WO2014101529A1 - 一种干扰信号处理的方法及设备 - Google Patents

一种干扰信号处理的方法及设备 Download PDF

Info

Publication number
WO2014101529A1
WO2014101529A1 PCT/CN2013/085083 CN2013085083W WO2014101529A1 WO 2014101529 A1 WO2014101529 A1 WO 2014101529A1 CN 2013085083 W CN2013085083 W CN 2013085083W WO 2014101529 A1 WO2014101529 A1 WO 2014101529A1
Authority
WO
WIPO (PCT)
Prior art keywords
interfering cell
cell
edge user
user
configuration parameters
Prior art date
Application number
PCT/CN2013/085083
Other languages
English (en)
French (fr)
Inventor
易雄书
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014101529A1 publication Critical patent/WO2014101529A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for processing interference signals. Background technique
  • LTE 3G Long Term Evolution
  • LTE-A LTE-Advanced Evolution
  • CoMP Coordinated Multi-Point
  • the C0MP is divided into an inter-station CoMP Inter-eNB CoMP and an intra-station CoMP Intra-eNB CoMP according to whether the serving cell and the cooperating cell share a common site.
  • the C0MP is further divided into Coordinating Schedule/Coordinating Beamforming (CS/CB), Dynamic Cell Selection (Dynamic Cell Selection) , DCS) and Joint Transm ssion (JT), where JT can be classified into SU (Single User) - JT and MU (Multi-User) - JT according to the number of users scheduled on the same time-frequency resource.
  • CS/CB Coordinating Schedule/Coordinating Beamforming
  • Dynamic Cell Selection Dynamic Cell Selection
  • DCS Dynamic Cell Selection
  • JT Joint Transm ssion
  • CS/CB is mainly divided into Coordinating Beam Switch (CBS) and Coordinating Beamforming (CBF).
  • CBS Coordinating Beam Switch
  • CBF Coordinating Beamforming
  • the CBS adopts a predetermined regular beam switching in the time domain or the frequency domain to achieve overall beam avoidance by all users in each cell, thereby reducing interference and avoiding the flashlight effect (because the neighboring cell beam timings are changing, the channel quality indication of the feedback is caused.
  • the Quality Indicator, CQI cannot reflect the channel quality at the next moment, and improve performance.
  • CBS requires unified coordination of the entire network, the implementation is constrained.
  • the CBF adjusts the user weight on the same scheduling resource of the cooperative set cell, thereby reducing inter-cell interference.
  • CBF features: 1) The service data does not need to interact in the cooperative set cell, and the backhaul capacity requirement is low; 2) Because of the channel information measurement, the cooperative set cell needs to exchange a small amount of user scheduling information.
  • the main application scenarios of CBF Any scenario in the station and between stations that needs to improve the performance of edge users is mostly used in macro cell scenarios.
  • JT Characteristics of JT: All collaborative cells need to exchange user data and scheduling information, which requires higher return procedures. The average spectral efficiency of the cell can be improved while improving the edge coverage. For JT, phase alignment between RRUs in collaborative cells is required, which is currently difficult. This is also the advantage of our program.
  • JT main application scenarios There are high-capacity backhaul resources, any scenarios that need to improve edge user performance and improve system spectrum efficiency.
  • the prior art is CoMP, mainly for CBF and JT schemes.
  • the main algorithms of CBF are Signal-to-Leakage-Noise Ratio (SLNR) and Zero Forcing (ZF). Knowing the noise of the terminal, ZF needs to perform interference avoidance at the origin, which leads to loss of useful signal strength.
  • SLNR Signal-to-Leakage-Noise Ratio
  • ZF Zero Forcing
  • the JT scheme virtualizes the Radio Remote Unit (RRU) of multiple coordinated cells into one RRU.
  • RRU Radio Remote Unit
  • the number of antennas is doubled, and the BF algorithm is used to obtain the array gain. If multi-user beamforming is considered.
  • MUBF Multi-User Beamforming, MUBF), can also obtain spatial multiplexing gain to achieve the purpose of using interference.
  • An object of the embodiments of the present invention is to provide a method for processing interference signals, which can effectively suppress interference of one or more strong interfering cell signals to user equipment.
  • a method for processing interference signals comprising:
  • the scheduling configuration parameter includes at least a scheduling resource location, a pilot port number, and a reference signal initialization parameter, where the reference signal initialization parameter includes at least a scrambling code identifier, an introduced pilot sequence initialization seed value, and a slot number n s;
  • the interference cell The information includes at least an interference cell identification number that interferes with the edge user signal;
  • the serving cell information includes at least a serving cell identification number of the edge user;
  • the scheduling configuration parameter of the edge user to the interfering cell, so that the interfering cell adjusts the scheduling configuration parameter of the scheduling user according to the edge user scheduling configuration parameter, so that the edge user and the scheduling
  • the pilot of the user is orthogonal, wherein the scheduling user is a user in the interfering cell and the edge user occupies the same or part of the time-frequency resource; modifying the number of orthogonal pilots of the edge user, so that the edge
  • the number of orthogonal pilots of the user is the sum of the number of orthogonal pilots of the original edge user and the number of orthogonal pilots of the scheduled user, but does not exceed the maximum orthogonal pilot number pre-designed by the system. If yes, the number of orthogonal pilots is set to the maximum orthogonal pilot number, and the base station of the edge user records an invalid codeword number;
  • the edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and detects and decodes by the input/output antenna system.
  • the modifying the number of orthogonal pilots of the edge user includes:
  • the interfering cell is preset to coordinate only P transport layer flows.
  • the modifying the number of orthogonal pilots of the edge user includes: The cell allocates the number of orthogonal pilots of the interfering cell according to the magnitude of the interference signal strength of the interfering cell, and allocates the largest number of orthogonal pilots among the interfering cells with the highest interference signal strength among the plurality of interfering cells.
  • the scheduling configuration parameter of the edge user is sent to an interfering cell by using a private interface or an X2 interface, so that the interfering cell is configured according to the edge
  • the user scheduling configuration parameter adjusts and coordinates the scheduling configuration parameters of the scheduling user in the interfering cell, including: Transmitting, by the private interface or the X2 interface, the scheduling configuration parameter of the edge user to the strongest interfering cell, so that the most interfering cell adjusts and coordinates the scheduling user in the strongest interfering cell according to the edge user scheduling configuration parameter.
  • Schedule configuration parameters are: Transmitting, by the private interface or the X2 interface, the scheduling configuration parameter of the edge user to the strongest interfering cell, so that the most interfering cell adjusts and coordinates the scheduling user in the strongest interfering cell according to the edge user scheduling configuration parameter.
  • the edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, including:
  • the edge user performs orthogonal pilot channel estimation based on the maximum number of orthogonal pilots pre-designed by the system.
  • a second aspect a method for processing interference signals, the method comprising:
  • the interfering cell receives the scheduling configuration parameter sent by the serving cell of the edge user through the private interface or the X2 interface;
  • the interfering cell coordinates scheduling configuration parameters of the scheduling user of the interfering cell according to the scheduling configuration parameter.
  • the method further includes:
  • the interfering cell After receiving the coordination information, the interfering cell maintains a timer. When the coordination request of the serving cell is not received within a predetermined time, the interfering cell does not perform coordination with the serving cell.
  • the interfering cell coordinates the scheduling user of the interfering cell according to the scheduling configuration parameter Scheduling configuration parameters, including:
  • the strongest interfering cell coordinates pilot configuration parameters of the scheduling user of the strongest interfering cell according to the scheduling configuration parameter.
  • the strongest interfering cell coordinates the scheduling user of the strongest interfering cell according to the scheduling configuration parameter Pilot configuration parameters, including:
  • the strongest interference is small Determining whether to coordinate with one of the plurality of serving cells according to a ratio of a scheduling user of the strongest interfering cell and an edge user of the multiple serving cells in time-frequency resource overlap, when When the edge user's time-frequency resource overlap ratio is the largest, the strongest interference cell coordinates the edge user.
  • the strongest interfering cell coordinates the scheduling user of the strongest interfering cell according to the scheduling configuration parameter Pilot configuration parameters, including:
  • the strongest interfering cell When the strongest interfering cell receives a coordination request from a plurality of serving cells, the ratio of the strongest interfering cell according to the overlap of the time-frequency resources, and the ratio of the strongest interfering cell measured by the plurality of serving cells The information calculates an interference factor, and when the interference factor of the edge user is calculated to be the largest, the strongest interference cell coordinates the edge user.
  • the strongest interfering cell coordinates the scheduling user of the strongest interfering cell according to the scheduling configuration parameter Pilot configuration parameters, including:
  • the strongest interfering cell determines whether to coordinate with one of the multiple serving cells according to the sequence of the coordination request. And when the serving cell of the edge user first sends a coordination request, the strongest interfering cell coordinates the edge user, and the strongest interfering cell performs the coordinated user of the coordinated strongest interfering cell.
  • the identifier is such that the identified scheduling user no longer receives the coordination request of other serving cells.
  • a third aspect is an apparatus for processing interference signals, where the apparatus includes:
  • a determining unit configured to determine an edge user scheduling configuration parameter, an interference cell information, and/or a serving cell information
  • the scheduling configuration parameter includes at least a scheduling resource location, a pilot port number, and a reference signal initialization parameter, where the reference signal initialization parameter is at least The scrambling code identifier, the introduced pilot sequence initialization seed value, and the slot number n s
  • the interfering cell information includes at least an interfering cell identification number that interferes with the edge user signal
  • the serving cell information includes at least the The serving cell identification number of the edge user;
  • a sending unit configured to configure, by using a private interface or an X2 interface, a scheduling configuration of the edge user The number is sent to the interfering cell, so that the interfering cell adjusts the scheduling configuration parameter of the scheduling user according to the edge user scheduling configuration parameter, so that the pilot of the edge user and the scheduling user are orthogonal, where the scheduling user is a user in the interfering cell and the edge user occupying the same or part of the time-frequency resource;
  • a modifying unit configured to modify the number of orthogonal pilots of the edge user, such that the number of orthogonal pilots of the edge user is the original number of orthogonal pilots of the edge user and the positive of the scheduling user The sum of the number of cross-links, but not exceeding the maximum number of orthogonal pilots pre-designed by the system. If exceeded, the number of orthogonal pilots is set to the maximum number of orthogonal pilots, and the base station of the edge user is made. Record invalid codeword number;
  • an estimating unit configured to perform, by the edge user, orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and detect and decode by using a multi-input and output antenna system.
  • the performing, in the modifying unit, performing the step of modifying the number of orthogonal pilots of the edge user includes:
  • the interfering cell is preset to coordinate only P transport layer flows.
  • the modifying unit performs a step of changing the number of orthogonal pilots of the edge user, Includes:
  • the serving cell allocates the number of orthogonal pilots of the interfering cell according to the magnitude of the interference signal strength of the interfering cell, and allocates the maximum number of orthogonal pilots among the interfering cells with the highest interference signal strength among the plurality of interfering cells.
  • the sending unit is specifically configured to:
  • the estimating unit is specifically configured to: The edge user performs orthogonal pilot channel estimation according to the maximum orthogonal pilot number pre-designed by the system.
  • the fourth aspect an apparatus for processing interference signals, where the apparatus includes:
  • a receiving unit configured to receive, by the interfering cell, a scheduling configuration parameter sent by the serving cell of the edge user through the private interface or the X2 interface;
  • a coordination unit configured to coordinate, by the interfering cell, a scheduling configuration parameter of a scheduling user of the interfering cell according to the scheduling configuration parameter.
  • the device further includes:
  • the interfering cell after the interfering cell receives the coordination information, maintains a timer, and when the coordination request of the serving cell is not received within a predetermined time, the interfering cell does not perform with the serving cell. coordination.
  • the strongest interfering cell coordinates pilot configuration parameters of the scheduling user of the strongest interfering cell according to the scheduling configuration parameter.
  • the strongest interfering cell When the strongest interfering cell receives the coordination request from the multiple serving cells, the strongest interfering cell is based on the ratio of the scheduling users of the strongest interfering cell and the edge users of the multiple serving cells in time-frequency resources overlapping. Determining whether to coordinate with one of the plurality of serving cells, when the marginal resource overlap ratio of the edge user is the largest, the strongest interfering cell coordinates the edge user.
  • the strongest interfering cell receives a coordination request from a plurality of serving cells
  • the ratio of the strongest interfering cell according to the overlap of the time-frequency resources, and the ratio of the strongest interfering cell measured by the plurality of serving cells The information calculates the interference factor, and the interference factor of the edge user is calculated to be the largest The strongest interfering cell coordinates the edge user.
  • the strongest interfering cell determines whether to coordinate with one of the multiple serving cells according to the sequence of the coordination request. And when the serving cell of the edge user first sends a coordination request, the strongest interfering cell coordinates the edge user, and the strongest interfering cell performs the coordinated user of the coordinated strongest interfering cell.
  • the identifier is such that the identified scheduling user no longer receives the coordination request of other serving cells.
  • the present invention provides a method for processing interference signals, which measures information of an interfering cell by a serving cell of an edge user, and sends the information to the interfering cell, so that the interfering cell coordinates pilot according to the information.
  • the parameters are configured to reduce the interference signal generated by the interfering cell to the edge user.
  • FIG. 1 is a schematic diagram of a method for processing interference signals according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a method for processing interference signals according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a method for processing interference signals according to Embodiment 3 of the present invention.
  • Embodiment 4 is a flowchart of a method for processing interference signals according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic diagram of a method for processing interference signals according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a method for processing interference signals according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for processing interference signals according to Embodiment 5 of the present invention.
  • FIG. 8 is a structural diagram of an apparatus for processing interference signals according to Embodiment 6 of the present invention.
  • FIG. 9 is a structural diagram of an apparatus for providing interference signal processing according to Embodiment 7 of the present invention.
  • FIG. 10 is a structural diagram of a device of a base station according to Embodiment 8 of the present invention
  • FIG. FIG. 11 is a structural diagram of a device of a user equipment according to Embodiment 9 of the present invention.
  • LTE-Rel9 introduces Multi-User Beamforming (MUBF) and uses Demodulation Reference Signal (DMRS) Antenna Port to ensure MUBF guidance.
  • MUBF Multi-User Beamforming
  • DMRS Demodulation Reference Signal
  • Antenna Port to ensure MUBF guidance.
  • the terminal performs Minimum Mean Square Error (MMSE) detection according to its own flow number, or uses Interference Reject Combining (IRC) detection (estimating the statistical interference covariance matrix of paired users and other interference signals, Perform IRC detection); or perform ⁇ SE detection according to the total number of matched streams, and discard the effect of virtual flow detection to achieve interference suppression.
  • the detection algorithm principle here may be ⁇ SE, IRC, Maximum Likelihood (ML), parallel Interference Cancellation (PIC), Serial Interference Cancellation In addition, (Successive Interference Cancel lation, SIC), etc.; Obviously, the scheme of detecting according to the total number of streams of MUBF can achieve better interference suppression performance by estimating the instantaneous channel information of the paired users.
  • r (l,k) H 0 w 00 s d0 +q- H 0 w 01 s d0 + I 00 +n 00 (1)
  • r (1 + 1, k) H 0 w 00 sr id0 + q ⁇ H 0 w 01 sr id0 +I 01 +n c
  • q is s in the formula (3).
  • OFDM symbol channel changes are negligible, so code division pilots are suitable for medium and low speed fields.
  • the pilot position least squares (LS) channel estimation value can be well demodulated, and Since the averaging is performed by using two consecutive pilot position channel values, the variance of the noise portion is also reduced, and a good performance gain can be obtained in a low signal to noise ratio (SNR) interval.
  • SNR signal to noise ratio
  • the left pilot port Port7 is configured for UE1, Cell1, and right pilot of cell 1.
  • Port 8 is configured for UE2 of Cell2, and UE1 and UE2 are located on the same time-frequency resource.
  • the invention can be designed according to the principle, and the interaction parameters can be modified.
  • the cell 1 informs the cell 2 (Resource Block, RB), SCID, X value, Port number, and slot number n s of the edge UE through the X2 interface or the private interface to notify the cell 2 (the strongest interfering cell).
  • the strong interfering cell determines that the measured value of the local area signal and the neighboring area interference signal, such as Received Signal Strength Indication (RSI) or the interference signal strength (such as Reference Signal Receiving Power, RSRP) or the letter, may be used.
  • RSI Received Signal Strength Indication
  • RSRP Reference Signal Receiving Power
  • the difference between the Signal to Interference plus Noise Ratio (SINR) is less than a threshold, and the cell 2 is configured on the RBs as the SCID, X value, and orthogonal Port number of the RB location of the cell 1 edge UE. slot number n s.
  • SINR Signal to Interference plus Noise Ratio
  • the cell edge according to the second flow UE1 demodulates (UE1 of transmission layers assuming initial indication (indicated by Rank Indicator, RI) is 1, is a single-stream transmission), in order that the UE1 solution flow press 2
  • the number of transmission layers of the UE1 is modified on the base station side (the cell edge UE is generally a transport layer, that is, the single-stream transmission is performed, and the base station side modifies the RI value reported by the UE), and the single stream is modified into a dual stream.
  • the second codeword is a virtual codeword
  • the layer corresponding to the second codeword is a virtual layer, and no data transmission is performed.
  • UE1 demodulation is demodulated according to 2 streams, if adopted Receiver such as MMSE/ML/PIC/SIC, assuming that the second codeword is an invalid virtual codeword (known by the base station), and feedback the A/N of two codewords (confirming Acknowledge/Negative Negative, ACK/NACK) as a loop
  • the result of the check (Cycic Redundancy Check, CRC), ACK means correct check, NACK means check error), the second codeword is N (NACK), and the base station knows that no operation is performed.
  • CRC Cycic Redundancy Check
  • ACK means correct check
  • NACK means check error
  • NACK NACK
  • the base station knows that no operation is performed.
  • MIMO multiple input/output
  • Step 1 Celll determines the configuration of the edge UE scheduling parameters and the interference situation. (At the same time, maintain the identity of the RB that has been coordinated or required to be coordinated by other cells);
  • Step 2 Celll informs the above information to Cell2/7/8 through the private interface or X2 interface (the strongest interference cell corresponding to Celll UE1/3/2 respectively);
