JP2006263128A - Method and device for measuring vascular elasticity modulus - Google Patents

Method and device for measuring vascular elasticity modulus Download PDF

Info

Publication number
JP2006263128A
JP2006263128A JP2005085308A JP2005085308A JP2006263128A JP 2006263128 A JP2006263128 A JP 2006263128A JP 2005085308 A JP2005085308 A JP 2005085308A JP 2005085308 A JP2005085308 A JP 2005085308A JP 2006263128 A JP2006263128 A JP 2006263128A
Authority
JP
Japan
Prior art keywords
blood vessel
elastic modulus
blood
ultrasonic
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005085308A
Other languages
Japanese (ja)
Other versions
JP4627673B2 (en
Inventor
Mikinobu Hoshino
干野  幹信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2005085308A priority Critical patent/JP4627673B2/en
Publication of JP2006263128A publication Critical patent/JP2006263128A/en
Application granted granted Critical
Publication of JP4627673B2 publication Critical patent/JP4627673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for measuring vascular elasticity modulus simply measuring the credible vascular elasticity modulus at an artery part of a wrist. <P>SOLUTION: This method for measuring the vascular elasticity modulus is provided with an ultrasonic wave entering means allowing ultrasonic waves to enter therein and an ultrasonic detecting means detecting the ultrasonic waves reflected from a vascular wall, applies external pressure equivalent to mean blood pressure to the blood vessel, calculates the inside diameter and the outside diameter of the blood vessel based on a time difference of the ultrasonic waves reflected from the inner/outer faces of the vascular wall in the front side and the ultrasonic waves reflected from the vascular wall inner/outer faces in the opposite side, and calculates the vascular elasticity modulus from the blood pressure and the blood vessel diameter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、血管弾性率測定方法及び血管弾性率測定装置に関し、さらに詳しくは、手首の動脈部で血管の弾性率を簡便に測定できる血管弾性率測定方法及び血管弾性率測定装置に関する。   The present invention relates to a blood vessel elastic modulus measuring method and a blood vessel elastic modulus measuring device, and more particularly to a blood vessel elastic modulus measuring method and a blood vessel elastic modulus measuring device that can easily measure the elastic modulus of a blood vessel at an artery portion of a wrist.

血管特に動脈の弾性率を求めることは動脈硬化の診断や予防に大切なことである。超音波エコー法は非侵襲で生体内部の血管についての情報を得ることができるため、広く使われている。心臓から送り出された動脈血はその時間的に変動する血圧に依存して動脈の血管を拡張,収縮させている。すなわち血管径は血圧に依存する。超音波エコー法により求めた頚動脈の血管径と血圧計により求めた血圧値から血管の弾性率を算出する方法が提案されている(例えば、特許文献1)。これに従えば、拡張期血圧Pidのときの血管内側半径adと血管外側半径bと、収縮期血圧Pisのときの血管内側半径asと血管外側半径bsとから、

Figure 2006263128
により血管弾性率Eが求められる。
特開2002−209857号公報(第3頁) Obtaining the elastic modulus of blood vessels, especially arteries, is important for diagnosis and prevention of arteriosclerosis. The ultrasonic echo method is widely used because it is non-invasive and can obtain information about blood vessels inside the living body. Arterial blood delivered from the heart dilates and contracts arterial blood vessels depending on its temporally varying blood pressure. That is, the blood vessel diameter depends on blood pressure. There has been proposed a method of calculating the elastic modulus of a blood vessel from the diameter of a carotid artery obtained by an ultrasonic echo method and the blood pressure value obtained by a sphygmomanometer (for example, Patent Document 1). According to this, from the blood vessel inner radius a d and the blood vessel outer radius b d at the diastolic blood pressure Pid, the blood vessel inner radius a s and the blood vessel outer radius b s at the systolic blood pressure Pis,
Figure 2006263128
Thus, the blood vessel elastic modulus E is obtained.
JP 2002-209857 A (page 3)

しかしながら従来技術における測定方法は血管に外部圧力が加えられていない場合であって、このときの血管の断面形状は円形である。しかしながら、実際には超音波探触子を頸部に押し当てた場合、外部圧力を0にすることは困難で、血管の変形は避けられない。したがって、血管の半径変化を測定しようとするとき、つぶれた血管が内部圧力により真円になろうとするときの血管壁の変位まで検出してしまうことになり、大きな誤差原因となる。また、通常の血圧の範囲である50mmHg〜140mmHgでは頚動脈血管径の変化量は100〜300μm程度と小さい。したがってこの変化量を検出するためには超音波の距離分解能として20μm程度が必要となる。ところが、分解能をあげるためには超音波探触子の共振周波数を高くする必要があるが、共振周波数を高くすると生体組織中での超音波の減衰が大きくなることが知られている。したがって、あまり超音波探触子の共振周波数を高くできない。したがって、容易に構成し得る超音波エコー装置で20μm程度の分解能を得るのは困難であり、距離分解能を20μm程度にしようとすると高価な超音波エコー装置が必要となる。ところで、測定部位としては頚動脈より手首の橈骨動脈が簡便であり好ましい。通常、橈骨動脈は直径が2〜4mmである。血圧と血管径の関係は知られていて、収縮期血圧と拡張期血圧に対応する血管径の差は50〜100μmであり、前記の頚動脈の血圧に対する血管径変化量よりさらに小さい。したがって、従来の方法では橈骨動脈を対象として血管弾性率を測定することは極めて困難であった。   However, the measurement method in the prior art is a case where an external pressure is not applied to the blood vessel, and the cross-sectional shape of the blood vessel at this time is circular. However, in reality, when the ultrasonic probe is pressed against the neck, it is difficult to reduce the external pressure to 0, and deformation of the blood vessel is inevitable. Therefore, when measuring the change in the radius of the blood vessel, the displacement of the blood vessel wall when the collapsed blood vessel is going to become a perfect circle due to the internal pressure is detected, which causes a large error. Further, in the normal blood pressure range of 50 mmHg to 140 mmHg, the amount of change in the carotid artery blood vessel diameter is as small as about 100 to 300 μm. Therefore, in order to detect this amount of change, an ultrasonic distance resolution of about 20 μm is required. However, in order to increase the resolution, it is necessary to increase the resonance frequency of the ultrasonic probe, but it is known that increasing the resonance frequency increases the attenuation of the ultrasonic wave in the living tissue. Therefore, the resonance frequency of the ultrasonic probe cannot be increased too much. Therefore, it is difficult to obtain a resolution of about 20 μm with an easily configured ultrasonic echo device, and an expensive ultrasonic echo device is required if the distance resolution is set to about 20 μm. By the way, the measurement site is preferably the radial artery of the wrist rather than the carotid artery. The radial artery is usually 2-4 mm in diameter. The relationship between blood pressure and blood vessel diameter is known, and the difference in blood vessel diameter corresponding to systolic blood pressure and diastolic blood pressure is 50 to 100 μm, which is smaller than the change in blood vessel diameter with respect to the carotid artery blood pressure. Therefore, it has been extremely difficult to measure the blood vessel elastic modulus for the radial artery with the conventional method.

