JP2001008908A - Electric sphygmomanometer - Google Patents

Electric sphygmomanometer

Info

Publication number
JP2001008908A
JP2001008908A JP11181095A JP18109599A JP2001008908A JP 2001008908 A JP2001008908 A JP 2001008908A JP 11181095 A JP11181095 A JP 11181095A JP 18109599 A JP18109599 A JP 18109599A JP 2001008908 A JP2001008908 A JP 2001008908A
Authority
JP
Japan
Prior art keywords
noise
pulse wave
detecting means
blood pressure
electronic sphygmomanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11181095A
Other languages
Japanese (ja)
Inventor
Kazuhisa Tanabe
一久 田部
Yukiya Sawanoi
幸哉 澤野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP11181095A priority Critical patent/JP2001008908A/en
Publication of JP2001008908A publication Critical patent/JP2001008908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve accuracy of sphgmomanometry and precisely measure blood pressure even if moving strength is high by improving detective accuracy of a pulse wave. SOLUTION: There are provided a photoelectric sensor for detecting pulse wave 10 and an acceleration sensor for detecting noise 11 on a cuff 1. A noise component which is generated by physical movement which is superposed on a pulse wave signal which is obtained by the photoelectric sensor 10 is decreased by using a signal that is obtained by the acceleration sensor 11 and blood pressure is calculated by using the pulse wave signal which decreases the noise component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、体動に起因するノ
イズ、アーティファクタの影響を受け難くした電子血圧
計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic sphygmomanometer which is hardly affected by noise and artistic factors caused by body movement.

【0002】[0002]

【従来の技術】従来、体動中の血圧計測を意図して作ら
れている血圧計としては、運動負荷試験用血圧計や24
時間携帯血圧計などがある。これらの血圧計は、コロト
コフ音を測定する聴診法、オシロメトリック法又は両法
の併用により血圧測定を行っている。
2. Description of the Related Art Conventionally, sphygmomanometers designed to measure blood pressure during body movement include sphygmomanometers for exercise load tests and 24 sphygmomanometers.
There is a time portable sphygmomanometer and the like. These sphygmomanometers measure blood pressure by an auscultation method, an oscillometric method, or a combination of both methods, which measures Korotkoff sounds.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の血圧計では、 i)オシロメトリック法では、体動に起因する圧力ノイ
ズが圧脈波に大きく重畳する。 ii)コロトコフ音を測定する聴診法では、体動に起因す
る騒音をコロトコフ音と誤認識する。 ため、次の問題点,がある。 脈波の検出精度が低下し、血圧値の決定が困難になっ
たり、血圧決定の精度が低下したりする。 コロトコフ法において体動耐性を高める心電同期機能
を使用しても、運動強度が高い場合は騒音が連続的にな
るため、脈波の検出が困難になる。
However, in the conventional sphygmomanometer described above, i) In the oscillometric method, the pressure noise caused by body movement largely overlaps the pressure pulse wave. ii) In the auscultation method for measuring Korotkoff sounds, noise caused by body motion is erroneously recognized as Korotkoff sounds. Therefore, there are the following problems. The detection accuracy of the pulse wave decreases, and it becomes difficult to determine the blood pressure value, or the accuracy of determining the blood pressure decreases. Even if an electrocardiogram synchronization function that enhances body movement tolerance is used in the Korotkoff method, if the exercise intensity is high, noise becomes continuous, making it difficult to detect a pulse wave.

【0004】従って、本発明は、そのような問題点,
に着目してなされたもので、脈波の検出精度を高めて
血圧測定精度を向上させ、運動強度が高い場合でも正確
な血圧測定を行える電子血圧計を提供することを目的と
する。
Accordingly, the present invention addresses such problems,
It is an object of the present invention to provide an electronic sphygmomanometer capable of improving blood pressure measurement accuracy by increasing pulse wave detection accuracy and performing accurate blood pressure measurement even when exercise intensity is high.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1記載の電子血圧計は、生体の測定
部位を圧迫するためのカフと、カフ内を加圧・減圧する
圧力制御手段と、カフ内の圧力を検出する圧力検出手段
と、この圧力検出手段で得られた信号から血圧を算出す
る血圧算出手段とを備えるものにおいて、前記カフに設
けられ、測定部位から脈波を検出する少なくとも1個の
脈波検出手段と、カフに設けられ、測定部位から体動に
よるノイズを検出する少なくとも1個のノイズ検出手段
と、脈波検出手段で得られた脈波信号に重畳する体動に
よるノイズ成分を、ノイズ検出手段で得られた信号を用
いて低減するノイズ成分低減手段とを備え、前記血圧算
出手段はノイズ成分が低減された脈波信号を用いて血圧
を算出することを特徴とする。
In order to achieve the above object, an electronic sphygmomanometer according to claim 1 of the present invention provides a cuff for pressing a measurement site of a living body, and pressurizes and depressurizes the inside of the cuff. A pressure control means, a pressure detection means for detecting a pressure in the cuff, and a blood pressure calculation means for calculating a blood pressure from a signal obtained by the pressure detection means; At least one pulse wave detecting means for detecting a wave, at least one noise detecting means provided on the cuff for detecting noise due to body movement from a measurement site, and a pulse wave signal obtained by the pulse wave detecting means. Noise component reducing means for reducing a noise component due to superimposed body motion using a signal obtained by the noise detecting means, wherein the blood pressure calculating means calculates a blood pressure using a pulse wave signal with the reduced noise component. To do And butterflies.

