WO2014101764A1 - 一种生物膜流化床废水处理方法 - Google Patents

一种生物膜流化床废水处理方法 Download PDF

Info

Publication number
WO2014101764A1
WO2014101764A1 PCT/CN2013/090409 CN2013090409W WO2014101764A1 WO 2014101764 A1 WO2014101764 A1 WO 2014101764A1 CN 2013090409 W CN2013090409 W CN 2013090409W WO 2014101764 A1 WO2014101764 A1 WO 2014101764A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
circular
pulp
filler
biofilm
Prior art date
Application number
PCT/CN2013/090409
Other languages
English (en)
French (fr)
Inventor
朱勇强
Original Assignee
Zhu Yongqiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhu Yongqiang filed Critical Zhu Yongqiang
Publication of WO2014101764A1 publication Critical patent/WO2014101764A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/109Characterized by the shape
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a biological membrane fluidized bed wastewater treatment method, belonging to the technical field of environmental engineering wastewater treatment.
  • biological treatment methods have become the main treatment technology for domestic sewage, urban sewage and organic industrial wastewater.
  • the activated sludge method and the contact oxidation method in these technologies need to aerate the wastewater in the reaction tank and treat the aeration of each cubic meter of wastewater. At least oxygen consumption is required for oxygenation.
  • the waste water can be treated with relatively low pollutant load and low impact resistance.
  • the biological filter and biological turntable are used to treat wastewater without aeration and oxygenation, but the volumetric load of the reaction tank filler. Low, the system has poor nitrogen removal effect, large reaction tank volume, large floor space and large investment.
  • many countries in the world are currently studying the biological membrane fluidized bed treatment. Development of technology and new bio-affinitive fillers.
  • Chinese patent CN101386447 discloses an "internal circulation impinging biofilm fluidized bed reactor" in which an internal circulation impinging stream absorber is used in the aeration portion to replace the conventional bubbling device, thereby increasing the dissolved oxygen content in the water and improving the treatment efficiency.
  • Chinese Patent ZL 200610151903.5 discloses a method for treating sewage by using a fluidized bed process and preparation of the bio-affinitive filler and the filler thereof.
  • the method of the invention comprises preparing a novel particulate filler by using polyurethane, a rare earth metal and an iron-based oxide to improve the bio-affinity of the filler.
  • the density is relatively high, resulting in high gas lift load and high power consumption during the operation of the reactor.
  • conventional fluidized beds are generally single or double chambers, there is an air lift.
  • the invention has a new concept of "three-compartment composite biofilm fluidized bed", and the gas-lifting load of the conventional fluidized bed is decomposed into an airlifting load and a liquid lifting load, and the problem is that the load is large, the gas power consumption is high, and the biofilm is easy to fall off. Reduce airlift dynamic load and gas flow rate, effectively avoid biofilm shedding.
  • natural pulp fibers with good biocompatibility and close density to water are used as fillers.
  • the present invention uses the following technical solutions:
  • a biofilm fluidized bed wastewater treatment method characterized by using natural pulp fibers as a filler for a biofilm fluidized bed reactor.
  • the above natural pulp fibers are any one or more of chemical wood pulp, chemical grass pulp, mechanical pulp and chemical mechanical pulp.
  • the dosage of the filler of the above biofilm fluidized bed reactor is the volume of the reactor
  • the above biofilm fluidized bed reactor is a three-compartment composite biofilm fluidized bed reactor.
  • the reactor comprises a circular outer cylinder 1, a circular shunt cylinder 2, a circular upflow cylinder 3, a stationary separation partition 4, a gas-liquid mixing tank 5, a feed water pump 6, an air pump 7, a circulation pump 8, and an aeration head.
  • the original bucket 10 is composed.
  • the above reactor is composed of three chambers, respectively: the cylindrical space in the circular upflow cylinder 3 is the first chamber, and the annular space between the circular shunt cylinder 2 and the circular upflow cylinder 3 is the second chamber, circular The annular space between the outer cylinder 1 and the circular diverter 2 is a third chamber.
  • the natural pulp fiber with good bio-affinity is used as the reactor filler, which solves the defect of poor bio-affinity of conventional inorganic filler and organic synthetic filler.
