WO2015008427A1 - Circulatory organ function determination device - Google Patents

Circulatory organ function determination device Download PDF

Info

Publication number
WO2015008427A1
WO2015008427A1 PCT/JP2014/003199 JP2014003199W WO2015008427A1 WO 2015008427 A1 WO2015008427 A1 WO 2015008427A1 JP 2014003199 W JP2014003199 W JP 2014003199W WO 2015008427 A1 WO2015008427 A1 WO 2015008427A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
measurement
subject
measured
pulse wave
Prior art date
Application number
PCT/JP2014/003199
Other languages
French (fr)
Japanese (ja)
Inventor
朋哉 日下部
和宏 井出
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480040014.4A priority Critical patent/CN105377123B/en
Publication of WO2015008427A1 publication Critical patent/WO2015008427A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts

Definitions

  • the present invention relates to a cardiovascular function determination device.
  • Patent Document 1 discloses that the blood pressure of a measurement subject is measured a plurality of times every predetermined time.
  • An object of the present invention is to provide a circulatory function determination device that can determine the functional state of the circulatory system based on the blood vessel hardness.
  • An apparatus for determining circulatory function includes a measurement unit that automatically measures a vascular hardness of a measurement subject at intervals, and a state of fluctuation in a measurement value of the vascular hardness measured by the measurement unit.
  • a determination unit that determines a functional state of the circulatory organ of the measurement subject; and an output unit that outputs a determination result of the functional state of the circulatory organ by the determination unit.
  • the blood vessel hardness of the subject is automatically measured at intervals, so the functional state of the subject's circulatory device is determined from the state of fluctuation of the measured values of the blood vessel hardness. Can be determined.
  • the functional state of the circulatory system can be determined based on the blood vessel hardness.
  • the block diagram which shows the structure of a circulatory organ function determination apparatus.
  • the time chart which shows the raise aspect of the compression pressure at the time of measuring vascular hardness and blood pressure at intervals.
  • the graph which shows the raise aspect of the compression pressure at the time of measuring vascular hardness and blood pressure.
  • the graph which shows transition of the amplitude of a pulse wave with respect to the change of the cuff pressure during a pulse wave detection period.
  • the graph which shows the transition of the area of each pulse wave which arises synchronizing with the change of the cuff pressure during a pulse wave detection period.
  • the graph which plotted the data pair which combined the cuff pressure and the area of a pulse wave.
  • (A) is a graph which shows the relationship between a cuff pressure and the area of a pulse wave
  • (b) is a graph which shows the relationship between a cuff pressure and a pulse wave area accumulation addition value.
  • the schematic diagram which shows the display area of a display part.
  • the graph which shows the increase aspect of the compression pressure at the time of measuring vascular hardness and blood pressure, and the transition of the area of a pulse wave.
  • the block diagram which shows the structure of a circulatory organ function determination apparatus.
  • the time chart which shows the raise aspect of the compression pressure at the time of measuring vascular hardness and blood pressure at intervals.
  • the graph which shows the envelope obtained from the area of each pulse wave during a pulse wave detection period.
  • the graph which shows the envelope obtained from the area of each pulse wave during a pulse wave detection period.
  • the time chart which shows the example of transition of the blood pressure and blood vessel hardness with time progress at the time of exercise
  • the schematic diagram which shows the display area of a display part.
  • the cardiovascular function determination device shown in FIG. 1 can be worn by the person to be measured h, and is a portable device that does not interfere with the daily actions of the person to be measured h wearing the device. .
  • This circulatory organ function determination device includes a measuring unit 2 that automatically measures a blood vessel hardness of a person to be measured h at intervals, and a state of fluctuation in a measured value of the blood vessel hardness measured by the measuring unit 2
  • the determination unit 3 for determining the functional state of the cardiovascular device of the person to be measured h.
  • the circulatory function determination apparatus also includes an output unit 4 that outputs a determination result of the functional state of the circulator by the determination unit 3.
  • the blood vessel hardness of the person to be measured h is automatically measured at intervals, and therefore the person to be measured h is determined from the state of variation in the measured values of the blood vessel hardness.
  • the functional state of the cardiovascular device can be determined.
  • the measurement unit 2 of the circulatory function determination device is provided with a bag-like cuff 5 that can be worn while being wrapped around the left upper arm that is a part of the body of the person to be measured h. Further, the measurement unit 2 is provided with a pressure control unit 7 and a pressure detection unit 8 connected to the cuff 5 via the tube 6.
  • the pressure control unit 7 includes a pump and an exhaust valve connected to the tube 6, and can supply air to the cuff 5 through driving the pump and discharge air from the cuff 5 through opening the exhaust valve. It has become.
  • the pressure control unit 7 changes the pressure (compression pressure P) inside the cuff 5 by controlling the supply and discharge of air to the cuff 5.
  • the pressure detection unit 8 includes a pressure sensor that detects the compression pressure P, and converts the compression pressure P detected by the pressure sensor into a pressure signal composed of a digital signal by A / D conversion.
  • the measurement unit 2 is also provided with a pulse wave detection unit 9 and a blood pressure calculation unit 10 that receive the pressure signal output from the pressure detection unit 8.
  • the pulse wave detection unit 9 is for detecting the amplitude of the pulse wave corresponding to the heartbeat generated at the portion (left upper arm) compressed by the cuff 5 in the person to be measured based on the pressure signal from the pressure detection unit 8. It is.
  • the pulse wave detection unit 9 filters the pressure signal from the pressure detection unit 8 to remove a predetermined frequency component such as a direct current component from the pressure signal, thereby generating a pulse wave signal.
  • the pulse wave detection unit 9 detects the amplitude of the pulse wave from the generated pulse wave signal, and stores the detected amplitude in the storage unit 11 in association with the compression pressure P.
  • the blood pressure calculation unit 10 uses a predetermined algorithm such as an oscillometric method from the relationship between the pressure signal output from the pressure detection unit 8 and the amplitude value of the pulse wave detected by the pulse wave detection unit 9. The estimated values of the maximum blood pressure, the minimum blood pressure, and the average blood pressure of the person to be measured h are calculated.
  • the blood pressure calculation unit 10 stores the calculated maximum blood pressure, minimum blood pressure, and average blood pressure estimated values in the storage unit 11.
  • the measurement of the blood pressure of the person to be measured h in the measurement unit 2 is realized by calculating the estimated values of the maximum blood pressure, the minimum blood pressure, and the average blood pressure in the blood pressure calculation unit 10 as described above.
  • the measurement unit 2 is also provided with a data analysis unit 12 that analyzes the data stored in the storage unit 11 to determine the blood vessel hardness of the person to be measured h.
  • the data analysis unit 12 outputs information regarding the obtained blood vessel hardness and information regarding the blood pressure stored in the storage unit 11 to the determination unit 3.
  • the measurement of the blood vessel hardness of the person to be measured h by the measurement unit 2 is realized by obtaining the blood vessel hardness by the data analysis unit 12 as described above.
  • the measurement of the blood vessel hardness by the measurement unit 2 is performed a plurality of times during a continuous period of 24 hours or more.
  • the blood pressure is also measured by the measuring unit 2.
  • the data analyzing unit 12 outputs information on the blood vessel hardness and information on the blood pressure to the determining unit 3.
  • the determination unit 3 of the circulatory function determination apparatus receives information on the measured blood vessel hardness and blood pressure from the data analysis unit 12 every time the measurement unit 2 measures the blood vessel hardness and blood pressure.
  • the determination part 3 determines the magnitude of the disease risk of the circulatory organ as the functional state of the circulatory organ of the person h to be measured from the state of fluctuation of the measured values of the vascular hardness. Then, when the determination unit 3 determines the functional state of the circulatory organ (the magnitude of the disease risk) in this way, the determination result is output to the display unit 13 of the circulatory organ function determination device by the output unit 4.
  • the display unit 13 has a display area 13a defined by blood vessel hardness and blood pressure, and displays the determination result of the degree of cardiovascular disease risk using the display area 13a.
  • the cardiovascular function determination device is worn in a portable state with respect to the person to be measured h (FIG. 1), and the cuff 5 of the apparatus is wound around the upper arm of the person to be measured h. Then, the circulatory organ function determination device automatically performs measurement by the measurement unit 2 when a predetermined time (for example, 8:00, 12:00, 21:00) in the morning, noon, and night comes during a continuous period of 24 hours or more.
  • a predetermined time for example, 8:00, 12:00, 21:00
  • the blood vessel hardness and blood pressure of the person to be measured h are measured. Thereby, the blood vessel hardness and blood pressure of the person to be measured h are automatically measured at intervals during a continuous period of 24 hours or more.
  • the measurement of the blood vessel hardness and blood pressure at the predetermined time is realized by temporarily increasing the compression pressure P by the cuff 5 with respect to the left upper arm portion of the person to be measured h by the pressure control unit 7, It is performed during the period of temporary increase of the compression pressure P. Therefore, as shown in FIG. 2, the compression pressure P is temporarily increased at a predetermined time for measuring the blood vessel hardness and blood pressure.
  • FIG. 3 shows how the compression pressure P changes during the temporary increase of the compression pressure P for measuring the blood vessel hardness and blood pressure.
  • the pressure control unit 7 increases the compression pressure P to the first pressure PA, and then decreases the increase speed of the compression pressure P. Furthermore, the pressure control unit 7 increases the compression pressure P to the second pressure PB higher than the first pressure PA, and then decreases the compression pressure P.
  • the first pressure PA and the second pressure PB are set according to general blood pressure. Therefore, during the period in which the pressure control unit 7 increases the compression pressure P from the first pressure PA to the second pressure PB (pulse wave detection period TX), the compression pressure P changes to a pulse wave corresponding to the heartbeat of the measurement subject h. It fluctuates with it.
  • the pressure (cuff pressure C) acting on the upper arm of the person h to be measured by the cuff 5 gradually changes from the low pressure side to the high pressure side of the horizontal axis in FIG.
  • the cuff pressure C here corresponds to a value obtained by removing the influence of the pulse wave from the compression pressure P shown in FIG.
  • the change of the compression pressure P with respect to the cuff pressure C when the cuff pressure C gradually changes from the low pressure side to the high pressure side as described above corresponds to the pulse wave.
  • the pulse wave signal generated by the pulse wave detector 9 corresponds to the change in the compression pressure P with respect to the cuff pressure C that gradually changes from the low pressure side to the high pressure side as described above.
  • the amplitude of the pulse wave detected from the pulse wave signal by the pulse wave detection unit 9 is a pulse wave (corresponding to the heartbeat ( The transition is made as indicated by the solid line in FIG. 4 according to W1, W2,..., Wn) of FIG.
  • the transition of the amplitude of the pulse wave at this time corresponds to the change mode of the pulse wave during the change of the cuff pressure C from the low pressure side to the high pressure side.
  • the blood pressure calculator 10 determines the blood pressure of the person to be measured h.
  • the areas A1, A2,..., An of the pulse waves W1, W2,..., Wn represent the magnitudes of the corresponding pulse waves W1, W2,.
  • the areas A1, A2,..., An are calculated by adding the pulse wave signals in the period in which the pulse waves W1, W2,.
  • the data analysis unit 12 includes the cuff pressures C (pressures P1, P2,..., Pn) when the pulse waves W1, W2,..., Wn are generated during the pulse wave detection period TX, and the pulse waves W1, W2. ,..., Wn areas A1, A2,..., An are combined and handled as a data pair of pressure and area.
  • FIG. 5 shows the transition of the areas A1, A2,..., An of the pulse waves W1, W2,..., Wn generated in synchronization with the change of the cuff pressure C from the low pressure side to the high pressure side during the pulse wave detection period TX.
  • FIG. 6 shows the data pairs in which the pressures P1, P2,..., Pn and the areas A1, A2,..., An are combined, with the cuff pressure set on the horizontal axis and the pulse wave area on the vertical axis. It is plotted on the graph. From the relationship between the cuff pressure C and the areas A1, A2,..., An shown in FIG. 5, an envelope L1 as shown by a solid line in the figure is obtained.
  • This envelope L1 draws a chevron shape according to the minute change (slow increase) of the cuff pressure C during the pulse wave detection period TX.
  • the shape of the envelope L1 shows a characteristic change for each individual, and further shows a change depending on the blood vessel hardness of each individual.
  • the data analysis unit 12 is obtained by cumulatively adding the areas A1, A2,..., An of the pulse waves W1, W2,..., Wn shown in FIG. Pulse wave area cumulative addition values B1, B2,..., Bn are calculated.
  • the data analysis unit 12 calculates each cuff pressure C (pressure P1, P2,..., Pn) when the pulse waves W1, W2,..., Wn are generated during the pulse wave detection period TX, and the pulse wave area accumulated addition value.
  • B1, B2,..., Bn are combined to form a data pair of the pressure and the pulse wave area cumulative addition value.
  • the data analysis unit 12 adds the pulse wave area accumulated addition value Bn when the areas A1, A2,... An of all the pulse waves W1, W2,.
  • the pulse wave area cumulative addition values B1, B2,..., Bn are normalized.
  • FIG. 8 shows the relationship between the normalized cumulative addition values D1, D2,..., Dn obtained by this normalization and the corresponding cuff pressures C (pressures P1, P2,... Pn).
  • an envelope L2 as shown by the solid line in FIG.
  • the envelope L2 increases rapidly after first continuing a small increase, and the degree of increase gradually decreases after the rapid increase.
  • the transition of the envelope L2 reflects the change in the blood vessel volume during the pulse wave detection period TX.
  • the change in the blood vessel volume with respect to the change in the cuff pressure C tends to be smaller than when the blood vessel is hard. Reflecting this tendency, the envelope L2 is compared with the case where the blood vessel is hard compared with the soft case. Therefore, it is difficult to change with respect to the change of the cuff pressure C.
  • the data analysis unit 12 obtains the blood vessel hardness of the person h to be measured from the relationship between the cuff pressure represented by the envelope L2 in FIG. 8 and the normalized cumulative addition value using a predetermined algorithm.
  • the change amount of the normalized cumulative addition value based on the change per unit amount of the cuff pressure C that is, the slope of the envelope L2 in FIG. 8 is obtained, and the vascular stiffness of the subject h is measured based on the slope of the envelope L2. I ask for it.
  • the slope of the envelope L2 differs depending on the magnitude of the cuff pressure C.
  • the constituent ratios of the constituent components (elastin, collagen, etc.) of the inner membrane, the inner membrane, and the outer membrane constituting the blood vessel wall are different for each membrane, and the degree of involvement in the extensibility of the blood vessels of each membrane. It is related to the change depending on the magnitude of the cuff pressure C.
  • elastin which is a component with low rigidity
  • collagen which is a component with high rigidity
  • the media is mainly involved in the extensibility of the blood vessel
  • the adventitia is mainly involved in the extensibility of the blood vessel. Accordingly, the slope of the envelope L2 is obtained for each pressure region such as a low region, a medium region, and a high region of the cuff pressure, and the blood vessel hardness is obtained for each of these gradients, so that any portion of each film in the blood vessel is obtained. It becomes possible to examine in detail whether the is cured.
  • the data analysis unit 12 obtains the blood vessel hardness of the person to be measured h, in other words, the measurement of the blood vessel hardness by the measurement unit 2 is performed during a continuous period of 24 hours or more at a predetermined time. Done automatically. Furthermore, when measuring the blood vessel hardness, the blood pressure of the person to be measured h is also measured.