【0006】この電子血圧計は、ノイズ検出手段で検出
した体動成分(体動によるノイズ成分)を用いて、体動
によりノイズ成分が重畳した脈波検出手段の脈波信号か
らノイズ成分のみを低減するものである。体動中の血圧
測定において、コロトコフ音ではなく脈波を用いること
の利点は、脈波(光電脈波、圧脈波など)が騒音ノイズ
の影響を受け難いことにある。コロトコフ音方式のよう
に音響センサを用いる方式では、騒音ノイズの低減は困
難である。一方、体動中での脈波には騒音ノイズは殆ど
重畳せず、体動によるノイズ成分が重畳するだけであ
る。従って、脈波から体動によるノイズ成分を除去する
ことができれば、正確な脈波を再現することができる。
また、体動によるノイズは、音響ノイズに比較して位置
による特性の違いが少ないため、ノイズ検出手段が脈波
検出手段の周辺にあれば、体動の影響はノイズ検出手段
と脈波検出手段にほぼ均等に作用する。従って、体動に
よるノイズの低減処理は、音響ノイズの場合に比べて容
易である。
This electronic sphygmomanometer uses the body movement component (noise component due to body movement) detected by the noise detection unit to extract only the noise component from the pulse wave signal of the pulse wave detection unit on which the noise component is superimposed by the body movement. It is to reduce. An advantage of using a pulse wave instead of a Korotkoff sound in measuring blood pressure during body movement is that a pulse wave (a photoelectric pulse wave, a pressure pulse wave, or the like) is not easily affected by noise noise. In a system using an acoustic sensor such as the Korotkoff sound system, it is difficult to reduce noise noise. On the other hand, almost no noise is superimposed on the pulse wave during body motion, but only a noise component due to body motion is superimposed. Therefore, if a noise component due to body motion can be removed from the pulse wave, an accurate pulse wave can be reproduced.
In addition, since noise due to body motion has less difference in characteristics depending on the position than acoustic noise, if the noise detection unit is located around the pulse wave detection unit, the influence of the body movement will be the noise detection unit and the pulse wave detection unit. Acts almost equally. Therefore, the process of reducing noise due to body motion is easier than in the case of acoustic noise.

【0007】また、コロトコフ音及び音響ノイズよりも
脈波及び体動によるノイズの方が周波数的に低い領域に
あるため、デジタル信号処理を行うにしても比較的低速
なサンプリング周波数で対応できる利点もある。なお、
本発明において、脈波検出手段としては、カフ圧力セン
サ、光電脈波センサ、インピーダンスセンサ、ひずみセ
ンサなどを使用すればよい。
In addition, since pulse wave and body motion noise are in a frequency lower region than Korotkoff sound and acoustic noise, even if digital signal processing is performed, it is possible to cope with a relatively low sampling frequency. is there. In addition,
In the present invention, a cuff pressure sensor, a photoelectric pulse wave sensor, an impedance sensor, a strain sensor, or the like may be used as the pulse wave detecting means.

【0008】ノイズ検出手段としては、生体の動きを物
理量に変換して測定するものの場合は、速度センサ、加
速度センサ、位置センサ、変位センサ、角度センサ、方
位センサ、傾斜センサなどを、生体の動きによって変化
する生体量(例えば血液量)を測定するものの場合は、
光電センサなどを用いればよい。ノイズ成分低減手段と
しては、脈波信号と体動によるノイズ信号の位相・振幅
を整合させた後の差動演算処理、或いは適応フィルタ処
理などが該当する。なお、ノイズ低減以後の信号処理
は、従来の血圧計と同様である。
[0008] In the case of measuring the noise by converting the movement of a living body into a physical quantity, the noise detecting means includes a speed sensor, an acceleration sensor, a position sensor, a displacement sensor, an angle sensor, an azimuth sensor, and a tilt sensor. In the case of measuring biomass (for example, blood volume) that changes depending on
A photoelectric sensor or the like may be used. The noise component reduction means includes a differential operation process after matching the phase and amplitude of the pulse wave signal and the noise signal due to body motion, or an adaptive filter process. Note that signal processing after noise reduction is the same as that of a conventional blood pressure monitor.

【0009】[0009]

【発明の実施の形態】以下、本発明を実施の形態に基づ
いて説明する。その第1の実施形態に係る電子血圧計の
構成を図1にブロック図で示す。この電子血圧計は、生
体の測定部位を圧迫するためのカフ1と、カフ1内を加
圧する加圧ポンプ(圧力制御手段)2と、カフ1内を減
圧する排気弁(圧力制御手段)3と、カフ1内の圧力を
検出する圧力センサ(圧力検出手段)4と、算出された
血圧値等を表示する表示器5と、加圧ポンプ2、排気弁
3、表示器5等を制御するCPU6と、圧力センサ4か
らの出力を増幅する増幅器7と、増幅器7からのアナロ
グ信号をデジタル信号に変換してCPU6に入力するA
/D変換器8とを備える。但し、ここまでの構成は従来
の血圧計と同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a block diagram showing the configuration of the electronic sphygmomanometer according to the first embodiment. This electronic sphygmomanometer includes a cuff 1 for compressing a measurement site of a living body, a pressure pump (pressure control means) 2 for pressurizing the inside of the cuff 1, and an exhaust valve (pressure control means) 3 for reducing the pressure in the cuff 1 And a pressure sensor (pressure detecting means) 4 for detecting the pressure in the cuff 1, a display 5 for displaying the calculated blood pressure value and the like, a pressurizing pump 2, an exhaust valve 3, a display 5 and the like. A CPU 6, an amplifier 7 for amplifying an output from the pressure sensor 4, and an A for converting an analog signal from the amplifier 7 into a digital signal and inputting the digital signal to the CPU 6.
/ D converter 8. However, the configuration so far is the same as that of a conventional sphygmomanometer.

【0010】この電子血圧計は、カフ1に設けられ、測
定部位から脈波を検出する少なくとも1個の脈波検出手
段としての光電センサ10と、同じくカフ1に設けら
れ、測定部位から体動によるノイズを検出する少なくと
も1個のノイズ検出手段としての加速度センサ11とを
備え、CPU6が光電センサ10で得られた脈波信号に
重畳する体動によるノイズ成分を、加速度センサ11で
得られた信号を用いて低減するノイズ成分低減機能と、
ノイズ成分が低減された脈波信号を用いて血圧を算出す
る血圧算出機能とを有する点が特徴である。
This electronic sphygmomanometer is provided on the cuff 1 and at least one photoelectric sensor 10 as pulse wave detecting means for detecting a pulse wave from a measurement site. And an acceleration sensor 11 as at least one noise detecting means for detecting noise due to the body motion. A noise component due to body movement superimposed on the pulse wave signal obtained by the CPU 6 by the CPU 6 is obtained by the acceleration sensor 11. A noise component reduction function that reduces using a signal,
It has a blood pressure calculation function of calculating a blood pressure using a pulse wave signal with reduced noise components.