  • the present invention can greatly reduce power consumption, avoid biofilm detachment, and improve bio-affinity of the filler, thereby reducing cost and improving wastewater treatment efficiency.
  • FIG. 1 is a schematic view showing the structure of a three-compartment composite biofilm fluidized bed reactor of the present invention. detailed description
  • the numerals 1-10 shown in the figure are a circular outer cylinder 1, a circular shunt cylinder 2, a circular upflow cylinder 3, a stationary separation partition 4, a gas-liquid mixing tank 5, and a feed water pump. 6. Air pump 7, circulation pump 8, aeration head 9, and raw water tank 10.
  • the biofilm fluidized bed reactor referred to in the following examples is a three-compartment composite biofilm fluidized bed reactor, as shown in FIG.
  • the reactor comprises a circular outer cylinder 1, a circular shunt cylinder 2, a circular upflow cylinder 3, a stationary separation partition 4, a gas-liquid mixing tank 5, a feed water pump 6, an air pump 7, a circulation pump 8, and an aeration head.
  • the original bucket 10 is composed.
  • the circular shunt 2 is located inside the circular outer cylinder 1
  • the circular upflow cylinder 3 is located inside the circular shunt cylinder 2
  • the aeration head 9 is located at the bottom of the reactor, and is sequentially connected with the gas-liquid mixing tank 5, the feed water pump 6 and The original water tank 10, the air pump 7 is connected to the gas-liquid mixing tank 5, and the circulation pump 8 is connected to the cylinder.
  • the three chambers of the above reactor are respectively:
  • the cylindrical space in the circular upflow cylinder 3 is the first chamber
  • the annular space between the circular riser 3 and the circular riser 3 is the second chamber
  • the annular space between the circular outer cylinder 1 and the circular splitter 2 is the third chamber.
  • the natural pulp fiber selected by the filler is a combination of one or a combination of chemical wood pulp, chemical grass pulp, mechanical pulp and chemical mechanical pulp.
  • the natural pulp fiber as a fluidized bed carrier needs to have the following characteristics: a mixture of chemical mechanical pulp, etc.;
  • Pulp treatment conditions Beating degree 15. SR or above.
  • Example 1 Treatment of printing and dyeing wastewater, COD of influent water is 2000-3000mg/l, dosage of filler is 0.1% of chemical wood pulp, volumetric load is 3.93k g COD/m3.d, COD removal rate of printing and dyeing wastewater by this process 85 % -90%.
  • Embodiment 2 Disposing waste paper deinking wastewater, the influent COD is 1500-2000 mg/l, and the dosage of the filler is 0.3% and 0.3% chemical mechanical pulp of chemical wood pulp, and the volumetric load is 6.51 kg COD/m3.d.
  • the COD removal rate of waste paper deinking wastewater is 85% -90%, and the removal rate of BOD is over 95%.
  • Example 3 Treating high-concentration organic wastewater, the influent COD is 10000-15000mg/l, and the dosage of the filler is 0.4% of chemical wood pulp, 0.3% of chemical grass pulp and 0.3% of chemical mechanical pulp, and the volumetric load is 4.72k g COD. /m3.d ,
  • the COD removal rate of the high concentration organic wastewater is 80%-85%, the BOD removal rate is 90%-95%, and the ammonia nitrogen removal rate is over 95%.
  • Table 1 below is the comparison test data of different fillers under the following conditions: Conditions: 1. Raw water is papermaking wastewater, COD is 1500mg/L, B/C is 0.36, SS is 280mg/L;
  • Filling amount of filler (calculated as the volume of absolute dry filler relative to the total volume of the equipment) is 30% ceramic particles, 20% fiber, 30% polyurethane particles, and 1% pulp fiber.
  • Table 2 below is the comparison of COD removal rate of different fillers under the following conditions: Conditions: 1. Raw water is printing and dyeing wastewater, COD is 1200mg/L, B/C is 0.41, SS is 210mg/L;
  • Filling amount of filler (calculated as the volume of absolute dry filler relative to the total volume of the equipment) is 30% ceramic particles, 20% polyurethane fiber, 30% polyurethane particles, and 1% pulp fiber.
  • Table II Filler Name Ceramic Granule Polyurethane Fiber Polyurethane Granular Pulp Fiber
  • Table 3 below shows the COD removal rate comparison test data of different types of fluidized bed combined with different fillers under the following conditions:
  • Raw water is papermaking wastewater, COD is 2600mg/L, B/C is 0.30, SS is 320mg/L;
  • Filling amount of filler (calculated as the absolute volume of the dry filler relative to the total volume of the equipment) is 30% ceramic particles, 20% polyurethane fiber, 30% polyurethane particles, and 1% pulp fiber.
  • Table 3 Fluidized Bed Type Ceramic Particles Polyurethane Fiber Polyurethane Granules Pulp Fiber Two Chambers 47% 61% 46% 72% Three Chambers 53% 72% 51% 86%

