WO2014102885A1 - Information processing device and vascular-endothelium-function measurement system - Google Patents

Information processing device and vascular-endothelium-function measurement system Download PDF

Info

Publication number
WO2014102885A1
WO2014102885A1 PCT/JP2012/008440 JP2012008440W WO2014102885A1 WO 2014102885 A1 WO2014102885 A1 WO 2014102885A1 JP 2012008440 W JP2012008440 W JP 2012008440W WO 2014102885 A1 WO2014102885 A1 WO 2014102885A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
wave detection
delay time
information processing
blood flow
Prior art date
Application number
PCT/JP2012/008440
Other languages
French (fr)
Japanese (ja)
Inventor
成松 清幸
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2014553900A priority Critical patent/JPWO2014102885A1/en
Priority to PCT/JP2012/008440 priority patent/WO2014102885A1/en
Publication of WO2014102885A1 publication Critical patent/WO2014102885A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals

Definitions

  • the present invention relates to a system and an information processing apparatus for measuring a vascular endothelial function of a subject.
  • Vascular endothelial dysfunction is a disorder that appears from the stage before the organic change of arteriosclerosis occurs, and is caused by factors such as increased LDL (bad cholesterol) in the blood, increased blood pressure, and increased oxidative stress.
  • LDL bad cholesterol
  • oxidative stress a factor that causes oxidative stress.
  • vasodilators such as NO (nitrogen monoxide) decreases, and the function of the blood vessel as an organ is impaired.
  • the blood flow-dependent vasodilator test evaluates how much NO (nitrogen monoxide), a vasodilator, is released from the vascular endothelium by “shear stress” due to increased blood flow after the arm is clamped with a cuff. Is.
  • NO nitrogen monoxide
  • the present invention has been made in view of the above problems, and an object thereof is to realize highly accurate evaluation of vascular endothelial function by a simple method.
  • an information processing apparatus comprises the following arrangement. That is, First pulse wave data detected by a first pulse wave detection unit mounted upstream in the blood flow direction, and mounted downstream in the blood flow direction from the first pulse wave detection unit Acquisition means for acquiring second pulse wave data detected by the second pulse wave detection unit, First calculation means for calculating a first delay time as a time difference between each pulse wave included in the first pulse wave data and each corresponding pulse wave included in the second pulse wave data.
  • FIG. 1 is a diagram showing an external configuration of a vascular endothelial function measuring system 100 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a functional configuration of the compression device constituting the vascular endothelial function measuring system 100.
  • FIG. 3 is a diagram showing a functional configuration of the pulse wave detection device constituting the vascular endothelial function measuring system 100.
  • FIG. 4 is a diagram illustrating a functional configuration of the information processing apparatus that constitutes the vascular endothelial function measuring system 100.
  • FIG. 5 is a diagram illustrating an example of a pulse wave measured by the pulse wave detection device.
  • FIG. 6A is a sequence diagram showing the flow of the vascular endothelial function evaluation process in the vascular endothelial function measuring system 100.
  • FIG. 6B is a sequence diagram showing the flow of the vascular endothelial function evaluation process in the vascular endothelial function measuring system 100.
  • FIG. 7 is a diagram showing temporal changes in evaluation parameters used to calculate an evaluation value indicating vascular endothelial function in the vascular endothelial function evaluation process.
  • FIG. 8 is a diagram showing an external configuration of a vascular endothelial function measuring system 800 according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing temporal changes in evaluation parameters used to calculate an evaluation value indicating vascular endothelial function in the vascular endothelial function evaluation process.
  • the vascular endothelium is simpler and more accurate than the conventional method of directly measuring the blood vessel diameter by ultrasonic echo. It became possible to realize functional evaluation.
  • FIG. 1 is a diagram showing an external configuration of a vascular endothelial function measuring system 100 according to the first embodiment of the present invention.
  • the vascular endothelial function measuring system 100 includes a compression device 110 that performs ischemia for a predetermined time by compressing the upper arm of a subject, and a region at the end of the arm that is compressed by the compression device 110.
  • the compression device 110 includes a cuff part 111 attached to the upper arm of the subject, a pump that pressurizes the air bag of the cuff part 111, a quick exhaust valve that discharges air from the air bag of the cuff part 111, and the like.
  • a drive control unit 112 that controls driving of a quick exhaust valve or the like is provided, and the cuff unit 111 and the drive control unit 112 are connected by a pipe 113.
  • the pulse wave detection device 120 is mounted on the wrist portion of the subject, and detects the pulse wave of the wrist portion by irradiating the blood vessel of the wrist portion with infrared rays, and the infrared ray on the blood vessel of the fingertip portion. And a downstream pulse wave detection unit 122 that detects the pulse wave of the fingertip portion by irradiating the fingertip.
  • the apparatus includes a measurement control unit 123 that receives and transmits the pulse wave data detected by the upstream pulse wave detection unit 121 and the pulse wave data detected by the downstream pulse wave detection unit 122 to the information processing device 130.
  • the pulse wave detector 121, the downstream pulse wave detector 122, and the measurement controller 123 are connected via signal lines 124 and 125, respectively.
  • the information processing device 130 transmits an ischemia command and an exhaust command to the compression device 110, receives pulse wave data from the pulse wave detection device 120, and generates a pulse wave from the wrist portion of the subject to the fingertip portion.
  • the vascular endothelial function of the subject is evaluated by calculating the transmission time.
  • the compression device 110, the pulse wave detection device 120, and the information processing device 130 are connected via the signal lines 131 and 132, respectively, but the present invention is not limited to this. Alternatively, a wireless connection may be employed.
  • FIG. 2 is a diagram illustrating a functional configuration of the compression device 110.
  • the compression device 110 includes a cuff portion 111 to be attached to the compression site of the subject and a drive control unit 112, and the drive control unit 112 controls the entire compression device 110.
  • a control unit 230 for operating a pressurizing pump and a quick exhaust valve for changing the internal pressure of the cuff unit is housed.
  • the cuff unit 111 and the drive control unit 112 are connected by a pipe 113. Details of each of the units 111 to 113 will be described below.
  • the cuff part 111 has a cuff 201 for ischemia arranged inside.
  • the cuff 201 for ischemia pressurizes the compression site of the subject to which the cuff part 111 is attached and blocks the arterial blood vessels by increasing the internal pressure to the maximum blood pressure or higher by the air sent through the pipe 113. To do. Then, rapid decompression is performed by exhausting through the rapid exhaust valve 224.
  • the pipe 113 conveys air sent to the ischemic cuff 201 and air discharged from the ischemic cuff 201. Further, a piping connector 211 for connecting the piping 113 to the drive control unit 112 is provided.
  • the drive control unit 112 is provided with a drive control unit side pipe connector 221, and the pipe connector 211 of the pipe 113 is connected to the drive control unit 112 via the drive control unit side pipe connector 221.
  • a pressurization pump 222 and a quick exhaust valve 224 are connected to the drive control unit side piping connector 221, and pressurization and depressurization of the ischemic cuff 201 are performed based on instructions from the control unit 230.
  • a pressure sensor 223 is connected to detect the pressure value in the cuff 201 for ischemia pressurized by the pressurizing pump 222.
  • the pressure value detected by the pressure sensor 223 is input to the control unit 230 and is used for control such as driving stop of the pressure pump 222.
  • a power button 225 Further connected to the control unit 230 are a power button 225, an operation button 226, an external device I / F unit 227, a display unit 228, and a power source unit 229.
  • the power button 225 When the power button 225 is turned on, power is supplied from the power supply unit 229 to each unit via the control unit 230.
  • control unit 230 is connected to the information processing device 130 via the external device I / F unit 227 so as to be communicable, and receives a blood-blocking instruction, an exhaust instruction, and the like from the information processing device 130.
  • a drive stop signal indicating that the drive of the pressure pump 222 has been stopped is transmitted to the information processing apparatus 130.
  • the display unit 228 displays the internal state of the compression device 110 (driving / stopping of the pressurizing pump 222, opening / closing of the quick exhaust valve 224, pressure value of the pressure sensor, etc.). Note that the display content of the display unit 228 is switched by the operation of the operation button 226.
  • FIG. 3 is a diagram illustrating a functional configuration of the pulse wave detection device 120.
  • the pulse wave detection device 120 includes an upstream pulse wave detection unit 121 attached to the wrist portion of the subject, a downstream pulse wave detection unit 122 attached to the fingertip portion, and upstream pulse wave detection.
  • a measurement control unit 123 that transmits the pulse wave data detected in each of the unit 121 and the downstream pulse wave detection unit 122 to the information processing apparatus 130.
  • the upstream pulse wave detecting unit 121 and the downstream pulse wave detecting unit 122 include infrared light emitting units 311 and 321 that emit infrared rays, and infrared light receiving units 312 and 322 that receive infrared rays, respectively.
  • the infrared light receiving unit 312 receives the infrared light emitted from the infrared light emitting unit 311 and reflected by the blood vessel inside the wrist portion.
  • the infrared light receiving portion 322 receives the infrared light emitted from the infrared light emitting portion 321 and transmitted through the blood vessel inside the subject's fingertip portion. To do.
  • the infrared light emission by the infrared light emitting units 311 and 321 and the processing of the infrared signal received by the infrared light receiving units 312 and 322 are executed by the pulse wave sensor circuits 331 and 335, respectively.
  • Infrared signals input to the pulse wave sensor circuits 331 and 335 are subjected to waveform shaping in the waveform shaping circuits 332 and 334, and then input to the control unit 333, and as pulse wave data via the external device I / F unit 336. Is transmitted to the information processing apparatus 130.
  • control unit 333 based on the pulse wave detection start instruction and the pulse wave detection end instruction transmitted from the information processing apparatus 130 via the external device I / F unit 336, light emission by the infrared light emission units 311 and 321 and infrared light Controls light reception and the like by the light receiving units 312 and 322.
  • FIG. 4 is a diagram illustrating a functional configuration of the information processing apparatus 130.
  • the information processing apparatus 130 includes a control unit (computer) 401, a memory unit 402, a storage unit 403, a display unit 404, an input unit 405, and an external device I / F unit 406. Each unit is connected to each other via a bus 407.
  • the storage unit 403 configured with a hard disk or the like stores a program that functions as the vascular endothelial function evaluation unit 411 by being executed by the control unit 333.
  • the program is appropriately read into a memory unit 402 (for example, a RAM) functioning as a work area under the control of the control unit 401 and executed by the control unit 401, thereby realizing the function.
  • data acquired by executing the program by the control unit 401 is recorded in the storage unit 403 as pulse wave data (wrist) 412 and pulse wave data (fingertip) 413.
  • the display unit 404 displays a user interface for causing the control unit 401 to execute the program, or displays a vascular endothelial function evaluation result.
  • the input unit 405 inputs an instruction for executing the program, and includes a keyboard and a pointing device (such as a mouse).
  • the external device I / F unit 406 is an interface for communicably connecting to the compression device 110 and the pulse wave detection device 120.
  • the compression device 110 is connected via the external device I / F unit 406.
  • the ischemia instruction or the exhaust instruction is transmitted to the apparatus, or the pump drive stop signal is received from the compression device 110.
  • a pulse wave detection start instruction and a pulse wave detection end instruction are transmitted to the pulse wave detection device 120, and pulse wave data transmitted from the pulse wave detection device 120 is received.
  • the external device I / F unit 406 is realized by a wired interface such as USB or IEEE1394, but may be realized by a wireless interface such as a wireless LAN or Bluetooth.
  • FIG. 5 is a diagram illustrating an example of pulse wave data detected by the pulse wave detection device 120.
  • the upstream pulse wave detection unit 121 located on the upstream side with respect to the blood flow direction and the downstream pulse wave detection unit 122 located on the downstream side have a difference in detection timing of the corresponding pulse waves.
  • 501 is a pulse wave detected by the upstream pulse wave detection unit 121
  • 502 is a pulse wave detected by the downstream pulse wave detection unit 122.