(発明の目的)
本発明の目的は、手首の橈骨動脈を対象として、簡便な方法で正確に血管弾性率を測定できる装置を提供することにある。
(Object of invention)
An object of the present invention is to provide an apparatus that can accurately measure the vascular elasticity by a simple method for the radial artery of the wrist.

上記目的を達成するため、本発明の血管弾性率測定方法及び血管弾性率測定装置では下記記載の手段を採用する。
超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段と、血管を加圧する加圧手段と、血圧を測定する測定手段とを備え、手前側の血管壁内外面から反射される超音波と反対側の血管壁内外面から反射される超音波の時間差から血管内径及び外径を算出し血管弾性率を算出する血管弾性率測定方法において、平均血圧に相当する外部圧力で血管を加圧したときの血管変形量から血管弾性率を算出することを特徴とする。
In order to achieve the above object, the following means are employed in the vascular elastic modulus measuring method and vascular elastic modulus measuring apparatus of the present invention.
A blood vessel wall on the near side, comprising: an ultrasonic wave incident means for entering ultrasonic waves; a detection means for detecting ultrasonic waves reflected from the blood vessel wall; a pressurizing means for pressurizing the blood vessel; and a measuring means for measuring blood pressure. Corresponds to the average blood pressure in the vascular elasticity measurement method that calculates the vascular elastic modulus by calculating the vascular inner diameter and outer diameter from the time difference between the ultrasonic waves reflected from the inner and outer surfaces of the blood vessel opposite to the ultrasonic waves reflected from the inner and outer surfaces. The blood vessel elastic modulus is calculated from the amount of blood vessel deformation when the blood vessel is pressurized with external pressure.

また、超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段と、血管を加圧する加圧手段とを備え、手前側の血管壁内面から反射される超音波と反対側の血管壁内面から反射される超音波の時間差から血管径を算出し血管弾性率を算出する血管弾性率測定方法において、平均血圧Pavに相当する圧力を外部より加え、独立に測定して得た拡張期血圧Pidのときの血管内側半径adと血管外側半径bと、収縮期血圧Pisのときの血管内側半径aと血管外側半径bとから、

Figure 2006263128
により血管弾性率Eを求めることを特徴とする。 In addition, an ultrasonic wave incident means for incident ultrasonic waves, a detection means for detecting ultrasonic waves reflected from the blood vessel wall, and a pressurizing means for pressurizing the blood vessel, the ultrasonic wave reflected from the inner surface of the blood vessel wall on the near side. In the blood vessel elastic modulus measurement method for calculating the blood vessel diameter from the time difference between the ultrasonic waves reflected from the inner surface of the blood vessel wall opposite to the sound wave and calculating the blood vessel elastic modulus, a pressure corresponding to the average blood pressure Pav is applied from the outside and measured independently. From the blood vessel inner radius a d and blood vessel outer radius b d at the time of diastolic blood pressure Pid, and the blood vessel inner radius a s and blood vessel outer radius b s at the time of systolic blood pressure Pis,
Figure 2006263128
The blood vessel elastic modulus E is obtained by the following.

また、超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段と、血管を加圧する加圧手段と、血圧を測定する測定手段とを備え、手前側の血管壁内外面から反射される超音波と反対側の血管壁内外面から反射される超音波の時間差から血管内径及び外径を算出し血管弾性率を算出する血管弾性率測定装置において、平均血圧に相当する外部圧力で血管を加圧したときの血管変形量から血管弾性率を算出する血管弾性率演算部を設けたことを特徴とする。   In addition, the apparatus includes an ultrasonic wave incident unit that inputs ultrasonic waves, a detection unit that detects ultrasonic waves reflected from the blood vessel wall, a pressurizing unit that pressurizes the blood vessel, and a measurement unit that measures blood pressure. In the blood vessel elasticity measuring apparatus for calculating the blood vessel elastic modulus by calculating the blood vessel inner diameter and outer diameter from the time difference between the ultrasonic wave reflected from the inner and outer surfaces of the blood vessel wall opposite to the ultrasonic wave reflected from the inner and outer surfaces of the blood vessel wall, A blood vessel elastic modulus calculation unit is provided that calculates a blood vessel elastic modulus from a blood vessel deformation amount when a blood vessel is pressurized with an external pressure corresponding to.

また、超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段と、血管を加圧する加圧手段とを備え、手前側の血管壁内面から反射される超音波と反対側の血管壁内面から反射される超音波の時間差から血管径を算出し血管弾性率を算出する血管弾性率測定装置において、平均血圧Pavに相当する圧力を外部より加え、独立に測定して得た拡張期血圧Pidのときの血管内側半径adと血管外側半径bと、収縮期血圧Pisのときの血管内側半径aと血管外側半径bとから、

Figure 2006263128
により血管弾性率Eを求める血管弾性率演算部を設けたことを特徴とする。 In addition, an ultrasonic wave incident means for incident ultrasonic waves, a detection means for detecting ultrasonic waves reflected from the blood vessel wall, and a pressurizing means for pressurizing the blood vessel, the ultrasonic wave reflected from the inner surface of the blood vessel wall on the near side. In a blood vessel elastic modulus measuring device that calculates the blood vessel diameter from the time difference between the ultrasonic waves reflected from the inner surface of the blood vessel wall opposite to the sound wave and calculates the blood vessel elastic modulus, a pressure corresponding to the average blood pressure Pav is applied from the outside and measured independently. From the blood vessel inner radius a d and blood vessel outer radius b d at the time of diastolic blood pressure Pid, and the blood vessel inner radius a s and blood vessel outer radius b s at the time of systolic blood pressure Pis,
Figure 2006263128
A blood vessel elastic modulus calculation unit for obtaining the blood vessel elastic modulus E is provided.