  • the determination unit 3 determines the functional state of the circulatory organ of the measurement subject h (the circulatory device Determine the magnitude of disease risk). Specifically, the determination unit 3 determines whether (A) the blood pressure is within the normal range and (B) the blood vessel hardness is less than the reference value S1 for each set of the blood vessel hardness and blood pressure measured together.
  • the determination unit 3 determines the degree of cardiovascular disease risk of the measurement subject h. Determine. That is, when the negative determinations in (A) and (B) above are made in all the sets of vascular hardness and blood pressure measured together, the disease risk of the circulatory system is the highest. Judging. On the other hand, when the determination in (A) and (B) above is made in all the sets of vascular hardness and blood pressure measured together, the disease risk of the circulatory system is the smallest. Judging.
  • the negative determinations in (A) and (B) above may be made by at least one of the sets of vascular hardness and blood pressure measured together. Furthermore, the negative determination in (A) or (B) may be made in at least one of the sets of vascular hardness and blood pressure measured together. In these cases, it is conceivable to determine the magnitude of the cardiovascular disease risk according to the measurement time of the measurement items (blood pressure, blood vessel hardness) that have been negatively determined.
  • the cardiovascular disease determines whether an affirmative determination is made in (A) above and a negative determination is made in (B) above.
  • the cardiovascular disease risk is somewhat high, in other words, the subject h It is determined that there may be a disease that is not noticed by itself. This is because blood pressure generally tends to be low in the morning time zone, and when the blood vessel hardness is greater than or equal to the reference value S1, the blood pressure is somewhat large even in the normal range. This is because there is a disease risk.
  • the output unit 4 outputs the determination result to the display unit 13 when the determination unit 3 determines the magnitude of the disease risk of the circulatory organ of the person to be measured h.
  • the display unit 13 displays the determination result of the cardiovascular disease risk magnitude in the display area 13a.
  • the display area 13a is divided into four areas E1 to E4 as shown in FIG. 9, for example.
  • the region E1 corresponds to a situation in which the vascular hardness is less than the reference value S1 and the blood pressure is less than the reference value S2 among the vascular hardness and blood pressure measured together.
  • the region E2 corresponds to a situation in which the vascular hardness is less than the reference value S1 and the blood pressure is greater than or equal to the reference value S2 among the vascular hardness and blood pressure measured together.
  • the region E3 corresponds to a situation in which the vascular hardness is equal to or higher than the reference value S1 and the blood pressure is lower than the reference value S2 among the vascular hardness and blood pressure measured together.
  • the region E4 corresponds to a situation in which the vascular hardness is the reference value S1 or more and the blood pressure is the reference value S2 or more among the vascular hardness and blood pressure measured together.
  • the display unit 13 sets the measured blood vessel hardness and blood pressure as a set of data, and sets each set of data together with the measurement time (measurement time zone) as one of the regions E1 to E4, that is, the same data. In the region corresponding to the blood vessel hardness and blood pressure.
  • a text message such as “Caution!” Is displayed in the area E3, etc. It is preferable to give some warning to the person to be measured h. In this way, by displaying the data, the text message for warning, and the like in the display area 13a of the display unit 13, the determination result of the magnitude of cardiovascular disease risk determined by the determination unit 3 is displayed. .
  • the following effects can be obtained. (1) Since the blood vessel hardness of the person to be measured h is automatically measured at intervals by the circulatory function determination device, the circulatory organ of the person to be measured h is determined based on the fluctuation state of the measured values of the blood vessel hardness. It is possible to determine the functional state of
  • the measurement of the blood vessel hardness by the measuring unit 2 is automatically performed when a predetermined time is reached during a continuous period of 24 hours or more. Thereby, the blood vessel hardness is automatically measured a plurality of times at intervals during a continuous period of 24 hours or more. And the magnitude
  • size of the disease risk of the said circulatory organ is determined from the state of the fluctuation
  • the cardiovascular function determination device is worn in a portable state with respect to the person to be measured h (FIG. 1), and the cuff 5 is wound around the upper arm of the person to be measured h. It is possible to measure vascular hardness and blood pressure simply by doing so. Therefore, blood vessel hardness and blood pressure can be measured together at a predetermined time during a continuous period of 24 hours or longer without interfering with the daily behavior of the subject h. Moreover, since the measurement of the blood vessel hardness and blood pressure is automatically performed, the measurement of the blood vessel hardness and blood pressure at the time does not forget.
  • the measurement unit 2 When the measurement unit 2 temporarily compresses the upper arm, which is a part of the body of the subject h, with the cuff 5 in order to measure the blood vessel hardness of the subject h, the measurement unit 2 Blood pressure is also measured based on the resulting pulse wave.
  • the determination unit 3 When the situation occurs in which the blood pressure is within the normal range and the blood vessel hardness is greater than or equal to the reference value S1 among the blood pressure and blood vessel hardness measured together, the determination unit 3 generates the time (measurement time). The degree of cardiovascular disease risk of the person to be measured h is determined based on the above.
  • the cardiovascular disease risk is somewhat high, In other words, it is possible to determine that there is a possibility that the patient h himself / herself is not aware of the disease.
  • the blood pressure in the morning time zone, the blood pressure generally tends to be low, and if the blood vessel hardness is equal to or higher than the reference value S1, even if the blood pressure is within the normal range, the blood pressure is of a certain level.
  • There is a disease risk It is possible to determine a disease risk that is difficult to notice only by measuring the blood pressure.
  • the output unit 4 outputs the determination result to the display unit 13.
  • the display unit 13 has a display area 13a defined by blood vessel hardness and blood pressure, and displays the determination result of the degree of cardiovascular disease risk using the display area 13a. Therefore, as described in (3) above, when the determination unit 3 accurately determines the magnitude of the cardiovascular disease risk, the determination result can be displayed in an easy-to-understand manner using the display area 13a of the display unit 13. it can.
  • the compression pressure P gradually decreases accordingly. Note that the decision that the pulse wave has reached the maximum level will be smaller after the pulse wave reaches the maximum level, and when the pulse wave becomes smaller than the previous pulse wave, Made.
  • the blood vessel hardness and blood pressure can be measured even when the temporary compression of the upper arm by the cuff 5 is terminated at the timing T1 when it is determined that the pulse wave has reached the maximum level.
  • the pulse wave after reaching the maximum level is estimated as follows. That is, in the first measurement of the blood vessel hardness, the upper arm of the person to be measured h is temporarily compressed by the cuff 5 as in the first embodiment, and the change in the compression pressure P and the magnitude of the pulse wave at that time are measured.
  • the pulse wave after reaching the maximum level is estimated using the relationship between the amplitude of the pulse wave and the change in the magnitude of the pulse wave. Then, the estimated pulse wave is used for measurement of blood vessel hardness and blood pressure.
  • a pulse wave greatly different from the pulse wave at the time of the first blood vessel hardness measurement may be generated, such as the pulse wave becoming unstable in the blood vessel hardness measurement after the second time.
  • the pulse wave in the first blood vessel hardness measurement is determined to have reached the maximum level and the pulse wave in the second and subsequent blood vessel hardness measurements has been determined to have reached the maximum level.
  • a difference equal to or greater than a predetermined determination value may occur with the timing T1.
  • the cuff 5 is measured in the same manner as the first blood vessel hardness measurement. It is preferable to perform temporary compression of the upper arm by the step even after the maximum level of the pulse wave.
  • the following effects can be obtained in addition to the effects (1) to (5) of the first embodiment.
  • (6) In the second and subsequent vascular hardness measurements, at the timing T1 when it is determined that the pulse wave has reached the maximum level, the temporary compression of the upper arm by the cuff 5 is terminated, and the compression is performed. The burden on the body of the person to be measured h can be reduced.
  • FIG. 11 shows a circulatory function determining apparatus according to the third embodiment.
  • This circulatory organ function determination device includes a sensor, for example, an acceleration sensor 14 that detects the body motion of the person to be measured h.
  • the acceleration sensor 14 is preferably attached to the measurement subject h integrally with the cuff 5, but may be attached to the measurement subject h separately from the cuff 5.
  • the cardiovascular function determination device detects whether or not the person to be measured h is in a sleep state based on the body motion of the person to be measured h detected by the acceleration sensor 14. And the method of temporarily compressing the upper arm by the cuff 5 for measuring the blood vessel hardness is changed depending on whether or not the person to be measured h is in a sleep state.
  • the upper arm when it is not detected that the person to be measured h is in an active state, the upper arm is temporarily compressed by the cuff 5 as in the first embodiment.
  • the upper arm when it is detected that the person to be measured h is in a sleeping state, when the upper arm is temporarily compressed by the cuff 5, the increasing speed of the compression pressure P is made slower than that in the first embodiment. To do.
  • the following effects can be obtained in addition to the effects (1) to (5) of the first embodiment.
  • the speed of temporary compression of the upper arm by the cuff 5 for measuring the blood vessel hardness can be reduced. For this reason, it is possible to suppress the temporary compression of the upper arm portion by the cuff 5 from leading to the stimulation of the person to be measured h, and the stimulation from disturbing the sleep of the person to be measured h.
  • the circulatory function determination device includes the acceleration sensor 14 as in the third embodiment.
  • the apparatus removes the influence of the body movement of the person to be measured h from the information regarding the change of the pulse wave for measuring the blood vessel hardness. It has a function.
  • Examples of the information regarding the change mode of the pulse wave for measuring the blood vessel hardness include an envelope L1 obtained based on the pulse wave when the upper arm is temporarily compressed by the cuff 5. If the person h to be measured moves the body during the measurement of the blood vessel hardness, the envelope L1 may be affected by the body movement of the person h to be measured as shown in FIG.
  • the body movement of the person to be measured h is detected by the acceleration sensor 14, if the influence as described above appears on the envelope L1, it is determined that the cause of the influence is the body movement of the person to be measured h. it can.
  • the influence of the body motion of the person to be measured h is removed from the envelope L1 as shown in FIG.
  • the following effects can be obtained in addition to the effects (1) to (5) of the first embodiment.
  • (9) Due to the body motion of the person to be measured h during the measurement of the vascular hardness, information on the change mode of the pulse wave for measuring the vascular hardness (in this example, the envelope L1) is affected by the body motion. However, the influence can be removed. Therefore, even if the person to be measured h moves his / her body during the measurement of the blood vessel hardness, the operating state of the circulatory organ can be accurately determined regardless of the body movement. For this reason, the cardiovascular function determination device can be used not only for confirming the magnitude of the cardiovascular disease risk, but also for monitoring the functional state of the cardiology during exercise such as running.
  • FIG. 15 is a time chart showing an example of changes in blood pressure and blood vessel hardness over time when exercise and rest are performed.
  • the blood pressure and vascular stiffness during exercise shown in FIG. 15 are measured by the same device. Further, the function state of the circulatory organ is determined based on the blood vessel hardness and the like, and the result of the determination is displayed.
  • the measurement interval of the vascular stiffness should be set longer than when using it to confirm the magnitude of the circulatory disease risk. It is preferable to set it short, for example, to set it at intervals of several minutes.
  • each said embodiment can also be changed as follows, for example.
  • a function for switching the operation mode may be installed in the circulatory function determination device of the fourth embodiment.
  • the time zone in which the person to be measured h is in the sleep state is estimated, and the person to be measured is in the same time zone It may be determined that h is sleeping. In this case, it is not necessary to provide the acceleration sensor 14.
  • the slight change in the compression pressure P in the pulse wave detection period TX is not limited to a slight increase due to pressurization, but may be a slight decrease due to decompression.
  • the second embodiment in this case, when the upper arm portion of the person to be measured h is temporarily pressed by the cuff 5 in order to measure the blood vessel hardness of the person to be measured h, the pressure is reduced during the decompression of the pressed portion. When it is determined that the pulse wave generated in the portion has reached the maximum level, the compression is terminated.
  • the variation pattern in units of 24 hours of the vascular hardness and the blood pressure measured together is expressed as a circulatory organ. May be taken into account in determining the functional state of the disease (the degree of cardiovascular disease risk). For example, diabetic patients tend to have hard blood vessels compared to healthy individuals, particularly in the morning hours. Furthermore, in the case of a diabetic patient, the blood vessel hardness also fluctuates with the fluctuation of the blood glucose level in units of 24 hours. In addition, blood vessel hardness and blood pressure may fluctuate in units of 24 hours under the influence of autonomic nerve malfunction and the like.
  • FIG. 16 is a schematic diagram illustrating an example of the display unit 13 that can display the determination result of the functional state of the circulatory system (the magnitude of the circulatory disease risk).
  • the display unit 13 shows a variation pattern of each set of vascular hardness and blood pressure measured together in units of 24 hours, that is, variation represented by [1] ⁇ [2] ⁇ [3] in the figure. It is conceivable to display the pattern together with the measurement time (measurement time zone). Furthermore, as a result of judging the functional status of the circulatory system (the degree of cardiovascular disease risk), the pattern “[1] ⁇ [2] ⁇ [3] continues. There is a suspicion of about 20% diabetes. It is conceivable to display a text message such as “” on the display unit 13.
  • the display mode of the display area 13a of the display unit 13 can be appropriately changed as long as the determination result of the functional state of the circulatory organ can be displayed.
  • the determination result of the functional state of the circulator is notified by sound from a speaker or stored in a memory. Or you may.
  • the output unit 4 outputs the determination result of the functional state of the circulator to a speaker or a memory. If the determination result is stored in the memory, the determination result can be displayed on the display of the computer by removing the memory and connecting it to a computer or the like. In this case, since it is not necessary to provide the display unit 13 in the circulatory function determination device, the device can be further downsized and easily carried, and energy consumption for operating the display unit 13 can be suppressed. Can do.
  • the object around which the cuff 5 is wound is not limited to the upper arm part, but may be another part such as a wrist or a lower leg.
  • the blood vessel hardness is obtained through cumulative addition of the pulse wave area, but the blood vessel hardness may be obtained through cumulative addition of the pulse wave amplitude. Alternatively, the blood vessel hardness may be obtained through cumulative addition of feature quantities of a pulse wave that can be easily inferred by those skilled in the art, such as the maximum width, half width, or amplitude / half width of the pulse wave.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