【0011】光電センサ10の脈波信号及び加速度セン
サ11の体動信号は、それぞれ増幅器12によって増幅
され、更にA/D変換器8でデジタル信号に変換され
て、CPU6に入力される。図2に示す第2の実施形態
に係る電子血圧計は、ノイズ検出手段として、加速度セ
ンサ11の代わりに、1個の光電センサ13を用いるも
のである。それ以外の構成は、第1の実施形態の電子血
圧計と同様である。
The pulse wave signal of the photoelectric sensor 10 and the body motion signal of the acceleration sensor 11 are respectively amplified by an amplifier 12, converted into digital signals by an A / D converter 8, and input to the CPU 6. The electronic sphygmomanometer according to the second embodiment shown in FIG. 2 uses one photoelectric sensor 13 instead of the acceleration sensor 11 as a noise detection unit. Other configurations are the same as those of the electronic sphygmomanometer of the first embodiment.

【0012】第1の実施形態の電子血圧計(図1参照)
におけるカフ1の概略断面図(上腕の横断方向における
断面図)を図3に、別方向の概略断面図(上腕の縦断方
向における断面図)を図5に示す。図3及び図5は、カ
フ1を例えば上腕40に装着した状態を示し、上腕40
内に骨41と動脈42が延伸している。ここでは、脈波
検出用の光電センサ10とノイズ検出用の加速度センサ
11は、カフ1の所定部分に接近して取付けられると共
に、カフ1の周方向(上腕40の横断方向)における異
なる位置に配置されている。光電センサ10は発光素子
及び受光素子で構成され、発光素子からの光が上腕40
内の動脈42に照射され、反射光が受光素子で受光され
る。また、上腕40に発生した体動によるノイズが加速
度センサ11で検出される。
Electronic sphygmomanometer of the first embodiment (see FIG. 1)
3 is a schematic cross-sectional view of the cuff 1 (cross-sectional view in the transverse direction of the upper arm), and FIG. 5 is a schematic cross-sectional view in another direction (cross-sectional view of the upper arm in the longitudinal direction). 3 and 5 show a state in which the cuff 1 is attached to the upper arm 40, for example.
Inside, a bone 41 and an artery 42 extend. Here, the photoelectric sensor 10 for detecting the pulse wave and the acceleration sensor 11 for detecting the noise are mounted close to a predetermined portion of the cuff 1 and at different positions in the circumferential direction of the cuff 1 (the transverse direction of the upper arm 40). Are located. The photoelectric sensor 10 includes a light emitting element and a light receiving element.
The light is radiated to the artery 42 inside, and the reflected light is received by the light receiving element. In addition, noise due to body movement generated in the upper arm 40 is detected by the acceleration sensor 11.

【0013】第2の実施形態の電子血圧計(図2参照)
におけるカフ1の概略断面図(上腕の横断方向における
断面図)を図4に示す。図4では、ノイズ検出用の光電
センサ13は発光素子及び受光素子で構成されず、発光
素子は脈波検出用の光電センサ10の発光素子20と共
通であり、ノイズ検出用の受光素子31のみが発光素子
20を挟んで脈波検出用の受光素子21とは反対側に配
置されている。なお、発光素子20と受光素子21との
間の距離、及び発光素子20と受光素子31との間の距
離は、必ずしも同じである必要はないが、脈波信号及び
体動信号とも発光素子20から同一距離に位置する受光
素子で取得すれば、体動成分である生体量の変化量が脈
波信号と体動信号に同じように働くため、脈波信号に重
畳している体動成分と相関の高い体動信号を得ることが
でき、ノイズの除去効率がより高くなる。
An electronic sphygmomanometer according to a second embodiment (see FIG. 2)
FIG. 4 shows a schematic cross-sectional view (cross-sectional view in the transverse direction of the upper arm) of the cuff 1 in FIG. In FIG. 4, the photoelectric sensor 13 for noise detection is not composed of a light emitting element and a light receiving element. The light emitting element is common to the light emitting element 20 of the photoelectric sensor 10 for pulse wave detection, and only the light receiving element 31 for noise detection is used. Are disposed on the opposite side of the light emitting element 20 from the light receiving element 21 for detecting a pulse wave. Note that the distance between the light emitting element 20 and the light receiving element 21 and the distance between the light emitting element 20 and the light receiving element 31 are not necessarily the same, but both the pulse wave signal and the body motion signal are the same. If acquired by a light receiving element located at the same distance from the body, since the amount of change in biomass, which is a body motion component, acts in the same manner on the pulse wave signal and the body motion signal, the body motion component superimposed on the pulse wave signal A highly correlated body motion signal can be obtained, and the noise removal efficiency is further improved.

【0014】次に、上記のように構成した第1及び第2
の実施形態の電子血圧計の動作について、図6のフロー
図を参照して説明する。図6は血圧をカフの減圧過程で
測定する場合である。血圧測定をカフの減圧過程で行う
場合は、カフを一旦最高血圧以上に加圧し、加圧後、一
定圧で減圧していき、その減圧過程での脈波出現点を最
高血圧、脈波消失点を最低血圧とする。また別の方法と
しては、脈波振幅の最大値に対する所定の比率の閾値で
血圧値を決定する方法などであってもよい。
Next, the first and second components configured as described above are used.
The operation of the electronic sphygmomanometer according to the embodiment will be described with reference to the flowchart of FIG. FIG. 6 shows a case where the blood pressure is measured in the process of depressurizing the cuff. When blood pressure measurement is performed during the depressurization process of the cuff, the cuff is once pressurized above the systolic blood pressure, and then depressurized at a constant pressure. The point is the diastolic blood pressure. As another method, a method of determining a blood pressure value with a threshold value of a predetermined ratio to the maximum value of the pulse wave amplitude may be used.

【0015】まず、ステップ(以下、STと略す)1に
おいて、全ての変数が初期化された後、カフの加圧が開
始される(ST2)。カフの内圧が最高血圧以上に達し
たら、一定圧での減圧が開始され(ST3)、その減圧
過程でカフ圧力の測定、脈波信号の測定、体動信号の測
定が行われる(ST4)。その測定結果により脈波信号
から体動によるノイズ成分が除去される(ST5)。そ
の後、ノイズ成分が低減された脈波信号を用いて最高血
圧及び最低血圧が算出され(ST6)、得られた血圧値
が表示される(ST7)。
First, in step (hereinafter abbreviated as ST) 1, after all variables are initialized, pressurization of the cuff is started (ST2). When the internal pressure of the cuff reaches or exceeds the systolic blood pressure, decompression at a constant pressure is started (ST3), and the measurement of the cuff pressure, the pulse wave signal, and the measurement of the body motion signal are performed in the depressurization process (ST4). The noise component due to body movement is removed from the pulse wave signal based on the measurement result (ST5). Thereafter, the systolic blood pressure and the diastolic blood pressure are calculated using the pulse wave signal with the reduced noise component (ST6), and the obtained blood pressure values are displayed (ST7).

