WO2014101515A1 - Method for designing automatic generation control model under grid connection of intermittent energy - Google Patents
Method for designing automatic generation control model under grid connection of intermittent energy Download PDFInfo
- Publication number
- WO2014101515A1 WO2014101515A1 PCT/CN2013/084688 CN2013084688W WO2014101515A1 WO 2014101515 A1 WO2014101515 A1 WO 2014101515A1 CN 2013084688 W CN2013084688 W CN 2013084688W WO 2014101515 A1 WO2014101515 A1 WO 2014101515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- grid
- disturbance
- generation control
- power generation
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Definitions
- the largest power generation output of wind power (April 22) was 2.66 million kilowatts, accounting for 21% of the total power generation output of the whole network at that time, accounting for 27% of the total electricity load of the whole network, accounting for 32% of the lowest power load of the whole network on that day.
- the maximum daily power generation of wind power (April 10) was 55.19 million kWh, accounting for i 8. 4% of the total power generation of the day, accounting for 25% of the total electricity consumption of the day. In some periods, wind power generation exceeds hydropower and becomes the second largest power source for the system.
- the present invention provides a method for designing an automatic power generation control model for intermittent energy grid-connected, and the method provided by the invention ensures the secondary frequency modulation effect of the system under various power disturbances of the intermittent energy source, and improves The grid's ability to accept intermittent 3 ⁇ 4 renewable energy sources achieves the goal of fully benefiting clean energy such as wind energy and solar photovoltaic power.
- the function of the secondary frequency modulation effect and its influencing factors is represented by the following formula -
- V the amplitude factor in the two-dimensional disturbance domain
- d the influence of the automatic power generation control AGC unit distribution
- m the influence of the control model
- c the influence of the parameter setting .
- step b if there is a wind power source, collect the wind power source time-amplitude (trak, VK ) sample and perform the step ⁇ otherwise, proceed to step 0.
- step c if there is a photovoltaic power source, collect the time-amplitude (trita, V ) sample of the photovoltaic power source and perform the step mountain or proceed to step d.
- step d if there is wind power and photovoltaic power source at the same time, the wind power and photovoltaic power source ( , ) sample superposition effect analysis is performed and step e is performed ; otherwise, step e is performed.
- step e the source sample space of the two-dimensional perturbation domain of the inter-source power source is represented by the following formula -
- the formula 3 is the obtained intermittent energy source time-amplitude two-dimensional disturbance source.
- the power fluctuation characteristic of the power grid is analyzed based on the analysis of the exchange power deviation evaluation criterion; (t n , v n is used as the disturbance amount in the two-dimensional disturbance domain, and the automatic power generation is not analyzed under the disturbance amount. Control the AGC system il-inch grid power fluctuation characteristics.
- step C If there is a difference sign of the exchange power difference between the disturbance zone and the non-disturbance zone, perform the determination scheme of the automatic power generation control AGC system unit in step C;
- the parameter design includes a natural frequency deviation coefficient setting ir.
- the design method of the automatic power generation control model under the intermittent energy grid comprehensively and objectively accounts for the influence of large-scale wind power and solar photovoltaic power sources on the secondary frequency modulation of the power grid, and can be constructed on this basis.
- Automatic power generation control model and parameters The automatic power generation control system model and parameters designed based on this method can effectively cope with the power disturbance of intermittent wind power and photovoltaic power supply, and greatly improve the effect of system secondary frequency modulation. This ensures intermittent new energy power supply.
- the normal operation of the system after large-scale access is of great significance, and is also conducive to expanding the system's access to intermittent wind power and solar photovoltaic power.
- the design method of the automatic power generation control model under the intermittent energy grid provided by the invention effectively improves the secondary frequency modulation effect of the grid under the intermittent performance source power fluctuation, and improves the grid's ability to accept renewable energy.
- FIG. 1 is a flow chart of constructing a time-amplitude two-dimensional perturbation source considering the grid-connected intermittent energy disturbance provided by the present invention
- FIG. 2 is a schematic diagram of a typical interconnected system provided by the present invention
- FIG. 3 is a flow chart of a method for designing an automatic power generation control model for intermittent energy integration in the present invention. detailed description
- the AGC system After the large-scale intermittent energy is concentrated and connected to the grid, it is regarded as a two-dimensional disturbance domain composed of the time axis and the fluctuation amplitude axis for the power grid, and the fluctuation amplitude will also increase with the increase of the day T interval of the study. Increase.
- this two-dimensional disturbance domain On the design of the AGC system, it is necessary to influence the span of the ⁇ , the amplitude of the fluctuation, the steepness of the fluctuation, the direction of the change of the output, etc.
- different values and values will affect the method.
- the AGC system with the needle It is necessary to adapt to all sample values in the entire two-dimensional disturbance domain.
- a function of the secondary frequency modulation effect and its decisive influence factors is constructed:
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
The present invention relates to the field of grid-connected operation of renewable energy power generation, and particularly relates to a method for designing an automatic power generation control model in an intermittent energy grid connection, comprising the steps of: A. constructing a time-amplitude two-dimensional disturbance source of a grid-connected intermittent energy disturbance; B. analysing the power grid power fluctuation characteristics; C. determining a distribution scheme of automatic generation control (AGC) system sets; D. determining the standby size of a power supply of an AGC system and the type of power supply; E. making a control policy for the AGC system; F. selecting a frequency bias factor; and G. determining a parameter design scheme of the AGC model. The present invention relates to the influences of large-scale wind power and solar photovoltaic power supply on secondary frequency modulation of a power grid, and can construct an AGC model and parameters on the basis of same, thereby effectively coping with the power disturbance of the intermittent wind power and photovoltaic power supply, improving the secondary frequency modulation effect of the power grid under the fluctuation of the intermittent energy power supplies and improving the ability of the power grid to accept renewable energy resources.
Description
技术领域 Technical field
本发明涉及可再生能源发电并网运行领域, 具体涉及一种间歇能源并网下的自动发电控 制模型的设计方法。 背景技术 The invention relates to the field of grid-connected operation of renewable energy power generation, and particularly relates to a design method of an automatic power generation control model under the intermittent energy grid. Background technique
近年来, 随着国家鼓励开发利用清洁能源相关政策的出台, 风电和太阳能光伏发电得到 了快速发展。 以西北电网为例, 目前, 西北区域风电装机以甘肃最多。 截至 2011年底, 甘肃 共有 44座风电场, 发电量 71.33亿千瓦时, 同比增长 248.13 %。 其中: 酒泉地区 40座风电 场, 发电量 69,03亿千瓦时; 白银市 3座风电场, 发电量 2.3亿千瓦时。 风电最大发电出力 (4月 22日) 266万千瓦, 占当时全网总发电出力的 21%, 占当^全网用电负荷的 27%, 占 当日全网最低用电负荷的 32%。风电最大日发电量(4月 10日) 5519万千瓦时, 占当日全网 发电量的 i 8.4%, 占当日全网用电量的 25%。 在部分时段, 风电发电量超过水电, 成为系统 的第二大电源。 In recent years, with the introduction of policies to encourage the development and utilization of clean energy, wind power and solar photovoltaic power generation have developed rapidly. Take the Northwest Power Grid as an example. At present, the installed capacity of wind power in the northwest region is the highest in Gansu. By the end of 2011, there were 44 wind farms in Gansu, with a power generation of 7.133 billion kWh, a year-on-year increase of 248.13%. Among them: 40 wind farms in Jiuquan area, generating 3.9 billion kWh; 3 wind farms in Baiyin, generating 230 million kWh. The largest power generation output of wind power (April 22) was 2.66 million kilowatts, accounting for 21% of the total power generation output of the whole network at that time, accounting for 27% of the total electricity load of the whole network, accounting for 32% of the lowest power load of the whole network on that day. The maximum daily power generation of wind power (April 10) was 55.19 million kWh, accounting for i 8. 4% of the total power generation of the day, accounting for 25% of the total electricity consumption of the day. In some periods, wind power generation exceeds hydropower and becomes the second largest power source for the system.
太 |¾能是一种取之不尽、 用之不竭的自然能源。 太阳能资源丰富, 对环境无任何污染, 是满足可持续发展需求的理想能源之一。 幵发利 ffl太阳能资源, 减少对化石能源的依赖以至 达到替代部分化石燃料的目标, 这对经济发展、 改善环境和满足人民生活用电需求, 将会起 到越来越重要的作用。 西北电网太阳能资源非常丰富, 并拥有广阔平坦的荒漠和戈壁, 其中 青海省太阳能资源更为突出, 据测算全省日光辐射在 160〜175大卡 I平方厘米。青海的柴达 木地区, 全年日照时数为 3553小时, 是著名的"阳光地带", 具有很高的开发利 ffl份值。 海西 地区未利用土地面积达 20万平方公里, 开发光伏发电项目潜力巨大。 Too |3⁄4 can be an inexhaustible source of natural energy. With abundant solar energy resources and no pollution to the environment, it is one of the ideal energy sources to meet the needs of sustainable development. Ffl solar energy resources, reducing dependence on fossil energy and achieving the goal of replacing some fossil fuels, will play an increasingly important role in economic development, environmental improvement and meeting people's electricity needs. The northwest power grid is rich in solar energy resources and has a vast flat desert and Gobi. Among them, Qinghai Province's solar energy resources are more prominent. According to estimates, the province's solar radiation is 160 to 175 kcal I square centimeter. In the Qaidam area of Qinghai, the annual sunshine hours are 3,553 hours. It is a famous "sunshine zone" with a high development value. The unutilized land area in Haixi is 200,000 square kilometers, and the potential for developing photovoltaic power generation projects is huge.
可再生清洁能源的大容量接入是必然趋势。 风能、 太阳能等可再生能源具有环保优势, 但也存在着发电出力受气象条件影响很大、 很难做长期预测和调度控制等缺点。 大容量风电 和光伏电源接入系统后, 可能对系统产生较大的有功扰动。 同^电力系统中, 负荷预测存在 2%-5%左右的误差: 大负荷可能突然波动, 机组可能因故障突然停运, 这些因素意味着电力 系统发电和负荷可能随日 T发生严重程度不一的功率不平衡。 严重功率不平衡会影响到系统频 率、 电压, 甚至脆弱的受端电网可能因严重功率不平衡造成电压失稳。 Large-capacity access to renewable clean energy is an inevitable trend. Renewable energy sources such as wind energy and solar energy have environmental advantages, but there are also shortcomings such as power generation output being greatly affected by meteorological conditions and difficult to make long-term prediction and dispatch control. After large-capacity wind power and photovoltaic power are connected to the system, it may cause a large active disturbance to the system. In the same power system, the load forecast has an error of about 2%-5%: The large load may suddenly fluctuate, and the unit may suddenly stop due to the failure. These factors mean that the power generation and load of the power system may vary from day to day. The power is not balanced. Severe power imbalances can affect system frequency, voltage, and even fragile receiver grids can cause voltage instability due to severe power imbalance.