A circulatory organ function determination device is provided with: a measurement unit (2) that automatically measures the blood vessel hardness of a subject (h) with an interval between measurements; and a determination unit (3) that determines the functional status of a circulatory organ of the subject (h) from the state of change in the measured value of blood vessel hardness that is measured by the measurement unit (2). The circulatory function determination device is additionally provided with an output unit (4) that outputs the determination result of the functional status of the circulatory organ by the determination unit (3). By using a circulatory organ function determination device that is configured in this manner, it is possible to determine the functional state of the circulatory organ of the subject (h) from the state of change in the measured value of blood vessel hardness because the blood vessel hardness of the subject (h) is automatically measured with an interval between measurements.

Description

循環器機能判定装置Cardiovascular function judgment device
 本発明は、循環器機能判定装置に関する。 The present invention relates to a cardiovascular function determination device.
 循環器機能判定装置として、被測定者の血圧を測定した後、同血圧の測定結果に基づいて被測定者の循環器の機能状態を判定するものが知られている。また、特許文献1には、被測定者の血圧を所定時間毎に複数回測定することが開示されている。 As a circulatory function determination device, a device that determines the functional state of the circulatory organ of the subject based on the measurement result of the blood pressure after measuring the blood pressure of the subject is known. Patent Document 1 discloses that the blood pressure of a measurement subject is measured a plurality of times every predetermined time.
特開平2-55033公報Japanese Patent Laid-Open No. 2-55033
 ところで近年では、血圧とは独立した指標である血管硬さも、循環器の機能状態と深くかかわりがあることが分かってきている。
 本発明の目的は、血管硬さに基づいて循環器の機能状態を判定することができる循環器機能判定装置を提供することにある。
By the way, in recent years, it has been found that vascular hardness, which is an index independent of blood pressure, is also closely related to the functional state of the circulatory organ.
An object of the present invention is to provide a circulatory function determination device that can determine the functional state of the circulatory system based on the blood vessel hardness.
 一態様の循環器機能判定装置は、被測定者の血管硬さを自動的に間隔を開けて測定する測定部と、前記測定部によって測定された前記血管硬さの測定値の変動の状態から前記被測定者の前記循環器の機能状態を判定する判定部と、前記判定部による前記循環器の機能状態の判定結果を出力する出力部と、を備える。 An apparatus for determining circulatory function according to one aspect includes a measurement unit that automatically measures a vascular hardness of a measurement subject at intervals, and a state of fluctuation in a measurement value of the vascular hardness measured by the measurement unit. A determination unit that determines a functional state of the circulatory organ of the measurement subject; and an output unit that outputs a determination result of the functional state of the circulatory organ by the determination unit.
 この循環器機能判定装置では、被測定者の血管硬さが自動的に間隔を開けて測定されるため、それら血管硬さの測定値の変動の状態から被測定者の循環器の機能状態を判定することができる。 In this circulatory function judgment device, the blood vessel hardness of the subject is automatically measured at intervals, so the functional state of the subject's circulatory device is determined from the state of fluctuation of the measured values of the blood vessel hardness. Can be determined.
 本循環器機能判定装置によれば、血管硬さに基づいて循環器の機能状態を判定することができる。 According to this circulatory function determination apparatus, the functional state of the circulatory system can be determined based on the blood vessel hardness.
循環器機能判定装置の構成を示すブロック図。The block diagram which shows the structure of a circulatory organ function determination apparatus. 血管硬さ及び血圧を間隔をあけて測定する際の圧迫圧力の上昇態様を示すタイムチャート。The time chart which shows the raise aspect of the compression pressure at the time of measuring vascular hardness and blood pressure at intervals. 血管硬さ及び血圧を測定する際の圧迫圧力の上昇態様を示すグラフ。The graph which shows the raise aspect of the compression pressure at the time of measuring vascular hardness and blood pressure. 脈波検出期間中におけるカフ圧力の変化に対する脈波の振幅の推移を示すグラフ。The graph which shows transition of the amplitude of a pulse wave with respect to the change of the cuff pressure during a pulse wave detection period. 脈波検出期間中におけるカフ圧力の変化に同期して生じる各脈波の面積の移り変わりを示すグラフ。The graph which shows the transition of the area of each pulse wave which arises synchronizing with the change of the cuff pressure during a pulse wave detection period. カフ圧力と脈波の面積とを組み合わせたデータ対をプロットしたグラフ。The graph which plotted the data pair which combined the cuff pressure and the area of a pulse wave. (a)はカフ圧力と脈波の面積との関係を示すグラフ、(b)はカフ圧力と脈波面積累積加算値との関係を示すグラフ。(A) is a graph which shows the relationship between a cuff pressure and the area of a pulse wave, (b) is a graph which shows the relationship between a cuff pressure and a pulse wave area accumulation addition value. カフ圧力と正規化累積加算値との関係を示すグラフ。The graph which shows the relationship between a cuff pressure and a normalization accumulation addition value. 表示部の表示領域を示す模式図。The schematic diagram which shows the display area of a display part. 血管硬さ及び血圧を測定する際の圧迫圧力の上昇態様、及び、脈波の面積の移り変わりを示すグラフ。The graph which shows the increase aspect of the compression pressure at the time of measuring vascular hardness and blood pressure, and the transition of the area of a pulse wave. 循環器機能判定装置の構成を示すブロック図。The block diagram which shows the structure of a circulatory organ function determination apparatus. 血管硬さ及び血圧を間隔をあけて測定する際の圧迫圧力の上昇態様を示すタイムチャート。The time chart which shows the raise aspect of the compression pressure at the time of measuring vascular hardness and blood pressure at intervals. 脈波検出期間中の各脈波の面積から得られる包絡線を示すグラフ。The graph which shows the envelope obtained from the area of each pulse wave during a pulse wave detection period. 脈波検出期間中の各脈波の面積から得られる包絡線を示すグラフ。The graph which shows the envelope obtained from the area of each pulse wave during a pulse wave detection period. 運動及び休息を行った場合の時間経過に伴う血圧及び血管硬さの推移の例を示すタイムチャート。The time chart which shows the example of transition of the blood pressure and blood vessel hardness with time progress at the time of exercise | movement and a rest. 表示部の表示領域を示す模式図。The schematic diagram which shows the display area of a display part.
 (第1実施形態)
 以下、循環器機能判定装置の第1実施形態について図1~図9を参照して説明する。
 図1に示す循環器機能判定装置は、被測定者hに装着することが可能であり、同装置を装着した被測定者hの日常の行動を妨げることのない携帯型のものとなっている。
(First embodiment)
A first embodiment of the cardiovascular function determination device will be described below with reference to FIGS.
The cardiovascular function determination device shown in FIG. 1 can be worn by the person to be measured h, and is a portable device that does not interfere with the daily actions of the person to be measured h wearing the device. .
 この循環器機能判定装置は、被測定者hの血管硬さを自動的に間隔をあけて測定する測定部2、及び、同測定部2によって測定された血管硬さの測定値の変動の状態から被測定者hの循環器の機能状態を判定する判定部3を備えている。更に、循環器機能判定装置は、判定部3による循環器の機能状態の判定結果を出力する出力部4も備えている。このように構成された循環器機能判定装置では、被測定者hの血管硬さが自動的に間隔を開けて測定されるため、それら血管硬さの測定値の変動の状態から被測定者hの循環器の機能状態を判定することができる。 This circulatory organ function determination device includes a measuring unit 2 that automatically measures a blood vessel hardness of a person to be measured h at intervals, and a state of fluctuation in a measured value of the blood vessel hardness measured by the measuring unit 2 The determination unit 3 for determining the functional state of the cardiovascular device of the person to be measured h. Furthermore, the circulatory function determination apparatus also includes an output unit 4 that outputs a determination result of the functional state of the circulator by the determination unit 3. In the circulatory organ function determination device configured as described above, the blood vessel hardness of the person to be measured h is automatically measured at intervals, and therefore the person to be measured h is determined from the state of variation in the measured values of the blood vessel hardness. The functional state of the cardiovascular device can be determined.
 循環器機能判定装置の測定部2には、被測定者hの身体の一部である左上腕部に巻き付けた状態で装着可能な袋状のカフ5が設けられている。更に、測定部2には、カフ5とチューブ6を介して接続された圧力制御部7及び圧力検出部8が設けられている。圧力制御部7は、チューブ6に繋がるポンプ及び排気弁を備えており、ポンプの駆動を通じてのカフ5へのエアの供給、及び、排気弁の開弁を通じてのカフ5からのエアの排出が可能となっている。圧力制御部7は、カフ5に対するエアの供給及び排出を制御することにより、カフ5の内部の圧力(圧迫圧力P)を変化させる。一方、圧力検出部8は、圧迫圧力Pを検出する圧力センサを備えており、同圧力センサによって検出した圧迫圧力PをA/D変換によりデジタル信号からなる圧力信号に変換する。 The measurement unit 2 of the circulatory function determination device is provided with a bag-like cuff 5 that can be worn while being wrapped around the left upper arm that is a part of the body of the person to be measured h. Further, the measurement unit 2 is provided with a pressure control unit 7 and a pressure detection unit 8 connected to the cuff 5 via the tube 6. The pressure control unit 7 includes a pump and an exhaust valve connected to the tube 6, and can supply air to the cuff 5 through driving the pump and discharge air from the cuff 5 through opening the exhaust valve. It has become. The pressure control unit 7 changes the pressure (compression pressure P) inside the cuff 5 by controlling the supply and discharge of air to the cuff 5. On the other hand, the pressure detection unit 8 includes a pressure sensor that detects the compression pressure P, and converts the compression pressure P detected by the pressure sensor into a pressure signal composed of a digital signal by A / D conversion.
 上記測定部2には、圧力検出部8から出力された圧力信号を受信する脈波検出部9及び血圧算出部10も設けられている。脈波検出部9は、圧力検出部8からの圧力信号に基づき、被測定者hにおけるカフ5で圧迫した部分(左上腕部)に生じる心拍に対応した脈波の振幅を検出するためのものである。脈波検出部9は、圧力検出部8からの圧力信号に対しフィルタ処理を施すことにより、その圧力信号から直流成分等の所定の周波数成分を除去して脈波信号を生成する。脈波検出部9は、生成した脈波信号から脈波の振幅を検出し、検出した振幅を圧迫圧力Pと対応付けて記憶部11に記憶する。一方、上記血圧算出部10は、圧力検出部8から出力される圧力信号と脈波検出部9により検出される脈波の振幅値との関係から、オシロメトリック法などの所定のアルゴリズムを用いて、被測定者hの最高血圧、最低血圧、及び平均血圧の推定値を算出する。血圧算出部10は、算出した最高血圧、最低血圧、及び平均血圧の推定値を記憶部11に記憶する。なお、測定部2での被測定者hの血圧の測定は、上述したように血圧算出部10で最高血圧、最低血圧、及び平均血圧の推定値を算出することを通じて実現される。 The measurement unit 2 is also provided with a pulse wave detection unit 9 and a blood pressure calculation unit 10 that receive the pressure signal output from the pressure detection unit 8. The pulse wave detection unit 9 is for detecting the amplitude of the pulse wave corresponding to the heartbeat generated at the portion (left upper arm) compressed by the cuff 5 in the person to be measured based on the pressure signal from the pressure detection unit 8. It is. The pulse wave detection unit 9 filters the pressure signal from the pressure detection unit 8 to remove a predetermined frequency component such as a direct current component from the pressure signal, thereby generating a pulse wave signal. The pulse wave detection unit 9 detects the amplitude of the pulse wave from the generated pulse wave signal, and stores the detected amplitude in the storage unit 11 in association with the compression pressure P. On the other hand, the blood pressure calculation unit 10 uses a predetermined algorithm such as an oscillometric method from the relationship between the pressure signal output from the pressure detection unit 8 and the amplitude value of the pulse wave detected by the pulse wave detection unit 9. The estimated values of the maximum blood pressure, the minimum blood pressure, and the average blood pressure of the person to be measured h are calculated. The blood pressure calculation unit 10 stores the calculated maximum blood pressure, minimum blood pressure, and average blood pressure estimated values in the storage unit 11. In addition, the measurement of the blood pressure of the person to be measured h in the measurement unit 2 is realized by calculating the estimated values of the maximum blood pressure, the minimum blood pressure, and the average blood pressure in the blood pressure calculation unit 10 as described above.
 上記測定部2には、記憶部11に記憶されたデータを解析して被測定者hの血管硬さを求めるデータ解析部12も設けられている。データ解析部12は、求めた血管硬さに関する情報、及び、記憶部11に記憶された血圧に関する情報を判定部3に出力する。なお、測定部2での被測定者hの血管硬さの測定は、上述したようにデータ解析部12で血管硬さを求めることを通じて実現される。また、こうした測定部2による血管硬さの測定は、24時間以上連続した期間中に複数回行われる。更に、測定部2による血管硬さの測定毎に、測定部2による血圧の測定も行われる。そして、測定部2による血管硬さの複数回数の測定毎に、データ解析部12から判定部3に対し、血管硬さに関する情報及び血圧に関する情報が出力される。 The measurement unit 2 is also provided with a data analysis unit 12 that analyzes the data stored in the storage unit 11 to determine the blood vessel hardness of the person to be measured h. The data analysis unit 12 outputs information regarding the obtained blood vessel hardness and information regarding the blood pressure stored in the storage unit 11 to the determination unit 3. In addition, the measurement of the blood vessel hardness of the person to be measured h by the measurement unit 2 is realized by obtaining the blood vessel hardness by the data analysis unit 12 as described above. Further, the measurement of the blood vessel hardness by the measurement unit 2 is performed a plurality of times during a continuous period of 24 hours or more. Further, every time the blood vessel hardness is measured by the measuring unit 2, the blood pressure is also measured by the measuring unit 2. Then, every time the blood vessel hardness is measured by the measuring unit 2 a plurality of times, the data analyzing unit 12 outputs information on the blood vessel hardness and information on the blood pressure to the determining unit 3.
 循環器機能判定装置の判定部3は、測定部2による血管硬さ及び血圧の測定毎に、測定された血管硬さに関する情報及び血圧に関する情報をデータ解析部12から受ける。判定部3は、それら測定された血管硬さの測定値の変動の状態から、被測定者hの循環器の機能状態として同循環器の疾病リスクの大きさを判定する。そして、このように判定部3により循環器の機能状態(疾病リスクの大きさ)が判定されると、その判定結果が出力部4によって循環器機能判定装置の表示部13に出力される。表示部13は、血管硬さと血圧とで規定される表示領域13aを有しており、その表示領域13aを用いて循環器の疾病リスクの大きさの判定結果を表示する。 The determination unit 3 of the circulatory function determination apparatus receives information on the measured blood vessel hardness and blood pressure from the data analysis unit 12 every time the measurement unit 2 measures the blood vessel hardness and blood pressure. The determination part 3 determines the magnitude of the disease risk of the circulatory organ as the functional state of the circulatory organ of the person h to be measured from the state of fluctuation of the measured values of the vascular hardness. Then, when the determination unit 3 determines the functional state of the circulatory organ (the magnitude of the disease risk) in this way, the determination result is output to the display unit 13 of the circulatory organ function determination device by the output unit 4. The display unit 13 has a display area 13a defined by blood vessel hardness and blood pressure, and displays the determination result of the degree of cardiovascular disease risk using the display area 13a.
 次に、図2~図9を併せ参照して、循環器機能判定装置の動作について説明する。
 循環器機能判定装置は被測定者h(図1)に対し携帯可能な状態で装着され、且つ、同装置のカフ5は被測定者hの上腕部に巻き付けられた状態とされる。そして、循環器機能判定装置は、24時間以上連続した期間中に朝、昼、夜の予め定められた時刻(例えば8:00、12:00、21:00)になると、測定部2によって自動的に被測定者hの血管硬さ及び血圧の測定が行われる。これにより、被測定者hの血管硬さ及び血圧が24時間以上連続した期間中に自動的に間隔をあけて測定される。
Next, the operation of the circulatory function determination device will be described with reference to FIGS.
The cardiovascular function determination device is worn in a portable state with respect to the person to be measured h (FIG. 1), and the cuff 5 of the apparatus is wound around the upper arm of the person to be measured h. Then, the circulatory organ function determination device automatically performs measurement by the measurement unit 2 when a predetermined time (for example, 8:00, 12:00, 21:00) in the morning, noon, and night comes during a continuous period of 24 hours or more. In particular, the blood vessel hardness and blood pressure of the person to be measured h are measured. Thereby, the blood vessel hardness and blood pressure of the person to be measured h are automatically measured at intervals during a continuous period of 24 hours or more.