また、超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段とを備え、手前側の血管壁内面から反射される超音波と反対側の血管壁内面から反射される超音波の時間差から血管径を算出し血管弾性率を算出する血管弾性率測定装置において、圧電振動子と皮膚との間に、音響インピーダンスが皮膚に近い厚さ8〜10mmのポリオレフィン系のゲル状部材を有していることを特徴とする。   In addition, an ultrasonic wave incident means for incident ultrasonic waves and a detection means for detecting ultrasonic waves reflected from the blood vessel wall are provided, and from the inner surface of the blood vessel wall opposite to the ultrasonic wave reflected from the inner surface of the blood vessel wall. In a blood vessel elastic modulus measuring device for calculating a blood vessel diameter from a time difference of reflected ultrasonic waves and calculating a blood vessel elastic modulus, a polyolefin system having an acoustic impedance of 8 to 10 mm close to the skin between the piezoelectric vibrator and the skin It is characterized by having the gel-like member.

本発明の血管弾性率測定方法装置および血管弾性率測定装置によれば、従来の血管弾性率よりも信憑性のある血管弾性率を、簡便に正確かつ非侵襲的に測定可能となる。したがって、在宅でも容易に血管弾性率の測定が可能となるため、病院に行くことなしに、コレステロールの管理や生活習慣の改善の効果を知ることが出来る。したがって、医療費の削減に寄与することが出来る。   According to the blood vessel elastic modulus measuring method apparatus and the blood vessel elastic modulus measuring apparatus of the present invention, it is possible to easily and accurately and noninvasively measure a blood vessel elastic modulus that is more reliable than the conventional blood vessel elastic modulus. Therefore, since the blood vessel elastic modulus can be easily measured even at home, the effects of cholesterol management and lifestyle improvement can be known without going to the hospital. Therefore, it can contribute to reduction of medical expenses.

本発明は血圧と血管径及び血管の弾性率の関係に基づき、血管径と血圧を測定し、血管の弾性率を求めるものである。以下、本発明の原理を説明する。
外部圧力を加えたときの血管の変形は一般に管法則として知られていて、外部圧力と単位長当りの血管内容積の関係が図4に示されるような曲線となる。血圧の変動が圧脈波の内部圧力として与えられると、血管は変形し、血管容積脈波として検出される。平均血圧と外部圧力が一致するとき容積脈波の振幅が最大となる。このとき血管壁は外部圧力0のときと比べて著しく大きく変位する。血圧に対して変化量の大きいこの血管変位すなわち短軸方向の血管径を測定する。平均血圧は収縮期血圧と拡張期血圧から以下に示す計算式にしたがって求める。
In the present invention, the blood vessel diameter and blood pressure are measured based on the relationship between blood pressure, blood vessel diameter, and blood vessel elasticity, and the blood vessel elasticity is obtained. Hereinafter, the principle of the present invention will be described.
The deformation of a blood vessel when an external pressure is applied is generally known as a pipe law, and the relationship between the external pressure and the volume of the blood vessel per unit length is a curve as shown in FIG. When the blood pressure fluctuation is given as the internal pressure of the pressure pulse wave, the blood vessel deforms and is detected as a blood vessel volume pulse wave. When the average blood pressure and the external pressure match, the amplitude of the volume pulse wave becomes maximum. At this time, the blood vessel wall is displaced significantly larger than when the external pressure is zero. The blood vessel displacement, that is, the blood vessel diameter in the minor axis direction, which has a large change amount with respect to blood pressure, is measured. The average blood pressure is determined from the systolic blood pressure and the diastolic blood pressure according to the following formula.

まず、図1に示すように、中空円筒状弾性体の内側半径をa、外側半径をb、内側圧力をPi、外側圧力をPとして、中空円筒状弾性体の内部の半径rの点における径方向応力σrr、周方向応力σφφを、弾性力学により求めると、図1の式(1)、式(2)で表される形となる。ヤング率をE、ポアソン比をλとするとき径方向応力σrr、周方向応力σφφによる周方向変形εφφは、弾性力学によれば図1の式(3)で表される。ここで、図2に示すように、拡張期血圧Pidのときの血管内側半径をa、血管外側半径をbとし、r=bとし、血管外側の圧力P=Pavとすれば、前述の式(1)、式(2)から図2の式(4)、(5)が導かれる。また、収縮期血圧Pisのときの血管内側半径をasとし、血管外側半径をbとし、r=bとし、血管外側の圧力P=Pavとすれば、前述の式(1)、(2)から図2の式(6)(7)が導かれる。 First, as shown in FIG. 1, a point of a radius r inside the hollow cylindrical elastic body where the inner radius of the hollow cylindrical elastic body is a, the outer radius is b, the inner pressure is Pi, and the outer pressure is Po. When the radial stress σ rr and the circumferential stress σ φφ in FIG. 1 are obtained by elastic mechanics, they are represented by the equations (1) and (2) in FIG. The Young's modulus E, the radial stress sigma rr when the Poisson's ratio lambda, direction deformation epsilon Faifai by the hoop stress σ φφ, the formula of Figure 1 according to the elastodynamic (3). Here, as shown in FIG. 2, if the blood vessel inner radius at the time of diastolic blood pressure Pid is a d , the blood vessel outer radius is b d , r = b d , and the blood pressure P = Pav Equations (4) and (5) in FIG. 2 are derived from Equations (1) and (2). Further, assuming that the inner radius of the blood vessel at systolic blood pressure Pis is as, the outer radius of the blood vessel is b s , r = b s, and the pressure P = Pav outside the blood vessel, the above-described equations (1), ( Equations (6) and (7) in FIG. 2 are derived from 2).