【0016】なお、上記図6のフロー図は、ST4〜S
T7までの処理をカフの減圧過程で行っているが、それ
らの処理をカフの加圧過程で行ってもよい。次に、上記
図6のフロー図におけるノイズ成分除去処理(ST5)
の具体的手法について説明する。前記したとおり、ノイ
ズ成分低減処理としては、脈波信号と体動によるノイズ
信号の位相・振幅を整合させた後の差動演算処理、或い
は適応フィルタ処理などがあるが、差動演算を用いたノ
イズ成分除去処理は図7に示すとおりである。
Note that the flowchart of FIG.
Although the processing up to T7 is performed during the depressurization process of the cuff, these processes may be performed during the pressurization process of the cuff. Next, noise component removal processing (ST5) in the flowchart of FIG.
A specific method will be described. As described above, as the noise component reduction processing, there is a differential operation processing after matching the phase and the amplitude of the pulse wave signal and the noise signal due to the body motion, or an adaptive filter processing. The noise component removal processing is as shown in FIG.

【0017】まず、カフの減圧が開始されたら(ST1
1、図6のST3に対応)、脈波検出用のセンサで得ら
れる脈波信号とノイズ検出用のセンサで得られる体動信
号との間の相関演算を行い、位相差と振幅比を求める
(ST12)。そして、体動信号については、前記相関
演算で求めた位相差と振幅比を用いて遅延処理とゲイン
変更を行い(ST13)、ST13の処理後の体動信号
と脈波信号とに対し、差動演算処理を行うこと(ST1
4)により、脈波信号から体動によるノイズ成分を低減
することができる。この差動演算処理は減圧が終了する
まで続けられる(ST15)。
First, when the decompression of the cuff is started (ST1)
1. Corresponding to ST3 in FIG. 6), a correlation operation is performed between a pulse wave signal obtained by a pulse wave detection sensor and a body motion signal obtained by a noise detection sensor to obtain a phase difference and an amplitude ratio. (ST12). For the body motion signal, delay processing and gain change are performed using the phase difference and the amplitude ratio obtained by the correlation operation (ST13), and the difference between the body motion signal and the pulse wave signal after the processing in ST13 is obtained. Performing dynamic operation processing (ST1
According to 4), a noise component due to body movement can be reduced from the pulse wave signal. This differential operation process is continued until the decompression is completed (ST15).

【0018】この差動演算処理によりノイズ成分を低減
できる理由は、次のとおりである。通常の血圧測定で
は、生体の測定部位は最高血圧以上にカフで加圧され、
その後に所定速度で減圧されるが、最高血圧以上に加圧
されているときは、動脈は完全に閉塞し、脈動は停止し
ている。このとき、脈波検出用のセンサの信号には体動
によるノイズのみが存在することになる。従って、図8
を参照して、最高血圧よりも高いことが確実であるカフ
圧(安静時の最高血圧や前回の最高血圧値を参照して推
定が可能)のときに、脈波検出用のセンサで得られた体
動ノイズが重畳する脈波信号(ST21)と、ノイズ検
出用のセンサで得られた体動信号(ST22)との相関
を取り、位相差、振幅比を求め(ST23)、時間遅延
とゲイン調整を行った体動信号と脈波信号とに対し、求
めた位相差と振幅比を用いて差動演算処理(ST24)
を行うことで、脈波信号中の体動によるノイズ成分を低
減できる。
The reason why the noise component can be reduced by the differential operation processing is as follows. In normal blood pressure measurement, the measurement site of the living body is pressurized with a cuff above the systolic blood pressure,
Thereafter, the pressure is reduced at a predetermined speed. However, when the pressure is increased to the maximum blood pressure or higher, the artery is completely occluded and the pulsation is stopped. At this time, only the noise due to body movement exists in the signal of the sensor for pulse wave detection. Therefore, FIG.
The cuff pressure is certain to be higher than the systolic blood pressure (can be estimated by referring to the resting systolic blood pressure or the previous systolic blood pressure value). The correlation between the pulse wave signal (ST21) on which the body motion noise is superimposed and the body motion signal (ST22) obtained by the noise detection sensor is obtained to determine the phase difference and the amplitude ratio (ST23). Differential arithmetic processing is performed on the body motion signal and the pulse wave signal that have been subjected to the gain adjustment using the obtained phase difference and amplitude ratio (ST24).
Is performed, it is possible to reduce noise components due to body movement in the pulse wave signal.

【0019】つまり、図11に示すように、カフ圧が最
高血圧と最低血圧との間にあるときには、動脈が拍動す
るため、脈波検出用のセンサは体動によるノイズ成分と
拍動成分を検出する。最高血圧以上のときに求めた前記
両信号間の位相差及び振幅比は、体動信号においてもほ
ぼ同等に保たれるので(図12参照)、位相差及び振幅
比を用いて両信号に差動演算処理を行うことで、体動に
よるノイズ成分が低減され、脈波成分が残る(図13参
照)。従って、体動によるノイズが混入した脈波信号か
ら体動ノイズのみを低減することができる。
That is, as shown in FIG. 11, when the cuff pressure is between the systolic blood pressure and the diastolic blood pressure, the artery pulsates. Is detected. Since the phase difference and the amplitude ratio between the two signals obtained when the blood pressure is equal to or higher than the systolic blood pressure are kept substantially equal in the body motion signal (see FIG. 12), the difference between the two signals is obtained using the phase difference and the amplitude ratio. By performing the motion calculation process, the noise component due to the body motion is reduced, and the pulse wave component remains (see FIG. 13). Therefore, only the body motion noise can be reduced from the pulse wave signal mixed with the noise due to the body motion.

