WO2014101641A1 - 固体燃料发电站废弃物综合处理工艺及其设备 - Google Patents

固体燃料发电站废弃物综合处理工艺及其设备 Download PDF

Info

Publication number
WO2014101641A1
WO2014101641A1 PCT/CN2013/088605 CN2013088605W WO2014101641A1 WO 2014101641 A1 WO2014101641 A1 WO 2014101641A1 CN 2013088605 W CN2013088605 W CN 2013088605W WO 2014101641 A1 WO2014101641 A1 WO 2014101641A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicate
power station
carbon dioxide
solid fuel
comprehensive treatment
Prior art date
Application number
PCT/CN2013/088605
Other languages
English (en)
French (fr)
Inventor
王志龙
张岩丰
薛永杰
方章建
郑兴才
陶磊明
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2014101641A1 publication Critical patent/WO2014101641A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • C01B33/143Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/12Methods and means for introducing reactants
    • B01D2259/124Liquid reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • the invention relates to an environmental protection technology of a power station, in particular to a solid fuel power plant waste comprehensive treatment process and equipment thereof. Background technique
  • fly ash or biomass ash the main components are silicates, and also contain a large amount of metal materials such as Na, K, Ca, Mg, etc., China's building materials industry does not reuse them, the current utilization The rate is only about 30%, mainly used for roadbed and backfilling. There are still more than 260 million tons of fly ash that are not used every year. They can only be stored in the ash warehouse, which not only occupies a large amount of production land and storage and transportation equipment. Moreover, the construction cost and operating cost of each ton of fly ash storage is about 10 ⁇ 100 yuan, and the accumulated cost is amazing.
  • fly ash when used for roadbed and other operations, it is also subject to a series of restrictions on regions, time and climate, and the use is very uneven. Therefore, how to use fly ash or reduce fly ash storage is an important environmental issue for researchers in this field.
  • the first is to seal it in various geological forms. In the interlayer; the second is to store it in the deep sea in gaseous form; the third is to store it in carbonate in solid form.
  • the first geological storage technology has been applied, but the change of geological conditions will lead to an increase in unsafe factors, and its unsafeness will become more and more prominent with the extension of time.
  • the second type of deep-sea storage technology is prone to damage the deep-sea ecological environment, and is rarely seen at present.
  • the third type of carbonate storage technology also known as mineral storage technology, theoretically has the best fixation effect on carbon dioxide. The carbon dioxide converted into salt will not be released into the atmosphere again, so it has received extensive attention, but it still stays at present. In the experimental phase of fixed carbon dioxide, it is still far from practical application. Summary of the invention
  • the object of the present invention is to provide a solid fuel power plant waste comprehensive treatment process and equipment thereof.
  • the process and equipment generate raw materials such as absorbent by electrolyzing seawater or tempered seawater, and can convert carbon dioxide in the exhaust gas of the power station into carbonates and store them in the sea, and fully utilize the fly ash discharged from the power station.
  • Biomass ash and other ash and low-cost silicate ore powder assist in the completion of carbon dioxide conversion cycle to maximize the comprehensive utilization of power station waste.
  • the integrated treatment process of the solid fuel power station waste designed by the present invention is a process for mutually utilizing carbon dioxide and silicate substances in the flue gas discharged from the power station, and is characterized in that :
  • the process includes the following steps:
  • the tempered seawater is prepared by using natural seawater, bitter brine or artificial seawater desalinated as a solvent, and sodium sol is used as a solute to electrolyze a sufficient amount of seawater of 3 ⁇ 4 and Cl 2 .
  • the cost is almost zero, and it is inexhaustible and inexhaustible.
  • the waste brine of desalinated seawater is used, the metal ions therein are more concentrated and concentrated, and the effect of converting the electrolyte solution into a mixed alkaline solution is better, and the waste utilization rate is also higher.
  • the flue gas discharged from the power station is sequentially subjected to pre-dusting and desulfurization treatment, and then introduced into the carbon dioxide absorption tower.
  • the flue gas is more favorable for the mixed alkaline solution to absorb and fix C0 2 , and the effluent is relatively pure, which can reduce the difficulty of subsequent treatment; and the flue gas selected by desulfurization can avoid the dissolution of sulfide in the mixed alkaline solution. This affects the absorption of C0 2 , thereby maximizing C0 2 .
  • the molar ratio of the adjustment control to the Cl 2 is 1.05 to 1.10:1. In this way, it is possible to ensure that the toxic side-effect of Cl 2 is completely reacted, and the Cl 2 leakage is prevented from causing personal injury.
  • the gas distribution of the HC1 gas into the bottom of the silicate solution In the device it is sprayed downward from the anti-blocking air hole of the gas distributor to form a large amount of upward moving HC1 bubbles, and agitator is used to stir and break the HC1 bubbles, thereby prolonging the movement time of the HC1 bubbles, thereby making the HC1 bubbles and silicon.
  • the acid salt solution was thoroughly contacted and mixed, and the gas-liquid mixture was stirred from one side to the other side by stirring with a stirrer until the displacement reaction was completed. In this way, the HC1 gas can be fully utilized, and the Na+, K+, Ca 2+ , and Mg 2+ ions in the silicate solution can be dissolved and replaced.
  • the obtained hydrochloride salt slurry is subjected to cyclone separation, and the supernatant of the swirling overflow is transported back to the silicate solution to continue to participate in the cycle, and the precipitate generated by the swirling flow is further subjected to vacuum concentration.
  • the solution containing Na+, K + , Ca 2+ , Mg 2+ and CI— ions is separated and transported to the electrolyte solution to re-enter the cycle.
  • the solid SiO 2 obtained by concentration is used as a road base or backfill material, or processed. Into Si0 2 nanomaterials.
  • the hydrochloride slurry is concentrated in two stages, and as much alkaline metal ion solution as possible can be added to the electrolyte solution, thereby saving the raw material cost and forming a benign reaction cycle; at the same time, concentrating and separating Si0 2 has higher purity, better quality and a wider range of applications.
  • the solid fuel power plant waste comprehensive treatment equipment designed by the invention mainly comprises an electrolysis device, a carbon dioxide absorption tower, a hydrogen chloride synthesis tower, a silicate reactor, a cyclone separator and a vacuum belt conveyor.
  • its special features are:
  • the cathode hydrogen outlet of the electrolysis device is sequentially connected to the hydrogen input end of the hydrogen chloride synthesis tower through a hydrogen separator and a hydrogen cooler, and the anode chlorine outlet of the electrolysis device sequentially passes through a chlorine gas separator and a chlorine gas cooler and a chlorine gas of the hydrogen chloride synthesis tower.
  • the input ends are connected, and the liquid return port of the hydrogen separator and the liquid return port of the chlorine gas separator are connected to the mixed alkali recovery port of the electrolysis device.
  • the mixed alkali liquid output end of the electrolysis device is connected to the inner cavity of the carbon dioxide absorption tower, and the flue gas flow sharing device is arranged above the lower flue gas inlet of the carbon dioxide absorption tower, and the top of the carbon dioxide absorption tower is arranged below the flue gas outlet There is an alkali recovery device and an alkali spray device, and the alkali spray device is connected to the bottom slurry pool of the carbon dioxide absorption tower through a caustic circulation pump.
  • the hydrogen chloride output end of the hydrogen chloride synthesis tower is connected to a gas distributor through a gas delivery pipe, the gas distributor is disposed on a bottom side of the silicate reactor, and a plurality of agitators are arranged in the silicate reactor.
  • the reaction slurry outlet on the other side of the bottom of the silicate reactor is connected to the input end of the cyclone separator, and the sediment output end of the cyclone separator is connected to the material inlet of the vacuum belt conveyor, the vacuum belt
  • the filtrate output end of the machine is connected to the mixed alkali replenishing port of the electrolyzer through a liquid delivery pipe.
  • the silicate powder silo is used to store fly ash, biomass ash and other ash slag discharged from power stations, or finished silicate ore powder.
  • the discharge distributor is used to control the falling of ash or silicate ore powder into silicon. The amount of the acid salt reactor, which is rapidly mixed with the process water under the action of a stirrer, and then participates in the reaction.
  • a small bag filter is disposed on a top side of the silicate powder silo. It is used to recover the dust flying inside the silicate powder silo.
  • the mixed alkali liquid output end of the electrolysis device is sequentially connected to the inner cavity of the carbon dioxide absorption tower through an alkali liquid circulation pump or an alkali liquid spray device.
  • the mixed alkali solution is directly injected into the carbon dioxide absorption tower through the alkali spray device, and the arrangement of the absorbent inlet, the associated pipe, and the transfer pump on the carbon dioxide absorption tower can be omitted, the device composition can be simplified, and the equipment input cost can be saved.
  • a co 2 absorbing filler layer is disposed between the lye spraying device and the flue gas averaging device in the inner chamber of the carbon dioxide absorption tower.
  • the hydrogen chloride synthesis tower adopts a water-cooled thermostatic synthesis tower ignited by a quartz lamp holder.
  • the cooling water ensures that the temperature in the synthesis tower is constant, Cl 2 goes to the inner layer of the quartz lamp head, and the outer layer of the quartz lamp head is taken away, and the two are uniformly burned in the quartz lamp head, and the synthesized HC1 gas flows upward, and is cooled and cooled, and then discharged from the top. , go to the next step. This eliminates the complicated structure and process of industrial hydrochloric acid.
  • the gas distributor is composed of a pipeline or a pipe network, and the pipeline or the pipe network is provided with an anti-blocking hole with an opening downward.
  • This design allows the HC1 gas to continuously overflow downward from the anti-blocking pores, forming a large amount of HC1 bubbles, and then moving upwards, stirring by the agitator, further hindering the upward movement of the HC1 bubbles, prolonging the upward movement time, and the HC1 bubbles are broken.
  • the hot HC1 small bubbles are very soluble in water, and they are in full contact with the silicate solution, and intense heat exchange occurs, which accelerates the reaction.
  • the top of the silicate reactor is provided with an exhaust gas droplet recovery device at an orientation corresponding to the outlet of the reaction slurry.
  • the supernatant output of the cyclone separator is connected to a refill port of the silicate reactor. In this way, the supernatant can be fully utilized to participate in the preparation of the silicate solution, saving process water and forming a good Reaction cycle.
  • the invention electrolyzes the temperate seawater containing Na+, K + , Ca 2+ , Mg 2+ metal ions to generate alkaline substances and acid gases, and absorbs carbon dioxide in the flue gas emitted from the power station by using the alkaline substances, after harmless treatment Discharge into the sea for storage; synthesize hydrochloric acid with acid gas, and use hydrochloric acid to discharge dissolving reaction with fly ash, biomass ash, or cheap silicate ore powder discharged from power station, and separate Na+, K + After the solution of Ca 2+ , Mg 2+ and CI-ion is recovered, it is returned to the tempered seawater for electrolysis; the SiO 2 separated therein is further utilized as an industrial raw material to form a comprehensive treatment of the waste of the power station. A virtuous circle. Its advantages are mainly reflected in the following aspects:
  • the present invention utilizes extremely inexpensive temperate seawater electrolysis to produce H 2 and Cl 2 , and at the same time converts the tempered seawater into a mixed alkaline solution, and the mixed alkaline solution absorbs carbon dioxide in the flue gas discharged from the solid fuel power station. It can be fixed in carbonate and sealed in the sea for a long time, which solves the serious impact of long-term accumulation of carbon dioxide produced by human activities on the global climate.
  • the invention combines the tempering seawater electrolysis to produce 3 ⁇ 4 and Cl 2 to be synthesized into HC1 gas, and then directly passes the HC1 gas into the preparation of fly ash, biomass ash and/or silicate ore powder and process water.
  • the HC1 gas forms hydrochloric acid in contact with water, and dissolves the Na + , K + , Ca 2+ , Mg 2+ metal ions in the silicate, and replenishes it with the free C1 - ions.
  • the invention fully utilizes the fly ash generated by the coal-fired power station and the biomass ash produced by the biomass power station as a substitute for the silicate ore powder, effectively reducing the loss of natural raw materials and at the same time making the waste ash of the power station
  • the slag has been well treated, which greatly reduces the storage and maintenance costs of these ash.
  • the present invention absorbs carbon dioxide in the flue gas and stores it in the carbonates which are ubiquitous in seawater, and does not cause ocean acidification when it is put into the sea, and it is beneficial to shellfish to discharge calcium carbonate to the sea. Harmful, this effectively solves the negative impact of pure deep sea storage C0 2 on the ocean.
  • the synthesis of the HC1 gas in the apparatus of the present invention is preferably a water-cooled thermostatic synthesis column.
  • the interlayer cooling water ensures that the temperature inside the tower is always constant, thus ensuring a balanced combustion of 13 ⁇ 4 and 0 2 , and carrying the heat away from the reaction by the HC1 gas. In this way, the complicated structure and process of industrial hydrochloric acid is eliminated.
  • the HC1 can be disposed by providing an opening-down anti-blocking hole in the gas distributor.
  • the gas is completely homogeneous and dissolved in the silicate solution, and the heat carried by the HC1 gas and the heat generated by the dissolution are rapidly exchanged with the silicate solution through a series of stirring, thereby promoting complete reaction and increasing the replacement of the metal ions. effectiveness.
  • a droplet recovery device is disposed at the exhaust gas discharge of the carbon dioxide absorption tower and the exhaust gas discharge of the silicate reactor, so that the exhaust gas is harmlessly discharged, and the environment is very friendly.
  • the silicate dissolved product Si0 2 concentrated and separated in the process of the invention is a good industrial raw material, and can be directly used, mainly for road base and backfill, or deep chemical treatment for SiO ⁇ fi rice. material.
  • FIG. 1 is a schematic structural view of a solid fuel power plant waste comprehensive treatment device. detailed description
  • the solid fuel power station waste comprehensive treatment equipment shown in the figure is mainly composed of a transformer and rectification device 1, an electrolysis device 2, a carbon dioxide absorption tower 5, a hydrogen chloride synthesis tower 20, a silicate powder silo 17, and a silicate reaction.
  • the device 10, the cyclone separator 14 and the vacuum belt conveyor 13 are composed of components. among them:
  • the output of the transformer and rectifier 1 is connected to the power supply of the electrolyzer 2.
  • the cathode hydrogen outlet of the electrolysis device 2 is sequentially connected to the hydrogen input end of the hydrogen chloride synthesis column 20 through the hydrogen separator 21 and the hydrogen cooler 22, and the anode chlorine outlet of the electrolysis device 2 is sequentially synthesized by the chlorine gas separator 24 and the chlorine gas cooler 23 with hydrogen chloride.
  • the chlorine gas input end of the column 20 is connected, and the liquid return port of the hydrogen separator 21 and the liquid return port of the chlorine gas separator 24 are connected to the mixed alkali recovery port of the electrolysis device 2.
  • the carbon dioxide absorption tower 5 adopts an absorption tower of a spray structure, and a flue gas flow equalizing device 3 is disposed above the lower flue gas inlet, and an alkali liquid recovery device 7 is disposed below the top flue gas outlet, and an alkali is disposed under the alkali liquid recovery device 7
  • the liquid sprinkler device 6, the lye sprinkler device 6 and the flue gas equalizing device 3 are provided with a CO 2 absorbing packing layer 4, and the lye sprinkling device 6 passes through the lye circulating pump 8 and the bottom slurry of the carbon dioxide absorbing tower 5 The pool is connected.
  • the mixed alkali liquid output end of the electrolysis device 2 is sequentially connected to the inner cavity of the carbon dioxide absorption tower 5 through the alkali liquid circulating pump 8 and the alkali liquid shower device 6.
  • the hydrogen chloride synthesis column 20 is a water-cooled thermostatic synthesis tower ignited by a quartz lamp head, and its hydrogen chloride output end is connected to the gas distributor 9 through a gas delivery pipe 19.
  • the gas distributor 9 is installed on the bottom side of the silicate reactor 10, which is composed of a pipeline or a pipe network, and the pipeline or the pipe network is provided with an opening-down anti-blocking hole (not shown).
  • the reaction slurry outlet on the other side of the bottom of the silicate reactor 10 is connected to the input end of the cyclone separator 14, and the exhaust gas droplet recovery device 11 is installed at the top of the silicate reactor 10 at a position corresponding to the reaction slurry outlet. .
  • a plurality of agitators 15 are arranged in this order from one side to the other side in the silicate reactor 10, four in this embodiment.
  • a silicate powder silo 17 is disposed above the silicate reactor 10, corresponding to the position of the gas distributor 9.
  • the bottom discharge port of the silicate powder silo 17 is connected to the feed port of the silicate reactor 10 through a discharge distributor 16.
  • a small bag filter 18 is provided on the top side of the silicate powder silo 17.
  • the supernatant output of the cyclone separator 14 is connected to the refill port of the silicate reactor 10.
  • the sediment output end of the cyclone separator 14 is connected to the material inlet of the vacuum belt conveyor 13, and the filtrate output end of the vacuum belt conveyor 13 is connected to the mixed alkali supply port of the electrolysis unit 2 through the liquid delivery pipe 12.
  • NaCl is added to natural seawater, bitter brine or artificial seawater after seawater desalination, and is prepared into a tempered seawater capable of electrolyzing a sufficient amount of H 2 and Cl 2 , and is used as an electrolyte solution of the electrolysis device 2.
  • the electrolysis device 2 is energized.
  • acid gases H 2 and Cl 2 are generated at the cathode and the anode of the electrolysis device 2, respectively, and the electrolyte solution is changed into a mixed alkaline solution containing NaOH, KOH, Ca(OH) 2 , and Mg(OH) 2 as main components. .
  • the mixed alkaline solution in the electrolysis device 2 is sequentially injected into the upper portion of the carbon dioxide absorption tower 5 through the lye circulation pump 8 and the lye shower device 6.
  • the flue gas discharged from the power station is subjected to pre-dusting and desulfurization treatment, and then enters from the lower portion of the carbon dioxide absorption tower 5.
  • the flue gas flow equalizing device 3 uniformly distributes the air flow, the flue gas flows upward, and the downward sprayed alkaline mist is countercurrently contacted in the C0 2 absorbent packing layer 4, and the alkaline mist is blocked by the upward airflow. Slowly descending, C0 2 in the flue gas is absorbed by its full reaction.
  • the lye circulating pump 8 can further ensure the alkali droplets that are not involved in the reaction. 0 2 repeated countercurrent contact, so as to ensure that the alkali droplets completely absorb and fix C0 2 , and form stable Na+, K + , Ca 2+ , Mg 2+ ion carbonate slurry.
  • the H 2 and Cl 2 generated by the electrolysis device 2 are purified by the hydrogen separator 21 and the chlorine gas separator 24, respectively, and the water and the alkali liquid carried in the H 2 and Cl 2 are separated, and from the electrolysis device 2
  • the mixed lye recovery port is returned to the electrolyte solution.
  • 1 2 is further cooled and treated by a hydrogen cooler 22 and a chlorine gas cooler 23, respectively.
  • the temperature is lowered to 12 suitable for the synthesis reaction zone.
  • the silicate powder silo 17 is pre-stored with power station waste fly ash, biomass ash, or silicate ore powder, or a mixture thereof.
  • the discharge distributors 16 are continuously conveyed to the silicate reactor 10 by the designed amount.
  • a design amount of process water is injected into the silicate reactor 10, and the fly ash, the silicate substance in the biomass ash or/and the silicate ore powder are thoroughly mixed with the process water by the agitator 15.
  • Formulated into a silicate solution can timely recover the dust flying in the silo.
  • the HC1 gas enters the gas distributor 9 at the bottom of the silicate reactor 10 through the gas delivery pipe 19, and is ejected downward through the anti-blocking pores thereon, thereby forming a large amount of HC1 bubbles in the silicate solution.
  • the HC1 bubble then moves upwards, stirring by the agitator 15 blocks the upward movement of the HC1 bubble, prolongs the upward movement time, and causes the HC1 bubble to break, the diameter gradually becomes smaller, the hot HC1 small bubble can fully contact with the silicate solution, and the HC1 bubble Very soluble in water, causing intense heat exchange, prompting the reaction to accelerate.
  • the gas-liquid two-phase mixture is stirred from one side to the other side by the agitator 15, and a severe chemical replacement reaction occurs, and the Na+, K+, Ca 2+ , Mg 2+ ions in the silicate are dissolved and replaced.
  • the vortex produces a sediment having a moisture content of about 50% and enters the vacuum belt conveyor 13 for reconcentration to separate a solution containing Na+, K + , Ca2 + , Mg2+ and CI- ions, through the liquid delivery tube.
  • 12 returns from the mixed lye supply port of the electrolysis device 2 to the electrolyte solution, and re-enters the cycle.
  • the solid SiO 2 obtained by vacuum concentration is used as a road base or backfill material, or processed into a high quality fine SiO 2 nanomaterial.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种固体燃料发电站废弃物综合处理工艺及其设备。将含Na+、K+、Ca2+、Mg2+金属离子的调质海水电解生成碱性物质和酸性气体,利用碱性物质吸收发电站排放烟气中的二氧化碳,无害化处理后排放至海中封存;利用酸性气体合成盐酸,并利用盐酸与发电站排放粉煤灰、生物质灰、或廉价的硅酸盐矿石粉进行溶解置换反应,将其中分离出的含Na+、K+、Ca2+、Mg2+、CI离子的溶解液回收,返送到调质海水中继续电解;将其中分离出的SiO2作为工业原料加以利用,从而形成对发电站废弃物进行综合处理的良性循环。其设备主要由电解装置(2)、二氧化碳吸收塔(5)、氯化氢合成塔(20)、硅酸盐反应器(10)、旋流分离器(14)和真空皮带机(13)组合而成。

Description

固体燃料发电站废弃物综合处理工艺及其设备
技术领域
本发明涉及发电站的环境保护技术, 具体地指一种固体燃料发电站废弃物综 合处理工艺及其设备。 背景技术
目前, 固体燃料发电站所采用的原料大部分是煤炭, 也有少部分采用可循环利 用的生物质。我国是世界上燃煤发电的第一大国, 燃煤发电机组占全部发电机组的 70%左右, 生物质发电相对较少。 我国燃煤发电所排放的废弃物粉煤灰和温室气体 二氧化碳已居世界之冠, 燃烧生物质产生的生物质灰也在逐年增加。有资料统计表 明:我国粉煤灰的总排放量已超过 3.75亿吨,二氧化碳每年的排放量也超过 61亿吨, 而且两者的排放量还在不断增加, 由此引起全球变暖、 气候变化、 以及对生态、 经 济、社会等方面产生综合影响的环境污染问题也日益严重, 迫使人们一直在寻找解 决这些问题的途径。
针对粉煤灰或生物质灰而言,其主要成份均为硅酸盐类,还含有大量的 Na、 K、 Ca、 Mg等金属物质, 我国建材业对其再利用的不多, 目前的利用率仅在 30%左右, 主要是用于筑路基和回填, 每年尚有 2.6亿多吨粉煤灰未能利用, 只能储存于灰库 中, 不仅占用了大量生产用地和储运配套装备, 而且每吨粉煤灰储存的建库费和运 行费约需 10~100元, 累积成本惊人。 同时,粉煤灰用于筑路基等作业时, 还受地区、 时间、 气候的一系列的限制, 使用非常不均衡。 因此, 如何利用粉煤灰或减少粉煤 灰储存是本领域科研人员面临的一项重要环境课题。
针对二氧化碳而言, 虽然它是工业、 农业、 食品、 卫生、 医疗等多个领域的有 用资源, 但其应用量与排放量相比极其微小, 过量排放所形成的温室效应, 对人类 的生存环境起着不利的影响。如今控制二氧化碳排放已经成为全球性的问题, 越来 越多的国家意识到二氧化碳的捕集与封存技术对于减缓气候变暖的意义。
为了控制二氧化碳进入大气, 本领域科研人员已经设计出了各种各样的二氧 化碳封存技术, 主要有如下三种方式: 第一种是将它以气态形式封存于各种地质 夹层中; 第二种是将它以气态形式封存于深海中; 第三种是将它以固态形式封存 于碳酸盐中。 三种封存方式中, 第一种地质封存技术得到了一定的应用, 但地质 情况的变化会导致不安全因素的增加, 并且随着时间的延伸, 其不安全性也会越 来越突出。 第二种深海封存技术则容易破坏深海生态环境, 目前鲜见应用。 第三 种碳酸盐封存技术又称矿物封存技术, 理论上对二氧化碳的固定效果最好, 转变 成盐类的二氧化碳不会再次释放到大气中, 因此得到了广泛的关注, 但目前其仍 然停留在固定二氧化碳的试验阶段, 距离实际应用尚远。 发明内容
本发明的目的旨在提供一种固体燃料发电站废弃物综合处理工艺及其设备。 该工艺和设备借助电解海水或调质海水产生吸收剂等的原料, 能够将发电站排放 烟气中的二氧化碳转化成碳酸盐类固定封存于大海中, 同时充分利用发电站排放 的粉煤灰、 生物质灰等灰渣、 以及廉价的硅酸盐矿石粉辅助完成二氧化碳的转化 循环, 最大限度地实现发电站废弃物的综合利用。
为实现上述目的, 本发明所设计的固体燃料发电站废弃物综合处理工艺, 是 对发电站所排放烟气中的二氧化碳和灰渣中的硅酸盐类物质进行相互利用的过 程, 其特征在于: 该工艺包括如下步骤:
1 ) 以天然海水或添加有盐酸盐类的调质海水作为电解质溶液, 通入直流电源 对其进行电解分离处理, 在电解装置的阴极和阳极分别获得酸性气体 1¾和 Cl2, 同时使电解质溶液变成主要成分为 NaOH、 KOH、 Ca(OH)2、 Mg(OH)2的混合碱性 溶液;
2) 将所得混合碱性溶液喷入二氧化碳吸收塔中, 同时向二氧化碳吸收塔中通 入发电站所排放的烟气, 使烟气中的 C02与混合碱性溶液的喷射雾滴逆流接触, 发生充分的化学吸收反应, 生成稳定的 Na+、 K+、 Ca2+、 Mg2+离子类碳酸盐浆液;
3 )对除去 C02的烟气作进一步净化处理,脱除其中夹带的混合碱性物质液滴, 所得洁净烟气排入大气; 同时, 对所获碳酸盐浆液作进一步无害化处理后, 将其 排入大海;
4) 分别对所获 ¾和 Cl2进行纯化处理, 将 H2和 Cl2中携带的水份和碱液分 离出来, 并回流到电解质溶液中;
5 ) 分别对脱水后的 和 Cl2进行冷却处理, 使 和 Cl2的温度降低至适于 合成反应的区域;
6 ) 将冷却处理后的 H2和 Cl2同步导入氯化氢合成塔中, 使 H2和 Cl2发生稳 定的化学燃烧反应, 生成 HC1气体;
7 )向硅酸盐反应器中注入工艺用水, 同时投加发电站所排放的灰渣或 /和硅酸 盐矿石粉,搅拌使灰渣中的硅酸盐类物质或 /和硅酸盐矿石粉与工艺用水充分混合, 配制成硅酸盐溶液;
8 )将所生成的 HC1气体通入到所配制的硅酸盐溶液中, 使其与硅酸盐水溶液 充分接触, 发生剧烈的化学置换反应, 将硅酸盐中的 Na+、 K+、 Ca2+、 Mg2+离子溶 解置换出来, 获得含有易溶于水的盐酸盐类、大量 C1—离子和固态 Si02的盐酸盐浆 液;
9 )对所得盐酸盐浆液进行浓縮处理, 将其中的固态 3102浓縮分离出来, 同时 将溢出含有 Na+、 K+、 Ca2+、 Mg2+和 CI—离子的溶解液输送到电解质溶液中重新参 与循环。
进一步地, 所述步骤 1 ) 中, 调质海水是以天然海水、 海水淡化后的苦卤水或 人造海水作为溶剂,以 NaCl作为溶质配制而成的能够电解产生足量 ¾和 Cl2的海 水。 采用这样的原料, 其成本几乎为零, 且取之不尽、 用之不绝。 特别是采用海 水淡化后的废弃物苦卤水时, 其中的金属离子更为浓縮集中, 电解质溶液转变成 混合碱性溶液的效果更好, 废物利用率也更高。
进一步地, 所述步骤 2) 中, 发电站所排放的烟气依次经过预除尘和脱硫处理 后, 再通入到二氧化碳吸收塔中。 烟气经预除尘处理后更有利于混合碱性溶液吸 收固定 C02, 且排放液较为纯净, 可减少后续处理的难度; 而选择脱硫处理的烟 气, 可以避免硫化物溶于混合碱性溶液中影响 C02的吸收, 从而最大限度地固定 C02
进一步地, 所述步骤 6 ) 中, 调节控制 和 Cl2的摩尔比为 1.05~1.10: 1。 这 样, 可以确保有毒副作用的 Cl2完全反应, 避免 Cl2泄漏造成人员伤害。
进一步地, 所述步骤 8 ) 中, 将 HC1气体通入到硅酸盐溶液底部的气体分布 器中, 使其从气体分布器的防堵气孔向下喷出, 形成大量向上运动的 HC1气泡, 并采用搅拌器搅拌、 破碎 HC1气泡, 延长 HC1气泡向上运动的时间, 从而使 HC1 气泡与硅酸盐溶液充分接触混合, 且气液混合物经搅拌器搅拌从一侧向另一侧流 动,直至置换反应完全。这样,可以充分利用 HC1气体,将硅酸盐溶液中的的 Na+、 K+、 Ca2+、 Mg2+离子溶解置换出来。
进一步地, 所述步骤 9 ) 中, 先对所得盐酸盐浆液进行旋流分离, 旋流溢出的 上清液输送回硅酸盐溶液中继续参与循环, 旋流产生的沉淀物再进行真空浓縮, 分离出含有 Na+、 K+、 Ca2+、 Mg2+和 CI—离子的溶解液输送到电解质溶液中重新参 与循环,浓縮获得的固态 Si02用作筑路基或回填材料,或者加工成 Si02纳米材料。 这样, 分两级对盐酸盐浆液进行浓縮处理, 可以将尽可能多的碱性金属离子溶液 补充到电解质溶液中, 节省原料成本, 并形成良性的反应循环; 同时, 浓縮分离 出的 Si02纯度更高、 品质更好、 用途范围更广。
同样, 为实现上述目的, 本发明所设计的固体燃料发电站废弃物综合处理设 备, 主要由电解装置、 二氧化碳吸收塔、 氯化氢合成塔、 硅酸盐反应器、 旋流分 离器和真空皮带机组成, 其特殊之处在于:
所述电解装置的阴极氢气出口依次通过氢气分离器和氢气冷却器与氯化氢合 成塔的氢气输入端相连, 所述电解装置的阳极氯气出口依次通过氯气分离器和氯 气冷却器与氯化氢合成塔的氯气输入端相连, 所述氢气分离器的回液口和氯气分 离器的回液口均与电解装置的混合碱液回收口相连。
所述电解装置的混合碱液输出端与二氧化碳吸收塔的内腔相连, 所述二氧化 碳吸收塔的下部烟气入口上方设置有烟气均流装置, 所述二氧化碳吸收塔的顶部 烟气出口下方设置有碱液回收装置和碱液喷淋装置, 所述碱液喷淋装置通过碱液 循环泵与二氧化碳吸收塔的底部浆液池相连。
所述氯化氢合成塔的氯化氢输出端通过气体输送管与气体分布器相连, 所述 气体分布器设置在硅酸盐反应器底部一侧, 所述硅酸盐反应器内布置有多个搅拌 器, 所述硅酸盐反应器底部另一侧的反应浆料出口与旋流分离器的输入端相连, 所述旋流分离器的沉淀物输出端与真空皮带机的物料入口相连, 所述真空皮带机 的滤液输出端通过液体输送管与电解装置的混合碱液补充口相连。 作为优选方案, 它还包括硅酸盐粉料仓, 所述硅酸盐粉料仓的底部出料口通 过卸料分配器与硅酸盐反应器的投料口相连。 硅酸盐粉料仓用于储存发电站排放 的粉煤灰、 生物质灰等灰渣、 或者成品硅酸盐矿石粉, 卸料分配器用于控制灰渣 或硅酸盐矿石粉的下落进入硅酸盐反应器的量, 其与工艺用水在搅拌器的作用下 迅速混合, 然后参加反应。
进一步地, 所述硅酸盐粉料仓的顶部一侧设置有小型布袋除尘器。 用以回收 硅酸盐粉料仓内部飞扬的粉尘。
又进一步地, 所述电解装置的混合碱液输出端依次通过碱液循环泵、 碱液喷 淋装置与二氧化碳吸收塔的内腔相连。 这样, 混合碱液通过碱液喷淋装置直接喷 入二氧化碳吸收塔中, 可以省略在二氧化碳吸收塔上设置吸收剂入口、 相关管道 和输送泵等设备, 简化设备组成, 节约设备投入成本。
又进一步地, 所述二氧化碳吸收塔内腔中位于碱液喷淋装置与烟气均流装置 之间设置有 co2吸收填料层。 这样, 可以延长混合碱性溶液与烟气逆流接触的时 间, 促使烟气中的二氧化碳与混合碱性溶液充分反应, 提高二氧化碳的吸收率。
更进一步地, 所述氯化氢合成塔采用石英灯头引燃的水冷恒温合成塔。 其通 过冷却水保证合成塔内温度恒定, Cl2走石英灯头的内层, ¾走石英灯头的外层, 二者在石英灯头均衡燃烧, 合成的 HC1气体向上流动, 经冷却降温后从顶部排出, 进入下一步反应。 由此省去了工业制盐酸的复杂结构和工艺。
更进一步地, 所述气体分布器由管线或管网构成, 所述管线或管网上均布有 开口向下的防堵气孔。 这样设计, 可使 HC1气体不断向下从防堵气孔中溢出, 形 成大量 HC1气泡, 然后向上运动, 经搅拌器搅拌, 进一步阻碍 HC1气泡向上运动, 延长向上运动的时间, 同时 HC1气泡被破碎而逐渐趋小, 热的 HC1小气泡极易溶 于水, 其与硅酸盐溶液充分接触混合, 发生剧烈的热交换, 可促使反应加速进行。
再进一步地, 所述硅酸盐反应器顶部与其反应浆料出口相对应的方位设置有 尾气液滴回收装置。 这样, 可以使残留的极少量 1¾所携带的盐酸盐类浆液被有效 回收, 确保尾气得到无害排放。
再进一步地, 所述旋流分离器的上清液输出端与硅酸盐反应器的补液口相连。 这样, 可以充分利用上清液参与硅酸盐溶液的配制, 节省工艺用水, 形成良好的 反应循环。
本发明将含有 Na+、 K+、 Ca2+、 Mg2+金属离子的调质海水电解生成碱性物质和 酸性气体, 利用碱性物质吸收发电站排放烟气中的二氧化碳, 无害化处理后排放 至海中封存; 利用酸性气体合成盐酸, 并利用盐酸与发电站排放的粉煤灰、 生物 质灰、 或廉价的硅酸盐矿石粉进行溶解置换反应, 将其中分离出的含 Na+、 K+、 Ca2+、 Mg2+、 CI—离子的溶液回收后, 返送到调质海水中继续电解; 将其中分离出 的 Si02作为工业原料加以进一步利用, 从而形成对发电站废弃物进行综合处理的 良性循环。 其优点主要体现在如下几方面:
其一, 本发明利用极其廉价的调质海水电解产生 H2和 Cl2, 同时使得调质海 水转变成混合碱性溶液, 采用该混合碱性溶液吸收固体燃料发电站排放烟气中的 二氧化碳, 可以将其固定于碳酸盐中, 并长期稳定地封存于大海中, 解决了人类 活动产生的二氧化碳长期积累对全球气候造成的严重影响。
其二, 本发明将调质海水电解产生 ¾和 Cl2合成为 HC1气体, 再将 HC1气体 直接通入到由粉煤灰、 生物质灰和 /或硅酸盐矿石粉与工艺用水配制而成的硅酸盐 溶液中, HC1气体遇水形成盐酸, 将硅酸盐中的 Na+、 K+、 Ca2+、 Mg2+金属离子溶 解置换出来,随同游离的 C1—离子一起补充到调质海水中,继续电解产生 112和 Cl2, 既实现了二氧化碳吸收反应的良性循环, 又实现了 C1—离子的循环利用, 减少了 NaCl等盐酸盐类的添加, 原料损耗极小。
其三, 本发明充分利用了燃煤电站产生的粉煤灰、 生物质电站产生的生物质 灰作为硅酸盐矿石粉的替代品, 有效减少了天然原料的损耗, 同时使发电站的废 弃灰渣得到了良好治理, 大幅降低了这些灰渣的储存维护费用。
其四, 本发明将烟气中的二氧化碳吸收储存在海水中普遍存在的碳酸盐类中, 投放到大海中不会产生海洋酸化现象, 而且向海洋排放碳酸钙类物质对贝类生物 是有益无害的, 这样有效解决了单纯深海储存 C02对海洋产生的负面影响。
其五, 本发明设备中 HC1气体的合成优选水冷恒温合成塔。 通过夹层冷却水 保证塔内温度始终恒定, 进而保证 1¾和 02均衡燃烧, 并通过 HC1气体将反应产 生热量带走。 这样, 省去了工业制盐酸的复杂结构和工艺。
其六,本发明设备中通过在气体分布器上设置开口向下的防堵气孔,可将 HC1 气体完全均布并溶解于硅酸盐溶液中, 同时通过一系列的搅拌将 HC1气体携带的 热量和溶解产生的热量迅速与硅酸盐溶液进行交换, 从而促使其完全反应, 提高 金属离子的置换效率。
其七, 本发明设备中在二氧化碳吸收塔的尾气排放、 硅酸盐反应器的尾气排 放处都设置有液滴回收装置, 从而使尾气无害化排放, 对环境十分友好。
其八, 本发明工艺中浓縮分离出的硅酸盐溶解产物 Si02是很好的工业原料, 可以直接加以利用, 主要用于筑路基和回填, 也可以进行深度化工处理为 SiO^fi 米材料。 附图说明
图 1为一种固体燃料发电站废弃物综合处理设备的结构示意图。 具体实施方式
以下结合附图和具体实施例对本发明的工艺及其设备作进一步的详细描述。 图中所示的固体燃料发电站废弃物综合处理设备, 主要由变压及整流装置 1、 电解装置 2、 二氧化碳吸收塔 5、 氯化氢合成塔 20、 硅酸盐粉料仓 17、 硅酸盐反 应器 10、 旋流分离器 14和真空皮带机 13等部件组成。 其中:
变压及整流装置 1 的输出端与电解装置 2的电源接口相连。 电解装置 2的阴 极氢气出口依次通过氢气分离器 21和氢气冷却器 22与氯化氢合成塔 20的氢气输 入端相连, 电解装置 2 的阳极氯气出口依次通过氯气分离器 24和氯气冷却器 23 与氯化氢合成塔 20的氯气输入端相连, 氢气分离器 21的回液口和氯气分离器 24 的回液口均与电解装置 2的混合碱液回收口相连。
二氧化碳吸收塔 5 采用喷淋结构的吸收塔, 其下部烟气入口上方设置有烟气 均流装置 3, 其顶部烟气出口下方设置有碱液回收装置 7, 碱液回收装置 7下方设 置有碱液喷淋装置 6, 碱液喷淋装置 6与烟气均流装置 3之间设置有 C02吸收填 料层 4,碱液喷淋装置 6通过碱液循环泵 8与二氧化碳吸收塔 5的底部浆液池相连。 电解装置 2的混合碱液输出端依次通过碱液循环泵 8、碱液喷淋装置 6与二氧化碳 吸收塔 5的内腔相连。 氯化氢合成塔 20采用石英灯头引燃的水冷恒温合成塔, 其氯化氢输出端通过 气体输送管 19与气体分布器 9相连。 气体分布器 9安装在硅酸盐反应器 10底部 一侧, 它由管线或管网构成, 管线或管网上均布有开口向下的防堵气孔 (图中未 显示)。 硅酸盐反应器 10底部另一侧的反应浆料出口与旋流分离器 14的输入端相 连, 硅酸盐反应器 10顶部与其反应浆料出口相对应的方位安装有尾气液滴回收装 置 11。 硅酸盐反应器 10 内从一侧到另一侧依次布置有若干个搅拌器 15, 本实施 例中布置有四个。
硅酸盐粉料仓 17布置在硅酸盐反应器 10上方, 与气体分布器 9的位置相对 应。硅酸盐粉料仓 17的底部出料口通过卸料分配器 16与硅酸盐反应器 10的投料 口相连。 硅酸盐粉料仓 17的顶部一侧设置有小型布袋除尘器 18。
旋流分离器 14的上清液输出端与硅酸盐反应器 10的补液口相连。 旋流分离 器 14的沉淀物输出端与真空皮带机 13的物料入口相连, 真空皮带机 13的滤液输 出端通过液体输送管 12与电解装置 2的混合碱液补充口相连。
上述固体燃料发电站废弃物综合处理设备的工艺流程如下:
1 )在天然海水、 海水淡化后的苦卤水或人造海水中添加 NaCl, 配制成能够电 解产生足量 H2和 Cl2的调质海水, 并将它作为电解装置 2的电解质溶液。 发电站 高压电经变压及整流装置 1处理成所需的直流电后, 给电解装置 2通电。 此时, 在电解装置 2的阴极和阳极分别产生酸性气体 H2和 Cl2, 同时使电解质溶液变成 主要成分为 NaOH、 KOH、 Ca(OH)2、 Mg(OH)2的混合碱性溶液。
2) 电解装置 2中的混合碱性溶液依次通过碱液循环泵 8、 碱液喷淋装置 6, 从二氧化碳吸收塔 5 上部喷入其中。 与此同时, 发电站所排放的烟气经过预除尘 和脱硫处理后, 从二氧化碳吸收塔 5下部进入。 经烟气均流装置 3均布气流后, 烟气向上流动, 与向下喷淋的碱性雾滴在 C02吸收填料层 4内逆流接触, 碱性雾 滴在向上气流的阻滞作用下缓慢下降, 烟气中的 C02与其充分反应而被吸收。 碱 液循环泵 8则可以进一步确保未参与反应的碱性雾滴与。02反复逆流接触, 从而 保证碱液雾滴完全吸收固定 C02, 生成稳定的 Na+、 K+、 Ca2+、 Mg2+离子类碳酸盐 浆液。
3 ) 脱除了 C02的烟气经过碱液回收装置 7, 将其中夹带的混合碱性液滴拦截 回收, 所得洁净烟气从二氧化碳吸收塔 5 的顶部烟气出口排入大气中。 而吸收了 C02后形成的稳定碳酸盐浆液, 经过进一步无害化处理后, 将其排入大海, 达到 固定和储存 C02的目的。
4)电解装置 2所产生的 H2和 Cl2分别经过氢气分离器 21和氯气分离器 24进 行纯化处理, 将 H2和 Cl2中携带的水份和碱液分离出来, 并从电解装置 2的混合 碱液回收口返回到电解质溶液中。
5 )脱水后的 ¾和。12再分别经过氢气冷却器 22和氯气冷却器 23进行冷却处 理, 使 和。12的温度降低至适于合成反应的区域。
6 ) 冷却后的 H2和 Cl2通过管系和阀门同步进入到氯化氢合成塔 20的石英灯 头中进行合成反应,控制 H2和 Cl2的摩尔比为 1.05~1.10: 1,以确保 Cl2完全反应。 反应中 Cl2走石英灯头内层, H2走石英灯头外层, 二者在石英灯头燃烧, 合成的 HC1气体向上流动, 经氯化氢合成塔 20自身的冷却系统降温后, 从氯化氢合成塔 20顶部引出。
7 ) 硅酸盐粉料仓 17 中预先储存有发电站废弃物粉煤灰、 生物质灰, 或者硅 酸盐矿石粉, 也可以是它们的混合物。 通过卸料分配器 16按设计用量, 将它们连 续输送到硅酸盐反应器 10中。 同时, 向硅酸盐反应器 10中注入设计量的工艺用 水, 通过搅拌器 15使粉煤灰、生物质灰中的硅酸盐类物质或 /和硅酸盐矿石粉与工 艺用水充分混合, 配制成硅酸盐溶液。 硅酸盐粉料仓 17上部一侧的小型布袋除尘 器 18可以及时回收仓内飞扬的粉尘。
8 ) HC1气体通过气体输送管 19进入到硅酸盐反应器 10底部的气体分布器 9 中, 并通过其上的防堵气孔向下喷出, 在硅酸盐溶液中形成大量的 HC1气泡, HC1 气泡随后向上运动, 经搅拌器 15搅拌阻碍 HC1气泡上行, 延长向上的运动时间, 并使 HC1气泡破碎, 直径逐渐趋小, 热的 HC1小气泡可与硅酸盐溶液充分接触, 且 HC1气泡极易溶于水中, 从而发生剧烈的热交换, 促使反应加速进行。 同时, 气液两相混合物经搅拌器 15搅拌从一侧向另一侧流动,发生剧烈的化学置换反应, 将硅酸盐中的 Na+、 K+、 Ca2+、 Mg2+离子溶解置换出来, 获得含有易溶于水的盐酸 盐类、 大量 C1—离子和固态 Si02的盐酸盐浆液。 其中, 残留极少量的 H2经过尾气 液滴回收装置 11处理后, 无害排放。 9) 从硅酸盐反应器 10底部反应浆料出口排出的盐酸盐浆液进入旋流分离器 14中, 旋流溢出的上清液从硅酸盐反应器 10的补液口返回其中, 继续参与循环。 旋流产生含水率约 50%左右的沉淀物进入真空皮带机 13中进行再浓縮, 分离出含 有 Na+、 K+、 Ca2+、 Mg2+和 CI—离子的溶解液, 通过液体输送管 12从电解装置 2 的混合碱液补充口返回到电解质溶液中,重新参与循环。真空浓縮获得的固态 Si02 用作筑路基或回填材料, 或者加工成高品质细腻的 Si02纳米材料。

Claims

权 利 要 求 书
1、 一种固体燃料发电站废弃物综合处理工艺, 它是对发电站所排放烟气中的 二氧化碳和灰渣中的硅酸盐类物质进行相互利用的过程, 其特征在于: 该工艺包 括如下步骤:
1 ) 以天然海水或添加有盐酸盐类的调质海水作为电解质溶液, 通入直流电源 对其进行电解分离处理, 在电解装置的阴极和阳极分别获得酸性气体 1¾和 Cl2, 同时使电解质溶液变成主要成分为 NaOH、 KOH、 Ca(OH)2、 Mg(OH)2的混合碱性 溶液;
2) 将所得混合碱性溶液喷入二氧化碳吸收塔中, 同时向二氧化碳吸收塔中通 入发电站所排放的烟气, 使烟气中的 C02与混合碱性溶液的喷射雾滴逆流接触, 发生充分的化学吸收反应, 生成稳定的 Na+、 K+、 Ca2+、 Mg2+离子类碳酸盐浆液;
3 )对除去 C02的烟气作进一步净化处理,脱除其中夹带的混合碱性物质液滴, 所得洁净烟气排入大气; 同时, 对所获碳酸盐浆液作进一步无害化处理后, 将其 排入大海;
4) 分别对所获 ¾和 Cl2进行纯化处理, 将 H2和 Cl2中携带的水份和碱液分 离出来, 并回流到电解质溶液中;
5 ) 分别对脱水后的 H2和 Cl2进行冷却处理, 使 H2和 Cl2的温度降低至适于 合成反应的区域;
6 ) 将冷却处理后的 和 Cl2同步导入氯化氢合成塔中, 使 和 Cl2发生稳 定的化学燃烧反应, 生成 HC1气体;
7 )向硅酸盐反应器中注入工艺用水, 同时投加发电站所排放的灰渣或 /和硅酸 盐矿石粉,搅拌使灰渣中的硅酸盐类物质或 /和硅酸盐矿石粉与工艺用水充分混合, 配制成硅酸盐溶液;
8 )将所生成的 HC1气体通入到所配制的硅酸盐溶液中, 使其与硅酸盐水溶液 充分接触, 发生剧烈的化学置换反应, 将硅酸盐中的 Na+、 K+、 Ca2+、 Mg2+离子溶 解置换出来, 获得含有易溶于水的盐酸盐类、大量 C1—离子和固态 Si02的盐酸盐浆 液; 9 )对所得盐酸盐浆液进行浓縮处理, 将其中的固态 3102浓縮分离出来, 同时 将溢出含有 Na+、 K+、 Ca2+、 Mg2+和 CI—离子的溶解液输送到电解质溶液中重新参 与循环。
2、根据权利要求 1所述的固体燃料发电站废弃物综合处理工艺,其特征在于: 所述步骤 1 ) 中, 调质海水是以天然海水、 海水淡化后的苦卤水或人造海水作为溶 剂, 以 NaCl作为溶质配制而成的能够电解产生足量 和。12的海水。
3、 根据权利要求 1或 2所述的固体燃料发电站废弃物综合处理工艺, 其特征 在于: 所述步骤 2) 中, 发电站所排放的烟气依次经过预除尘和脱硫处理后, 再通 入到二氧化碳吸收塔中。
4、 根据权利要求 1或 2所述的固体燃料发电站废弃物综合处理工艺, 其特征 在于: 所述步骤 6 ) 中, H2和 Cl2的摩尔比为 1.05~1.10: 1。
5、 根据权利要求 1或 2所述的固体燃料发电站废弃物综合处理工艺, 其特征 在于: 所述步骤 8 ) 中, 将 HC1气体通入到硅酸盐溶液底部的气体分布器中, 使 其从气体分布器的防堵气孔向下喷出, 形成大量向上运动的 HC1气泡, 并采用搅 拌器搅拌、 破碎 HC1气泡, 延长 HC1气泡向上运动的时间, 从而使 HC1气泡与硅 酸盐溶液充分接触混合, 且气液混合物经搅拌器搅拌从一侧向另一侧流动, 直至 置换反应完全。
6、 根据权利要求 1或 2所述的固体燃料发电站废弃物综合处理工艺, 其特征 在于: 所述步骤 9 ) 中, 先对所得盐酸盐浆液进行旋流分离, 旋流溢出的上清液输 送回硅酸盐溶液中继续参与循环, 旋流产生的沉淀物再进行真空浓縮, 分离出含 有 Na+、 K+、 Ca2+、 Mg2+和 CI—离子的溶解液输送到电解质溶液中重新参与循环, 浓縮获得的固态 Si02用作筑路基或回填材料, 或者加工成 Si02纳米材料。
7、 一种固体燃料发电站废弃物综合处理设备, 主要由电解装置 (2)、 二氧化 碳吸收塔 (5)、 氯化氢合成塔 (20)、 硅酸盐反应器 (10)、 旋流分离器 (14) 和 真空皮带机 (13) 组成, 其特征在于:
所述电解装置 (2) 的阴极氢气出口依次通过氢气分离器 (21) 和氢气冷却器 (22) 与氯化氢合成塔 (20) 的氢气输入端相连, 所述电解装置 (2) 的阳极氯气 出口依次通过氯气分离器 (24) 和氯气冷却器 (23) 与氯化氢合成塔 (20) 的氯 气输入端相连, 所述氢气分离器 (21) 的回液口和氯气分离器 (24) 的回液口均 与电解装置 (2) 的混合碱液回收口相连;
所述电解装置 (2) 的混合碱液输出端与二氧化碳吸收塔 (5) 的内腔相连, 所述二氧化碳吸收塔 (5) 的下部烟气入口上方设置有烟气均流装置 (3), 所述二 氧化碳吸收塔 (5) 的顶部烟气出口下方设置有碱液回收装置 (7) 和碱液喷淋装 置 (6), 所述碱液喷淋装置 (6) 通过碱液循环泵 (8) 与二氧化碳吸收塔 (5) 的 底部浆液池相连;
所述氯化氢合成塔 (20) 的氯化氢输出端通过气体输送管 (19) 与气体分布 器 (9) 相连, 所述气体分布器 (9) 设置在硅酸盐反应器 (10) 底部一侧, 所述 硅酸盐反应器 (10) 内布置有多个搅拌器 (15), 所述硅酸盐反应器 (10) 底部另 一侧的反应浆料出口与旋流分离器 (14) 的输入端相连, 所述旋流分离器 (14) 的沉淀物输出端与真空皮带机 (13) 的物料入口相连, 所述真空皮带机 (13) 的 滤液输出端通过液体输送管 (12) 与电解装置 (2) 的混合碱液补充口相连。
8、根据权利要求 7所述的固体燃料发电站废弃物综合处理设备,其特征在于: 它还包括硅酸盐粉料仓 (17), 所述硅酸盐粉料仓 (17) 的底部出料口通过卸料分 配器 (16) 与硅酸盐反应器 (10) 的投料口相连。
9、根据权利要求 8所述的固体燃料发电站废弃物综合处理设备,其特征在于: 所述硅酸盐粉料仓 (17) 的顶部一侧设置有小型布袋除尘器 (18)。
10、 根据权利要求 7或 8或 9所述的固体燃料发电站废弃物综合处理设备, 其特征在于: 所述电解装置 (2) 的混合碱液输出端依次通过碱液循环泵 (8)、 碱 液喷淋装置 (6) 与二氧化碳吸收塔 (5) 的内腔相连。
11、 根据权利要求 7或 8或 9所述的固体燃料发电站废弃物综合处理设备, 其特征在于: 所述二氧化碳吸收塔 (5) 内腔中位于碱液喷淋装置 (6) 与烟气均 流装置 (3) 之间设置有 C02吸收填料层 (4)。
12、 根据权利要求 7或 8或 9所述的固体燃料发电站废弃物综合处理设备, 其特征在于: 所述氯化氢合成塔 (20) 采用石英灯头引燃的水冷恒温合成塔。
13、 根据权利要求 7或 8或 9所述的固体燃料发电站废弃物综合处理设备, 其特征在于: 所述气体分布器 (9) 由管线或管网构成, 所述管线或管网上均布有 开口向下的防堵气孔。
14、 根据权利要求 7或 8或 9所述的固体燃料发电站废弃物综合处理设备, 其特征在于: 所述硅酸盐反应器 (10) 顶部与其反应浆料出口相对应的方位设置 有尾气液滴回收装置 (11)。
15、 根据权利要求 7或 8或 9所述的固体燃料发电站废弃物综合处理设备, 其特征在于: 所述旋流分离器 (14) 的上清液输出端与硅酸盐反应器 (10) 的补 液口相连。
PCT/CN2013/088605 2012-12-31 2013-12-05 固体燃料发电站废弃物综合处理工艺及其设备 WO2014101641A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210591707.5A CN103055682B (zh) 2012-12-31 2012-12-31 固体燃料发电站废弃物综合处理工艺及其设备
CN201210591707.5 2012-12-31

Publications (1)

Publication Number Publication Date
WO2014101641A1 true WO2014101641A1 (zh) 2014-07-03

Family

ID=48098754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088605 WO2014101641A1 (zh) 2012-12-31 2013-12-05 固体燃料发电站废弃物综合处理工艺及其设备

Country Status (2)

Country Link
CN (1) CN103055682B (zh)
WO (1) WO2014101641A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022221861A1 (en) * 2021-04-14 2022-10-20 Carbonfree Chemicals Holdings, Llc Methods and compositions for the sequestration of carbon dioxide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055682B (zh) * 2012-12-31 2015-08-12 武汉凯迪工程技术研究总院有限公司 固体燃料发电站废弃物综合处理工艺及其设备
CN104261449B (zh) * 2014-09-22 2016-01-27 四川大学 利用富含钙和镁的溶液矿化co2制取高纯碳酸盐的方法
CN108787693A (zh) * 2017-05-02 2018-11-13 蒋本基 碱性固体废弃物改质方法
CN113333441B (zh) * 2021-06-23 2022-05-24 华中科技大学 一种飞灰的处理系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1165110A (zh) * 1997-06-19 1997-11-19 刘建昆 生产试剂级盐酸的方法和设备
JP2006137620A (ja) * 2004-11-10 2006-06-01 Toshiba Corp 排ガス中の二酸化炭素の回収システムおよび回収方法
AU2007101174A4 (en) * 2007-12-10 2008-01-31 Green, Kenneth Mr Improved method of capturing carbon dioxide and converting to carbonate anions and then combining with calcium cations to form calcium carbonate
CN101234318A (zh) * 2007-11-09 2008-08-06 中国石化仪征化纤股份有限公司 一种带“气-液”分散搅拌装置的鼓泡塔反应器
CN101970084A (zh) * 2007-09-20 2011-02-09 斯凯约尼克公司 通过碳酸盐和/或碳酸氢盐矿物的联产从废气流去除二氧化碳
CN101993087A (zh) * 2010-11-29 2011-03-30 中煤平朔煤业有限责任公司 一种粉煤灰制取水玻璃的方法
CN102762277A (zh) * 2009-12-18 2012-10-31 斯凯约尼克公司 通过形成ii族碳酸盐和二氧化硅的二氧化碳固定
CN102764580A (zh) * 2012-07-18 2012-11-07 浙江天蓝环保技术股份有限公司 一种白泥/电石渣-石膏湿法烟气脱硫的装置和方法
CN103055682A (zh) * 2012-12-31 2013-04-24 武汉凯迪工程技术研究总院有限公司 固体燃料发电站废弃物综合处理工艺及其设备
CN203002205U (zh) * 2012-12-31 2013-06-19 武汉凯迪工程技术研究总院有限公司 固体燃料发电站废弃物综合处理系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101773766A (zh) * 2008-11-21 2010-07-14 林健峰 二氧化碳的捕捉方法
CA2694971C (en) * 2008-12-11 2012-03-20 Calera Corporation Processing co2 utilizing a recirculating solution
JP2011056345A (ja) * 2009-09-07 2011-03-24 Toshiba Corp 淡水化システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1165110A (zh) * 1997-06-19 1997-11-19 刘建昆 生产试剂级盐酸的方法和设备
JP2006137620A (ja) * 2004-11-10 2006-06-01 Toshiba Corp 排ガス中の二酸化炭素の回収システムおよび回収方法
CN101970084A (zh) * 2007-09-20 2011-02-09 斯凯约尼克公司 通过碳酸盐和/或碳酸氢盐矿物的联产从废气流去除二氧化碳
CN101234318A (zh) * 2007-11-09 2008-08-06 中国石化仪征化纤股份有限公司 一种带“气-液”分散搅拌装置的鼓泡塔反应器
AU2007101174A4 (en) * 2007-12-10 2008-01-31 Green, Kenneth Mr Improved method of capturing carbon dioxide and converting to carbonate anions and then combining with calcium cations to form calcium carbonate
CN102762277A (zh) * 2009-12-18 2012-10-31 斯凯约尼克公司 通过形成ii族碳酸盐和二氧化硅的二氧化碳固定
CN101993087A (zh) * 2010-11-29 2011-03-30 中煤平朔煤业有限责任公司 一种粉煤灰制取水玻璃的方法
CN102764580A (zh) * 2012-07-18 2012-11-07 浙江天蓝环保技术股份有限公司 一种白泥/电石渣-石膏湿法烟气脱硫的装置和方法
CN103055682A (zh) * 2012-12-31 2013-04-24 武汉凯迪工程技术研究总院有限公司 固体燃料发电站废弃物综合处理工艺及其设备
CN203002205U (zh) * 2012-12-31 2013-06-19 武汉凯迪工程技术研究总院有限公司 固体燃料发电站废弃物综合处理系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOUSE, K.Z. ET AL.: "Electrochemical Acceleration of Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic Climate Change", ENVIRON, SCI, TECHNOL, vol. 41, no. 24, July 2007 (2007-07-01), pages 8464 - 8470 *
LI, WENZHI ET AL.: "Sequestration of Carbon Dioxide with Olivine Promoted by an Electrochemical Method", JOURNAL OF CHINA UNIVERSITY OF MINING & TECHNOLOGY, vol. 39, no. 2, March 2010 (2010-03-01), pages 265 - 269 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022221861A1 (en) * 2021-04-14 2022-10-20 Carbonfree Chemicals Holdings, Llc Methods and compositions for the sequestration of carbon dioxide

Also Published As

Publication number Publication date
CN103055682B (zh) 2015-08-12
CN103055682A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
CN103223292B (zh) 酸性尾气氨法烟气治理方法及装置
WO2014101641A1 (zh) 固体燃料发电站废弃物综合处理工艺及其设备
JP5865495B2 (ja) 塩排水の処理方法及び装置
CN100581992C (zh) 利用浓海水生产溴素的工艺方法
CN102145912B (zh) 利用氨碱滤过母液制备氯化钙溶液的工艺方法
CN101455974B (zh) 综合利用氯化汞触媒生产中尾气的方法
RU2010115481A (ru) Удаление диоксида углерода из потоков отходящего газа посредством совместного образования карбонатных и/или бикарбонатных минералов
US9464010B2 (en) Systems, methods and devices for the capture and hydrogenation of carbon dioxide with thermochemical Cu—Cl and Mg—Cl—Na/K—CO2 cycles
CN101367531A (zh) 一种将表面工程技术应用于天然碱生产领域的联合制碱法
CN102773006A (zh) 一种以CaO 为载体循环捕集二氧化碳的设备及工艺
WO2016086826A1 (zh) 用于从窑法磷酸工艺的出窑烟气中制磷酸的改进型设备及制磷酸的工艺
CN103880046A (zh) 以钙型岩盐卤水和锅炉烟道气联产碳酸钠、氯化钠、氯化铵工艺
CN112520761A (zh) 一种烟气镁法脱硫资源化高效产出的系统和方法
WO2018015581A1 (es) SISTEMA INTEGRADO DE CAPTURA DE CO2 Y PRODUCCIÓN DE BICARBONATO DE SODIO (NaHCO3) A PARTIR DE TRONA (Na2CO3 - 2H2O - NaHCO3)
WO2014007032A1 (ja) 塩排水の処理方法及び装置
CN114477230A (zh) 一种侯氏联合制碱中化学升华-变温结晶分离碱盐的方法
CN203002205U (zh) 固体燃料发电站废弃物综合处理系统
CN114950117B (zh) 一种吸收二氧化碳气体的工业固碳系统及方法
CN216024071U (zh) 一种含氨尾气的综合净化装置
CN109574046A (zh) 一种以多种副产物为原料生产纯碱的方法
CN106731562A (zh) 一种高浓度含氯有机废气的综合处理方法及装置
CN101549253A (zh) 混流型排气处理装置和处理方法
CN203976418U (zh) 一种以氯化钾、天然气为原料实现资源综合利用的生产系统
CN203586229U (zh) 一种高浓度有机废液焚烧设备
CN104826464B (zh) 一种新型酸性气处理工艺方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868036

Country of ref document: EP

Kind code of ref document: A1