よって、拡張期血圧Pidの時のr=bでの周方向変形εφφd(b)は、前述の式(3)、(4)、(5)から図2の式(8)となる。また、収縮期血圧Pisの時のr=bsでの
周方向変形εφφs(bs)は、前述の式(3)、(6)、(7)ら図2の式(9)となる。
Therefore, the circumferential deformation ε φφ d (b d ) at r = b d at the time of diastolic blood pressure Pid is expressed by the equation (8) in FIG. 2 from the above equations (3), (4), and (5). Become. Further, the circumferential deformation ε φφ s (b s ) at r = b s when the systolic blood pressure Pis is given by the above-described equations (3), (6), (7) and the equation (9) in FIG. Become.

拡張期の血圧Pidの時と収縮期の血圧Pisの時の周方向変形の差εφφs(bs)− εφφd(b)は、周長2πbsと周長2πbの差を平均周長(bs+b)/2で規格化したものだから、図3の式(10)なる。 The difference in circumferential deformation ε φφ s (b s ) −ε φφ d (b d ) between the diastolic blood pressure Pid and the systolic blood pressure Pis is the difference between the circumferential length 2πb s and the circumferential length 2πb d . Since it is standardized by the average circumference (b s + b d ) / 2, the equation (10) in FIG. 3 is obtained.

図2の式(8)、(9)、(10)から図3に示す式(12)、すなわち血管弾性率Eの計算式が得られる。   From the equations (8), (9), and (10) in FIG. 2, the equation (12) shown in FIG.

よって、上記血管弾性率測定方法では、血圧計で血圧を測定し、超音波エコー装置で血管径とを実測することにより、血管弾性率を容易に測定できる。   Therefore, in the vascular elasticity measurement method, the vascular elasticity can be easily measured by measuring the blood pressure with a sphygmomanometer and measuring the blood vessel diameter with an ultrasonic echo device.

以上述べた血管弾性率測定方法を用いた血管弾性率測定装置及びその測定方法の具体的実施例を図に基づいて詳述する。図5は、本発明の最適な実施の形態を説明する図である。図6は、超音波エコーセンシングユニット100の構造を示す図である。図7は、本発明の実施の形態に係る電子回路構成を示すブロック図である。   Specific examples of the blood vessel elastic modulus measuring apparatus and the measuring method using the blood vessel elastic modulus measuring method described above will be described in detail with reference to the drawings. FIG. 5 is a diagram for explaining an optimal embodiment of the present invention. FIG. 6 is a diagram showing the structure of the ultrasonic echo sensing unit 100. FIG. 7 is a block diagram showing an electronic circuit configuration according to the embodiment of the present invention.

図5に示すように、本実施例における血管弾性率測定装置は、超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段及び前記超音波入射手段と超音波検出手段からなる超音波エコーセンシングユニット100を生体組織に対して押圧する加圧手段としての加圧ユニット50とからなっている。   As shown in FIG. 5, the blood vessel elasticity measurement apparatus according to the present embodiment includes an ultrasonic incident unit that inputs ultrasonic waves, a detection unit that detects ultrasonic waves reflected from a blood vessel wall, and the ultrasonic incident unit It comprises a pressurizing unit 50 as pressurizing means for pressing an ultrasonic echo sensing unit 100 comprising sound wave detecting means against a living tissue.

図6の超音波エコーセンシングユニット100は、超音波トランスデューサ110、圧力センサ101、加圧力伝達袋103、結合ゲル部材120が設けられている。また、図5に示すように、加圧ユニット50では図示していないが本体に内臓された空気ポンプを用いてパイプ107を通して蛇腹106内に空気を送り、超音波エコーセンシングユニット100を手首部の皮膚に対して加圧できるようにしてある。   The ultrasonic echo sensing unit 100 of FIG. 6 is provided with an ultrasonic transducer 110, a pressure sensor 101, a pressure transmission bag 103, and a coupled gel member 120. Further, as shown in FIG. 5, although not shown in the pressurizing unit 50, air is sent into the bellows 106 through the pipe 107 using an air pump incorporated in the main body, and the ultrasonic echo sensing unit 100 is attached to the wrist portion. It can be pressurized against the skin.

本発明で用いる超音波エコー法では、超音波の距離分解能を上げるため、まず、送信部でパルス幅100ns程度の電気パルスを発信周波数50Hz、すなわち発信間隔20ms間隔で生成し、この電気パルスを超音波トランスデューサ110に送り、極めて時間的に短い幅の超音波パルスを発生させる。超音波トランスデューサ110はPVDF(ポリフッ化ビニリデン)薄膜の圧電振動子とバッキング材として背面に接合された厚さ200μmの銅板からなる。電気パルス幅100nsに対して共振周波数10MHzとなるようにするために、PVDF薄膜の厚さは、20μm〜30μmが好適である。また、バッキング材により背面への超音波が前面側へ反射されパルス幅の短かい超音波パルスが効率的に発生される。橈骨動脈21の超音波エコー測定には超音波トランスデューサ110の直径は4〜5mmが好適である。   In the ultrasonic echo method used in the present invention, in order to increase the distance resolution of ultrasonic waves, first, an electric pulse having a pulse width of about 100 ns is generated at a transmission frequency of 50 Hz, that is, at an interval of 20 ms. An ultrasonic pulse having an extremely short width is generated by being sent to the acoustic transducer 110. The ultrasonic transducer 110 is made of a PVDF (polyvinylidene fluoride) thin film piezoelectric vibrator and a copper plate having a thickness of 200 μm bonded to the back surface as a backing material. In order to achieve a resonance frequency of 10 MHz with respect to an electric pulse width of 100 ns, the thickness of the PVDF thin film is preferably 20 μm to 30 μm. In addition, ultrasonic waves from the back surface are reflected to the front side by the backing material, and ultrasonic pulses having a short pulse width are efficiently generated. For ultrasonic echo measurement of the radial artery 21, the diameter of the ultrasonic transducer 110 is preferably 4 to 5 mm.