【0020】一方、適応フィルタを用いたノイズ成分除
去処理は、前記相関演算処理(図7のST12)の代わ
りに適応フィルタを用いるもので、適応フィルタとして
は、格子型適応フィルタ、トランスバーサル型適応フィ
ルタを用いることができる。また、適応アルゴリズムの
具体的構成としては、LMS、RLS、LSLなどの構
成を用いることができる。そして、最高血圧よりも高い
ことが確実であるカフ圧のときから適応フィルタの適応
動作を行い、ノイズ検出用のセンサで得られた体動信号
を使用して、脈波検出用のセンサで得られた脈波信号か
ら体動によるノイズ成分を除去する。適応フィルタは体
動信号をフィルタリングして、脈波信号に重畳する体動
ノイズ成分に相当する信号を出力する。そして、適応ア
ルゴリズムによって、差動演算処理の出力が最小になる
ように体動信号のフィルタリングのフィルタ係数を更新
していくことで、適応動作を行う。適応フィルタは調整
の自由度が高いので、前記差動演算処理よりも体動によ
るノイズをより正確に除去できる。
On the other hand, the noise component removal processing using an adaptive filter uses an adaptive filter instead of the correlation operation processing (ST12 in FIG. 7). As the adaptive filter, a lattice type adaptive filter, a transversal type adaptive filter is used. Filters can be used. Further, as a specific configuration of the adaptive algorithm, a configuration such as LMS, RLS, and LSL can be used. Then, the adaptive filter performs the adaptive operation from the time of the cuff pressure, which is certain to be higher than the systolic blood pressure, and obtains the pulse wave detection sensor using the body motion signal obtained by the noise detection sensor. A noise component due to body movement is removed from the obtained pulse wave signal. The adaptive filter filters the body motion signal and outputs a signal corresponding to a body motion noise component superimposed on the pulse wave signal. Then, the adaptive operation is performed by updating the filter coefficient of the filtering of the body motion signal so that the output of the differential operation processing is minimized by the adaptive algorithm. Since the adaptive filter has a high degree of freedom in adjustment, noise due to body movement can be removed more accurately than in the differential operation processing.

【0021】この他、上記適応フィルタを用いた構成を
部分的に用いる構成でもよい。このノイズ成分除去処理
は図9に示すとおりである。まず、カフの減圧が開始さ
れたら(ST31、図6のST3に対応)、最高血圧よ
りも高いことが確実であるカフ圧のときに適応フィルタ
の適応動作を行い(ST32)、適応フィルタのフィル
タ係数が収束したかどうかを判定する(ST33)。フ
ィルタ係数が収束した段階で、フィルタ係数の更新を停
止し(ST34)、フィルタ係数を固定したまま、フィ
ルタ動作と差動演算を実施する(ST35)。フィルタ
動作と差動演算処理は、減圧が終了するまで続けられる
(ST36)。
In addition, the configuration using the above adaptive filter may be partially used. This noise component removal processing is as shown in FIG. First, when depressurization of the cuff is started (ST31, corresponding to ST3 in FIG. 6), the adaptive operation of the adaptive filter is performed when the cuff pressure is certain to be higher than the systolic blood pressure (ST32). It is determined whether or not the coefficients have converged (ST33). When the filter coefficients have converged, the updating of the filter coefficients is stopped (ST34), and the filter operation and the differential operation are performed with the filter coefficients fixed (ST35). The filter operation and the differential operation process are continued until the pressure reduction ends (ST36).

【0022】つまり、図10において、体動信号(ST
42、図15参照)に対し、適応フィルタ(ST43)
を用いて適応アルゴリズム(ST44)に則って適応動
作を行い、適応動作後の体動信号と体動信号が重畳した
脈波信号(図14参照)とに対し、差動演算処理(ST
45)を行うことにより、脈波信号から体動によるノイ
ズ成分を低減できる(図16参照)。この適応フィルタ
による適応動作と差動演算処理は、減圧が終了するまで
行われる。
That is, in FIG. 10, the body motion signal (ST
42, see FIG. 15), the adaptive filter (ST43)
, An adaptive operation is performed in accordance with an adaptive algorithm (ST44), and a differential operation process (ST44) is performed on the body motion signal after the adaptive operation and the pulse wave signal on which the body motion signal is superimposed (see FIG. 14).
By performing 45), noise components due to body movement can be reduced from the pulse wave signal (see FIG. 16). The adaptive operation by the adaptive filter and the differential operation processing are performed until the decompression is completed.

【0023】この適応フィルタ処理によりノイズ成分を
低減できる理由は、次のとおりである。最高血圧以上の
ときに求めた前記脈波検出用及びノイズ検出用の両セン
サ間の関係は、体動信号においてもほぼ同等に保たれる
ので、フィルタ係数の更新を停止しても、体動によるノ
イズ成分のみが低減され、脈波成分が残る。この手法
は、体動によるノイズの周波数成分が脈波の周波数成分
に接近するか、又は重なっている場合に有効である。こ
のような場合、前記のようにフィルタ係数の更新を続け
ると、適応フィルタは、脈波成分を体動によるノイズと
同様に低減するようにフィルタ係数を更新してしまい、
ノイズ成分除去処理後の出力信号に脈波成分が残らなく
なってしまう。しかし、フィルタ係数の更新を停止する
ことによって、脈波を除去してしまう不具合を防ぐこと
ができる。
The reason why the noise component can be reduced by the adaptive filter processing is as follows. Since the relationship between the pulse wave detection sensor and the noise detection sensor obtained when the blood pressure is equal to or higher than the systolic blood pressure is maintained substantially the same in the body motion signal, even if the updating of the filter coefficient is stopped, Only the noise component due to the pulse wave is reduced, and the pulse wave component remains. This method is effective when the frequency component of the noise due to body motion approaches or overlaps the frequency component of the pulse wave. In such a case, if the update of the filter coefficient is continued as described above, the adaptive filter updates the filter coefficient so as to reduce the pulse wave component similarly to the noise due to body motion,
The pulse wave component will not remain in the output signal after the noise component removal processing. However, by stopping the update of the filter coefficient, it is possible to prevent a problem that the pulse wave is removed.

【0024】[0024]

【発明の効果】本発明の電子血圧計は、以上説明したよ
うに構成されるため、下記の効果を有する。 (1)体動中の血圧測定において体動によるノイズ成分
の少ない脈波信号を得ることができ、精度の高い血圧値
を算出できる。従って、運動強度が高い場合でも正確な
血圧測定を行うことが可能となる。 (2)体動中の血圧測定の際に従来必須であった心電同
期リードが不要となり、部品点数を削減できるだけでな
く、生体の測定部位への装着が簡便になる。 (3)請求項3の構成とすれば、脈波信号及び体動信号
を正確に検出できる。
The electronic sphygmomanometer of the present invention has the following effects because it is configured as described above. (1) In blood pressure measurement during body movement, a pulse wave signal with less noise component due to body movement can be obtained, and a highly accurate blood pressure value can be calculated. Therefore, accurate blood pressure measurement can be performed even when exercise intensity is high. (2) The electrocardiogram gating lead, which has been conventionally required when measuring blood pressure during body movement, becomes unnecessary, so that not only the number of parts can be reduced, but also the attachment of the living body to the measurement site becomes simple. (3) According to the configuration of the third aspect, the pulse wave signal and the body motion signal can be accurately detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係る電子血圧計の構成を示す
ブロック図である。
FIG. 1 is a block diagram illustrating a configuration of an electronic sphygmomanometer according to a first embodiment.