  • the time difference between the pulse wave 501 and the corresponding pulse wave 502 (hereinafter, the time difference is referred to as “delay time”) is determined by the mounting position of the upstream pulse wave detection unit 121 and the downstream pulse wave detection unit 122. In addition to the distance to the mounting position, it depends on the degree of expansion of the upper arm blood vessel compressed by the cuff 111 of the compression device 110.
  • the pulse wave transmission speed is slowed down.
  • the pulse wave transmission speed is reduced. Be fast enough.
  • the delay time is set when the blood vessel clamped by the cuff unit 111 is not expanded. Becomes longer. On the contrary, when the blood vessel is sufficiently dilated, the delay time is shortened.
  • monitoring the change in the delay time can be easily realized at a low cost by eliminating the influence of the measurer's procedure. It is extremely effective from the viewpoint of.
  • FIG. 1 Flow of vascular endothelial function evaluation process> Next, the flow of vascular endothelial function evaluation processing in the vascular endothelial function measuring system 100 will be described.
  • 6A and 6B are flowcharts showing the flow of the vascular endothelial function evaluation process in the vascular endothelial function measuring system 100.
  • the compression device 110 and the pulse wave detection device 120 are communicably connected to the information processing device 130, the cuff portion 111 of the compression device 110 is placed on the upper arm of the subject, and the upstream pulse wave detection portion 121 of the pulse wave detection device 120 is covered.
  • the preparation for measurement is completed by attaching the downstream pulse wave detection unit 122 to the examinee's wrist and the fingertip portion of the examinee, in step S631, the vascular endothelial function evaluation unit 411 of the information processing apparatus 130 is completed. Start up.
  • step S631 the information processing device 130 transmits a pulse wave detection start instruction to the pulse wave detection device 120.
  • the pulse wave detection device 120 to which the pulse wave detection start instruction has been transmitted detection of the pulse wave is started in step S621, and the detected pulse wave data (wrist) and pulse wave data (fingertip) are transmitted to the information processing device 130. .
  • step S633 the pulse wave data (wrist) and pulse wave data (fingertip) transmitted from the pulse wave detector 120 are recorded in the storage unit 403, and the pulse wave data (wrist) and pulse wave data (fingertip) The calculation of the delay time of the corresponding pulse wave during is started.
  • step S634 When calculation of the delay time is started, in step S634, a message indicating that the subject should be rested is displayed, and in step S635, a predetermined time (rest time, for example, 3 minutes) is counted. Start.
  • step S635 If it is determined in step S635 that the predetermined time has elapsed, the process proceeds to step S636, and a hemostasis instruction is transmitted to the compression device 110.
  • step S636 the compression device 110 to which the ischemic instruction is transmitted starts driving the pressurizing pump 222 in step S611.
  • the compression device 110 starts monitoring the pressure value in the ischemic cuff 201 based on the pressure value output from the pressure sensor 223.
  • the ischemic cuff 201 is started. It is determined whether or not the internal pressure value has reached a predetermined pressure value (for example, the maximum blood pressure value of the subject) or more.
  • step S612 If it is determined in step S612 that the predetermined pressure value has not been reached, the pressurization pump 222 is continuously driven until it reaches the predetermined pressure value. On the other hand, if it is determined that the predetermined pressure value has been reached, the process proceeds to step S613, where the drive of the pressurizing pump 222 is stopped and a pump drive stop signal is transmitted to the information processing device 130.
  • step S636 the calculation of the delay time started in step S633 is temporarily stopped in step S637. This is because, by driving the pressurizing pump 222, the blood vessel of the upper arm is tightened by the cuff unit 111, so that the pulse wave detection device 120 cannot detect the pulse wave.
  • step S638 the count of a predetermined time (blood occlusion time, for example, 2 minutes) is started.
  • step S638 If it is determined in step S638 that the ischemic state has continued for a predetermined time or longer, the process proceeds to step S639, and an exhaust instruction is transmitted to the compression device 110.
  • step S639 the compression device 110 to which the exhaust instruction has been transmitted opens the quick exhaust valve 224 in step S614, and the blood in the ischemic cuff 201 is forcibly discharged to restart the blood flow.
  • the information processing apparatus 130 that has transmitted the exhaust instruction restarts the calculation of the delay time in step S640, and starts counting a predetermined time (reactive hyperemia time, for example, 5 minutes) in step S641.
  • step S641 If it is determined in step S641 that a sufficient time for reactive hyperemia has elapsed, the process proceeds to step S642, an evaluation value indicating vascular endothelial function is calculated, and the calculated evaluation value is displayed on the display unit 404.
  • FIG. 7 is a diagram showing a change in the delay time calculated by the information processing device 130 in the vascular endothelial function evaluation process.
  • the evaluation value indicating the vascular endothelial function is calculated using the delay time as an evaluation parameter.
  • reference numeral 701 indicates a change in the delay time in the rest time.
  • Reference numeral 711 denotes an average value of the delay time within the resting time. Since the calculation of the delay time is temporarily stopped during the ischemic time, there is no data on the delay time during the ischemic time.
  • Reference numeral 702 shows the change in the delay time in the reactive hyperemia time after resumption of blood flow.
  • Reference numeral 721 denotes a difference value with respect to the average value 711 of the delay time calculated immediately after the rapid exhaust valve 224 is opened and the blood flow is resumed.
  • Reference numeral 722 denotes a difference value with respect to the average value 711 of the delay time when the delay time is the longest in the reactive hyperemia time.
  • reference numeral 723 denotes a time from when the blood flow is resumed until the delay time becomes the longest.
  • the delay time becomes longer than the delay time in the resting time. . Thereafter, the blood vessel diameter further increases slightly, and after expanding to the maximum blood vessel diameter, the blood vessel diameter gradually returns to the resting time. For this reason, the delay time also slightly increases after shifting to the reactive hyperemia time, and after reaching the maximum value, gradually approaches the delay time in the rest time.
  • the value of the difference value 722 becomes small. Even if the difference value 722 is the same, the value of the time 723 increases when the vascular endothelial function is impaired. Further, when the blood vessel is hard, the value of the difference value 721 becomes small.
  • the difference values 721 and 722 and the time 723 are calculated as evaluation values indicating the vascular endothelial function and displayed to the measurer.
  • the examiner's vascular endothelial function can be evaluated.
  • the hardness of the blood vessel of the subject can also be evaluated.
  • step S643 an exhaust end instruction and a pulse wave detection end instruction are transmitted to the compression device 110 and the pulse wave detection device 120, respectively.
  • step S615 the quick exhaust valve 224 is closed to terminate forced exhaust.
  • the pulse wave detection device 120 that has received the pulse wave detection end instruction ends the detection and transmission of the pulse wave in step S622.
  • the degree of vessel expansion and the pulse wave are measured. Focusing on the correlation with the transmission time, a configuration in which an upstream pulse wave detection unit that is mounted on the wrist portion and detects a pulse wave and a downstream pulse wave detection unit that is mounted on the fingertip portion and detects the pulse wave is arranged It was.
  • the time difference between the pulse wave detected by the upstream pulse wave detection unit and the corresponding pulse wave detected by the downstream pulse wave detection unit is calculated as a delay time (evaluation parameter).
  • the vascular endothelial function was configured to be evaluated quantitatively.
  • the pulse wave detection device is attached to the wrist part and the fingertip part of the other arm (the arm that is not compressed by the compression device), and the delay calculated based on the pulse wave data from the pulse wave detection device A difference value may be calculated based on time. Details of this embodiment will be described below.
  • FIG. 8 is a diagram showing an external configuration of a vascular endothelial function measuring system 800 according to the second embodiment of the present invention.
  • the same components as those in the vascular endothelial function measuring system 100 (FIG. 1) described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted here.
  • pulse wave detection device 820 is also attached to the arm (that is, the right arm) opposite to the arm (the left arm in the example of FIG. 8) to which the cuff part 111 is attached, and the pulse wave detection is performed. It is the point which is comprised so that the detection and transmission of a pulse wave may be performed similarly to the apparatus 120.
  • the configuration of pulse wave detection device 820 is the same as that of pulse wave detection device 120.
  • Flow of vascular endothelial function evaluation process> Next, the flow of vascular endothelial function evaluation processing in the vascular endothelial function measuring system 800 will be described.
  • the flow of the vascular endothelial function evaluation process in the vascular endothelial function measurement system 800 is basically the same as the vascular endothelial function evaluation process in the vascular endothelial function measurement system 100 described with reference to FIGS. 6A and 6B. Since the contents of the evaluation process in step S642 are different, here, the evaluation value calculation / display process in the vascular endothelial function measurement system 800 will be described with reference to FIG.
  • FIG. 9 is a diagram showing changes in the delay time calculated by the information processing apparatus 130 of the vascular endothelial function measuring system 800.
  • reference numeral 701 denotes a change in the delay time during the rest time calculated based on the pulse wave data detected by the pulse wave detection device 120.
  • the arm to which the cuff unit 111 is attached the left arm in the example of FIG. 8
  • since the calculation of the delay time is temporarily stopped during the ischemic time there is no data on the delay time during the ischemic time.
  • reference numeral 901 indicates a change in delay time calculated based on the pulse wave data detected by the pulse wave detection device 820. Since the arm to which the pulse wave detector 820 is attached (the right arm in the example of FIG. 8) is not occluded, the calculation of the delay time is continued even while the arm to which the cuff unit 111 is attached is occluded.
  • Reference numeral 921 denotes a delay time calculated based on pulse wave data from the pulse wave detection device 120 immediately after resumption of blood flow, and a delay calculated based on the pulse wave data from the pulse wave detection device 820 at that time.
  • the difference value with time is shown.
  • 922 is the delay time when the delay time is the longest among the delay times calculated based on the pulse wave data from the pulse wave detection device 120 in the reactive hyperemia time after resuming blood flow, The difference value with the delay time computed based on the pulse wave data from the pulse wave detection apparatus 820 is shown.
  • 923 indicates the time from when the blood flow is resumed until the delay time becomes the longest.
  • the pulse wave data from the pulse wave detection device 820 is used.
  • the delay time becomes longer than the delay time calculated in the above.
  • the blood vessel diameter further increases slightly and expands to the maximum blood vessel diameter, and then gradually approaches the blood vessel diameter of the arm on which the cuff portion 111 is not attached.
  • the delay time also slightly increases after shifting to the reactive hyperemia time, reaches the maximum value, and gradually approaches the delay time calculated based on the pulse wave data from the pulse wave detector 820. .
  • the value of the difference value 922 becomes small. Even if the difference value 922 is the same, the value of the time 923 increases when the vascular endothelial function is impaired. Furthermore, when the blood vessel is hard, the value of the difference value 921 becomes small.
  • the difference values 921, 922 and time 923 are calculated as evaluation values indicating the vascular endothelial function and displayed to the measurer.
  • the examiner's vascular endothelial function can be evaluated.
  • the hardness of the blood vessel of the subject can also be evaluated.
  • the evaluation value is calculated based on the delay time calculated based on the pulse wave data from the pulse wave detection device 820 at the same time, a more accurate evaluation value can be calculated. It becomes.
  • the upstream pulse wave detection unit is attached to the wrist part and the downstream pulse wave detection part is attached to the fingertip part. If attached along, it may be attached to other parts.
  • the pulse wave detection device 820 is mounted on the arm opposite to the arm on which the cuff unit 111 is mounted.
  • the present invention is not limited to this, and the upstream side Other regions may be used as long as they are regions where the cuff portion 111 is not attached (that is, regions that are not affected by ischemia).
  • the information processing apparatus 130 executes the vascular endothelial function evaluation process.
  • the pulse wave data detected by the pulse wave detection device may be transmitted to the compression device, and the vascular endothelial function evaluation process may be executed in the compression device.
  • the compression device may be configured to be driven based on an instruction from the pulse wave detection device, and the intravascular function evaluation process may be executed in the pulse wave detection device.