生体の音響インピーダンスは超音波トランスデューサ110のPVDF薄膜と同程度であるから、生体と直接接触させても超音波エネルギーは生体内に効率的に入射されるが、通常圧電振動子の保護膜等が不要な多重反射を引き起こし、、S/Nを低下させる。本発明では、圧電振動子と皮膚との結合には音響インピーダンスのマッチングを行うため、音響インピーダンスが皮膚組織に近い厚さ8mmのポリオレフィン系の結合ゲル部材120を挿入し、実質8mmの区間で透明で無反射の領域を得ている。また、ゲル部材は適度の粘着性を有するため、皮膚表面の凹凸による超音波の散乱をなくし、S/Nを向上させていると同時に、通常用いられている液体状のゲル部材を必要とせず、利便性が著しく向上した。   Since the acoustic impedance of the living body is about the same as that of the PVDF thin film of the ultrasonic transducer 110, the ultrasonic energy is efficiently incident into the living body even if it is brought into direct contact with the living body. Unnecessary multiple reflections are caused and S / N is lowered. In the present invention, in order to perform acoustic impedance matching for the coupling between the piezoelectric vibrator and the skin, a polyolefin-based coupling gel member 120 having a thickness of 8 mm, which is close to the skin tissue, is inserted and transparent in a section of substantially 8 mm. The non-reflective area is obtained. In addition, since the gel member has moderate adhesiveness, it eliminates the scattering of ultrasonic waves due to the unevenness of the skin surface and improves the S / N, and at the same time does not require a normally used liquid gel member. Convenience improved significantly.

この結合ゲル部材120の厚さ8mmと一般的な血管の皮膚からの深さを考慮すると超音波トランスデューサ110の入射面の曲率は1/13(1/mm)が好適である。   Considering the thickness 8 mm of the coupled gel member 120 and the depth of a general blood vessel from the skin, the curvature of the incident surface of the ultrasonic transducer 110 is preferably 1/13 (1 / mm).

このようにして超音波トランスデューサ110から発信された超音波パルスは検査対象中を伝わり、音響インピーダンスの異なる血管の外面と内面でそれぞれ反射される。また、血管の手前側と反対側でも反射される。反射された超音波パルスは、超音波トランスデューサ110に入射され電気信号に変換され、合計4つの反射波が電気パルスとして検出される。超音波は弾性波で、生体組織中では35℃で約1520m/s程度である。したがって、距離1mmを時間に換算するとおおよそ700nsとなる。反射波の時間のずれを距離に換算する。なお、血管壁の厚さは100〜200μmであり、血管壁の外面と内面の反射波の時間差は120〜240nsとなる。 In this manner, the ultrasonic pulse transmitted from the ultrasonic transducer 110 is transmitted through the object to be examined, and is reflected by the outer surface and the inner surface of the blood vessel having different acoustic impedances. It is also reflected on the opposite side of the blood vessel. The reflected ultrasonic pulse is incident on the ultrasonic transducer 110 and converted into an electric signal, and a total of four reflected waves are detected as electric pulses. Ultrasound is an elastic wave and is about 1520 m / s at 35 ° C. in living tissue. Therefore, when the distance of 1 mm is converted into time, it is approximately 700 ns. Convert the time lag of the reflected wave into distance. The thickness of the blood vessel wall is 100 to 200 μm, and the time difference between the reflected waves on the outer surface and the inner surface of the blood vessel wall is 120 to 240 ns.

次に、実際に行う操作手順について説明する。まず、一般の血圧計で上腕動脈における、最高血圧Pis、最低血圧Pid、平均血圧Pavを決定する。   Next, an actual operation procedure will be described. First, the maximum blood pressure Pis, the minimum blood pressure Pid, and the average blood pressure Pav in the brachial artery are determined with a general blood pressure monitor.

次に、図5、図7に示すように手首の橈骨動脈110の部分を圧力センサ101の値が平均血圧Pavを示す値まで空圧を用いた加圧部50により超音波エコーセンシングユニット100を押圧していく。圧力センサ101の値が平均血圧Pavを示したら、加圧を停止し、この状態で、超音波トランスデューサ110で合計4つの電気パルスとして超音波エコー信号を受信する。   Next, as shown in FIG. 5 and FIG. 7, the ultrasonic echo sensing unit 100 is applied to the radial artery 110 of the wrist by the pressurizing unit 50 using air pressure until the value of the pressure sensor 101 indicates the average blood pressure Pav. Press. When the value of the pressure sensor 101 indicates the average blood pressure Pav, pressurization is stopped, and in this state, the ultrasonic transducer 110 receives ultrasonic echo signals as a total of four electric pulses.

この電気信号(超音波エコー信号)はプリアンプ201で増幅された後、フィルタ202で共振周波数10MHzの高周波のみ通し、ノイズ成分が除かれ、検波された信号成分のみが出力される。超音波パルスの発信タイミングに同期したトリガ信号に対して結合ゲル部材120を超音波の往復に要する時間だけ遅らせた時間から、ADコンバータ203による前記信号成分のAD変換が開始されメモリーに記憶される。ADコンバータ203のサンプリング周波数は200MHzとし、1回の超音波パルスに対するサンプリング時間は20μsとする。前記発信周波数は50Hzであるから、心拍1拍の間にこのサンプリングが概ね30回から50回行なわれることになる。5〜7個分の拍動を記録するため、測定時間は5秒間とする。測定終了後、CPU210はメモリに記録された数値を順次読み出し、超音波の進行方向に対する血管壁の第1壁と第2壁のそれぞれの内壁、外壁からの反射波、すなわち合計4つの反射波の時間のずれを計算し、時間間隔の最大、最小を検出する数値処理を行い、得られた拍動数分だけ平均処理を行い血管内側半径ad、血管外側半径b、血管内側半径as、血管外側半径bsとを算出する。 After this electric signal (ultrasonic echo signal) is amplified by the preamplifier 201, only the high frequency of the resonance frequency 10 MHz is passed through the filter 202, the noise component is removed, and only the detected signal component is output. AD conversion of the signal component by the AD converter 203 is started and stored in the memory from the time when the coupling gel member 120 is delayed by the time required for the reciprocation of the ultrasonic wave with respect to the trigger signal synchronized with the transmission timing of the ultrasonic pulse. . The sampling frequency of the AD converter 203 is 200 MHz, and the sampling time for one ultrasonic pulse is 20 μs. Since the transmission frequency is 50 Hz, this sampling is performed approximately 30 to 50 times during one heartbeat. The measurement time is 5 seconds in order to record 5 to 7 beats. After the measurement is completed, the CPU 210 sequentially reads out the numerical values recorded in the memory, and reflects the reflected waves from the inner and outer walls of the first and second walls of the blood vessel wall with respect to the ultrasonic traveling direction, that is, a total of four reflected waves. Numerical processing for calculating the time lag and detecting the maximum and minimum of the time interval is performed, and average processing is performed for the obtained number of beats, and the blood vessel inner radius a d, the blood vessel outer radius b d , and the blood vessel inner radius a s Then, the blood vessel outer radius b s is calculated.

