と前記固体発光素子の一端に接続されて当該固体発光素子の両端を短絡する1乃至複数のスイッチ要素を有し、前記制御手段は、前記スイッチ要素をオン・オフ制御して駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択させることを特徴とする請求項1~5の何れか1項に記載の発光装置。
    The selection means includes one or more switch elements that are connected to one end of the light source and one end of the solid light emitting element to short-circuit both ends of the solid light emitting element, and the control means turns on the switch element. 6. The light-emitting device according to claim 1, wherein a solid-state light-emitting element that conducts a driving current by being turned off and a solid-state light-emitting element that does not pass the driving current are selected.
  9.  前記光源と直列に接続されるインダクタを備え、前記選択手段は、直列接続された複数の前記固体発光素子を一括して短絡する1乃至複数のスイッチ要素を有し、前記制御手段は、前記スイッチ要素をオン・オフ制御して駆動電流を流す固体発光素子と当該駆動電流を流さない固体発光素子を選択させることを特徴とする請求項1~5の何れか1項に記載の発光装置。
    An inductor connected in series with the light source; and the selection means includes one or more switch elements that collectively short-circuit the plurality of solid-state light emitting elements connected in series, and the control means includes the switch 6. The light-emitting device according to claim 1, wherein a solid-state light-emitting element that causes a drive current to flow by controlling on / off of elements and a solid-state light-emitting element that does not flow the drive current are selected.
  10.  前記光源を構成する前記固体発光素子の個数は、当該固体発光素子の順電圧の総和が入力電圧の最大値よりも大きくなる個数であることを特徴とする請求項9記載の発光装置。
    10. The light emitting device according to claim 9, wherein the number of the solid state light emitting elements constituting the light source is a number such that a sum of forward voltages of the solid state light emitting elements is larger than a maximum value of the input voltage.
  11.  前記スイッチ要素で一括して短絡される前記固体発光素子の個数は、当該固体発光素子の順電圧の総和が入力電圧の変動値よりも大きくなる個数であることを特徴とする請求項9又は10記載の発光装置。
    The number of the solid-state light emitting elements collectively short-circuited by the switch element is a number that makes a total sum of forward voltages of the solid-state light emitting elements larger than a fluctuation value of an input voltage. The light-emitting device of description.
  12.  前記固体発光素子が実装される実装基板を備え、前記スイッチ要素で一括して短絡される前記固体発光素子と、前記スイッチ要素で一括して短絡されない前記固体発光素子とが前記実装基板の実装面に略均等に配置されることを特徴とする請求項9~11の何れか1項に記載の発光装置。
    A mounting surface of the mounting substrate, comprising: a mounting substrate on which the solid light emitting element is mounted, the solid light emitting element collectively short-circuited by the switch element, and the solid light emitting element not collectively short-circuited by the switch element The light emitting device according to any one of claims 9 to 11, wherein the light emitting devices are arranged substantially evenly.
  13.  前記インダクタは、前記固体発光素子と直列に接続された複数のインダクタンス要素からなることを特徴とする請求項9~12の何れか1項に記載の発光装置。
    13. The light emitting device according to claim 9, wherein the inductor includes a plurality of inductance elements connected in series with the solid state light emitting element.
  14.  前記制御手段は、複数の前記スイッチ要素を時分割でオン・オフ制御することを特徴とする請求項9~13の何れか1項に記載の発光装置。
    The light emitting device according to any one of claims 9 to 13, wherein the control means performs on / off control of the plurality of switch elements in a time-sharing manner.
  15.  前記制御手段は、複数の前記スイッチ要素のオン期間の総和が略一定となるようにオン・オフ制御することを特徴とする請求項14記載の発光装置。
    15. The light emitting device according to claim 14, wherein the control means performs on / off control so that a sum of ON periods of the plurality of switch elements is substantially constant.
  16.  前記スイッチ要素は、前記制御手段から出力される光信号によってオン・オフすることを特徴とする請求項1~15の何れか1項に記載の発光装置。
    The light emitting device according to any one of claims 1 to 15, wherein the switch element is turned on / off by an optical signal output from the control means.
  17.  前記制御手段は、前記スイッチ要素のオンデューティ比を制御することを特徴とする請求項1~16の何れか1項に記載の発光装置。
    The light emitting device according to any one of claims 1 to 16, wherein the control means controls an on-duty ratio of the switch element.
  18.  前記制御手段は、オン・オフ制御する前記スイッチ要素を逐次交替させることを特徴とする請求項1~16の何れか1項に記載の発光装置。
    The light emitting device according to any one of claims 1 to 16, wherein the control means sequentially switches the switch elements to be turned on and off.
  19.  前記制御手段は、オン・オフ制御する前記スイッチ要素をランダムに切り換えることを特徴とする請求項1~16の何れか1項に記載の発光装置。
    The light emitting device according to any one of claims 1 to 16, wherein the control means randomly switches the switch elements to be turned on / off.
  20.  前記制御手段は、複数の前記スイッチ要素のオン期間の総和が略一定となるようにオン・オフ制御することを特徴とする請求項18又は19記載の発光装置。
    20. The light emitting device according to claim 18 or 19, wherein the control means performs on / off control so that a sum of on periods of the plurality of switch elements is substantially constant.
  21.  前記制御手段は、1乃至複数個の前記固体発光素子の両端から整流素子を介して動作電源を得ることを特徴とする請求項1~20の何れか1項に記載の発光装置。
    The light-emitting device according to any one of claims 1 to 20, wherein the control means obtains an operating power supply from both ends of the one or more solid-state light-emitting elements via rectifier elements.
  22.  外部電源の電源電圧を変換して前記光源の入力電圧とする電圧変換手段を備えたことを特徴とする請求項1~21の何れか1項に記載の発光装置。
    The light emitting device according to any one of claims 1 to 21, further comprising voltage conversion means for converting a power supply voltage of an external power supply into an input voltage of the light source.
  23.  前記電圧変換手段は、前記外部電源によって充電される1乃至複数のキャパシタと、当該キャパシタへの充電経路と当該キャパシタからの放電経路をそれぞれ開閉する開閉素子と、前記開閉素子を開閉制御する開閉制御手段とを有し、前記キャパシタの放電電圧を前記光源の入力電圧とすることを特徴とする請求項22記載の発光装置。
    The voltage conversion means includes one or more capacitors charged by the external power source, an opening / closing element for opening / closing a charging path to the capacitor and a discharging path from the capacitor, and an opening / closing control for opening / closing the opening / closing element. 23. The light-emitting device according to claim 22, wherein a discharge voltage of the capacitor is used as an input voltage of the light source.
  24.  前記電圧変換手段は、前記外部電源によって充電される1乃至複数のキャパシタと、当該キャパシタへの充電経路と当該キャパシタからの放電経路をそれぞれ開閉する開閉素子と、前記開閉素子を開閉制御する開閉制御手段とを有し、前記キャパシタの放電電圧を前記外部電源の電源電圧に重畳した電圧を前記光源の入力電圧とすることを特徴とする請求項22記載の発光装置。
    The voltage conversion means includes one or more capacitors charged by the external power source, an opening / closing element for opening / closing a charging path to the capacitor and a discharging path from the capacitor, and an opening / closing control for opening / closing the opening / closing element. 23. The light emitting device according to claim 22, wherein a voltage obtained by superimposing a discharge voltage of the capacitor on a power supply voltage of the external power supply is used as an input voltage of the light source.
  25.  前記キャパシタは、充電時に前記外部電源に対して前記光源と直列に接続されることを特徴とする請求項23記載の発光装置。 24. The light emitting device according to claim 23, wherein the capacitor is connected in series with the light source with respect to the external power source during charging.
PCT/JP2011/062665 2010-06-02 2011-06-02 Light-emitting device WO2011152480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010127163A JP2011253957A (en) 2010-06-02 2010-06-02 Light-emitting device
JP2010-127163 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011152480A1 true WO2011152480A1 (en) 2011-12-08