Abstract

The present invention achieves highly accurate vascular-endothelium-function assessment by using a simple method. This information processing device (130) is equipped with: a means for obtaining first pulse wave data detected by a pulse wave detector (121) mounted on the upstream side in the direction of blood flow, and second pulse wave data detected by a pulse wave detector (122) mounted on the downstream side of the pulse wave detector (121) in the direction of blood flow; a first calculation means for calculating a delay time which is the time difference between each pulse wave included in the first pulse wave data and each corresponding pulse wave included in the second pulse wave data; and a second calculation means for, after reopening blood flow when reopening blood flow after restricting blood for a prescribed interval of time at a location farther upstream in the direction of blood flow than the position at which the pulse wave detector (121) is mounted, calculating an assessment value pertaining to vascular-endothelium function by using the delay time calculated by the first calculation means.

Description

情報処理装置及び血管内皮機能測定システムInformation processing apparatus and vascular endothelial function measuring system
 本発明は、被検者の血管内皮機能を測定するシステム及び情報処理装置に関するものである。 The present invention relates to a system and an information processing apparatus for measuring a vascular endothelial function of a subject.
 血管内皮機能障害は、動脈硬化の器質的変化が起きる前の段階から現れる障害であり、血液内のLDL(悪玉コレステロール)の増加や、血圧上昇、酸化ストレスの増加等の因子により引き起こされる。一般に、血管内皮機能が低下すると、NO(一酸化窒素)などの血管拡張物質の産生が減り、臓器としての血管の機能に障害が生じる。 Vascular endothelial dysfunction is a disorder that appears from the stage before the organic change of arteriosclerosis occurs, and is caused by factors such as increased LDL (bad cholesterol) in the blood, increased blood pressure, and increased oxidative stress. In general, when the vascular endothelial function decreases, the production of vasodilators such as NO (nitrogen monoxide) decreases, and the function of the blood vessel as an organ is impaired.
 近年、血管内皮機能を評価するための検査として、血流依存性血管拡張反応検査(FMD:Flow Mediated Dilation)が注目されている。血流依存性血管拡張反応検査は、カフで腕を締め付けた後の血流増大による“ずり応力”により血管拡張物質であるNO(一酸化窒素)が血管内皮からどれだけ放出されたかを評価するものである。 Recently, as a test for evaluating vascular endothelial function, a blood flow dependent vasodilation test (FMD) has been attracting attention. The blood flow-dependent vasodilator test evaluates how much NO (nitrogen monoxide), a vasodilator, is released from the vascular endothelium by “shear stress” due to increased blood flow after the arm is clamped with a cuff. Is.
 NO(一酸化窒素)がどれだけ放出されたかは、カフにより締め付けられた血管が血流再開後にどれだけ拡張したかを測定することによりわかることから、従来、血流依存性血管拡張反応検査では、超音波エコーを用いて血管径を測定していた。 Since how much NO (nitrogen monoxide) has been released can be determined by measuring how much the blood vessel clamped by the cuff has dilated after resumption of blood flow, The blood vessel diameter was measured using an ultrasonic echo.
特開2009-219716号公報JP 2009-219716 A
 しかしながら、血管径の測定に超音波エコーを用いる方法の場合、コストがかかるうえ、測定者の手技に起因する測定値のばらつきが大きいため、再現性に欠けるといった問題がある。このようなことから、測定者の手技によらず、より簡易な方法で血管内皮機能の評価を行うことが可能な血管内皮機能測定システムの実現が望まれている。 However, in the method using ultrasonic echoes for measuring the blood vessel diameter, there are problems that the cost is high and the variation in measured values due to the procedure of the measurer is large, so that reproducibility is lacking. For this reason, it is desired to realize a vascular endothelial function measuring system that can evaluate vascular endothelial function by a simpler method regardless of the measurer's technique.
 本発明は上記課題に鑑みてなされたものであり、精度の高い血管内皮機能評価を簡易な方法により実現することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to realize highly accurate evaluation of vascular endothelial function by a simple method.
 上記の目的を達成するために、本発明に係る情報処理装置は以下のような構成を備える。即ち、
 血流方向の上流側に装着された第1の脈波検出部にて検出された第1の脈波データと、前記第1の脈波検出部よりも、前記血流方向において下流側に装着された第2の脈波検出部にて検出された第2の脈波データと、を取得する取得手段と、
 前記第1の脈波データに含まれる各脈波と、前記第2の脈波データに含まれる、対応する各脈波との間の時間差として第1の遅延時間を算出する第1の算出手段と、
 前記第1の脈波検出部が装着された位置よりも、前記血流方向において上流側の位置において所定時間の阻血が行われた後に、血流を再開させた場合において、再開後に、前記第1の算出手段により算出される前記第1の遅延時間を用いて、血管内皮機能に関する評価値を算出する第2の算出手段とを備える。
In order to achieve the above object, an information processing apparatus according to the present invention comprises the following arrangement. That is,
First pulse wave data detected by a first pulse wave detection unit mounted upstream in the blood flow direction, and mounted downstream in the blood flow direction from the first pulse wave detection unit Acquisition means for acquiring second pulse wave data detected by the second pulse wave detection unit,
First calculation means for calculating a first delay time as a time difference between each pulse wave included in the first pulse wave data and each corresponding pulse wave included in the second pulse wave data. When,
When blood flow is resumed after ischemia is performed for a predetermined time at a position upstream in the blood flow direction from the position where the first pulse wave detection unit is mounted, And second calculation means for calculating an evaluation value related to the vascular endothelial function using the first delay time calculated by the first calculation means.
 本発明によれば、精度の高い血管内皮機能評価を簡易な方法により実現することが可能となる。 According to the present invention, highly accurate evaluation of vascular endothelial function can be realized by a simple method.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、本発明の第1の実施形態にかかる血管内皮機能測定システム100の外観構成を示す図である。 図2は、血管内皮機能測定システム100を構成する圧迫装置の機能構成を示す図である。 図3は、血管内皮機能測定システム100を構成する脈波検出装置の機能構成を示す図である。 図4は、血管内皮機能測定システム100を構成する情報処理装置の機能構成を示す図である。 図5は、脈波検出装置により測定される脈波の一例を示す図である。 図6Aは、血管内皮機能測定システム100における血管内皮機能評価処理の流れを示すシーケンス図である。 図6Bは、血管内皮機能測定システム100における血管内皮機能評価処理の流れを示すシーケンス図である。 図7は、血管内皮機能評価処理において、血管内皮機能を示す評価値を算出するために用いられる評価パラメータの時間変化を示す図である。 図8は、本発明の第2の実施形態に係る血管内皮機能測定システム800の外観構成を示す図である。 図9は、血管内皮機能評価処理において、血管内皮機能を示す評価値を算出するために用いられる評価パラメータの時間変化を示す図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
FIG. 1 is a diagram showing an external configuration of a vascular endothelial function measuring system 100 according to the first embodiment of the present invention. FIG. 2 is a diagram showing a functional configuration of the compression device constituting the vascular endothelial function measuring system 100. FIG. 3 is a diagram showing a functional configuration of the pulse wave detection device constituting the vascular endothelial function measuring system 100. FIG. 4 is a diagram illustrating a functional configuration of the information processing apparatus that constitutes the vascular endothelial function measuring system 100. FIG. 5 is a diagram illustrating an example of a pulse wave measured by the pulse wave detection device. FIG. 6A is a sequence diagram showing the flow of the vascular endothelial function evaluation process in the vascular endothelial function measuring system 100. FIG. 6B is a sequence diagram showing the flow of the vascular endothelial function evaluation process in the vascular endothelial function measuring system 100. FIG. 7 is a diagram showing temporal changes in evaluation parameters used to calculate an evaluation value indicating vascular endothelial function in the vascular endothelial function evaluation process. FIG. 8 is a diagram showing an external configuration of a vascular endothelial function measuring system 800 according to the second embodiment of the present invention. FIG. 9 is a diagram showing temporal changes in evaluation parameters used to calculate an evaluation value indicating vascular endothelial function in the vascular endothelial function evaluation process.
 以下の各実施形態では、カフ部により締め付けられた血管が血流再開後にどれだけ拡張したかを測定するにあたり、血管の拡張度と脈波の伝達時間との相関に着目し、カフ部により締め付けられた血管の血流再開後の脈波の伝達時間と、カフ部により締め付けられていない安定した状態での脈波の伝達時間とを測定することにより、血管内皮機能の評価を行うこととした。 In each of the following embodiments, when measuring how much the blood vessel tightened by the cuff part has expanded after resumption of blood flow, attention is paid to the correlation between the degree of dilation of the blood vessel and the transmission time of the pulse wave, and tightening by the cuff part is performed. Vascular endothelial function was evaluated by measuring the transmission time of the pulse wave after resumption of blood flow in the blood vessel and the transmission time of the pulse wave in a stable state not tightened by the cuff part .
 このように、血管の拡張度を脈波の伝達時間に置き換えて測定する構成とすることで、従来の、血管径を超音波エコーにより直接測定する方法と比べて、簡易かつ精度の高い血管内皮機能評価を実現することが可能となった。 Thus, by adopting a configuration in which the degree of expansion of the blood vessel is measured by replacing the pulse wave transmission time, the vascular endothelium is simpler and more accurate than the conventional method of directly measuring the blood vessel diameter by ultrasonic echo. It became possible to realize functional evaluation.
 以下、本発明の各実施形態について添付図面を参照しながら詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiment described below is a preferred specific example of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise stated, the present invention is not limited to these embodiments.
 [第1の実施形態]
 <1.血管内皮機能測定システムの外観構成>
 図1は、本発明の第1の実施形態に係る血管内皮機能測定システム100の外観構成を示す図である。図1に示すように、血管内皮機能測定システム100は、被検者の上腕を圧迫することにより所定時間阻血を行う圧迫装置110と、圧迫装置110により圧迫される側の腕の末端の領域において、手首部分と指先部分とにそれぞれ装着され脈波の検出を行う脈波検出装置120と、圧迫装置110と脈波検出装置120とにそれぞれ接続され、血管内皮機能測定システム100全体の制御と、被検者の血管内皮機能の評価とを行う情報処理装置130と、を備える。
[First Embodiment]
<1. Appearance of Vascular Endothelial Function Measurement System>
FIG. 1 is a diagram showing an external configuration of a vascular endothelial function measuring system 100 according to the first embodiment of the present invention. As shown in FIG. 1, the vascular endothelial function measuring system 100 includes a compression device 110 that performs ischemia for a predetermined time by compressing the upper arm of a subject, and a region at the end of the arm that is compressed by the compression device 110. , A pulse wave detection device 120 for detecting a pulse wave attached to the wrist portion and the fingertip portion, respectively, and connected to the compression device 110 and the pulse wave detection device 120, respectively, to control the entire vascular endothelial function measurement system 100; And an information processing device 130 that performs evaluation of the vascular endothelial function of the subject.
 圧迫装置110は、被検者の上腕に装着されるカフ部111と、カフ部111の空気袋を加圧するポンプ及びカフ部111の空気袋の空気を排出する急速排気弁等を含み、ポンプや急速排気弁等の駆動を制御する駆動制御部112とを備え、カフ部111と駆動制御部112とは、配管113により接続されている。 The compression device 110 includes a cuff part 111 attached to the upper arm of the subject, a pump that pressurizes the air bag of the cuff part 111, a quick exhaust valve that discharges air from the air bag of the cuff part 111, and the like. A drive control unit 112 that controls driving of a quick exhaust valve or the like is provided, and the cuff unit 111 and the drive control unit 112 are connected by a pipe 113.
 脈波検出装置120は、被検者の手首部分に装着され、手首部分の血管に赤外線を照射することにより手首部分の脈波を検出する上流脈波検出部121と、指先部分の血管に赤外線を照射することにより指先部分の脈波を検出する下流脈波検出部122と、を備える。 The pulse wave detection device 120 is mounted on the wrist portion of the subject, and detects the pulse wave of the wrist portion by irradiating the blood vessel of the wrist portion with infrared rays, and the infrared ray on the blood vessel of the fingertip portion. And a downstream pulse wave detection unit 122 that detects the pulse wave of the fingertip portion by irradiating the fingertip.
 更に、上流脈波検出部121において検出された脈波データと、下流脈波検出部122において検出された脈波データとを受信し、情報処理装置130に送信する測定制御部123を備え、上流脈波検出部121及び下流脈波検出部122と、測定制御部123とは、それぞれ信号線124、125を介して接続されている。 Furthermore, the apparatus includes a measurement control unit 123 that receives and transmits the pulse wave data detected by the upstream pulse wave detection unit 121 and the pulse wave data detected by the downstream pulse wave detection unit 122 to the information processing device 130. The pulse wave detector 121, the downstream pulse wave detector 122, and the measurement controller 123 are connected via signal lines 124 and 125, respectively.