血管弾性率演算部213は、平均血圧Pav拡張期血圧Pid、収縮期血圧Pisから次式により血管弾性率Eを算出し、表示部212に渡す。

Figure 2006263128
The vascular elastic modulus calculation unit 213 calculates the vascular elastic modulus E from the average blood pressure Pav , the diastolic blood pressure Pid, and the systolic blood pressure Pis according to the following formula, and passes it to the display unit 212.
Figure 2006263128

表示部212は、演算の結果得られた血管弾性率Eを液晶表示器に表示する。 The display unit 212 displays the vascular elasticity E obtained as a result of the calculation on the liquid crystal display.

以上の血管弾性率測定装置によれば、従来の血管弾性率Eよりも簡便な装置を用いながら容易に血管弾性率Eを求めることが可能となる。   According to the blood vessel elastic modulus measuring apparatus described above, the blood vessel elastic modulus E can be easily obtained while using a simpler apparatus than the conventional blood vessel elastic modulus E.

中空円筒状弾性体の応力と変形を示す説明図である。It is explanatory drawing which shows the stress and deformation | transformation of a hollow cylindrical elastic body. 血圧による血管の変形と応力を示す説明図である。It is explanatory drawing which shows the deformation | transformation and stress of the blood vessel by a blood pressure. 本発明による血管弾性率を表す式である。3 is a formula representing a blood vessel elastic modulus according to the present invention. 外部圧力に対する血管変形を示す説明図である。It is explanatory drawing which shows the blood-vessel deformation with respect to an external pressure. 本発明の実施の形態を説明する図である。It is a figure explaining embodiment of this invention. 本発明の超音波トランスデューサの構造を示す図である。It is a figure which shows the structure of the ultrasonic transducer of this invention. 本発明の実施の形態に係る構成を示すブロック図である。It is a block diagram which shows the structure which concerns on embodiment of this invention.

符号の説明Explanation of symbols

21 橈骨動脈
26 橈骨
50 加圧部
100 超音波エコーセンシングユニット
101 圧力センサ
103 加圧力伝達袋
106 蛇腹
110 超音波トランスデューサ
120 結合ゲル部材
201 プリアンプ
202 フィルタ
203 ADコンバータ
204 パルス発生器
210 CPU
212 表示部
213 血管弾性率表示部
21 radial artery
26 ribs
50 Pressure unit 100 Ultrasonic echo sensing unit 101 Pressure sensor
103 Pressure transmission bag 106 Bellows 110 Ultrasonic transducer
120 Bonded gel member
201 Preamplifier 202 Filter 203 AD Converter 204 Pulse Generator 210 CPU
212 Display Unit 213 Vascular Elasticity Display Unit

Claims (5)