 なお、上記予め定められた時刻での血管硬さ及び血圧の測定は、圧力制御部7により被測定者hの左上腕部に対するカフ5により圧迫圧力Pを一時的に上昇させることによって実現され、同圧迫圧力Pの一時的な上昇の期間中に行われる。従って、圧迫圧力Pは、図2に示すように、血管硬さ及び血圧を測定するための予め定められた時刻に一時的に上昇される。 The measurement of the blood vessel hardness and blood pressure at the predetermined time is realized by temporarily increasing the compression pressure P by the cuff 5 with respect to the left upper arm portion of the person to be measured h by the pressure control unit 7, It is performed during the period of temporary increase of the compression pressure P. Therefore, as shown in FIG. 2, the compression pressure P is temporarily increased at a predetermined time for measuring the blood vessel hardness and blood pressure.
 図3は、血管硬さ及び血圧を測定するための圧迫圧力Pの一時的な上昇の期間中における同圧迫圧力Pの変化態様を示している。このときに圧力制御部7は、圧迫圧力Pを第1圧力PAまで上昇させ、その後に圧迫圧力Pの上昇速度を低下させる。更に、圧力制御部7は、圧迫圧力Pを第1圧力PAよりも高い第2圧力PBまで上昇させ、その後に圧迫圧力Pを低下させる。なお、第1圧力PA及び第2圧力PBは、一般的な血圧に応じて設定されている。このため、圧力制御部7が圧迫圧力Pを第1圧力PAから第2圧力PBまで上昇させる期間(脈波検出期間TX)中、圧迫圧力Pは被測定者hの心拍に対応した脈波に伴って変動する。 FIG. 3 shows how the compression pressure P changes during the temporary increase of the compression pressure P for measuring the blood vessel hardness and blood pressure. At this time, the pressure control unit 7 increases the compression pressure P to the first pressure PA, and then decreases the increase speed of the compression pressure P. Furthermore, the pressure control unit 7 increases the compression pressure P to the second pressure PB higher than the first pressure PA, and then decreases the compression pressure P. The first pressure PA and the second pressure PB are set according to general blood pressure. Therefore, during the period in which the pressure control unit 7 increases the compression pressure P from the first pressure PA to the second pressure PB (pulse wave detection period TX), the compression pressure P changes to a pulse wave corresponding to the heartbeat of the measurement subject h. It fluctuates with it.
 脈波検出期間TXにおいて、カフ5により被測定者hの上腕部に作用する圧力(カフ圧力C)は、図4の横軸の低圧側から高圧側に徐々に変化してゆく。なお、ここでのカフ圧力Cは、図3に示される圧迫圧力Pから脈波の影響を取り除いた値と対応する。言い換えれば、カフ圧力Cが上述したように低圧側から高圧側に徐々に変化してゆくときの圧迫圧力Pのカフ圧力Cに対する変化は脈波に対応したものとなる。このときに脈波検出部9により生成される脈波信号は、上述したように低圧側から高圧側に徐々に変化してゆくカフ圧力Cに対する圧迫圧力Pの変化と対応する。 During the pulse wave detection period TX, the pressure (cuff pressure C) acting on the upper arm of the person h to be measured by the cuff 5 gradually changes from the low pressure side to the high pressure side of the horizontal axis in FIG. The cuff pressure C here corresponds to a value obtained by removing the influence of the pulse wave from the compression pressure P shown in FIG. In other words, the change of the compression pressure P with respect to the cuff pressure C when the cuff pressure C gradually changes from the low pressure side to the high pressure side as described above corresponds to the pulse wave. At this time, the pulse wave signal generated by the pulse wave detector 9 corresponds to the change in the compression pressure P with respect to the cuff pressure C that gradually changes from the low pressure side to the high pressure side as described above.
 脈波検出期間TX中にカフ圧力Cが低圧側から高圧側に変化するとき、脈波検出部9によって上記脈波信号から検出される脈波の振幅は、心拍に対応して生じる脈波(図4のW1,W2,…,Wn)によって図4中に実線で示されるように推移する。このときの脈波の振幅の推移は、カフ圧力Cの低圧側から高圧側への変化中における脈波の変化態様に対応している。そして、脈波検出部9によって検出される脈波の振幅値と圧力検出部8から出力される圧力信号との関係から、血圧算出部10にて被測定者hの血圧が求められる。 When the cuff pressure C changes from the low pressure side to the high pressure side during the pulse wave detection period TX, the amplitude of the pulse wave detected from the pulse wave signal by the pulse wave detection unit 9 is a pulse wave (corresponding to the heartbeat ( The transition is made as indicated by the solid line in FIG. 4 according to W1, W2,..., Wn) of FIG. The transition of the amplitude of the pulse wave at this time corresponds to the change mode of the pulse wave during the change of the cuff pressure C from the low pressure side to the high pressure side. Then, from the relationship between the amplitude value of the pulse wave detected by the pulse wave detector 9 and the pressure signal output from the pressure detector 8, the blood pressure calculator 10 determines the blood pressure of the person to be measured h.
 図4の脈波W1,W2,…,Wnの面積A1,A2,…,Anはそれぞれ、対応する脈波W1,W2,…,Wnの大きさを表す。この面積A1,A2,…,Anは、脈波W1,W2,…,Wnが検出されている期間における脈波信号をデータ解析部12で加算することにより演算される。データ解析部12は、脈波検出期間TX中に脈波W1,W2,…,Wnが生じたときの各々のカフ圧力C(圧力P1,P2,…,Pn)と、それら脈波W1,W2,…,Wnの面積A1,A2,…,Anとを組み合わせて、圧力と面積とのデータ対として取り扱う。 4, the areas A1, A2,..., An of the pulse waves W1, W2,..., Wn represent the magnitudes of the corresponding pulse waves W1, W2,. The areas A1, A2,..., An are calculated by adding the pulse wave signals in the period in which the pulse waves W1, W2,. The data analysis unit 12 includes the cuff pressures C (pressures P1, P2,..., Pn) when the pulse waves W1, W2,..., Wn are generated during the pulse wave detection period TX, and the pulse waves W1, W2. ,..., Wn areas A1, A2,..., An are combined and handled as a data pair of pressure and area.
 図5は、脈波検出期間TX中におけるカフ圧力Cの低圧側から高圧側への変化に同期して生じる脈波W1,W2,…,Wnの面積A1,A2,…,Anの移り変わりを示している。なお、図6は、圧力P1,P2,…,Pnと面積A1,A2,…,Anとを組み合わせたデータ対をそれぞれ、カフ圧力を横軸に設定するとともに脈波の面積を縦軸としたグラフ上にプロットしたものである。図5に示されるカフ圧力Cと面積A1,A2,…,Anとの関係から、同図に実線で示されるような包絡線L1が得られる。この包絡線L1は、脈波検出期間TX中におけるカフ圧力Cの微速変化(微速上昇)に従って山形形状を描く。そして、上記包絡線L1の形状は、個人毎に特徴的な変化を示し、さらには各個人の血管硬さ等によっても変化を示す。 FIG. 5 shows the transition of the areas A1, A2,..., An of the pulse waves W1, W2,..., Wn generated in synchronization with the change of the cuff pressure C from the low pressure side to the high pressure side during the pulse wave detection period TX. ing. FIG. 6 shows the data pairs in which the pressures P1, P2,..., Pn and the areas A1, A2,..., An are combined, with the cuff pressure set on the horizontal axis and the pulse wave area on the vertical axis. It is plotted on the graph. From the relationship between the cuff pressure C and the areas A1, A2,..., An shown in FIG. 5, an envelope L1 as shown by a solid line in the figure is obtained. This envelope L1 draws a chevron shape according to the minute change (slow increase) of the cuff pressure C during the pulse wave detection period TX. The shape of the envelope L1 shows a characteristic change for each individual, and further shows a change depending on the blood vessel hardness of each individual.
 データ解析部12は、図7(a)に示される脈波W1,W2,…,Wnの面積A1,A2,…,Anを、図7(b)に示されるように累積加算して得られる脈波面積累積加算値B1,B2,…,Bnを演算する。データ解析部12は、脈波検出期間TX中に脈波W1,W2,…,Wnが生じたときの各々のカフ圧力C(圧力P1,P2,…,Pn)と、脈波面積累積加算値B1,B2,…,Bnとを組み合わせて、それらを圧力と脈波面積累積加算値とのデータ対とする。更に、データ解析部12は、脈波検出期間TX中のすべての脈波W1,W2,…,Wnの面積A1,A2,…Anを累積加算したときの脈波面積累積加算値Bnを100%として脈波面積累積加算値B1,B2,…,Bnを正規化する。 The data analysis unit 12 is obtained by cumulatively adding the areas A1, A2,..., An of the pulse waves W1, W2,..., Wn shown in FIG. Pulse wave area cumulative addition values B1, B2,..., Bn are calculated. The data analysis unit 12 calculates each cuff pressure C (pressure P1, P2,..., Pn) when the pulse waves W1, W2,..., Wn are generated during the pulse wave detection period TX, and the pulse wave area accumulated addition value. B1, B2,..., Bn are combined to form a data pair of the pressure and the pulse wave area cumulative addition value. Further, the data analysis unit 12 adds the pulse wave area accumulated addition value Bn when the areas A1, A2,... An of all the pulse waves W1, W2,. The pulse wave area cumulative addition values B1, B2,..., Bn are normalized.
 この正規化により得られた正規化累積加算値D1,D2,…,Dnと、それらに対応するカフ圧力C(圧力P1,P2,…Pn)との関係を図8に示す。この図8から分かるように、カフ圧力Cと正規化累積加算値D1,D2,…,Dnとの関係から、同図の実線で示されるような包絡線L2が得られる。この包絡線L2は、カフ圧力Cの低圧側から高圧側への変化にしたがって、始めに小さな上昇を続けてから急速に上昇し、その急速な上昇の後に徐々に上昇度合いが小さくなってゆく。 FIG. 8 shows the relationship between the normalized cumulative addition values D1, D2,..., Dn obtained by this normalization and the corresponding cuff pressures C (pressures P1, P2,... Pn). As can be seen from FIG. 8, from the relationship between the cuff pressure C and the normalized cumulative addition values D1, D2,..., Dn, an envelope L2 as shown by the solid line in FIG. As the cuff pressure C changes from the low-pressure side to the high-pressure side, the envelope L2 increases rapidly after first continuing a small increase, and the degree of increase gradually decreases after the rapid increase.
 こうした包絡線L2の推移は、脈波検出期間TX中における血管容積の変化を反映したものとなる。例えば、血管が硬いときには軟らかいときと比較してカフ圧力Cの変化に対する上記血管容積の変化が小さくなる傾向があり、こうした傾向を反映して上記包絡線L2は血管が硬いときには軟らかいときと比較してカフ圧力Cの変化に対し変化しにくい。データ解析部12は、図8の包絡線L2で表されるカフ圧力と正規化累積加算値との関係から、所定のアルゴリズムを用いて被測定者hの血管硬さを求める。例えば、カフ圧力Cの単位量当たりの変化に基づく正規化累積加算値の変化量、すなわち図8における包絡線L2の傾きを求め、その包絡線L2の傾きに基づいて被測定者hの血管硬さを求める。 The transition of the envelope L2 reflects the change in the blood vessel volume during the pulse wave detection period TX. For example, when the blood vessel is hard, the change in the blood vessel volume with respect to the change in the cuff pressure C tends to be smaller than when the blood vessel is hard. Reflecting this tendency, the envelope L2 is compared with the case where the blood vessel is hard compared with the soft case. Therefore, it is difficult to change with respect to the change of the cuff pressure C. The data analysis unit 12 obtains the blood vessel hardness of the person h to be measured from the relationship between the cuff pressure represented by the envelope L2 in FIG. 8 and the normalized cumulative addition value using a predetermined algorithm. For example, the change amount of the normalized cumulative addition value based on the change per unit amount of the cuff pressure C, that is, the slope of the envelope L2 in FIG. 8 is obtained, and the vascular stiffness of the subject h is measured based on the slope of the envelope L2. I ask for it.
 図8から分かるように、包絡線L2の傾きはカフ圧力Cの大きさによって異なる。これには、血管壁を構成する内膜、中膜、及び外膜の構成成分(エラスチン、コラーゲン等)の構成比率が膜毎に異なるとともに、それら各膜の血管の伸展性に関与する度合いがカフ圧力Cの大きさによって変わることが関係している。ちなみに、正常な血管においては、剛性の低い構成成分であるエラスチンが中膜で多くなる一方、剛性の高い構成成分であるコラーゲンが外膜で多くなる。更に、カフ圧力の低中領域では主に中膜が血管の伸展性に関与する一方、カフ圧力の高い領域では主に外膜が血管の伸展性に関与する。従って、カフ圧力の低い領域、中程度の領域、高い領域といった圧力領域毎にそれぞれ包絡線L2の傾きを求め、それら傾き毎に血管硬さを求めることにより、血管における各膜のうちのどの部分が硬化しているかを詳細に調べることが可能になる。 As can be seen from FIG. 8, the slope of the envelope L2 differs depending on the magnitude of the cuff pressure C. This is because the constituent ratios of the constituent components (elastin, collagen, etc.) of the inner membrane, the inner membrane, and the outer membrane constituting the blood vessel wall are different for each membrane, and the degree of involvement in the extensibility of the blood vessels of each membrane. It is related to the change depending on the magnitude of the cuff pressure C. Incidentally, in normal blood vessels, elastin, which is a component with low rigidity, increases in the media, while collagen, which is a component with high rigidity, increases in the outer membrane. Further, in the region where the cuff pressure is low, the media is mainly involved in the extensibility of the blood vessel, while in the region where the cuff pressure is high, the adventitia is mainly involved in the extensibility of the blood vessel. Accordingly, the slope of the envelope L2 is obtained for each pressure region such as a low region, a medium region, and a high region of the cuff pressure, and the blood vessel hardness is obtained for each of these gradients, so that any portion of each film in the blood vessel is obtained. It becomes possible to examine in detail whether the is cured.
 データ解析部12で被測定者hの血管硬さを求めること、言い換えれば測定部2による血管硬さの測定は、24時間以上連続した期間中であって予め定められた時刻になったときに自動的に行われる。更に、そうした血管硬さの測定の際には、併せて被測定者hの血圧も測定される。判定部3は、予め定められた時刻になる毎に血管硬さが測定されると、それら血管硬さの測定値の変動の状態から、被測定者hの循環器の機能状態(循環器の疾病リスクの大きさ)を判定する。詳しくは、判定部3は、併せて測定された血管硬さと血圧との各組について、それぞれ(A)血圧が正常範囲内にあるか否か、及び(B)血管硬さが基準値S1未満であるか否かの判断を行う。なお、上記(A)の判断では、血圧が基準値S2未満であれば血圧が正常範囲内にある旨判断される一方、血圧が基準値S2以上であれば血圧が正常範囲内にない旨判断される。 When the data analysis unit 12 obtains the blood vessel hardness of the person to be measured h, in other words, the measurement of the blood vessel hardness by the measurement unit 2 is performed during a continuous period of 24 hours or more at a predetermined time. Done automatically. Furthermore, when measuring the blood vessel hardness, the blood pressure of the person to be measured h is also measured. When the blood vessel hardness is measured every time a predetermined time is reached, the determination unit 3 determines the functional state of the circulatory organ of the measurement subject h (the circulatory device Determine the magnitude of disease risk). Specifically, the determination unit 3 determines whether (A) the blood pressure is within the normal range and (B) the blood vessel hardness is less than the reference value S1 for each set of the blood vessel hardness and blood pressure measured together. It is determined whether or not. In the determination of (A) above, if the blood pressure is less than the reference value S2, it is determined that the blood pressure is within the normal range, whereas if the blood pressure is greater than or equal to the reference value S2, it is determined that the blood pressure is not within the normal range. Is done.
 判定部3は、併せて測定された血管硬さと血圧との各組について上記(A)及び上記(B)の判断を行った結果に基づき、被測定者hの循環器の疾病リスクの大きさを判定する。すなわち、併せて測定された血管硬さと血圧との各組のすべてで、上記(A)及び上記(B)での否定判断がなされた場合には、循環器の疾病リスクが最も大きい状態である旨判断する。一方、併せて測定された血管硬さと血圧との各組のすべてで、上記(A)及び上記(B)での肯定判断がなされた場合には、循環器の疾病リスクが最も小さい状態である旨判断する。 Based on the results of the determinations (A) and (B) above for each set of vascular stiffness and blood pressure measured together, the determination unit 3 determines the degree of cardiovascular disease risk of the measurement subject h. Determine. That is, when the negative determinations in (A) and (B) above are made in all the sets of vascular hardness and blood pressure measured together, the disease risk of the circulatory system is the highest. Judging. On the other hand, when the determination in (A) and (B) above is made in all the sets of vascular hardness and blood pressure measured together, the disease risk of the circulatory system is the smallest. Judging.
 なお、上記(A)及び上記(B)での否定判断が、併せて測定された血管硬さと血圧との各組のうちのすべてではないものの、少なくとも一つでなされる場合もある。更に、上記(A)もしくは上記(B)での否定判断が、併せて測定された血管硬さと血圧との各組のうちの少なくとも一つでなされる場合もある。これらの場合には、否定判断の対象となった測定項目(血圧、血管硬さ)の測定時刻等に応じて、循環器の疾病リスクの大きさを判定することが考えられる。 It should be noted that the negative determinations in (A) and (B) above may be made by at least one of the sets of vascular hardness and blood pressure measured together. Furthermore, the negative determination in (A) or (B) may be made in at least one of the sets of vascular hardness and blood pressure measured together. In these cases, it is conceivable to determine the magnitude of the cardiovascular disease risk according to the measurement time of the measurement items (blood pressure, blood vessel hardness) that have been negatively determined.