  • Step 3 Cell2/7/8 adjusts the P0RT/SCID/X configuration of the corresponding scheduling user according to the above information, and puts on the coordination identifier (to avoid re-coordination when other cells perform similar operations on Cell l, and repeat information interaction) ;
  • the fourth step Celll edge UE1 transmission layer number is 2, other transmission processes are consistent with the number of transmission layers 1, and the Celll base station records the invalid codeword number;
  • Step 5 The UE performs channel estimation of two orthogonal pilots according to the number of transmission layers, performs 2-stream MIM0 detection, decodes, and feeds back A/N of two codewords.
  • FIG. 2 is a flow chart of a method for processing interference signals according to Embodiment 2 of the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Determine an edge user scheduling configuration parameter, the interference cell information, and/or the serving cell information.
  • the scheduling configuration parameter includes at least a scheduling resource location, a pilot port number, and a reference signal initialization parameter, where the reference signal initialization parameter includes at least the interference.
  • a code identifier an introduced pilot sequence initialization seed value, a slot number n s;
  • the interference cell information includes at least an interference cell identification number that interferes with the edge user signal;
  • the serving cell information includes at least the edge user Service cell identification number;
  • the edge user is the reference signal quality of the user according to the measurement service cell and the interference cell. When the difference between the two is within a preset threshold, the user is an edge user.
  • Interfering cell is used The user receives an interference signal of another cell except the serving cell signal, and the other cell is an interference cell.
  • a serving cell is a cell that serves users and sends control signals to users.
  • the cell 1 that is, the cell 1 confirms the scheduling configuration parameter of the edge user Cell l UE1, the interference cell information and/or the serving cell information;
  • the scheduling configuration parameter includes a scheduling resource location, a pilot port number, and a reference signal initialization parameter.
  • the interference cell information includes an Interferenced Cell Strength Indication (RSI) and a channel interference that interferes with the edge user signal.
  • RSI Interferenced Cell Strength Indication
  • the Signal Strength Receiving Power is at least ——the monthly traffic cell information includes the serving cell identification number of the edge user, signal strength and signal quality (eg, Signal to Interference plus Noise Ratio, Abbreviated as SINR, Carrier to Interference plus Noise Ratio, CINR, Signal to Noise Ratio, SNR, Signal to Interference Ratio, SIR, Reference Signal Receiving Quality, abbreviated as RSRQ) at least one.
  • SINR Signal to Interference plus Noise Ratio
  • CINR Signal to Noise Ratio
  • SNR Signal to Interference Ratio
  • SIR Signal to Interference Ratio
  • RSRQ Reference Signal Receiving Quality
  • Step 202 Send the scheduling configuration parameter of the edge user to the interfering cell through the private interface or the X2 interface, so that the interfering cell adjusts the scheduling configuration parameter of the scheduling user according to the edge user scheduling configuration parameter, so that the edge user and The pilot of the scheduling user is orthogonal, where the scheduling user is a user in the interfering cell and the edge user occupies the same or part of the time-frequency resource;
  • the scheduling user is a user who occupies the same or partially the same time-frequency resource in the Cell2 cell as the Cell l edge user.
  • the scheduling configuration parameter of the edge user is sent to the interfering cell by using the private interface or the X2 interface, so that the interfering cell adjusts the scheduling configuration of the scheduling user in the interfering cell according to the edge user scheduling configuration parameter. parameter.
  • Step 203 Modify the number of orthogonal pilots of the edge user, such that the number of orthogonal pilots of the edge user is the original number of orthogonal pilots of the edge user and the orthogonal guide of the scheduling user. The sum of the number of frequencies, but not exceeding the maximum number of orthogonal pilots pre-designed by the system. If exceeded, the number of orthogonal pilots is set to the maximum number of orthogonal pilots, and the base of the edge user is made. The station records an invalid codeword number;
  • the modifying the number of orthogonal pilots of the edge user includes:
  • the interfering cell is preset to coordinate only P transport layer flows.
  • the modifying the number of orthogonal pilots of the edge user includes:
  • the serving cell allocates the number of orthogonal pilots of the interfering cell according to the magnitude of the interference signal strength of the interfering cell, and the number of orthogonal pilots that allocate the most orthogonal interfering cells with the highest interference signal strength among the plurality of interfering cells.
  • Celll allocates pilot ports to Cell2/3/4 according to the strength of the interference signal.
  • Cell2 is a Celll UElCell2 that allocates two ports, and Cell3 allocates one port. At this time, it is not necessary to interact with Cell4 because there is no positive.
  • the crossover pilot port is assigned.
  • Step 204 The edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and detects and decodes by using a multi-input and output antenna system.
  • the edge user performs orthogonal pilot channel estimation according to the maximum orthogonal pilot number pre-designed by the system.
  • An embodiment of the present invention provides a method for processing an interference signal, where the method detects an information of an interfering cell by using a serving cell of an edge user, and sends the information to the interfering cell, so that the interfering cell coordinates according to the information.
  • the pilot configuration parameters are such that interference signals generated by the interfering cell to the edge user are reduced.
  • FIG. 3 is a flow chart of a method for processing interference signals according to Embodiment 3 of the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step 301 The interfering cell receives the scheduling configuration parameter sent by the serving cell of the edge user through the private interface or the X2 interface.
  • Step 302 The interfering cell coordinates a scheduling configuration parameter of the scheduling user of the interfering cell according to the scheduling configuration parameter.
  • the method further includes:
  • the interfering cell After receiving the coordination information, the interfering cell maintains a timer. When the coordination request of the serving cell is not received within a predetermined time, the interfering cell does not perform with the serving cell. Coordination.
  • the interfering cell coordinates the scheduling configuration parameters of the scheduling user of the interfering cell according to the scheduling configuration parameter, including:
  • the strongest interfering cell coordinates pilot configuration parameters of the scheduling user of the strongest interfering cell according to the scheduling configuration parameter.
  • the most powerful interfering cell coordinates the pilot configuration parameters of the scheduling user of the strongest interference cell according to the scheduling configuration parameter, including:
  • the strongest interfering cell When the strongest interfering cell receives the coordination request from the multiple serving cells, the strongest interfering cell is based on the ratio of the scheduling users of the strongest interfering cell and the edge users of the multiple serving cells in time-frequency resources overlapping. Determining whether to coordinate with one of the plurality of serving cells, when the edge user has the largest proportion of time-frequency resource overlap, the strongest interfering cell coordinates the edge user.
  • the most powerful interfering cell coordinates the pilot configuration parameters of the scheduling user of the strongest interference cell according to the scheduling configuration parameter, including:
  • the strongest interfering cell When the strongest interfering cell receives a coordination request from a plurality of serving cells, the ratio of the strongest interfering cell according to the overlap of the time-frequency resources, and the ratio of the strongest interfering cell measured by the plurality of serving cells The information calculates an interference factor, and when the interference factor of the edge user is calculated to be the largest, the strongest interference cell coordinates the edge user.
  • the most powerful interfering cell coordinates the pilot configuration parameters of the scheduling user of the strongest interference cell according to the scheduling configuration parameter, including:
  • the strongest interfering cell determines whether to coordinate with one of the multiple serving cells according to the sequence of the coordination request. And when the serving cell of the edge user first sends a coordination request, the strongest interfering cell coordinates the edge user, and the strongest interfering cell performs the coordinated user of the coordinated strongest interfering cell.
  • the identifier is such that the identified scheduling user no longer receives the coordination request of other serving cells.
  • An embodiment of the present invention provides a method for processing an interference signal, where the method receives a scheduling configuration parameter sent by a serving cell, and coordinates the adjustment of the interference cell according to the scheduling configuration parameter. Scheduling configuration parameters of the user, such that the interference generated by the interfering cell to the edge user is reduced
  • FIG. 4 is a flow chart of a method for processing interference signals according to Embodiment 4 of the present invention. As shown in FIG. 4, the method includes the following steps:
  • Step 401 Determine an edge user scheduling configuration parameter, an interference cell information, and/or a serving cell information.
  • the scheduling configuration parameter includes at least a scheduling resource location, a pilot port number, and a reference signal initialization parameter, where the reference signal initialization parameter includes at least a a code identifier, an introduced pilot sequence initialization seed value, a slot number n s;
  • the interference cell information includes at least an interference cell identification number that interferes with the edge user signal;
  • the serving cell information includes at least the edge user Service cell identification number;
  • Step 402 Send the scheduling configuration parameter of the edge user to the strongest interfering cell through the private interface or the X2 interface, so that the strongest interfering cell adjusts the scheduling configuration parameter of the scheduling user according to the edge user scheduling configuration parameter, so that the The pilot user of the edge user and the scheduling user are orthogonal, wherein the scheduling user is a user in the strongest interfering cell and the edge user occupies the same or part of time-frequency resources;
  • the cell 1 sends the time-frequency resource location scheduled by the edge UE1, and the reference signal initialization parameter is notified to the strongest interfering cell through the X2 interface or the private interface (the strongest interfering cell, the cell with the strongest interference signal)
  • the strong interfering cell has 2/3/4/5
  • the strongest interfering cell is cell 2, refer to Table 1 and Table 2.
  • the coordinating process of the Cell2 and the edge user is not performed. That is, when the difference between the RSRP of the strongest interfering cell and the RSRP of the serving cell is greater than a preset threshold, the interference of the strongest interfering cell on the edge user is negligible, and therefore, the cell 2 and the edge are not required. User coordination.
  • Cell2 UEl/2/3 Cell2 UE1 5 RBs (Resource Block) and Celll UE1 If there is overlap, there are two RBs that do not overlap with Cell l UE1. Since the overlap ratio of Cell2 UE1 is 5/7, which is greater than 1/2, Cell2 UE1 needs to coordinate with Cell l UE1 and no longer receive coordination of other edge users.
  • Cell2 UE1 Modify the configuration of the pilot parameters according to the scheduling configuration parameters of the Cell 1 UE1 to achieve the same purpose as the pilot of the Cell l UE1. For the Cell 2 UE3, the pilot parameters are modified similarly to the Cell 2 UE1.
  • Cell2 UE3 since the overlap ratio with Cell l UE1 is 3/7, less than 1/2, it is necessary to have coordination requirements for Cell2 UE3 according to whether there are other edge users, if any, and the occupancy ratio is more than 3/7. Large, Cell2 UE3 preferentially coordinates with other cells. At this time, Cell2 can also coordinate according to the order of request coordination, regardless of the overlap ratio or other conditions, such as Cell l is the cell that first requests interference coordination from Cell2, then Cell2 only performs interference coordination for Cell l UE1.
  • the Cell2 UE1/2/3 modifies its own pilot parameter configuration according to the scheduling configuration parameters of Cell l UE1, and achieves the purpose of being orthogonal to the pilot of Cell l UE1.
  • an optional embodiment is that the edge user scheduling configuration parameter and the interference cell information, such as RSRP, are sent to the strongest interference cell Cel 12 through a private interface and/or an X2 interface, and the Cell2 may accept multiple cells. Coordinating the request, at this time, Cell2 UE1 and UE3 need to perform coordinated cell selection according to the overlap ratio and signal strength parameters such as RSRP. As shown in FIG. 5, Cell3 UE1's strongest interference cell is also Cell2, and Cell2 is also required for coordination. At this time, Cell2 is Decisions need to be made and can be measured using interference factors.
  • the interference cell information such as RSRP
  • Cell l sends information through a private interface and/or an X2 interface.
  • the information here includes at least one of Cell ID, RSRP, RSSI, SINR, SIR, CINR, SNR, and RSRQ.
  • the Celll interference factor may include the SINR, CINR, SIR, SNR, and RSRQ of the Celll UE1.
  • Celll UE1 measures the signal strength of the serving cell Celll, other interference cell signal strength and other information.
  • the number of user multiplexed streams that overlap with the time-frequency resources of the Cell l UE1 is recorded.
  • the Cell1 UE1 is the L1 stream and the Cell2 UE2 is the L2 stream, and then the Celll UE1's pilot port number and reference are calculated according to the Celll interaction.
  • the signal initialization parameters, Cell2 UE1 and Cell2 UE2 complete the modification of the pilot parameter configuration to achieve the purpose of orthogonality with the Celll UE1 pilot.
  • the strongest interfering cell determines whether to coordinate with one of the multiple serving cells according to the sequence of the request coordination request, the strongest interfering cell performs the coordinated scheduling user.
  • the identifier is such that the identified scheduling user no longer receives the coordination request of other serving cells.
  • Cell2 needs to mark the time-frequency resources that have been modified by the pilot parameter configuration to avoid re-occurring with other cells.
  • the adjusting, according to the edge user scheduling configuration parameter, the orthogonal pilot configuration parameter of the scheduling user in the strongest interfering cell that is the same or partially the same time-frequency resource as the edge user is: User's scheduling resource location, reference signal initialization parameters such as scrambling code Identifying, introducing a pilot sequence initialization seed value, a slot number n s, etc., a reference signal initialization parameter of a scheduling user in a strong interfering cell occupying the same or partially the same bandwidth as the edge user, such as a scrambling code identifier, and a introduced guide
  • the frequency sequence initializes the seed value, and the slot number n s is adjusted to the same value as the edge user; according to the pilot port number of the edge user, the same or partially the same or partially the same time-frequency resource will be occupied with the edge user.
  • the pilot port number of the scheduled user in the strong interfering cell is adjusted to a value different from that of the edge user to ensure orthogonality between the pilots.
  • Step 403 Modify the number of orthogonal pilots of the edge user, such that the number of orthogonal pilots of the edge user is the original number of orthogonal pilots of the edge user and the orthogonal guide of the scheduling user. The sum of the number of frequencies, but not exceeding the maximum number of orthogonal pilots pre-designed by the system. If exceeded, the number of orthogonal pilots is set to the maximum number of orthogonal pilots, and the base station record of the edge user is invalid. Codeword number;
  • An invalid codeword is a fictitious codeword.
  • One codeword has the same modulation and coding parameter configuration.
  • One codeword can be mapped to one or more transport layers or streams. Each transport layer or stream needs to have a corresponding pilot.
  • the port is used for data detection and demodulation. Different protocols have agreed on this.
  • the service to the user may include one or more codewords. It is assumed that each codeword corresponds to one transport layer. When the transport layer or stream is modified, 2, two codewords are needed, and the previous data has only one codeword. Therefore, due to the increase of the transport layer or stream, it is necessary to fictitate another codeword.
  • the fictitious codeword is an invalid codeword, or it can be virtual. Codeword. Transport layers and flows are equivalent concepts.
  • the virtual codeword corresponds to the K2-K1 layer multiplexed data, and the base station of the edge user records the invalid codeword number.
  • the edge user can assume that the modified total stream number K2 is Z, - directly press the Z stream pilot for channel estimation and MIM0 detection.
  • the edge user needs K2 stream pilot to perform channel estimation, and in order to obtain channel estimation values corresponding to all orthogonal pilots, modify the edge user in the base station of the edge user.
  • the RANK value (the number of multiplexed streams) K1 is K2; and the K1 stream is guaranteed to be mapped to one or more codewords, which are recorded as valid codewords.
  • the valid codeword contains only the original data of the K1 stream, and other processing flows are still transmitted with the K1 stream.
  • the remaining K2-K1 streams are virtual streams corresponding to virtual codewords, and the virtual streams do not perform data and pilot transmission, so that the edge users perform demodulation according to the total number of orthogonal pilots K2.
  • the edge UE1 of the cell 1 performs channel estimation according to the orthogonal pilots involved in the cell 1/2 of the UE1 scheduling resource, as shown in Table 1 and FIG. 2, obtaining channel estimation values corresponding to all orthogonal pilots, assuming Cell l UE1 For 1 stream transmission, Cell2 UE1 is 1 stream transmission, Cell2 UE2 is 2 stream transmission, the system total orthogonal pilot number is 2, and then Cell l UE1 demodulates according to the total layer (stream) number 2, in order to make UE1 press 2 stream Performing demodulation, modifying the RANK value of UE1 on the base station side to 2 (the RANK value indicates the number of multiplexed streams sent by the edge user, and the base station informs the user of the number of transmission layers by using downlink signaling such as RI (Rank Indicator)), Cell l UE1 The number of multiplexed streams is changed from 1 stream to 2 streams, and it is ensured that the original 1 stream of Cel ll UE1 is mapped to
  • Step 404 The edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and detects and decodes by using a multi-input and output antenna system.
  • the edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and is detected by a multi-input and output antenna system (MIM0 detection, such as ⁇ SE detection, ML detection, IRC detection, etc.), Decoding, verification, if the verification result of the virtual codeword does not pass, the base station does not perform retransmission processing.
  • MIM0 detection such as ⁇ SE detection, ML detection, IRC detection, etc.
  • Decoding verification, if the verification result of the virtual codeword does not pass, the base station does not perform retransmission processing.
  • the UE1 demodulation is demodulated according to the K2 stream, such as using a receiver such as MMSE/ML/IRC, and the virtual codeword corresponding to the virtual stream is an invalid virtual codeword (known by the base station), and UE1 feeds back the CRC check result of each codeword. If the virtual codeword CRC check result is incorrect, after the base station learns, the retransmission operation is not performed. Finally, UE1's Multiple-Input Multiple-Out-put (MIM0) detection and demodulation are completed, and the inter-cell coordination is achieved for interference suppression reception.
  • MIM0 Multiple-Input Multiple-Out-put
  • An embodiment of the present invention provides a method for processing an interference signal, where the method detects an information of an interfering cell by using a serving cell of an edge user, and sends the information to the strongest interfering cell. Having the strongest interfering cell coordinate the pilot configuration parameters according to the information, so that the interference signal generated by the strongest interfering cell to the edge user is reduced, so that the strongest interfering cell signal is effectively suppressed to the edge user. Interference.
  • FIG. 7 is a flow chart of a method for processing interference signals according to Embodiment 5 of the present invention.
  • the method includes:
  • Step 701 Determine an edge user scheduling configuration parameter, and interfere with cell information and/or serving cell information.
  • the scheduling configuration parameter includes at least a scheduling resource location, a pilot port number, and a reference signal initialization parameter, where the reference signal initialization parameter includes at least a a code identifier, an introduced pilot sequence initialization seed value, a slot number n s;