超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段と、血管を加圧する加圧手段と、血圧を測定する測定手段とを備え、手前側の血管壁内外面から反射される超音波と反対側の血管壁内外面から反射される超音波パルスの時間差から血管内径及び血管外径を算出し血管弾性率を算出する血管弾性率測定方法において、平均血圧に相当する外部圧力で血管を加圧したときの血管変形量から血管弾性率を算出することを特徴とする血管弾性率測定方法。   A blood vessel wall on the near side, comprising: an ultrasonic wave incident means for entering ultrasonic waves; a detection means for detecting ultrasonic waves reflected from the blood vessel wall; a pressurizing means for pressurizing the blood vessel; and a measuring means for measuring blood pressure. In the blood vessel elastic modulus measurement method for calculating the blood vessel elastic modulus by calculating the blood vessel inner diameter and the blood vessel outer diameter from the time difference between the ultrasonic pulse reflected from the inner and outer surfaces of the blood vessel wall opposite to the ultrasonic wave reflected from the inner and outer surfaces, the mean blood pressure is calculated. A blood vessel elastic modulus measurement method, comprising calculating a blood vessel elastic modulus from a blood vessel deformation amount when a blood vessel is pressurized with an external pressure corresponding to. 超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段と、血管を加圧する加圧手段とを備え、手前側の血管壁内面から反射される超音波と反対側の血管壁内面から反射される超音波の時間差から血管径を算出し血管弾性率を算出する血管弾性率測定方法において、平均血圧Pavに相当する圧力を外部より加え、独立に測定して得た拡張期血圧Pidのときの血管内側半径adと血管外側半径bと、収縮期血圧Pisのときの血管内側半径aと血管外側半径bとから、
Figure 2006263128
により血管弾性率Eを求めることを特徴とする請求項1に記載の血管弾性率測定方法。
An ultrasonic wave incident means for incident ultrasonic waves, a detection means for detecting an ultrasonic wave reflected from the blood vessel wall, and a pressurizing means for pressurizing the blood vessel, the ultrasonic wave reflected from the inner surface of the blood vessel wall on the near side, In the blood vessel elastic modulus measurement method for calculating the blood vessel diameter from the time difference of the ultrasonic waves reflected from the inner surface of the opposite blood vessel wall and calculating the blood vessel elastic modulus, a pressure corresponding to the average blood pressure Pav is applied from the outside and measured independently. From the obtained blood vessel inner radius a d and blood vessel outer radius b d at the time of diastolic blood pressure Pid, and blood vessel inner radius a s and blood vessel outer radius b s at the time of systolic blood pressure Pis,
Figure 2006263128
2. The blood vessel elastic modulus measurement method according to claim 1, wherein the blood vessel elastic modulus E is obtained by the following.
超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段と、血管を加圧する加圧手段と、血圧を測定する測定手段とを備え、手前側の血管壁内外面から反射される超音波と反対側の血管壁内外面から反射される超音波パルスの時間差から血管内径及び血管外径を算出し血管弾性率を算出する血管弾性率測定装置において、平均血圧に相当する外部圧力で血管を加圧したときの血管変形量から血管弾性率を算出する血管弾性率演算部を設けたことを特徴とする血管弾性率測定装置。   A blood vessel wall on the near side, comprising: an ultrasonic wave incident means for entering ultrasonic waves; a detection means for detecting ultrasonic waves reflected from the blood vessel wall; a pressurizing means for pressurizing the blood vessel; and a measuring means for measuring blood pressure. Mean blood pressure in a blood vessel elastic modulus measuring device that calculates a blood vessel elastic modulus by calculating a blood vessel inner diameter and a blood vessel outer diameter from a time difference between ultrasonic waves reflected from the inner and outer surfaces of the blood vessel wall opposite to the ultrasonic waves reflected from the inner and outer surfaces. A blood vessel elastic modulus measuring device for calculating a blood vessel elastic modulus from a blood vessel deformation amount when a blood vessel is pressurized with an external pressure corresponding to the above. 超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段と、血管を加圧する加圧手段とを備え、手前側の血管壁内面から反射される超音波と反対側の血管壁内面から反射される超音波の時間差から血管径を算出し血管弾性率を算出する血管弾性率測定装置において、平均血圧Pavに相当する圧力を外部より加え、独立に測定して得た拡張期血圧Pidのときの血管内側半径adと血管外側半径bと、収縮期血圧Pisのときの血管内側半径aと血管外側半径bとから、
Figure 2006263128
により血管弾性率Eを求める血管弾性率演算部を設けたことを特徴とする請求項3に記載の血管弾性率測定装置。
An ultrasonic wave incident means for incident ultrasonic waves, a detection means for detecting an ultrasonic wave reflected from the blood vessel wall, and a pressurizing means for pressurizing the blood vessel, the ultrasonic wave reflected from the inner surface of the blood vessel wall on the near side, In a blood vessel elastic modulus measuring device that calculates a blood vessel diameter from a time difference between ultrasonic waves reflected from the inner surface of the opposite blood vessel wall and calculates a blood vessel elastic modulus, a pressure corresponding to the average blood pressure Pav is applied from the outside and measured independently. From the obtained blood vessel inner radius a d and blood vessel outer radius b d at the time of diastolic blood pressure Pid, and blood vessel inner radius a s and blood vessel outer radius b s at the time of systolic blood pressure Pis,
Figure 2006263128
The blood vessel elastic modulus measuring device according to claim 3, further comprising a blood vessel elastic modulus calculating unit that obtains the blood vessel elastic modulus E.
超音波を入射する超音波入射手段と、血管壁から反射される超音波を検出する検出手段とを備え、手前側の血管壁内面から反射される超音波と反対側の血管壁内面から反射される超音波の時間差から血管径を算出し血管弾性率を算出する血管弾性率測定装置において、圧電振動子と皮膚との間に、音響インピーダンスが皮膚に近い厚さ8〜10mmのポリオレフィン系のゲル状部材を有していることを特徴とする請求項3または請求項4に記載の血管弾性率測定装置。
An ultrasonic wave incident means for making an ultrasonic wave incident and a detection means for detecting an ultrasonic wave reflected from the blood vessel wall are reflected from the inner surface of the blood vessel wall opposite to the ultrasonic wave reflected from the inner surface of the blood vessel wall. In a blood vessel elastic modulus measuring apparatus for calculating a blood vessel diameter from a time difference of ultrasonic waves to calculate a blood vessel elastic modulus, a polyolefin-based gel having an acoustic impedance of 8 to 10 mm close to the skin between the piezoelectric vibrator and the skin The blood vessel elastic modulus measuring device according to claim 3 or 4, wherein the blood vessel elastic modulus measuring device has a cylindrical member.
JP2005085308A 2005-03-24 2005-03-24 Blood vessel elastic modulus measuring method and blood vessel elastic modulus measuring device Expired - Fee Related JP4627673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085308A JP4627673B2 (en) 2005-03-24 2005-03-24 Blood vessel elastic modulus measuring method and blood vessel elastic modulus measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085308A JP4627673B2 (en) 2005-03-24 2005-03-24 Blood vessel elastic modulus measuring method and blood vessel elastic modulus measuring device

Publications (2)

Publication Number Publication Date
JP2006263128A true JP2006263128A (en) 2006-10-05
JP4627673B2 JP4627673B2 (en) 2011-02-09

Family

ID=37199686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085308A Expired - Fee Related JP4627673B2 (en) 2005-03-24 2005-03-24 Blood vessel elastic modulus measuring method and blood vessel elastic modulus measuring device

Country Status (1)