上述大功率缺额扰动事故在大型电力系统中所经历的时间较长, 电压和频率的变化范围
较大, 涉及到的电力系统元件较多, 一般的机电暂态仿真程序很难进行准确的模拟。 因此, 对上述问题的硏究需要应用全过程仿真技术。 全过程动态仿真着重仿真电力系统的整个变化 过程, 时域宽, 现象描述逼真, ¾以更加真实地模拟电力系统的实际动态过程, 可以使电力 系统的仿真研宄工作更加深入, 便于帮助运行人员制定合理的措施和防御策略避免中长期过 程潜在的由于功率不平衡造成的相关电网事故。 这对避免发生大面积停电事故, 以及研究防 止事故扩大的有效措施 (第三道防线) 具有重要意义。 The above-mentioned high-power shortage disturbances have experienced a long time in large-scale power systems, and the range of voltage and frequency changes. Larger, involving more power system components, the general electromechanical transient simulation program is difficult to carry out accurate simulation. Therefore, the study of the above problems requires the application of full process simulation technology. The whole process dynamic simulation focuses on simulating the whole process of the power system. The time domain is wide and the phenomenon description is realistic. 3⁄4 to simulate the actual dynamic process of the power system more realistically, the simulation and research work of the power system can be deepened and the operation personnel can be easily assisted. Develop reasonable measures and defensive strategies to avoid potential grid accidents caused by power imbalances in the medium and long term process. This is important to avoid large-scale blackouts and to study effective measures to prevent accidents from expanding (the third line of defense).
间歇能源并网下的自动发电控制模型与参数设针方法属于可再生能源发电并网运行范 畴。 但是新能源的快速发展和并网也给电网带来了巨大的挑战, 一方面电网无法满足大规模 风电和光伏发电的接入和送出问题, 另一方面由于风电、 太阳能光伏电源从性质上来说属于 间歇性能源, 具有随机性、 波动性以及可调性差等特点, 往往需要大量的具有调节性的其他 电源配合以抑制其波动性, 增加了电网调频和调峰难度, 大量的增加了电网旋转备用容量。 但是风电、 光伏由于其间歇式能源的属性, 提供其发电的原动力即是不可控 ϋ不可储存的, 不能随意增加或者减少, 传统发电 Γ自动发电控制 (AGC) 的概念无法适用风电、 光伏电源 有功控制,必须突破现有的有功控制思路,研究能计及间歇性能源特点的自动发电控制(AGC) 设计的仿真分析方法。 发明内容 The automatic power generation control model and parameter setting method under the intermittent energy grid are the grids of renewable energy power generation and grid operation. However, the rapid development of new energy sources and grid-connected networks have also brought enormous challenges to the power grid. On the one hand, the power grid cannot meet the problems of large-scale wind power and photovoltaic power generation access and delivery. On the other hand, wind power and solar photovoltaic power sources are qualitative in nature. It is an intermittent energy source with randomness, volatility and poor adjustability. It often requires a large number of other power supplies with regulation to suppress its volatility, increasing the frequency modulation and peak shaving of the power grid, and increasing the grid rotation. Spare capacity. However, due to the nature of its intermittent energy, wind power and photovoltaic provide the motive power for generating electricity that is uncontrollable and cannot be stored. It cannot be increased or decreased at will. The concept of traditional power generation, automatic power generation control (AGC) cannot be applied to wind power and photovoltaic power. Control must break through the existing active control ideas and study the simulation analysis method of automatic power generation control (AGC) design that can measure the characteristics of intermittent energy. Summary of the invention
针对现有技术的不足,本发明提供一种间歇能源并网下的自动发电控制模型的设计方法, 本发明提供的方法保证电网在间歇式能源各种功率扰动下的系统二次调频效果, 提高电网对 间歇式 ¾再生能源的接纳能力, 实现充分利 1¾风能、 太阳能光伏电源等清洁能源的目标。 In view of the deficiencies of the prior art, the present invention provides a method for designing an automatic power generation control model for intermittent energy grid-connected, and the method provided by the invention ensures the secondary frequency modulation effect of the system under various power disturbances of the intermittent energy source, and improves The grid's ability to accept intermittent 3⁄4 renewable energy sources achieves the goal of fully benefiting clean energy such as wind energy and solar photovoltaic power.
本发明的目的是釆用下述技术方案实现的: The object of the present invention is achieved by the following technical solutions:
一种间歇能源并网下的自动发电控制模型的设计方法, 其改进之处在于, 所述方法包括 下述步骤- A method for designing an automatic power generation control model for intermittent energy grid-connected, which is improved in that the method includes the following steps -
Α、 构建并网间歇能源扰动的时间-幅值二维扰动源; Α Build a time-amplitude two-dimensional disturbance source for grid-connected intermittent energy disturbances;
Β、 分析电网功率波动特性; Β Analysis of grid power fluctuation characteristics;
C、 确定自动发电控制 AGC系统机组的分布方案; C. Determine the distribution scheme of the automatic power generation control AGC system unit;
D、 确定自动发电控制 AGC系统电源备 ffl大小以及电源类型; D, determine the automatic power generation control AGC system power supply ffl size and power type;
E、 制定自动发电控制 AGC系统控制策略; E. Formulate automatic power generation control AGC system control strategy;
F、 选择频率偏差系数; F, selecting a frequency deviation coefficient;
G、 确定自动发电控制模型的参数设计方案。
其中, 所述步骤 A中, 构建并网间歇能源扰动的时间 -幅值二维扰动源包括下述步骤- a、 构建二次调频效果及其影响因素的函数; G. Determine the parameter design scheme of the automatic power generation control model. Wherein, in the step A, constructing the time-amplitude two-dimensional perturbation source of the grid-connected intermittent energy disturbance comprises the following steps: a, constructing a function of the secondary frequency modulation effect and its influencing factors;
b、 判断并网间歇能源电源中是否有风电电源; b. Determine whether there is wind power in the intermittent energy source connected to the grid;
c、 判断并网间歇能源电源中是否有光伏电源; c. Determine whether there is photovoltaic power in the grid-connected intermittent energy source;
d、 判断并网间歇能源电源中是否同 有风电和光伏电源; d. Determine whether there is wind power and photovoltaic power in the grid-connected intermittent energy source;
e、 形成间歇性能源电源二维扰动域的源样本空间; e. forming a source sample space of a two-dimensional disturbance domain of the intermittent energy source;
f、 从源样本空间中对角线样本取值; f, taking a value from a diagonal sample in the source sample space;
g、 得到间歇性能源电源时间-幅值二维扰动源。 g. Obtain intermittent energy source time-amplitude two-dimensional disturbance source.
其中, 所述步骤 a中, 二次调频效果及其影响因素的函数用下式表示- Wherein, in the step a, the function of the secondary frequency modulation effect and its influencing factors is represented by the following formula -
./调频效果 Κί,ν),ί„] = . 二维扰动域,机组分布,控制模型,参数设置) φ ./FM effect Κί,ν), ί„] = . 2D disturbance domain, unit distribution, control model, parameter setting) φ
[(时间因素,幅值因素),机组分布,控制模型,参数设置] [(time factor, amplitude factor), unit distribution, control model, parameter setting]
其 Φ: t表示二维扰动域中的时间因素; V表示二维扰动域中的幅值因素; d表示自动发 电控制 AGC机组分布的影响; m表示控制模型的影响; c表示参数设置的影响。 Its Φ: t represents the time factor in the two-dimensional disturbance domain; V represents the amplitude factor in the two-dimensional disturbance domain; d represents the influence of the automatic power generation control AGC unit distribution; m represents the influence of the control model; c represents the influence of the parameter setting .
其中, 所述步骤 b中, 若有风电电源, 收集风电电源时间-幅值(t„,VK)样本并进行步骤^ 否则, 进行步骤0。 Wherein, in the step b, if there is a wind power source, collect the wind power source time-amplitude (t„, VK ) sample and perform the step ^ otherwise, proceed to step 0.
其中, 所述步骤 c中, 若有光伏电源, 收集光伏电源时间 -幅值(t„,V )样本并进行步骤山 否则进行步骤 d。 Wherein, in the step c, if there is a photovoltaic power source, collect the time-amplitude (t„, V ) sample of the photovoltaic power source and perform the step mountain or proceed to step d.
其中, 所述步骤 d中, 若同时有风电和光伏电源, 进行风电和光伏电源( , )样本叠加 效应分析并进行步骤 e; 否则进行步骤 e。 Wherein, in the step d, if there is wind power and photovoltaic power source at the same time, the wind power and photovoltaic power source ( , ) sample superposition effect analysis is performed and step e is performed ; otherwise, step e is performed.
其中, 所述步骤 e , 间 源电源二维扰动域的源样本空间用下式表示 -
Wherein, in step e, the source sample space of the two-dimensional perturbation domain of the inter-source power source is represented by the following formula -
其中: (tn,vn:为一组样本, 表示在 tn时间跨度下, 统计所得最大风电波动幅值为 n=】、2、3 ' 其中, 所述步
其中, 所述步骤 g中, 所述式③即为得到的间歇性能源电源时间 -幅值二维扰动源。 其中, 所述步骤 B中, 基于交换功率偏差评价准则的分析扰动下电网功率波动特性; 将 二维扰动域中的(tn ,vn 作为扰动量, 分析在所述扰动量下没有自动发电控制 AGC 系统 il寸电 网功率波动特性。 Where: (t n , v n : is a set of samples, indicating that under the time span of t n , the statistical maximum wind power fluctuation amplitude is n=], 2, 3 ' where Wherein, in the step g, the formula 3 is the obtained intermittent energy source time-amplitude two-dimensional disturbance source. Wherein, in the step B, the power fluctuation characteristic of the power grid is analyzed based on the analysis of the exchange power deviation evaluation criterion; (t n , v n is used as the disturbance amount in the two-dimensional disturbance domain, and the automatic power generation is not analyzed under the disturbance amount. Control the AGC system il-inch grid power fluctuation characteristics.
其中, 分析电网功率特性包括下述步骤- Among them, the analysis of grid power characteristics includes the following steps -
( 1 ) 统 ir分区断面功率的变化量, 即统计以下变化量; (1) The amount of change in the power of the section ir section, that is, the following changes;
其中: -扰动区表 - 示、扰动区的断面功率变化; Δ/^非扰Μ动, ;表示非扰动区 i的断面功率变化, i=l、2…!! ; Wherein: - represents the disturbance zone, the power variation section of the disturbance zone; Δ / ^ unscrambled Μ move; unperturbed power change represents a sectional area of the i, i = l, 2 ...! ! ;
(2) 判断出现扰动区与非扰动区的交换功率偏差是否异符号, 即: (2) Determine whether the exchange power deviation between the disturbance zone and the non-disturbance zone is different, that is:
Δ ¾动区 ' Δ ¾扰动区 i < 0 ® ; Δ 3⁄4 moving zone ' Δ 3⁄4 disturbance zone i < 0 ® ;
若出现扰动区与非扰动区的交换功率偏差异符号,进行步骤 C的确定自动发电控制 AGC 系统机组的分布方案; If there is a difference sign of the exchange power difference between the disturbance zone and the non-disturbance zone, perform the determination scheme of the automatic power generation control AGC system unit in step C;
否則, 出现扰动区与非扰动区的交换功率偏差同符号, 即: Otherwise, the exchange power deviation between the disturbance zone and the non-disturbance zone appears as the same symbol, namely:
- > 0 ( : 则记录该区域, 并查询造成出现扰动区与非扰动区的交换功率偏差同符号的联络线, 减 少该联络线的机组。 - > 0 ( :) Record the area and query the tie line that causes the exchange power deviation between the disturbance zone and the non-disturb zone to reduce the number of the tie line.
其中, 所述步骤 C中, 自动发电控制 AGC系统机组的分布方案的目标是断面联络线功 率偏差与频率偏差在二次调频阶段归零, 即: Wherein, in the step C, the automatic power generation control AGC system unit distribution plan aims to reduce the cross-section tie line power deviation and the frequency deviation in the secondary frequency modulation stage, that is:
I ^→二次调频结束 υ I ^ → secondary frequency end υ
[ t —一次 贡 宋 0 其 , 所述步骤 D中, 将二维扰动域中的 " 'Vn 作为扰动量, 电力系统总备用容量用 式表示;
其中: 表示控制区域 的二次备用容量; /„为与风电相同时间尺度下负荷的最大波动量; 判别备用容量方案以断面功率交换功率的恢复、频率的恢复以及区域偏差控制 ACE信号 (ACE是区域偏差控制,它代表了特定控制模式下该区域的功率偏差量, AGC M组根据这个 信号调整出力, 最终使 ffl下式表示: ⑨ ·[t— Once Gong Gong 0, in the step D, “ Vn is used as the disturbance amount in the two-dimensional disturbance domain, and the total spare capacity of the power system is expressed by the formula; Where: indicates the secondary spare capacity of the control area; /„ is the maximum fluctuation of the load at the same time scale as the wind power; the alternative capacity scheme is used to recover the power of the cross-section power exchange, the frequency recovery and the regional deviation control ACE signal (ACE is The regional deviation control, which represents the power deviation of the area in a specific control mode, the AGC M group adjusts the output according to this signal, and finally makes fff as follows: 9 ·
式中: ΔΡ、 Δ 与 ACE为在二次调频时间内二次调频效果优劣的判别指标; ί取分钟级 单位计算; Where: ΔΡ, Δ and ACE are the discriminant indicators of the effect of the secondary frequency modulation in the secondary frequency modulation time; ί take the minute level unit calculation;
根据自动发电控制 AGC系统机组可调容量和调整速度对调频厂的电源类型进行确定。 其中, 所述步骤 Ε中, 自动发电控制 AGC系统控制区域的机组出力满足下式- According to the automatic power generation control AGC system unit adjustable capacity and adjustment speed to determine the power type of the FM factory. Wherein, in the step Ε, the unit output of the automatic power generation control AGC system control area satisfies the following formula -
ACE Af < 0 ⑩: 其中, 表示控制区域 的区域偏差控制信号: 4 "表示电力系统频率偏差; 以联络线交换功率恢复、 频率恢复与区域偏差控制 ACE信号归零三个指标为评价依据, 即 ΔΡ、 4 /与 ACE, 以三个指标归零的速度、 偏差幅值、 控制区域之间机组出力配合为评份 标准, 得出自动发电控制 AGC系统控制策略。 ACE Af < 0 10: where, the regional deviation control signal indicating the control region: 4 "represents the power system frequency deviation; the three indicators of the ACE signal return to zero by the tie line exchange power recovery, frequency recovery and regional deviation control are evaluated, ie ΔΡ, 4 / and ACE , with the speed of the three indicators zero, the magnitude of the deviation, and the unit output coordination between the control areas as the evaluation criteria, the control strategy of the automatic power generation control AGC system is obtained.
其中, 所述步骤 F中, 以风电基地二次调频时间范围内最大的波动量(tn,v^和风电大规 模脱网(ts,vm^)为扰动源, 以 : ^2%年最大峰值负荷为取值范围 (年最大负荷是指本年内出现 的负荷最大值, 这里是指 1~2%的年度出现最大负荷值), 并且结合 4a^ f > 0的情况, 比 较控制区域的区域频率偏差设置, 选择控制区域最优的频率偏差系数。 Wherein, in the step F, the maximum fluctuation amount (t n , v^ and large-scale wind power off-network (t s , v m ^) of the wind power base is used as the disturbance source to: ^2% The annual maximum peak load is the value range (the annual maximum load refers to the maximum load occurring during the year, here refers to the annual maximum load value of 1~2%), and the control area is compared with the case of 4a^f > 0. The regional frequency deviation setting selects the optimal frequency deviation coefficient of the control region.
其 , 所述步骤 G中, 所述参数设计包括自然频率偏差系数设 ir。 In the step G, the parameter design includes a natural frequency deviation coefficient setting ir.
与现有技术比, 本发明达到的有益效果是- Compared with the prior art, the beneficial effects achieved by the present invention are -
1、本发明提供的间歇能源并网下的自动发电控制模型的设计方法, 明确提出了间歇能源 并网下的自动发电控制模型和参数设计的目标、 具体步骤、 框架以及方案, 提出了考虑并网 间歇能源扰动的日 T间幅值二维扰动源构建流程, 自动发电控制模型和参数设计总流程、 形成 了完整的间歇能源并网下的自动发电控制模型和参数设计方法, 为今后类似的系统模型和参 数选择提供了思路和设计方法。
2、本发明提供的间歇能源并网下的自动发电控制模型的设计方法, 全面及客观的计及对 大规模风电、 太阳能光伏电源对电网二次调频的影响, 并可构建在此基础上的自动发电控制 模型和参数, 基于本方法设计的自动发电控制系统模型和参数可以有效地应对间歇性风电、 光伏电源的功率扰动, 大幅提升系统二次调频的效果, 这对于保证间歇性新能源电源大规模 接入后系统的正常运行意义重大,也有利于扩大系统对间歇性风电和太阳能光伏电源的接入。 1. The design method of the automatic power generation control model under the grid-connected intermittent energy source provided by the present invention clearly proposes the objectives, specific steps, frameworks and schemes of the automatic power generation control model and parameter design under the intermittent energy grid-connected network, and proposes The construction process of the two-dimensional perturbation source of the inter-time T-wave amplitude of the intermittent energy disturbance, the automatic power generation control model and the general design of the parameter design, and the complete automatic power generation control model and parameter design method under the grid of intermittent energy are formed for the future. System models and parameter selection provide ideas and design methods. 2. The design method of the automatic power generation control model under the intermittent energy grid provided by the present invention comprehensively and objectively accounts for the influence of large-scale wind power and solar photovoltaic power sources on the secondary frequency modulation of the power grid, and can be constructed on this basis. Automatic power generation control model and parameters. The automatic power generation control system model and parameters designed based on this method can effectively cope with the power disturbance of intermittent wind power and photovoltaic power supply, and greatly improve the effect of system secondary frequency modulation. This ensures intermittent new energy power supply. The normal operation of the system after large-scale access is of great significance, and is also conducive to expanding the system's access to intermittent wind power and solar photovoltaic power.
3、本发明提供的间歇能源并网下的自动发电控制模型的设计方法, 有效提升电网在间歇 性能源电源波动下的二次调频效果, 提高电网对可再生能源的接纳能力。 附图说明 3. The design method of the automatic power generation control model under the intermittent energy grid provided by the invention effectively improves the secondary frequency modulation effect of the grid under the intermittent performance source power fluctuation, and improves the grid's ability to accept renewable energy. DRAWINGS
图 1是本发明提供的考虑并网间歇能源扰动的时间-幅值二维扰动源构建流程图; 图 2是本发明提供的典型互联系统的示意图; 1 is a flow chart of constructing a time-amplitude two-dimensional perturbation source considering the grid-connected intermittent energy disturbance provided by the present invention; FIG. 2 is a schematic diagram of a typical interconnected system provided by the present invention;
图 3是本发明提供的间歇能源并网下的自动发电控制模型的设计方法的流程图。 具体实施方式 3 is a flow chart of a method for designing an automatic power generation control model for intermittent energy integration in the present invention. detailed description
下面结合附图对本发明的具体实施方式作进一步的详细说明。 The specific embodiments of the present invention are further described in detail below with reference to the accompanying drawings.
本发明提供的间歇能源并网下的自动发电控制模型的设针方法, 提出了自动发电控制仿 真研究中考虑并网间歇能源扰动的时间-幅值二维扰动源构建思路和流程: 提出了扰动下评价 电网功率波动特性的交换功率偏差准则和自动发电控制 AGC机组分布定位原则,自动发电控 制 AGC备用电源大小以及电源类型确定准则; 建立了自动发电控制 AGC系统控制策略制定 原則和频率偏差系数选择原則, 在此基础上建立了的间歇能源并网下的自动发电控制模型与 参数设计仿真分析流程, 形成了完整的间歇能源并网下的自动发电控制模型的设计方法。 The invention provides a method for setting the automatic power generation control model under the intermittent energy grid, and proposes a time-amplitude two-dimensional disturbance source construction idea and process considering the grid-connected intermittent energy disturbance in the simulation research of automatic power generation control: The exchange power deviation criterion for evaluating the power fluctuation characteristics of the grid and the distribution and positioning principle of the automatic power generation control AGC unit, the automatic power generation control AGC backup power supply size and the power source type determination criterion; The automatic power generation control AGC system control strategy formulation principle and the frequency deviation coefficient selection are established. Based on this principle, the automatic power generation control model and parameter design simulation analysis process under the intermittent energy grid are established, and a complete design method of automatic power generation control model under intermittent energy integration is formed.
本发明提供的间歇能源并网下的自动发电控制模型的设计方法的流程如图 3所示, 包括 下述步骤- The flow of the design method of the automatic power generation control model under the intermittent energy grid connection provided by the present invention is shown in FIG. 3, and includes the following steps -
A、 自动发电控制仿真研宄中考虑并网间歇能源扰动的时间 -幅值二维扰动源构建, 具体 流程如图 1所示, 包括下述步骤- a、 构建二次调频效果及其影响因素的函数; A. The time-amplitude two-dimensional disturbance source of the grid-connected intermittent energy disturbance is considered in the simulation of automatic power generation control simulation. The specific process is shown in Figure 1, including the following steps: a. Constructing the secondary frequency modulation effect and its influencing factors The function;
大规模间歇性能源集中并网后, 对于电网来说其看作一个由时间轴与波动幅值轴组成的 二维扰动域, 并且随着研究的日 T间级增大, 波动幅值也会增大。 考虑这种二维扰动域对 AGC 系统设计的影响需要从^间跨度、 波动的幅值、 波动的陡度、 出力变化方向等方面, 在扰动 域内, 不同的取值范围与取值方法都会影响到系统整体的调频效果, 所以, 设针的 AGC系统
需要适应整个二维扰动域内所有的样本取值, 本发明中构建了二次调频效果及其决定性影响 因素的函数:After the large-scale intermittent energy is concentrated and connected to the grid, it is regarded as a two-dimensional disturbance domain composed of the time axis and the fluctuation amplitude axis for the power grid, and the fluctuation amplitude will also increase with the increase of the day T interval of the study. Increase. Considering the influence of this two-dimensional disturbance domain on the design of the AGC system, it is necessary to influence the span of the ^, the amplitude of the fluctuation, the steepness of the fluctuation, the direction of the change of the output, etc. In the disturbance domain, different values and values will affect the method. To the overall frequency modulation effect of the system, therefore, the AGC system with the needle It is necessary to adapt to all sample values in the entire two-dimensional disturbance domain. In the present invention, a function of the secondary frequency modulation effect and its decisive influence factors is constructed:
^^[( vK ^/ (二维扰动域,机组分布,控制模型,参数设置) ^^[( vK ^/ (two-dimensional disturbance domain, unit distribution, control model, parameter setting)
[(时间因素,幅值因素),机组分布,控制模型,参数设置] [(time factor, amplitude factor), unit distribution, control model, parameter setting]
式中: t表示二维扰动域中的时间因素; V表示二维扰动域中的幅值因素; d表示 AGC 机组分布的影响; m表示控制模型的影响; c表示参数设置的影响。 整体自动发电控制 AGC 系统的调控效果是由式中 4个因素确定的。 Where: t represents the time factor in the two-dimensional disturbance domain; V represents the amplitude factor in the two-dimensional disturbance domain; d represents the influence of the AGC unit distribution; m represents the influence of the control model; c represents the influence of the parameter setting. The control effect of the overall automatic power generation control AGC system is determined by four factors in the formula.
b、 判断并网间歇能源电源中是否有风电电源; 若有风电电源, 收集风电电源 间-幅值 b. Determine whether there is wind power in the grid-connected intermittent energy source; if there is wind power, collect wind power-amplitude
( t ( t
样本并进行步骤 c; 否则, 进行步骤(;。 Take the sample and proceed to step c; otherwise, proceed to step (;.
c、 判断并网间歇能源电源中是否有光伏电源; 若有光伏电源, 收集光伏电源时间-幅值 (tn ,v 样本并进行步骤山 否则进行步骤 d。 d、 判断并网间歇能源电源中是否同时有风电和光伏电源; 若同时有风电和光伏电源, 进 行风电和光伏电源( ,ν^样本叠加效应分析并进行步骤 否则进行步骤 e。 c. Determine whether there is photovoltaic power supply in the grid-connected intermittent energy source; if there is photovoltaic power supply, collect the photovoltaic power supply time-amplitude (t n , v sample and carry out the step mountain or proceed to step d. d, judge the grid-connected intermittent energy source Whether there is wind power and photovoltaic power supply at the same time; if there is wind power and photovoltaic power supply at the same time, carry out wind power and photovoltaic power supply ( , ν ^ sample superposition effect analysis and carry out the steps otherwise proceed to step e.
e、 形成间歇性能源电源二维扰动域的源样本空间- 具体到风电和光伏电源, 由于其单机规模小, 整体风电基地和光伏基地的出力时间 -幅值 特性影响非常显著, 相比较而言, 风电及太阳能光伏电源的分布, 控制模型和参数情况影响 甚微, 在实际工程仿 。 对其 明显的二维扰动域用下式表示:
e. Forming the source sample space of the two-dimensional disturbance domain of the intermittent energy source - specific to wind power and photovoltaic power sources, due to the small scale of the single machine, the impact time-amplitude characteristics of the overall wind power base and the photovoltaic base are very significant, in comparison The distribution of wind power and solar photovoltaic power sources, control models and parameters have little effect, in actual engineering imitation. The apparent two-dimensional perturbation domain is represented by the following formula:
其中; (tn,v 为一组样本, 表示在 ti;时间跨度下, 统计所得最大风电
ΐΐ=:1、2、3· - 。 f、 从源样本空间中对角线样本取值; Where (t n , v is a set of samples, expressed in t i; time span, statistical maximum wind power Ϊ́ΐ = : 1, 2, 3 · - . f, taking a value from a diagonal sample in the source sample space;
在式②中所示的样本空间中; 对角线以上的样本取值在实际系统中发生的概率小, 对角 线以下的样本取值无法反应特定 间跨度下风电对系统带来最大的影响, 所以实际工程 Φ可 以考虑取二维扰动域对角线上的取值样本, 即: In the sample space shown in Equation 2; the probability of the sample above the diagonal is small in the actual system, and the value below the diagonal cannot reflect the maximum impact of the wind on the system under a specific span. Therefore, the actual engineering Φ can consider taking the sample of the value on the diagonal of the two-dimensional disturbance domain, namely:
(t, V)工程取值 = | (t, V) engineering value = |
( ( ^ j (3):
在实际电网 AGC系统的构建过程中,需要以二次调频时间范 I面内风电最大的波动情况为 扰动值, 在这种扰动下研究最佳的控制模式与参数设置, 在 AGC系统调控效果校验过程中, 需要考虑所有的波动情况, 即在构建过程中, 取二维扰动域中的样本(tn ,vn), 在校验过程中 要考虑 (t, v)xig¾tt的所有取值。 对于仅有风电或仅有太阳能光伏电源的情况, 分别考虑即可, 对于两种间歇性能源电源同时并网的系统还需要考虑两者的叠加效应。 ( ( ^ j (3): In the construction process of the actual grid AGC system, the maximum fluctuation of the wind power in the secondary frequency modulation time I is required as the disturbance value. Under this disturbance, the optimal control mode and parameter setting are studied, and the AGC system control effect is corrected. During the test, all fluctuations need to be considered. In the construction process, samples (t n , v n ) in the two-dimensional disturbance domain are taken. All values of (t, v) xig3⁄4tt should be considered in the verification process. . For wind power only or solar photovoltaic power only, consider separately. For systems with two intermittent energy sources connected at the same time, the superposition effect of the two needs to be considered.
g、 得到间歇性能源电源时间-幅值二维扰动源; 式③即为得到的间歇性能源电源时间-幅 值二维扰动源。 g. Obtain intermittent energy source time-amplitude two-dimensional disturbance source; Equation 3 is the obtained intermittent energy source time-amplitude two-dimensional disturbance source.
B, 基于交换功率偏差评价准则的扰动下电网功率波动特性分析, 包括下述步骤; B, analysis of grid power fluctuation characteristics under disturbance based on exchange power deviation evaluation criteria, including the following steps;
( 1 ) 统计分区断面功率的变化量: (1) Statistical change in section section power:
在没有自动发电控制 AGC系统的情况下, 电力系统中发生功率扰动后, 由于一次调频的 作用, 各个地区之间的功率输送情况必然会改变, 可以分析得到扰动下电网中各个区域之间 断面功率整体的变化趋势。 根据经典的两区域系统, 如图 2所示, 其中功率由系统 A向系统 B输送, 在系统 A发生缺额, 则系统 B受入功率将减少, 此系统 B的 ACE信号中的断面功 率偏差计算如下式: In the absence of automatic power generation control AGC system, after the power disturbance occurs in the power system, the power transmission between the various regions will inevitably change due to the effect of primary frequency modulation, and the power of the section between the various regions in the power grid can be analyzed. The overall trend of change. According to the classic two-zone system, as shown in Figure 2, where power is transmitted from system A to system B. In the absence of system A, the input power of system B is reduced. The power deviation of the section in the ACE signal of system B is calculated as follows Type:
:::: 始 β 动后 Β < 0; 当系统 Β的频率偏差系数选择合适的情况下,系统 Β的区域控制偏差 ACE ),不参与频 率调整。 在实际电网中, 由于电网结抅的复杂性, 发生扰动后各个区域的断面功率变化不一 定都是上述典型系统的情况,分析没有 AGC系统的电网, 需要以风电基地的二维扰动域中的 (tE,vn)为扰动量, 分析各个分区在此扰动下, 断面功率的变化情况, 统计出断面功率变化的 趋势是否与與型系统 , 即统计以下变化量: :::: After the initial β motion Β <0; When the frequency deviation coefficient of the system 选择 is selected properly, the system Β regional control deviation ACE ) does not participate in the frequency adjustment. In the actual power grid, due to the complexity of the power grid, the change of the section power of each area after the disturbance is not necessarily the case of the above typical system. For the analysis of the grid without the AGC system, it is necessary to use the two-dimensional disturbance domain of the wind power base. (t E , v n ) is the disturbance amount. Analyze the variation of the section power under this disturbance under each disturbance. Calculate whether the trend of the section power change is related to the type system, that is, the following changes:
「AR -扰动区 "AR - disturbance zone
1≡扰动区 1 1≡ disturbance zone 1
△非扰动区 △ non-disturbed zone
其中: ^扰动+|:区7表' 示扰动区的断面功率变化; A¾j 表示非扰动区 i的断面功率变化, ϊ= 2 · · ·η ; Where: ^ disturbance + |: zone 7 table ' shows the section power variation of the disturbance zone; A3⁄4 j represents the section power variation of the non-disturbance zone i, ϊ = 2 · · · η;
(2) 判断出现扰动区与非扰动区的交换功率偏差是否异符号, 即- 非扰动区 ΐ ⑤-
正常情况下, 扰动区的符号应与非扰动区的符号相反, (2) Determine whether the exchange power deviation between the disturbance zone and the non-disturbance zone is different, that is, the non-disturbance zone ΐ 5- Under normal circumstances, the symbol of the disturbance zone should be opposite to the sign of the non-disturbance zone.
> 0 < 0 > 0 < 0
AP,非扰动区 1 < 0 > () AP, non-disturbed area 1 < 0 > ()
< 0 > 0 若出现扰动区 功率偏差异符号,进行步骤 C的确定自动发电控制 AGC 系统机组的分布方案; < 0 > 0 If the disturbance zone power deviation difference symbol appears, proceed to step C to determine the distribution scheme of the automatic power generation control AGC system unit;
否则, 出现扰动区与非扰动区的交换功率偏差同符号, 即: Otherwise, the exchange power deviation between the disturbance zone and the non-disturbance zone appears as the same symbol, namely:
Δ¾动区 ' ^ 扰动区 i > 0
则记录该区域, 并查询造成出现扰动区与非扰动区的交换功率偏差同符号的联络线, 减 少该联络线的机组。 Δ3⁄4 moving zone ' ^ disturbance zone i > 0 Then, the area is recorded, and the contact line causing the exchange power deviation between the disturbance zone and the non-disturbance zone is inquired, and the unit of the tie line is reduced.
此时非扰动区 i与扰动区交换功率偏差相同, 这是由于扰动区、非扰动区 i、分扰动区 ^ i 与非扰动区 之间一次调频相互影响所造成的, 这时需要具体分析扰动发生后这几个分区 断面上每一条线路的功率变化情况, 寻找出造成这一现象的主要联络线, 为下一步安排机组 分布做好分析基础。 At this time, the undisturbed zone i and the disturbance zone exchange power deviation are the same, which is caused by the interaction of the disturbance zone, the non-disturbance zone i, the sub-disturbance zone ^ i and the non-disturbance zone, and the specific disturbance is required. After the occurrence of the power changes of each line on these sections, find the main tie line that causes this phenomenon, and make an analysis basis for the next step to arrange the unit distribution.
C、 确定自动发电控制 AGC机组分布方案- 当系统发生功率扰动后, AGC机组根据 ACE信号来调整当前出力, 区域控制偏差 ACE 信号的符号方向表示 AGC机组的出力方向, 其大小代表系统整体的功率缺额; AGC机组出 力的改变会改变系统当前频率与断面交换功率, 最终使区域控制偏差 ACE信号归零, 所以 AGC机组的出力与 ACE信号是交互影响的。 计算校验过程中, 依然要以风电二维扰动域中 的( 为扰动量。 C. Determine the automatic power generation control AGC unit distribution scheme - When the power disturbance occurs in the system, the AGC unit adjusts the current output according to the ACE signal. The symbol direction of the regional control deviation ACE signal indicates the output direction of the AGC unit, and its size represents the overall power of the system. The shortage; the change of the output of the AGC unit will change the current frequency of the system and the exchange power of the section, and finally the regional control deviation ACE signal will be zeroed, so the output of the AGC unit interacts with the ACE signal. During the calculation and verification process, it is still necessary to use the wind power two-dimensional disturbance domain (for the disturbance amount).
机组的分布在电网中不能过度集中, 并且需要首先考虑调频性能好的水电机组, 再选择 中文中压的火电机组。 根据上一步的分析, 当出现
需要注意非 扰动区域 i与其他临近区域附近的机组分布问题, 如果分布不合理, ACE信号中断面功率偏 差信号会受到 AGC钒组出力的影响,可能会出现偏差量增大,最终导致频率无法恢复到初始 状态的情况, 即: The distribution of the unit should not be excessively concentrated in the power grid, and it is necessary to first consider the hydropower unit with good frequency modulation performance, and then select the Chinese medium voltage thermal power unit. According to the analysis of the previous step, when It is necessary to pay attention to the distribution problem of the unit in the vicinity of the non-disturbed area i and other adjacent areas. If the distribution is unreasonable, the power deviation signal of the section in the ACE signal will be affected by the output of the AGC vanadium group, and the deviation may increase, eventually resulting in the frequency being unrecoverable. In the initial state, ie:
1 Af 寸 01 Af inch 0
Aii→二次调频结束 ^ ν , A i i→the end of the second frequency modulation ^ ν ,
式中: t可以取分钟级单位计算。 在调节的过程中, 非扰动区^附近区域的断面功率偏
逐步扩大, 并且频率偏差在二次调频结束时, 没有恢复到初始情况, 可以认为由于电网的一 次调频特性与机组分布做造成的二次调频无法完成。 这时需要排除步骤二中寻找到的主要联 络线附近的机组, 使 AGC机组的出力不会影响到 ACE信号判别的正确性。 机组分布最终的 目标即使断面联络线功率偏差与频率偏差在二次调频阶段归零, 即: Where: t can be calculated in minutes. In the process of adjustment, the section power in the vicinity of the non-disturbing zone ^ is biased Gradually expanding, and the frequency deviation does not return to the initial situation at the end of the secondary frequency modulation. It can be considered that the secondary frequency modulation caused by the primary frequency modulation characteristics of the power grid and the unit distribution cannot be completed. At this time, it is necessary to exclude the units near the main tie line found in step 2, so that the output of the AGC unit does not affect the correctness of the ACE signal. The final goal of the unit distribution is that even if the cross-section tie line power deviation and frequency deviation are zeroed in the secondary frequency modulation stage, namely:
I ^→二次调頻结束 0 在这种策略下, 可以确定每个分区合理的二次调频机组分布区域, 在此区域能选择 AGC 机组, 便可以避免由于电网特性以及各区域一次调频相互影响所带来的问题, 为选择机组的 类型以及确定二次调频备用做好基础工作。 I ^→End of secondary frequency modulation 0 Under this strategy, it is possible to determine the distribution area of the secondary frequency modulation unit for each partition. In this area, the AGC unit can be selected to avoid the influence of the power grid characteristics and the frequency modulation of each area. The problems brought about are the basic work for selecting the type of unit and determining the secondary frequency modulation standby.
D、 确定自动发电控制 AGC备用电源大小以及电源类型; D. Determine the automatic power generation control AGC backup power supply size and power supply type;
风电大规模并网后, 功率需要在更广的范围内消纳, 其功率波动也需要联合多地区共同 消纳, 所以, 各个地区要具备一定的二次调频容量, 在校验过程中以(tn ,vn:)为扰动量, 系统 总备用容量可用下式表述- After wind power is connected to the grid on a large scale, the power needs to be absorbed in a wider range. The power fluctuations also need to be jointly absorbed by multiple regions. Therefore, each region must have a certain secondary frequency modulation capacity, and during the verification process ( t n , v n :) is the amount of disturbance, and the total spare capacity of the system can be expressed by the following formula -
其中: ?;表示控制区域 f的二次备用容量; /„为与风电相同时间尺度下负荷的最大波动量: 判别备用容量方案以断面功率交换功率的恢复、频率的恢复以及 ACE信号的归零情况为 依准, 如下式所示:
式中: ! P ·、 Δ '与 ACE为二次调频效果优劣的判别指标,式中表述为在二次调频时间内, 在给定的二次备用配备下可以完成误差调节的作 ffl。 Wherein:;? Represents a control area f of the secondary spare capacity; / "is the maximum amount of fluctuation of the wind load the same time scale: the spare capacity determining section programs to restore power to the power exchange, recovery and ACE-zero signal frequency The situation is based on the following formula: In the formula: ! P ·, Δ ' and ACE are the distinguishing indicators of the advantages and disadvantages of the secondary frequency modulation, which is expressed as the ffl which can be used for the error adjustment under the given secondary standby time in the secondary frequency modulation time.
水电机组出力变化速度上、 下限值为每分钟额定装机的 20~150%, 火电机组出力变化速 度上、下限值为每分钟额定装机的 1〜5%,从可调容量和调整速度这两个对调频 Γ的基本要求 出发, 系统中有水电厂日 一般应选水电 Γ作调频厂, 没有水电厂或水电厂不宜承担调频任 务^, 例如洪水季节则选中温中压火电 Γ作调频 Γ。 The upper and lower limits of the output change of the hydropower unit are 20~150% of the rated installed capacity per minute. The upper and lower limits of the output speed of the thermal power unit are 1~5% of the rated installed capacity per minute, from the adjustable capacity and the adjustment speed. Two basic requirements for frequency modulation 出发, the hydropower plant in the system should generally choose hydropower for the frequency modulation plant, no hydropower plant or hydropower plant should not undertake the frequency modulation task ^, for example, the flood season selects the medium temperature and pressure electric power for the frequency modulation Γ .
E、 制定自动发电控制 AGC系统控制策略:
互联电力系统进行负荷频率控制的基本原则是在给定的联络线交换功率条件下, 各个控 制区域负责处理本区域发生的负荷扰动。 只有在紧急情况下, 才给予相邻系统以临时性的事 故支援, 并在控制过程中得到最佳的动态性能。 根据这一概念, 互联电力系统进行负荷频率 控制的策略要充分考虑以下因素: 一是每个控制区域只能采用一种负荷频率控制策略; 二是 互联电力系统中, 最多只能有一个控制区采用定频率控制模式; 三是在两个互联控制系统中, 不能同时采用定交换功率控制模式。 E. Develop an automatic power generation control AGC system control strategy: The basic principle of load frequency control for interconnected power systems is that under a given tie line exchange power condition, each control area is responsible for handling the load disturbances that occur in the area. Only in case of emergency, the adjacent system is given temporary accident support and the best dynamic performance is obtained during the control process. According to this concept, the strategy of load frequency control of interconnected power systems should fully consider the following factors: First, each control area can only adopt one load frequency control strategy; Second, in the interconnected power system, there can only be at most one control area. The fixed frequency control mode is adopted; the third is that in two interconnected control systems, the fixed switching power control mode cannot be used at the same time.
当大规模风电并网后, AGC需要平抑负荷与风电的波动, 根据调研可知, 风电分钟级波 动比例要远大于负荷的波动比例, 当风电的渗透率大时, 系统整体功率波动中风电的比重大 于负荷, 并 ϋ需要连同其他区域共同消纳, 所以在制定考虑大规模风电并网的自动发电控制 AGC系统日 t 在上述因素的基础上, 还应该考虑一下因素: 一是需要充分调用水电资源丰富 的区域, 充分发挥水电在调频中的优势: 二是联合消纳模式下需要放宽对断面的严格约束- 三是在制定实际电网的控制策略以及划分控制区域时,需要考虑无自动发电控制 AGC系统情 况下电网功率波动特性, 避免出现各区域之间机组配合不合理的情况, 各个控制区域的机组 出力符合以下公式- When large-scale wind power is connected to the grid, AGC needs to stabilize the load and wind power fluctuations. According to the survey, the wind power minute-level fluctuation ratio is much larger than the load fluctuation ratio. When the wind power penetration rate is large, the overall power fluctuation of the system is proportional to the wind power. More than the load, and need to be shared with other areas, so in the development of the automatic power generation control AGC system considering large-scale wind power grid connection on the basis of the above factors, we should also consider the following factors: First, the need to fully call hydropower resources Rich areas, give full play to the advantages of hydropower in frequency modulation: Second, the need to relax the strict constraints on the section under the joint consumption mode - the third is to consider the automatic power generation control AGC when formulating the actual grid control strategy and dividing the control area In the case of system power fluctuation characteristics, to avoid unreasonable unit coordination between the various regions, the unit output of each control area meets the following formula -
ACE Af < Q ⑩: 式中: '4C¾表示控制区域 的区域偏差控制信号; 表示电力系统频率偏差: 公式的意 思为: 当系统频率下降时, 各区域应以保障系统频率为首要任务, 使 AGC机组增加出力, 反 在对各个控制策略配合方案进行比较时, 以频率恢复、联络线交换功率恢复与 ACE信号 归零 .个指标为评价依据, 即 Δ \ Α 与 ACE, 以这 Ξ个指标归零的速度、 偏差幅值、 各区 域之间机组出力配合为评价标准, 选出最佳方案。 ACE Af < Q 10: where: ' 4C 3⁄4 indicates the regional deviation control signal of the control region; indicates the power system frequency deviation: The formula means: When the system frequency drops, each region should take the guaranteed system frequency as the primary task, so that The AGC unit increased its output. When comparing the various control strategy schemes, the frequency recovery, the tie line exchange power recovery and the ACE signal return to zero. The indicators are based on the evaluation, namely Δ \ Α and ACE, with these indicators The speed of return to zero, the magnitude of the deviation, and the output of the unit between the regions are evaluated as the evaluation criteria, and the best solution is selected.
F、 选择频率儸差系数: F, select the frequency 㑩 difference coefficient:
现行的 AGC系统中的频率偏差系数是以本年最大负荷时期数据采样、 运算、 平均所得, 为了保证控制的稳定性,通常要求电网的自然频率响应 β在实际电网一年中各负荷运行水平下 变化不能过大, 北美电力可靠性协会 (NERC )要求最大的 Β不应大于两倍的最小 β值。 Β的 经验值通常约为 1〜2%年最大峰值负荷 /0.1Ηζ。 The frequency deviation coefficient in the current AGC system is the sampling, calculation, and average income of the data during the maximum load period of the current year. In order to ensure the stability of the control, the natural frequency response of the power grid is usually required to be under the load operation level of the actual power grid in one year. The change should not be too large, and the North American Electric Reliability Association (NERC) requires that the maximum enthalpy should not be greater than twice the minimum beta value. The empirical value of Β is usually about 1 to 2% of the annual maximum peak load / 0.1 Ηζ.
在确定了 AGC控制模型后, 需要确定各个区域 B系数的大小, 此时需要考虑风电基地 在二次调频日 T间范围内最大的波动量, 即(tn,vn), 同日 T也需要考虑极端情况下, 如风电大范
围脱网, 及 皿)。 在这两种扰动下, 比较各个区域频率偏差设置情况。 在风电大规模脱网的情况下, ACE可能会由于断面功率偏差量过大而出现' 4 ¾ ^ > Q 的情况, 此时, 在 i〜2%年最大峰值负荷的范圈内可以适当增大 B系数, 减少 M组出现反调 现象的可能性。 After determining the AGC control model, it is necessary to determine the size of each region B coefficient. At this time, it is necessary to consider the maximum fluctuation amount of the wind power base in the range between the secondary frequency modulation days T, that is, (t n , v n ), and the same day T is also required. Consider extreme conditions, such as wind power Around the net, and the dish). Under these two disturbances, compare the frequency deviation settings of each region. In the case of large-scale off-grid wind power, ACE may have ' 4 3⁄4 ^ > Q due to excessive cross-section power deviation. At this time, it can be increased within the range of i~2% annual maximum peak load. The large B coefficient reduces the possibility of a counter-tune phenomenon in the M group.
G, 确定自动发电控制模型的参数设计方案; 参数设计包括自然频率偏差系数的设计。 通过上述的七个步骤,可以建立适应大规模间歇式风电和太阳能并网自动发电控制 AGC 系统模型和参数。 G, determine the parameter design scheme of the automatic power generation control model; the parameter design includes the design of the natural frequency deviation coefficient. Through the above seven steps, it is possible to establish an AGC system model and parameters suitable for large-scale intermittent wind power and solar grid-connected automatic power generation control.
本发明提供的间歇能源并网下的自动发电控制模型的设计方法, 保证电网在间歇式能源 各种功率扰动下的系统二次调频效果, 提高电网对!司歇式可再生能源的接纳能力, 实现充分 利用风能、 太阳能光伏电源等清洁能源的目标。 The invention provides a design method of an automatic power generation control model under the grid-connected intermittent energy source, which ensures the secondary frequency modulation effect of the power grid under various power disturbances of the intermittent energy source, and improves the acceptance capability of the power grid to the rest-type renewable energy source, Achieve the goal of making full use of clean energy such as wind energy and solar photovoltaic power.
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管参照上述 实施例对本发明进行了详细的说明, 所属领域的普通技术人员应当理解; 依然可以对本发明 的具体实施方式进行修改或者等同替换, 而未脱离本发明精祌和范围的任何修改或者等同替 换, 其均应涵盖在本发明的权利要求范围当中。
It should be noted that the above embodiments are only for explaining the technical solutions of the present invention and are not limited thereto, although the present invention will be described in detail with reference to the above embodiments, and those skilled in the art should understand that the present invention can still be The invention is to be construed as being limited to the scope of the appended claims.
Claims
权 利 要 求 Rights request
一种间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所述方法包括下述步 骤: A method for designing an automatic power generation control model for intermittent energy grid-connected, characterized in that the method comprises the following steps:
Α、 构建并网间歇能源扰动的时间 -幅值二维扰动源; Α, the time of constructing grid-connected intermittent energy disturbances - amplitude two-dimensional disturbance source;
Β、 分析电网功率波动特性; Β Analysis of grid power fluctuation characteristics;
C、 确定自动发电控制 AGC系统机组的分布方案; C. Determine the distribution scheme of the automatic power generation control AGC system unit;
D、 确定自动发电控制 AGC系统电源备 ffi大小以及电源类型; D, determine the automatic power generation control AGC system power supply ffi size and power type;
E、 制定自动发电控制 AGC系统控制策略; E. Formulate automatic power generation control AGC system control strategy;
F、 选择频率偏差系数; F, selecting a frequency deviation coefficient;
G、 确定自动发电控制模型的参数设计方案。 G. Determine the parameter design scheme of the automatic power generation control model.
2、 如权利要求 1所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所述 步骤 A中, 构建并网间歇能源扰动的日 T间-幅值二维扰动源包括下述步骤- a、 构建二次调频效果及其影响因素的函数; 2. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim 1, wherein in step A, a daily T-amplitude two-dimensional disturbance source for grid-connected intermittent energy disturbance is constructed. The following steps are included - a, a function of constructing a secondary frequency modulation effect and its influencing factors;
b、 判断并网间歇能源电源中是否有风电电源; b. Determine whether there is wind power in the intermittent energy source connected to the grid;
c、 判断并网间歇能源电源中是否有光伏电源; c. Determine whether there is photovoltaic power in the grid-connected intermittent energy source;
d、 判断并网间歇能源电源 Φ是否同^有风电和光伏电源; d. Judging whether the grid-connected intermittent energy source Φ has the same wind and photovoltaic power;
e、 形成间歇性能源电源二维扰动域的源样本空间; e. forming a source sample space of a two-dimensional disturbance domain of the intermittent energy source;
f、 从源样本空间中对角线样本取值; f, taking a value from a diagonal sample in the source sample space;
g、 得到间歇性能源电源时间 -幅值二维扰动源。 g, get intermittent energy supply time - amplitude two-dimensional disturbance source.
3、 如权利要求 2所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所述 步骤 a中, 二次调频效果及其影响因素的函数用下式表示- 3. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim 2, wherein in the step a, the function of the secondary frequency modulation effect and its influencing factors is expressed by the following formula -
/^¾ [( , V), i , ^c /(二维扰动域,机组分布,控制模型,参数设置) 、 /^ 3⁄4 [( , V ), i , ^c / (two-dimensional disturbance domain, unit distribution, control model, parameter setting),
= / [(时间因素,幅值因素),机组分布,控制模型,参数设置] ' 其中: t表示二维扰动域中的时间因素; V表示二维扰动域中的幅值因素; d表示自动发 电控制 AGC机组分布的影响; m表示控制模型的影响; c表示参数设置的影响。 = / [(time factor, amplitude factor), unit distribution, control model, parameter setting] ' where: t represents the time factor in the two-dimensional disturbance domain; V represents the amplitude factor in the two-dimensional disturbance domain; d represents automatic The influence of power generation control AGC unit distribution; m indicates the influence of the control model; c indicates the influence of parameter setting.
4、 如权利要求 2所述的间歇能源并网下的自动发电控制模型的设 it方法,其特征在于,所述步 骤 b中, 若有风电电源,收集风电电源时间 -幅值(t 样本并进行歩骤 c; 否贝 进行步骤(:。 4. The method for setting an automatic power generation control model for intermittent energy interconnection according to claim 2, wherein in the step b, if there is a wind power source, collecting wind power supply time-amplitude (t sample and Step c; No step (:.
5、 如权利要求 2所述的间歇能源并网下的自动发电控制模型的设计方法,其特征在于,所述步 骤 c中, 若有光伏电源, 收集光伏电源时间-幅值( ,^样本并进行步骤山 否则进行步骤 d。 5. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim 2, wherein in the step c, if there is a photovoltaic power source, collecting the time-amplitude of the photovoltaic power source (, ^ sample and Perform step mountain or proceed to step d.
6、 ¾权利要求 2所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所述 步骤 d中, 若同 有风电和光伏电源, 进行风电和光伏电源(ίΒ ,νη)样本叠加效应分析并进行 步骤 e; 否则进行步骤 e。 6, intermittent energy claim 2 design method for automatic generation control model in grid ¾ claim, wherein said step (d), if the same wind power and solar power, for wind and solar power source (ί Β, ν η ) Sample superposition effect analysis and proceed to step e ; otherwise proceed to step e.
7、 ¾权利要求 2所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所述 步骤 e中, 间歇性能源电源二维扰动域的源样本空间用下式表示-
7. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim 2, wherein in the step e, the source sample space of the two-dimensional disturbance domain of the intermittent energy source is represented by the following formula -
. . . (t, ,v„)、) . . . (t, , v „),)
(t, ' · . : I ②; (t, ' · . : I 2;
其中: (t,:,VE)为一组样本,表示在 tn时间跨度下,统计所得最大风电波动幅值为 vn, : 、2、3—。Where: (t, : , VE ) is a set of samples, indicating that the maximum wind power fluctuation amplitude obtained under the time span of t n is v n , : 2, 3 —.
8、 ¾1权利要求 2所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所述 步骤 f中, 从源样本空间中对角线样本取值 ffl下式表示; ', 二程取 —| ,, I ^ ° 8. The method for designing an automatic power generation control model for intermittent energy integration according to claim 2, wherein in the step f, the value of the diagonal sample from the source sample space is expressed by the following formula: , two passes -| , , I ^ °
9、 如权利要求 2所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所述 步骤 g中, 所述式③即为得到的间歇性能源电源时间 -幅值二维扰动源。 9. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim 2, wherein in the step g, the formula 3 is the obtained intermittent energy source time-amplitude two. Dimension source.
10、 如权利要求 i所述的间歇能源并网下的自动发电控制模型的设计方法,其特征在于, 所述 步骤 Β Φ , 基于交换功率偏差评份准则的分析扰动下电网功率波动特性; 将二维扰动域中的 10. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim i, wherein the step Β Φ, based on an exchange power deviation evaluation criterion, analyzes power grid fluctuation characteristics under disturbance; Two-dimensional perturbation domain
(^,ν^作为扰动量. 分析在所述扰动量下没有自动发电控制 AGC系统时电网功率波动特性。 (^, ν^ as the disturbance amount. Analyze the power fluctuation characteristics of the grid when there is no automatic power generation control AGC system under the disturbance amount.
11、 ¾1权利要求 10所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于. 分 析电网功率特性包括下述歩骤: 11. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim 10, characterized in that: analyzing the power characteristics of the power grid comprises the following steps:
( 1 ) 统计分区断面功率的变化量, 即统计以下变化量- (1) The amount of change in the sectional section power is counted, that is, the following changes are counted -
I Δ/¾动区 I I Δ / 3⁄4 moving zone I
ί Λ ! ί Λ !
= I ^ 扰动区 1 I @, = I ^ disturbance zone 1 I @,
其中: A ¾ 表示扰动区的断面功率变化; Δ ΐ βι表示非扰动区 i的断面功率变化, i:::l ,2· · ·η ; Wherein: A ¾ a sectional view of the power change of the disturbance zone; Δ ΐ βι power change a cross-sectional area i is undisturbed, i ::: l, 2 · · · η;
(2) 判断出现扰动区与非扰动区的交换功率偏差是否异符号, 即: (2) Determine whether the exchange power deviation between the disturbance zone and the non-disturbance zone is different, that is:
动区 ' i;扰动区 i <.0 Moving zone 'i; disturbance zone i <. 0
若出现扰动区与非扰动区的交换功率偏差异符号,进行步骤 C的确定自动发电控制 AGC 系统机组的分布方案; If there is a difference sign of the exchange power difference between the disturbance zone and the non-disturbance zone, perform the determination scheme of the automatic power generation control AGC system unit in step C;
否则, 岀现扰动区与非扰动区的交换功率偏差同符号, 即: Otherwise, the exchange power deviation between the disturbance zone and the non-disturbance zone is the same as the symbol, namely:
Δ¾动区 ' Δ¾扰动区 0 ⑥; Δ 3⁄4 moving zone ' Δ 3⁄4 disturbance zone 0 6;
则记录该区域, 并查询造成出现扰动区与非扰动区的交换功率偏差同符号的联络线, 减 少该联络线的机组。 Then record the area and query the tie line that causes the exchange power deviation between the disturbance zone and the non-disturbance zone to be the same symbol, and reduce the crew of the tie line.
12、 如权利要求 1所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所 述步骤 C中, 自动发电控制 AGC系统机组的分布方案的目标是断面联络线功率偏差与频率 偏差在二次调频阶段归零, 即:
12. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim 1, wherein in the step C, the target of the distribution scheme of the automatic power generation control AGC system unit is the cross-section tie line power deviation. Return to zero with the frequency deviation in the secondary frequency modulation stage, ie:
13、 如权利要求 i所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所 述步骤 D中, 将二维扰动域中的 ,V")作为扰动量, 电力系统总备用容量 |¾下式表示-
其中: 表示控制区域 的二次备用容量; /为与风电相同时间尺度下负荷的最大波动量: 判别备用容量方案以断面功率交换功率的恢复、频率的恢复以及区域偏差控制 ACE信号 的归零情况用下式表示:
13. The method for designing an automatic power generation control model for intermittent energy grid-connected according to claim i, wherein in the step D, a V " in a two-dimensional disturbance domain is used as a disturbance amount, and the power system Total spare capacity|3⁄4 Where: indicates the secondary reserve capacity of the control area; / is the maximum fluctuation of the load at the same time scale as the wind power: The standby capacity scheme is used to recover the power of the section power exchange, the frequency recovery, and the regional deviation control the zeroing of the ACE signal Expressed by:
式中: Δ \ 4 与 ACE为在二次调频时间内二次调频效果优劣的判别指标; t取分钟级 根据自动发电控制 AGC系统钒组可调容量和调整速度对调频 Γ的电源类型进行确定。 Where: Δ \ 4 and ACE are the discriminant indicators of the effect of the secondary frequency modulation in the secondary frequency modulation time; t take the minute level according to the adjustable capacity and adjustment speed of the vanadium group of the automatic power generation control AGC system for the power type of the frequency modulation determine.
14、 如权利要求〗 所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所 述步骤 E中, 自动发电控制 AGC系统控制区域的机组出力满足下式: 14. The method for designing an automatic power generation control model for intermittent energy grid-connected according to the invention, wherein in the step E, the unit output of the automatic power generation control AGC system control area satisfies the following formula:
ACE Af < 0 ⑩; 其 Φ, C£表示控制区域 的区域偏差控制信号; 4/'表示电力系统频率偏差- 以联络线交换功率恢复、 频率恢复与区域偏差控制 ACE信号归零:三个指标为评价依据, 即 ΔΡ、 Δ 与 ACE, 以三个指标归零的速度、 偏差幅值、 控制区域之间机组出力配合为评份 标准, 得出自动发电控制 AGC系统控制策略。 ACE Af < 0 10; Its Φ, C£ represents the regional deviation control signal of the control region; 4/' denotes the power system frequency deviation - exchanges power recovery with link line, frequency recovery and regional deviation control ACE signal return to zero: three indicators For the evaluation basis, namely ΔΡ, Δ and ACE, the speed of the three indicators, the magnitude of the deviation, and the unit output coordination between the control areas are the evaluation criteria, and the control strategy of the automatic power generation control AGC system is obtained.
15、 如权利要求〗 所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所 述步骤 F中,以风电基地二次调频时间范围内最大的波动量(tn,Vn)和风电大规模脱网(ί νπκχ;) 为扰动源, 以 1.、'2%年最大峰值负荷为取值范围, 并且结合 C£ . " > 0的情况, 比较控制区 域的区域频率偏差设置, 选择控制区域最优的频率偏差系数。 15. The method for designing an automatic power generation control model for intermittent energy grid-connected according to the present invention, wherein in the step F, the maximum fluctuation amount (t n , in the time range of the secondary frequency modulation of the wind power base is used. Vn ) and large-scale off-grid of wind power (ί νπκχ ;) is the source of disturbance, with the range of 1., '2% of the maximum peak load as the value range, and combined with the case of C £. > 0, compare the regional frequency of the control area Deviation setting, select the optimal frequency deviation coefficient of the control area.
16、 如权利要求 1所述的间歇能源并网下的自动发电控制模型的设计方法, 其特征在于, 所 述步骤 G中, 所述参数设计包括自然频率偏差系数设计。
16. The method of designing an automatic power generation control model for intermittent energy grid-connected according to claim 1, wherein in the step G, the parameter design comprises a natural frequency deviation coefficient design.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210567784.7A CN103066620B (en) | 2012-12-24 | 2012-12-24 | Design method of automatic generation control model under intermittent energy grid-connection |
CN201210567784.7 | 2012-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014101515A1 true WO2014101515A1 (en) | 2014-07-03 |
Family
ID=48109132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/084688 WO2014101515A1 (en) | 2012-12-24 | 2013-09-30 | Method for designing automatic generation control model under grid connection of intermittent energy |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103066620B (en) |
WO (1) | WO2014101515A1 (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104124710A (en) * | 2014-08-11 | 2014-10-29 | 四川慧盈科技有限责任公司 | Wind-power integrated operation control method based on power prediction |
CN104362677A (en) * | 2014-11-19 | 2015-02-18 | 云南电网公司电力科学研究院 | Active distribution network optimal configuration structure and configuration method thereof |
CN104600694A (en) * | 2014-08-25 | 2015-05-06 | 浙江工业大学 | Micro-grid energy optimization method considering economic dispatch and loop current suppression |
CN104682384A (en) * | 2015-02-03 | 2015-06-03 | 国家电网公司 | Evaluation method for voltage fluctuation of power grid caused by photovoltaic grid connection |
CN105096000A (en) * | 2015-08-13 | 2015-11-25 | 浙江工业大学 | Optimal capacity allocation method for mobile emergency power supply based on improved quantum-inspired evolutionary algorithm (QEA) |
CN106452354A (en) * | 2016-09-21 | 2017-02-22 | 武汉承光博德光电科技有限公司 | Verification method for electricity generation performance of grid-connected type photovoltaic power station |
CN108539800A (en) * | 2018-03-19 | 2018-09-14 | 南方电网科学研究院有限责任公司 | AGC closed loop test method and device |
CN108733874A (en) * | 2018-04-04 | 2018-11-02 | 云南电网有限责任公司电力科学研究院 | A kind of emulation mode and device based on the switching of distributed photovoltaic multi-model self-adapting |
CN109636000A (en) * | 2018-11-08 | 2019-04-16 | 西安理工大学 | Water-fire-light joint optimal operation method towards photovoltaic consumption |
CN110021943A (en) * | 2019-04-28 | 2019-07-16 | 杨振杰 | A kind of primary frequency modulation adjusting method based on closed loop mark |
CN110034581A (en) * | 2019-04-23 | 2019-07-19 | 湘潭大学 | The electrical betweenness vulnerability assessment method in the section of electric system under wind-electricity integration |
CN110445194A (en) * | 2019-07-25 | 2019-11-12 | 国家电网公司华中分部 | One kind being based on water, thermoelectricity different proportion Primary frequency control ability optimization method |
CN111030160A (en) * | 2018-10-10 | 2020-04-17 | 中国电力科学研究院有限公司 | Method and device for evaluating distributed power supply accepting capacity of power distribution network |
CN111162566A (en) * | 2020-01-21 | 2020-05-15 | 中国电力科学研究院有限公司 | Method and system for determining joint output characteristic of wind-solar combined power generation system |
CN112035783A (en) * | 2020-09-02 | 2020-12-04 | 合肥工业大学 | Wind power characteristic evaluation method based on time-frequency analysis |
CN112235154A (en) * | 2020-09-09 | 2021-01-15 | 广州安食通信息科技有限公司 | Data processing method, system, device and medium based on Internet of things |
CN112271759A (en) * | 2020-10-09 | 2021-01-26 | 中国南方电网有限责任公司 | Method, system and device for optimizing wind power frequency modulation parameters under multi-frequency modulation resource framework |
CN112398165A (en) * | 2020-11-05 | 2021-02-23 | 贵州电网有限责任公司 | New energy consumption capacity assessment method based on extreme scene analysis |
CN112418614A (en) * | 2020-11-04 | 2021-02-26 | 华北电力大学 | Method and system for determining adjustability resource construction scheme of power system |
CN112564132A (en) * | 2020-12-15 | 2021-03-26 | 深圳供电局有限公司 | Wind power primary frequency modulation potential uncertainty modeling method |
CN113221358A (en) * | 2021-05-13 | 2021-08-06 | 浙江大学 | Standby output optimization method of electric-gas coupling system based on reliability parameters |
CN113659590A (en) * | 2021-07-02 | 2021-11-16 | 国电南瑞科技股份有限公司 | Parameter optimization method and system for energy storage battery participating in secondary frequency modulation of power grid |
CN113765123A (en) * | 2021-09-03 | 2021-12-07 | 广东电网有限责任公司电力调度控制中心 | New energy automatic control strategy analysis method and system |
CN113783188A (en) * | 2021-08-31 | 2021-12-10 | 国网江苏省电力有限公司技能培训中心 | Power grid automatic power generation control simulation method considering new energy |
CN113777927A (en) * | 2021-09-15 | 2021-12-10 | 西北工业大学 | Design method of event-triggered performance-guaranteeing controller of power system |