Family

ID=45066837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062665 WO2011152480A1 (en) 2010-06-02 2011-06-02 Light-emitting device

Country Status (2)

Country Link
JP (1) JP2011253957A (en)
WO (1) WO2011152480A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136823A1 (en) * 2012-03-16 2013-09-19 三菱電機株式会社 Led lighting device
JP2015201587A (en) * 2014-04-10 2015-11-12 株式会社島津製作所 semiconductor laser drive circuit
JP2018093231A (en) * 2018-03-05 2018-06-14 株式会社島津製作所 Semiconductor laser drive circuit
JP2019114360A (en) * 2017-12-21 2019-07-11 スタンレー電気株式会社 Lamp and lamp device
JP2020047957A (en) * 2019-12-25 2020-03-26 株式会社島津製作所 Semiconductor laser drive circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398656B2 (en) * 2012-05-16 2016-07-19 Beijing EffiLED Opto-Electronics Technology Co., Ltd. Device and method for driving an LED light
JP6491414B2 (en) * 2014-02-10 2019-03-27 新電元工業株式会社 Vehicular lamp driving device and vehicular lamp driving method
JP6257485B2 (en) * 2014-09-16 2018-01-10 三菱電機株式会社 LED lighting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167492U (en) * 1981-04-16 1982-10-21
JPH05131681A (en) * 1991-11-07 1993-05-28 Minolta Camera Co Ltd Led array device
JPH0997925A (en) * 1995-09-29 1997-04-08 Pioneer Electron Corp Light-emitting element driver circuit
JP2001508612A (en) * 1997-01-03 2001-06-26 テレフオンアクチーボラゲツト エル エム エリクソン Driver circuit and driver operation method
JP2004279668A (en) * 2003-03-14 2004-10-07 Yamaha Motor Co Ltd Led display device
JP2005044907A (en) * 2003-07-24 2005-02-17 Gumma Prefecture Light emitting diode drive circuit
JP2009026544A (en) * 2007-07-18 2009-02-05 Showa Denko Kk Light-control device for light-emitting diode and led lighting device
JP2009134933A (en) * 2007-11-29 2009-06-18 Mitsubishi Electric Corp Led lighting device, and headlight for vehicle
JP2009200053A (en) * 1999-12-14 2009-09-03 Takion Co Ltd Power supply device and led lamp device
JP2010528456A (en) * 2007-05-11 2010-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Driver device for LED