【図2】第2の実施形態に係る電子血圧計の構成を示す
ブロック図である。
FIG. 2 is a block diagram illustrating a configuration of an electronic sphygmomanometer according to a second embodiment.

【図3】第1の実施形態の電子血圧計におけるカフの概
略断面図(上腕の横断方向における断面図)である。
FIG. 3 is a schematic cross-sectional view (cross-sectional view in the transverse direction of the upper arm) of the cuff in the electronic sphygmomanometer according to the first embodiment.

【図4】第2の実施形態の電子血圧計におけるカフの概
略断面図(上腕の横断方向における断面図)である。
FIG. 4 is a schematic sectional view (a sectional view in a transverse direction of an upper arm) of a cuff in an electronic sphygmomanometer according to a second embodiment.

【図5】第1の実施形態の電子血圧計におけるカフの別
方向の概略断面図(上腕の縦断方向における断面図)で
ある。
FIG. 5 is a schematic cross-sectional view (a cross-sectional view in the longitudinal direction of the upper arm) of the cuff in the electronic sphygmomanometer according to the first embodiment in another direction.

【図6】同実施形態の電子血圧計の動作の一例を示すフ
ロー図である。
FIG. 6 is a flowchart showing an example of the operation of the electronic sphygmomanometer of the embodiment.

【図7】図6のフロー図におけるノイズ成分除去処理の
具体的手法の一例として差動演算処理を示すフロー図で
ある。
FIG. 7 is a flowchart illustrating a differential operation process as an example of a specific method of the noise component removal process in the flowchart of FIG. 6;

【図8】図7のフロー図の要部を説明するための機能フ
ロー図である。
FIG. 8 is a functional flowchart for explaining a main part of the flowchart of FIG. 7;

【図9】図6のフロー図におけるノイズ成分除去処理の
具体的手法の別例として適応フィルタ処理を示すフロー
図である。
9 is a flowchart showing adaptive filter processing as another example of a specific method of the noise component removal processing in the flowchart of FIG. 6;

【図10】図9のフロー図の要部を説明するための機能
フロー図である。
FIG. 10 is a functional flowchart for explaining a main part of the flowchart of FIG. 9;

【図11】ノイズ成分除去処理として差動演算処理を用
いた場合において、脈波検出用のセンサで得られる脈波
信号を示す波形図である。
FIG. 11 is a waveform diagram illustrating a pulse wave signal obtained by a sensor for detecting a pulse wave when a differential operation process is used as a noise component removal process.

【図12】ノイズ成分除去処理として差動演算処理を用
いた場合において、ノイズ検出用のセンサで得られる体
動信号を示す波形図である。
FIG. 12 is a waveform diagram illustrating a body motion signal obtained by a noise detection sensor when a differential operation process is used as the noise component removal process.

【図13】ノイズ成分除去処理として差動演算処理を用
いた場合において、差動演算処理後の出力波形図であ
る。
FIG. 13 is an output waveform diagram after differential operation processing when differential operation processing is used as noise component removal processing.

【図14】ノイズ成分除去処理として適応フィルタ処理
を用いた場合において、脈波検出用のセンサで得られる
脈波信号を示す波形図である。
FIG. 14 is a waveform diagram showing a pulse wave signal obtained by a sensor for detecting a pulse wave when adaptive filter processing is used as noise component removal processing.

【図15】ノイズ成分除去処理として適応フィルタ処理
を用いた場合において、ノイズ検出用のセンサで得られ
る体動信号を示す波形図である。
FIG. 15 is a waveform diagram showing a body motion signal obtained by a noise detection sensor when adaptive filter processing is used as noise component removal processing.

【図16】ノイズ成分除去処理として適応フィルタ処理
を用いた場合において、適応フィルタ処理後の出力波形
図である。
FIG. 16 is an output waveform diagram after adaptive filter processing when adaptive filter processing is used as noise component removal processing.

【符号の説明】[Explanation of symbols]

1 カフ 2 加圧ポンプ(圧力制御手段) 3 排気弁(圧力制御手段) 4 圧力センサ(圧力検出手段) 6 CPU(血圧算出手段、ノイズ成分低減手段) 10 脈波検出用の光電センサ(脈波検出手段) 11 ノイズ検出用の加速度センサ(ノイズ検出手
段) 13 ノイズ検出用の光電センサ(ノイズ検出手段)
DESCRIPTION OF SYMBOLS 1 Cuff 2 Pressurizing pump (pressure control means) 3 Exhaust valve (pressure control means) 4 Pressure sensor (pressure detection means) 6 CPU (blood pressure calculation means, noise component reduction means) 10 Photoelectric sensor (pulse wave) for pulse wave detection Detection means) 11 acceleration sensor for noise detection (noise detection means) 13 photoelectric sensor for noise detection (noise detection means)