  • the interference cell information includes at least an interference cell identification number that interferes with the edge user signal;
  • the serving cell information includes at least the edge user Service cell identification number;
  • cell 1 informs the strong interfering cell (strong interfering cell, cell with strong interference signal) by using the X2 interface or the private interface to locate the time-frequency resource location and the reference signal configuration information of the edge UE1. It can be judged by the difference between the interfering cell RSRP and the Cell UE1 serving cell RSRP. Only when the difference is less than a certain threshold, the coordination is performed. As shown in Table 1, the threshold is assumed to be 5 dB, then for Celll UE1, only Co2 needs to be coordinated.
  • Cell3 and Cell4 can be, as shown in the following table, for UE1, the strong interfering cell has 2/3/4, and the strongest interfering cell is cell 2, refer to Table 4.
  • the coordination process of the strong interfering cell is not performed. LW & U clothing
  • Step 702 Send the scheduling configuration parameter of the edge user to the strong interfering cell Cell2/3/4 through the private interface or the X2 interface, so that Cell2/3/4 is scheduled according to the edge user.
  • the configuration parameter adjusts a pilot configuration parameter of the scheduling user that is the same or partially the same time-frequency resource as the edge user, so that the pilot of the edge user and the scheduling user are orthogonal, wherein the scheduling user is the a user in the interfering cell and the edge user occupying the same or part of the time-frequency resource;
  • Cell2 UE1 is an L1 stream
  • Cell2 UE2 is an L2 stream
  • L1 L2 and finally UE2 performs pilot orthogonalization with Celll UE1 according to L2 stream, or is consistent with Cell2 UE1, and is multiplexed by L1 stream transmission and Celll UEl
  • the pilot orthogonalization parameter configuration is optional.
  • Cell2 will finally coordinate the L1 stream or the L2 stream (the result is denoted as L, which is described as the number of orthogonal pilots of the scheduling users in the strongest interfering cell). It is sent to Celll through the private interface and/or X2 interface, and Celll UE1 can Calculate the modified total orthogonal pilot number based on this result
  • step 703 whether there is a coordinated time-frequency resource overlap user in Cell2/3/4, and the number of streams finally coordinated by Cell2/3/4 is referred to step 703, and it is assumed that the final coordinated stream number of Cell2 is 1 stream, and Cell3 is 2 Flow, Cell4 is 2 streams, and the maximum number of streams in the system is 4 streams.
  • Cell2/3/4 each receives the edge user scheduling configuration parameters sent by Celll, as shown in Table 4, and the Cell2 interference signal strength is the largest, and Cell3 and Cell4 are the second.
  • Cell2 first performs coordination. At this time, the number of total pilot ports coordinated by the edge UE and Cell2 is 2, and the maximum number of orthogonal pilot ports of the system has not been reached.
  • Cell2 sends Table 5 to Cell3, and Cell3 coordinates the pilot port according to the parameters. At this time, the total number of pilot ports after coordination is 4, and the maximum number of orthogonal pilot ports in the system is reached. Then, in the similar manner, Cell3 and Cell2 send coordinated information to Cell4, and Cell4 finds that the maximum number of orthogonal pilot ports has been reached. No further coordination.
  • Cell 1 performs pilot port allocation for Cell 2/3/4 according to the strength of the interference signal. For example, Cell 2 allocates 2 ports, and Cell 3 allocates 1 port, and does not need to communicate with Ce 114 at this time. Interaction, because there are no orthogonal pilot ports to allocate.
  • the adjusting, according to the edge user scheduling configuration parameter, the orthogonal pilot configuration parameter of the intra-scheduled user in the strong interfering cell that is the same or partially the same time-frequency resource as the edge user is:
  • the scheduling resource location, the reference signal initialization parameter, such as the scrambling code identifier, the introduced pilot sequence initialization seed value, the slot number n s, etc., will be used by the edge user to occupy the same or part of the same bandwidth of the strong interfering cell scheduling user
  • the reference signal initialization parameter, such as the scrambling code identifier, the introduced pilot sequence initialization seed value, the slot number n s is adjusted to the same value as the edge user;
  • the coordinated interference cell coordination is coordinated according to the pilot port number of the edge user
  • the pilot port number or the agreed strong interfering cell pilot port configuration, and the pilot port number of the intra-scheduled user in the strong interfering cell that is the same or partially identical or partially identical to the edge user is adjusted to Edge users and other coordinated interfering
  • the number of frequencies is L, Z is the maximum orthogonal pilot number designed by the system.
  • the edge user can assume that the modified total stream number ⁇ 2 is ⁇ , - the channel estimation is performed directly by the turbulent pilot.
  • the Cell2 UE1/2/3 scheduling resources overlap with the edge users, and L may be selected as the maximum number of pilots in UE1, UE2, and UE3, that is, equal to UE1/2/3.
  • I nn nn nn or, nn nn n 11 VIII can be rounded up, round up or down operations, other methods such as the table based on the simulation results to check the table and other methods are not listed. Adjusting the codeword mapping relationship by using the parameters of the pre-modified pilot and data of the edge user to ensure that the edge user data is mapped to one or more codewords, The data should be multiplexed to the K1 layer, the virtual codeword corresponding to the K2-K1 layer multiplexed data, and the base station of the edge user recording the invalid codeword number.
  • the edge user needs K2 stream pilot to perform channel estimation, and in order to obtain channel estimation values corresponding to all orthogonal pilots, modify the RANK value of the edge user in the base station of the edge user (the number of multiplexed streams) K1 is K2; and the K1 stream is guaranteed to be mapped to one or more codewords, which are recorded as valid codewords.
  • the valid codeword contains only the original data of the K1 stream, and other processing flows are still consistent with the K1 stream emission, and the remaining K2-
  • the K1 stream is a virtual stream corresponding to a virtual codeword, and the virtual stream does not perform data and pilot transmission, so that the edge user performs demodulation according to the total number of orthogonal pilots K2.
  • Step 704 The edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and detects and decodes by using a multi-input and output antenna system.
  • the edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and is detected by a multi-input and output antenna system (MIM0 detection, such as ⁇ SE detection, ML detection, IRC detection, etc.), Decoding, verification, if the verification result of the virtual codeword does not pass, the base station does not perform retransmission processing.
  • MIM0 detection such as ⁇ SE detection, ML detection, IRC detection, etc.
  • Decoding verification, if the verification result of the virtual codeword does not pass, the base station does not perform retransmission processing.
  • An embodiment of the present invention provides a method for processing an interference signal, where the method receives a scheduling configuration parameter sent by a serving cell, and coordinates a scheduling configuration parameter of a scheduling user of the multiple interfering cells according to the scheduling configuration parameter, so that The interference generated by the plurality of interfering cells to the edge user is reduced.
  • FIG. 8 is a structural diagram of an apparatus for processing interference signals according to Embodiment 6 of the present invention.
  • the device comprises the following units:
  • the determining unit 801 is configured to determine an edge user scheduling configuration parameter, the interference cell information, and/or the serving cell information.
  • the scheduling configuration parameter includes at least a scheduling resource location, a pilot port number, a reference signal initialization parameter, and the reference signal initialization parameter. At least the scrambling code identifier, the introduced pilot sequence initialization seed value, and the slot number n s;
  • the interfering cell information includes at least an interfering cell identification number that interferes with the edge user signal;
  • the serving cell information includes at least The serving cell identification number of the edge user;
  • the sending unit 802 is configured to configure the edge user by using a private interface or an X2 interface.
  • the parameter is sent to the interfering cell, so that the interfering cell adjusts the scheduling configuration parameter of the scheduling user according to the edge user scheduling configuration parameter, so that the pilot of the edge user and the scheduling user are orthogonal, where the scheduling user is a user in the interfering cell and the edge user occupying the same or part of the time-frequency resource;
  • the sending unit is specifically configured to:
  • a modifying unit 803 configured to modify the number of orthogonal pilots of the edge user, such that the number of orthogonal pilots of the edge user is the number of orthogonal pilots of the edge user and the scheduled user The sum of the number of orthogonal pilots, but not exceeding the maximum number of orthogonal pilots pre-designed by the system. If exceeded, the number of orthogonal pilots is set to the maximum number of orthogonal pilots, and the edge users are The base station records an invalid codeword number;
  • the modulating unit 803 performs the step of modifying the number of orthogonal pilots of the edge user, including:
  • the interfering cell is preset to coordinate only P transport layer flows.
  • the modulating unit 803 performs the step of changing the number of orthogonal pilots of the edge user, including:
  • the serving cell allocates the number of orthogonal pilots of the interfering cell according to the magnitude of the interference signal strength of the interfering cell, and allocates the maximum number of orthogonal pilots among the interfering cells with the highest interference signal strength among the plurality of interfering cells.
  • the estimating unit 804 is configured to perform, by the edge user, orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and detect and decode by the multiple input and output antenna system.
  • the estimating unit is specifically configured to:
  • the edge user performs orthogonal pilot channel estimation based on the maximum number of orthogonal pilots pre-designed by the system.
  • An embodiment of the present invention provides a user equipment, where the user equipment receives scheduling configuration parameters sent by a serving cell, and coordinates scheduling of the multiple interfering cells according to the scheduling configuration parameter.
  • the scheduling configuration parameter of the user is such that interference generated by the plurality of interfering cells to the edge user is reduced.
  • FIG. 9 is a structural diagram of an apparatus for processing interference signals according to Embodiment 7 of the present invention.
  • the device comprises the following units:
  • the receiving unit 901 is configured to receive, by the interfering cell, a scheduling configuration parameter sent by the serving cell of the edge user by using the private interface or the X2 interface;
  • the coordinating unit 902 is configured to coordinate, by the interfering cell, a scheduling configuration parameter of the scheduling user of the interfering cell according to the scheduling configuration parameter.
  • the coordination unit 902 is specifically configured to:
  • the strongest interfering cell coordinates pilot configuration parameters of the scheduling user of the strongest interfering cell according to the scheduling configuration parameter.
  • the coordination unit 902 is specifically configured to:
  • the strongest interfering cell When the strongest interfering cell receives the coordination request from the multiple serving cells, the strongest interfering cell is based on the ratio of the scheduling users of the strongest interfering cell and the edge users of the multiple serving cells in time-frequency resources overlapping. Determining whether to coordinate with one of the plurality of serving cells, when the marginal resource overlap ratio of the edge user is the largest, the strongest interfering cell coordinates the edge user.
  • the coordination unit 902 is specifically configured to:
  • the strongest interfering cell When the strongest interfering cell receives a coordination request from a plurality of serving cells, the ratio of the strongest interfering cell according to the overlap of the time-frequency resources, and the ratio of the strongest interfering cell measured by the plurality of serving cells The information calculates an interference factor, and when the interference factor of the edge user is calculated to be the largest, the strongest interference cell coordinates the edge user.
  • the coordination unit 902 is specifically configured to:
  • the strongest interfering cell determines whether to coordinate with one of the multiple serving cells according to the sequence of the coordination request. And when the serving cell of the edge user first sends a coordination request, the strongest interfering cell coordinates the edge user, and the strongest interfering cell coordinates The scheduled user of the strongest interfering cell is identified, so that the identified scheduling user no longer receives the coordination request of other serving cells.
  • the device further includes:
  • the interfering cell after the interfering cell receives the coordination information, maintains a timer, and when the coordination request of the serving cell is not received within a predetermined time, the interfering cell does not perform with the serving cell. coordination.
  • An embodiment of the present invention provides a user equipment, where the user equipment receives scheduling configuration parameters sent by a serving cell, and coordinates scheduling configuration parameters of the scheduling users of the multiple interfering cells according to the scheduling configuration parameter, so that the user equipment The interference generated by the interfering cells to the edge users is reduced.
  • FIG. 10 is a structural diagram of a device of a base station according to Embodiment 8 of the present invention.
  • FIG. 10 is a base station 1000 according to an embodiment of the present invention.
  • the specific implementation of the present invention does not limit the specific implementation of the device.
  • the base station 1000 includes:
  • the processor 1001, the communication interface 1002, and the memory 1003 complete communication with each other via the bus 1004.
  • a communication interface 1002 configured to communicate with a user equipment
  • the processor 1001 is configured to execute a program.
  • the program can include program code, the program code including computer operating instructions.
  • the processor 1001 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • ASIC Application Specific Integrated Circuit
  • the memory 1003 is configured to store a program.
  • the memory 1003 may include a high speed RAM memory and may also include a non-volatile memory.
  • the program may include: determining an edge user scheduling configuration parameter, the interference cell information, and/or the serving cell information;
  • the scheduling configuration parameter includes at least a scheduling resource location, a pilot port number, and a reference signal initialization parameter.
  • the reference signal initialization parameter includes at least a scrambling code identifier, an introduced pilot sequence initialization seed value, and a slot number n s;
  • the interfering cell information includes at least an interfering cell identification number that interferes with the edge user signal;
  • the serving cell information includes at least the serving cell identification number of the edge user;
  • the scheduling configuration parameter of the edge user to the interfering cell, so that the interfering cell adjusts the scheduling configuration parameter of the scheduling user according to the edge user scheduling configuration parameter, so that the edge user and the scheduling
  • the pilot of the user is orthogonal, wherein the scheduling user is a user in the interfering cell and the edge user occupies the same or part of the time-frequency resource; modifying the number of orthogonal pilots of the edge user, so that the edge
  • the number of orthogonal pilots of the user is the sum of the number of orthogonal pilots of the original edge user and the number of orthogonal pilots of the scheduled user, but does not exceed the maximum orthogonal pilot number pre-designed by the system. If yes, the number of orthogonal pilots is set to the maximum orthogonal pilot number, and the base station of the edge user records an invalid codeword number;
  • the edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, and detects and decodes by the input/output antenna system.
  • the modifying the number of orthogonal pilots of the edge user includes:
  • the interfering cell is preset to coordinate only P transport layer flows.
  • the modifying the number of orthogonal pilots of the edge user includes:
  • the serving cell allocates the number of orthogonal pilots of the interfering cell according to the magnitude of the interference signal strength of the interfering cell, and allocates the maximum number of orthogonal pilots among the interfering cells with the highest interference signal strength among the plurality of interfering cells.
  • the edge user performs orthogonal pilot channel estimation according to the modified number of orthogonal pilots, Includes:
  • the edge user performs orthogonal pilot channel estimation based on the maximum number of orthogonal pilots pre-designed by the system.
  • FIG. 11 is a structural diagram of a device of a user equipment according to Embodiment 9 of the present invention.
  • FIG. 11 is a user equipment 1100 according to an embodiment of the present invention.
  • the specific implementation of the present invention does not limit the specific implementation of the device.
  • the user equipment 1100 includes:
  • the processor 1101, the communication interface 1102, and the memory 1103 complete communication with each other via the bus 1104.
  • a communication interface 1102 configured to communicate with a base station
  • the processor 1101 is configured to execute a program.
  • the program can include program code, the program code including computer operating instructions.
  • the processor 1101 may be a central processing unit CPU or a specific integrated circuit ASIC
  • the memory 1103 is used to store a program.
  • the memory 1103 may include a high speed RAM memory and may also include a non-volatile memory.
  • the program may include: the interference cell receiving the scheduling configuration parameter sent by the serving cell of the edge user through the private interface or the X2 interface;
  • the interfering cell coordinates scheduling configuration parameters of the scheduling user of the interfering cell according to the scheduling configuration parameter.
  • the method further includes:
  • the interfering cell After receiving the coordination information, the interfering cell maintains a timer. When the coordination request of the serving cell is not received within a predetermined time, the interfering cell does not perform coordination with the serving cell.
  • the interfering cell coordinates the scheduling user of the interfering cell according to the scheduling configuration parameter Scheduling configuration parameters, including:
  • the strongest interfering cell coordinates pilot configuration parameters of the scheduling user of the strongest interfering cell according to the scheduling configuration parameter.
  • the most powerful interfering cell coordinates the pilot configuration parameters of the scheduling user of the strongest interfering cell according to the scheduling configuration parameter, including:
  • the strongest interfering cell When the strongest interfering cell receives the coordination request from the multiple serving cells, the strongest interfering cell is based on the ratio of the scheduling users of the strongest interfering cell and the edge users of the multiple serving cells in time-frequency resources overlapping. Determining whether to coordinate with one of the plurality of serving cells, when the marginal resource overlap ratio of the edge user is the largest, the strongest interfering cell coordinates the edge user.
  • the most powerful interfering cell coordinates the pilot configuration parameters of the scheduling user of the strongest interfering cell according to the scheduling configuration parameter, including:
  • the strongest interfering cell When the strongest interfering cell receives a coordination request from a plurality of serving cells, the ratio of the strongest interfering cell according to the overlap of the time-frequency resources, and the ratio of the strongest interfering cell measured by the plurality of serving cells The information calculates an interference factor, and when the interference factor of the edge user is calculated to be the largest, the strongest interference cell coordinates the edge user.
  • the most powerful interfering cell coordinates the pilot configuration parameters of the scheduling user of the strongest interfering cell according to the scheduling configuration parameter, including:
  • the strongest interfering cell determines whether to coordinate with one of the multiple serving cells according to the sequence of the coordination request. And when the serving cell of the edge user first sends a coordination request, the strongest interfering cell coordinates the edge user, and the strongest interfering cell performs the coordinated user of the coordinated strongest interfering cell.
  • the identifier is such that the identified scheduling user no longer receives the coordination request of other serving cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种干扰信号处理的方法及设备,所述方法通过边缘用户的服务小区测量干扰小区的信息,并将所述信息发送给所述干扰小区,使得所述干扰小区根据所述信息协调导频配置参数,从而实现干扰小区对所述边缘用户产生的干扰信号减少。