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167492U (en) * 1981-04-16 1982-10-21
JPH05131681A (en) * 1991-11-07 1993-05-28 Minolta Camera Co Ltd Led array device
JPH0997925A (en) * 1995-09-29 1997-04-08 Pioneer Electron Corp Light-emitting element driver circuit
JP2001508612A (en) * 1997-01-03 2001-06-26 テレフオンアクチーボラゲツト エル エム エリクソン Driver circuit and driver operation method
JP2009200053A (en) * 1999-12-14 2009-09-03 Takion Co Ltd Power supply device and led lamp device
JP2004279668A (en) * 2003-03-14 2004-10-07 Yamaha Motor Co Ltd Led display device
JP2005044907A (en) * 2003-07-24 2005-02-17 Gumma Prefecture Light emitting diode drive circuit
JP2010528456A (en) * 2007-05-11 2010-08-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Driver device for LED
JP2009026544A (en) * 2007-07-18 2009-02-05 Showa Denko Kk Light-control device for light-emitting diode and led lighting device
JP2009134933A (en) * 2007-11-29 2009-06-18 Mitsubishi Electric Corp Led lighting device, and headlight for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136823A1 (en) * 2012-03-16 2013-09-19 三菱電機株式会社 Led lighting device
US9516714B2 (en) 2012-03-16 2016-12-06 Mitsubishi Electric Corporation LED lighting device
JP2015201587A (en) * 2014-04-10 2015-11-12 株式会社島津製作所 semiconductor laser drive circuit
JP2019114360A (en) * 2017-12-21 2019-07-11 スタンレー電気株式会社 Lamp and lamp device
JP7033908B2 (en) 2017-12-21 2022-03-11 スタンレー電気株式会社 Lamps and lamps
JP2018093231A (en) * 2018-03-05 2018-06-14 株式会社島津製作所 Semiconductor laser drive circuit
JP2020047957A (en) * 2019-12-25 2020-03-26 株式会社島津製作所 Semiconductor laser drive circuit

Also Published As

Publication number Publication date
JP2011253957A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2011152480A1 (en) Light-emitting device
US8148919B2 (en) Circuits and methods for driving light sources
JP5639389B2 (en) LED driving device and LED lighting device
JP6262557B2 (en) VEHICLE LAMP, ITS DRIVE DEVICE, AND CONTROL METHOD THEREOF
EP2536254B1 (en) Light emitting device and illumination apparatus having same
JP6291009B2 (en) Voltage control device
KR101435853B1 (en) Apparatus for driving light emitting diode
US20160050731A1 (en) Led driving circuit using double bridge diode and led illumination device comprising same
JP2008258428A (en) Driving circuit of white led for illumination, illuminator with the same, and electronic device
WO2017057401A1 (en) Led drive circuit
TWI556681B (en) Light emitting diode switch circuit
KR20170056648A (en) Circuit assembly for operating at least a first and a second cascade of leds
JP2011009253A (en) Load driving circuit
JP5172500B2 (en) Drive device
JP2014216320A (en) Circuits and methods for driving light sources
JP5637341B1 (en) Lighting device
WO2014087874A1 (en) Illumination device
US9603211B2 (en) LED driver
US20210176838A1 (en) A led driver and led lighting system for use with a high frequency electronic ballast
KR20130104800A (en) Apparatus for driving light emitting diode
JP2007295767A (en) Led drive unit
US20190306952A1 (en) Signal transmitter, communication system, and lighting system
JP5947082B2 (en) Circuit and method for driving a light source
WO2018193956A1 (en) Led drive circuit
JP2017010728A (en) Lighting device and lighting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789882

Country of ref document: EP

Kind code of ref document: A1