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】生体の測定部位を圧迫するためのカフと、
カフ内を加圧・減圧する圧力制御手段と、カフ内の圧力
を検出する圧力検出手段と、この圧力検出手段で得られ
た信号から血圧を算出する血圧算出手段とを備える電子
血圧計において、 前記カフに設けられ、測定部位から脈波を検出する少な
くとも1個の脈波検出手段と、カフに設けられ、測定部
位から体動によるノイズを検出する少なくとも1個のノ
イズ検出手段と、脈波検出手段で得られた脈波信号に重
畳する体動によるノイズ成分を、ノイズ検出手段で得ら
れた信号を用いて低減するノイズ成分低減手段とを備
え、前記血圧算出手段は、ノイズ成分が低減された脈波
信号を用いて血圧を算出することを特徴とする電子血圧
計。
1. A cuff for compressing a measurement site of a living body,
In an electronic sphygmomanometer including a pressure control unit that pressurizes and depressurizes the inside of the cuff, a pressure detection unit that detects a pressure in the cuff, and a blood pressure calculation unit that calculates a blood pressure from a signal obtained by the pressure detection unit, At least one pulse wave detecting means provided on the cuff for detecting a pulse wave from a measurement site; at least one noise detection device provided on the cuff for detecting noise due to body movement from the measurement region; Noise component reduction means for reducing a noise component due to body movement superimposed on the pulse wave signal obtained by the detection means using the signal obtained by the noise detection means, wherein the blood pressure calculation means reduces the noise component. An electronic sphygmomanometer, which calculates a blood pressure by using the obtained pulse wave signal.
【請求項2】前記脈波検出手段は、脈波として動脈の容
積振動を計測することを特徴とする請求項1記載の電子
血圧計。
2. The electronic sphygmomanometer according to claim 1, wherein said pulse wave detecting means measures volume oscillation of an artery as a pulse wave.
【請求項3】前記脈波検出手段及びノイズ検出手段は、
カフの周方向における異なる位置に配置されていること
を特徴とする請求項1又は請求項2記載の電子血圧計。
3. The pulse wave detecting means and the noise detecting means,
The electronic sphygmomanometer according to claim 1 or 2, wherein the electronic sphygmomanometer is arranged at different positions in a circumferential direction of the cuff.
【請求項4】前記脈波検出手段及びノイズ検出手段は、
同等の検出機構を有することを特徴とする請求項1、請
求項2又は請求項3記載の電子血圧計。
4. The pulse wave detecting means and the noise detecting means,
The electronic sphygmomanometer according to claim 1, wherein the electronic sphygmomanometer has an equivalent detection mechanism.
【請求項5】前記脈波検出手段及びノイズ検出手段は、
ともに物理エネルギーを体内に照射する能動的検出手段
であり、この能動的検出手段の検出用物理エネルギーを
兼用することを特徴とする請求項4記載の電子血圧計。
5. The pulse wave detecting means and the noise detecting means,
5. The electronic sphygmomanometer according to claim 4, wherein each of the active sphygmomanometers is active detection means for irradiating the body with physical energy, and also serves as physical energy for detection of the active detection means.
【請求項6】前記脈波検出手段は、脈波として光電脈波
を用いることを特徴とする請求項1、請求項2、請求項
3、請求項4又は請求項5記載の電子血圧計。
6. The electronic sphygmomanometer according to claim 1, wherein said pulse wave detecting means uses a photoelectric pulse wave as a pulse wave.
【請求項7】前記ノイズ成分低減手段は、脈波検出手段
及びノイズ検出手段でそれぞれ得られる信号に重畳する
体動ノイズの特性の差を特定・同定し、この特定・同定
したノイズの特性差を用いてノイズ成分を低減すること
を特徴とする請求項1、請求項2、請求項3、請求項
4、請求項5又は請求項6記載の電子血圧計。
7. The noise component reducing means specifies and identifies a difference between characteristics of body motion noise superimposed on signals obtained by the pulse wave detecting means and the noise detecting means, respectively, and determines a characteristic difference of the specified and identified noise. 7. The electronic sphygmomanometer according to claim 1, wherein the noise component is reduced by using.
【請求項8】前記ノイズ成分低減手段は、カフ内圧が最
高血圧以上であるときに脈波検出手段及びノイズ検出手
段でそれぞれ得られる信号の相関演算を行うことによ
り、体動ノイズの特性の差を特定・同定することを特徴
とする請求項7記載の電子血圧計。
8. The noise component reducing means performs correlation calculation of signals obtained by the pulse wave detecting means and the noise detecting means when the cuff internal pressure is equal to or higher than the systolic blood pressure, thereby obtaining a difference in the characteristic of body motion noise. The electronic sphygmomanometer according to claim 7, wherein the electronic blood pressure monitor is specified and identified.
【請求項9】前記ノイズ成分低減手段は、脈波検出手段
及びノイズ検出手段でそれぞれ得られる信号の適応フィ
ルタ処理を行うことにより、体動ノイズの特性の差を特
定・同定することを特徴とする請求項7記載の電子血圧
計。
9. The noise component reducing unit specifies and identifies a difference in characteristics of body motion noise by performing adaptive filter processing on signals obtained by the pulse wave detecting unit and the noise detecting unit, respectively. The electronic sphygmomanometer according to claim 7, wherein
【請求項10】前記ノイズ成分低減手段は、カフ内圧が
最高血圧以上であるときに脈波検出手段及びノイズ検出
手段でそれぞれ得られる信号の相関演算結果を反映する
位相差及び振幅比を調整し、この調整後の両信号を差動
演算処理することにより、特定・同定したノイズの特性
差を用いてノイズ成分を低減することを特徴とする請求
項8記載の電子血圧計。
10. The noise component reducing means adjusts a phase difference and an amplitude ratio reflecting a correlation calculation result of signals obtained by the pulse wave detecting means and the noise detecting means when the cuff internal pressure is equal to or higher than the systolic blood pressure. 9. The electronic sphygmomanometer according to claim 8, wherein the noise component is reduced by performing a differential operation process on the two signals after the adjustment, thereby using a characteristic difference of the specified and identified noise.
【請求項11】前記ノイズ成分低減手段は、カフ内圧が
最高血圧以上であるときに脈波検出手段及びノイズ検出
手段でそれぞれ得られる信号の適応フィルタ処理で収束
した適応フィルタ係数を用いて、カフ内圧が最高血圧以
下であるときにノイズ検出手段で得られる信号をフィル
タ処理し、フィルタ処理後の信号と脈波検出手段で得ら
れる信号を差動演算処理することにより、特定・同定し
たノイズの特性差を用いてノイズ成分を低減することを
特徴とする請求項9記載の電子血圧計。
11. The noise component reducing means uses an adaptive filter coefficient converged by adaptive filter processing of signals obtained by the pulse wave detecting means and the noise detecting means when the cuff internal pressure is equal to or higher than the systolic blood pressure. Filtering the signal obtained by the noise detecting means when the internal pressure is equal to or lower than the systolic blood pressure, and differentially processing the signal obtained by the filtering processing and the signal obtained by the pulse wave detecting means, thereby identifying and identifying the identified noise. 10. The electronic sphygmomanometer according to claim 9, wherein a noise component is reduced using the characteristic difference.
JP11181095A 1999-06-28 1999-06-28 Electric sphygmomanometer Pending JP2001008908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11181095A JP2001008908A (en) 1999-06-28 1999-06-28 Electric sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11181095A JP2001008908A (en) 1999-06-28 1999-06-28 Electric sphygmomanometer

Publications (1)

Publication Number Publication Date
JP2001008908A true JP2001008908A (en) 2001-01-16

Family

ID=16094754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11181095A Pending JP2001008908A (en) 1999-06-28 1999-06-28 Electric sphygmomanometer

Country Status (1)

Country Link
JP (1) JP2001008908A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011585A (en) * 2007-07-05 2009-01-22 Toshiba Corp Apparatus and method for pulse wave processing
JP2009284967A (en) * 2008-05-27 2009-12-10 Omron Healthcare Co Ltd Cuff for blood pressure data measuring instrument and blood pressure data measuring instrument equipped with it
JP2010172645A (en) * 2009-02-02 2010-08-12 Seiko Epson Corp Pulsation detector and pulsation detecting method
WO2010098194A1 (en) * 2009-02-25 2010-09-02 オムロンヘルスケア株式会社 Electronic blood pressure gauge
JP2011087838A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Pulsation detector and pulsation detecting method
JP2011092236A (en) * 2009-10-27 2011-05-12 Seiko Epson Corp Pulse detector and pulse detection method
JP2011104124A (en) * 2009-11-17 2011-06-02 Seiko Epson Corp Pulse measuring apparatus
JP2012187249A (en) * 2011-03-10 2012-10-04 Seiko Epson Corp Filter device
JP2013506526A (en) * 2009-10-06 2013-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and system for processing a signal including a component representing at least a periodic phenomenon in a living body
JP2013530728A (en) * 2010-03-23 2013-08-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Reduce interference in monitoring patient life parameters
JP2014150869A (en) * 2013-02-06 2014-08-25 Casio Comput Co Ltd Biological information detection device, biological information detection method, and biological information detection program
WO2015008427A1 (en) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 Circulatory organ function determination device
JP2016048189A (en) * 2014-08-27 2016-04-07 東海旅客鉄道株式会社 Sensor state determination device and sensor state determination program
JP2016198554A (en) * 2016-08-01 2016-12-01 カシオ計算機株式会社 Biological information detector, and biological information detection method and biological information detection program

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011585A (en) * 2007-07-05 2009-01-22 Toshiba Corp Apparatus and method for pulse wave processing
JP2009284967A (en) * 2008-05-27 2009-12-10 Omron Healthcare Co Ltd Cuff for blood pressure data measuring instrument and blood pressure data measuring instrument equipped with it
JP2010172645A (en) * 2009-02-02 2010-08-12 Seiko Epson Corp Pulsation detector and pulsation detecting method
US8758258B2 (en) 2009-02-02 2014-06-24 Seiko Epson Corporation Beat detection device and beat detection method
WO2010098194A1 (en) * 2009-02-25 2010-09-02 オムロンヘルスケア株式会社 Electronic blood pressure gauge
JP2010194110A (en) * 2009-02-25 2010-09-09 Omron Healthcare Co Ltd Electronic sphygmomanometer
US9149194B2 (en) 2009-02-25 2015-10-06 Omron Healthcare Co., Ltd. Electronic sphygmomanometer
CN102333481A (en) * 2009-02-25 2012-01-25 欧姆龙健康医疗事业株式会社 Electronic blood pressure gauge
JP2013506526A (en) * 2009-10-06 2013-02-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and system for processing a signal including a component representing at least a periodic phenomenon in a living body
JP2011087838A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Pulsation detector and pulsation detecting method
US9049997B2 (en) 2009-10-27 2015-06-09 Seiko Epson Corporation Pulse detector and pulse detection method
JP2011092236A (en) * 2009-10-27 2011-05-12 Seiko Epson Corp Pulse detector and pulse detection method
JP2011104124A (en) * 2009-11-17 2011-06-02 Seiko Epson Corp Pulse measuring apparatus
JP2013530728A (en) * 2010-03-23 2013-08-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Reduce interference in monitoring patient life parameters
JP2012187249A (en) * 2011-03-10 2012-10-04 Seiko Epson Corp Filter device
JP2014150869A (en) * 2013-02-06 2014-08-25 Casio Comput Co Ltd Biological information detection device, biological information detection method, and biological information detection program
WO2015008427A1 (en) * 2013-07-16 2015-01-22 パナソニックIpマネジメント株式会社 Circulatory organ function determination device
JP2015019692A (en) * 2013-07-16 2015-02-02 パナソニックIpマネジメント株式会社 Circulatory organ function determination apparatus
CN105377123A (en) * 2013-07-16 2016-03-02 松下知识产权经营株式会社 Circulatory organ function determination device
JP2016048189A (en) * 2014-08-27 2016-04-07 東海旅客鉄道株式会社 Sensor state determination device and sensor state determination program
JP2016198554A (en) * 2016-08-01 2016-12-01 カシオ計算機株式会社 Biological information detector, and biological information detection method and biological information detection program

Similar Documents

Publication Publication Date Title
JP3587837B2 (en) Arterial stiffness evaluation device
JP3470121B2 (en) Electronic blood pressure measurement device
JP5151690B2 (en) Blood pressure information measuring device and index acquisition method
JP5026201B2 (en) NIBP signal processing method using SpO2 plethysmograph signal and non-invasive blood pressure monitor device
JP2001008908A (en) Electric sphygmomanometer
US5072736A (en) Non-invasive automatic blood pressure measuring apparatus
US6743179B2 (en) Arteriostenosis inspecting apparatus
US20020052554A1 (en) Automatic blood-pressure measuring apparatus
JP3621395B2 (en) Blood pressure measurement device with waveform analysis function
EP1103216A3 (en) Method and device for measuring blood pressure and heart rate in an environment with extreme levels of noise and vibrations
JP2001008909A (en) Electric sphygmomanometer
US6669646B1 (en) Arteriosclerosis evaluating apparatus
JP3210737B2 (en) Electronic sphygmomanometer
CA2426622A1 (en) Method and device for measuring systolic and diastolic blood pressure and heart rate in an environment with extreme levels of noise and vibrations
JPH05165Y2 (en)
CN114587314A (en) Internet blood pressure measuring device and control method thereof
US20120296223A1 (en) Blood pressure information measurement device and control method of blood pressure information measurement device
JP2004261321A (en) Blood flow rate estimation device
JP3818853B2 (en) Electronic blood pressure monitor
JPH10137204A (en) Blood noninvasive sphygmomanometer
JP2002320593A (en) Method and apparatus for measuring arterial blood pressure
JP3211130B2 (en) Electronic sphygmomanometer
JP2002224055A (en) Electronic sphygmomanometer
JP3218786B2 (en) Electronic sphygmomanometer
JP2001309894A (en) Equipment for measuring peripheral venous pressure and its method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802