 情報処理装置130は、圧迫装置110に対して、阻血指示及び排気指示を送信するとともに、脈波検出装置120より脈波データを受信し、被検者の手首部分から指先部分までの脈波の伝達時間を算出することにより、被検者の血管内皮機能を評価する。なお、本実施形態において、圧迫装置110及び脈波検出装置120と、情報処理装置130とは、それぞれ信号線131、132を介して接続される構成としているが、本発明はこれに限定されず、無線により接続される構成としてもよい。 The information processing device 130 transmits an ischemia command and an exhaust command to the compression device 110, receives pulse wave data from the pulse wave detection device 120, and generates a pulse wave from the wrist portion of the subject to the fingertip portion. The vascular endothelial function of the subject is evaluated by calculating the transmission time. In the present embodiment, the compression device 110, the pulse wave detection device 120, and the information processing device 130 are connected via the signal lines 131 and 132, respectively, but the present invention is not limited to this. Alternatively, a wireless connection may be employed.
 <2.圧迫装置110の機能構成>
 次に、圧迫装置110の機能構成について説明する。図2は、圧迫装置110の機能構成を示す図である。
<2. Functional configuration of compression device 110>
Next, the functional configuration of the compression device 110 will be described. FIG. 2 is a diagram illustrating a functional configuration of the compression device 110.
 図2に示すように、圧迫装置110は、被検者の圧迫部位に装着されるカフ部111と、駆動制御部112とを備え、駆動制御部112には、圧迫装置110全体を制御するとともに、カフ部の内圧を変更するための加圧ポンプ及び急速排気弁を動作させる制御部230が収容されている。なお、カフ部111と駆動制御部112との間は、配管113により接続されている。以下、各部111~113の詳細について説明する。 As shown in FIG. 2, the compression device 110 includes a cuff portion 111 to be attached to the compression site of the subject and a drive control unit 112, and the drive control unit 112 controls the entire compression device 110. A control unit 230 for operating a pressurizing pump and a quick exhaust valve for changing the internal pressure of the cuff unit is housed. The cuff unit 111 and the drive control unit 112 are connected by a pipe 113. Details of each of the units 111 to 113 will be described below.
 カフ部111は、内部に、阻血用カフ201が配されている。阻血用カフ201は、配管113を介して送られてきた空気により内部圧力が最高血圧値以上に上げられることで、カフ部111が装着された被検者の圧迫部位を圧迫し動脈血管を阻血する。その後、急速排気弁224を介して排気を行うことで急速減圧を行う。 The cuff part 111 has a cuff 201 for ischemia arranged inside. The cuff 201 for ischemia pressurizes the compression site of the subject to which the cuff part 111 is attached and blocks the arterial blood vessels by increasing the internal pressure to the maximum blood pressure or higher by the air sent through the pipe 113. To do. Then, rapid decompression is performed by exhausting through the rapid exhaust valve 224.
 配管113は、阻血用カフ201へ送られる空気及び阻血用カフ201から排出される空気を搬送する。また、配管113を駆動制御部112に接続するための配管コネクタ211を備える。 The pipe 113 conveys air sent to the ischemic cuff 201 and air discharged from the ischemic cuff 201. Further, a piping connector 211 for connecting the piping 113 to the drive control unit 112 is provided.
 駆動制御部112には、駆動制御部側配管コネクタ221が配されており、配管113の配管コネクタ211は、当該駆動制御部側配管コネクタ221を介して駆動制御部112に接続される。駆動制御部側配管コネクタ221には、加圧ポンプ222及び急速排気弁224が接続されており、制御部230からの指示に基づいて、阻血用カフ201の加圧及び減圧を行う。 The drive control unit 112 is provided with a drive control unit side pipe connector 221, and the pipe connector 211 of the pipe 113 is connected to the drive control unit 112 via the drive control unit side pipe connector 221. A pressurization pump 222 and a quick exhaust valve 224 are connected to the drive control unit side piping connector 221, and pressurization and depressurization of the ischemic cuff 201 are performed based on instructions from the control unit 230.
 更に、圧力センサ223が接続されており、加圧ポンプ222により加圧された阻血用カフ201内の圧力値を検出する。圧力センサ223において検出された圧力値は制御部230に入力され、加圧ポンプ222の駆動停止等の制御に用いられる。 Furthermore, a pressure sensor 223 is connected to detect the pressure value in the cuff 201 for ischemia pressurized by the pressurizing pump 222. The pressure value detected by the pressure sensor 223 is input to the control unit 230 and is used for control such as driving stop of the pressure pump 222.
 制御部230には、更に電源ボタン225、操作ボタン226、外部装置I/F部227、表示部228、電源部229が接続されている。電源ボタン225をON操作すると、電源部229より制御部230を介して、各部に電力が供給される。 Further connected to the control unit 230 are a power button 225, an operation button 226, an external device I / F unit 227, a display unit 228, and a power source unit 229. When the power button 225 is turned on, power is supplied from the power supply unit 229 to each unit via the control unit 230.
 また、制御部230は、外部装置I/F部227を介して、情報処理装置130と通信可能に接続されており、情報処理装置130より、阻血指示や、排気指示等を受信する。また、情報処理装置130に対して、加圧ポンプ222の駆動が停止したことを示す駆動停止信号を送信する。 In addition, the control unit 230 is connected to the information processing device 130 via the external device I / F unit 227 so as to be communicable, and receives a blood-blocking instruction, an exhaust instruction, and the like from the information processing device 130. In addition, a drive stop signal indicating that the drive of the pressure pump 222 has been stopped is transmitted to the information processing apparatus 130.
 表示部228は、圧迫装置110の内部状態(加圧ポンプ222の駆動/停止、急速排気弁224の開/閉、圧力センサの圧力値等)を表示する。なお、表示部228の表示内容は、操作ボタン226の操作により切り換えられるものとする。 The display unit 228 displays the internal state of the compression device 110 (driving / stopping of the pressurizing pump 222, opening / closing of the quick exhaust valve 224, pressure value of the pressure sensor, etc.). Note that the display content of the display unit 228 is switched by the operation of the operation button 226.
 <3.脈波検出装置120の機能構成>
 次に、脈波検出装置120の機能構成について説明する。図3は、脈波検出装置120の機能構成を示す図である。
<3. Functional Configuration of Pulse Wave Detection Device 120>
Next, the functional configuration of the pulse wave detection device 120 will be described. FIG. 3 is a diagram illustrating a functional configuration of the pulse wave detection device 120.
 図3に示すように、脈波検出装置120は、被検者の手首部分に装着される上流脈波検出部121と、指先部分に装着される下流脈波検出部122と、上流脈波検出部121及び下流脈波検出部122それぞれにおいて検出された脈波データを情報処理装置130に送信する測定制御部123とを備える。 As shown in FIG. 3, the pulse wave detection device 120 includes an upstream pulse wave detection unit 121 attached to the wrist portion of the subject, a downstream pulse wave detection unit 122 attached to the fingertip portion, and upstream pulse wave detection. A measurement control unit 123 that transmits the pulse wave data detected in each of the unit 121 and the downstream pulse wave detection unit 122 to the information processing apparatus 130.
 上流脈波検出部121及び下流脈波検出部122は、それぞれ、赤外線を発光する赤外線発光部311、321と、赤外線を受光する赤外線受光部312、322とを備える。なお、被検者の手首部分に装着される上流脈波検出部121では、赤外線発光部311から発光され、手首部分の内部の血管において反射した赤外線を、赤外線受光部312において受光する。 The upstream pulse wave detecting unit 121 and the downstream pulse wave detecting unit 122 include infrared light emitting units 311 and 321 that emit infrared rays, and infrared light receiving units 312 and 322 that receive infrared rays, respectively. In the upstream pulse wave detection unit 121 attached to the wrist portion of the subject, the infrared light receiving unit 312 receives the infrared light emitted from the infrared light emitting unit 311 and reflected by the blood vessel inside the wrist portion.
 一方、被検者の指先部分に装着される下流脈波検出部122では、赤外線発光部321から発光され、被検者の指先部分の内部の血管を透過した赤外線を、赤外線受光部322において受光する。 On the other hand, in the downstream pulse wave detector 122 attached to the fingertip portion of the subject, the infrared light receiving portion 322 receives the infrared light emitted from the infrared light emitting portion 321 and transmitted through the blood vessel inside the subject's fingertip portion. To do.
 赤外線発光部311、321による赤外線の発光、及び、赤外線受光部312、322において受光した赤外線信号の処理は、脈波センサ回路331、335においてそれぞれ実行される。脈波センサ回路331、335それぞれに入力された赤外線信号は、波形成形回路332、334において波形成形された後、制御部333に入力され、脈波データとして、外部機器I/F部336を介して、情報処理装置130に送信される。 The infrared light emission by the infrared light emitting units 311 and 321 and the processing of the infrared signal received by the infrared light receiving units 312 and 322 are executed by the pulse wave sensor circuits 331 and 335, respectively. Infrared signals input to the pulse wave sensor circuits 331 and 335 are subjected to waveform shaping in the waveform shaping circuits 332 and 334, and then input to the control unit 333, and as pulse wave data via the external device I / F unit 336. Is transmitted to the information processing apparatus 130.
 なお、制御部333では、外部機器I/F部336を介して情報処理装置130より送信された脈波検出開始指示及び脈波検出終了指示に基づいて、赤外線発光部311、321による発光、赤外線受光部312、322による受光等を制御する。 In the control unit 333, based on the pulse wave detection start instruction and the pulse wave detection end instruction transmitted from the information processing apparatus 130 via the external device I / F unit 336, light emission by the infrared light emission units 311 and 321 and infrared light Controls light reception and the like by the light receiving units 312 and 322.
 <4.情報処理装置130の機能構成>
 次に、情報処理装置130の機能構成について説明する。図4は、情報処理装置130の機能構成を示す図である。
<4. Functional configuration of information processing apparatus 130>
Next, the functional configuration of the information processing apparatus 130 will be described. FIG. 4 is a diagram illustrating a functional configuration of the information processing apparatus 130.
 図4に示すように、情報処理装置130は、制御部(コンピュータ)401と、メモリ部402と、記憶部403と、表示部404と、入力部405と、外部機器I/F部406とを備え、各部は、バス407を介して相互に接続されている。 As illustrated in FIG. 4, the information processing apparatus 130 includes a control unit (computer) 401, a memory unit 402, a storage unit 403, a display unit 404, an input unit 405, and an external device I / F unit 406. Each unit is connected to each other via a bus 407.
 ハードディスク等で構成される記憶部403には、制御部333により実行されることにより、血管内皮機能評価部411として機能するプログラムが格納されている。当該プログラムは、制御部401による制御のもと、ワークエリアとして機能するメモリ部402(例えば、RAM)に適宜読み込まれ、制御部401によって実行されることで、当該機能が実現される。なお、制御部401によって当該プログラムが実行されることにより取得されるデータは、脈波データ(手首)412、脈波データ(指先)413として、記憶部403に記録される。 The storage unit 403 configured with a hard disk or the like stores a program that functions as the vascular endothelial function evaluation unit 411 by being executed by the control unit 333. The program is appropriately read into a memory unit 402 (for example, a RAM) functioning as a work area under the control of the control unit 401 and executed by the control unit 401, thereby realizing the function. Note that data acquired by executing the program by the control unit 401 is recorded in the storage unit 403 as pulse wave data (wrist) 412 and pulse wave data (fingertip) 413.
 表示部404は、制御部401に当該プログラムを実行させるためのユーザインタフェースを表示したり、血管内皮機能評価結果を表示したりする。入力部405は、当該プログラムを実行させるための指示を入力するものであり、キーボードやポインティングデバイス(マウス等)で構成される。外部機器I/F部406は、圧迫装置110及び脈波検出装置120と通信可能に接続するためのインタフェースであり、情報処理装置130では、外部機器I/F部406を介して、圧迫装置110に阻血指示や排気指示を送信したり、圧迫装置110からポンプ駆動停止信号を受信したりする。また、脈波検出装置120に対して脈波検出開始指示及び脈波検出終了指示を送信したり、脈波検出装置120から送信された脈波データを受信したりする。 The display unit 404 displays a user interface for causing the control unit 401 to execute the program, or displays a vascular endothelial function evaluation result. The input unit 405 inputs an instruction for executing the program, and includes a keyboard and a pointing device (such as a mouse). The external device I / F unit 406 is an interface for communicably connecting to the compression device 110 and the pulse wave detection device 120. In the information processing device 130, the compression device 110 is connected via the external device I / F unit 406. The ischemia instruction or the exhaust instruction is transmitted to the apparatus, or the pump drive stop signal is received from the compression device 110. Further, a pulse wave detection start instruction and a pulse wave detection end instruction are transmitted to the pulse wave detection device 120, and pulse wave data transmitted from the pulse wave detection device 120 is received.
 なお、本実施形態では、外部機器I/F部406は、USB、IEEE1394等の有線インタフェースで実現されるが、無線LAN、ブルートゥース等の無線インタフェースで実現されてもよい。 In the present embodiment, the external device I / F unit 406 is realized by a wired interface such as USB or IEEE1394, but may be realized by a wireless interface such as a wireless LAN or Bluetooth.
 <5.脈波データについての説明>
 次に、脈波検出装置120において検出され、情報処理装置130に送信される脈波データ(手首)及び脈波データ(指先)について説明する。図5は、脈波検出装置120において検出される脈波データの一例を示す図である。
<5. Explanation of pulse wave data>
Next, pulse wave data (wrist) and pulse wave data (fingertip) detected by the pulse wave detection device 120 and transmitted to the information processing device 130 will be described. FIG. 5 is a diagram illustrating an example of pulse wave data detected by the pulse wave detection device 120.
 図5に示すように、血流方向に対して上流側に位置する上流脈波検出部121と、下流側に位置する下流脈波検出部122とでは、対応する脈波の検出タイミングにずれが生じる。図5において、501は上流脈波検出部121において検出された脈波であり、502は下流脈波検出部122において検出された脈波である。 As shown in FIG. 5, the upstream pulse wave detection unit 121 located on the upstream side with respect to the blood flow direction and the downstream pulse wave detection unit 122 located on the downstream side have a difference in detection timing of the corresponding pulse waves. Arise. In FIG. 5, 501 is a pulse wave detected by the upstream pulse wave detection unit 121, and 502 is a pulse wave detected by the downstream pulse wave detection unit 122.