Country Link
JP (1) JP4627673B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212366A (en) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology Evaluation apparatus of luminal body in living body
WO2009081598A1 (en) * 2007-12-20 2009-07-02 Gifu University Image processing apparatus, image processing program, storage medium, and ultrasonic diagnostic apparatus
JP2012085789A (en) * 2010-10-19 2012-05-10 Seiko Epson Corp Blood vessel diameter measurement device
CN102805616A (en) * 2011-06-02 2012-12-05 曹铁生 Novel index for testing partial elasticity of artery
WO2013124946A1 (en) * 2012-02-20 2013-08-29 株式会社デンソー Device for continuously measuring diameter of blood vessel in living body
JP2017124170A (en) * 2016-01-11 2017-07-20 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Tissue depth estimation using gated ultrasound and force measurements
CN110559015A (en) * 2019-08-26 2019-12-13 清华大学 method and device for measuring blood vessel physiological parameters, computer device and storage medium
US11213212B2 (en) 2015-12-07 2022-01-04 Samsung Electronics Co., Ltd. Apparatus for measuring blood pressure, and method for measuring blood pressure by using same
CN114206224A (en) * 2019-07-23 2022-03-18 富士胶片株式会社 Ultrasonic diagnostic apparatus and method for controlling ultrasonic diagnostic apparatus
EP4356842A1 (en) 2022-10-17 2024-04-24 FUJI-FILM Corporation Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028897B2 (en) * 2012-04-18 2016-11-24 セイコーエプソン株式会社 Blood pressure measurement device and blood pressure estimation parameter calibration method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176233A (en) * 1997-09-01 1999-03-23 Terumo Corp Cardiovascular system information measuring system
JP2002209857A (en) * 2001-01-10 2002-07-30 Ge Medical Systems Global Technology Co Llc Vascular elasticity rate measuring method, vascular elasticity rate calculation device and ultrasonic diagnostic device
JP2004159672A (en) * 2002-11-08 2004-06-10 Matsushita Electric Ind Co Ltd Ultrasonograph and ultrasonic measuring method
WO2004089222A1 (en) * 2003-04-03 2004-10-21 Matsushita Electric Industrial Co. Ltd. Ultrasonograph and method for controlling ultrasonograph

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176233A (en) * 1997-09-01 1999-03-23 Terumo Corp Cardiovascular system information measuring system
JP2002209857A (en) * 2001-01-10 2002-07-30 Ge Medical Systems Global Technology Co Llc Vascular elasticity rate measuring method, vascular elasticity rate calculation device and ultrasonic diagnostic device
JP2004159672A (en) * 2002-11-08 2004-06-10 Matsushita Electric Ind Co Ltd Ultrasonograph and ultrasonic measuring method
WO2004089222A1 (en) * 2003-04-03 2004-10-21 Matsushita Electric Industrial Co. Ltd. Ultrasonograph and method for controlling ultrasonograph

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212366A (en) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology Evaluation apparatus of luminal body in living body
WO2009081598A1 (en) * 2007-12-20 2009-07-02 Gifu University Image processing apparatus, image processing program, storage medium, and ultrasonic diagnostic apparatus
JP2009148396A (en) * 2007-12-20 2009-07-09 Gifu Univ Image processor, image processing program, storage medium and ultrasonic diagnostic apparatus
US8249324B2 (en) 2007-12-20 2012-08-21 Gifu University Image processing apparatus, image processing program, storage medium, and ultra-sonic diagnostic apparatus
JP2012085789A (en) * 2010-10-19 2012-05-10 Seiko Epson Corp Blood vessel diameter measurement device
CN102805616A (en) * 2011-06-02 2012-12-05 曹铁生 Novel index for testing partial elasticity of artery
WO2013124946A1 (en) * 2012-02-20 2013-08-29 株式会社デンソー Device for continuously measuring diameter of blood vessel in living body
JPWO2013124946A1 (en) * 2012-02-20 2015-05-21 株式会社デンソー Biological blood vessel diameter continuous measurement device
US11213212B2 (en) 2015-12-07 2022-01-04 Samsung Electronics Co., Ltd. Apparatus for measuring blood pressure, and method for measuring blood pressure by using same
JP2017124170A (en) * 2016-01-11 2017-07-20 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Tissue depth estimation using gated ultrasound and force measurements
CN114206224A (en) * 2019-07-23 2022-03-18 富士胶片株式会社 Ultrasonic diagnostic apparatus and method for controlling ultrasonic diagnostic apparatus
CN114206224B (en) * 2019-07-23 2023-09-08 富士胶片株式会社 Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus
CN110559015A (en) * 2019-08-26 2019-12-13 清华大学 method and device for measuring blood vessel physiological parameters, computer device and storage medium
EP4356842A1 (en) 2022-10-17 2024-04-24 FUJI-FILM Corporation Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus

Also Published As

Publication number Publication date
JP4627673B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4627673B2 (en) Blood vessel elastic modulus measuring method and blood vessel elastic modulus measuring device
JP3857788B2 (en) Cardiovascular information measurement system
KR101660453B1 (en) Method and Apparatus for Measuring a Physical Parameter in Mammal Soft Tissues by Propagating Shear Waves
CN100512764C (en) Ultrasonograph and ultrasonography
Seo et al. Noninvasive arterial blood pressure waveform monitoring using two-element ultrasound system
US20080081994A1 (en) Measurement of tissue elastic modulus
US8617074B2 (en) Method and apparatus for generating hardness and/or strain information of a tissue
WO2006001252A1 (en) Blood vessel endothelium reaction measuring instrument and method for controlling blood vessel endothelium reaction measuring instrument
EP1531725A2 (en) Systems and methods for making noninvasive assessments of cardiac tissue and parameters
WO2005112774A1 (en) Ultrasonic diagnostic apparatus and method for controlling ultrasonic diagnostic apparatus
Huang et al. Continuous measurement of arterial diameter using wearable and flexible ultrasonic sensor
US20070004982A1 (en) Apparatus and method for early detection of cardiovascular disease using vascular imaging
JP2004041382A (en) Ultrasonograph
JP5346555B2 (en) Ultrasound diagnostic device with arteriosclerosis risk display function
JP2010207344A (en) Blood pressure/blood velocity state determination device and method for determining the same
JP2005034543A (en) Monitoring device for blood flow condition
JP5896759B2 (en) Biological arterial endothelial function measuring device
CN111134635B (en) Method and device for detecting elasticity of blood vessel, electronic equipment and storage medium
KR20060078207A (en) The system and method for a cardiovascular diagnosis monitoring
JP2008168055A (en) Stroke volume estimating apparatus
JP2006166955A (en) Ultrasonograph
Brum et al. Application of a transient elastography technique to the characterization of the arterial wall elasticity
Rey et al. Towards ultrasound wearable technology for cardiovascular monitoring: from device development to clinical validation
WO2006126485A1 (en) Ultrasonograph
Amado-Rey et al. Towards ultrasound wearable technology for cardiovascular monitoring: from device development to clinical validation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees