JP3700048B2 - Electronic blood pressure monitor - Google Patents

Electronic blood pressure monitor Download PDF

Info

Publication number
JP3700048B2
JP3700048B2 JP18109699A JP18109699A JP3700048B2 JP 3700048 B2 JP3700048 B2 JP 3700048B2 JP 18109699 A JP18109699 A JP 18109699A JP 18109699 A JP18109699 A JP 18109699A JP 3700048 B2 JP3700048 B2 JP 3700048B2
Authority
JP
Japan
Prior art keywords
cuff
body motion
photoelectric sensor
blood pressure
pulse wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18109699A
Other languages
Japanese (ja)
Other versions
JP2001008909A (en
Inventor
幸哉 澤野井
一久 田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Healthcare Co Ltd
Original Assignee
Omron Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co Ltd filed Critical Omron Healthcare Co Ltd
Priority to JP18109699A priority Critical patent/JP3700048B2/en
Publication of JP2001008909A publication Critical patent/JP2001008909A/en
Application granted granted Critical
Publication of JP3700048B2 publication Critical patent/JP3700048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、体動に起因するノイズ、アーティファクタの影響を受け難くした電子血圧計に関する。
【0002】
【従来の技術】
従来、光電脈波を用いた方式の血圧計としては指式血圧計がある。この指式血圧計のような従来の血圧計は、カフで圧迫する指の動脈が体表から浅い部分にあり、その拍動を測定し、血圧を決定する方式として構成されている。このため、
i)発光素子と受光素子との間の距離が短い。
ii)測定中の体動によって光電脈波信号に体動ノイズが重畳する。
ことから、次の問題点▲1▼,▲2▼がある。
▲1▼動脈が体表から深い部分にあるような部位(例えば上腕)では、脈波の測定が困難となり、光電脈波方式の血圧測定は困難となる。
▲2▼体動中の測定では、測定エラーが多発したり、測定精度が悪化したりする。
【0003】
そこで、これらの問題点▲1▼,▲2▼を解決するために、本出願人は、
a)生体内での減衰率の少ない波長(700〜1000nm)の光を測定光として用いる。
b)発光素子と受光素子との間の距離を所定の範囲(20〜90mm)に設定する。
c)光電脈波検出用として複数個のセンサを用いる。
条件を備え、体表から深い部分にある動脈の拍動からでも光電脈波信号を得ることを可能とした血圧計を開発した。
【0004】
【発明が解決しようとする課題】
ところで、後者の血圧計においては、複数個のセンサで得られた光電脈波信号のうち、どの信号が最も血圧算出に適しているかは、被測定者の属性(例えば測定部位の周長、動脈の深さ、皮下脂肪の厚さなど)により異なるため、被測定者ごとに適正なセンサを選定する必要がある。しかしながら、被測定者の属性は、被測定者自身が容易に知り得る情報ではないため、血圧計側で適正なセンサを選定できない場合、結果的に精度が余り良くない血圧値を算出してしまう。
【0005】
従って、本発明は、そのような問題点に着目してなされたもので、体表から深い部分にある動脈からも光電脈波信号を確実に得ること、被測定者の属性によらず血圧測定に最適なセンサを選定すること、及びそれらにより精度の高い血圧測定を行うことを実現する電子血圧計を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記目的を達成するために、本発明の請求項1記載の電子血圧計は、生体の測定部位を加圧するためのカフと、カフ内を加圧・減圧する圧力制御手段と、カフ内の圧力を検出する圧力検出手段と、カフのそれぞれ異なる位置に設けられた複数個の脈波成分検出用の光電センサと、カフに設けられると共に体動成分を検出する少なくとも1個の体動成分検出手段と、光電センサで得られた脈波成分から体動成分検出手段で得られた体動成分を除去して血圧を算出する血圧算出手段と、複数個の光電センサのうち、複数個の光電センサにより得られる光電脈波信号を周波数解析して信号パワーを算出し、各光電センサにより得られる脈波成分と体動成分の信号パワーを比較し、脈波成分対体動成分比が最も高い光電センサを、被測定者の属性に最適な位置にある光電センサとして選定する光電センサ選定手段とを備え、前記光電センサ選定手段で選定された光電センサにより得られる脈波成分を用いて血圧を算出するようにしたことを特徴とする。
【0007】
この電子血圧計は、体動成分検出手段で検出した体動成分(ノイズ成分)を用いて、ノイズ成分が重畳した脈波成分検出用の光電センサの脈波信号からノイズ成分のみを低減するものである。その際、正確な血圧算出を行うため、脈波の検出に動脈の拍動を直接捉える手法(例えば光電脈波)を用いる。この手法は、カフ圧の分布の影響を受けないカフ中央部の動脈の拍動を直接捉えることが可能であり、コロトコフ音と同様に最高血圧・最低血圧において特徴的な変化を示し、正確な血圧測定が可能となる。
【0008】
ところが、動脈が体表から深い部分にある部位(例えば上腕)では、前記したとおり脈波の測定が困難である。そこで、複数個の脈波成分検出用の光電センサを、カフのそれぞれ異なる位置に設けることにより、好ましくは光電センサの発光素子と受光素子との間の距離が20〜90mmとなるように設けると共に、生体内で減衰率の少ない波長(700〜1000nm)の光を脈波測定光とするものを用いることにより、体表から深い部分にある動脈の拍動を光電脈波として捉えることが可能となる。
【0009】
ここで、カフの異なる位置に複数個の光電センサを設けるのは、血圧算出に最適な光電センサの位置が被測定者の属性により異なるからである。但し、ここでいう被測定者の属性とは、測定部位の周長、動脈の体表からの深さ、皮下脂肪の厚さなどである。
本発明の電子血圧計では、光電センサ選定手段により、複数個の脈波成分検出用の光電センサのうち、複数個の光電センサにより得られる光電脈波信号を周波数解析して信号パワーを算出し、各光電センサにより得られる脈波成分と体動成分の信号パワーを比較し、脈波成分対体動成分比が最も高い光電センサが、予め血圧算出に最適な位置にある光電センサとして選定され、選定された光電センサにより得られる脈波成分を用いて血圧を算出するので、前記問題点を解決することができる。即ち、体表から深い部分にある動脈からも光電脈波信号を確実に得ることができ、被測定者の属性によらず血圧測定に最適なセンサを選定でき、よって精度の高い血圧測定を行うことができる。
【0010】
なお、本発明において、体動成分検出手段としては、生体の動きを物理量に変換して測定するセンサの場合は、速度センサ、加速度センサ、位置センサ、変位センサ、角度センサ、方位センサ、傾斜センサなどを、生体の動きによって変化する生体量(例えば血液量)を測定するセンサの場合は、光電センサなどを用いればよい。
【0011】
【発明の実施の形態】
以下、本発明を実施の形態に基づいて説明する。
その第1の実施形態に係る電子血圧計の構成を図1にブロック図で示す。この電子血圧計は、生体の測定部位を加圧するためのカフ1と、カフ1内を加圧する加圧ポンプ(圧力制御手段)2と、カフ1内を減圧する排気弁(圧力制御手段)3と、カフ1内の圧力を検出する圧力センサ(圧力検出手段)4と、算出された血圧値等を表示する表示器5と、加圧ポンプ2、排気弁3、表示器5等を制御するCPU6と、圧力センサ4からの出力を増幅する増幅器7と、増幅器7からのアナログ信号をデジタル信号に変換してCPU6に入力するA/D変換器8とを備える。但し、ここまでの構成は従来の血圧計と同様である。
【0012】
この電子血圧計は、カフ1に設けられた複数個の脈波成分検出用の光電センサ10-1,…,10-nと、同じくカフ1に設けられた体動成分検出手段としての1個の加速度センサ11とを備え、光電センサ10-1,…,10-nがカフ1のそれぞれ異なる位置に設けられ、CPU6が光電センサ10-1,…,10-nで得られた脈波成分から加速度センサ11で得られた体動成分を除去して血圧を算出する血圧算出機能と、複数個の光電センサ10-1,…,10-nのうち、被測定者の属性に最適な位置にある光電センサを選定する光電センサ選定機能とを有し、選定された光電センサにより得られる脈波成分を用いて血圧を算出するようにした点が特徴である。
【0013】
なお、光電センサ10-1,…,10-nは、前記したとおり発光素子と受光素子との間の距離が20〜90mmの範囲になるように設けられ、生体内で減衰率の少ない波長(700〜1000nm)の光を使用するものである。
各光電センサ10-1,…,10-nの光電脈波信号は、それぞれ増幅器12-1,…,12-nによって増幅され、更にA/D変換器8でデジタル信号に変換されて、CPU6に入力される。また、加速度センサ11の体動信号は、増幅器13で増幅され、A/D変換器8でデジタル信号に変換されてから、CPU6に入力される。
【0014】
図2に示す第2の実施形態に係る電子血圧計は、体動成分検出手段として、加速度センサ11の代わりに、1個の光電センサ14を用いるものであり、図3に示す第3の実施形態に係る電子血圧計は、体動成分検出手段として複数個の光電センサ14-1,…,14-nを用いるものである。それ以外の構成は、第1の実施形態の電子血圧計と同様である。
【0015】
第1の実施形態の電子血圧計(図1参照)におけるカフ1の概略断面図を図4に示す。図4は、カフ1を上腕40に装着した状態を示し、上腕40内に骨41と動脈42が延伸している。ここでは、体動成分検出用の加速度センサ11はカフ1の表側に取付けられ、脈波成分検出用の複数個(3個)の光電センサ10-1,10-2,10-3はカフ1の内側(体表対面側)に取付けられている。光電センサ10-1,10-2,10-3は、各々が発光素子及び受光素子で構成されるのではなく、発光素子20が全ての光電センサに共通とされ、受光素子21,22,23が各光電センサ用とされる。発光素子20と受光素子21〜23は、カフ1の周方向(上腕40の横断方向)における異なる位置に配置され、また各受光素子21,22,23は、発光素子20からそれぞれ異なる位置に配置されている。勿論、発光素子20と受光素子21〜23は、前記所定の範囲(20〜90mm)に位置決めされている。
【0016】
第2の実施形態の電子血圧計(図2参照)におけるカフ1の概略断面図を図5に示す。図5では、体動成分検出用の光電センサ14は発光素子及び受光素子で構成されず、発光素子は脈波成分検出用の光電センサ10-1,10-2,10-3の発光素子20と共通であり、受光素子31のみが発光素子20を挟んで受光素子21〜23とは反対側に配置されている。
【0017】
第3の実施形態の電子血圧計(図3参照)におけるカフ1の概略断面図を図6に示す。図6では、体動成分検出用の複数個(3個)の光電センサ14-1,14-2,14-3は、図5の場合と同様に、発光素子が脈波成分検出用の光電センサ10-1,10-2,10-3の発光素子20と共通であり、3個の受光素子31,32,33がそれぞれ異なる位置に配置されている。この場合、発光素子20と各受光素子31,32,33との間の距離は、それぞれ発光素子20と受光素子21,22,23との間の距離と同一に設定されている。
【0018】
特に図6の場合、被測定者の属性に最適な位置にある脈波成分検出用の光電センサ10-1,10-2,10-3を選定するときに、体動成分の基本周波数を求めるのに使用する体動信号は、複数個(3個)の体動成分検出用の光電センサ14-1,14-2,14-3のうち、いずれのセンサの出力を用いてもよい。これは、選定時には体動成分の基本周波数のみを必要としているからである。
【0019】
又、体動成分検出用の光電センサ14-1,14-2,14-3を複数個設ける利点としては、脈波に重畳している体動ノイズを除去するのに有効となる。即ち、被測定者の属性に最適な位置にあるとして選定された脈波成分検出用の光電センサに対応する体動成分検出用の光電センサを用いてノイズ除去を行う。具体的には、脈波成分検出用の光電センサ10-1(即ち受光素子21)が選定されたとすると、発光素子20と受光素子21との間の距離と同一距離に位置する体動成分検出用の光電センサ14-1(即ち受光素子31)で得られる体動信号を用いてノイズを除去する。光電脈波信号、体動信号とも発光素子20から同一距離に位置する受光素子で取得することにより、体動成分である生体量の変化量が光電脈波信号と体動信号に同じように働くため、光電脈波信号に重畳している体動成分と相関の高い体動信号を得ることができ、ノイズの除去効率が高くなる。
【0020】
更に、図4〜図6に示すカフ1では、脈波成分検出用及び体動成分検出用の光電センサは、いずれもカフ1の周方向に垂直な方向(動脈42の延伸方向)における中央又は中央より生体1の末端側(手側)に配置されている。このため、光電脈波信号及び体動信号を正確に検出できる。これは、カフ1の前記中央より心臓側では、カフ1を最高血圧以上に加圧しても、カフ中央部と比較して圧迫力が弱くなっているため、動脈42が完全に阻血されず、心臓の鼓動に応じた脈波が生じる場合があるからである。
【0021】
ところで、被測定者の属性に最適な位置にある脈波成分検出用の光電センサの選定は、血圧をカフの減圧過程又は加圧過程のいずれかで測定するかにより、様々な過程で実行できる。例えばその選定を減圧測定で行う場合において、上記図3及び図6のように構成された電子血圧計の動作について図7のフロー図を参照して説明する。この場合、血圧測定は減圧過程で行う。つまり、図9に示すように、カフ1を一旦最高血圧以上に加圧し、この加圧過程で脈波成分検出用の光電センサの選定を行い、加圧後、一定圧で減圧していき、血圧決定方法として例えば、その減圧過程での脈波出現点を最高血圧、脈波消失点を最低血圧とする。血圧決定方法としては、この他に脈波振幅の包絡線を算出し、所定の閾値を設定して決定する方法などもある。
【0022】
まず、ステップ(以下、STと略す)1において、全ての変数が初期化された後、カフの加圧が開始される(ST2)。この加圧中に、発光素子20と受光素子21〜23で構成される脈波成分検出用の光電センサ10-1,10-2,10-3により、光電脈波信号が測定され、発光素子20と受光素子31〜33で構成される体動成分検出用の光電センサ14-1,14-2,14-3により、体動信号が測定される(ST3)。
【0023】
次いで、被測定者の属性に最適な位置にある脈波成分検出用の光電センサが決定される(ST4)。最適な光電脈波信号の指標として、各光電センサからの光電脈波信号を周波数解析して信号パワーを算出し、各信号パワーにおける脈波成分と体動成分の信号パワーを比較し、脈波成分対体動成分比(以下、S/N比という)が最も高い光電センサを、被測定者の属性に最適な位置にある光電センサとする。S/N比が高いということは、体動ノイズに比べ、脈波成分が良好に捉えられていることを意味するから、S/N比が最も高い信号パワーが得られる光電センサは被測定者の属性に適していることになる。逆に、S/N比が低いということは、体動ノイズに比べ、脈波成分が十分に捉えられていないことを意味するため、S/N比が低い信号パワーしか得られない光電センサは被測定者の属性に適していないことになり、以後の体動ノイズ除去処理において、十分なノイズ除去効果が期待できず、正確な血圧算出が行えない。
【0024】
上記のとおり被測定者の属性に最適な位置にある脈波成分検出用の光電センサが決定された後、選定された脈波成分検出用の光電センサに対応する体動成分検出用の光電センサが決定される(ST5)。即ち、図6において、被測定者の属性に最適な位置にある脈波成分検出用の光電センサとして、例えば光電センサ10-3(受光素子23)が選定された場合、発光素子20と受光素子23との間の距離と同一距離に位置する光電センサ14-3(受光素子33)が決定される。
【0025】
カフの内圧が最高血圧以上に達したら、一定圧での減圧が開始され(ST6)、その減圧過程でカフ圧力の測定、光電脈波信号の測定、体動信号の測定が行われ(ST7)、その測定結果により光電脈波信号からノイズとなる体動成分が除去される(ST8)。
光電脈波信号を周波数解析して算出した信号パワー中から脈波成分と体動成分を検出する具体的手法は、次のとおりである。最初に、複数個(3個)の体動成分検出用の光電センサ14-1,14-2,14-3のうち、前記のように任意の光電センサで測定した体動信号を周波数解析し、体動成分の基本周波数を算出する。続いて、光電脈波信号を周波数解析して得られる信号パワー中において、先に求めた体動成分の基本周波数と合致する成分が体動成分の信号パワーとなり、残りの信号パワー中において、体動成分の基本周波数の高調波成分を除去して得られる成分が脈波成分の信号パワーとなる。
【0026】
例えば図11及び図12は体動中における血圧測定を示し、図11は3個の脈波成分検出用の光電センサにより得られる光電脈波信号を示し、図12は2個の体動成分検出用の光電センサにより得られる体動信号を示している。これより明らかなように、光電脈波信号の信号パワーにおいて、体動成分の基本周波数に合致する成分が体動成分の信号パワーとなる。
【0027】
光電脈波信号から体動成分が除去された後、最高血圧及び最低血圧が算出され(ST9)、得られた血圧値が表示される(ST10)。
上記図7のフロー図は、被測定者の属性に最適な位置にある脈波成分検出用の光電センサの選定を減圧測定で行う場合であるが、加圧測定で行う場合のフロー図を図8に示す。この場合、カフの加圧中に血圧測定を行う。脈波成分検出用の光電センサの選定は、図10に示すように、例えば血圧測定のための加圧の前に予備加圧を行い、この予備加圧過程で行う。これは、加圧測定では、カフ圧が最低血圧よりも低い場合、脈波が出現する区間が存在しない場合があるからである。
【0028】
まず、ST11で初期化が行われた後、カフの予備加圧が行われ(ST12)、その予備加圧中に光電脈波信号及び体動信号が測定される(ST13)。そして、前記と同様に、被測定者の属性に最適な位置にある脈波成分検出用の光電センサが決定され(ST14)、それに応じて体動成分検出用の光電センサが決定される(ST15)。
【0029】
次いで、カフが最高血圧以上に加圧され(ST16)、その加圧過程でカフ圧力の測定、光電脈波信号の測定、体動信号の測定が行われ(ST17)、その測定結果により光電脈波信号から体動成分が除去される(ST18)。その後、最高血圧及び最低血圧が算出され(ST19)、得られた血圧値が表示され(ST20)、カフが急速排気される(ST21)。
【0030】
なお、図7及び図8のフロー図は、被測定者の属性に最適な位置にある脈波成分検出用の光電センサの選定を、それぞれ減圧測定及び加圧測定で行う場合であるが、減圧測定及び加圧測定のいずれにおいても、血圧算出(図7のST9、図8のST19)中に行うことも可能である。
又、上記実施形態は、体動中の血圧測定での選定に係るが、安静時の血圧測定においても同様である。即ち、この場合、光電脈波信号を周波数解析して得られる信号パワーの最も高い光電センサが被測定者の属性に最適な位置にある光電センサとなる。
【0031】
例えば図13及び図14は安静下における血圧測定を示し、図13は3個の脈波成分検出用の光電センサにより得られる光電脈波信号を示し、図14は2個の体動成分検出用の光電センサにより得られる体動信号を示している。この場合、光電脈波信号の信号パワーにおいて、信号パワーが最も高い光電センサ(ここではセンサ3)が最適となる。
【0032】
更に、血圧測定が体動中で行われているか、或いは安静下で行われているかの判定も同様に行うことが可能である。つまり、図14に示すように、体動成分検出用の光電センサで測定した体動信号を周波数解析して得られる信号パワーの値を、予め設定しておいた閾値と比較する。信号パワーが閾値より大きい場合は体動ノイズであると判定し、その体動ノイズを多く検出したときは、体動中の測定と判定する。反対に、信号パワーが閾値より小さい場合は体動ノイズではないと判定し、体動ノイズを全く検出しないか少ししか検出しないときは、安静下の測定と判定する。
【0033】
この他、上記フロー図は、体動成分検出用として複数個の光電センサを用いる場合(図3参照)であるが、1個の加速度センサや光電センサの場合(図1、図2参照)も同様である。但し、この場合は、脈波成分検出用の光電センサの選定に応じて体動成分検出用のセンサを決定する必要はない。
【0034】
【発明の効果】
本発明の電子血圧計は、以上説明したように構成されるため、下記の効果を有する。
(1)体表から深い部分にある動脈からも光電脈波信号を確実に得ることができる。
(2)複数個の脈波成分検出用の光電センサのうち、被測定者の属性によらず血圧測定に最適な脈波成分検出用の光電センサを選定することができる。
(3)(1),(2)により、精度の高い血圧測定を行うことができる。
(4)請求項3記載の発明によれば、光電脈波信号に重畳している体動成分と相関の高い体動信号を得ることができ、ノイズの除去効率が高くなる
【図面の簡単な説明】
【図1】第1の実施形態に係る電子血圧計の構成を示すブロック図である。
【図2】第2の実施形態に係る電子血圧計の構成を示すブロック図である。
【図3】第3の実施形態に係る電子血圧計の構成を示すブロック図である。
【図4】第1の実施形態の電子血圧計におけるカフの概略断面図である。
【図5】第2の実施形態の電子血圧計におけるカフの概略断面図である。
【図6】第3の実施形態の電子血圧計におけるカフの概略断面図である。
【図7】血圧測定をカフの減圧過程で行う場合における第3の実施形態の電子血圧計の動作を示すフロー図である。
【図8】血圧測定をカフの加圧過程で行う場合における第3の実施形態の電子血圧計の動作を示すフロー図である。
【図9】血圧測定をカフの減圧過程で行う場合の時間とカフ圧との関係を示すグラフである。
【図10】血圧測定をカフの加圧過程で行う場合の時間とカフ圧との関係を示すグラフである。
【図11】体動中の血圧測定の場合で実施形態の電子血圧計における脈波成分検出用の光電センサで得られる光電脈波信号を示すグラフである。
【図12】体動中の血圧測定の場合で実施形態の電子血圧計における体動成分検出用の光電センサで得られる体動信号を示すグラフである。
【図13】安静下の血圧測定の場合で実施形態の電子血圧計における脈波成分検出用の光電センサで得られる光電脈波信号を示すグラフである。
【図14】安静下の血圧測定の場合で実施形態の電子血圧計における体動成分検出用の光電センサで得られる体動信号を示すグラフである。
【符号の説明】
1 カフ
2 加圧ポンプ(圧力制御手段)
3 排気弁(圧力制御手段)
4 圧力センサ(圧力検出手段)
6 CPU(血圧算出手段、光電センサ選定手段)
10-1,…,10-n 脈波成分検出用の光電センサ
11 体動成分検出用の加速度センサ(体動成分検出手段)
14-1,…,14-n 体動成分検出用の光電センサ(体動成分検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic sphygmomanometer that is hardly affected by noise and arti factor caused by body movement.
[0002]
[Prior art]
Conventionally, there is a finger type sphygmomanometer as a sphygmomanometer using a photoelectric pulse wave. A conventional sphygmomanometer such as this finger type sphygmomanometer is configured as a method for determining the blood pressure by measuring the pulsation of a finger artery compressed with a cuff at a shallow portion from the body surface. For this reason,
i) The distance between the light emitting element and the light receiving element is short.
ii) Body motion noise is superimposed on the photoelectric pulse wave signal due to body motion during measurement.
Therefore, there are the following problems (1) and (2).
(1) At a site where the artery is deep from the body surface (for example, the upper arm), it is difficult to measure the pulse wave, and it is difficult to measure the blood pressure by the photoelectric pulse wave method.
(2) In measurement during body movement, measurement errors frequently occur or measurement accuracy deteriorates.
[0003]
Therefore, in order to solve these problems (1) and (2), the present applicant
a) Light having a wavelength (700 to 1000 nm) having a low attenuation rate in a living body is used as measurement light.
b) The distance between the light emitting element and the light receiving element is set within a predetermined range (20 to 90 mm).
c) A plurality of sensors are used for photoelectric pulse wave detection.
We have developed a sphygmomanometer that is capable of obtaining a photoelectric pulse wave signal even from the pulsation of an artery deep in the body surface.
[0004]
[Problems to be solved by the invention]
By the way, in the latter sphygmomanometer, which signal is most suitable for the blood pressure calculation among photoelectric pulse wave signals obtained by a plurality of sensors is determined by the attributes of the measurement subject (for example, the circumference of the measurement site, the artery Therefore, it is necessary to select an appropriate sensor for each person to be measured. However, since the measurement subject's attributes are not information that the measurement subject can easily know, if a proper sensor cannot be selected on the sphygmomanometer side, the blood pressure value is not so accurate as a result. .
[0005]
Therefore, the present invention has been made paying attention to such a problem, and it is possible to reliably obtain a photoelectric pulse wave signal from an artery located deep from the body surface, and to measure blood pressure regardless of the attribute of the subject. It is an object of the present invention to provide an electronic sphygmomanometer that realizes selection of an optimum sensor for the measurement and measurement of blood pressure with high accuracy by them.
[0006]
[Means for Solving the Problems]
To achieve the above object, an electronic sphygmomanometer according to claim 1 of the present invention includes a cuff for pressurizing a measurement site of a living body, a pressure control means for pressurizing / depressurizing the inside of the cuff, and a pressure within the cuff. A pressure detection means for detecting a plurality of pulse wave component detection photoelectric sensors provided at different positions of the cuff, and at least one body motion component detection means provided on the cuff and detecting a body motion component A blood pressure calculation means for calculating a blood pressure by removing a body motion component obtained by the body motion component detection means from a pulse wave component obtained by the photoelectric sensor, and a plurality of photoelectric sensors among the plurality of photoelectric sensors The signal power is calculated by frequency analysis of the photoelectric pulse wave signal obtained by the above, and the signal power of the pulse wave component obtained by each photoelectric sensor and the body motion component are compared. the sensor, the most on the attributes of the subject And a photoelectric sensor selecting means for selecting as a photoelectric sensor in the Do position, characterized in that to calculate the blood pressure using a pulse wave component obtained by the photoelectric sensor selected by the photoelectric sensor selecting means.
[0007]
This electronic sphygmomanometer uses the body motion component (noise component) detected by the body motion component detection means to reduce only the noise component from the pulse wave signal of the pulse wave component detection photoelectric sensor on which the noise component is superimposed. It is. At that time, in order to accurately calculate the blood pressure, a technique (for example, photoelectric pulse wave) that directly captures the pulsation of the artery is used for pulse wave detection. This technique can directly capture the arterial pulsation in the central cuff that is not affected by the distribution of cuff pressure, and shows characteristic changes in systolic and diastolic blood pressures as well as Korotkoff sounds. Blood pressure can be measured.
[0008]
However, it is difficult to measure the pulse wave at the site where the artery is deep from the body surface (for example, the upper arm) as described above. Therefore, by providing a plurality of pulse wave component detection photoelectric sensors at different positions of the cuff, preferably the distance between the light emitting element and the light receiving element of the photoelectric sensor is 20 to 90 mm. By using a pulse wave measurement light with a wavelength (700 to 1000 nm) having a low attenuation rate in a living body, it is possible to capture the pulsation of an artery located deep from the body surface as a photoelectric pulse wave. Become.
[0009]
Here, the reason why a plurality of photoelectric sensors are provided at different positions of the cuff is that the position of the photoelectric sensor optimal for blood pressure calculation differs depending on the attribute of the person being measured. However, the attributes of the person to be measured here are the circumference of the measurement site, the depth from the body surface of the artery, the thickness of the subcutaneous fat, and the like.
In the electronic sphygmomanometer of the present invention, the photoelectric sensor selection means calculates the signal power by performing frequency analysis on the photoelectric pulse wave signals obtained by the plurality of photoelectric sensors among the plurality of photoelectric sensors for detecting the pulse wave component. compares the signal power of the pulse wave component and the body motion component obtained by the photoelectric sensor, the pulse wave component to the body movement component ratio is the highest photoelectric sensors are selected as a photoelectric sensor located at the optimum position to advance blood pressure calculation Since the blood pressure is calculated using the pulse wave component obtained by the selected photoelectric sensor, the above problem can be solved. In other words, a photoelectric pulse wave signal can be reliably obtained from an artery located deep from the body surface, and an optimal sensor for blood pressure measurement can be selected regardless of the attributes of the measurement subject, thus performing highly accurate blood pressure measurement. be able to.
[0010]
In the present invention, the body motion component detecting means is a speed sensor, an acceleration sensor, a position sensor, a displacement sensor, an angle sensor, an azimuth sensor, and an inclination sensor in the case of a sensor that converts and measures the movement of a living body into a physical quantity. In the case of a sensor that measures a biological volume (for example, blood volume) that changes according to the movement of the biological body, a photoelectric sensor or the like may be used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on embodiments.
The configuration of the electronic blood pressure monitor according to the first embodiment is shown in a block diagram in FIG. This electronic sphygmomanometer includes a cuff 1 for pressurizing a measurement site of a living body, a pressure pump (pressure control means) 2 for pressurizing the inside of the cuff 1, and an exhaust valve (pressure control means) 3 for reducing the pressure inside the cuff 1. And a pressure sensor (pressure detecting means) 4 for detecting the pressure in the cuff 1, a display 5 for displaying the calculated blood pressure value, etc., a pressurizing pump 2, an exhaust valve 3, a display 5 and the like. A CPU 6, an amplifier 7 that amplifies the output from the pressure sensor 4, and an A / D converter 8 that converts an analog signal from the amplifier 7 into a digital signal and inputs the digital signal to the CPU 6. However, the configuration so far is the same as that of the conventional blood pressure monitor.
[0012]
This electronic sphygmomanometer has a plurality of pulse wave component detection photoelectric sensors 10 −1 ,..., 10 −n provided in the cuff 1 and one body motion component detection means also provided in the cuff 1. and a acceleration sensor 11, the photoelectric sensor 10 -1, ..., 10 -n are provided at different positions of the cuff 1, the pulse wave component CPU6 photoelectric sensor 10 -1, ..., obtained in 10 -n Among the plurality of photoelectric sensors 10 −1 ,..., 10 −n that are optimal for the attributes of the person to be measured. It has a photoelectric sensor selection function for selecting a photoelectric sensor in the above, and is characterized in that the blood pressure is calculated using a pulse wave component obtained by the selected photoelectric sensor.
[0013]
The photoelectric sensors 10 −1 ,..., 10 −n are provided so that the distance between the light emitting element and the light receiving element is in the range of 20 to 90 mm as described above, and have a wavelength with a small attenuation rate in the living body ( 700 to 1000 nm).
The photoelectric pulse wave signals of the photoelectric sensors 10 -1 ,..., 10 -n are amplified by the amplifiers 12 -1 ,..., 12 -n respectively, and further converted into digital signals by the A / D converter 8. Is input. The body motion signal of the acceleration sensor 11 is amplified by the amplifier 13, converted to a digital signal by the A / D converter 8, and then input to the CPU 6.
[0014]
The electronic sphygmomanometer according to the second embodiment shown in FIG. 2 uses one photoelectric sensor 14 instead of the acceleration sensor 11 as the body motion component detection means, and the third embodiment shown in FIG. The electronic blood pressure monitor according to the embodiment uses a plurality of photoelectric sensors 14 −1 ,..., 14 −n as body motion component detection means. Other configurations are the same as those of the electronic sphygmomanometer of the first embodiment.
[0015]
FIG. 4 shows a schematic cross-sectional view of the cuff 1 in the electronic blood pressure monitor (see FIG. 1) of the first embodiment. FIG. 4 shows a state where the cuff 1 is attached to the upper arm 40, and a bone 41 and an artery 42 extend into the upper arm 40. Here, the acceleration sensor 11 for detecting body motion components is attached to the front side of the cuff 1, and a plurality (three) of photoelectric sensors 10 −1 , 10 −2 , and 10 −3 for detecting pulse wave components are cuff 1. It is attached to the inside (body surface facing side). The photoelectric sensors 10 −1 , 10 −2 , and 10 −3 are not composed of a light emitting element and a light receiving element, but the light emitting element 20 is common to all the photoelectric sensors, and the light receiving elements 21, 22, and 23 are used. Is for each photoelectric sensor. The light emitting element 20 and the light receiving elements 21 to 23 are arranged at different positions in the circumferential direction of the cuff 1 (transverse direction of the upper arm 40), and the light receiving elements 21, 22, and 23 are arranged at different positions from the light emitting element 20, respectively. Has been. Of course, the light emitting element 20 and the light receiving elements 21 to 23 are positioned in the predetermined range (20 to 90 mm).
[0016]
FIG. 5 shows a schematic sectional view of the cuff 1 in the electronic blood pressure monitor (see FIG. 2) of the second embodiment. In FIG. 5, the photoelectric sensor 14 for detecting body motion components is not composed of a light emitting element and a light receiving element, and the light emitting elements are the light emitting elements 20 of the photoelectric sensors 10 −1 , 10 −2 , 10 −3 for detecting the pulse wave component. And only the light receiving element 31 is disposed on the opposite side of the light receiving elements 21 to 23 with the light emitting element 20 interposed therebetween.
[0017]
FIG. 6 shows a schematic cross-sectional view of the cuff 1 in the electronic blood pressure monitor (see FIG. 3) of the third embodiment. In FIG. 6, a plurality (three) of photoelectric sensors 14 -1 , 14 -2 , and 14 -3 for detecting body motion components have photoelectric elements for detecting pulse wave components as in the case of FIG. Common to the light emitting elements 20 of the sensors 10 −1 , 10 −2 , and 10 −3 , the three light receiving elements 31, 32, and 33 are arranged at different positions. In this case, the distance between the light emitting element 20 and each of the light receiving elements 31, 32, 33 is set to be the same as the distance between the light emitting element 20 and the light receiving elements 21, 22, 23, respectively.
[0018]
In particular, in the case of FIG. 6, the fundamental frequency of the body motion component is obtained when the photoelectric sensors 10 −1 , 10 −2 , and 10 −3 for detecting the pulse wave component at the optimum position for the attribute of the measurement subject are selected. As the body motion signal used for this, the output of any one of a plurality (three) of photoelectric sensors 14 -1 , 14 -2 and 14 -3 for detecting body motion components may be used. This is because only the fundamental frequency of the body motion component is required at the time of selection.
[0019]
The advantage of providing a plurality of photoelectric sensors 14 -1 , 14 -2 , 14 -3 for detecting body motion components is effective in removing body motion noise superimposed on the pulse wave. That is, noise removal is performed using a body motion component detection photoelectric sensor corresponding to the pulse wave component detection photoelectric sensor selected as being in an optimum position for the measurement subject's attribute. Specifically, when the photoelectric sensor 10 −1 (that is, the light receiving element 21) for detecting the pulse wave component is selected, the body motion component detection located at the same distance as the distance between the light emitting element 20 and the light receiving element 21 is detected. Noise is removed using a body motion signal obtained by the photoelectric sensor 14 -1 (that is, the light receiving element 31). By obtaining both the photoelectric pulse wave signal and the body motion signal with the light receiving element located at the same distance from the light emitting element 20, the amount of change of the biological quantity as the body motion component works in the same way on the photoelectric pulse wave signal and the body motion signal. Therefore, a body motion signal having a high correlation with the body motion component superimposed on the photoelectric pulse wave signal can be obtained, and the noise removal efficiency is increased.
[0020]
Furthermore, in the cuff 1 shown in FIGS. 4 to 6, the pulse wave component detection and body motion component detection photoelectric sensors are both centered in the direction perpendicular to the circumferential direction of the cuff 1 (the extending direction of the artery 42). It is arranged on the terminal side (hand side) of the living body 1 from the center. For this reason, the photoelectric pulse wave signal and the body motion signal can be accurately detected. This is because, even if the cuff 1 is pressurized more than the maximum blood pressure on the heart side from the center of the cuff 1, the compression force is weak compared to the cuff central portion, so that the artery 42 is not completely blocked. This is because a pulse wave corresponding to the heartbeat may occur.
[0021]
By the way, the selection of the photoelectric sensor for detecting the pulse wave component at the optimum position for the attribute of the person to be measured can be executed in various processes depending on whether the blood pressure is measured in the cuff decompression process or the pressurization process. . For example, when the selection is performed by the reduced pressure measurement, the operation of the electronic sphygmomanometer configured as shown in FIGS. 3 and 6 will be described with reference to the flowchart of FIG. In this case, blood pressure is measured during the decompression process. That is, as shown in FIG. 9, the cuff 1 is once pressurized to a maximum blood pressure or higher, and a photoelectric sensor for detecting a pulse wave component is selected in this pressurization process. As a blood pressure determination method, for example, the pulse wave appearance point in the decompression process is set as the maximum blood pressure, and the pulse wave vanishing point is set as the minimum blood pressure. As another blood pressure determination method, there is also a method of calculating an envelope of pulse wave amplitude and determining by setting a predetermined threshold value.
[0022]
First, in step (hereinafter abbreviated as ST) 1, after all variables are initialized, cuff pressurization is started (ST2). During this pressurization, photoelectric pulse wave signals are measured by the photoelectric sensors 10 −1 , 10 −2 , and 10 −3 for detecting pulse wave components, which are composed of the light emitting element 20 and the light receiving elements 21 to 23, and the light emitting element. A body motion signal is measured by photoelectric sensors 14 -1 , 14 -2 , and 14 -3 for detecting body motion components composed of 20 and light receiving elements 31 to 33 (ST3).
[0023]
Next, a pulse wave component detection photoelectric sensor at a position optimal for the measurement subject's attribute is determined (ST4). As an optimal index of photoelectric pulse wave signal, the signal power is calculated by frequency analysis of the photoelectric pulse wave signal from each photoelectric sensor, and the pulse wave component and body motion component signal power at each signal power are compared, and the pulse wave The photoelectric sensor having the highest component-to-body movement component ratio (hereinafter referred to as the S / N ratio) is assumed to be a photoelectric sensor at a position optimal for the attribute of the measurement subject. A high S / N ratio means that a pulse wave component is captured better than body motion noise. Therefore, a photoelectric sensor that can obtain a signal power with the highest S / N ratio is a subject to be measured. It will be suitable for the attributes of. On the other hand, a low S / N ratio means that the pulse wave component is not sufficiently captured compared to body motion noise, so a photoelectric sensor that can only obtain a signal power with a low S / N ratio can be obtained. This is not suitable for the measurement subject's attributes, and in the subsequent body motion noise removal processing, a sufficient noise removal effect cannot be expected, and accurate blood pressure calculation cannot be performed.
[0024]
After the pulse wave component detection photoelectric sensor at the optimum position for the measurement subject's attribute is determined as described above, the body motion component detection photoelectric sensor corresponding to the selected pulse wave component detection photoelectric sensor is determined. Is determined (ST5). That is, in FIG. 6, when, for example, the photoelectric sensor 10 −3 (light receiving element 23) is selected as the pulse wave component detecting photoelectric sensor at the optimum position for the measurement subject's attribute, the light emitting element 20 and the light receiving element are selected. The photoelectric sensor 14 -3 (light receiving element 33) located at the same distance as the distance to the light source 23 is determined.
[0025]
When the internal pressure of the cuff reaches or exceeds the maximum blood pressure, pressure reduction at a constant pressure is started (ST6), and cuff pressure measurement, photoelectric pulse wave signal measurement, and body motion signal measurement are performed during the pressure reduction process (ST7). Based on the measurement result, the body motion component that becomes noise is removed from the photoelectric pulse wave signal (ST8).
A specific method for detecting the pulse wave component and the body motion component from the signal power calculated by frequency analysis of the photoelectric pulse wave signal is as follows. First, of the plurality (three) of photoelectric sensors 14 -1 , 14 -2 , and 14 -3 for detecting body motion components, the frequency of body motion signals measured by an arbitrary photoelectric sensor as described above is analyzed. The fundamental frequency of the body motion component is calculated. Subsequently, in the signal power obtained by frequency analysis of the photoelectric pulse wave signal, the component that matches the fundamental frequency of the body motion component obtained previously becomes the signal power of the body motion component, and in the remaining signal power, the body power The component obtained by removing the harmonic component of the fundamental frequency of the dynamic component is the signal power of the pulse wave component.
[0026]
For example, FIGS. 11 and 12 show blood pressure measurement during body movement, FIG. 11 shows photoelectric pulse wave signals obtained by three photoelectric sensors for detecting pulse wave components, and FIG. 12 shows detection of two body movement components. The body motion signal obtained by the photoelectric sensor for the purpose is shown. As is clear from this, in the signal power of the photoelectric pulse wave signal, the component that matches the fundamental frequency of the body motion component is the signal power of the body motion component.
[0027]
After the body motion component is removed from the photoelectric pulse wave signal, the maximum blood pressure and the minimum blood pressure are calculated (ST9), and the obtained blood pressure value is displayed (ST10).
The above flow chart of FIG. 7 is a case where the selection of the photoelectric sensor for detecting the pulse wave component at the optimum position for the attribute of the measurement subject is performed by the reduced pressure measurement. It is shown in FIG. In this case, blood pressure is measured during cuff pressurization. The selection of the photoelectric sensor for detecting the pulse wave component is performed in this preliminary pressurization process, for example, by performing pre-pressurization before pressurization for blood pressure measurement, as shown in FIG. This is because in the pressurization measurement, when the cuff pressure is lower than the minimum blood pressure, there may be no section in which a pulse wave appears.
[0028]
First, after initialization is performed in ST11, pre-pressurization of the cuff is performed (ST12), and a photoelectric pulse wave signal and a body motion signal are measured during the pre-pressurization (ST13). Then, in the same manner as described above, the pulse wave component detection photoelectric sensor at the position optimal for the measurement subject's attribute is determined (ST14), and the body motion component detection photoelectric sensor is determined accordingly (ST15). ).
[0029]
Next, the cuff is pressurized above the maximum blood pressure (ST16), and the cuff pressure, photoelectric pulse signal, and body motion signal are measured during the pressurization process (ST17). The body motion component is removed from the wave signal (ST18). Thereafter, the maximum blood pressure and the minimum blood pressure are calculated (ST19), the obtained blood pressure value is displayed (ST20), and the cuff is quickly exhausted (ST21).
[0030]
The flow charts of FIGS. 7 and 8 show the case where the selection of the photoelectric sensor for detecting the pulse wave component at the optimum position for the measurement subject's attribute is performed by the decompression measurement and the pressurization measurement, respectively. Both measurement and pressurization measurement can be performed during blood pressure calculation (ST9 in FIG. 7 and ST19 in FIG. 8).
Moreover, although the said embodiment concerns the selection in the blood pressure measurement during body movement, it is the same also in the blood pressure measurement at rest. That is, in this case, the photoelectric sensor having the highest signal power obtained by frequency analysis of the photoelectric pulse wave signal is the photoelectric sensor at the optimum position for the attribute of the measurement subject.
[0031]
For example, FIG. 13 and FIG. 14 show blood pressure measurement in a resting state, FIG. 13 shows photoelectric pulse wave signals obtained by three photoelectric sensors for detecting pulse wave components, and FIG. The body motion signal obtained by this photoelectric sensor is shown. In this case, in the signal power of the photoelectric pulse wave signal, the photoelectric sensor (here, sensor 3) having the highest signal power is optimal.
[0032]
Furthermore, it can be similarly determined whether the blood pressure measurement is performed during body movement or in a resting state. That is, as shown in FIG. 14, the value of the signal power obtained by frequency analysis of the body motion signal measured by the photoelectric sensor for body motion component detection is compared with a preset threshold value. When the signal power is greater than the threshold, it is determined that the body motion noise is detected, and when a large amount of body motion noise is detected, it is determined that the measurement is during body motion. On the contrary, when the signal power is smaller than the threshold value, it is determined that the body motion noise is not detected, and when the body motion noise is not detected at all or only a little is detected, it is determined that the measurement is at rest.
[0033]
In addition, the above flow chart is a case where a plurality of photoelectric sensors are used for detecting body motion components (see FIG. 3), but also in the case of a single acceleration sensor or photoelectric sensor (see FIGS. 1 and 2). It is the same. However, in this case, it is not necessary to determine the body motion component detection sensor in accordance with the selection of the pulse wave component detection photoelectric sensor.
[0034]
【The invention's effect】
Since the electronic sphygmomanometer of the present invention is configured as described above, it has the following effects.
(1) A photoelectric pulse wave signal can be reliably obtained from an artery located deep from the body surface.
(2) Of the plurality of pulse wave component detection photoelectric sensors, a pulse wave component detection photoelectric sensor optimal for blood pressure measurement can be selected regardless of the attribute of the measurement subject.
(3) The blood pressure can be measured with high accuracy by (1) and (2).
(4) According to the invention described in claim 3 , a body motion signal having a high correlation with the body motion component superimposed on the photoelectric pulse wave signal can be obtained, and the noise removal efficiency is increased .
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an electronic sphygmomanometer according to a first embodiment.
FIG. 2 is a block diagram showing a configuration of an electronic blood pressure monitor according to a second embodiment.
FIG. 3 is a block diagram showing a configuration of an electronic sphygmomanometer according to a third embodiment.
FIG. 4 is a schematic cross-sectional view of a cuff in the electronic blood pressure monitor according to the first embodiment.
FIG. 5 is a schematic cross-sectional view of a cuff in the electronic blood pressure monitor according to the second embodiment.
FIG. 6 is a schematic cross-sectional view of a cuff in the electronic blood pressure monitor according to the third embodiment.
FIG. 7 is a flowchart showing the operation of the electronic sphygmomanometer according to the third embodiment when blood pressure measurement is performed in the cuff decompression process.
FIG. 8 is a flowchart showing the operation of the electronic sphygmomanometer according to the third embodiment when blood pressure is measured in the cuff pressurization process.
FIG. 9 is a graph showing the relationship between time and cuff pressure when blood pressure measurement is performed in the cuff depressurization process.
FIG. 10 is a graph showing the relationship between time and cuff pressure when blood pressure measurement is performed in the cuff pressurization process.
FIG. 11 is a graph showing a photoelectric pulse wave signal obtained by a photoelectric sensor for detecting a pulse wave component in the electronic sphygmomanometer according to the embodiment in the case of blood pressure measurement during body movement.
FIG. 12 is a graph showing a body motion signal obtained by a photoelectric sensor for body motion component detection in the electronic sphygmomanometer according to the embodiment in the case of blood pressure measurement during body motion.
FIG. 13 is a graph showing a photoelectric pulse wave signal obtained by a photoelectric sensor for detecting a pulse wave component in the electronic sphygmomanometer of the embodiment in the case of blood pressure measurement at rest.
FIG. 14 is a graph showing a body motion signal obtained by a photoelectric sensor for body motion component detection in the electronic sphygmomanometer of the embodiment in the case of blood pressure measurement under rest.
[Explanation of symbols]
1 Cuff 2 Pressure pump (pressure control means)
3 Exhaust valve (pressure control means)
4 Pressure sensor (pressure detection means)
6 CPU (blood pressure calculation means, photoelectric sensor selection means)
10 −1 ,..., 10 −n Pulse wave component detection photoelectric sensor 11 Body motion component detection acceleration sensor (body motion component detection means)
14 −1 ,..., 14 -n Photoelectric sensor for body motion component detection (body motion component detection means)

Claims (6)

生体の測定部位を加圧するためのカフと、カフ内を加圧・減圧する圧力制御手段と、カフ内の圧力を検出する圧力検出手段と、カフのそれぞれ異なる位置に設けられた複数個の脈波成分検出用の光電センサと、カフに設けられると共に体動成分を検出する少なくとも1個の体動成分検出手段と、光電センサで得られた脈波成分から体動成分検出手段で得られた体動成分を除去して血圧を算出する血圧算出手段と、複数個の光電センサのうち、複数個の光電センサにより得られる光電脈波信号を周波数解析して信号パワーを算出し、各光電センサにより得られる脈波成分と体動成分の信号パワーを比較し、脈波成分対体動成分比が最も高い光電センサを、被測定者の属性に最適な位置にある光電センサとして選定する光電センサ選定手段とを備え、前記光電センサ選定手段で選定された光電センサにより得られる脈波成分を用いて血圧を算出するようにしたことを特徴とする電子血圧計。A cuff for pressurizing the measurement site of the living body, a pressure control means for pressurizing and depressurizing the inside of the cuff, a pressure detecting means for detecting the pressure in the cuff, and a plurality of pulses provided at different positions of the cuff Obtained by the body motion component detection means from the pulse wave component obtained by the photoelectric sensor for detecting the wave component, at least one body motion component detection means provided on the cuff and detecting the body motion component A blood pressure calculation means for removing a body motion component and calculating blood pressure, and among the plurality of photoelectric sensors, photoelectric pulse wave signals obtained by the plurality of photoelectric sensors are subjected to frequency analysis to calculate a signal power, and each photoelectric sensor Compares the signal power of the pulse wave component and the body motion component obtained by the above , and selects the photoelectric sensor with the highest ratio of the pulse wave component to the body motion component as the photoelectric sensor at the optimum position for the attributes of the person being measured With selection means The electronic sphygmomanometer is characterized in that to calculate the blood pressure using a pulse wave component obtained by the photoelectric sensor selected by the photoelectric sensor selecting means. 前記光電センサ選定手段は、複数個の光電センサにより得られる光電脈波信号を周波数解析して信号パワーを算出し、体動成分検出手段で得られる体動成分を周波数解析して体動成分の基本周波数を算出し、光電脈波の信号パワー中の成分のうち、体動成分の基本周波数と光電脈波の信号パワーの周波数とが合致する成分を体動成分とすることを特徴とする請求項1記載の電子血圧計。The photoelectric sensor selection means calculates the signal power by frequency analyzing photoelectric pulse wave signals obtained by a plurality of photoelectric sensors, and frequency analyzes the body motion component obtained by the body motion component detection means. The fundamental frequency is calculated, and among the components in the signal power of the photoelectric pulse wave, a component in which the fundamental frequency of the body motion component matches the frequency of the signal power of the photoelectric pulse wave is defined as the body motion component. Item 2. The electronic blood pressure monitor according to Item 1. 生体の測定部位を加圧するためのカフと、カフ内を加圧・減圧する圧力制御手段と、カフ内の圧力を検出する圧力検出手段と、カフのそれぞれ異なる位置に設けられた複数個の脈波成分検出用の光電センサと、カフに設けられると共に体動成分を検出する少なくとも1個の体動成分検出手段と、光電センサで得られた脈波成分から体動成分検出手段で得られた体動成分を除去して血圧を算出する血圧算出手段と、複数個の光電センサのうち、被測定者の属性に最適な位置にある光電センサを選定する光電センサ選定手段とを備え、前記光電センサ選定手段で選定された光電センサにより得られる脈波成分を用いて血圧を算出するようにした電子血圧計において、前記体動成分検出手段は、生体の動きによって変化する生体量を測定する複数個の光電センサであり、これら複数個の体動成分検出用の光電センサは、前記複数個の脈波成分検出用の光電センサに対応してカフのそれぞれ異なる位置に設けられ、複数個の体動成分検出用の光電センサのうち、前記被測定者の属性に最適な位置にある脈波成分検出用の光電センサに対応する体動成分検出用の光電センサにより得られる体動信号を、血圧算出における体動成分除去に使用することを特徴とする電子血圧計。 A cuff for pressurizing the measurement site of the living body, a pressure control means for pressurizing and depressurizing the inside of the cuff, a pressure detecting means for detecting the pressure in the cuff, and a plurality of pulses provided at different positions of the cuff Obtained by the body motion component detection means from the pulse wave component obtained by the photoelectric sensor for detecting the wave component, at least one body motion component detection means provided on the cuff and detecting the body motion component A blood pressure calculation unit that calculates a blood pressure by removing a body motion component; and a photoelectric sensor selection unit that selects a photoelectric sensor at a position optimal for the attribute of the person to be measured among a plurality of photoelectric sensors. In the electronic sphygmomanometer that calculates the blood pressure using the pulse wave component obtained by the photoelectric sensor selected by the sensor selecting means, the body motion component detecting means is a plurality of measuring the amount of living body that changes according to the movement of the living body. Pieces The plurality of body motion component detection photoelectric sensors are provided at different positions of the cuff corresponding to the plurality of pulse wave component detection photoelectric sensors. Among the photoelectric sensors for detection, a body motion signal obtained by the photoelectric sensor for body motion component detection corresponding to the photoelectric sensor for pulse wave component detection at the position optimal for the attribute of the measurement subject is calculated in blood pressure calculation. An electronic sphygmomanometer, which is used for removing body motion components . 生体の測定部位を加圧するためのカフと、カフ内を加圧・減圧する圧力制御手段と、カフ内の圧力を検出する圧力検出手段と、カフのそれぞれ異なる位置に設けられた複数個の脈波成分検出用の光電センサと、カフに設けられると共に体動成分を検出する少なくとも1個の体動成分検出手段と、光電センサで得られた脈波成分から体動成分検出手段で得られた体動成分を除去して血圧を算出する血圧算出手段と、複数個の光電センサのうち、被測定者の属性に最適な位置にある光電センサを選定する光電センサ選定手段とを備え、前記光電センサ選定手段で選定された光電センサにより得られる脈波成分を用いて血圧を算出するようにした電子血圧計において、前記血圧算出は、カフ内の減圧過程で行い、前記光電センサ選定手段による光電センサの選定は、カフ内の加圧過程で行うことを特徴とする電子血圧計。 A cuff for pressurizing the measurement site of the living body, a pressure control means for pressurizing and depressurizing the inside of the cuff, a pressure detecting means for detecting the pressure in the cuff, and a plurality of pulses provided at different positions of the cuff Obtained by the body motion component detection means from the pulse wave component obtained by the photoelectric sensor for detecting the wave component, at least one body motion component detection means provided on the cuff and detecting the body motion component A blood pressure calculation unit that calculates a blood pressure by removing a body motion component; and a photoelectric sensor selection unit that selects a photoelectric sensor at a position optimal for the attribute of the person to be measured among a plurality of photoelectric sensors. In the electronic sphygmomanometer that calculates the blood pressure using the pulse wave component obtained by the photoelectric sensor selected by the sensor selection means, the blood pressure calculation is performed during the decompression process in the cuff, and the photoelectric sensor by the photoelectric sensor selection means Selection of capacitors, the electronic sphygmomanometer, which comprises carrying out in the pressurization-pressure in the cuff. 生体の測定部位を加圧するためのカフと、カフ内を加圧・減圧する圧力制御手段と、カフ内の圧力を検出する圧力検出手段と、カフのそれぞれ異なる位置に設けられた複数個の脈波成分検出用の光電センサと、カフに設けられると共に体動成分を検出する少なくとも1個の体動成分検出手段と、光電センサで得られた脈波成分から体動成分検出手段で得られた体動成分を除去して血圧を算出する血圧算出手段と、複数個の光電センサのうち、被 測定者の属性に最適な位置にある光電センサを選定する光電センサ選定手段とを備え、前記光電センサ選定手段で選定された光電センサにより得られる脈波成分を用いて血圧を算出するようにした電子血圧計において、前記血圧算出は、カフ内の減圧過程で行い、前記光電センサ選定手段による光電センサの選定は、血圧算出と併行して行うことを特徴とする電子血圧計。 A cuff for pressurizing the measurement site of the living body, a pressure control means for pressurizing and depressurizing the inside of the cuff, a pressure detecting means for detecting the pressure in the cuff, and a plurality of pulses provided at different positions of the cuff Obtained by the body motion component detection means from the pulse wave component obtained by the photoelectric sensor for detecting the wave component, at least one body motion component detection means provided on the cuff and detecting the body motion component A blood pressure calculation unit that calculates a blood pressure by removing a body motion component; and a photoelectric sensor selection unit that selects a photoelectric sensor at a position optimal for the attribute of the person to be measured among a plurality of photoelectric sensors. In the electronic sphygmomanometer that calculates the blood pressure using the pulse wave component obtained by the photoelectric sensor selected by the sensor selection means, the blood pressure calculation is performed during the decompression process in the cuff, and the photoelectric sensor by the photoelectric sensor selection means Selection of capacitors, the electronic sphygmomanometer, which comprises carrying out in parallel with the blood pressure calculation. 生体の測定部位を加圧するためのカフと、カフ内を加圧・減圧する圧力制御手段と、カフ内の圧力を検出する圧力検出手段と、カフのそれぞれ異なる位置に設けられた複数個の脈波成分検出用の光電センサと、カフに設けられると共に体動成分を検出する少なくとも1個の体動成分検出手段と、光電センサで得られた脈波成分から体動成分検出手段で得られた体動成分を除去して血圧を算出する血圧算出手段と、複数個の光電センサのうち、被測定者の属性に最適な位置にある光電センサを選定する光電センサ選定手段とを備え、前記光電センサ選定手段で選定された光電センサにより得られる脈波成分を用いて血圧を算出するようにした電子血圧計において、前記血圧算出は、カフ内の加圧過程で行い、前記光電センサ選定手段による光電センサの選定は、血圧算出と併行して行うことを特徴とする電子血圧計。 A cuff for pressurizing the measurement site of the living body, a pressure control means for pressurizing and depressurizing the inside of the cuff, a pressure detecting means for detecting the pressure in the cuff, and a plurality of pulses provided at different positions of the cuff Obtained by the body motion component detection means from the pulse wave component obtained by the photoelectric sensor for detecting the wave component, at least one body motion component detection means provided on the cuff and detecting the body motion component A blood pressure calculation unit that calculates a blood pressure by removing a body motion component; and a photoelectric sensor selection unit that selects a photoelectric sensor at a position optimal for the attribute of the person to be measured among a plurality of photoelectric sensors. In the electronic sphygmomanometer that calculates the blood pressure using the pulse wave component obtained by the photoelectric sensor selected by the sensor selection means, the blood pressure calculation is performed in the pressurization process in the cuff, and is performed by the photoelectric sensor selection means. Photoelectric Selection of capacitors, the electronic sphygmomanometer, which comprises carrying out in parallel with the blood pressure calculation.
JP18109699A 1999-06-28 1999-06-28 Electronic blood pressure monitor Expired - Lifetime JP3700048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18109699A JP3700048B2 (en) 1999-06-28 1999-06-28 Electronic blood pressure monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18109699A JP3700048B2 (en) 1999-06-28 1999-06-28 Electronic blood pressure monitor

Publications (2)

Publication Number Publication Date
JP2001008909A JP2001008909A (en) 2001-01-16
JP3700048B2 true JP3700048B2 (en) 2005-09-28

Family

ID=16094772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18109699A Expired - Lifetime JP3700048B2 (en) 1999-06-28 1999-06-28 Electronic blood pressure monitor

Country Status (1)

Country Link
JP (1) JP3700048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577342B1 (en) 2009-05-07 2015-12-15 삼성전자주식회사 The Apparatus and Method for measuring blood pressure

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563766B2 (en) * 2004-10-05 2010-10-13 テルモ株式会社 Blood pressure measurement device, blood pressure measurement method, control program, and computer-readable storage medium
ATE498357T1 (en) * 2004-10-06 2011-03-15 Terumo Corp BLOOD PRESSURE MONITOR AND BLOOD PRESSURE MEASUREMENT METHOD
JP4657666B2 (en) * 2004-10-06 2011-03-23 テルモ株式会社 Blood pressure measurement device
JP4607709B2 (en) * 2005-08-26 2011-01-05 シャープ株式会社 Detection device
JP5060186B2 (en) * 2007-07-05 2012-10-31 株式会社東芝 Pulse wave processing apparatus and method
JP2012050746A (en) * 2010-09-02 2012-03-15 Fujitsu Ltd Biological information detection apparatus and portable terminal
JP5998563B2 (en) * 2012-03-27 2016-09-28 セイコーエプソン株式会社 Pulsation detection device, electronic device and program
US10327707B2 (en) 2014-03-18 2019-06-25 Kyocera Corporation Biological information measurement apparatus and biological information measurement method
KR102268196B1 (en) * 2014-06-13 2021-06-22 닛토덴코 가부시키가이샤 Device and method for removing artifacts in physiological measurements
EP3536233A1 (en) * 2018-03-07 2019-09-11 Koninklijke Philips N.V. Blood pressure measurement system and method
CN109009044B (en) * 2018-08-15 2024-01-02 合肥博谐电子科技有限公司 Novel pulse wave acquisition device
JP7133576B2 (en) * 2019-02-28 2022-09-08 株式会社アドバンス Continuous blood pressure measurement system by phase difference method
EP4025121A1 (en) 2019-09-03 2022-07-13 Koninklijke Philips N.V. Detection of reliable blood pressure measurements
WO2022137497A1 (en) * 2020-12-25 2022-06-30 日本電気株式会社 Biometric measuring device, biometric measuring method, and program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135029A (en) * 1983-12-23 1985-07-18 松下電工株式会社 Blood stream and pulse detection apparatus
JPH0313106U (en) * 1989-06-22 1991-02-08
JPH07299043A (en) * 1994-05-10 1995-11-14 Sanyo Electric Co Ltd Pulse detecting device
JP3605216B2 (en) * 1995-02-20 2004-12-22 セイコーエプソン株式会社 Pulse meter
JPH119563A (en) * 1997-06-27 1999-01-19 Senoh Corp Vibrationproof pulse ear sensor
JPH11318840A (en) * 1998-05-14 1999-11-24 Omron Corp Pulse wave detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577342B1 (en) 2009-05-07 2015-12-15 삼성전자주식회사 The Apparatus and Method for measuring blood pressure

Also Published As

Publication number Publication date
JP2001008909A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
US6702754B2 (en) Arteriosclerosis inspecting apparatus
JP3700048B2 (en) Electronic blood pressure monitor
US5368039A (en) Method and apparatus for determining blood pressure
US7361148B2 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
US6477405B2 (en) Heart-sound detecting apparatus, system for measuring pre-ejection period by using heart-sound detecting apparatus, and system for obtaining pulse-wave-propagation-velocity-relating information by using heart-sound detecting apparatus
US7029449B2 (en) Arteriosclerosis inspecting apparatus
US7462152B2 (en) Method and system utilizing SpO2 plethysmograph signal to reduce NIBP determination time
US6659958B2 (en) Augmentation-index measuring apparatus
US9833154B2 (en) Suprasystolic measurement in a fast blood-pressure cycle
US20030004420A1 (en) Pulse-wave-propagation-velocity-related-information obtaining apparatus
US20030004425A1 (en) Heart-sound detecting apparatus
JP5504477B2 (en) Fingertip pulse wave analyzer and vascular endothelial function evaluation system using the same
US6827687B2 (en) Blood-pressure measuring apparatus having waveform analyzing function
US6793628B2 (en) Blood-pressure measuring apparatus having augmentation-index determining function
US6955649B2 (en) Arteriosclerosis evaluating apparatus
US6786872B2 (en) Augmentation-index measuring apparatus
JP2001008908A (en) Electric sphygmomanometer
US20040171941A1 (en) Blood flow amount estimating apparatus
US6746405B2 (en) Blood pressure measuring apparatus with pulse wave detecting function
US5193548A (en) Electronic blood pressure meter
JPH07124129A (en) Circulatory organ function measuring instrument
JP4648510B2 (en) Electronic blood pressure monitor
JP2002224061A (en) Electronic sphygmomanometer
JP2936840B2 (en) Electronic sphygmomanometer
JPH0480691B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Ref document number: 3700048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

EXPY Cancellation because of completion of term