WO2018076345A1 - 一种数据发送方法、装置及网络设备 - Google Patents

一种数据发送方法、装置及网络设备 Download PDF

Info

Publication number
WO2018076345A1
WO2018076345A1 PCT/CN2016/104033 CN2016104033W WO2018076345A1 WO 2018076345 A1 WO2018076345 A1 WO 2018076345A1 CN 2016104033 W CN2016104033 W CN 2016104033W WO 2018076345 A1 WO2018076345 A1 WO 2018076345A1
Authority
WO
WIPO (PCT)
Prior art keywords
slave node
pilot
sequence
subcarrier
subcarriers
Prior art date
Application number
PCT/CN2016/104033
Other languages
English (en)
French (fr)
Inventor
鲁志兵
余庆祥
张庆利
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2016/104033 priority Critical patent/WO2018076345A1/zh
Publication of WO2018076345A1 publication Critical patent/WO2018076345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention belongs to the technical field of wireless mesh networks, and in particular, to a data transmission method, device and network device.
  • MESH network wireless mesh network
  • Ad hoc a multi-hop centerless self-organizing wireless network
  • an object of the present invention is to provide a data transmission method, apparatus, and network device, which are used to reduce pilot interference between slave nodes when multiple slave nodes transmit data using the same time-frequency resource, so that the slave node can Perform channel estimation.
  • the technical solutions are as follows:
  • the present invention provides a data sending method, the method comprising:
  • the first slave node and the second slave node occupy the same time-frequency resource to send data, select, for the first slave node, a pilot sequence whose correlation with the pilot sequence of the second slave node meets a preset condition,
  • the preset condition indicates that pilot interference between the first slave node and the second slave node is within a preset range, and the preset range may enable the second slave node to be based on the selected guide Frequency estimation for channel estimation;
  • the processed subcarriers of the first slave node are modulated to obtain data to be transmitted for transmission.
  • the method before the processing of the processed subcarriers of the first slave node, the method further includes:
  • the pilot sequence that selects, by the first slave node, a correlation with a pilot sequence of the second slave node that meets a preset condition includes:
  • the pilot sequence selected for the first slave node is the second slave a ZC sequence having the same root sequence number but different cyclic shift values of the ZC sequence of the node;
  • the pilot sequence selected for the first slave node is a second slave node
  • the ZC sequence of the ZC sequence has different root sequence numbers and different cyclic shift values.
  • the method further includes: acquiring a root sequence number and a cyclic shift value of a ZC sequence configured for each node in the network broadcast by the master node in the corresponding network.
  • the interval between any two adjacent pilot subcarriers in the subcarriers of the first slave node is controlled, and the position and direction of the pilot sequence selected by the control in the subcarrier are controlled.
  • the frequency sequence is the same in the subcarriers of the second slave node, including:
  • the method further includes: acquiring a pilot sequence used when the third slave node sends data to the first slave node;
  • Channel estimation is performed based on the pilot sequences employed.
  • the performing channel estimation based on the used pilot sequence comprises:
  • nPilotRe point frequency domain pilot subcarrier Performing first-order linear interpolation on the nPilotRe point frequency domain pilot subcarrier based on the frequency domain response of each pilot subcarrier channel, obtaining an nRe point frequency domain subcarrier channel estimation value, and performing nRe point frequency domain subcarrier channel estimation value
  • the inverse Fourier transform of the nRe point obtains the time domain channel h1, where nRe is the total number of pilot subcarriers and data subcarriers, and nPilotRe is the total number of pilot subcarriers;
  • the present invention also provides a data transmitting apparatus, where the apparatus includes:
  • a selecting unit configured to: when the first slave node and the second slave node occupy the same time-frequency resource to send data, select a correlation between the first slave node and the pilot sequence of the second slave node to meet a preset condition a pilot sequence, wherein the preset condition indicates that pilot interference between the first slave node and the second slave node is within a preset range, and the preset range may enable the second slave node Channel estimation based on the selected pilot sequence;
  • control unit configured to control a position of the selected pilot sequence in the subcarrier and a position of a pilot sequence in a subcarrier of the second slave node
  • a modulating unit configured to modulate the processed subcarriers of the first slave node to obtain data to be sent
  • a sending unit configured to send the data to be sent.
  • control unit is further configured to control an interval of any two adjacent pilot subcarriers of the subcarriers of the first slave node to be equal.
  • the selecting unit is configured to: when the first slave node and the second slave node are located in the same network, and the pilot sequence of the second slave node is a ZC sequence, the first slave node is The selected pilot sequence is a ZC sequence having the same root sequence number as the root sequence number of the ZC sequence of the second slave node but having different cyclic shift values; and for when the first slave node and the second slave node are located in different networks
  • the pilot sequence selected for the first slave node is a ZC sequence different from the root sequence number of the ZC sequence of the second slave node and having different cyclic shift values.
  • the device further includes: an obtaining unit, configured to acquire a root serial number of the ZC sequence configured for each node in the network and a cyclic shift value broadcast by the primary node in the corresponding network.
  • an obtaining unit configured to acquire a root serial number of the ZC sequence configured for each node in the network and a cyclic shift value broadcast by the primary node in the corresponding network.
  • control unit is configured to preset a plurality of equally spaced insertion positions on the subcarriers of the first slave node, and insert comb pilot subcarriers at each of the insertion positions, and The pilot sequences are added to the comb pilot subcarriers, wherein each of the comb pilot subcarriers corresponds to a position of a corresponding comb pilot subcarrier in a subcarrier of the second slave node.
  • the device further includes: a sequence obtaining unit, configured to acquire a pilot sequence used when the third slave node sends data to the first slave node;
  • a channel estimation unit is configured to perform channel estimation based on the used pilot sequence.
  • the channel estimation unit comprises:
  • Obtaining a sub-unit configured to acquire a frequency domain response of a pilot subcarrier channel corresponding to a pilot subcarrier in the used pilot sequence
  • the interpolation subunit is configured to perform first-order linear interpolation on the nPilotRe point frequency domain pilot subcarrier based on the frequency domain response of each pilot subcarrier channel, to obtain an nRe point frequency domain subcarrier channel estimation value, where nRe is a pilot subcarrier The total number of carrier and data subcarriers, nPilotRe is the total number of pilot subcarriers;
  • An inverse transform subunit configured to perform nRe point discrete Fourier inverse transform on the nRe point frequency domain subcarrier channel estimation value, to obtain a time domain channel h1;
  • a cyclic shift subunit for windowing on a cyclic shift of a pilot sequence, outside the window The value of the domain channel is set to 0, and the time domain channel h1 for canceling the interference signal is obtained;
  • a transform subunit configured to perform an nRe point discrete Fourier transform on the time domain channel h1 after the interference cancellation signal, to obtain a frequency domain channel after interference cancellation
  • the filtering processing sub-unit is configured to perform filtering processing on the frequency-domain channel after interference cancellation to obtain a channel estimation value.
  • the present invention further provides a network device, where the network device includes: a processor and an RF device;
  • the processor is configured to: when the first slave node and the second slave node occupy the same time-frequency resource to send data, select, for the first slave node, a correlation with a pilot sequence of the second slave node to meet a pre-preparation a conditional pilot sequence, controlling a position of the selected pilot sequence in the subcarrier to be the same as a position of a pilot sequence in a subcarrier of the second slave node, and processing the Modulating a subcarrier from a node to obtain data to be transmitted, wherein the preset condition indicates that pilot interference between the first slave node and the second slave node is within a preset range, the pre The range is such that the second slave node performs channel estimation according to the selected pilot sequence;
  • the radio frequency device is configured to send the data to be sent.
  • the first slave node selects a pilot that matches the pilot sequence of the second slave node to meet a preset condition.
  • a sequence, and the preset condition may indicate that the pilot interference between the first slave node and the second slave node is within a preset range, so the first slave node may remove the first slave node and the first node when adopting the corresponding pilot sequence
  • the pilot interference between the two slave nodes is such that the second slave node can perform channel estimation according to the selected pilot sequence.
  • the position of the pilot sequence in the subcarrier in the first slave node is the same as the position of the pilot sequence in the subcarrier of the second slave node, and thus can be based on the previously obtained subcarrier.
  • the pilot sequence is loaded at the corresponding position of the subsequently obtained subcarriers to increase the processing speed.
  • the present invention can also control the interval of any two adjacent pilot subcarriers in the subcarriers of the first slave node to be equal, so that the pilot subcarriers need not be inserted at all positions of the subcarriers, and the channel estimation is reduced.
  • the number of pilot subcarriers used is calculated to achieve channel estimation based on a smaller pilot overhead.
  • 1 is a schematic diagram of data transmission by multiple slave nodes in an existing MEDH network
  • FIG. 2 is a flowchart of a data sending method according to an embodiment of the present invention.
  • FIG. 3 is another flowchart of a data sending method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a subcarrier provided by an embodiment of the present invention.
  • FIG. 5 is still another flowchart of a data sending method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a data sending apparatus according to an embodiment of the present invention.
  • FIG. 7 is another schematic structural diagram of a data sending apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a channel estimation unit in a data transmitting apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 2 it is a flowchart of a data sending method according to an embodiment of the present invention.
  • the sub-carriers used by multiple slave nodes are used. Processing to remove pilot interference.
  • the first slave node and the second slave node are
  • the embodiment of the present invention can also be applied to the case where two or more slave nodes transmit data in the same time-frequency resource.
  • the data sending method shown in FIG. 2 above may include the following steps:
  • the first slave node and the second slave node occupy the same time-frequency resource to send data, select, for the first slave node, a pilot sequence that matches the pilot sequence of the second slave node to meet a preset condition, where The pilot sequence of the second slave node satisfies the pilot sequence of the preset condition, indicating that the pilot interference between the first slave node and the second slave node is within a preset range, so as to be reduced by the selection of the pilot sequence
  • the pilot interference between the nodes causes the second slave node to perform channel estimation according to the selected pilot sequence, that is, the preset range in the embodiment of the present invention enables the second slave node to perform channel estimation according to the selected pilot sequence.
  • the inventor's research on multiple pilot sequences reveals whether there is pilot interference between nodes and the correlation results of two pilot sequences.
  • the correlation results of two pilot sequences represent the two pilot sequences. Correlation, correlation is used to indicate whether there is pilot interference between two pilot sequences. The smaller the specific correlation result is, the higher the correlation is, the smaller the pilot interference is, especially when the correlation result is close to zero. Underneath, the higher the correlation, the pilot interference can be ignored.
  • the inventor also found in the process of studying a plurality of pilot sequences that when the pilot sequence selected by the first slave node and the second slave node is a ZC (Zadoff-Chu) sequence, the selected two ZC sequences satisfy the following conditions.
  • the correlation between the two ZC sequences is close to 0:
  • the pilot sequence selected for the first slave node is a ZC sequence having the same root sequence number as the ZC sequence of the second slave node but having different cyclic shift values.
  • the pilot sequence selected for the first slave node is a ZC sequence different from the root sequence number of the ZC sequence of the second slave node and having different cyclic shift values.
  • the embodiment of the present invention preferably uses the above manner to select a pilot sequence for the first slave node.
  • the above-mentioned root sequence number and the cyclic shift value can be obtained from the master node in the corresponding network, that is, the data sending method provided by the embodiment of the present invention further includes the step 200: acquiring the broadcast of the master node in the corresponding network for each of the networks.
  • the root sequence number of the ZC sequence configured by the node and the cyclic shift value are as shown in FIG.
  • the master node in the corresponding network refers to the network where the first slave node and the second slave node are respectively located.
  • the master node in the corresponding network is the master in the network 1.
  • a node; when the first slave node is located in the network 1 and the second slave node is located in the network 2, the master node in the corresponding network is: for the first slave node, the master node is the master node in the network 1, and for the second node From the point of view of the node, the master node is the master node in network 2.
  • the master node in the network configures the root sequence number of the ZC sequence and the cyclic shift value for each slave node (including the first slave node or the second slave node) in the respective network, such that the first slave node and the second node After receiving the root sequence number broadcast by the master node and the cyclic shift value, the slave node may select the corresponding ZC sequence as the pilot sequence.
  • the pilot sequences are in the same position on different slave nodes, and the intervals of any two adjacent pilot subcarriers on each slave node are equal.
  • the present invention The possible ways provided by the embodiments are as follows:
  • each subcarrier includes a data subcarrier and a pilot subcarrier, and for each subcarrier, one for each four data subcarriers is set
  • the pilot subcarriers implement the same interval of any two adjacent pilot subcarriers between different slave nodes.
  • the pilot subcarrier shown in FIG. 4 adopts a comb pilot subcarrier, and the number of pilot subcarriers is reduced relative to the use of the block pilot subcarrier, thereby achieving a smaller guide.
  • the frequency overhead is used for channel estimation.
  • the positions of the comb pilot subcarriers between the subcarriers of different slave nodes are the same. Therefore, after the pilot sequence is inserted on the comb pilot subcarrier, the pilot sequence can be guaranteed to be in different slave nodes. The positions of the subcarriers are the same.
  • the first slave node selects a pilot that matches the pilot sequence of the second slave node to meet a preset condition.
  • a sequence, and the preset condition may indicate that the pilot interference between the first slave node and the second slave node is within a preset range, so the first slave node may remove the first slave node and the first node when adopting the corresponding pilot sequence
  • the pilot interference between the two slave nodes is such that the second slave node can perform channel estimation according to the selected pilot sequence.
  • the position of the pilot sequence in the subcarrier in the first slave node is the same as the position of the pilot sequence in the subcarrier of the second slave node, and thus can be based on the previously obtained subcarrier.
  • the pilot sequence is loaded at the corresponding position of the subsequently obtained subcarriers to increase the processing speed.
  • the present invention can also control the interval of any two adjacent pilot subcarriers in the subcarriers of the first slave node to be equal, so that there is no need to insert pilot subcarriers at all positions of the subcarriers, and the pilot used for channel estimation is reduced.
  • the number of subcarriers enables the effect of channel estimation based on a smaller pilot overhead.
  • FIG. 5 another flow of the data sending method provided by the embodiment of the present invention is shown.
  • the figure, based on Figure 2 may also include the following steps:
  • steps 201 to 203 of FIG. 4 illustrate the process when the first slave node transmits data as the source slave node to the destination slave node, and steps 204 to 205 illustrate that the first slave node is the target slave node.
  • the first slave node may perform channel estimation based on the pilot sequence adopted by the other source slave nodes.
  • X P diag(S[k 1 ] , S[k 2 ],...,S[k M ]), indicating the pilot subcarrier transmitted by the source from the node
  • H P [H[k 1 ], H[k 2 ],...,H[k M ] ] T, represents the i-th element of K i-th pilot subcarrier channel
  • ⁇ P in the i-th element of the i-th K represents the noise component of the pilot subcarriers of the received channel.
  • nPilotRe point frequency domain pilot subcarrier 2) Perform first-order linear interpolation on the nPilotRe point frequency domain pilot subcarrier based on the frequency domain response of each pilot subcarrier channel, obtain an nRe point frequency domain subcarrier channel estimation value, and then estimate the nRe point frequency domain subcarrier channel.
  • Value is nRe point IDFT (Inverse Discrete Fourier Transform, discrete Fourier Inverse transform), the time domain channel h1, nRe is the total number of pilot subcarriers and data subcarriers, and nPilotRe is the total number of pilot subcarriers.
  • nRe point DFT Discrete Fourier Transform
  • Filtering the frequency domain channel after interference cancellation to obtain a channel estimation value wherein filtering the frequency domain channel can remove the interference signal in the frequency domain channel and improve the channel estimation performance.
  • FIG. 6 is a schematic structural diagram of a data sending apparatus according to an embodiment of the present invention, which may include: a selecting unit 11, a control unit 12, a modulating unit 13, and a sending unit 14.
  • the selecting unit 11 is configured to: when the first slave node and the second slave node occupy the same time-frequency resource to send data, select, for the first slave node, a pilot that matches the pilot sequence of the second slave node to meet a preset condition. a sequence, wherein the preset condition indicates that the pilot interference between the first slave node and the second slave node is within a preset range, and the preset range may enable the second slave node to perform channel estimation according to the selected pilot sequence.
  • the inventors have found through research on multiple pilot sequences that the presence of pilot interference between nodes is related to the correlation between two pilot sequences, where the correlation between the two pilot sequences represents the correlation of two pilot sequences. Sex, correlation is used to indicate whether there is pilot interference between two pilot sequences. The smaller the specific correlation result is, the higher the correlation is, the smaller the pilot interference is, especially when the correlation result is close to zero. The higher the correlation, the pilot interference can be ignored.
  • the first slave node is selected in the embodiment of the present invention.
  • a feasible way to determine whether the correlation between the frequency sequence and the pilot sequence selected by the second slave node satisfies a preset condition is to determine a pilot sequence selected by the first slave node and a pilot sequence selected by the second slave node. Whether the correlation result is 0.
  • the inventor also found in the process of studying a plurality of pilot sequences that when the pilot sequence selected by the first slave node and the second slave node is a ZC sequence, the two ZC sequences selected satisfy the following conditions: The relevant result is close to 0:
  • the pilot sequence selected for the first slave node is a ZC sequence having the same root sequence number as the ZC sequence of the second slave node but having different cyclic shift values.
  • the pilot sequence selected for the first slave node is a ZC sequence different from the root sequence number of the ZC sequence of the second slave node and having different cyclic shift values.
  • the correlation result of the two ZC sequences is 0, It is indicated that there is no pilot interference between two ZC sequences; and when the pilot sequence selected for the first slave node is a ZC sequence different from the root sequence number of the ZC sequence of the second slave node and having different cyclic shift values, The correlation result between the ZC sequences is close to 0, indicating that the pilot interference between the two ZC sequences is negligible, so the selecting unit preferably adopts the above manner to select the pilot sequence for the first slave node.
  • the root sequence number and the cyclic shift value may be obtained from the master node in the corresponding network, that is, the data sending apparatus provided by the embodiment of the present invention may further include: an acquiring unit, configured to acquire, by the master node in the corresponding network, broadcast The root sequence number of the ZC sequence configured by each node in the network and the cyclic shift value.
  • the master node in the corresponding network refers to the network where the first slave node and the second slave node are respectively located.
  • the master node in the corresponding network is the master in the network 1.
  • a node; when the first slave node is located in the network 1 and the second slave node is located in the network 2, the master node in the corresponding network is: for the first slave node, the master node is the master node in the network 1, and for the second node From the point of view of the node, the master node is the master node in network 2.
  • the master node in the network configures the root sequence number of the ZC sequence and the cyclic shift value for each slave node (including the first slave node or the second slave node) in the respective network, such that the first slave node and the first slave node After receiving the root sequence number broadcasted by the master node and the cyclic shift value, the second slave node may select the corresponding ZC sequence as the pilot sequence.
  • the control unit 12 is configured to control the position of the selected pilot sequence in the subcarriers to be the same as the position of the pilot sequence in the subcarriers of the second slave node. Further control unit 12 may also control the spacing of any two adjacent pilot subcarriers of the subcarriers of the first slave node to be equal.
  • the pilot sequences are in the same position on different slave nodes, and the intervals of any two adjacent pilot subcarriers on each slave node are equal.
  • the present invention The possible ways provided by the embodiments are as follows:
  • the modulating unit 13 is configured to modulate the processed subcarriers of the first slave node to obtain data to be sent.
  • the sending unit 14 is configured to send data to be sent.
  • the first slave node selects a pilot that matches the pilot sequence of the second slave node to meet a preset condition.
  • a sequence, and the preset condition may indicate that the pilot interference between the first slave node and the second slave node is within a preset range, so the first slave node may remove the first slave node and the first node when adopting the corresponding pilot sequence
  • the pilot interference between the two slave nodes is such that the second slave node can perform channel estimation according to the selected pilot sequence.
  • the position of the pilot sequence in the subcarrier in the first slave node is the same as the position of the pilot sequence in the subcarrier of the second slave node, and thus can be based on the previously obtained subcarrier.
  • the pilot sequence is loaded at the corresponding position of the subsequently obtained subcarriers to increase the processing speed.
  • the present invention can also control the interval of any two adjacent pilot subcarriers in the subcarriers of the first slave node to be equal, so that there is no need to insert pilot subcarriers at all positions of the subcarriers, and the pilot used for channel estimation is reduced.
  • the number of subcarriers enables the effect of channel estimation based on a smaller pilot overhead.
  • FIG. 7 another schematic structural diagram of a data transmitting apparatus according to an embodiment of the present invention is shown.
  • the FIG. 6 may further include: a sequence obtaining unit 15 and a channel estimating unit 16.
  • the sequence obtaining unit 15 is configured to acquire a pilot sequence used when the third slave node sends data to the first slave node.
  • the channel estimation unit 16 is configured to perform channel estimation based on the used pilot sequence.
  • the schematic diagram of the structure of the channel estimation unit 16 is as shown in FIG. 8, and may include: an acquisition subunit 161, an interpolation subunit 162, an inverse transform subunit 163, a cyclic shift subunit 164, a transform subunit 165, and a filter processing subunit 166. .
  • the obtaining sub-unit 161 is configured to obtain a frequency domain response of the pilot subcarrier channel corresponding to the pilot subcarrier in the adopted pilot sequence.
  • the interpolation sub-unit 162 is configured to perform first-order linear interpolation on the nPilotRe point frequency domain pilot subcarrier based on the frequency domain response of each pilot subcarrier channel, to obtain an nRe point frequency domain subcarrier channel estimation value, where nRe is a pilot The total number of subcarriers and data subcarriers, nPilotRe is the total number of pilot subcarriers.
  • the inverse transform sub-unit 163 is configured to perform an inverse nRe point inverse Fourier transform on the nRe point frequency domain subcarrier channel estimation value to obtain a time domain channel h1.
  • the cyclic shift sub-unit 164 is configured to add a window to the cyclic shift of the pilot sequence, and set the value of the time domain channel outside the window to 0 to obtain a time domain channel h1 for canceling the interference signal.
  • the transform subunit 165 is configured to perform an nRe point discrete Fourier transform on the time domain channel h1 after the interference cancellation signal, to obtain a frequency domain channel after interference cancellation.
  • the filtering processing sub-unit 166 is configured to perform filtering processing on the frequency-domain channel after interference cancellation to obtain a channel estimation value.
  • FIG. 9 illustrates a network device provided by an embodiment of the present invention.
  • the network device includes: a processor 21 and an RF device 22 .
  • the processor 21 is configured to: when the first slave node and the second slave node occupy the same time-frequency resource to send data, select, for the first slave node, a pilot that matches the pilot sequence of the second slave node to meet a preset condition. a sequence, the position of the selected pilot sequence in the subcarrier is controlled to be the same as the position of the pilot sequence in the subcarrier of the second slave node, and the processed subcarrier of the first slave node is modulated to obtain a to be transmitted.
  • the preset condition indicates that the pilot interference between the first slave node and the second slave node is within a preset range, and the preset range may enable the second slave node to perform channel estimation according to the selected pilot sequence.
  • the RF unit 22 is configured to send data to be sent.
  • the processor 21 may also control that the intervals of any two adjacent pilot subcarriers in the subcarriers of the first slave node are equal.
  • the specific processor 21 controls the position of the selected pilot sequence in the subcarriers to be the same as the position of the pilot sequence in the subcarriers of the second slave node and controls any two adjacent ones of the subcarriers of the first slave node.
  • the processor 21 presets a plurality of equally spaced insertion positions on the subcarriers of the first slave node, inserts comb pilot subcarriers at each insertion position, and adds pilots in each comb pilot subcarrier. a sequence, wherein each comb pilot subcarrier corresponds to a location of a corresponding comb pilot subcarrier in a subcarrier of the second slave node.
  • the processor 21 may select a pilot sequence in a manner that when the first slave node and the second slave node are located in the same network, the pilot sequence of the second slave node is ZC.
  • the pilot sequence selected for the first slave node is a ZC sequence having the same root sequence number as the ZC sequence of the second slave node but having different cyclic shift values; when the first slave node and the first When the two slave nodes are located in different networks, and the pilot sequence of the second slave node is a ZC sequence, the pilot sequence selected for the first slave node is different from the root sequence number of the ZC sequence of the second slave node and is cyclically shifted. ZC sequences with different bit values.
  • the root sequence number and the cyclic shift value of the above ZC sequence may be received by the radio frequency device 22,
  • the row mode is: the RF device 22 receives the root sequence number and the cyclic shift value of the ZC sequence configured for each node in the network broadcasted by the master node in the corresponding network, and the description of the master node in the corresponding network can be referred to the method embodiment.
  • the processor 21 may also acquire a pilot sequence used when the third slave node sends data to the first slave node, and perform channel estimation based on the used pilot sequence.
  • the processor 21 performs channel estimation, refer to the related description in the method embodiment, which is not described in the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种数据发送方法、装置及网络设备,当第一从节点与第二从节点占用相同时频资源发送数据时,为第一从节点选用与第二从节点的导频序列的相关性满足预设条件的导频序列,而预设条件可以指示第一从节点与第二从节点之间的导频干扰在预设范围内,因此第一从节点在采用对应的导频序列时可以去除第一从节点和第二从节点之间的导频干扰,以使第二从节点可根据所选取的导频序列进行信道估计。而对于所选用的导频序列来说,第一从节点中导频序列在子载波中的位置与导频序列在第二从节点的子载波中的位置相同,进而可以基于之前得到的子载波在后续获得的子载波的相应位置处加载导频序列,提高处理速度。

Description

一种数据发送方法、装置及网络设备 技术领域
本发明属于无线网格网络技术领域,更具体的说,尤其涉及一种数据发送方法、装置及网络设备。
背景技术
MESH网络(无线网格网络)是由Ad hoc(一种多跳无中心的自组织无线网络)发展而来的无线多跳网络,是解决“最后一公里”问题的关键技术之一。
目前,在MESH网络中不同从节点占用不同的时频资源发送数据,使得MESH网络中不同从节点间不存在干扰或者干扰较小。但是当MESH网络中节点较多且多个节点需要发送的数据量较大时,为了提升网络整体吞吐率,MESH网络中的主节点会调度两对或者多对从节点占用相同的视频资源收发数据,如图1所示。
在图1中,在相同时隙相同频域资源下,从节点A向从节点B发送数据,从节点C向从节点D发送数据,且从节点A到从节点D以及从节点B到从节点C的路径损耗较大。但是由于从节点A和从节点C采用相同时隙相同频域资源发送数据,所以从节点B在接收从节点A发送的数据时,会受到从节点C的干扰,同样从节点D在接收从节点C发送的数据时,也会受到从节点A的干扰,而从节点A或从节点C受到的干扰包括:数据干扰和导频干扰,当从节点受到导频干扰时会导致从节点无法进行信道估计。
发明内容
有鉴于此,本发明的目的在于提供一种数据发送方法、装置及网络设备,用于在多个从节点采用相同时频资源发送数据时降低从节点之间的导频干扰,使得从节点可以进行信道估计。技术方案如下:
第一方面,本发明提供一种数据发送方法,所述方法包括:
在第一从节点与第二从节点占用相同时频资源发送数据时,为所述第一从节点选用与所述第二从节点的导频序列的相关性满足预设条件的导频序列,其中所述预设条件指示所述第一从节点与所述第二从节点之间的导频干扰在预设范围内,所述预设范围可使所述第二从节点根据所选取的导频序列进行信道估计;
控制所选用的所述导频序列在所述子载波中的位置与导频序列在所述第二从节点的子载波中的位置相同;
对处理后的所述第一从节点的子载波进行调制,得到待发送的数据进行发送。
优选的,在对所述处理后的所述第一从节点的子载波进行调制之前,所述方法还包括:
控制所述第一从节点的子载波中任意两个相邻导频子载波的间隔相等。
优选的,所述为所述第一从节点选用与所述第二从节点的导频序列的相关性满足预设条件的导频序列,包括:
当所述第一从节点和所述第二从节点位于同一个网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列;
当所述第一从节点和所述第二从节点位于不同网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列。
优选的,所述方法还包括:获取对应网络中的主节点广播的为网络中每个节点配置的ZC序列的根序列号以及循环移位值。
优选的,所述控制所述第一从节点的子载波中任意两个相邻导频子载波的间隔相等以及所述控制所选用的所述导频序列在所述子载波中的位置与导频序列在所述第二从节点的子载波中的位置相同,包括:
在所述第一从节点的子载波上预设多个间隔相等的插入位置,在每个所述 插入位置上插入梳状导频子载波,并在每个所述梳状导频子载波中加入所述导频序列,其中每个所述梳状导频子载波与所述第二从节点的子载波中对应梳状导频子载波的位置对应。
优选的,所述方法还包括:获取第三从节点向所述第一从节点发送数据时采用的导频序列;
基于所采用的导频序列进行信道估计。
优选的,所述基于所采用的导频序列进行信道估计,包括:
获取所采用的导频序列中导频子载波对应的导频子载波信道的频域响应;
基于每个导频子载波信道的频域响应对nPilotRe点频域导频子载波进行一阶线性插值,获得nRe点频域子载波信道估计值,并对nRe点频域子载波信道估计值做nRe点离散傅里叶逆变换,得到时域信道h1,其中nRe为导频子载波与数据子载波的总数,nPilotRe为导频子载波的总数;
在导频序列的循环移位基础上加窗,将窗之外的时域信道的取值置0,得到消除干扰信号的时域信道h1;
对消除干扰信号后的时域信道h1做nRe点离散傅里叶变换,获得消除干扰后的频域信道;
对消除干扰后的频域信道进行滤波处理,得到信道估计值。
第二方面,本发明还提供一种数据发送装置,所述装置包括:
选取单元,用于在第一从节点与第二从节点占用相同时频资源发送数据时,为所述第一从节点选用与所述第二从节点的导频序列的相关性满足预设条件的导频序列,其中所述预设条件指示所述第一从节点与所述第二从节点之间的导频干扰在预设范围内,所述预设范围可使所述第二从节点根据所选取的导频序列进行信道估计;
控制单元,用于控制所选用的所述导频序列在所述子载波中的位置与导频序列在所述第二从节点的子载波中的位置相同;
调制单元,用于对处理后的所述第一从节点的子载波进行调制,得到待发送的数据;
发送单元,用于发送所述待发送的数据。
优选的,所述控制单元,还用于控制所述第一从节点的子载波中任意两个相邻导频子载波的间隔相等。
优选的,所述选取单元,用于当所述第一从节点和所述第二从节点位于同一个网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列;以及用于当所述第一从节点和所述第二从节点位于不同网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列。
优选的,所述装置还包括:获取单元,用于获取对应网络中的主节点广播的为网络中每个节点配置的ZC序列的根序列号以及循环移位值。
优选的,所述控制单元,用于在所述第一从节点的子载波上预设多个间隔相等的插入位置,在每个所述插入位置上插入梳状导频子载波,并在每个所述梳状导频子载波中加入所述导频序列,其中每个所述梳状导频子载波与所述第二从节点的子载波中对应梳状导频子载波的位置对应。
优选的,所述装置还包括:序列获取单元,用于获取第三从节点向所述第一从节点发送数据时采用的导频序列;
信道估计单元,用于基于所采用的导频序列进行信道估计。
优选的,所述信道估计单元包括:
获取子单元,用于获取所采用的导频序列中导频子载波对应的导频子载波信道的频域响应;
插值子单元,用于基于每个导频子载波信道的频域响应对nPilotRe点频域导频子载波进行一阶线性插值,获得nRe点频域子载波信道估计值,其中nRe为导频子载波与数据子载波的总数,nPilotRe为导频子载波的总数;
逆变换子单元,用于对nRe点频域子载波信道估计值做nRe点离散傅里叶逆变换,得到时域信道h1;
循环移位子单元,用于在导频序列的循环移位基础上加窗,将窗之外的时 域信道的取值置0,得到消除干扰信号的时域信道h1;
变换子单元,用于对消除干扰信号后的时域信道h1做nRe点离散傅里叶变换,获得消除干扰后的频域信道;
滤波处理子单元,用于对消除干扰后的频域信道进行滤波处理,得到信道估计值。
第三方面,本发明还提供一种网络设备,所述网络设备包括:处理器和射频器;
所述处理器,用于在第一从节点与第二从节点占用相同时频资源发送数据时,为所述第一从节点选用与所述第二从节点的导频序列的相关性满足预设条件的导频序列,控制所选用的所述导频序列在所述子载波中的位置与导频序列在所述第二从节点的子载波中的位置相同,对处理后的所述第一从节点的子载波进行调制,得到待发送的数据,其中所述预设条件指示所述第一从节点与所述第二从节点之间的导频干扰在预设范围内,所述预设范围可使所述第二从节点根据所选取的导频序列进行信道估计;
所述射频器,用于发送所述待发送的数据。
与现有技术相比,本发明提供的上述技术方案具有如下优点:
从上述技术方案可知,当第一从节点与第二从节点占用相同时频资源发送数据时,为第一从节点选用与第二从节点的导频序列的相关性满足预设条件的导频序列,而预设条件可以指示第一从节点与第二从节点之间的导频干扰在预设范围内,因此第一从节点在采用对应的导频序列时可以去除第一从节点和第二从节点之间的导频干扰,以使第二从节点可根据所选取的导频序列进行信道估计。
而对于所选用的导频序列来说,第一从节点中导频序列在子载波中的位置与导频序列在第二从节点的子载波中的位置相同,进而可以基于之前得到的子载波在后续获得的子载波的相应位置处加载导频序列,提高处理速度。
此外本发明还可以控制第一从节点的子载波中任意两个相邻导频子载波的间隔相等,这样就无需在子载波的全部位置处插入导频子载波,降低信道估 计采用的导频子载波数量,实现基于较小的导频开销进行信道估计的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有MEDH网络中多从节点发送数据的示意图;
图2是本发明实施例提供的数据发送方法的一种流程图;
图3是本发明实施例提供的数据发送方法的另一种流程图;
图4是本发明实施例提供的子载波的示意图;
图5是本发明实施例提供的数据发送方法的再一种流程图;
图6是本发明实施例提供的数据发送装置的一种结构示意图;
图7是本发明实施例提供的数据发送装置的另一种结构示意图;
图8是本发明实施例提供的数据发送装置中信道估计单元的结构示意图;
图9是本发明实施例提供的网络设备的一种结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图2,其示出了本发明实施例提供的数据发送方法的一种流程图,当多个从节点占用相同时频资源发送数据时,通过对多个从节点各种使用的子载波的处理来去除导频干扰。在本发明实施例中以第一从节点和第二从节点为 例进行说明,但本发明实施例同样可以应用到两个以上从节点在占用相同时频资源发送数据的情况。具体的,上述图2所示数据发送方法可以包括以下步骤:
201:在第一从节点与第二从节点占用相同时频资源发送数据时,为第一从节点选用与第二从节点的导频序列的相关性满足预设条件的导频序列,其中与第二从节点的导频序列的相关性满足预设条件的导频序列,指示第一从节点与第二从节点之间的导频干扰在预设范围内,以通过导频序列的选取降低从节点之间的导频干扰,使得第二从节点根据所选取的导频序列进行信道估计,即本发明实施例中预设范围可使第二从节点根据所选取的导频序列进行信道估计。
而发明人经过对多个导频序列的研究发现,从节点之间是否存在导频干扰与两个导频序列的相关结果有关,其中两个导频序列的相关结果表示两个导频序列的相关性,相关性则用于指示两个导频序列之间是否存在导频干扰,具体的相关结果越小,相关性越高,导频干扰越小,尤其是在相关结果接近于0的情况下,相关性越高,导频干扰可以忽略。
基于发明人的研究发现可知,在本发明实施例中确定第一从节点选用的导频序列与第二从节点选用的导频序列之间的相关性是否满足预设条件的一种可行方式是:确定第一从节点选用的导频序列与第二从节点选用的导频序列之间的相关结果是否为0。
发明人在对多个导频序列研究的过程中还发现,当第一从节点和第二从节点选用的导频序列为ZC(Zadoff-Chu)序列时,选取的两个ZC序列满足如下条件时两个ZC序列的相关结果接近于0:
当第一从节点和第二从节点位于同一网络中时,为第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列。而当第一从节点和第二从节点位于不同网络中时,为第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列。
具体的:当为第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列时,两个ZC序列的相关结果为0, 则说明两个ZC序列之间不存在导频干扰;而当为第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列,两个ZC序列之间的相关结果接近于0,则说明两个ZC序列之间的导频干扰可以忽略,因此本发明实施例优选采用上述方式来为第一从节点选取导频序列。
而上述根序列号以及循环移位值可以从对应网络中的主节点中得到,即本发明实施例提供的数据发送方法还包括步骤200:获取对应网络中的主节点广播的为网络中每个节点配置的ZC序列的根序列号以及循环移位值,如图3所示。
其中对应网络中的主节点是指第一从节点和第二从节点各自所在网络,比如第一从节点和第二从节点位于网络1中时,对应网络中的主节点为网络1中的主节点;当第一从节点位于网络1,第二从节点位于网络2时,对应网络中的主节点则是:对于第一从节点来说,主节点是网络1中的主节点,对于第二从节点来说,主节点是网络2中的主节点。
并且网络中的主节点会为各自网络中的每个从节点(包括第一从节点或第二从节点)来配置ZC序列的根序列号以及循环移位值,这样第一从节点和第二从节点在接收到主节点广播的根序列号以及循环移位值后可以选用对应的ZC序列作为导频序列。
202:控制第一从节点的子载波中任意两个相邻导频子载波的间隔相等。进一步控制所选用的导频序列在子载波中的位置与导频序列在第二从节点的子载波中的位置相同。
也就是说,对于不同从节点来说,导频序列在不同从节点上的位置相同,且每个从节点上任意两个相邻导频子载波的间隔相等,为实现这一特点,本发明实施例提供的可行方式如下:
在第一从节点的子载波上预设多个间隔相等的插入位置,在每个插入位置上插入梳状导频子载波,并在每个梳状导频子载波中加入导频序列,其中每个梳状导频子载波与第二从节点的子载波中对应梳状导频子载波的位置对应。即通过在不同从节点的子载波上设置多个间隔相等的插入位置来插入梳状导频 子载波,并将导频序列加入梳状导频子载波的方式来使得导频序列在不同从节点上的位置相同,且每个从节点上任意两个相邻导频子载波的间隔相等。
如图4所示第一从节点和第二从节点的子载波的示意图,每个子载波包括数据子载波和导频子载波,且对于每个子载波来说,每间隔四个数据子载波设置一个导频子载波,实现不同从节点之间的任意两个相邻导频子载波的间隔相同。
在本发明实施例中,上述图4所示的导频子载波采用梳状导频子载波,相对于采用块状导频子载波来说,降低导频子载波的数量,实现以较小导频开销进行信道估计。并且从上述图4可知,不同从节点的子载波之间的梳状导频子载波的位置相同,因此在梳状导频子载波上插入导频序列后,可以保证导频序列在不同从节点的子载波的位置相同。
203:对处理后的第一从节点的子载波进行调制,得到待发送的数据进行发送。
从上述技术方案可知,当第一从节点与第二从节点占用相同时频资源发送数据时,为第一从节点选用与第二从节点的导频序列的相关性满足预设条件的导频序列,而预设条件可以指示第一从节点与第二从节点之间的导频干扰在预设范围内,因此第一从节点在采用对应的导频序列时可以去除第一从节点和第二从节点之间的导频干扰,以使第二从节点可根据所选取的导频序列进行信道估计。
而对于所选用的导频序列来说,第一从节点中导频序列在子载波中的位置与导频序列在第二从节点的子载波中的位置相同,进而可以基于之前得到的子载波在后续获得的子载波的相应位置处加载导频序列,提高处理速度。
此外本发明还可以控制第一从节点的子载波中任意两个相邻导频子载波的间隔相等,这样就无需在子载波的全部位置处插入导频子载波,降低信道估计采用的导频子载波数量,实现基于较小的导频开销进行信道估计的效果。
请参阅图5,其示出了本发明实施例提供的数据发送方法的再一种流程 图,在图2基础上还可以包括以下步骤:
204:获取第三从节点向第一从节点发送数据时采用的导频序列。
205:基于所采用的导频序列进行信道估计。
也就是说图4的步骤201至步骤203阐述了第一从节点在作为源从节点向目的从节点发送数据时的过程,步骤204至步骤205则阐述了第一从节点在作为目的从节点时,其他源从节点(如第三从节点)向其发送数据后,第一从节点可以基于其他源从节点采用的导频序列进行信道估计。
本发明实施例提供的信道估计的过程如下:
1)获取所采用的导频序列中导频子载波对应的导频子载波信道的频域响应。
假设接收到的导频子载波与发送的导频子载波之间的关系为:YP=XPHpP
其中,YP=[D[k1],D[k2],…,D[kM]]T,表示目的从节点接收到的导频子载波;XP=diag(S[k1],S[k2],…,S[kM]),表示源从节点发送的导频子载波;HP=[H[k1],H[k2],…,H[kM]]T,第i个元素表示第ki个导频子载波信道;εP中的第i个元素表示第ki个导频子载波信道上接收到的噪声分量。
相应的,
Figure PCTCN2016104033-appb-000001
对于矩阵
Figure PCTCN2016104033-appb-000002
其中第i个元素表示估计到的第ki个导频子载波信道的频域响应。
2)基于每个导频子载波信道的频域响应对nPilotRe点频域导频子载波进行一阶线性插值,获得nRe点频域子载波信道估计值,再对nRe点频域子载波信道估计值做nRe点IDFT(Inverse Discrete Fourier Transform,离散傅里叶 逆变换),得到时域信道h1,nRe为导频子载波与数据子载波的总数,nPilotRe为导频子载波的总数。
3)在导频序列的循环移位基础上加窗,将窗之外的时域信道的取值置0,得到消除干扰信号的时域信道h1,其中加窗的位置与ZC序列的循环移位位置对应。
4)对消除干扰信号后的时域信道h1做nRe点DFT(Discrete Fourier Transform,离散傅里叶变换),获得消除干扰后的频域信道。
5)对消除干扰后的频域信道进行滤波处理,得到信道估计值,其中对频域信道进行滤波处理可以去除频域信道中的干扰信号,提升信道估计性能。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
请参阅图6,其示出了本发明实施例提供的数据发送装置的一种结构示意图,可以包括:选取单元11、控制单元12、调制单元13和发送单元14。
选取单元11,用于在第一从节点与第二从节点占用相同时频资源发送数据时,为第一从节点选用与第二从节点的导频序列的相关性满足预设条件的导频序列,其中预设条件指示第一从节点与第二从节点之间的导频干扰在预设范围内,预设范围可使第二从节点根据所选取的导频序列进行信道估计。
发明人经过对多个导频序列的研究发现,从节点之间是否存在导频干扰与两个导频序列的相关结果有关,其中两个导频序列的相关结果表示两个导频序列的相关性,相关性则用于指示两个导频序列之间是否存在导频干扰,具体的相关结果越小,相关性越高,导频干扰越小,尤其是在相关结果接近于0的情况下,相关性越高,导频干扰可以忽略。
基于发明人的研究发现可知,在本发明实施例中确定第一从节点选用的导 频序列与第二从节点选用的导频序列之间的相关性是否满足预设条件的一种可行方式是:确定第一从节点选用的导频序列与第二从节点选用的导频序列之间的相关结果是否为0。
发明人在对多个导频序列研究的过程中还发现,当第一从节点和第二从节点选用的导频序列为ZC序列时,选取的两个ZC序列满足如下条件时两个ZC序列的相关结果接近于0:
当第一从节点和第二从节点位于同一网络中时,为第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列。而当第一从节点和第二从节点位于不同网络中时,为第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列。
具体的:当为第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列时,两个ZC序列的相关结果为0,则说明两个ZC序列之间不存在导频干扰;而当为第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列,两个ZC序列之间的相关结果接近于0,则说明两个ZC序列之间的导频干扰可以忽略,因此选取单元优选采用上述方式来为第一从节点选取导频序列。
而上述根序列号以及循环移位值可以从对应网络中的主节点中得到,即本发明实施例提供的数据发送装置还可以包括:获取单元,用于获取对应网络中的主节点广播的为网络中每个节点配置的ZC序列的根序列号以及循环移位值。
其中对应网络中的主节点是指第一从节点和第二从节点各自所在网络,比如第一从节点和第二从节点位于网络1中时,对应网络中的主节点为网络1中的主节点;当第一从节点位于网络1,第二从节点位于网络2时,对应网络中的主节点则是:对于第一从节点来说,主节点是网络1中的主节点,对于第二从节点来说,主节点是网络2中的主节点。
并且网络中的主节点会为各自网络中的每个从节点(包括第一从节点或第二从节点)来配置ZC序列的根序列号以及循环移位值,这样第一从节点和第 二从节点在接收到主节点广播的根序列号以及循环移位值后可以选用对应的ZC序列作为导频序列。
控制单元12,用于控制所选用的导频序列在子载波中的位置与导频序列在第二从节点的子载波中的位置相同。进一步控制单元12还可以控制第一从节点的子载波中任意两个相邻导频子载波的间隔相等。
也就是说,对于不同从节点来说,导频序列在不同从节点上的位置相同,且每个从节点上任意两个相邻导频子载波的间隔相等,为实现这一特点,本发明实施例提供的可行方式如下:
在第一从节点的子载波上预设多个间隔相等的插入位置,在每个插入位置上插入梳状导频子载波,并在每个梳状导频子载波中加入导频序列,其中每个梳状导频子载波与第二从节点的子载波中对应梳状导频子载波的位置对应。即通过在不同从节点的子载波上设置多个间隔相等的插入位置来插入梳状导频子载波,并将导频序列加入梳状导频子载波的方式来使得导频序列在不同从节点上的位置相同,且每个从节点上任意两个相邻导频子载波的间隔相等,具体可以参阅图4所示,本发明实施例不再详述。
调制单元13,用于对处理后的第一从节点的子载波进行调制,得到待发送的数据。
发送单元14,用于发送待发送的数据。
从上述技术方案可知,当第一从节点与第二从节点占用相同时频资源发送数据时,为第一从节点选用与第二从节点的导频序列的相关性满足预设条件的导频序列,而预设条件可以指示第一从节点与第二从节点之间的导频干扰在预设范围内,因此第一从节点在采用对应的导频序列时可以去除第一从节点和第二从节点之间的导频干扰,以使第二从节点可根据所选取的导频序列进行信道估计。
而对于所选用的导频序列来说,第一从节点中导频序列在子载波中的位置与导频序列在第二从节点的子载波中的位置相同,进而可以基于之前得到的子载波在后续获得的子载波的相应位置处加载导频序列,提高处理速度。
此外本发明还可以控制第一从节点的子载波中任意两个相邻导频子载波的间隔相等,这样就无需在子载波的全部位置处插入导频子载波,降低信道估计采用的导频子载波数量,实现基于较小的导频开销进行信道估计的效果。
请参阅图7,其示出了本发明实施例提供的数据发送装置的另一种结构示意图,在图6基础上还可以包括:序列获取单元15和信道估计单元16。
序列获取单元15,用于获取第三从节点向第一从节点发送数据时采用的导频序列。
信道估计单元16,用于基于所采用的导频序列进行信道估计。其中信道估计单元16的结构示意图如图8所示,可以包括:获取子单元161、插值子单元162、逆变换子单元163、循环移位子单元164、变换子单元165和滤波处理子单元166。
获取子单元161,用于获取所采用的导频序列中导频子载波对应的导频子载波信道的频域响应。
插值子单元162,用于基于每个导频子载波信道的频域响应对nPilotRe点频域导频子载波进行一阶线性插值,获得nRe点频域子载波信道估计值,其中nRe为导频子载波与数据子载波的总数,nPilotRe为导频子载波的总数。
逆变换子单元163,用于对nRe点频域子载波信道估计值做nRe点离散傅里叶逆变换,得到时域信道h1。
循环移位子单元164,用于在导频序列的循环移位基础上加窗,将窗之外的时域信道的取值置0,得到消除干扰信号的时域信道h1。
变换子单元165,用于对消除干扰信号后的时域信道h1做nRe点离散傅里叶变换,获得消除干扰后的频域信道。
滤波处理子单元166,用于对消除干扰后的频域信道进行滤波处理,得到信道估计值。
在本发明实施例中,上述各个子单元的具体执行过程请参阅方法实施例中的相关说明,对此本发明实施例不在阐述。
请参阅图9,其示出了本发明实施例提供的网络设备,网络设备包括:处理器21和射频器22。
处理器21,用于在第一从节点与第二从节点占用相同时频资源发送数据时,为第一从节点选用与第二从节点的导频序列的相关性满足预设条件的导频序列,控制所选用的导频序列在子载波中的位置与导频序列在第二从节点的子载波中的位置相同,对处理后的第一从节点的子载波进行调制,得到待发送的数据,其中预设条件指示第一从节点与第二从节点之间的导频干扰在预设范围内,预设范围可使第二从节点根据所选取的导频序列进行信道估计。
射频器22,用于发送待发送的数据。
在一个可行的实施方式中,处理器21还可以控制第一从节点的子载波中任意两个相邻导频子载波的间隔相等。具体的处理器21控制所选用的导频序列在子载波中的位置与导频序列在第二从节点的子载波中的位置相同以及控制控制第一从节点的子载波中任意两个相邻导频子载波的间隔相等的可行方式是:
处理器21在第一从节点的子载波上预设多个间隔相等的插入位置,在每个插入位置上插入梳状导频子载波,并在每个梳状导频子载波中加入导频序列,其中每个梳状导频子载波与第二从节点的子载波中对应梳状导频子载波的位置对应。
在一个可行的实施方式中,处理器21选取导频序列的可行方式是:当所述第一从节点和所述第二从节点位于同一个网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列;当所述第一从节点和所述第二从节点位于不同网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列。
上述ZC序列的根序列号以及循环移位值可以由射频器22接收,一种可 行方式是:射频器22接收对应网络中的主节点广播的为网络中每个节点配置的ZC序列的根序列号以及循环移位值,而对应网络中的主节点的介绍可参阅方法实施例中的相关说明。
在一个可行的实施方式中,处理器21还可以获取第三从节点向第一从节点发送数据时采用的导频序列,并基于所采用的导频序列进行信道估计。其中处理器21进行信道估计的具体过程请参阅方法实施例中的相关说明,本发明实施例不在阐述。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

  1. 一种数据发送方法,其特征在于,所述方法包括:
    在第一从节点与第二从节点占用相同时频资源发送数据时,为所述第一从节点选用与所述第二从节点的导频序列的相关性满足预设条件的导频序列,其中所述预设条件指示所述第一从节点与所述第二从节点之间的导频干扰在预设范围内,所述预设范围可使所述第二从节点根据所选取的导频序列进行信道估计;
    控制所选用的所述导频序列在所述子载波中的位置与导频序列在所述第二从节点的子载波中的位置相同;
    对处理后的所述第一从节点的子载波进行调制,得到待发送的数据进行发送。
  2. 根据权利要求1所述的方法,其特征在于,在对所述处理后的所述第一从节点的子载波进行调制之前,所述方法还包括:
    控制所述第一从节点的子载波中任意两个相邻导频子载波的间隔相等。
  3. 根据权利要求1所述的方法,其特征在于,所述为所述第一从节点选用与所述第二从节点的导频序列的相关性满足预设条件的导频序列,包括:
    当所述第一从节点和所述第二从节点位于同一个网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列;
    当所述第一从节点和所述第二从节点位于不同网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:获取对应网络中的主节点广播的为网络中每个节点配置的ZC序列的根序列号以及循环移位值。
  5. 根据权利要求2所述的方法,其特征在于,所述控制所述第一从节点的子载波中任意两个相邻导频子载波的间隔相等以及所述控制所选用的所述 导频序列在所述子载波中的位置与导频序列在所述第二从节点的子载波中的位置相同,包括:
    在所述第一从节点的子载波上预设多个间隔相等的插入位置,在每个所述插入位置上插入梳状导频子载波,并在每个所述梳状导频子载波中加入所述导频序列,其中每个所述梳状导频子载波与所述第二从节点的子载波中对应梳状导频子载波的位置对应。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:获取第三从节点向所述第一从节点发送数据时采用的导频序列;
    基于所采用的导频序列进行信道估计。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所采用的导频序列进行信道估计,包括:
    获取所采用的导频序列中导频子载波对应的导频子载波信道的频域响应;
    基于每个导频子载波信道的频域响应对nPilotRe点频域导频子载波进行一阶线性插值,获得nRe点频域子载波信道估计值,并对nRe点频域子载波信道估计值做nRe点离散傅里叶逆变换,得到时域信道h1,其中nRe为导频子载波与数据子载波的总数,nPilotRe为导频子载波的总数;
    在导频序列的循环移位基础上加窗,将窗之外的时域信道的取值置0,得到消除干扰信号的时域信道h1;
    对消除干扰信号后的时域信道h1做nRe点离散傅里叶变换,获得消除干扰后的频域信道;
    对消除干扰后的频域信道进行滤波处理,得到信道估计值。
  8. 一种数据发送装置,其特征在于,所述装置包括:
    选取单元,用于在第一从节点与第二从节点占用相同时频资源发送数据时,为所述第一从节点选用与所述第二从节点的导频序列的相关性满足预设条件的导频序列,其中所述预设条件指示所述第一从节点与所述第二从节点之间的导频干扰在预设范围内,所述预设范围可使所述第二从节点根据所选取的导频序列进行信道估计;
    控制单元,用于控制所选用的所述导频序列在所述子载波中的位置与导频序列在所述第二从节点的子载波中的位置相同;
    调制单元,用于对处理后的所述第一从节点的子载波进行调制,得到待发送的数据;
    发送单元,用于发送所述待发送的数据。
  9. 根据权利要求8所述的装置,其特征在于,所述控制单元,还用于控制所述第一从节点的子载波中任意两个相邻导频子载波的间隔相等。
  10. 根据权利要求8所述的装置,其特征在于,所述选取单元,用于当所述第一从节点和所述第二从节点位于同一个网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号相同但循环移位值不同的ZC序列;以及用于当所述第一从节点和所述第二从节点位于不同网络中,第二从节点的导频序列为ZC序列时,为所述第一从节点选用的导频序列为与第二从节点的ZC序列的根序列号不同且循环移位值不同的ZC序列。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:获取单元,用于获取对应网络中的主节点广播的为网络中每个节点配置的ZC序列的根序列号以及循环移位值。
  12. 根据权利要求9所述的装置,其特征在于,所述控制单元,用于在所述第一从节点的子载波上预设多个间隔相等的插入位置,在每个所述插入位置上插入梳状导频子载波,并在每个所述梳状导频子载波中加入所述导频序列,其中每个所述梳状导频子载波与所述第二从节点的子载波中对应梳状导频子载波的位置对应。
  13. 根据权利要求8所述的装置,其特征在于,所述装置还包括:序列获取单元,用于获取第三从节点向所述第一从节点发送数据时采用的导频序列;
    信道估计单元,用于基于所采用的导频序列进行信道估计。
  14. 根据权利要求13所述的装置,其特征在于,所述信道估计单元包括:
    获取子单元,用于获取所采用的导频序列中导频子载波对应的导频子载波 信道的频域响应;
    插值子单元,用于基于每个导频子载波信道的频域响应对nPilotRe点频域导频子载波进行一阶线性插值,获得nRe点频域子载波信道估计值,其中nRe为导频子载波与数据子载波的总数,nPilotRe为导频子载波的总数;
    逆变换子单元,用于对nRe点频域子载波信道估计值做nRe点离散傅里叶逆变换,得到时域信道h1;
    循环移位子单元,用于在导频序列的循环移位基础上加窗,将窗之外的时域信道的取值置0,得到消除干扰信号的时域信道h1;
    变换子单元,用于对消除干扰信号后的时域信道h1做nRe点离散傅里叶变换,获得消除干扰后的频域信道;
    滤波处理子单元,用于对消除干扰后的频域信道进行滤波处理,得到信道估计值。
  15. 一种网络设备,其特征在于,所述网络设备包括:处理器和射频器;
    所述处理器,用于在第一从节点与第二从节点占用相同时频资源发送数据时,为所述第一从节点选用与所述第二从节点的导频序列的相关性满足预设条件的导频序列,控制所选用的所述导频序列在所述子载波中的位置与导频序列在所述第二从节点的子载波中的位置相同,对处理后的所述第一从节点的子载波进行调制,得到待发送的数据,其中所述预设条件指示所述第一从节点与所述第二从节点之间的导频干扰在预设范围内,所述预设范围可使所述第二从节点根据所选取的导频序列进行信道估计;
    所述射频器,用于发送所述待发送的数据。
PCT/CN2016/104033 2016-10-31 2016-10-31 一种数据发送方法、装置及网络设备 WO2018076345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104033 WO2018076345A1 (zh) 2016-10-31 2016-10-31 一种数据发送方法、装置及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104033 WO2018076345A1 (zh) 2016-10-31 2016-10-31 一种数据发送方法、装置及网络设备

Publications (1)

Publication Number Publication Date
WO2018076345A1 true WO2018076345A1 (zh) 2018-05-03

Family

ID=62024265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104033 WO2018076345A1 (zh) 2016-10-31 2016-10-31 一种数据发送方法、装置及网络设备

Country Status (1)

Country Link
WO (1) WO2018076345A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852274A (zh) * 2005-10-31 2006-10-25 华为技术有限公司 一种抑制干扰的上行导频方法
EP2079209A1 (en) * 2008-01-11 2009-07-15 NTT DoCoMo Inc. Method, apparatus and system for channel estimation in two-way relaying networks
CN101997636A (zh) * 2009-08-17 2011-03-30 大唐移动通信设备有限公司 一种多用户终端信道质量指示信息的传输方法及装置
CN103905346A (zh) * 2012-12-28 2014-07-02 华为技术有限公司 一种干扰信号处理的方法及设备
CN105634706A (zh) * 2015-12-25 2016-06-01 重庆邮电大学 一种CoMP系统中导频图案设计和检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852274A (zh) * 2005-10-31 2006-10-25 华为技术有限公司 一种抑制干扰的上行导频方法
EP2079209A1 (en) * 2008-01-11 2009-07-15 NTT DoCoMo Inc. Method, apparatus and system for channel estimation in two-way relaying networks
CN101997636A (zh) * 2009-08-17 2011-03-30 大唐移动通信设备有限公司 一种多用户终端信道质量指示信息的传输方法及装置
CN103905346A (zh) * 2012-12-28 2014-07-02 华为技术有限公司 一种干扰信号处理的方法及设备
CN105634706A (zh) * 2015-12-25 2016-06-01 重庆邮电大学 一种CoMP系统中导频图案设计和检测方法

Similar Documents

Publication Publication Date Title
KR101963819B1 (ko) 복수의 요청에 대한 응답에서 사용자 단말로부터의 사운딩 기준 신호의 전송
US9942011B2 (en) Wireless communication apparatus and the method thereof
KR101292131B1 (ko) 알려지지 않은 개수의 전송 안테나들을 이용한 초기 액세스를 위한 mimo 프리앰블
EP2777337B1 (en) Multi-stage timing and frequency synchronization
CN107733561B (zh) 信号发送装置、信号检测装置及方法
US20160156493A1 (en) Method and device for estimating frequency offset of reception signal
JP2008544602A (ja) 時間および周波数チャネル推定
TW201014283A (en) Broadband pilot channel estimation using a reduced order FFT and a hardware interpolator
TWI394413B (zh) 無線通信系統中用以分配資料之方法及裝置
CN106487735A (zh) 一种频偏估计方法及装置
US10826662B2 (en) Transmitter and method for formatting transmit data into a frame structure
CN104426627A (zh) 一种tdd系统中上行探测参考信号的发送方法
WO2016128728A3 (en) Obtaining channel state information in a multicarrier wireless communication network
CN102469572B (zh) 在协同无线网络中用于同步的方法及装置
WO2020024381A1 (zh) 定位参考信号生成方法、装置、通信系统及存储介质
KR101190053B1 (ko) 데이터 전송률 향상을 위한 인지 무선 송신기 및 인지 무선 수신기
WO2016019659A1 (zh) 子载波间干扰的消除方法、装置及计算机存储介质
JP2011517518A (ja) マルチアンテナOFDMシステムにおいて巡回遅延(cyclicdelays)を選択するための方法およびシステム
CN104702394A (zh) 一种基于业务时延公平的电力线通信资源分配方法
WO2018076345A1 (zh) 一种数据发送方法、装置及网络设备
KR101872110B1 (ko) 통신 시스템에서의 채널 추정 방법 및 장치
WO2015169251A1 (zh) 一种控制信息传输方法和设备
CN103856419B (zh) 对至eNB的上行信道进行信道估计的方法与设备
CN112398514B (zh) 一种信道估计方法和装置
US8675586B2 (en) Systems and methods for channel tracking in OFDMA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16920282

Country of ref document: EP

Kind code of ref document: A1