 ここで、脈波501と対応する脈波502との間の時間差(以下、当該時間差を「遅延時間」と称す)は、上流脈波検出部121の装着位置と、下流脈波検出部122の装着位置との間の距離に加え、圧迫装置110のカフ部111により圧迫された上腕の血管の拡張度に依存する。 Here, the time difference between the pulse wave 501 and the corresponding pulse wave 502 (hereinafter, the time difference is referred to as “delay time”) is determined by the mounting position of the upstream pulse wave detection unit 121 and the downstream pulse wave detection unit 122. In addition to the distance to the mounting position, it depends on the degree of expansion of the upper arm blood vessel compressed by the cuff 111 of the compression device 110.
 つまり、カフ部111により締め付けられた血管が拡張せず、細動脈以上の大きさの動脈内圧力となると、脈波の伝達速度が遅くなる一方で、血管が拡張すると、脈波の伝達速度が十分に速くなる。 That is, when the blood vessel clamped by the cuff part 111 does not expand and the intra-arterial pressure is larger than the arteriole, the pulse wave transmission speed is slowed down. On the other hand, when the blood vessel is expanded, the pulse wave transmission speed is reduced. Be fast enough.
 したがって、上流脈波検出部121の装着位置と、下流脈波検出部122の装着位置との間の距離が一定の場合、カフ部111により締め付けられた血管が拡張していない状態では、遅延時間が長くなる。反対に、血管が十分に拡張した状態では、遅延時間は短くなる。 Therefore, when the distance between the mounting position of the upstream pulse wave detection unit 121 and the mounting position of the downstream pulse wave detection unit 122 is constant, the delay time is set when the blood vessel clamped by the cuff unit 111 is not expanded. Becomes longer. On the contrary, when the blood vessel is sufficiently dilated, the delay time is shortened.
 このように、カフ部111により締め付けられた血管がどれだけ拡張したかを測定するにあたり、遅延時間の変化を監視することは、測定者の手技の影響を排除し、低コストで簡易に実現できるという観点において極めて有効である。 Thus, in measuring how much the blood vessel clamped by the cuff part 111 is expanded, monitoring the change in the delay time can be easily realized at a low cost by eliminating the influence of the measurer's procedure. It is extremely effective from the viewpoint of.
 <6.血管内皮機能評価処理の流れ>
 次に、血管内皮機能測定システム100における血管内皮機能評価処理の流れを説明する。図6A、図6Bは、血管内皮機能測定システム100における血管内皮機能評価処理の流れを示すフローチャートである。
<6. Flow of vascular endothelial function evaluation process>
Next, the flow of vascular endothelial function evaluation processing in the vascular endothelial function measuring system 100 will be described. 6A and 6B are flowcharts showing the flow of the vascular endothelial function evaluation process in the vascular endothelial function measuring system 100. FIG.
 圧迫装置110及び脈波検出装置120を情報処理装置130と通信可能に接続し、圧迫装置110のカフ部111を被検者の上腕に、脈波検出装置120の上流脈波検出部121を被検者の手首部分に、更に、下流脈波検出部122を被検者の指先部分にそれぞれ装着することで、測定準備が完了すると、ステップS631では、情報処理装置130の血管内皮機能評価部411を起動する。 The compression device 110 and the pulse wave detection device 120 are communicably connected to the information processing device 130, the cuff portion 111 of the compression device 110 is placed on the upper arm of the subject, and the upstream pulse wave detection portion 121 of the pulse wave detection device 120 is covered. When the preparation for measurement is completed by attaching the downstream pulse wave detection unit 122 to the examinee's wrist and the fingertip portion of the examinee, in step S631, the vascular endothelial function evaluation unit 411 of the information processing apparatus 130 is completed. Start up.
 ステップS631では、脈波検出装置120に対して、情報処理装置130が脈波検出開始指示を送信する。脈波検出開始指示が送信された脈波検出装置120では、ステップS621において脈波の検出を開始し、検出した脈波データ(手首)及び脈波データ(指先)を情報処理装置130に送信する。 In step S631, the information processing device 130 transmits a pulse wave detection start instruction to the pulse wave detection device 120. In the pulse wave detection device 120 to which the pulse wave detection start instruction has been transmitted, detection of the pulse wave is started in step S621, and the detected pulse wave data (wrist) and pulse wave data (fingertip) are transmitted to the information processing device 130. .
 ステップS633では、脈波検出装置120より送信される、脈波データ(手首)及び脈波データ(指先)を記憶部403に記録するとともに、脈波データ(手首)と脈波データ(指先)との間の対応する脈波の遅延時間の算出を開始する。 In step S633, the pulse wave data (wrist) and pulse wave data (fingertip) transmitted from the pulse wave detector 120 are recorded in the storage unit 403, and the pulse wave data (wrist) and pulse wave data (fingertip) The calculation of the delay time of the corresponding pulse wave during is started.
 遅延時間の算出が開始されると、ステップS634では、被検者に対して、安静にすべき旨のメッセージを表示し、ステップS635では、所定時間(安静時間、例えば、3分間)のカウントを開始する。 When calculation of the delay time is started, in step S634, a message indicating that the subject should be rested is displayed, and in step S635, a predetermined time (rest time, for example, 3 minutes) is counted. Start.
 ステップS635において、所定時間が経過したと判定された場合には、ステップS636に進み、圧迫装置110に対して、阻血指示を送信する。 If it is determined in step S635 that the predetermined time has elapsed, the process proceeds to step S636, and a hemostasis instruction is transmitted to the compression device 110.
 ステップS636において阻血指示が送信された圧迫装置110では、ステップS611において、加圧ポンプ222の駆動を開始する。加圧ポンプ222の駆動を開始すると、圧迫装置110では、圧力センサ223より出力される圧力値に基づいて、阻血用カフ201内の圧力値の監視を開始し、ステップS612では、阻血用カフ201内の圧力値が所定の圧力値(例えば、被検者の最高血圧値)以上に到達したか否かを判定する。 In step S636, the compression device 110 to which the ischemic instruction is transmitted starts driving the pressurizing pump 222 in step S611. When the driving of the pressurizing pump 222 is started, the compression device 110 starts monitoring the pressure value in the ischemic cuff 201 based on the pressure value output from the pressure sensor 223. In step S612, the ischemic cuff 201 is started. It is determined whether or not the internal pressure value has reached a predetermined pressure value (for example, the maximum blood pressure value of the subject) or more.
 ステップS612において、所定の圧力値に到達していないと判定した場合には、到達するまで加圧ポンプ222の駆動を継続する。一方、所定の圧力値に到達したと判定した場合には、ステップS613に進み、加圧ポンプ222の駆動を停止するとともに、ポンプ駆動停止信号を、情報処理装置130に送信する。 If it is determined in step S612 that the predetermined pressure value has not been reached, the pressurization pump 222 is continuously driven until it reaches the predetermined pressure value. On the other hand, if it is determined that the predetermined pressure value has been reached, the process proceeds to step S613, where the drive of the pressurizing pump 222 is stopped and a pump drive stop signal is transmitted to the information processing device 130.
 ステップS636において阻血指示を送信していた情報処理装置130では、ステップS633において開始した、遅延時間の算出を、ステップS637において一旦停止する。加圧ポンプ222の駆動により、カフ部111により上腕の血管が締め付けられることで、脈波検出装置120における脈波の検出が行えなくなるからである。 In the information processing apparatus 130 that has transmitted the ischemic instruction in step S636, the calculation of the delay time started in step S633 is temporarily stopped in step S637. This is because, by driving the pressurizing pump 222, the blood vessel of the upper arm is tightened by the cuff unit 111, so that the pulse wave detection device 120 cannot detect the pulse wave.
 遅延時間の算出を停止した状態で、ポンプ駆動停止信号を受信した情報処理装置130では、ステップS638において、所定時間(阻血時間、例えば、2分間)のカウントを開始する。 In the information processing apparatus 130 that has received the pump drive stop signal in a state where the calculation of the delay time is stopped, in step S638, the count of a predetermined time (blood occlusion time, for example, 2 minutes) is started.
 ステップS638において、阻血状態が所定時間以上継続したと判定された場合には、ステップS639に進み、圧迫装置110に対して、排気指示を送信する。 If it is determined in step S638 that the ischemic state has continued for a predetermined time or longer, the process proceeds to step S639, and an exhaust instruction is transmitted to the compression device 110.
 ステップS639において、排気指示が送信された圧迫装置110では、ステップS614において、急速排気弁224を開動作させ、阻血用カフ201内の空気を強制的に排出することで血流を再開させる。 In step S639, the compression device 110 to which the exhaust instruction has been transmitted opens the quick exhaust valve 224 in step S614, and the blood in the ischemic cuff 201 is forcibly discharged to restart the blood flow.
 一方、排気指示を送信した情報処理装置130では、ステップS640において、遅延時間の算出を再開し、ステップS641では、所定時間(反応性充血時間、例えば、5分間)のカウントを開始する。 On the other hand, the information processing apparatus 130 that has transmitted the exhaust instruction restarts the calculation of the delay time in step S640, and starts counting a predetermined time (reactive hyperemia time, for example, 5 minutes) in step S641.
 ステップS641において、反応性充血時間として十分な時間が経過したと判定した場合には、ステップS642に進み、血管内皮機能を示す評価値を算出し、算出した評価値を表示部404に表示する。 If it is determined in step S641 that a sufficient time for reactive hyperemia has elapsed, the process proceeds to step S642, an evaluation value indicating vascular endothelial function is calculated, and the calculated evaluation value is displayed on the display unit 404.
 図7は、血管内皮機能評価処理において、情報処理装置130により算出された遅延時間の変化を示す図である。上述したように、本実施形態に係る血管内皮機能測定システム100では、当該遅延時間を評価パラメータとして、血管内皮機能を示す評価値を算出する。 FIG. 7 is a diagram showing a change in the delay time calculated by the information processing device 130 in the vascular endothelial function evaluation process. As described above, in the vascular endothelial function measuring system 100 according to the present embodiment, the evaluation value indicating the vascular endothelial function is calculated using the delay time as an evaluation parameter.
 図7において、701は安静時間における遅延時間を変化を示している。また、711は、安静時間内における遅延時間の平均値を示している。なお、阻血時間中は、遅延時間の算出が一旦停止されるため、阻血時間中の遅延時間のデータは存在しない。 In FIG. 7, reference numeral 701 indicates a change in the delay time in the rest time. Reference numeral 711 denotes an average value of the delay time within the resting time. Since the calculation of the delay time is temporarily stopped during the ischemic time, there is no data on the delay time during the ischemic time.
 702は血流再開後の反応性充血時間における遅延時間の変化を示している。また、721は、急速排気弁224が開動作し、血流再開直後に算出された遅延時間の、平均値711に対する差分値を示している。722は、反応性充血時間において、最も遅延時間が長かった時点での当該遅延時間の、平均値711に対する差分値を示している。更に、723は、血流が再開されてから、遅延時間が最も長くなるまでの時間を示している。 702 shows the change in the delay time in the reactive hyperemia time after resumption of blood flow. Reference numeral 721 denotes a difference value with respect to the average value 711 of the delay time calculated immediately after the rapid exhaust valve 224 is opened and the blood flow is resumed. Reference numeral 722 denotes a difference value with respect to the average value 711 of the delay time when the delay time is the longest in the reactive hyperemia time. Further, reference numeral 723 denotes a time from when the blood flow is resumed until the delay time becomes the longest.
 図7に示すように、急速排気弁224が開動作し、血流が再開されると血管が拡張するため、反応性充血時間に移行直後は、安静時間における遅延時間よりも遅延時間が長くなる。その後、更に血管径が微増し、最大血管径まで拡張した後に、徐々に安静時間の血管径に戻っていく。このため、遅延時間も、反応性充血時間に移行後、微増し、最大値に到達した後、徐々に、安静時間における遅延時間に近づいていく。 As shown in FIG. 7, when the quick exhaust valve 224 is opened and the blood flow is resumed, the blood vessel expands. Therefore, immediately after the transition to the reactive hyperemia time, the delay time becomes longer than the delay time in the resting time. . Thereafter, the blood vessel diameter further increases slightly, and after expanding to the maximum blood vessel diameter, the blood vessel diameter gradually returns to the resting time. For this reason, the delay time also slightly increases after shifting to the reactive hyperemia time, and after reaching the maximum value, gradually approaches the delay time in the rest time.
 ここで、血管内皮機能が障害されている場合、差分値722の値が小さくなる。また、差分値722の値が同じであっても、血管内皮機能が障害されている場合、時間723の値が大きくなる。更に、血管が硬い場合には、差分値721の値が小さくなる。 Here, when the vascular endothelial function is impaired, the value of the difference value 722 becomes small. Even if the difference value 722 is the same, the value of the time 723 increases when the vascular endothelial function is impaired. Further, when the blood vessel is hard, the value of the difference value 721 becomes small.
 このようなことから、評価パラメータである遅延時間に基づいて、血管内皮機能を示す評価値として、差分値721、722、時間723を算出し、測定者に表示することで、測定者は、被検者の血管内皮機能を評価することができる。また、被検者の血管の硬さも合わせて評価することができる。 Thus, based on the delay time that is the evaluation parameter, the difference values 721 and 722 and the time 723 are calculated as evaluation values indicating the vascular endothelial function and displayed to the measurer. The examiner's vascular endothelial function can be evaluated. In addition, the hardness of the blood vessel of the subject can also be evaluated.
 図6Bに戻る。ステップS642において、血管内皮機能を示す評価値の算出、表示が完了すると、ステップS643では、圧迫装置110及び脈波検出装置120に対してそれぞれ排気終了指示及び脈波検出終了指示を送信する。 Return to FIG. 6B. When the calculation and display of the evaluation value indicating the vascular endothelial function are completed in step S642, in step S643, an exhaust end instruction and a pulse wave detection end instruction are transmitted to the compression device 110 and the pulse wave detection device 120, respectively.
 排気終了指示を受信した圧迫装置110では、ステップS615において、急速排気弁224を閉動作させ、強制排気を終了する。また、脈波検出終了指示を受信した脈波検出装置120では、ステップS622において、脈波の検出及び送信を終了させる。 In the compression device 110 that has received the exhaust end instruction, in step S615, the quick exhaust valve 224 is closed to terminate forced exhaust. The pulse wave detection device 120 that has received the pulse wave detection end instruction ends the detection and transmission of the pulse wave in step S622.
 以上の説明から明らかなように、本実施形態に係る血管内皮機能測定システムでは、カフ部により締め付けられた血管が血流再開後にどれだけ拡張したかを測定するにあたり、血管の拡張度と脈波の伝達時間との相関に着目し、手首部分に装着され脈波の検出を行う上流脈波検出部と、指先部分に装着され脈波の検出を行う下流脈波検出部と、を配する構成とした。 As is clear from the above description, in the vascular endothelial function measuring system according to the present embodiment, when measuring how much the blood vessel clamped by the cuff portion has expanded after resumption of blood flow, the degree of vessel expansion and the pulse wave are measured. Focusing on the correlation with the transmission time, a configuration in which an upstream pulse wave detection unit that is mounted on the wrist portion and detects a pulse wave and a downstream pulse wave detection unit that is mounted on the fingertip portion and detects the pulse wave is arranged It was.
 そして、上流脈波検出部において検出された脈波と、下流脈波検出部において検出された対応する脈波との間の時間差を遅延時間(評価パラメータ)として算出する構成とした。 The time difference between the pulse wave detected by the upstream pulse wave detection unit and the corresponding pulse wave detected by the downstream pulse wave detection unit is calculated as a delay time (evaluation parameter).
 更に、血流再開後の遅延時間と、安静時間における遅延時間との差分値、及び、差分値が最大となるまでの時間を、血管内皮機能を示す評価値として算出することで、血管内皮機能を定量的に評価する構成とした。 Furthermore, by calculating the difference value between the delay time after resumption of blood flow and the delay time in the resting time, and the time until the difference value is maximized as an evaluation value indicating the vascular endothelial function, the vascular endothelial function Was configured to be evaluated quantitatively.
 この結果、簡易な方法により、精度の高い血管内皮機能評価を実現することが可能となった。 As a result, it was possible to realize highly accurate evaluation of vascular endothelial function by a simple method.
 [第2の実施形態]
 上記第1の実施形態では、血管内皮機能を示す評価値として差分値を算出するにあたり、安静時間における遅延時間の平均値を用いる構成としたが、本発明はこれに限定されない。例えば、脈波検出装置を他方の腕(圧迫装置により圧迫されていない方の腕)の手首部分及び指先部分にそれぞれ装着し、当該脈波検出装置からの脈波データに基づいて算出された遅延時間に基づいて、差分値を算出する構成としてもよい。以下、本実施形態の詳細について説明する。
[Second Embodiment]
In the first embodiment, when calculating the difference value as the evaluation value indicating the vascular endothelial function, the average value of the delay time in the rest time is used. However, the present invention is not limited to this. For example, the pulse wave detection device is attached to the wrist part and the fingertip part of the other arm (the arm that is not compressed by the compression device), and the delay calculated based on the pulse wave data from the pulse wave detection device A difference value may be calculated based on time. Details of this embodiment will be described below.
 <1.血管内皮機能測定システムの外観構成>
 図8は、本発明の第2の実施形態に係る血管内皮機能測定システム800の外観構成を示す図である。なお、上記第1の実施形態において説明した血管内皮機能測定システム100(図1)と同じ構成については、同じ参照番号を付すこととし、ここでは説明を省略する。
<1. Appearance of Vascular Endothelial Function Measurement System>
FIG. 8 is a diagram showing an external configuration of a vascular endothelial function measuring system 800 according to the second embodiment of the present invention. The same components as those in the vascular endothelial function measuring system 100 (FIG. 1) described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted here.
 図1との相違点は、カフ部111が装着された腕(図8の例では左腕)とは反対側の腕(すなわち、右腕)にも、脈波検出装置820が装着され、脈波検出装置120と同様に脈波の検出及び送信を行うよう構成されている点である。なお、脈波検出装置820の構成は、脈波検出装置120の構成と同じである。 The difference from FIG. 1 is that the pulse wave detection device 820 is also attached to the arm (that is, the right arm) opposite to the arm (the left arm in the example of FIG. 8) to which the cuff part 111 is attached, and the pulse wave detection is performed. It is the point which is comprised so that the detection and transmission of a pulse wave may be performed similarly to the apparatus 120. The configuration of pulse wave detection device 820 is the same as that of pulse wave detection device 120.
 <2.血管内皮機能評価処理の流れ>
 次に、血管内皮機能測定システム800における血管内皮機能評価処理の流れを説明する。なお、血管内皮機能測定システム800における血管内皮機能評価処理の流れは、基本的に、図6A、図6Bを用いて説明した、血管内皮機能測定システム100における血管内皮機能評価処理と同様であるが、ステップS642における評価処理の内容が異なるため、ここでは、図9を用いて、血管内皮機能測定システム800における評価値算出・表示処理について説明する。
<2. Flow of vascular endothelial function evaluation process>
Next, the flow of vascular endothelial function evaluation processing in the vascular endothelial function measuring system 800 will be described. The flow of the vascular endothelial function evaluation process in the vascular endothelial function measurement system 800 is basically the same as the vascular endothelial function evaluation process in the vascular endothelial function measurement system 100 described with reference to FIGS. 6A and 6B. Since the contents of the evaluation process in step S642 are different, here, the evaluation value calculation / display process in the vascular endothelial function measurement system 800 will be described with reference to FIG.
 図9は、血管内皮機能測定システム800の情報処理装置130において算出された遅延時間の変化を示す図である。図9において、701は、脈波検出装置120において検出された脈波データに基づいて算出された、安静時間における遅延時間の変化を示している。なお、カフ部111が装着された腕(図8の例では左腕)の場合、阻血時間中は、遅延時間の算出が一旦停止されるため、阻血時間中の遅延時間のデータは存在しない。 FIG. 9 is a diagram showing changes in the delay time calculated by the information processing apparatus 130 of the vascular endothelial function measuring system 800. In FIG. 9, reference numeral 701 denotes a change in the delay time during the rest time calculated based on the pulse wave data detected by the pulse wave detection device 120. In the case of the arm to which the cuff unit 111 is attached (the left arm in the example of FIG. 8), since the calculation of the delay time is temporarily stopped during the ischemic time, there is no data on the delay time during the ischemic time.
 一方、901は、脈波検出装置820において検出された脈波データに基づいて算出された遅延時間の変化を示している。脈波検出装置820が装着された腕(図8の例では右腕)は、阻血されないため、カフ部111が装着された腕が阻血されている間も、遅延時間の算出は継続される。 On the other hand, reference numeral 901 indicates a change in delay time calculated based on the pulse wave data detected by the pulse wave detection device 820. Since the arm to which the pulse wave detector 820 is attached (the right arm in the example of FIG. 8) is not occluded, the calculation of the delay time is continued even while the arm to which the cuff unit 111 is attached is occluded.
 702は血流再開後の反応性充血時間における遅延時間の変化を示している。また、921は、血流再開直後において脈波検出装置120からの脈波データに基づいて算出された遅延時間と、その時に、脈波検出装置820からの脈波データに基づいて算出された遅延時間との差分値を示している。922は、血流再開後の反応性充血時間において、脈波検出装置120からの脈波データに基づいて算出された遅延時間のうち、最も遅延時間が長かった時点での当該遅延時間と、その時に、脈波検出装置820からの脈波データに基づいて算出された遅延時間との差分値を示している。 702 shows the change in the delay time in the reactive hyperemia time after resumption of blood flow. Reference numeral 921 denotes a delay time calculated based on pulse wave data from the pulse wave detection device 120 immediately after resumption of blood flow, and a delay calculated based on the pulse wave data from the pulse wave detection device 820 at that time. The difference value with time is shown. 922 is the delay time when the delay time is the longest among the delay times calculated based on the pulse wave data from the pulse wave detection device 120 in the reactive hyperemia time after resuming blood flow, The difference value with the delay time computed based on the pulse wave data from the pulse wave detection apparatus 820 is shown.
 更に、923は、血流が再開されてから、遅延時間が最も長くなるまでの時間を示している。 Furthermore, 923 indicates the time from when the blood flow is resumed until the delay time becomes the longest.
 図9に示すように、急速排気弁224が開動作し、血流が再開されると血管が拡張するため、反応性充血時間に移行直後は、脈波検出装置820からの脈波データに基づいて算出された遅延時間よりも遅延時間が長くなる。その後、更に血管径が微増し、最大血管径まで拡張した後に、徐々に、カフ部111が装着されていない方の腕の血管径に近づいていく。このため、遅延時間も、反応性充血時間に移行後、微増し、最大値に到達した後、徐々に、脈波検出装置820からの脈波データに基づいて算出された遅延時間に近づいていく。 As shown in FIG. 9, when the quick exhaust valve 224 is opened and the blood flow is resumed, the blood vessel expands. Therefore, immediately after the transition to the reactive hyperemia time, the pulse wave data from the pulse wave detection device 820 is used. The delay time becomes longer than the delay time calculated in the above. Thereafter, the blood vessel diameter further increases slightly and expands to the maximum blood vessel diameter, and then gradually approaches the blood vessel diameter of the arm on which the cuff portion 111 is not attached. For this reason, the delay time also slightly increases after shifting to the reactive hyperemia time, reaches the maximum value, and gradually approaches the delay time calculated based on the pulse wave data from the pulse wave detector 820. .
 ここで、血管内皮機能が障害されている場合、差分値922の値が小さくなる。また、差分値922の値が同じであっても、血管内皮機能が障害されている場合、時間923の値が大きくなる。更に、血管が硬い場合には、差分値921の値が小さくなる。 Here, when the vascular endothelial function is impaired, the value of the difference value 922 becomes small. Even if the difference value 922 is the same, the value of the time 923 increases when the vascular endothelial function is impaired. Furthermore, when the blood vessel is hard, the value of the difference value 921 becomes small.
 このようなことから、評価パラメータである遅延時間に基づいて、血管内皮機能を示す評価値として、差分値921、922、時間923を算出し、測定者に表示することで、測定者は、被検者の血管内皮機能を評価することができる。また、被検者の血管の硬さも合わせて評価することができる。更に、同時刻における、脈波検出装置820からの脈波データに基づいて算出される遅延時間に基づいて上記評価値を算出する構成としているため、より精度の高い評価値を算出することが可能となる。 Thus, based on the delay time that is the evaluation parameter, the difference values 921, 922 and time 923 are calculated as evaluation values indicating the vascular endothelial function and displayed to the measurer. The examiner's vascular endothelial function can be evaluated. In addition, the hardness of the blood vessel of the subject can also be evaluated. Furthermore, since the evaluation value is calculated based on the delay time calculated based on the pulse wave data from the pulse wave detection device 820 at the same time, a more accurate evaluation value can be calculated. It becomes.
 [第3の実施形態]
 上記第1及び第2の実施形態では、上流脈波検出部を手首部分に、下流脈波検出部を指先部分に装着する構成としたが、本発明はこれに限定されず、血流方向に沿って装着するのであれば、他の部分に装着するようにしてもよい。
[Third Embodiment]
In the first and second embodiments, the upstream pulse wave detection unit is attached to the wrist part and the downstream pulse wave detection part is attached to the fingertip part. If attached along, it may be attached to other parts.
 また、上記第2の実施形態では、脈波検出装置820をカフ部111が装着された腕とは反対側の腕に装着される構成としたが、本発明はこれに限定されず、上流側にカフ部111が装着されていない領域(つまり、阻血の影響を受けない領域)であれば、他の領域であってもよい。 In the second embodiment, the pulse wave detection device 820 is mounted on the arm opposite to the arm on which the cuff unit 111 is mounted. However, the present invention is not limited to this, and the upstream side Other regions may be used as long as they are regions where the cuff portion 111 is not attached (that is, regions that are not affected by ischemia).
 また、上記第1及び第2の実施形態では、情報処理装置130において、血管内皮機能評価処理を実行する構成としたが、本発明はこれに限定されない。例えば、脈波検出装置において検出された脈波データを圧縮装置に送信し、圧縮装置において、血管内皮機能評価処理を実行するように構成してもよい。あるいは、脈波検出装置からの指示に基づいて、圧縮装置が駆動するように構成し、脈波検出装置において、血管内機能評価処理を実行するように構成してもよい。 In the first and second embodiments, the information processing apparatus 130 executes the vascular endothelial function evaluation process. However, the present invention is not limited to this. For example, the pulse wave data detected by the pulse wave detection device may be transmitted to the compression device, and the vascular endothelial function evaluation process may be executed in the compression device. Alternatively, the compression device may be configured to be driven based on an instruction from the pulse wave detection device, and the intravascular function evaluation process may be executed in the pulse wave detection device.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.