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种生物膜流化床废水处理方法,采用生物亲和性好的天然纸浆纤维作为流化床载体填料,并采用三室复合生物膜流化床作为流化床反应器。该方法能够大大降低动力消耗,避免生物膜脱落,提高填料的生物亲和性,从而降低成本,提高废水处理效率。

Description

一种生物膜流化床废水处理方法 技术领域
本发明涉及一种生物膜流化床废水处理方法, 属于环境工程废水处理 技术领域。
背景技术
目前生物处理方法已成为生活污水、 城市污水及有机工业废水的主体 处理技术, 这些技术中的活性污泥法和接触氧化法需向反应池内的废水曝 气充氧, 处理每立方米废水曝气充氧至少要消耗电能 lKwh, 能处理的废 水污染物负荷相对较低, 抗冲击能力较小; 用生物滤池和生物转盘来处理 废水虽不需曝气充氧, 但反应池填料的容积负荷低, 系统脱氮效果较差, 反应池体积大, 占地面积大, 投资大; 为了进一步降低污水处理的能耗及 填料的容积负荷, 目前世界上许多国家都在研究生物膜流化床处理技术及 新型生物亲和性填料的开发。
中国专利 CN101386447 披露了一种"内循环撞击生物膜流化床反应 器",在曝气部分用内循环撞击流吸收器取代传统的鼓泡装置,提高水中的 溶解氧含量, 提高处理效率。 但因节流作用气流速率过大, 导致生物膜脱 落, 从而影响处理效果; 中国专利 ZL 200610151903.5披露了一种 "利用 流化床工艺处理污水的方法及其生物亲和性填料及其填料的制备方法", 该发明釆用聚氨酯、 稀土金属和铁系氧化物等制备一种新型的颗粒状填 料, 以改善填料的生物亲和性。 但因填料含金属组分, 密度比较高, 导致 反应器运行过程中气升载荷高, 动力消耗大。
发明内容
本发明的目的在于提供一种生物膜流化床废水处理方法, 以克服现有 生物膜流化床存在的问题。 鉴于传统流化床一般为单室或双室, 存在气升 载荷较大, 气体动力消耗高, 生物膜易脱落等问题, 本发明提出 "三室复 合生物膜流化床" 新概念, 将传统流化床的气升载荷分解为气升载荷与液 升载荷, 降低气升动力载荷与气体流速, 有效的避免生物膜脱落。 同时, 釆用生物亲和性好且密度与水接近的天然纸浆纤维作为填料。
依据上述构思本发明釆用以下技术方案:
一种生物膜流化床废水处理方法, 其特征在于用天然纸浆纤维作为生 物膜流化床反应器的填料。
上述的天然纸浆纤维是化学木浆, 化学草浆, 机械浆和化学机械浆中 任选一种或几种。
上述的生物膜流化床反应器的填料的投加量为反应器体积的
0.1%-1.0% (按绝干纸浆计算)。
上述的生物膜流化床反应器为三室复合生物膜流化床反应器。 该反应 器由圓形外筒 1、 圓形分流筒 2、 圓形升流筒 3、 静置分离隔板 4、 气液混 合罐 5、 进水泵 6、 气泵 7、 循环泵 8、 曝气头 9、 原水桶 10组成。
上述的反应器由三室组成, 分别为: 圓形升流筒 3内的柱形空间为第 一室, 圓形分流筒 2与圓形升流筒 3之间环形空间为第二室, 圓形外筒 1 与圓形分流筒 2之间的环形空间为第三室。
与现有方法相比, 本方法具有以下显而易见的特点和优点:
1、 由于天然纸浆纤维密度与水接近, 大大降低了动力消耗。
2、 由于纸浆纤维上有许多细小纤维与微孔, 比表面积大, 有利于微 生物的生长与附着, 细小纤维的桥连和捕集作用, 在很大程度上解决了常 规填料存在的微生物容易脱落的问题。
3、 釆用生物亲和性好的天然纸浆纤维为反应器填料, 解决了常规无 机填料和有机合成填料存在的生物亲和性差的缺陷。
4、 由于釆用气液复合升流模式, 降低了气升载荷, 大大降低了气体 流速, 从而减轻了生物膜的脱落。
因此,与传统生物膜流化床方法相比,本发明能够大大降低动力消耗, 避免生物膜脱落, 提高填料的生物亲和性, 从而降低成本, 提高废水处理 效率。 附图说明