 ちなみに、この実施形態では、上記(A)で肯定判断がなされ、且つ上記(B)で否定判断がなされた場合、その否定判断がなされたときの血圧の測定時刻に応じて、循環器の疾病リスクの大きさを判定する。例えば、上記(B)で否定判断がなされたときの血圧の測定時刻が朝の時間帯(この例では8:00)であれば、循環器の疾病リスクがある程度大きい、言い換えれば被測定者h自身も気づかない疾病が生じている可能性があると判定する。これは、朝の時間帯は一般的に血圧が低くなる傾向があり、血管硬さが基準値S1以上である場合には血圧が正常範囲内であっても、循環器にある程度の大きさの疾病リスクが存在するためである。 Incidentally, in this embodiment, when an affirmative determination is made in (A) above and a negative determination is made in (B) above, depending on the blood pressure measurement time when the negative determination is made, the cardiovascular disease Determine the magnitude of the risk. For example, if the blood pressure measurement time when the negative determination is made in (B) above is the morning time zone (8:00 in this example), the cardiovascular disease risk is somewhat high, in other words, the subject h It is determined that there may be a disease that is not noticed by itself. This is because blood pressure generally tends to be low in the morning time zone, and when the blood vessel hardness is greater than or equal to the reference value S1, the blood pressure is somewhat large even in the normal range. This is because there is a disease risk.
 出力部4は、判定部3により被測定者hの循環器の疾病リスクの大きさが判定されると、その判定結果を表示部13に出力する。表示部13は、循環器の疾病リスクの大きさの判定結果を表示領域13aに表示する。この表示領域13aは、例えば図9に示されるように四つの領域E1~E4に分けられている。領域E1は、併せて測定された血管硬さ及び血圧のうち、血管硬さが基準値S1未満であり且つ血圧が基準値S2未満である状況に対応している。領域E2は、併せて測定された血管硬さ及び血圧のうち、血管硬さが基準値S1未満であり且つ血圧が基準値S2以上である状況に対応している。領域E3は、併せて測定された血管硬さ及び血圧のうち、血管硬さが基準値S1以上であり且つ血圧が基準値S2未満である状況に対応している。領域E4は、併せて測定された血管硬さ及び血圧のうち、血管硬さが基準値S1以上であり且つ血圧が基準値S2以上である状況に対応している。 The output unit 4 outputs the determination result to the display unit 13 when the determination unit 3 determines the magnitude of the disease risk of the circulatory organ of the person to be measured h. The display unit 13 displays the determination result of the cardiovascular disease risk magnitude in the display area 13a. The display area 13a is divided into four areas E1 to E4 as shown in FIG. 9, for example. The region E1 corresponds to a situation in which the vascular hardness is less than the reference value S1 and the blood pressure is less than the reference value S2 among the vascular hardness and blood pressure measured together. The region E2 corresponds to a situation in which the vascular hardness is less than the reference value S1 and the blood pressure is greater than or equal to the reference value S2 among the vascular hardness and blood pressure measured together. The region E3 corresponds to a situation in which the vascular hardness is equal to or higher than the reference value S1 and the blood pressure is lower than the reference value S2 among the vascular hardness and blood pressure measured together. The region E4 corresponds to a situation in which the vascular hardness is the reference value S1 or more and the blood pressure is the reference value S2 or more among the vascular hardness and blood pressure measured together.
 表示部13は、併せて測定された血管硬さと血圧とを一組のデータとし、各組のデータを測定時刻(測定時間帯)と共に領域E1~E4のうちのいずれか1つ、すなわち同データにおける血管硬さ及び血圧に対応する領域に表示させる。なお、領域E3に上記データが表示されるときには、被測定者h自身も気づかない疾病が生じている可能性があることから、「要注意!」といった文字メッセージを領域E3等に表示させる等、被測定者hに対し何らかの警告を発することが好ましい。このように表示部13の表示領域13aに上記データ及び上記警告のための文字メッセージ等を表示させることにより、判定部3により判定された循環器の疾病リスクの大きさの判定結果が表示される。 The display unit 13 sets the measured blood vessel hardness and blood pressure as a set of data, and sets each set of data together with the measurement time (measurement time zone) as one of the regions E1 to E4, that is, the same data. In the region corresponding to the blood vessel hardness and blood pressure. When the above data is displayed in the area E3, there may be a disease that the subject h himself / herself does not notice, so a text message such as “Caution!” Is displayed in the area E3, etc. It is preferable to give some warning to the person to be measured h. In this way, by displaying the data, the text message for warning, and the like in the display area 13a of the display unit 13, the determination result of the magnitude of cardiovascular disease risk determined by the determination unit 3 is displayed. .
 第1実施形態によれば、以下に示す効果が得られるようになる。
 (1)循環器機能判定装置により、被測定者hの血管硬さが自動的に間隔を開けて測定されるため、それら血管硬さの測定値の変動の状態から被測定者hの循環器の機能状態を判定することができる。
According to the first embodiment, the following effects can be obtained.
(1) Since the blood vessel hardness of the person to be measured h is automatically measured at intervals by the circulatory function determination device, the circulatory organ of the person to be measured h is determined based on the fluctuation state of the measured values of the blood vessel hardness. It is possible to determine the functional state of
 (2)測定部2による血管硬さの測定は、24時間以上連続した期間中であって予め定められた時刻になったときに自動的に行われる。これにより、24時間以上連続した期間中に血管硬さが自動的に間隔をおいて複数回測定される。そして、このように複数回測定された血管硬さの変動の状態から、被測定者hの循環器の機能状態として同循環器の疾病リスクの大きさが判定される。このため、日内において所定の間隔おいて測定される血管硬さの変動の状態から、循環器の疾病リスクの大きさを判定することができる。 (2) The measurement of the blood vessel hardness by the measuring unit 2 is automatically performed when a predetermined time is reached during a continuous period of 24 hours or more. Thereby, the blood vessel hardness is automatically measured a plurality of times at intervals during a continuous period of 24 hours or more. And the magnitude | size of the disease risk of the said circulatory organ is determined from the state of the fluctuation | variation of the vascular hardness measured in multiple times in this way as a functional state of the circulatory organ of the to-be-measured person h. For this reason, the magnitude of cardiovascular disease risk can be determined from the state of vascular stiffness fluctuation measured at predetermined intervals within the day.
 (3)循環器機能判定装置は、被測定者h(図1)に対し携帯可能な状態で装着されるものであり、且つ、カフ5を被測定者hの上腕部に巻き付けられた状態とするだけで血管硬さ及び血圧を測定可能なものとされる。従って、被測定者hの日常の行動を妨げることなく、24時間以上連続した期間中に予め定められた時刻になったとき、血管硬さと血圧とを併せて測定することができる。また、そうした血管硬さ及び血圧の測定が自動的に行われるため、上記時刻での血管硬さ及び血圧の測定忘れが生じることもない。 (3) The cardiovascular function determination device is worn in a portable state with respect to the person to be measured h (FIG. 1), and the cuff 5 is wound around the upper arm of the person to be measured h. It is possible to measure vascular hardness and blood pressure simply by doing so. Therefore, blood vessel hardness and blood pressure can be measured together at a predetermined time during a continuous period of 24 hours or longer without interfering with the daily behavior of the subject h. Moreover, since the measurement of the blood vessel hardness and blood pressure is automatically performed, the measurement of the blood vessel hardness and blood pressure at the time does not forget.
 (4)測定部2は、被測定者hの血管硬さを測定すべく同被測定者hの身体の一部である上腕部をカフ5により一時的に圧迫したとき、その圧迫した部分で生じる脈波に基づき血圧も測定する。そして、判定部3は、併せて測定された血圧及び血管硬さのうち血圧が正常範囲内にあり且つ血管硬さが基準値S1以上である状況が発生するとき、その発生時刻(測定時刻)に基づいて被測定者hの循環器の疾病リスクの大きさを判定する。このため、例えば、血管硬さが基準値S1以上と判断とされたときの血圧の測定時刻が朝の時間帯(この例では8:00)であるとき、循環器の疾病リスクがある程度大きい、言い換えれば被測定者h自身も気づかない疾病が生じている可能性があると判定することが可能になる。ここで、朝の時間帯は一般的に血圧が低くなる傾向があり、血管硬さが基準値S1以上である場合には血圧が正常範囲内であっても、循環器にある程度の大きさの疾病リスクが存在する。こうした血圧の測定のみでは気づきにくい疾病リスクを判定することができる。 (4) When the measurement unit 2 temporarily compresses the upper arm, which is a part of the body of the subject h, with the cuff 5 in order to measure the blood vessel hardness of the subject h, the measurement unit 2 Blood pressure is also measured based on the resulting pulse wave. When the situation occurs in which the blood pressure is within the normal range and the blood vessel hardness is greater than or equal to the reference value S1 among the blood pressure and blood vessel hardness measured together, the determination unit 3 generates the time (measurement time). The degree of cardiovascular disease risk of the person to be measured h is determined based on the above. For this reason, for example, when the blood pressure measurement time when the blood vessel hardness is determined to be equal to or greater than the reference value S1 is in the morning time zone (8:00 in this example), the cardiovascular disease risk is somewhat high, In other words, it is possible to determine that there is a possibility that the patient h himself / herself is not aware of the disease. Here, in the morning time zone, the blood pressure generally tends to be low, and if the blood vessel hardness is equal to or higher than the reference value S1, even if the blood pressure is within the normal range, the blood pressure is of a certain level. There is a disease risk. It is possible to determine a disease risk that is difficult to notice only by measuring the blood pressure.
 (5)上記判定部3による循環器の疾病リスクの大きさの判定がなされると、その判定結果が出力部4により表示部13に出力される。この表示部13は、血管硬さと血圧とで規定される表示領域13aを有しており、その表示領域13aを用いて循環器の疾病リスクの大きさの判定結果を表示する。従って、上記(3)に記載したように判定部3により循環器の疾病リスクの大きさを的確に判定したとき、その判定結果を表示部13の表示領域13aを用いて分かりやすく表示させることができる。 (5) When the determination unit 3 determines the magnitude of the cardiovascular disease risk, the output unit 4 outputs the determination result to the display unit 13. The display unit 13 has a display area 13a defined by blood vessel hardness and blood pressure, and displays the determination result of the degree of cardiovascular disease risk using the display area 13a. Therefore, as described in (3) above, when the determination unit 3 accurately determines the magnitude of the cardiovascular disease risk, the determination result can be displayed in an easy-to-understand manner using the display area 13a of the display unit 13. it can.
 (第2実施形態)
 次に、図10を参照して、循環器機能判定装置の第2実施形態について説明する。
 この第2実施形態では、被測定者hの血管硬さを測定すべくカフ5により被測定者hの上腕部を一時的に圧迫する際、その圧迫した部分の加圧中に同部分で生じる脈波が最大レベルになったときにカフ5による上腕部の圧迫を終了させる。この場合、カフ5により被測定者hの上腕部の一時的な圧迫が開始されると、圧迫圧力Pが図10に示すように推移してゆく。そして、脈波が最大レベルになった旨判断されるタイミングT1にてカフ5による上腕部の一時的な圧迫が終了されると、それに伴い圧迫圧力Pが徐々に低下してゆく。なお、脈波が最大レベルになった旨の判断は、同脈波が最大レベルになった後には小さくなることに着目し、同脈波が一つ前の脈波よりも小さくなった時点でなされる。
(Second Embodiment)
Next, a second embodiment of the cardiovascular function determination device will be described with reference to FIG.
In this second embodiment, when the upper arm portion of the person to be measured h is temporarily pressed by the cuff 5 to measure the blood vessel hardness of the person to be measured h, this occurs in the same portion during pressurization of the compressed portion. When the pulse wave reaches the maximum level, the compression of the upper arm by the cuff 5 is terminated. In this case, when the cuff 5 starts temporary compression of the upper arm of the person to be measured h, the compression pressure P changes as shown in FIG. Then, when the temporary compression of the upper arm by the cuff 5 is terminated at the timing T1 when it is determined that the pulse wave has reached the maximum level, the compression pressure P gradually decreases accordingly. Note that the decision that the pulse wave has reached the maximum level will be smaller after the pulse wave reaches the maximum level, and when the pulse wave becomes smaller than the previous pulse wave, Made.
 なお、上述したように脈波が最大レベルになった旨判断されたタイミングT1にて、カフ5による上腕部の一時的な圧迫を終了させた場合でも、血管硬さ及び血圧を測定することができるよう、最大レベルになった後の脈波が例えば次のように推定される。すなわち、初回の血管硬さの測定では、第1実施形態と同様にカフ5により被測定者hの上腕部を一時的に圧迫し、そのときの圧迫圧力Pの変化と脈波の大きさの変化との関係を記憶しておく。そして、二回目以降の血管硬さの測定において、脈波が最大レベルになった旨判断されてカフ5による上腕部の一時的な圧迫が終了した後には、上記記憶された圧迫圧力Pの変化と脈波の大きさの変化との関係を用いて、最大レベルになった後の脈波が推定される。そして、この推定された脈波が血管硬さ及び血圧の測定に用いられる。 As described above, the blood vessel hardness and blood pressure can be measured even when the temporary compression of the upper arm by the cuff 5 is terminated at the timing T1 when it is determined that the pulse wave has reached the maximum level. For example, the pulse wave after reaching the maximum level is estimated as follows. That is, in the first measurement of the blood vessel hardness, the upper arm of the person to be measured h is temporarily compressed by the cuff 5 as in the first embodiment, and the change in the compression pressure P and the magnitude of the pulse wave at that time are measured. Remember the relationship with changes. Then, in the second and subsequent measurements of the vascular hardness, it is determined that the pulse wave has reached the maximum level, and after the temporary compression of the upper arm by the cuff 5 is completed, the change in the stored compression pressure P is performed. The pulse wave after reaching the maximum level is estimated using the relationship between the amplitude of the pulse wave and the change in the magnitude of the pulse wave. Then, the estimated pulse wave is used for measurement of blood vessel hardness and blood pressure.
 また、二回目以降の血管硬さの測定において脈波が不安定になるなど、初回の血管硬さの測定時における脈波と大きく異なる脈波が生じる可能性もある。この場合、初回の血管硬さの測定での脈波が最大レベルになった旨判断されるタイミングT1と、二回目以降の血管硬さの測定での脈波が最大レベルになった旨判断されるタイミングT1との間に、予め定められた判定値以上の差が生じる可能性がある。このような状況下では、測定される血管硬さ及び血圧の正確さを確保するため、上記二回目以降の血管硬さの測定であっても、初回の血管硬さの測定と同様にカフ5による上腕部の一時的な圧迫を脈波の最大レベル後も行うことが好ましい。 In addition, there is a possibility that a pulse wave greatly different from the pulse wave at the time of the first blood vessel hardness measurement may be generated, such as the pulse wave becoming unstable in the blood vessel hardness measurement after the second time. In this case, it is determined that the pulse wave in the first blood vessel hardness measurement is determined to have reached the maximum level and the pulse wave in the second and subsequent blood vessel hardness measurements has been determined to have reached the maximum level. There is a possibility that a difference equal to or greater than a predetermined determination value may occur with the timing T1. Under such circumstances, in order to ensure the accuracy of the measured blood vessel hardness and blood pressure, even in the second and subsequent blood vessel hardness measurements, the cuff 5 is measured in the same manner as the first blood vessel hardness measurement. It is preferable to perform temporary compression of the upper arm by the step even after the maximum level of the pulse wave.
 第2実施形態によれば、上記第1実施形態の(1)~(5)の効果に加えて以下に示す効果が得られる。
 (6)二回目以降の血管硬さの測定において、脈波が最大レベルになった旨判断されるタイミングT1にて、カフ5による上腕部の一時的な圧迫を終了させることにより、その圧迫による被測定者hの身体への負担を軽減することができる。
According to the second embodiment, the following effects can be obtained in addition to the effects (1) to (5) of the first embodiment.
(6) In the second and subsequent vascular hardness measurements, at the timing T1 when it is determined that the pulse wave has reached the maximum level, the temporary compression of the upper arm by the cuff 5 is terminated, and the compression is performed. The burden on the body of the person to be measured h can be reduced.
 (7)また、上述したようにカフ5による上腕部の一時的な圧迫を終了させることにより、その圧迫の実行期間を短くすることができるとともに、同圧迫を行うための循環器機能判定装置でのエネルギ消費を少なく抑えることができる。 (7) In addition, as described above, by ending the temporary compression of the upper arm by the cuff 5, it is possible to shorten the execution period of the compression, and at the same time, a circulatory function determination device for performing the compression. Energy consumption can be reduced.
 (第3実施形態)
 次に、図11及び図12を参照して、循環器機能判定装置の第3実施形態について説明する。
(Third embodiment)
Next, with reference to FIG.11 and FIG.12, 3rd Embodiment of a circulatory organ function determination apparatus is described.
 図11は、第3実施形態の循環器機能判定装置を示している。この循環器機能判定装置は、被測定者hの身体動作を検出するセンサ、例えば加速度センサ14を備えている。こうした加速度センサ14は、カフ5と一体的に被測定者hに対し装着するものとすることが好ましいが、カフ5とは別に被測定者hに対し装着するものとすることも可能である。 FIG. 11 shows a circulatory function determining apparatus according to the third embodiment. This circulatory organ function determination device includes a sensor, for example, an acceleration sensor 14 that detects the body motion of the person to be measured h. The acceleration sensor 14 is preferably attached to the measurement subject h integrally with the cuff 5, but may be attached to the measurement subject h separately from the cuff 5.
 循環器機能判定装置は、加速度センサ14によって検出される被測定者hの身体動作に基づき、被測定者hが睡眠状態にあるか否かを検知する。そして、被測定者hが睡眠状態にあることを検知したときと検知していないときとで、血管硬さを測定するためのカフ5による上腕部の一時的な圧迫の仕方を変える。 The cardiovascular function determination device detects whether or not the person to be measured h is in a sleep state based on the body motion of the person to be measured h detected by the acceleration sensor 14. And the method of temporarily compressing the upper arm by the cuff 5 for measuring the blood vessel hardness is changed depending on whether or not the person to be measured h is in a sleep state.
 例えば、図12に示すように、被測定者hが活動中であるときなど睡眠状態にあることが検知されないときには、第1実施形態と同様にカフ5による上腕部の一時的な圧迫を行う。一方、被測定者hが睡眠状態にあることが検知されたときには、カフ5による上腕部の一時的な圧迫を行う際、圧迫圧力Pの上昇速度が第1実施形態よりも緩やかになるようにする。 For example, as shown in FIG. 12, when it is not detected that the person to be measured h is in an active state, the upper arm is temporarily compressed by the cuff 5 as in the first embodiment. On the other hand, when it is detected that the person to be measured h is in a sleeping state, when the upper arm is temporarily compressed by the cuff 5, the increasing speed of the compression pressure P is made slower than that in the first embodiment. To do.
 第3実施形態によれば、上記第1実施形態の(1)~(5)の効果に加えて以下に示す効果が得られる。
 (8)被測定者hの睡眠中に血管硬さを測定する場合に、血管硬さを測定するためのカフ5による上腕部の一時的な圧迫の速度を緩やかにすることができる。このため、カフ5による上腕部の一時的な圧迫が被測定者hの刺激につながり、その刺激が被測定者hの睡眠の妨げになることを抑制できる。
According to the third embodiment, the following effects can be obtained in addition to the effects (1) to (5) of the first embodiment.
(8) When the blood vessel hardness is measured during sleep of the person to be measured h, the speed of temporary compression of the upper arm by the cuff 5 for measuring the blood vessel hardness can be reduced. For this reason, it is possible to suppress the temporary compression of the upper arm portion by the cuff 5 from leading to the stimulation of the person to be measured h, and the stimulation from disturbing the sleep of the person to be measured h.
 (第4実施形態)
 次に、図13~図15を参照して、循環器機能判定装置の第4実施形態について説明する。
(Fourth embodiment)
Next, a fourth embodiment of the cardiovascular function determination device will be described with reference to FIGS.
 この第4実施形態の循環器機能判定装置は、第3実施形態と同様に加速度センサ14を備えている。同装置は、加速度センサ14によって被測定者hの身体動作体動を検出したとき、血管硬さを測定するための脈波の変化態様に関する情報から被測定者hの身体動作による影響を除去する機能を有する。 The circulatory function determination device according to the fourth embodiment includes the acceleration sensor 14 as in the third embodiment. When the body motion of the person to be measured h is detected by the acceleration sensor 14, the apparatus removes the influence of the body movement of the person to be measured h from the information regarding the change of the pulse wave for measuring the blood vessel hardness. It has a function.
 血管硬さを測定するための脈波の変化態様に関する情報としては、例えばカフ5による上腕部の一時的な圧迫が行われるときの脈波に基づいて得られる包絡線L1があげられる。仮に、血管硬さの測定中に被測定者hが体を動かしたとすると、包絡線L1には図13に示すように被測定者hの身体動作による影響が出るおそれがある。ここで、加速度センサ14によって被測定者hの身体動作を検出したとき、包絡線L1に上述したような影響が出た場合、その影響の原因が被測定者hの身体動作にあることを特定できる。この場合、加速度センサ14によって被測定者hの身体動作が検出されたとき、図14に示すように包絡線L1から被測定者hの身体動作による影響が除去される。 Examples of the information regarding the change mode of the pulse wave for measuring the blood vessel hardness include an envelope L1 obtained based on the pulse wave when the upper arm is temporarily compressed by the cuff 5. If the person h to be measured moves the body during the measurement of the blood vessel hardness, the envelope L1 may be affected by the body movement of the person h to be measured as shown in FIG. Here, when the body movement of the person to be measured h is detected by the acceleration sensor 14, if the influence as described above appears on the envelope L1, it is determined that the cause of the influence is the body movement of the person to be measured h. it can. In this case, when the body motion of the person to be measured h is detected by the acceleration sensor 14, the influence of the body motion of the person to be measured h is removed from the envelope L1 as shown in FIG.
 第4実施形態によれば、上記第1実施形態の(1)~(5)の効果に加えて以下に示す効果が得られるようになる。
 (9)血管硬さの測定中における被測定者hの身体動作により、血管硬さを測定するための脈波の変化態様に関する情報(この例では包絡線L1)に上記身体動作による影響が出るとしても、その影響を除去することができるようになる。従って、血管硬さの測定中に被測定者hが体を動かしたとしても、その身体動作に関係なく循環器の動作状態を正確に判定することができる。このため、循環器機能判定装置を循環器の疾病リスクの大きさを確認するために用いるだけでなく、ランニングなどの運動中における循環器の機能状態のモニタリングに用いることもできる。
According to the fourth embodiment, the following effects can be obtained in addition to the effects (1) to (5) of the first embodiment.
(9) Due to the body motion of the person to be measured h during the measurement of the vascular hardness, information on the change mode of the pulse wave for measuring the vascular hardness (in this example, the envelope L1) is affected by the body motion. However, the influence can be removed. Therefore, even if the person to be measured h moves his / her body during the measurement of the blood vessel hardness, the operating state of the circulatory organ can be accurately determined regardless of the body movement. For this reason, the cardiovascular function determination device can be used not only for confirming the magnitude of the cardiovascular disease risk, but also for monitoring the functional state of the cardiology during exercise such as running.
 ちなみに、図15は、運動及び休息を行った場合の時間経過に伴う血圧及び血管硬さの推移の例を示すタイムチャートである。運動中における循環器の機能状態のモニタリングを循環器機能判定装置で行う場合、図15に示す運動中の血圧及び血管硬さが同装置によって測定される。更に、その血管硬さ等に基づく循環器の機能状態の判定が行われるとともに同判定の結果の表示も行われる。なお、運動中における循環器の機能状態のモニタリングに循環器機能判定装置を用いる場合には、循環器の疾病リスクの大きさを確認するために用いる場合よりも、血管硬さの測定の間隔を短く設定すること、例えば数分間隔に設定することが好ましい。 Incidentally, FIG. 15 is a time chart showing an example of changes in blood pressure and blood vessel hardness over time when exercise and rest are performed. When monitoring the functional state of the circulatory organ during exercise with the circulatory organ function determination device, the blood pressure and vascular stiffness during exercise shown in FIG. 15 are measured by the same device. Further, the function state of the circulatory organ is determined based on the blood vessel hardness and the like, and the result of the determination is displayed. When using a circulatory function determination device for monitoring the functional state of the circulatory organ during exercise, the measurement interval of the vascular stiffness should be set longer than when using it to confirm the magnitude of the circulatory disease risk. It is preferable to set it short, for example, to set it at intervals of several minutes.
 (その他の実施形態)
 なお、上記各実施形態は、例えば以下のように変更することもできる。
 ・第4実施形態の循環器機能判定装置において、運動時に循環器の機能状態をモニタするための運動モードと、循環器の疾病リスクの大きさを確認するためのリスク判定モードとの間で、動作モードを切り換える機能を搭載してもよい。
(Other embodiments)
In addition, each said embodiment can also be changed as follows, for example.
In the circulatory function determination device of the fourth embodiment, between the exercise mode for monitoring the functional state of the circulatory system during exercise and the risk determination mode for confirming the magnitude of the circulatory disease risk, A function for switching the operation mode may be installed.
 ・第3実施形態において、加速度センサ14を用いて被測定者hの睡眠状態を検知する代わりに、被測定者hの睡眠状態となる時間帯を推定し、同時間帯のときに被測定者hが睡眠中であるものと判断してもよい。この場合、加速度センサ14を設ける必要がなくなる。 In the third embodiment, instead of detecting the sleep state of the person to be measured h using the acceleration sensor 14, the time zone in which the person to be measured h is in the sleep state is estimated, and the person to be measured is in the same time zone It may be determined that h is sleeping. In this case, it is not necessary to provide the acceleration sensor 14.
 ・第1~第4実施形態において、脈波検出期間TXにおける圧迫圧力Pの微速変化は、加圧による微速上昇に限らず、減圧による微速減少であってもよい。なお、この場合の第2実施形態では、被測定者hの血管硬さを測定すべくカフ5により被測定者hの上腕部を一時的に圧迫する際、その圧迫した部分の減圧中に同部分で生じる脈波が最大レベルになったと判断されたときに上記圧迫が終了されるようになる。 In the first to fourth embodiments, the slight change in the compression pressure P in the pulse wave detection period TX is not limited to a slight increase due to pressurization, but may be a slight decrease due to decompression. In the second embodiment in this case, when the upper arm portion of the person to be measured h is temporarily pressed by the cuff 5 in order to measure the blood vessel hardness of the person to be measured h, the pressure is reduced during the decompression of the pressed portion. When it is determined that the pulse wave generated in the portion has reached the maximum level, the compression is terminated.
 ・第1実施形態においては、間隔をおいて複数回測定された血管硬さの変動の状態として、併せて測定された血管硬さ及び血圧について上記(A)で肯定判断がなされ、且つ上記(B)で否定判断がなされた状況が発生するときの発生時刻(測定時刻)を、循環器の機能状態(循環器の疾病リスクの大きさ)を判定するうえで考慮した。これに代えて、併せて測定された血管硬さ及び血圧について上記(A)で肯定判断がなされ、且つ上記(B)で否定判断がなされた状況の発生頻度を、循環器の機能状態(循環器の疾病リスクの大きさ)を判定するうえで考慮してもよい。 In the first embodiment, as the state of fluctuation of the vascular hardness measured a plurality of times at intervals, an affirmative determination is made in (A) above regarding the vascular hardness and blood pressure measured together, and ( The occurrence time (measurement time) when the negative determination in B) occurs was considered in determining the functional state of the circulatory organ (the degree of cardiovascular disease risk). Instead, the frequency of occurrence of a situation in which a positive determination is made in (A) above and a negative determination in (B) above is made for the vascular hardness and blood pressure measured together, and the functional state of the circulatory system (circulation) May be taken into account when determining the risk of illness of the vessel.
 ・第1実施形態において、上記(A)の判断に用いられる基準値S2と上記(B)の判断に用いられる基準値S1とのうちの少なくとも一方を、併せて測定される血管硬さ及び血圧の測定時刻に応じて変更してもよい。 In the first embodiment, the blood vessel hardness and blood pressure measured together with at least one of the reference value S2 used for the determination of (A) and the reference value S1 used for the determination of (B). It may be changed according to the measurement time.
 ・第1実施形態において、間隔をおいて複数回測定された血管硬さの変動の状態として、併せて測定された血管硬さと血圧との各組の24時間単位での変動パターンを、循環器の機能状態(循環器の疾病リスクの大きさ)を判定するうえで考慮してもよい。例えば糖尿病患者は、健常者と比較して血管硬さが硬く、特に朝の時間帯で硬くなる傾向がある。更に、糖尿病患者の場合、24時間単位での血糖値の変動に伴い血管硬さも変動してしまう。加えて、自律神経の不調等の影響を受けて、24時間単位で血管硬さや血圧が変動することもある。これらのことに対応するため、併せて測定された血管硬さと血圧との各組の24時間単位での変動パターンを、循環器の機能状態(循環器の疾病リスクの大きさ)を判定するための解析モデルに当てはめ、それによって上記判定を行うことも考えられる。 In the first embodiment, as a state of the fluctuation of the vascular hardness measured a plurality of times at intervals, the variation pattern in units of 24 hours of the vascular hardness and the blood pressure measured together is expressed as a circulatory organ. May be taken into account in determining the functional state of the disease (the degree of cardiovascular disease risk). For example, diabetic patients tend to have hard blood vessels compared to healthy individuals, particularly in the morning hours. Furthermore, in the case of a diabetic patient, the blood vessel hardness also fluctuates with the fluctuation of the blood glucose level in units of 24 hours. In addition, blood vessel hardness and blood pressure may fluctuate in units of 24 hours under the influence of autonomic nerve malfunction and the like. In order to cope with these, in order to determine the functional state of the circulatory system (the degree of the disease risk of the circulatory system), the variation pattern of each set of vascular stiffness and blood pressure measured together in units of 24 hours is determined. It is also conceivable to apply the above determination to the above analysis model.
 図16は、循環器の機能状態(循環器の疾病リスクの大きさ)の判定結果を表示可能な表示部13の例を示した略図である。この場合、表示部13には、併せて測定された血管硬さと血圧との各組の24時間単位での変動パターン、すなわち図中に[1]→[2]→[3]で示される変動パターンを測定時刻(測定時間帯)と共に表示させることが考えられる。更に、循環器の機能状態(循環器の疾病リスクの大きさ)の判定結果として、「[1]→[2]→[3]のパターンが続いています。約20%糖尿病の疑いがあります。」といった文字メッセージを表示部13に表示させることが考えられる。 FIG. 16 is a schematic diagram illustrating an example of the display unit 13 that can display the determination result of the functional state of the circulatory system (the magnitude of the circulatory disease risk). In this case, the display unit 13 shows a variation pattern of each set of vascular hardness and blood pressure measured together in units of 24 hours, that is, variation represented by [1] → [2] → [3] in the figure. It is conceivable to display the pattern together with the measurement time (measurement time zone). Furthermore, as a result of judging the functional status of the circulatory system (the degree of cardiovascular disease risk), the pattern “[1] → [2] → [3] continues. There is a suspicion of about 20% diabetes. It is conceivable to display a text message such as “” on the display unit 13.
 ・第1~第4実施形態において、表示部13の表示領域13aについては、循環器の機能状態の判定結果を表示できる態様でありさえすれば、表示態様を適宜変更することも可能である。 In the first to fourth embodiments, the display mode of the display area 13a of the display unit 13 can be appropriately changed as long as the determination result of the functional state of the circulatory organ can be displayed.
 ・第1~第4実施形態において、表示部13の代わりに、もしくは表示部13に加えて、循環器の機能状態の判定結果をスピーカからの音声によって報知するようにしたり、メモリに記憶させるようにしたりしてもよい。この場合、出力部4は循環器の機能状態の判定結果をスピーカやメモリに出力する。そして、メモリに上記判定結果を記憶しておけば、そのメモリを取り外してコンピュータ等に接続することにより、同コンピュータのディスプレイ上に上記判定結果を表示させることができる。この場合、循環器機能判定装置に表示部13を設けなくてもよくなるため、同装置を更に小型化して携帯しやすくすることができ、且つ、表示部13を動作させるためのエネルギ消費を抑えることができる。 In the first to fourth embodiments, instead of the display unit 13 or in addition to the display unit 13, the determination result of the functional state of the circulator is notified by sound from a speaker or stored in a memory. Or you may. In this case, the output unit 4 outputs the determination result of the functional state of the circulator to a speaker or a memory. If the determination result is stored in the memory, the determination result can be displayed on the display of the computer by removing the memory and connecting it to a computer or the like. In this case, since it is not necessary to provide the display unit 13 in the circulatory function determination device, the device can be further downsized and easily carried, and energy consumption for operating the display unit 13 can be suppressed. Can do.
 ・第1~第4実施形態において、カフ5を巻き付ける対象は上腕部に限らず、手首や下腿等の他の部位であってもよい。
 ・第1~第4実施形態において、脈波の面積の累積加算を通じて血管硬さを求めたが、脈波の振幅の累積加算を通じて血管硬さを求めてもよい。また、当業者であれば容易に類推可能な脈波の特徴量、例えば脈波の最大幅、半値幅あるいは振幅/半値幅などの特徴量の累積加算を通じて血管硬さを求めてもよい。
In the first to fourth embodiments, the object around which the cuff 5 is wound is not limited to the upper arm part, but may be another part such as a wrist or a lower leg.
In the first to fourth embodiments, the blood vessel hardness is obtained through cumulative addition of the pulse wave area, but the blood vessel hardness may be obtained through cumulative addition of the pulse wave amplitude. Alternatively, the blood vessel hardness may be obtained through cumulative addition of feature quantities of a pulse wave that can be easily inferred by those skilled in the art, such as the maximum width, half width, or amplitude / half width of the pulse wave.

Claims (9)

  1.  被測定者の血管硬さを自動的に間隔を開けて測定する測定部と、
     前記測定部によって測定された前記血管硬さの測定値の変動の状態から前記被測定者の循環器の機能状態を判定する判定部と、
     前記判定部による前記循環器の機能状態の判定結果を出力する出力部と、
    を備えることを特徴とする循環器機能判定装置。
    A measurement unit that automatically measures the blood vessel hardness of the measurement subject at intervals, and
    A determination unit that determines a functional state of the subject's circulatory organ from a state of variation of the measurement value of the vascular hardness measured by the measurement unit;
    An output unit that outputs a determination result of the functional state of the circulator by the determination unit;
    A circulatory function determination device comprising:
  2.  前記測定部は、前記被測定者の身体を圧迫し、その圧迫した部分の加圧中もしくは減圧中に同部分で生じる脈波の変化態様に基づき、前記被測定者の血管硬さを測定する、請求項1記載の循環器機能判定装置。 The measurement unit compresses the body of the measurement subject and measures the blood vessel hardness of the measurement subject based on a change mode of a pulse wave generated in the compressed portion of the compressed portion during pressurization or decompression. The circulatory organ function determination apparatus according to claim 1.
  3.  前記測定部は、被測定者の血管硬さを24時間以上連続した期間中に複数回測定するものであり、
     前記判定部は、前記測定部により複数回測定した血管硬さの変動の状態から、前記被測定者の循環器の機能状態として同循環器の疾病リスクの大きさを判定する、請求項2記載の循環器機能判定装置。
    The measurement unit measures a subject's blood vessel hardness a plurality of times during a continuous period of 24 hours or more,
    The said determination part determines the magnitude | size of the disease risk of the said circulatory organ as the functional state of the said to-be-measured person's circulatory organ from the fluctuation | variation state of the blood vessel hardness measured in multiple times by the said measurement part. Cardiovascular function judgment device.
  4.  前記測定部は、被測定者の血管硬さを測定すべく同被測定者の身体を圧迫したとき、その圧迫した部分の脈波に基づき血圧も測定するものであり、
     前記判定部は、併せて測定された血圧及び血管硬さのうち血圧が正常範囲内にあり且つ血管硬さが基準値以上である状況が発生するときの発生時刻に基づいて前記被測定者の循環器の疾病リスクの大きさを判定する、請求項3記載の循環器機能判定装置。
    When the measurement unit compresses the subject's body to measure the subject's blood vessel hardness, it also measures blood pressure based on the pulse wave of the compressed portion,
    The determination unit is configured to determine the measurement subject's time based on an occurrence time when a situation occurs in which the blood pressure is within a normal range and the blood vessel hardness is equal to or greater than a reference value among the blood pressure and the blood vessel hardness measured together. The cardiovascular function determination apparatus according to claim 3, which determines the magnitude of a cardiovascular disease risk.
  5.  前記測定部は、被測定者の血管硬さを測定すべく同被測定者の身体を圧迫したとき、その圧迫した部分の脈波に基づき血圧も測定するものであり、
     前記判定部は、併せて測定された血圧及び血管硬さのうち血圧が正常範囲内にあり且つ血管硬さが基準値以上である状況の発生頻度に基づいて前記被測定者の循環器の疾病リスクの大きさを判定する、請求項3記載の循環器機能判定装置。
    When the measurement unit compresses the subject's body to measure the subject's blood vessel hardness, it also measures blood pressure based on the pulse wave of the compressed portion,
    The determination unit determines whether the subject has a cardiovascular disease based on the frequency of occurrence of a situation in which the blood pressure is within a normal range and the blood vessel hardness is greater than or equal to a reference value among the measured blood pressure and blood vessel hardness. The cardiovascular function determination apparatus according to claim 3, wherein the risk level is determined.
  6.  前記出力部は、血管硬さと血圧とで規定される表示領域を有する表示部に対し、前記判定部による前記循環器の疾病リスクの大きさの判定結果を出力するものであり、
     前記表示部は、前記循環器の疾病リスクの大きさの判定結果を前記表示領域を用いて表示する、請求項4又は5記載の循環器機能判定装置。
    The output unit outputs a determination result of the disease risk magnitude of the circulatory organ by the determination unit for a display unit having a display area defined by vascular hardness and blood pressure.
    The said display part is a circulatory-function determination apparatus of Claim 4 or 5 which displays the determination result of the magnitude | size of the disease risk of the said circulatory organ using the said display area.
  7.  請求項1~6のいずれか一項に記載の循環器機能判定装置において、
     前記測定部は、前記被測定者の身体を圧迫し、その圧迫した部分の加圧中もしくは減圧中に同部分で生じる脈波の変化態様に基づき、前記被測定者の血管硬さを測定するものであり、前記脈波が最大レベルになったときに前記圧迫を終了させる
    ことを特徴とする循環器機能判定装置。
    In the circulatory function determination device according to any one of claims 1 to 6,
    The measurement unit compresses the body of the measurement subject and measures the blood vessel hardness of the measurement subject based on a change mode of a pulse wave generated in the compressed portion of the compressed portion during pressurization or decompression. The circulatory function judging device is characterized in that the compression is terminated when the pulse wave reaches a maximum level.
  8.  請求項1~6のいずれか一項に記載の循環器機能判定装置において、
     被測定者の身体動作を検出するセンサを更に備え、
     前記測定部は、前記被測定者の身体を圧迫し、その圧迫した部分の加圧中もしくは減圧中に同部分で生じる脈波の変化態様に基づき、前記被測定者の血管硬さを測定するものであり、前記センサによって被測定者が睡眠状態にあることを検知したときと検知していないときとで前記被測定者の身体の圧迫の仕方を変える
    ことを特徴とする循環器機能判定装置。
    In the circulatory function determination device according to any one of claims 1 to 6,
    A sensor for detecting the physical movement of the measurement subject;
    The measurement unit compresses the body of the measurement subject and measures the blood vessel hardness of the measurement subject based on a change mode of a pulse wave generated in the compressed portion of the compressed portion during pressurization or decompression. A circulatory function determination device characterized in that it changes the manner in which the subject's body is compressed when the sensor detects that the subject is in a sleep state and when it is not detected. .
  9.  請求項1~6のいずれか一項に記載の循環器機能判定装置において、
     被測定者の身体動作を検出するセンサを更に備え、
     前記測定部は、前記被測定者の身体を圧迫し、その圧迫した部分の加圧中もしくは減圧中に同部分で生じる脈波の変化態様に基づき、前記被測定者の血管硬さを測定するものであり、前記センサによって前記被測定者の身体動作を検出したとき、前記血管硬さを測定するための前記脈波の変化態様に関する情報から前記被測定者の身体動作による影響を除去する
    ことを特徴とする循環器機能判定装置。
    In the circulatory function determination device according to any one of claims 1 to 6,
    A sensor for detecting the physical movement of the measurement subject;
    The measurement unit compresses the body of the measurement subject and measures the blood vessel hardness of the measurement subject based on a change mode of a pulse wave generated in the compressed portion of the compressed portion during pressurization or decompression. When the body motion of the measurement subject is detected by the sensor, the influence of the physical motion of the measurement subject is removed from the information regarding the change mode of the pulse wave for measuring the blood vessel hardness. A circulatory function judging device characterized by the above.
PCT/JP2014/003199 2013-07-16 2014-06-16 Circulatory organ function determination device WO2015008427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480040014.4A CN105377123B (en) 2013-07-16 2014-06-16 Causing circulatory function decision maker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-147759 2013-07-16
JP2013147759A JP6226289B2 (en) 2013-07-16 2013-07-16 Cardiovascular function judgment device