Claims (9)

  1.  血流方向の上流側に装着された第1の脈波検出部にて検出された第1の脈波データと、前記第1の脈波検出部よりも、前記血流方向において下流側に装着された第2の脈波検出部にて検出された第2の脈波データと、を取得する取得手段と、
     前記第1の脈波データに含まれる各脈波と、前記第2の脈波データに含まれる、対応する各脈波との間の時間差として第1の遅延時間を算出する第1の算出手段と、
     前記第1の脈波検出部が装着された位置よりも、前記血流方向において上流側の位置において所定時間阻血が行われた後に、血流を再開させた場合において、血流再開後に、前記第1の算出手段により算出される前記第1の遅延時間を用いて、血管内皮機能に関する評価値を算出する第2の算出手段と
     を備えることを特徴とする情報処理装置。
    First pulse wave data detected by a first pulse wave detection unit mounted upstream in the blood flow direction, and mounted downstream in the blood flow direction from the first pulse wave detection unit Acquisition means for acquiring second pulse wave data detected by the second pulse wave detection unit,
    First calculation means for calculating a first delay time as a time difference between each pulse wave included in the first pulse wave data and each corresponding pulse wave included in the second pulse wave data. When,
    In the case where blood flow is resumed after being blocked for a predetermined time at a position upstream in the blood flow direction from the position where the first pulse wave detection unit is mounted, An information processing apparatus comprising: a second calculation unit that calculates an evaluation value related to a vascular endothelial function using the first delay time calculated by the first calculation unit.
  2.  前記第2の算出手段により算出される前記評価値は、前記血流再開後に、前記第1の算出手段により算出される前記第1の遅延時間と、前記所定時間の阻血が行われる前に、前記第1の算出手段により算出された前記第1の遅延時間との差分値を含むことを特徴とする請求項1に記載の情報処理装置。 The evaluation value calculated by the second calculation means is calculated after the resumption of blood flow, before the first delay time calculated by the first calculation means and the ischemia for the predetermined time are performed. The information processing apparatus according to claim 1, comprising a difference value from the first delay time calculated by the first calculation unit.
  3.  前記取得手段は、更に、上流側において前記阻血が行われていない領域であって、血流方向の上流側に装着された第3の脈波検出部にて検出された第3の脈波データと、前記第3の脈波検出部よりも、前記血流方向において下流側に装着された第4の脈波検出部にて検出された第4の脈波データとを取得し、
     前記第1の算出手段は、前記第3の脈波データに含まれる各脈波と、前記第4の脈波データに含まれる、対応する各脈波との間の時間差として第2の遅延時間を更に算出し、
     前記第2の算出手段は、前記第1の遅延時間と前記第2の遅延時間とを用いて、前記血管内皮機能に関する評価値を算出することを特徴とする請求項1に記載の情報処理装置。
    The acquisition means further includes third pulse wave data detected by a third pulse wave detector mounted on the upstream side in the blood flow direction, which is a region where the ischemia is not performed on the upstream side. And the fourth pulse wave data detected by the fourth pulse wave detection unit mounted on the downstream side in the blood flow direction from the third pulse wave detection unit,
    The first calculating means calculates a second delay time as a time difference between each pulse wave included in the third pulse wave data and each corresponding pulse wave included in the fourth pulse wave data. Is further calculated,
    2. The information processing apparatus according to claim 1, wherein the second calculation unit calculates an evaluation value related to the vascular endothelial function using the first delay time and the second delay time. .
  4.  前記第2の算出手段により算出される前記評価値は、前記第1の算出手段により算出された前記第1の遅延時間と前記第2の遅延時間との差分値を含むことを特徴とする請求項3に記載の情報処理装置。 The evaluation value calculated by the second calculation unit includes a difference value between the first delay time and the second delay time calculated by the first calculation unit. Item 4. The information processing device according to Item 3.
  5.  前記第2の算出手段により算出される前記評価値は、更に、前記差分値の最大値、及び、前記血流再開後に、該最大値に到達するまでの時間、を含むことを特徴とする請求項2または4に記載の情報処理装置。 The evaluation value calculated by the second calculation means further includes a maximum value of the difference value and a time until the maximum value is reached after the blood flow is resumed. Item 5. The information processing apparatus according to Item 2 or 4.
  6.  請求項1に記載の情報処理装置と通信可能に接続され、前記第1の脈波検出部と前記第2の脈波検出部とを有する第1の脈波検出装置を備えることを特徴とする血管内皮機能測定システム。 A first pulse wave detection device that is communicably connected to the information processing device according to claim 1 and includes the first pulse wave detection unit and the second pulse wave detection unit. Vascular endothelial function measurement system.
  7.  請求項3または4に記載の情報処理装置と通信可能に接続され、前記第1の脈波検出部と前記第2の脈波検出部とを有する第1の脈波検出装置と、前記第3の脈波検出部と前記第4の脈波検出部とを有する第2の脈波検出装置と、を備えることを特徴とする血管内皮機能測定システム。 A first pulse wave detection device that is communicably connected to the information processing device according to claim 3 or 4 and includes the first pulse wave detection unit and the second pulse wave detection unit, and the third pulse wave detection unit. And a second pulse wave detection device having the fourth pulse wave detection unit, and a blood vessel endothelial function measuring system.
  8.  請求項1に記載の情報処理装置と通信可能に接続され、前記第1の脈波検出部が装着された位置よりも、前記血流方向において上流側の位置において所定時間阻血を行う圧迫装置を更に備えることを特徴とする請求項6または7に記載の血管内皮機能測定システム。 A compression apparatus that is communicably connected to the information processing apparatus according to claim 1 and that performs ischemia for a predetermined time at a position upstream of the position where the first pulse wave detection unit is attached in the blood flow direction. The vascular endothelial function measuring system according to claim 6 or 7, further comprising:
  9.  コンピュータを請求項1乃至5のいずれか1項に記載の情報処理装置の各手段として機能させるためのプログラム。 A program for causing a computer to function as each unit of the information processing apparatus according to any one of claims 1 to 5.
PCT/JP2012/008440 2012-12-28 2012-12-28 Information processing device and vascular-endothelium-function measurement system WO2014102885A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014553900A JPWO2014102885A1 (en) 2012-12-28 2012-12-28 Information processing apparatus and vascular endothelial function measuring system
PCT/JP2012/008440 WO2014102885A1 (en) 2012-12-28 2012-12-28 Information processing device and vascular-endothelium-function measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/008440 WO2014102885A1 (en) 2012-12-28 2012-12-28 Information processing device and vascular-endothelium-function measurement system

Publications (1)

Publication Number Publication Date
WO2014102885A1 true WO2014102885A1 (en) 2014-07-03

Family

ID=51020047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008440 WO2014102885A1 (en) 2012-12-28 2012-12-28 Information processing device and vascular-endothelium-function measurement system

Country Status (2)

Country Link
JP (1) JPWO2014102885A1 (en)
WO (1) WO2014102885A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129979A (en) * 2002-10-15 2004-04-30 Nippon Colin Co Ltd Apparatus for inspecting vascular endothelial function
JP2004321253A (en) * 2003-04-21 2004-11-18 Colin Medical Technology Corp Pulse wave propagation velocity information measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129979A (en) * 2002-10-15 2004-04-30 Nippon Colin Co Ltd Apparatus for inspecting vascular endothelial function
JP2004321253A (en) * 2003-04-21 2004-11-18 Colin Medical Technology Corp Pulse wave propagation velocity information measuring device

Also Published As

Publication number Publication date
JPWO2014102885A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US20110224558A1 (en) Blood pressure information measurement device for measuring pulse wave propagation speed as blood pressure information
US6814705B2 (en) Arteriosclerosis-degree evaluating apparatus
RU2446737C2 (en) Device for estimation of atherosclerosis degree, capable of accurate estimation of atherosclerosis degree
JP3178195B2 (en) Continuous blood pressure monitor
JP2003175007A (en) Arteriosclerosis diagnosing apparatus
US9532720B2 (en) Blood pressure information measurement device and blood pressure information measurement method
US5072736A (en) Non-invasive automatic blood pressure measuring apparatus
JP5223566B2 (en) Blood pressure information measuring device
US20100056922A1 (en) Method and diagnostic ultrasound apparatus for determining the condition of a person&#39;s artery or arteries
US9119535B2 (en) Blood pressure manometer and a method of calculating indices of atherosclerosis using the blood pressure manometer
JP2011056200A (en) Apparatus for evaluating vascular endothelial function
US6589183B2 (en) Arterial-hardness evaluating apparatus
JP2002291708A (en) Electronic sphygmomanometer
JP2006263128A (en) Method and device for measuring vascular elasticity modulus
US20090204007A1 (en) Ultrasonograph
JP3700048B2 (en) Electronic blood pressure monitor
US6338718B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
WO2014102885A1 (en) Information processing device and vascular-endothelium-function measurement system
JP6001683B2 (en) Blood pressure measurement device
JP4787725B2 (en) Ultrasonic diagnostic equipment
JP4770927B2 (en) Ultrasound diagnostic device for measuring blood vessel diameter
JP2001309895A (en) Sphygmomanometer
JP5896759B2 (en) Biological arterial endothelial function measuring device
JP4576114B2 (en) Biological measuring device
JP4563766B2 (en) Blood pressure measurement device, blood pressure measurement method, control program, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891101

Country of ref document: EP

Kind code of ref document: A1