图 1为本发明三室复合生物膜流化床反应器结构示意图。 具体实施方式
如图 1所示, 图中所示标号 1-10分别为圓形外筒 1、 圓形分流筒 2、 圓形升流筒 3、 静置分离隔板 4、 气液混合罐 5、 进水泵 6、 气泵 7、 循环 泵 8、 曝气头 9、 原水桶 10。
下述实施例涉及的生物膜流化床反应器为三室复合生物膜流化床反 应器,如图 1所示。该反应器由圓形外筒 1、 圓形分流筒 2、 圓形升流筒 3、 静置分离隔板 4、 气液混合罐 5、 进水泵 6、 气泵 7、 循环泵 8、 曝气头 9、 原水桶 10组成。
其中圓形分流筒 2位于圓形外筒 1内部, 圓形升流筒 3位于圓形分流 筒 2内部, 曝气头 9位于反应器底部, 并依次连接气液混合罐 5、 进水泵 6和原水桶 10, 气泵 7连接气液混合罐 5 , 循环泵 8连通筒体, 上述的反 应器的三室分别为: 圓形升流筒 3 内的柱形空间为第一室, 圓形分流筒 2 与圓形升流筒 3之间环形空间为第二室, 圓形外筒 1与圓形分流筒 2之间 的环形空间为第三室。
与传统的二室流化床相比, 本实施例釆用的三室流化床 (图 1所示) 的特点如下表所示:
Figure imgf000004_0001
填料选择的天然纸浆纤维是化学木浆, 化学草浆, 机械浆和化学机械 浆中任选一种或几种的组合, 作为流化床载体的天然纸浆纤维需具备以下 特性: 化学机械浆的混合物等;
( 2 )纸浆处理条件: 打浆度 15。 SR以上。
实施例一、 处理印染废水, 进水 COD为 2000-3000mg/l , 填料的投加 量为化学木浆 0.1%, 容积负荷 3.93kgCOD/m3.d, 该工艺对印染废水 COD 去除率为 85 % -90%。
实施例二、 处理废纸脱墨废水, 进水 COD为 1500-2000mg/l , 填料的 投加量为化学木浆 0.3%和 0.3%化学机械浆, 容积负荷 6.51kgCOD/m3.d, 该工艺对废纸脱墨废水 COD去除率为 85 % -90%, BOD的去除率达到 95% 以上。
实施例三、 处理高浓度有机废水, 进水 COD为 10000-15000mg/l , 填 料的投加量为化学木浆 0.4%、 化学草浆 0.3%和化学机械浆 0.3%, 容积负 荷 4.72kgCOD/m3.d , 该工艺对高浓度有机废水废水 COD 去除率达到 80%-85 % , BOD的去除率达到 90%-95%, 氨氮的去除率可达 95%以上。
以下表一是在下列条件下不同填料的挂膜时间对比试验数据: 条件: 1.原水为造纸废水, COD 为 1500mg/L, B/C 为 0.36, SS 为 280mg/L;
2.填料投加量(以绝干填料体积相对设备总容积计算) 为陶瓷 颗粒 30%、 纤维 20%、 聚氨酯颗粒 30%、 纸浆纤维 1%。
Figure imgf000005_0001
Figure imgf000005_0002
以下表二是在下列条件下不同填料的 COD去除率对比试验数据: 条件: 1.原水为印染废水, COD为 1200mg/L, B/C为 0.41,SS为 210mg/L;
2.填料投加量(以绝干填料体积相对设备总容积计算) 为陶瓷颗粒 30%、 聚氨酯纤维 20%、 聚氨酯颗粒 30%、 纸浆纤维 1%。 表二: 填料名称 陶瓷颗粒 聚氨酯纤维 聚氨酯颗粒 纸浆纤维
COD去除
46% 71% 44% 83%
0 /0
以下表三是在下列条件下不同类型流化床与不同填料组合后 COD去除率 对比试验数据:
条件: 1.原水为造纸废水, COD为 2600mg/L, B/C为 0.30, SS为 320mg/L;
2.填料投加量 (以绝干填料体积相对设备总容积计算)为陶瓷 颗粒 30%、聚氨酯纤维 20%、聚氨酯颗粒 30%、纸浆纤维 1%。 表三: 流化床类型 陶瓷颗粒 聚氨酯纤维 聚氨酯颗粒 纸浆纤维 二室 47% 61% 46% 72% 三室 53% 72% 51% 86%

Claims

权 利 要 求 书
1.一种生物膜流化床废水处理方法, 其特征在于釆用天然纸浆纤维作 为生物膜流化床反应器的填料。
2.根据权利要求书 1所述的生物膜流化床废水处理方法, 其特征在于 天然纸浆纤维是化学木浆, 化学草浆, 机械浆, 化学机械浆中任选一种或 几种。
3.根据权利要求书 1所述的生物膜流化床废水处理方法, 其特征在于 填料的投加量是反应器体积的 0.1%-1.0% (按绝干纸浆计算)。
4.根据权利要求书 1所述的生物膜流化床废水处理方法, 其特征在于 生物膜流化床反应器为三室复合生物膜流化床反应器, 该反应器由圓形外 筒 (1 )、 圓形分流筒 (2 )、 圓形升流筒 (3 )、 静置分离隔板(4 )、 气液混 合罐( 5 )、 进水泵( 6 )、 气泵( 7 )、循环泵( 8 )、 曝气头( 9 )、 原水桶( 10 ) 组成。
所述流化床反应器主要分为三室: 圓形升流筒 (3 ) 内的柱形空间为 第一室, 圓形分流筒 (2 )与圓形升流筒 (3 )之间的环形空间为第二室, 圓形外筒 (1 )与圓形分流筒 (2 )之间的环形空间为第三室。
PCT/CN2013/090409 2012-12-25 2013-12-25 一种生物膜流化床废水处理方法 WO2014101764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210566828.4A CN103043783B (zh) 2012-12-25 2012-12-25 一种生物膜流化床废水处理方法
CN201210566828.4 2012-12-25

Publications (1)

Publication Number Publication Date
WO2014101764A1 true WO2014101764A1 (zh) 2014-07-03

Family

ID=48056675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090409 WO2014101764A1 (zh) 2012-12-25 2013-12-25 一种生物膜流化床废水处理方法

Country Status (2)

Country Link
CN (1) CN103043783B (zh)
WO (1) WO2014101764A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043783B (zh) * 2012-12-25 2018-05-08 朱勇强 一种生物膜流化床废水处理方法
EP4176964A1 (en) 2014-10-22 2023-05-10 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
CN105800869B (zh) * 2016-04-18 2018-09-25 江苏金梓环境科技股份有限公司 一种循环流化床户用污水处理设备
CN111170470B (zh) * 2020-01-15 2021-09-28 浙江永续环境工程有限公司 一种复合菌种生物流动床膜反应器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267197A (ja) * 1990-03-15 1991-11-28 Toshiba Corp 廃水処理槽
CN2229450Y (zh) * 1995-06-23 1996-06-19 清华大学 一种内循环三相生物流化床
US5935844A (en) * 1995-03-27 1999-08-10 Biomaterial Co., Ltd. Porous cellulose carrier for immobilizing microorganisms to convert nitrogen compounds
JP2005278523A (ja) * 2004-03-30 2005-10-13 Toyo Shokusan Kk 微生物担持資材
CN103043795A (zh) * 2012-12-26 2013-04-17 上海埃格环保科技有限公司 一种复合循环生物膜流化床废水处理方法
CN103043783A (zh) * 2012-12-25 2013-04-17 朱勇强 一种生物膜流化床废水处理方法
CN202988841U (zh) * 2012-12-26 2013-06-12 上海埃格环保科技有限公司 一种采用复合载体的三室生物流化床反应器
CN202988834U (zh) * 2012-12-25 2013-06-12 上海埃格环保科技有限公司 一种三室复合生物流化床反应器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373136B2 (ja) * 1997-06-25 2003-02-04 株式会社荏原製作所 水処理方法及び汚泥処理方法
CN102134149B (zh) * 2011-05-10 2012-07-04 山东建筑大学 一种复合式移动床生物膜反应器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267197A (ja) * 1990-03-15 1991-11-28 Toshiba Corp 廃水処理槽
US5935844A (en) * 1995-03-27 1999-08-10 Biomaterial Co., Ltd. Porous cellulose carrier for immobilizing microorganisms to convert nitrogen compounds
CN2229450Y (zh) * 1995-06-23 1996-06-19 清华大学 一种内循环三相生物流化床
JP2005278523A (ja) * 2004-03-30 2005-10-13 Toyo Shokusan Kk 微生物担持資材
CN103043783A (zh) * 2012-12-25 2013-04-17 朱勇强 一种生物膜流化床废水处理方法
CN202988834U (zh) * 2012-12-25 2013-06-12 上海埃格环保科技有限公司 一种三室复合生物流化床反应器
CN103043795A (zh) * 2012-12-26 2013-04-17 上海埃格环保科技有限公司 一种复合循环生物膜流化床废水处理方法
CN202988841U (zh) * 2012-12-26 2013-06-12 上海埃格环保科技有限公司 一种采用复合载体的三室生物流化床反应器

Also Published As

Publication number Publication date
CN103043783A (zh) 2013-04-17
CN103043783B (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
WO2010133177A1 (zh) 一种垃圾渗滤液废水处理系统及其工艺
WO2014101764A1 (zh) 一种生物膜流化床废水处理方法
CN205773937U (zh) 一种臭氧发生和处理装置
CN103043795B (zh) 一种复合循环生物膜流化床废水处理方法
CN103626360A (zh) 一体化臭氧催化氧化-曝气生物滤池水的深度处理方法
Kaya et al. Reuse of lagoon effluents in agriculture by post-treatment in a step feed dual treatment process
CN208648882U (zh) 分区复合填料曝气生物滤池
CN202046964U (zh) 一种高效污水处理装置
CN110451718A (zh) 基于臭氧和生物膜颗粒污泥反应器的废水深度处理装置
Yang et al. Application of a novel backwashing process in upflow biological aerated filter
CN104108831A (zh) 一种餐饮废水处理方法及装置
CN108946939A (zh) 一种分散式生活污水处理设备及其工艺
CN102887613A (zh) 一种高浓度工业污水的处理方法
CN110589964A (zh) 一种内循环高效反硝化生物脱氮滤池
CN205874149U (zh) 设有超滤膜、活性炭和微生物的污水再生回用系统
CN102329032B (zh) 入河口污水回用深度处理工艺
CN108751623A (zh) 一种多功能双层滤池
CN214400149U (zh) 地表准二类饮用水水源补水再生处理系统
CN105129965B (zh) 浮动床臭氧催化氧化反应器及其处理废水的方法
CN210885506U (zh) 一种内循环高效反硝化生物脱氮滤池
CN210595462U (zh) 一种双室人工快速渗滤污水净化系统
CN109516647B (zh) 一种利用厌氧自生动态膜高效处理废水的工艺及装置
CN207091245U (zh) 一种生物处理结合涡流絮凝的一体化污水处理装置
CN207903981U (zh) 一种高效的升流式生物反应装置
CN110330188A (zh) 一种印染废水处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867282

Country of ref document: EP

Kind code of ref document: A1