Description

一种干扰信号处理的方法及设备
本申请要求于 2012 年 12 月 28 日提交中国专利局、 申请号为 201210583438. 8、发明名称为 "一种干扰信号处理的方法及设备" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种干扰信号处理的方法及设备。 背景技术
3G长期演进 (Long Term Evolution, LTE) 和 LTE后续演进 (Long Term Evolution-Advanced , LTE-A) 主流组网场景都是同频组网, 对于小区边缘 用户, 受到的小区间干扰非常严重, 为了解决这个问题, LTE-A也即 Rel-10 和 Rel-11提出了协调多点发射 (Coordinated Multi-Point , CoMP ) (LTE-A 中小区间进行协调达到干扰抑制或干扰利用的目的) 的概念, 目的就是为了 解决同频干扰问题, 提升小区容量。
根据服务小区和协作小区是否共站址, C0MP划分为站间 CoMP Inter-eNB CoMP和站内 CoMP Intra-eNB CoMP。 根据用户设备 (User equipment , UE ) 数据在多个协作小区是否需要进行交互, C0MP进一步划分为协调调度 /协调 波束赋型 (Coordinating Schedule/Coordinating Beamforming, CS/CB) , 动态小区选择(Dynamic Cell Selection , DCS ) 和多小区联合发射(Joint Transmi ssion, JT) , 其中, JT根据相同时频资源上调度用户数量可以分为 SU ( Single User ) - JT和 MU (Multi-User) - JT。
对于 TDD BF传输技术, CS/CB主要分为协调波束切换 (Coordinating Beam Switch, CBS ) 和协调波束赋型 (Coordinating Beamforming, CBF)。 CBS在时域或频域采用预定规律的波束切换, 达到每小区所有用户进行整体 的波束避让, 降低干扰, 进而避免 flashlight效应 (由于邻小区波束时刻 都在变化, 导致反馈的信道质量指示 (Channel Quality Indicator, CQI 无法反映下一时刻的信道质量), 提升性能。 由于 CBS需要全网统一协调, 在实现上约束较大。 CBF通过对协作集小区相同调度资源上的用户权值进行调整, 进而降低 小区间干扰。 CBF特点: 1 ) 业务数据不需要在协作集小区内进行交互, 对回 程容量要求较低; 2 ) 由于涉及到信道信息测量, 协作集小区需要交互少量 的用户调度信息。 综上 CBF主要应用场景: 站内及站间任何需要改善边缘用 户性能的场景, 多用于宏小区场景。
JT的特点: 所有协作小区都需要交互用户的数据信息和调度信息, 对回 程要求较高。 在提升边缘覆盖的同时能够改善小区平均频谱效率。 对于 JT, 需要协作小区 RRU间进行相位对齐, 目前为难点。 这也是我们方案的优势。
综上, JT主要应用场景: 有高容量回程资源, 任何需要改善边缘用户性 能及提升系统频谱效率的场景。
现有技术即为 CoMP, 主要为 CBF和 JT方案, CBF主要的算法有 信漏噪比 (Signal-to-Leakage-Noise Ratio, SLNR )禾口迫零 (Zero Forcing , ZF), SLNR需要基站侧知道终端的噪声, ZF需要在发端进行干扰避让, 从而导致有 用信号强度受到损失, 同时两种方案都需要交互信道状态信息和调度信息, 对于回程存在较低容量要求。
JT方案把多个协作小区的无线遥控单元 (Radio Remote Unit, RRU) 虚 拟化为一个 RRU, 对于协作 UE来说, 天线数翻倍, 采用 BF算法从而获得阵列 增益, 如果考虑多用户波束赋型 (Multi-User Beamforming, MUBF) , 还能 获得空间复用增益, 达到利用干扰的目的。
对于 CBF, SLNR需要终端反馈噪声, 反馈开销较大, ZF需要估计协作用 户的信道状态信息, 同时对有用信号强度有影响, 性能难以保证。 JT方案需 要多个小区之间交互数据和信道状态信息, 同时还需要保证多 RRU间相位对 齐, 目前为实现难点。 发明内容
本发明实施例的目的在于提供一种干扰信号处理的方法, 可以有效的抑 制一个或多个强干扰小区信号对用户设备的的干扰。
第一方面, 一种干扰信号处理的方法, 所述方法包括:
确定边缘用户调度配置参数, 干扰小区信息和 /或服务小区信息; 所述 调度配置参数至少包括调度资源位置、 导频端口号、 参考信号初始化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频序列初始化种子 值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户信号产生干扰的 干扰小区标识号; 所述服务小区信息至少包括所述边缘用户的服务小区标识 号;
通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给干扰小 区, 使得所述干扰小区根据所述边缘用户调度配置参数调整调度用户的调度 配置参数, 使得所述边缘用户和所述调度用户的导频正交, 其中, 所述调度 用户是所述干扰小区中和所述边缘用户占用相同或者部分时频资源的用户; 修改所述边缘用户的正交导频数量, 使得所述边缘用户的正交导频的数 量为原先的所述边缘用户的正交导频的数量与所述调度用户的正交导频的 数量之和, 但不超过系统预先设计的最大正交导频数, 若超过, 则所述正交 导频数量设置为所述最大正交导频数, 并使得所述边缘用户的基站记录无效 码字编号;
所述边缘用户根据修改后的正交导频的数量进行正交导频信道估计, 通 过多输入输出天线系统检测, 译码。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述修改所述 边缘用户的正交导频数量, 包括:
预先设置所述干扰小区只协调 P个传输层流。
结合第一方面或者第一方面的第一种可能的实现方式, 在第一方面的第 二种可能的实现方式中, 所述修改所述边缘用户的正交导频数量, 包括: 所述服务小区根据干扰小区的干扰信号强度的大小, 分配干扰小区的正 交导频的数量, 当多个干扰小区中干扰信号强度最大的干扰小区, 分配最多 的正交导频的数量。
结合第一方面, 在第一方面的第三种可能的实现方式中, 所述通过私有 接口或 X2接口将所述边缘用户的调度配置参数发送给干扰小区, 使得所述 干扰小区根据所述边缘用户调度配置参数调整协调所述干扰小区中调度用 户的调度配置参数, 包括: 所述通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给最强 干扰小区, 使得所述最干扰小区根据所述边缘用户调度配置参数调整协调所 述最强干扰小区中调度用户的调度配置参数。
结合第一方面或者第一方面的第一种可能的实现方式或者第一方面的 第二种可能的实现方式或者第一方面的第三种可能的实现方式, 在第一方面 的第四种可能的实现方式中, 所述边缘用户根据修改后的正交导频的数量进 行正交导频信道估计, 包括:
所述边缘用户根据所述系统预先设计的最大正交导频数, 进行正交导频 信道估计。
第二方面, 一种干扰信号处理的方法, 所述方法包括:
干扰小区通过私有接口或 X2接口接收边缘用户的服务小区发送的调度 配置参数;
所述干扰小区根据所述调度配置参数协调所述干扰小区的调度用户的 调度配置参数。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述方法还包 括:
所述干扰小区接收到协调信息后, 都维护一个定时器, 当在预定的时间 内未收到服务小区的协调请求时, 则所述干扰小区不进行和所述服务小区的 协调。
结合第二方面或者第二方面的第一种可能的实现方式, 在第二方面的第 二种可能的实现方式中,所述干扰小区根据所述调度配置参数协调所述干扰 小区的调度用户的调度配置参数, 包括:
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数。
结合第二方面的第二种可能的实现方式, 在第二方面的第三种可能的实 现方式中, 所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区 的调度用户的导频配置参数, 包括:
当最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干扰小 区根据所述最强干扰小区的调度用户和所述多个服务小区的边缘用户在时 频资源重叠的比例来判断是否和所述多个服务小区中的其中一个服务小区 进行协调, 当所述边缘用户的时频资源重叠比例最大时, 则所述最强干扰小 区协调所述边缘用户。
结合第二方面的第二种可能的实现方式, 在第二方面的第四种可能的实 现方式中, 所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区 的调度用户的导频配置参数, 包括:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述时频资源重叠的比例, 和所述多个服务小区测量的所述最强 干扰小区的信息计算干扰因子, 当计算得到所述边缘用户的干扰因子最大 时, 则所述最强干扰小区协调所述边缘用户。
结合第二方面的第二种可能的实现方式, 在第二方面的第五种可能的实 现方式中, 所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区 的调度用户的导频配置参数, 包括:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述协调请求的先后顺序来判断是否和所述多个服务小区中的 其中一个服务小区进行协调, 当所述边缘用户的服务小区最先发出协调请求 时, 则所述最强干扰小区协调所述边缘用户, 并且所述最强干扰小区对协调 后的所述最强干扰小区的调度用户进行标识, 使得被标识的调度用户不再接 收其他服务小区的协调请求。
第三方面, 一种干扰信号处理的设备, 所述设备包括:
确定单元, 用于确定边缘用户调度配置参数, 干扰小区信息和 /或服务 小区信息; 所述调度配置参数至少包括调度资源位置、 导频端口号、 参考信 号初始化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频序 列初始化种子值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户信 号产生干扰的干扰小区标识号; 所述服务小区信息至少包括所述边缘用户的 服务小区标识号;
发送单元, 用于通过私有接口或 X2接口将所述边缘用户的调度配置参 数发送给干扰小区, 使得所述干扰小区根据所述边缘用户调度配置参数调整 调度用户的调度配置参数, 使得所述边缘用户和所述调度用户的导频正交, 其中,所述调度用户是所述干扰小区中和所述边缘用户占用相同或者部分时 频资源的用户;
修改单元, 用于修改所述边缘用户的正交导频数量, 使得所述边缘用户 的正交导频的数量为原先的所述边缘用户的正交导频的数量与所述调度用 户的正交导频的数量之和, 但不超过系统预先设计的最大正交导频数, 若超 过, 则所述正交导频数量设置为所述最大正交导频数, 并使得所述边缘用户 的基站记录无效码字编号;
估计单元, 用于所述边缘用户根据修改后的正交导频的数量进行正交导 频信道估计, 通过多输入输出天线系统检测, 译码。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述修改单元 中执行步骤修改所述边缘用户的正交导频数量, 包括:
预先设置所述干扰小区只协调 P个传输层流。
结合第三方面或者第三方面的第一种可能的实现方式, 在第三方面的第 二种可能的实现方式中,所述修改单元中执行步骤改所述边缘用户的正交导 频数量, 包括:
所述服务小区根据干扰小区的干扰信号强度的大小, 分配干扰小区的正 交导频的数量, 当多个干扰小区中干扰信号强度最大的干扰小区, 分配最多 的正交导频的数量。
结合第三方面,在第三方面的第三种可能的实现方式中,所述发送单元, 具体用于:
所述通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给最强 干扰小区, 使得所述最干扰小区根据所述边缘用户调度配置参数调整所述最 干扰小区中调度用户的调度配置参数。
结合第三方面或者第三方面的第一种可能的实现方式或者第三方面的第 二种可能的实现方式或者第三方面的第三种可能的实现方式, 在第三方面的 第四种可能的实现方式, 所述估计单元, 具体用于: 所述边缘用户根据所述系统预先设计的最大正交导频数, 进行正交导频 信道估计。
第四方面, 一种干扰信号处理的设备, 所述设备包括:
接收单元, 用于干扰小区通过私有接口或 X2接口接收边缘用户的服务 小区发送的调度配置参数;
协调单元, 用于所述干扰小区根据所述调度配置参数协调所述干扰小区 的调度用户的调度配置参数。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述设备还包 括:
定时器, 用于所述干扰小区接收到协调信息后, 都维护一个定时器, 当 在预定的时间内未收到服务小区的协调请求时, 则所述干扰小区不进行和所 述服务小区的协调。
结合第四方面或者第四方面的第一种可能的实现方式, 在第四方面的第 二种可能的实现方式中, 所述协调单元, 具体用于:
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数。
结合第四方面的第二种可能的实现方式, 在第四方面的第三种可能的实 现方式中, 所述协调单元, 具体用于:
当最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干扰小 区根据所述最强干扰小区的调度用户和所述多个服务小区的边缘用户在时 频资源重叠的比例来判断是否和所述多个服务小区中的其中一个服务小区 进行协调, 当所述边缘用户的时频资源重叠比例最大时, 则所述最强干扰小 区协调所述边缘用户。
结合第四方面的第二种可能的实现方式, 在第四方面的第四种可能的实 现方式中, 所述协调单元, 具体用于:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述时频资源重叠的比例, 和所述多个服务小区测量的所述最强 干扰小区的信息计算干扰因子, 当计算得到所述边缘用户的干扰因子最大 时, 则所述最强干扰小区协调所述边缘用户。
结合第四方面的第二种可能的实现方式, 在第四方面的第五种可能的实 现方式中, 所述协调单元, 具体用于:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述协调请求的先后顺序来判断是否和所述多个服务小区中的 其中一个服务小区进行协调, 当所述边缘用户的服务小区最先发出协调请求 时, 则所述最强干扰小区协调所述边缘用户, 并且所述最强干扰小区对协调 后的所述最强干扰小区的调度用户进行标识, 使得被标识的调度用户不再接 收其他服务小区的协调请求。 本发明提供一种干扰信号处理的方法, 所述方法通过边缘用户的服务小区 测量干扰小区的信息, 并将所述信息发送给所述干扰小区, 使得所述干扰小 区根据所述信息协调导频配置参数, 从而实现干扰小区对所述边缘用户产生 的干扰信号减少。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供 一种干扰信号处理的方法示意图
图 2是本发明实施例二提供 一种干扰信号处理的方法流程图
图 3是本发明实施例三提供 一种干扰信号处理的方法流程图
图 4是本发明实施例四提供 一种干扰信号处理的方法流程图
图 5是本发明实施例提供的 种干扰信号处理的方法示意图;
图 6是本发明实施例提供的 种干扰信号处理的方法示意图;
图 7是本发明实施例五提供 一种干扰信号处理的方法流程图