Publications (1)

Publication Number Publication Date
WO2015008427A1 true WO2015008427A1 (en) 2015-01-22

Family

ID=52345911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003199 WO2015008427A1 (en) 2013-07-16 2014-06-16 Circulatory organ function determination device

Country Status (3)

Country Link
JP (1) JP6226289B2 (en)
CN (1) CN105377123B (en)
WO (1) WO2015008427A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109464138B (en) * 2018-11-29 2021-09-14 东莞市康助医疗科技有限公司 Boosting type arterial hardness evaluation method, system and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107145A (en) * 1998-10-02 2000-04-18 Nippon Colin Co Ltd Blood pressure monitoring apparatus
JP2001008908A (en) * 1999-06-28 2001-01-16 Omron Corp Electric sphygmomanometer
JP2002165765A (en) * 2000-12-04 2002-06-11 Omron Corp Electronic sphygmomanometer
JP2006212218A (en) * 2005-02-03 2006-08-17 Toshiba Corp Device, system, method, and program for health care
JP2013009940A (en) * 2010-12-16 2013-01-17 Panasonic Corp Circulatory function measurement device
JP2013099505A (en) * 2011-10-19 2013-05-23 Panasonic Corp Circulatory dynamics measurement apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601539B1 (en) * 2004-03-26 2004-12-15 松下電工株式会社 Cardiovascular function measurement device
JP3626171B1 (en) * 2004-05-14 2005-03-02 株式会社オサチ Cardiodynamic evaluation device
US20120065527A1 (en) * 2010-09-14 2012-03-15 Pacesetter, Inc. Methods and Systems for Monitoring Aterial Stiffness
JP5629600B2 (en) * 2011-02-15 2014-11-19 パナソニック株式会社 Circulation function judgment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107145A (en) * 1998-10-02 2000-04-18 Nippon Colin Co Ltd Blood pressure monitoring apparatus
JP2001008908A (en) * 1999-06-28 2001-01-16 Omron Corp Electric sphygmomanometer
JP2002165765A (en) * 2000-12-04 2002-06-11 Omron Corp Electronic sphygmomanometer
JP2006212218A (en) * 2005-02-03 2006-08-17 Toshiba Corp Device, system, method, and program for health care
JP2013009940A (en) * 2010-12-16 2013-01-17 Panasonic Corp Circulatory function measurement device
JP2013099505A (en) * 2011-10-19 2013-05-23 Panasonic Corp Circulatory dynamics measurement apparatus

Also Published As

Publication number Publication date
JP2015019692A (en) 2015-02-02
JP6226289B2 (en) 2017-11-08
CN105377123B (en) 2019-06-25
CN105377123A (en) 2016-03-02

Similar Documents

Publication Publication Date Title
US10064561B2 (en) Blood pressure measurement apparatus, blood pressure measurement method, and blood pressure measurement program
JP5152153B2 (en) Electronic blood pressure monitor
JP5842107B2 (en) Cardiodynamic measurement device
US8897849B2 (en) Cardiovascular risk evaluation apparatus
JP6019592B2 (en) Blood pressure measurement device
JP5467095B2 (en) Cardiovascular function measuring device
JP4854014B2 (en) Vascular viscoelasticity index measuring device
JP2009219623A (en) Blood pressure measurement apparatus, blood pressure derivation program and method for deriving blood pressure
WO2016031196A1 (en) Blood pressure determination device, blood pressure determination method, recording medium for recording blood pressure determination program, and blood pressure measurement device
JP5732692B2 (en) Blood pressure detection device and blood pressure detection method
JP6226289B2 (en) Cardiovascular function judgment device
JP4117211B2 (en) Vascular elasticity measuring device
JP4730332B2 (en) Blood pressure measurement device and measurement data processing program
US9351689B2 (en) Sphygmomanometer having function of calculating risk degree of circulatory system disease
WO2022059653A1 (en) Arterial pressure estimation device, arterial pressure estimation system, and arterial pressure estimation method
JP5070103B2 (en) Shunt stenosis detector
JP7176711B2 (en) Blood pressure measuring device
JP4648510B2 (en) Electronic blood pressure monitor
WO2022196144A1 (en) Arterial pressure estimation device, arterial pressure estimation system, and arterial pressure estimation method
WO2013061778A1 (en) Blood pressure meter
WO2023189154A1 (en) Intracardiac pressure estimation device, intracardiac pressure estimation system, intracardiac pressure estimation method, and program
JP2024039189A (en) Sphygmomanometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826563

Country of ref document: EP

Kind code of ref document: A1