图 8是本发明实施例六提供 一种干扰信号处理的设备结构图
图 9是本发明实施例七提供 一种干扰信号处理的设备结构图
图 10是本发明实施例八提供的一种基站的装置结构图; 图 11是本发明实施例九提供的一种用户设备的装置结构图。 具体实 式 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及 实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施 例仅仅用以解释本发明, 并不用于限定本发明。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本 发明的保护范围之内。 实施例一
长期演进第九版 (Long Term Evolution-Release 9, LTE- Rel9 ) 引入 多用户波束赋型 (Multi-User Beamforming , MUBF ) , 采用解调参考信号 (Demodulation Reference Signal , DMRS ) Antenna Port来保证 MUBF导频 之间的正交性, 实现透明 MUBF (透明表示 UE不需要知道自己是否为 MUBF发射, 不需要知道是否有其他用户和它共享了相同的时频资源), MUBF接收机可以 有多种情况, 如终端按自身流数进行最小均方误差 (Minimum Mean Square Error, MMSE)检测,或采用干扰拒绝合并(Interference Reject Combining, IRC ) 检测(估计配对用户和其他干扰信号的统计干扰协方差矩阵, 进行 IRC 检测); 或者按配对总流数进行匪 SE检测, 丢弃虚拟流检测结果达到干扰抑 制的效果, 这里的检测算法原理可以是匪 SE、 IRC , 最大似然 (Maximum Likelihood, ML ) 、 并行干扰消除 (Paral lel Interference Cancellation, PIC) 、 串行干扰消除 (Successive Interference Cancel lation, SIC) 等; 显然, 按 MUBF总流数进行检测的方案由于估计到配对用户的瞬时信道信息, 因而可以达到较好的干扰抑制性能。
考虑 Walsh码区分有:
r (l,k) = H0w00s d0 +q- H0w01s d0 + I00 +n00 (1) r (1 + 1, k) = H0w00srid0 + q · H0w01srid0 +I01+nc 其中 q即公式(3)中的 s。 q = 0orl,q = l→ = - 1, 1为导频
子载波号。
这里假定连续两个正交频分复用 (Orthogonal Frequency Division
Multiplexing, OFDM)符号信道变化可忽略, 因而码分导频适用于中低速场 旦
LS信道估计:
Figure imgf000011_0001
Η . τ scidO \ , „ scidO \ , τHτ scidO \ , „ scidO \
。w00+I00(s0 j +n00(s0 j + 0w00+I01 s1 j +n01 Sl j
Figure imgf000011_0002
I00 s0 scld0 +n00 srd° +I01 srd° +n01 s
Hnwm +
H -_ port08,TLSS =—H "n0w, n υ丄
Figure imgf000011_0003
2
_
Figure imgf000011_0004
2
q(loo(soCld°) n sr do) + q(l01(s )Vn01(srd0)1
= H0W01 + 其中, «为求取共轭操作。
从上面公式可以看出, 对于正交导频解调参考信号 (Demodulation Reference Signal, DRS) 信道估计, 导频位置最小二乘 (Least Square, LS)信道估计值能很好的解调出来, 并且, 由于采用两个连续导频位置信道 值做平均, 噪声部分的方差也降低了, 在低信噪比(Signal to Noise Ratio, SNR) 区间能带来较好的性能增益。
图 1中, 假定左边导频端口 Port7配置给小区 1的 UE1, Celll, 右边导频端 口 Port8配置给 Cell2的 UE2, UE1和 UE2位于相同的时频资源上, 对于 LTE Rel_8/9/10协议, 导频信号为 r(m) = (l— 2.c(2m))+ j (l-2.c(2m+l)), 其中
。《为伪随机序列, 导频序列生成种子与 Cell ID ( N^ )有关, cinit = (L¾ 2J + 1) · (2 ' + 1) - 216 + ¾ειο , 对于小区间, 导频存在干扰, UE1或 UE2 也就无法按 MUBF总流数进行透明的 ΜΙΜ0检测接收。 如果随机种子 cimt不与每个小区物理标识号关联, 如采用 =^ /2」 + 1)·(2Χ + 1)·216 + αο, 只要多个小区之间保证 X, nscro , ns的一致 性, 就能做到像单个小区内一样, 保证导频端口的正交性。 本专利以导频序 列初始化种子 cinit = (Lns /2」 + l).(2X + l).216 + nsaD为例, 进行小区间发端协调, 进而达到接收端干扰抑制的目的, 其他随机化种子设计只要不关联每个小区 物理标识号, 都可以按该原则本发明进行设计, 修改交互参数即可。
同频组网场景下,小区 1把边缘 UE调度的资源块(Resource Block, RB), SCID, X值, Port号, 时隙号 ns通过 X2接口或私有接口告知小区 2 (最强干扰 小区, 强干扰小区确定可以采用本区信号和邻区干扰信号的测量值如接收信 号强度指示 (Received Signal Strength Indication, RSSI ) 或干扰信号 强度(如参考信号接收功率 Reference Signal Receiving Power, RSRP) 或 信干燥比 (Signal to Interference plus Noise Ratio, SINR) 之差小于 一个门限值, 小区 2在这些 RB上尽量配置为与小区 1边缘 UE调度 RB位置相同的 SCID, X值, 正交 Port号, 时隙号 ns。 小区 1的边缘 UE1按 2流进行解调 (假定 UE1初始指示的传输层数(通过 Rank Indicator指示, RI )为 1,为单流发送), 为了使得 UE1按 2流进行解调, 在基站侧修改 UE1的传输层数 (小区边缘 UE— 般为一个传输层, 即按单流传输, 基站侧修改 UE上报的 RI值) , 单流修改为 双流, 其他流程仍和单流保持一致, 第二个码字为虚拟码字, 第二个码字对 应的层为虚拟层, 不进行数据发射。 UE1解调按 2流进行解调, 如采用 MMSE/ML/PIC/SIC等接收机, 假定第二个码字为无效虚拟码字 (基站知道) , 反馈两个码字的 A/N (确认 Acknowledge/非确认 Negative, ACK/NACK)为循环 冗余校验 (Cycic Redundancy Check, CRC) 校验结果, ACK表示校验正确, NACK表示校验错误), 第二个码字为 N (NACK) , 基站获知, 不进行任何操作。 最终完成终端 UE透明情况下的多输入输出 (Multiple Input Multiple Output , MIMO) 检测, 解调, 达到小区间协调进行干扰抑制接收的目的。
第一步: Celll确定边缘 UE调度参数配置, 干扰情况。 (同时维护该 RB 是否协调过或要求其他小区协调过的标识) ;
第二步: Celll通过私有接口或 X2接口告知上面信息给 Cell2/7/8 (分别 为 Celll UE1/3/2对应的最强干扰小区) ;
第三步: Cell2/7/8根据上面信息调整相应调度用户的 P0RT/SCID/X配 置, 并打上协调标识 (避免其他小区进行上面 Cell l类似操作时带来再次协 调, 还有信息重复交互) ;
第四步: Celll边缘 UE1 传输层数为 2, 其他发射流程与传输层数 1保持 一致, Celll基站记录无效码字编号;
第五步: UE按传输层数为 2进行两个正交导频的信道估计, 进行 2流 MIM0 检测, 译码, 反馈两个码字的 A/N。
实施例二
参考图 2, 图 2是本发明实施例二提供的一种干扰信号处理的方法流程 图。 如图 2所示, 所述方法包括以下步骤:
步骤 201,确定边缘用户调度配置参数,干扰小区信息和 /或服务小区信 息; 所述调度配置参数至少包括调度资源位置、 导频端口号、 参考信号初始 化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频序列初始 化种子值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户信号产生 干扰的干扰小区标识号; 所述服务小区信息至少包括所述边缘用户的服务小 区标识号;
其中, 边缘用户是用户根据测量服务小区和干扰小区的参考信号质量, 当两者相差在一个预设的门限值内时, 该用户即为边缘用户。 干扰小区是用 户接收到除服务小区信号外的其他小区的干扰信号, 所述其他小区即为干扰 小区。 服务小区是为用户服务, 并向用户发送控制信号的小区。
具体的, Cell l , 即小区 1确认边缘用户 Cell l UE1的调度配置参数, 干扰小区信息和 /或服务小区信息; 所述调度配置参数包括调度资源位置、 导频端口号、 参考信号初始化参数如扰码标识、 引入的导频序列初始化种子 值, 时隙号 ns等; 所述干扰小区信息包括对所述边缘用户信号产生干扰的干 扰小区标识号 (Received Signal Strength Indication, RSSI ) 禾口干扰信 号强度 (Reference Signal Receiving Power , RSRP ) 至少之——; 所述月艮 务小区信息包括所述边缘用户的服务小区标识号, 信号强度和信号质量(如 信干燥比 Signal to Interference plus Noise Ratio, 缩写为 SINR, 载干 噪比 Carrier to Interference plus Noise Ratio, 缩写为 CINR, 信噪比 Signal to Noise Ratio,缩写为 SNR,信干比 Signal to Interference Ratio, 缩写为 SIR, 参考信号接收质量 Reference Signal Receiving Quality, 缩 写为 RSRQ) 至少之一。
步骤 202,通过私有接口或 X2接口将所述边缘用户的调度配置参数发送 给干扰小区, 使得所述干扰小区根据所述边缘用户调度配置参数调整调度用 户的调度配置参数, 使得所述边缘用户和所述调度用户的导频正交, 其中, 所述调度用户是所述干扰小区中和所述边缘用户占用相同或者部分时频资 源的用户;
所述调度用户为 Cell2小区内与 Cell l边缘用户占用相同或部分相同时 频资源的用户。
可选地, 所述通过私有接口或 X2接口将所述边缘用户的调度配置参数 发送给干扰小区, 使得所述干扰小区根据所述边缘用户调度配置参数调整所 述干扰小区中调度用户的调度配置参数。
步骤 203, 修改所述边缘用户的正交导频数量, 使得所述边缘用户的正 交导频的数量为原先的所述边缘用户的正交导频的数量与所述调度用户的 正交导频的数量之和, 但不超过系统预先设计的最大正交导频数, 若超过, 则所述正交导频数量设置为所述最大正交导频数, 并使得所述边缘用户的基 站记录无效码字编号;
可选地, 所述修改所述边缘用户的正交导频数量, 包括:
预先设置所述干扰小区只协调 P个传输层流。
可选地, 所述修改所述边缘用户的正交导频数量, 包括:
所述服务小区根据干扰小区的干扰信号强度的大小, 分配干扰小区的正 交导频的数量, 多个干扰小区中干扰信号强度最大的干扰小区, 分配最多的 正交导频的数量。
具体的, Celll根据干扰信号强度, 给 Cell2/3/4进行导频端口分配, 如 Cell2是 Celll UElCell2分配 2个端口, Cell3分配 1个端口, 此时不需 要再与 Cell4交互, 因为已经没有正交导频端口进行分配了。
步骤 204, 所述边缘用户根据修改后的正交导频的数量进行正交导频信 道估计, 通过多输入输出天线系统检测, 译码。
可选地, 所述边缘用户根据所述系统预先设计的最大正交导频数, 进行 正交导频信道估计。
本发明实施例提供一种干扰信号处理的方法, 所述方法通过边缘用户 的服务小区测量干扰小区的信息, 并将所述信息发送给所述干扰小区, 使得 所述干扰小区根据所述信息协调导频配置参数, 使得干扰小区对所述边缘用 户产生的干扰信号减少。
实施例三
参考图 3, 图 3是本发明实施例三提供的一种干扰信号处理的方法流程 图。 如图 3所示, 所述方法包括以下步骤:
步骤 301,干扰小区通过私有接口或 X2接口接收边缘用户的服务小区发 送的调度配置参数;
步骤 302, 所述干扰小区根据所述调度配置参数协调所述干扰小区的调 度用户的调度配置参数。
作为一种可选地实施例, 所述方法还包括:
所述干扰小区接收到协调信息后, 都维护一个定时器, 当在预定的时间 内未收到服务小区的协调请求时, 则所述干扰小区不进行和所述服务小区的 协调。
可选地, 所述干扰小区根据所述调度配置参数协调所述干扰小区的调度 用户的调度配置参数, 包括:
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数。
具体的, 所述最强干扰小区根据所述调度配置参数协调所述最强干扰小 区的调度用户的导频配置参数, 包括:
当最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干扰小 区根据所述最强干扰小区的调度用户和所述多个服务小区的边缘用户在时 频资源重叠的比例来判断是否和所述多个服务小区中的其中一个服务小区 进行协调, 当所述边缘用户的时频资源重叠比例最大时, 则所述最强干扰小 区为所述边缘用户进行协调。
具体的, 所述最强干扰小区根据所述调度配置参数协调所述最强干扰小 区的调度用户的导频配置参数, 包括:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述时频资源重叠的比例, 和所述多个服务小区测量的所述最强 干扰小区的信息计算干扰因子, 当计算得到所述边缘用户的干扰因子最大 时, 则所述最强干扰小区协调所述边缘用户。
具体的, 所述最强干扰小区根据所述调度配置参数协调所述最强干扰小 区的调度用户的导频配置参数, 包括:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述协调请求的先后顺序来判断是否和所述多个服务小区中的 其中一个服务小区进行协调, 当所述边缘用户的服务小区最先发出协调请求 时, 则所述最强干扰小区协调所述边缘用户, 并且所述最强干扰小区对协调 后的所述最强干扰小区的调度用户进行标识, 使得被标识的调度用户不再接 收其他服务小区的协调请求。
本发明实施例提供一种干扰信号处理的方法, 所述方法通过接收服务 小区发送的调度配置参数, 并根据所述调度配置参数协调所述干扰小区的调 度用户的调度配置参数, 使得所述干扰小区对所述边缘用户产生的干扰减
实施例四 参考图 4, 图 4是本发明实施例四提供的一种干扰信号处理的方法流程 图。 如图 4所示, 所述方法包括以下步骤:
步骤 401,确定边缘用户调度配置参数,干扰小区信息和 /或服务小区信 息; 所述调度配置参数至少包括调度资源位置、 导频端口号、 参考信号初始 化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频序列初始 化种子值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户信号产生 干扰的干扰小区标识号; 所述服务小区信息至少包括所述边缘用户的服务小 区标识号;
步骤 402,通过私有接口或 X2接口将所述边缘用户的调度配置参数发送 给最强干扰小区, 使得所述最强干扰小区根据所述边缘用户调度配置参数调 整调度用户的调度配置参数, 使得所述边缘用户和所述调度用户的导频正 交, 其中, 所述调度用户是所述最强干扰小区中和所述边缘用户占用相同或 者部分时频资源的用户;
具体的, 同频组网场景下, 小区 1把边缘 UE1调度的时频资源位置, 参 考信号初始化参数通过 X2接口或私有接口告知最强干扰小区 (最强干扰小 区, 干扰信号最强的小区), 如表 1中对于 UE1 , 强干扰小区有 2/3/4/5, 最 强干扰小区为小区 2, 参考表 1和表 2。
可选的实施例, 当最强干扰小区的 RSRP (可以为其他信号质量测量值) 与服务小区的 RSRP之差大于预设门限值时, 不进行 Cell2与边缘用户的协 调过程。即判断最强干扰小区的 RSRP和服务小区的 RSRP之差大于预先设置 的门限值时, 所述最强干扰小区对所述边缘用户的干扰影响可以忽略不计, 因此, 不需要进行 cell2和边缘用户的协调。
如图 5, 最强干扰小区 Cell2与 Celll UE1存在调度时频资源重叠的用 户有 3个, Cell2 UEl/2/3, Cell2 UE1 5个 RB (Resource Block)与 Celll UE1 重叠, 还有 2个 RB与 Cell l UE1不重叠, 由于 Cell2 UE1重叠比率为 5/7, 大于 1/2, Cell2 UE1需要给 Cell l UE1做协调, 不再接收其他边缘用户的 协调, Cell2 UE1根据 Cell l UE1的调度配置参数修改自己的导频参数配置, 达到与 Cell l UE1导频正交的目的; 对于 Cell2 UE3, 由于与 Cell l UE1完 全重叠, 与 Cell2 UE1类似进行导频参数配置修改; 对于 Cell2 UE3, 由于 与 Cell l UE1的重叠比率为 3/7, 小于 1/2, 此时需要根据是否有其他边缘 用户对 Cell2 UE3存在协调需求, 如果有, 并且占用比率比 3/7要大, Cell2 UE3优先与其他小区进行协调。 此时, Cell2也可以根据请求协调的先后顺 序来进行协调, 而不管重叠比率或其他条件, 如 Cell l是最先向 Cell2请求 进行干扰协调的小区, 那么 Cell2就只为 Cell l UE1进行干扰协调, Cell2 UE1/2/3均根据 Cell l UE1的调度配置参数修改自己的导频参数配置, 达到 与 Cell l UE1导频正交的目的。
一种可选的实施例是, 通过私有接口和 /或 X2接口将所述边缘用户调度 配置参数和干扰小区信息, 如 RSRP等, 发送给最强干扰小区 Cel 12, Cell2 可能接受多个小区的协调请求, 此时 Cell2 UE1和 UE3需要根据重叠比率和 RSRP等信号强度参数来进行协调小区选择了, 如图 5, Cell3 UE1的最强干 扰小区也是 Cell2, 也需要 Cell2进行协调, 此时 Cell2就需要进行决策, 可以考虑采用干扰因子进行衡量。
具体的, 对于 Cell2 UE1, 需要决策根据 Cell l还是 Cell3的需求进行 协调, 如图 6, 根据表 1 和表 2, Cel l2 对 Cell l UE1 的干扰信号强度为 RSRP— Cell l— UEl=-93dBm, Cell2 对 Cell3 UE1 的干扰信号强度为 RSRP— Cell3— UEl=-88dBm, 为 Cell l UE1 协调的干扰因子可以表示为; ^, 为 Cell3 UE1 协调的干扰因子可以表示为 10((- 88)- (- 93))/1°, 其中; ^为 Cell l UE1 和 Cell2 UE1重叠 RB占用 Cell2 UE1总 RB数的比值, 此例中 = 5/7, 其中 = 4/7, 显然? 10((- 88)- (- ^1。大于; Cell2 UE1优先为 Cel l3 UE1协调。 这 里权重计算只考虑了干扰信号强度, 没有考虑 Cell l UE1和 Cell3 UE1本身 的信号质量和其他的干扰小区信息。
作为另一种可选实施例, Cell l通过私有接口和 /或 X2接口将信息发送 给最强干扰小区 Cell2, 这里的信息包含 Cell ID, RSRP, RSSI , SINR, SIR, CINR, SNR, RSRQ至少之一, Celll干扰因子可以包含 Celll UE1的 SINR, CINR, SIR, SNR, RSRQ至少之一, Celll UE1测量的服务小区 Celll的信号 强度, 其他干扰小区信号强度等信息。 最后记录下与 Cell l UEl调度时频资 源存在重叠的用户复用流数, 假定为 Cell2 UE1为 L1流和 Cell2 UE2为 L2 流, 然后根据 Celll交互给 Cell2的 Celll UEl的导频端口号、 参考信号初 始化参数, Cell2 UE1和 Cell2 UE2完成导频参数配置修改,达到与 Celll UE1 导频正交的目的。
当所述最强干扰小区根据所述请求协调请求的先后顺序来判断是否和 所述多个服务小区中的其中一个服务小区进行协调时, 则所述最强干扰小区 对协调后的调度用户进行标识, 使得被标识的调度用户不再接收其他服务小 区的协调请求。 最终 Cell2需要标记进行过导频参数配置修改的时频资源, 避免与其他小区再
Figure imgf000019_0001
交互信息列表
Figure imgf000020_0001
Figure imgf000020_0002
本步骤中, 所述根据所述边缘用户调度配置参数调整与所述边缘用户占 用相同或部分相同时频资源的最强干扰小区内调度用户的正交导频配置参 数具体为: 根据所述边缘用户的调度资源位置、 参考信号初始化参数如扰码 标识、 引入的导频序列初始化种子值, 时隙号 ns等, 将与所述边缘用户占用 相同或部分相同带宽的强干扰小区内调度用户的参考信号初始化参数如扰 码标识、 引入的导频序列初始化种子值, 时隙号 ns调整成与所述边缘用户相 同的值; 根据所述边缘用户的导频端口号, 将与所述边缘用户占用相同或部 分相同或部分相同时频资源的强干扰小区内调度用户的导频端口号调整成 与所述边缘用户不同的值, 保证导频之间的正交性。
步骤 403, 修改所述边缘用户的正交导频数量, 使得所述边缘用户的正 交导频的数量为原先的所述边缘用户的正交导频的数量与所述调度用户的 正交导频的数量之和, 但不超过系统预先设计的最大正交导频数, 若超过, 则所述正交导频数量设置为所述最大正交导频数, 并使得所述边缘用户的基 站记录无效码字编号;
无效码字即为虚构的码字, 一个码字具有相同的调制和编码参数配置, 一个码字可以映射到一个或多个传输层或者流, 每个传输层或者流都需要有 对应的导频端口, 用来进行数据的检测解调, 不同协议对此都有约定, 对用 户的服务可以包含一个或多个码字, 假定每个码字对应 1个传输层, 当修改 传输层或者流为 2时, 需要两个码字, 而以前的数据只有一个码字, 因而由 于传输层或者流的增加导致需要虚构另外一个码字, 这个虚构的码字即为无 效码字, 或者也可以成为虚拟码字。 传输层和流为等同概念。
本步骤中, 修改所述边缘用户的复用流数从 K1 (大于等于 1)到 K2 , K2=min (Kl+L, Z), 最强干扰小区 Cell2 中调度用户的正交导频数量为 L, Z 为系统设计的最大正交导频数, 利用所述边缘用户的修改前的导频和数据的 参数, 调整码字映射关系, 保证所述边缘用户数据映射到一个或多个码字, 对应到 K1层复用数据, 虚拟码字对应到 K2-K1层复用数据, 并使得所述边 缘用户的基站记录无效码字编号。
作为另一种实施例,所述边缘用户可以假定修改后总流数 K2即为 Z,— 直按 Z流导频进行信道估计和 MIM0检测。
本步骤中, 所述边缘用户需要 K2流导频进行信道估计, 为了获得所有 正交导频对应的信道估计值, 修改所述边缘用户的基站中所述边缘用户的 RANK值(复用流数) K1为 K2; 并且保证 K1流映射到一个或多个码字, 记为 有效码字, 有效码字只包含 K1流的原始数据, 其他处理流程仍和 K1流发射 保持一致, 剩余的 K2-K1流为虚拟流, 对应到虚拟码字, 所述虚拟流不进行 数据和导频发射, 使得所述边缘用户根据总的正交导频的数量 K2进行解调。
例如, 小区 1的边缘 UE1按 UE1调度资源上小区 1/2涉及到的正交导频 进行信道估计, 如表 1和图 2, 获得所有正交导频对应的信道估计值, 假定 Cell l UE1为 1流发射, Cell2 UE1为 1流发射, Cell2 UE2为 2流发射, 系 统总正交导频数为 2, 然后 Cell l UE1按总层 (流)数 2进行解调, 为了使得 UE1按 2流进行解调,在基站侧修改 UE1的 RANK值为 2 (RANK值表示该边缘 用户发送的复用流数, 基站通过下行信令如 RI (Rank Indicator) 告知用户 传输层数), Cell l UE1的复用流数从 1流修改为 2流, 并且保证 Cel l l UE1 原来的 1流映射到一个码字 (如果 Cell l UE1的 K1>1, 可以为多个码字), 记为有效码字, 有效码字只包含 1流的原始数据, 其他处理流程仍和 1流发 射保持一致, 如数据和导频发射, 都按 1流进行, 只是有效时频资源需要按 2流导频考虑, 其他 Κ2-Κ1=1流为虚拟流, 不进行数据和导频发射。
步骤 404, 所述边缘用户根据修改后的正交导频的数量进行正交导频信 道估计, 通过多输入输出天线系统检测, 译码。
本步骤中, 所述边缘用户根据修改后的正交导频的数量进行正交导频信 道估计, 通过多输入输出天线系统检测(MIM0检测, 如匪 SE检测, ML检测, IRC检测等), 译码, 校验, 如果虚拟码字的校验结果没通过, 基站不进行重 传处理。
例如, UE1解调按 K2流进行解调, 如采用 MMSE/ML/IRC等接收机, 虚拟流 对应的虚拟码字为无效虚拟码字 (基站知道) , UE1反馈各个码字的 CRC校验 结果, 如果虚拟码字 CRC校验结果错误, 基站获知后, 不进行重传操作。 最 终完成 UE1的多输入输出天线系统 (Multiple-Input Multiple-Out-put , MIM0) 检测, 解调, 达到小区间协调进行干扰抑制接收的目的。
本发明实施例提供一种干扰信号处理的方法, 所述方法通过边缘用户 的服务小区测量干扰小区的信息, 并将所述信息发送给所述最强干扰小区, 使得最强所述干扰小区根据所述信息协调导频配置参数, 使得所述最强干扰 小区对所述边缘用户产生的干扰信号减少, 使得有效的抑制最强干扰小区信 号对所述边缘用户的的干扰。
实施例五
参考图 7, 图 7是本发明实施例五提供的一种干扰信号处理的方法流程 图。 所述方法包括:
步骤 701,确定边缘用户调度配置参数,干扰小区信息和 /或服务小区信 息; 所述调度配置参数至少包括调度资源位置、 导频端口号、 参考信号初始 化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频序列初始 化种子值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户信号产生 干扰的干扰小区标识号; 所述服务小区信息至少包括所述边缘用户的服务小 区标识号;
例如, 同频组网场景下, 小区 1 (Celll )把边缘 UE1调度的时频资源位 置, 参考信号配置信息通过 X2接口或私有接口告知强干扰小区 (强干扰小 区, 干扰信号较强的小区, 可以通过干扰小区 RSRP和 Celll UE1服务小区 RSRP之差来判断, 只有当差值小于某个门限值才进行协调, 如表 1, 假定门 限值为 5dB,那么对于 Celll UE1 ,只需要协调 Cell2, Cell3和 Cell4即可), 如下表中对于 UE1 ,强干扰小区有 2/3/4,最强干扰小区为小区 2,参考表 4。 可选的实施例, 当强干扰小区的 RSRP (可以为其他信号质量测量值)与服务 小区的 RSRP之差大于预设门限值时, 不进行强干扰小区的协调过程。 LW & U衣
1 1:1 1) 强「-國麕園圖圖國圍圖靨圖圖圍驪圖誦議讕圖圖 1 1111111 霸1' J-
L l': l Co l 1 2、 , 资源 1 1 0 1 0
I I . 國議垂 I謹議鬵 I謹議鬵顏鬵醫 ¾iB議醫議謹; 議 1 義 o l 1 7 議 隱 議 顏 表 4 步骤 702,通过私有接口或 X2接口将所述边缘用户的调度配置参数发送 给强干扰小区 Cell2/3/4, 使得 Cell2/3/4根据所述边缘用户调度配置参数 调整与所述边缘用户占用相同或部分相同时频资源的调度用户的导频配置 参数, 使得所述边缘用户和所述调度用户的导频正交, 其中, 所述调度用户 是所述干扰小区中和所述边缘用户占用相同或者部分时频资源的用户;
可选地, Cell2 UE1为 L1流, Cell2 UE2为 L2流, L1 L2, 最终 UE2 到底按 L2流与 Celll UEl进行导频正交化, 还是与 Cell2 UEl保持一致按 L1流复用传输与 Celll UEl进行导频正交化参数配置,均为可选。同时 Cell2 把最终协调 L1流还是 L2流的结果 (结果记为 L,描述为最强干扰小区中调度 用户的正交导频的数量)通过私有接口和 /或 X2接口发送给 Celll , Celll UE1 可以根据这个结果计算修改后的总正交导频数目
本步骤中, Cell2/3/4中与 Celll UEl存在调度时频资源重叠用户是否 协调, Cell2/3/4最终协调的流数参考步骤 703, 假定 Cell2最终协调流数 为 1流, Cell3为 2流, Cell4为 2流, 系统最大流数为 4流, Cell2/3/4 各自接收到 Celll发送的边缘用户调度配置参数, 如表 4, 并且 Cell2干扰 信号强度最大, Cell3和 Cell4次之, 因而 Cell2先进行协调, 此时所述边 缘 UE和 Cell2协调后总导频端口数为 2,还没有达到系统最大正交导频端口 数, Cell2把表 5发送给 Cell3, Cell3根据参数协调导频端口, 此时协调后 总导频端口数为 4, 达到系统最大正交导频端口数, 然后 Cell3与 Cell2类 似方式, 发送协调后信息给 Cell4, Cell4发现已经达到最大正交导频端口 数, 就不再进行协调。
可选实施例为, Cell2/3/4在接收到 Celll 协调信息后, 都维护了一个 定时器, 在约定的时间内未收到 Celll协调信息里干扰信号强度更强小区的 协调信息, 如 Cell3未收到 Cell2, Cell4未收到 Cell3, 就不进行与 Celll 的协调操作。 可选的实施例为, 所有强干扰小区都固定只协调 P个流的导频端口, 在 假定系统最大正交导频端口数为 4, 所述边缘用户 Celll UE1发射一个流情 况下, 如果 P=l, 则 Cell2/3/4都只协调一个流, 如果 P=2, 由于系统有最 大正交导频端口数的限制, 只协调 Cell2
另一种可选的实施例为, Cell l根据干扰信号强度, 给 Cell2/3/4进行 导频端口分配, 如 Cell2分配 2个端口, Cell3分配 1个端口, 此时不需要 再与 Ce 114交互, 因为已经没有正交导频端口进行分配了。
交互信息列表 Cell2发送给 Cell3
Figure imgf000025_0001
5
本步骤中, 所述根据所述边缘用户调度配置参数调整与所述边缘用户占 用相同或部分相同时频资源的强干扰小区内调度用户的正交导频配置参数 具体为: 根据所述边缘用户的调度资源位置、 参考信号初始化参数如扰码标 识、 引入的导频序列初始化种子值, 时隙号 ns等, 将与所述边缘用户占用相 同或部分相同带宽的强干扰小区内调度用户的参考信号初始化参数如扰码 标识、 引入的导频序列初始化种子值, 时隙号 ns调整成与所述边缘用户相同 的值; 根据所述边缘用户的导频端口号, 已协调干扰小区协调的导频端口号 或约定的强干扰小区导频端口配置,将与所述边缘用户占用相同或部分相同 或部分相同时频资源的强干扰小区内调度用户的导频端口号调整成与所述 边缘用户和其他协调干扰小区用户正交导频端口号不同的值, 保证导频之间 的正交性。 步骤 703, 修改所述边缘用户的正交导频数量, 使得所述边缘用户的正 交导频的数量为原先的所述边缘用户的正交导频的数量与所述调度用户的 正交导频的数量之和, 但不超过系统预先设计的最大正交导频端口数, 若超 过, 则所述正交导频数量设置为所述最大正交导频数, 并使得所述边缘用户 的基站记录无效码字编号;
本步骤中, 修改所述边缘用户的复用流数从 K1 (大于等于 1)到 K2 , K2=min (Kl+L, Z), 强干扰小区 Cell2/3/4中调度用户的正交导频数量为 L, Z 为系统设计的最大正交导频数, 如当系统所有正交导频的数量 Z小于 K1+L 时, K2=Z; 利用所述边缘用户的修改前的导频和数据的参数, 调整码字映射 关系, 保证所述边缘用户数据映射到一个或多个码字, 对应到 K1层复用数 据, 虚拟码字对应到 K2-K1层复用数据, 并使得所述边缘用户的基站记录无 效码字编号。 作为另一种实施例, 所述边缘用户可以假定修改后总流数 Κ2 即为 Ζ, —直按 Ζ流导频进行信道估计。
当调度用户有多个时, 如 Cell2 UE1/2/3调度资源都与所述边缘用户存 交叠, L可选择为 UE1, UE2, UE3中导频数最大值, 即等于 UE1/2/3中最大的 传输层数, Z为系统设计的最大正交导频数; 可选的, 由于有些调度资源上 需要协调的流数要少, 如图 5, Cell2 UE1传输层数为 Ll=l, Cell2 UE2传 输层数为 L2=2,Cell2 UE3传输层数为 L3=3,所述边缘用户传输层数为 Kl=l, 如果所述边缘用户按 Κ2=Κ1+3进行导频设置, 对于 Cell2 UE1占用的资源来 说, 对所述边缘用户的干扰只有一个层, 如果因此按 3个干扰层进行导频数 设置, 对所述边缘用户检测译码带来额外的复杂度, 并且可能引入较大的检 测误差, 为例避免这样的情况, 假定所述边缘 UE占用资源为 n RB, η>=1, Cell2 UE1占用 ml RB, Cell2 UE2占用 m2 RB, Cell2 UE3占用 m3 RB, ml T 1 m2 T - m3 T , ml m2 m3 T ^
—— L1 + L2 +—— L3 — L1 +—— L2 +—— L3
I nn nn nn |或 、 nn nn n 11 八 其中 可以 为四舍五入, 向上或向下取整等操作 , 其他方法如根据仿真结果建立表格 进行查表等方法不一一列举。利用所述边缘用户的修改前的导频和数据的参 数, 调整码字映射关系, 保证所述边缘用户数据映射到一个或多个码字, 对 应到 Kl层复用数据, 虚拟码字对应到 K2-K1层复用数据, 并使得所述边缘 用户的基站记录无效码字编号。
本步骤中, 所述边缘用户需要 K2流导频进行信道估计, 为了获得所有 正交导频对应的信道估计值, 修改所述边缘用户的基站中所述边缘用户的 RANK值(复用流数) K1为 K2; 并且保证 K1流映射到一个或多个码字, 记为 有效码字, 有效码字只包含 K1流的原始数据, 其他处理流程仍和 K1流发射 保持一致, 剩余的 K2-K1流为虚拟流, 对应到虚拟码字, 所述虚拟流不进行 数据和导频发射, 使得所述边缘用户根据总的正交导频的数量 K2进行解调。
步骤 704, 所述边缘用户根据修改后的正交导频的数量进行正交导频信 道估计, 通过多输入输出天线系统检测, 译码。
本步骤中, 所述边缘用户根据修改后的正交导频的数量进行正交导频信 道估计, 通过多输入输出天线系统检测(MIM0检测, 如匪 SE检测, ML检测, IRC检测等), 译码, 校验, 如果虚拟码字的校验结果没通过, 基站不进行重 传处理。
本发明实施例提供一种干扰信号处理的方法, 所述方法通过接收服务 小区发送的调度配置参数, 并根据所述调度配置参数协调所述多个干扰小区 的调度用户的调度配置参数, 使得所述多个干扰小区对所述边缘用户产生的 干扰减少。
实施例六
参考图 8, 图 8是本发明实施例六提供的一种干扰信号处理的设备结构 图。 所述设备包括如下单元:
确定单元 801,用于确定边缘用户调度配置参数,干扰小区信息和 /或服 务小区信息; 所述调度配置参数至少包括调度资源位置、 导频端口号、 参考 信号初始化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频 序列初始化种子值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户 信号产生干扰的干扰小区标识号; 所述服务小区信息至少包括所述边缘用户 的服务小区标识号;
发送单元 802,用于通过私有接口或 X2接口将所述边缘用户的调度配置 参数发送给干扰小区, 使得所述干扰小区根据所述边缘用户调度配置参数调 整调度用户的调度配置参数, 使得所述边缘用户和所述调度用户的导频正 交, 其中, 所述调度用户是所述干扰小区中和所述边缘用户占用相同或者部 分时频资源的用户;
可实现的, 所述发送单元, 具体用于:
所述通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给最强 干扰小区, 使得所述最干扰小区根据所述边缘用户调度配置参数调整协调所 述最干扰小区中调度用户的调度配置参数。
修改单元 803, 用于修改所述边缘用户的正交导频数量, 使得所述边缘 用户的正交导频的数量为原先的所述边缘用户的正交导频的数量与所述调 度用户的正交导频的数量之和, 但不超过系统预先设计的最大正交导频数, 若超过, 则所述正交导频数量设置为所述最大正交导频数, 并使得所述边缘 用户的基站记录无效码字编号;
可实现的, 所述修改单元 803中执行步骤修改所述边缘用户的正交导频 数量, 包括:
预先设置所述干扰小区只协调 P个传输层流。
可实现的, 所述修改单元 803中执行步骤改所述边缘用户的正交导频数 量, 包括:
所述服务小区根据干扰小区的干扰信号强度的大小, 分配干扰小区的正 交导频的数量, 当多个干扰小区中干扰信号强度最大的干扰小区, 分配最多 的正交导频的数量。
估计单元 804, 用于所述边缘用户根据修改后的正交导频的数量进行正 交导频信道估计, 通过多输入输出天线系统检测, 译码。
作为另一种可实现的方式, 所述估计单元, 具体用于:
所述边缘用户根据所述系统预先设计的最大正交导频数, 进行正交导频 信道估计。
本发明实施例提供一种用户设备, 所述用户设备通过接收服务小区发 送的调度配置参数, 并根据所述调度配置参数协调所述多个干扰小区的调度 用户的调度配置参数, 使得所述多个干扰小区对所述边缘用户产生的干扰减 少。
实施例七
参考图 9, 图 9是本发明实施例七提供的一种干扰信号处理的设备结构 图。 所述设备包括如下单元:
接收单元 901,用于干扰小区通过私有接口或 X2接口接收边缘用户的服 务小区发送的调度配置参数;
协调单元 902, 用于所述干扰小区根据所述调度配置参数协调所述干扰 小区的调度用户的调度配置参数。
可实现的, 所述协调单元 902, 具体用于:
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数。
可实现的, 所述协调单元 902, 具体用于:
当最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干扰小 区根据所述最强干扰小区的调度用户和所述多个服务小区的边缘用户在时 频资源重叠的比例来判断是否和所述多个服务小区中的其中一个服务小区 进行协调, 当所述边缘用户的时频资源重叠比例最大时, 则所述最强干扰小 区协调所述边缘用户。
可实现的, 所述协调单元 902, 具体用于:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述时频资源重叠的比例, 和所述多个服务小区测量的所述最强 干扰小区的信息计算干扰因子, 当计算得到所述边缘用户的干扰因子最大 时, 则所述最强干扰小区协调所述边缘用户。
可实现的, 所述协调单元 902, 具体用于:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述协调请求的先后顺序来判断是否和所述多个服务小区中的 其中一个服务小区进行协调, 当所述边缘用户的服务小区最先发出协调请求 时, 则所述最强干扰小区协调所述边缘用户, 并且所述最强干扰小区对协调 后的所述最强干扰小区的调度用户进行标识, 使得被标识的调度用户不再接 收其他服务小区的协调请求。
作为一种可实现的方式, 所述设备还包括:
定时器, 用于所述干扰小区接收到协调信息后, 都维护一个定时器, 当 在预定的时间内未收到服务小区的协调请求时, 则所述干扰小区不进行和所 述服务小区的协调。
本发明实施例提供一种用户设备, 所述用户设备通过接收服务小区发 送的调度配置参数, 并根据所述调度配置参数协调所述多个干扰小区的调度 用户的调度配置参数, 使得所述多个干扰小区对所述边缘用户产生的干扰减 少。
实施例八
参考图 10, 图 10是本发明实施例八提供的一种基站的装置结构图。 参 考图 10, 图 10是本发明实施例提供的一种基站 1000, 本发明具体实施例并 不对所述设备的具体实现做限定。 所述基站 1000包括:
处理器 (processor) 1001, 通信接口 (Communications Interface) 1002, 存储器(memory) 1003, 总线 1004。
处理器 1001, 通信接口 1002, 存储器 1003通过总线 1004完成相互间 的通信。
通信接口 1002, 用于与用户设备进行通信;
处理器 1001, 用于执行程序。
具体地, 程序可以包括程序代码, 所述程序代码包括计算机操作指令。 处理器 1001 可能是一个中央处理器 CPU, 或者是特定集成电路 ASIC (Application Specific Integrated Circuit ) , 或者是被配置成实施本发 明实施例的一个或多个集成电路。
存储器 1003, 用于存放程序。 存储器 1003可能包含高速 RAM存储器, 也可能还包括非易失性存储器(non-volati le memory )。程序具体可以包括: 确定边缘用户调度配置参数, 干扰小区信息和 /或服务小区信息; 所述 调度配置参数至少包括调度资源位置、 导频端口号、 参考信号初始化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频序列初始化种子 值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户信号产生干扰的 干扰小区标识号; 所述服务小区信息至少包括所述边缘用户的服务小区标识 号;
通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给干扰小 区, 使得所述干扰小区根据所述边缘用户调度配置参数调整调度用户的调度 配置参数, 使得所述边缘用户和所述调度用户的导频正交, 其中, 所述调度 用户是所述干扰小区中和所述边缘用户占用相同或者部分时频资源的用户; 修改所述边缘用户的正交导频数量, 使得所述边缘用户的正交导频的数 量为原先的所述边缘用户的正交导频的数量与所述调度用户的正交导频的 数量之和, 但不超过系统预先设计的最大正交导频数, 若超过, 则所述正交 导频数量设置为所述最大正交导频数, 并使得所述边缘用户的基站记录无效 码字编号;
所述边缘用户根据修改后的正交导频的数量进行正交导频信道估计, 通 过多输入输出天线系统检测, 译码。
所述修改所述边缘用户的正交导频数量, 包括:
预先设置所述干扰小区只协调 P个传输层流。
所述修改所述边缘用户的正交导频数量, 包括:
所述服务小区根据干扰小区的干扰信号强度的大小, 分配干扰小区的正 交导频的数量, 当多个干扰小区中干扰信号强度最大的干扰小区, 分配最多 的正交导频的数量。
所述通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给干 扰小区, 使得所述干扰小区根据所述边缘用户调度配置参数调整协调所述干 扰小区中调度用户的调度配置参数, 包括:
所述通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给最强 干扰小区, 使得所述最干扰小区根据所述边缘用户调度配置参数调整协调所 述最干扰小区中调度用户的调度配置参数。
所述边缘用户根据修改后的正交导频的数量进行正交导频信道估计, 包 括:
所述边缘用户根据所述系统预先设计的最大正交导频数, 进行正交导频 信道估计。
实施例九
参考图 11,图 11是本发明实施例九提供的一种用户设备的装置结构图。 参考图 11, 图 11是本发明实施例提供的一种用户设备 1100, 本发明具体实 施例并不对所述设备的具体实现做限定。 所述用户设备 1100包括:
处理器 (processor) 1101 , 通信接口 (Communications Interface) 1102 , 存储器(memory) 1103, 总线 1104。
处理器 1101, 通信接口 1102, 存储器 1103通过总线 1104完成相互间 的通信。
通信接口 1102, 用于与基站进行通信;
处理器 1101, 用于执行程序。
具体地, 程序可以包括程序代码, 所述程序代码包括计算机操作指令。 处理器 1101 可能是一个中央处理器 CPU, 或者是特定集成电路 ASIC
(Application Specific Integrated Circuit ) , 或者是被配置成实施本发 明实施例的一个或多个集成电路。
存储器 1103, 用于存放程序。 存储器 1103可能包含高速 RAM存储器, 也可能还包括非易失性存储器(non-volati le memory )。程序具体可以包括: 干扰小区通过私有接口或 X2接口接收边缘用户的服务小区发送的调度 配置参数;
所述干扰小区根据所述调度配置参数协调所述干扰小区的调度用户的 调度配置参数。
所述方法还包括:
所述干扰小区接收到协调信息后, 都维护一个定时器, 当在预定的时间 内未收到服务小区的协调请求时, 则所述干扰小区不进行和所述服务小区的 协调。
所述干扰小区根据所述调度配置参数协调所述干扰小区的调度用户的 调度配置参数, 包括:
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数。
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数, 包括:
当最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干扰小 区根据所述最强干扰小区的调度用户和所述多个服务小区的边缘用户在时 频资源重叠的比例来判断是否和所述多个服务小区中的其中一个服务小区 进行协调, 当所述边缘用户的时频资源重叠比例最大时, 则所述最强干扰小 区协调所述边缘用户。
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数, 包括:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述时频资源重叠的比例, 和所述多个服务小区测量的所述最强 干扰小区的信息计算干扰因子, 当计算得到所述边缘用户的干扰因子最大 时, 则所述最强干扰小区协调所述边缘用户。
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数, 包括:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述协调请求的先后顺序来判断是否和所述多个服务小区中的 其中一个服务小区进行协调, 当所述边缘用户的服务小区最先发出协调请求 时, 则所述最强干扰小区协调所述边缘用户, 并且所述最强干扰小区对协调 后的所述最强干扰小区的调度用户进行标识, 使得被标识的调度用户不再接 收其他服务小区的协调请求。
上所述仅为本发明的优选实施方式, 并不构成对本发明保护范围的限 定。 任何在本发明之内所作的任何修改、 等同替换和改进等, 均应包含在本 发明要求包含范围之内。

Claims

权 利 要 求
1、 一种干扰信号处理的方法, 所述方法包括:
确定边缘用户调度配置参数, 干扰小区信息和 /或服务小区信息; 所述 调度配置参数至少包括调度资源位置、 导频端口号、 参考信号初始化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频序列初始化种子 值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户信号产生干扰的 干扰小区标识号; 所述服务小区信息至少包括所述边缘用户的服务小区标识 号;
通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给干扰小 区, 使得所述干扰小区根据所述边缘用户调度配置参数调整调度用户的调度 配置参数, 使得所述边缘用户和所述调度用户的导频正交, 其中, 所述调度 用户是所述干扰小区中和所述边缘用户占用相同或者部分时频资源的用户; 修改所述边缘用户的正交导频数量, 使得所述边缘用户的正交导频的数 量为原先的所述边缘用户的正交导频的数量与所述调度用户的正交导频的 数量之和, 但不超过系统预先设计的最大正交导频数, 若超过, 则所述正交 导频数量设置为所述最大正交导频数, 并使得所述边缘用户的基站记录无效 码字编号;
所述边缘用户根据修改后的正交导频的数量进行正交导频信道估计, 通 过多输入输出天线系统检测, 译码。
2、 根据权利要求 1所述的方法, 所述修改所述边缘用户的正交导频数 量, 包括:
预先设置所述干扰小区只协调 P个传输层流。
3、 根据权利要求 1或 2所述的方法, 所述修改所述边缘用户的正交导 频数量, 包括:
所述服务小区根据干扰小区的干扰信号强度的大小, 分配干扰小区的正 交导频的数量, 当多个干扰小区中干扰信号强度最大的干扰小区, 分配最多 的正交导频的数量。
4、 根据权利要求 1所述的方法, 所述通过私有接口或 X2接口将所述边 缘用户的调度配置参数发送给干扰小区, 使得所述干扰小区根据所述边缘用 户调度配置参数调整协调所述干扰小区中调度用户的调度配置参数, 包括: 所述通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给最强 干扰小区, 使得所述最干扰小区根据所述边缘用户调度配置参数调整协调所 述最干扰小区中调度用户的调度配置参数。
5、 根据权利要求 1-4任意一项所述的方法, 所述边缘用户根据修改 后的正交导频的数量进行正交导频信道估计, 包括:
所述边缘用户根据所述系统预先设计的最大正交导频数, 进行正交导频 信道估计。
6、 一种干扰信号处理的方法, 所述方法包括:
干扰小区通过私有接口或 X2接口接收边缘用户的服务小区发送的调度 配置参数;
所述干扰小区根据所述调度配置参数协调所述干扰小区的调度用户的 调度配置参数。
7、 根据权利要求 6所述的方法, 所述方法还包括:
所述干扰小区接收到协调信息后, 都维护一个定时器, 当在预定的时间 内未收到服务小区的协调请求时, 则所述干扰小区不进行和所述服务小区的 协调。
8、 根据权利要求 6或 7所述的方法, 所述干扰小区根据所述调度配 置参数协调所述干扰小区的调度用户的调度配置参数, 包括:
所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数。
9、 根据权利要求 8所述的方法, 所述最强干扰小区根据所述调度配 置参数协调所述最强干扰小区的调度用户的导频配置参数, 包括:
当最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干扰小 区根据所述最强干扰小区的调度用户和所述多个服务小区的边缘用户在时 频资源重叠的比例来判断是否和所述多个服务小区中的其中一个服务小区 进行协调, 当所述边缘用户的时频资源重叠比例最大时, 则所述最强干扰小 区协调所述边缘用户。
10、 根据权利要求 8所述的方法, 所述最强干扰小区根据所述调度配 置参数协调所述最强干扰小区的调度用户的导频配置参数, 包括:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述时频资源重叠的比例, 和所述多个服务小区测量的所述最强 干扰小区的信息计算干扰因子, 当计算得到所述边缘用户的干扰因子最大 时, 则所述最强干扰小区协调所述边缘用户。
11、 根据权利要求 8所述的方法, 所述最强干扰小区根据所述调度配置 参数协调所述最强干扰小区的调度用户的导频配置参数, 包括:
当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述协调请求的先后顺序来判断是否和所述多个服务小区中的 其中一个服务小区进行协调, 当所述边缘用户的服务小区最先发出协调请求 时, 则所述最强干扰小区协调所述边缘用户, 并且所述最强干扰小区对协调 后的所述最强干扰小区的调度用户进行标识, 使得被标识的调度用户不再接 收其他服务小区的协调请求。
12、 一种干扰信号处理的设备, 所述设备包括:
确定单元, 用于确定边缘用户调度配置参数, 干扰小区信息和 /或服务 小区信息; 所述调度配置参数至少包括调度资源位置、 导频端口号、 参考信 号初始化参数, 所述参考信号初始化参数至少包括扰码标识、 引入的导频序 列初始化种子值、 时隙号 ns ; 所述干扰小区信息至少包括对所述边缘用户信 号产生干扰的干扰小区标识号; 所述服务小区信息至少包括所述边缘用户的 服务小区标识号;
发送单元, 用于通过私有接口或 X2接口将所述边缘用户的调度配置参 数发送给干扰小区, 使得所述干扰小区根据所述边缘用户调度配置参数调整 调度用户的调度配置参数, 使得所述边缘用户和所述调度用户的导频正交, 其中,所述调度用户是所述干扰小区中和所述边缘用户占用相同或者部分时 频资源的用户;
修改单元, 用于修改所述边缘用户的正交导频数量, 使得所述边缘用户 的正交导频的数量为原先的所述边缘用户的正交导频的数量与所述调度用 户的正交导频的数量之和, 但不超过系统预先设计的最大正交导频数, 若超 过, 则所述正交导频数量设置为所述最大正交导频数, 并使得所述边缘用户 的基站记录无效码字编号;
估计单元, 用于所述边缘用户根据修改后的正交导频的数量进行正交导 频信道估计, 通过多输入输出天线系统检测, 译码。
13、 根据权利要求 12所述的设备, 所述修改单元中执行步骤修改所述 边缘用户的正交导频数量, 包括:
预先设置所述干扰小区只协调 P个传输层流。
14、 根据权利要求 12或 13所述的设备, 所述修改单元中执行步骤改所 述边缘用户的正交导频数量, 包括:
所述服务小区根据干扰小区的干扰信号强度的大小, 分配干扰小区的正 交导频的数量, 当多个干扰小区中干扰信号强度最大的干扰小区, 分配最多 的正交导频的数量。
15、 根据权利要求 12所述的设备, 所述发送单元, 具体用于: 所述通过私有接口或 X2接口将所述边缘用户的调度配置参数发送给最强 干扰小区, 使得所述最干扰小区根据所述边缘用户调度配置参数调整协调所 述最干扰小区中调度用户的调度配置参数。
16、 根据权利要求 12-15 任意一项所述的设备, 所述估计单元, 具体用 于:
所述边缘用户根据所述系统预先设计的最大正交导频数, 进行正交导频 信道估计。
17、 一种干扰信号处理的设备, 所述设备包括:
接收单元, 用于干扰小区通过私有接口或 X2接口接收边缘用户的服务 小区发送的调度配置参数;
协调单元, 用于所述干扰小区根据所述调度配置参数协调所述干扰小区 的调度用户的调度配置参数。
18、 根据权利要求 17所述的设备, 所述设备还包括: 定时器, 用于所述干扰小区接收到协调信息后, 都维护一个定时器, 当 在预定的时间内未收到服务小区的协调请求时, 则所述干扰小区不进行和所 述服务小区的协调。
19、 根据权利要求 17或 18所述的设备, 所述协调单元, 具体用于: 所述最强干扰小区根据所述调度配置参数协调所述最强干扰小区的调 度用户的导频配置参数。
20、 根据权利要求 19所述的设备, 所述协调单元, 具体用于: 当最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干扰小 区根据所述最强干扰小区的调度用户和所述多个服务小区的边缘用户在时 频资源重叠的比例来判断是否和所述多个服务小区中的其中一个服务小区 进行协调, 当所述边缘用户的时频资源重叠比例最大时, 则所述最强干扰小 区协调所述边缘用户。
21、 根据权利要求 19所述的设备, 所述协调单元, 具体用于: 当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述时频资源重叠的比例, 和所述多个服务小区测量的所述最强 干扰小区的信息计算干扰因子, 当计算得到所述边缘用户的干扰因子最大 时, 则所述最强干扰小区协调所述边缘用户。
22、 根据权利要求 19所述的设备, 所述协调单元, 具体用于: 当所述最强干扰小区接收来自多个服务小区的协调请求时, 所述最强干 扰小区根据所述协调请求的先后顺序来判断是否和所述多个服务小区中的 其中一个服务小区进行协调, 当所述边缘用户的服务小区最先发出协调请求 时, 则所述最强干扰小区协调所述边缘用户, 并且所述最强干扰小区对协调 后的所述最强干扰小区的调度用户进行标识, 使得被标识的调度用户不再接 收其他服务小区的协调请求。
PCT/CN2013/085083 2012-12-28 2013-10-12 一种干扰信号处理的方法及设备 WO2014101529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210583438.8A CN103905346B (zh) 2012-12-28 2012-12-28 一种干扰信号处理的方法及设备
CN201210583438.8 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014101529A1 true WO2014101529A1 (zh) 2014-07-03

Family

ID=50996503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085083 WO2014101529A1 (zh) 2012-12-28 2013-10-12 一种干扰信号处理的方法及设备

Country Status (2)

Country Link
CN (1) CN103905346B (zh)
WO (1) WO2014101529A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225070A1 (en) 2014-11-26 2017-10-04 IDAC Holdings, Inc. Initial access in high frequency wireless systems
JP2016143916A (ja) * 2015-01-29 2016-08-08 ソニー株式会社 装置
CN105992380B (zh) * 2015-03-04 2020-09-15 株式会社Ntt都科摩 基站、移动台和下行链路调度方法
CN106303911B (zh) * 2015-05-29 2020-09-01 北京智谷睿拓技术服务有限公司 干扰测量方法及干扰测量装置
CN106559196B (zh) * 2015-09-25 2019-10-22 华为技术有限公司 一种导频分配的方法及装置
WO2018076345A1 (zh) * 2016-10-31 2018-05-03 海能达通信股份有限公司 一种数据发送方法、装置及网络设备
CN111149306A (zh) 2017-08-09 2020-05-12 Idac控股公司 用于波束恢复和管理的方法和系统
CN108934030B (zh) * 2018-07-19 2021-08-03 中信科移动通信技术股份有限公司 一种避免iab基站交叉干扰的方法
CN110768762A (zh) * 2018-07-27 2020-02-07 华为技术有限公司 接收和发送数据的方法以及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795471A (zh) * 2009-02-03 2010-08-04 大唐移动通信设备有限公司 Icic参数传输方法及资源分配方法、装置和系统
CN101895940A (zh) * 2010-07-26 2010-11-24 北京邮电大学 主服务小区和协作小区之间资源分配的方法
CN102264075A (zh) * 2010-05-27 2011-11-30 中兴通讯股份有限公司 一种长期演进下行系统的小区间干扰协调方法及装置
CN102572894A (zh) * 2011-12-30 2012-07-11 华为技术有限公司 一种干扰小区选择方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795471A (zh) * 2009-02-03 2010-08-04 大唐移动通信设备有限公司 Icic参数传输方法及资源分配方法、装置和系统
CN102264075A (zh) * 2010-05-27 2011-11-30 中兴通讯股份有限公司 一种长期演进下行系统的小区间干扰协调方法及装置
CN101895940A (zh) * 2010-07-26 2010-11-24 北京邮电大学 主服务小区和协作小区之间资源分配的方法
CN102572894A (zh) * 2011-12-30 2012-07-11 华为技术有限公司 一种干扰小区选择方法及装置

Also Published As

Publication number Publication date
CN103905346B (zh) 2017-11-17
CN103905346A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
JP6462891B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
US10455566B2 (en) Methods and apparatus for transmitting/receiving channels in mobile communication system supporting massive MIMO
US9843942B2 (en) Device and method of enhancing downlink UE-specific demodulation reference signal to facilitate inter-cell interference cancellation and suppression
RU2635545C2 (ru) Способ подавления помех в системе беспроводной связи и соответствующее устройство
EP2916585B1 (en) Transmission and reception of reference signals in a wireless communication system comprising a plurality of base stations
WO2014101529A1 (zh) 一种干扰信号处理的方法及设备
US9634808B2 (en) Radio communication system, radio communication method, user terminal and radio base station
KR102061700B1 (ko) 무선 통신 시스템에서 간섭 인지 검출 방법 및 장치
CN105359607B (zh) 消除相邻小区数据传输的方法及用户设备
JP6392377B2 (ja) 干渉キャンセレーション及び抑制受信機を利用したcsiエンハンスメントのためのユーザ装置及び方法
US10263741B2 (en) Coordinated multipoint (CoMP) and network assisted interference suppression/cancellation
US9742534B2 (en) Radio communication method, radio communication system, radio base station and user terminal
US20150055581A1 (en) Transmit Diversity on a Control Channel without Additional Reference Signals
KR20140111136A (ko) 무선 통신 시스템에서 간섭 제어 방법 및 장치
JP2022549993A (ja) 動的スペクラム共有を伴う非コヒーレント共同送信のためのレートマッチング
WO2016158537A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP2017521881A (ja) 無線通信システムにおいて干渉信号除去及び抑制のための無線資源活用方法及び装置
WO2018028384A1 (zh) 一种信息处理方法和装置
CN107302421B (zh) 一种功率配置方法及设备
JP5675193B2 (ja) 基地局、通信方法及び集積回路
CN105101423A (zh) 干扰处理方法、基站、终端及系统
TW201304448A (zh) 通訊系統中傳輸資料之方法及其第一網路節點及第二網路節點

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868523

Country of ref document: EP

Kind code of ref document: A1