CN113872223A (en) * | 2021-11-15 | 2021-12-31 | 许继集团有限公司 | Frequency modulation method and device for regional-level hundred-percent new energy power system |
CN113937790A (en) * | 2021-10-12 | 2022-01-14 | 云南电网有限责任公司电力科学研究院 | Matching method for primary frequency modulation and secondary frequency modulation of electrochemical energy storage system |
CN114069655A (en) * | 2021-11-16 | 2022-02-18 | 辽宁东科电力有限公司 | Primary frequency modulation and secondary frequency modulation coordination control method for wind power plant |
CN114243805A (en) * | 2021-12-20 | 2022-03-25 | 华北电力大学 | Synchronous machine system frequency response analysis calculation method considering speed regulator amplitude limiting |
CN114243757A (en) * | 2021-11-17 | 2022-03-25 | 南瑞集团有限公司 | Hydropower station AGC control system and method in automatic mode |
CN114243730A (en) * | 2022-02-09 | 2022-03-25 | 广东电网有限责任公司 | Method and device for configuring primary frequency modulation reserve capacity of power supply after wind power integration |
CN114421508A (en) * | 2022-01-21 | 2022-04-29 | 太原理工大学 | Energy storage secondary frequency modulation control method based on frequency partition efficiency evaluation |
CN115049323A (en) * | 2022-08-16 | 2022-09-13 | 东方电子股份有限公司 | Virtual power plant monitoring system based on distributed resource collaboration |
CN115313523A (en) * | 2022-07-12 | 2022-11-08 | 南瑞集团有限公司 | Frequency correction control strategy configuration method, system, storage medium and computing equipment |
CN116111616A (en) * | 2023-04-13 | 2023-05-12 | 清华大学 | Multi-time space scale power system frequency full-track coordination optimization control method |
CN116565942A (en) * | 2023-04-17 | 2023-08-08 | 国网山东省电力公司泰安供电公司 | AGC scheduling method of photovoltaic inverter based on 5G network |
CN118214077A (en) * | 2024-05-14 | 2024-06-18 | 国网浙江省电力有限公司 | Grid-connected planning method based on digestion capability evaluation |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103066620B (en) * | 2012-12-24 | 2014-10-22 | 中国电力科学研究院 | Design method of automatic generation control model under intermittent energy grid-connection |
CN103439962B (en) * | 2013-08-06 | 2015-09-23 | 国家电网公司 | A kind of electrical network Automatic Generation Control closed loop detect verification method |
CN104393607B (en) * | 2014-11-25 | 2016-08-24 | 广东易事特电源股份有限公司 | The power of the grid-connected node of micro-grid system stabilizes method and device |
CN104767205B (en) * | 2015-01-29 | 2017-02-22 | 国家电网公司 | Method for establishing automatic generation control system of electric power system based on wind power plant access |
CN105024378B (en) * | 2015-04-29 | 2017-12-01 | 酒泉钢铁(集团)有限责任公司 | The AGC control methods of direct power supply isolated power network system |
CN107482676B (en) * | 2017-08-11 | 2021-04-30 | 中国电力科学研究院 | Method and device for determining maximum permeability of distributed power supply considering volatility |
CN107800138B (en) * | 2017-11-08 | 2020-08-11 | 广东电网有限责任公司电力科学研究院 | Deviation peak value calculation method and device based on power grid frequency deviation change rate |
CN108288858B (en) * | 2017-12-18 | 2022-02-18 | 国网辽宁省电力有限公司经济技术研究院 | Active and passive frequency response switching control method |
CN108599233B (en) * | 2018-04-09 | 2022-10-04 | 中国电力科学研究院有限公司 | Method and device for determining admission capacity of power distribution network with distributed power supply |
CN111224394B (en) * | 2019-10-14 | 2022-10-04 | 中国电力科学研究院有限公司 | Method and system for determining frequency deviation after power fluctuation of electric power system |
CN110707757B (en) * | 2019-10-24 | 2023-02-17 | 国网新疆电力有限公司 | Multi-type energy hierarchical coordination control method based on new energy consumption |
FR3104842B1 (en) | 2019-12-16 | 2023-06-30 | Commissariat Energie Atomique | Method and device for controlling an electricity production assembly, and associated production assembly |
CN111146788B (en) * | 2020-01-21 | 2021-09-10 | 南方电网科学研究院有限责任公司 | Automatic power generation control method |
CN112332457B (en) * | 2020-10-13 | 2022-05-17 | 江苏方天电力技术有限公司 | Edge cloud cooperative processing method for power distribution comprehensive monitoring data |
CN112803501B (en) * | 2021-01-04 | 2023-09-08 | 中国大唐集团科学技术研究院有限公司华中电力试验研究院 | Self-optimizing auxiliary frequency modulation method for thermal power generating unit based on machine learning algorithm |
CN112796940B (en) * | 2021-01-29 | 2022-05-24 | 东方电气风电股份有限公司 | Wind alignment method for wind direction data missing fan |
CN113189513B (en) * | 2021-04-29 | 2022-10-21 | 电子科技大学 | Ripple-based redundant power supply current sharing state identification method |
CN113206506B (en) * | 2021-06-16 | 2022-04-22 | 华能澜沧江水电股份有限公司 | Control method for suppressing active power fluctuation of photovoltaic and conventional energy networking |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090218819A1 (en) * | 2008-02-29 | 2009-09-03 | General Electric Company | Automatic generation control augmentation for wind plant integration |
CN102003337A (en) * | 2010-11-23 | 2011-04-06 | 西北电网有限公司 | Active power control method of master station-end wind power field subject to wind power grid integration |
CN102522781A (en) * | 2011-12-26 | 2012-06-27 | 国电南瑞科技股份有限公司 | Method for participating area control error (ACE) control by uniformly modeling wind power plant and thermal power plant |
CN102751737A (en) * | 2012-05-14 | 2012-10-24 | 中国电力科学研究院 | Method for simulating and analyzing automatic generation control of electrical power system containing wind power |
CN103066620A (en) * | 2012-12-24 | 2013-04-24 | 中国电力科学研究院 | Design method of automatic generation control model under intermittent energy grid-connection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101873004A (en) * | 2010-06-13 | 2010-10-27 | 国电南瑞科技股份有限公司 | Unified coordination AGC (Automatic Generation Control) control method of interconnected network |
-
2012
- 2012-12-24 CN CN201210567784.7A patent/CN103066620B/en active Active
-
2013
- 2013-09-30 WO PCT/CN2013/084688 patent/WO2014101515A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090218819A1 (en) * | 2008-02-29 | 2009-09-03 | General Electric Company | Automatic generation control augmentation for wind plant integration |
CN102003337A (en) * | 2010-11-23 | 2011-04-06 | 西北电网有限公司 | Active power control method of master station-end wind power field subject to wind power grid integration |
CN102522781A (en) * | 2011-12-26 | 2012-06-27 | 国电南瑞科技股份有限公司 | Method for participating area control error (ACE) control by uniformly modeling wind power plant and thermal power plant |
CN102751737A (en) * | 2012-05-14 | 2012-10-24 | 中国电力科学研究院 | Method for simulating and analyzing automatic generation control of electrical power system containing wind power |
CN103066620A (en) * | 2012-12-24 | 2013-04-24 | 中国电力科学研究院 | Design method of automatic generation control model under intermittent energy grid-connection |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104124710B (en) * | 2014-08-11 | 2016-03-02 | 四川慧盈科技有限责任公司 | A kind of wind-electricity integration progress control method based on power prediction |
CN104124710A (en) * | 2014-08-11 | 2014-10-29 | 四川慧盈科技有限责任公司 | Wind-power integrated operation control method based on power prediction |
CN104600694A (en) * | 2014-08-25 | 2015-05-06 | 浙江工业大学 | Micro-grid energy optimization method considering economic dispatch and loop current suppression |
CN104600694B (en) * | 2014-08-25 | 2017-02-22 | 浙江工业大学 | Micro-grid energy optimization method considering economic dispatch and loop current suppression |
CN104362677A (en) * | 2014-11-19 | 2015-02-18 | 云南电网公司电力科学研究院 | Active distribution network optimal configuration structure and configuration method thereof |
CN104682384A (en) * | 2015-02-03 | 2015-06-03 | 国家电网公司 | Evaluation method for voltage fluctuation of power grid caused by photovoltaic grid connection |
CN105096000B (en) * | 2015-08-13 | 2019-01-11 | 浙江工业大学 | Based on the moving emergency power supply capacity optimal configuration method for improving quantum evolutionary algorithm |
CN105096000A (en) * | 2015-08-13 | 2015-11-25 | 浙江工业大学 | Optimal capacity allocation method for mobile emergency power supply based on improved quantum-inspired evolutionary algorithm (QEA) |
CN106452354A (en) * | 2016-09-21 | 2017-02-22 | 武汉承光博德光电科技有限公司 | Verification method for electricity generation performance of grid-connected type photovoltaic power station |
CN108539800A (en) * | 2018-03-19 | 2018-09-14 | 南方电网科学研究院有限责任公司 | AGC closed loop test method and device |
CN108733874A (en) * | 2018-04-04 | 2018-11-02 | 云南电网有限责任公司电力科学研究院 | A kind of emulation mode and device based on the switching of distributed photovoltaic multi-model self-adapting |
CN111030160B (en) * | 2018-10-10 | 2023-02-07 | 中国电力科学研究院有限公司 | Method and device for evaluating distributed power supply accepting capacity of power distribution network |
CN111030160A (en) * | 2018-10-10 | 2020-04-17 | 中国电力科学研究院有限公司 | Method and device for evaluating distributed power supply accepting capacity of power distribution network |
CN109636000A (en) * | 2018-11-08 | 2019-04-16 | 西安理工大学 | Water-fire-light joint optimal operation method towards photovoltaic consumption |
CN109636000B (en) * | 2018-11-08 | 2022-12-20 | 西安理工大学 | Water-fire-light combined optimization scheduling method for photovoltaic absorption |
CN110034581A (en) * | 2019-04-23 | 2019-07-19 | 湘潭大学 | The electrical betweenness vulnerability assessment method in the section of electric system under wind-electricity integration |
CN110021943B (en) * | 2019-04-28 | 2022-12-13 | 杨振杰 | Primary frequency modulation adjusting method based on closed-loop per unit |
CN110021943A (en) * | 2019-04-28 | 2019-07-16 | 杨振杰 | A kind of primary frequency modulation adjusting method based on closed loop mark |
CN110445194A (en) * | 2019-07-25 | 2019-11-12 | 国家电网公司华中分部 | One kind being based on water, thermoelectricity different proportion Primary frequency control ability optimization method |
CN110445194B (en) * | 2019-07-25 | 2023-01-31 | 国家电网公司华中分部 | Primary frequency modulation capability optimization method based on different proportions of hydroelectric power and thermal power |
CN111162566B (en) * | 2020-01-21 | 2022-07-01 | 中国电力科学研究院有限公司 | Method and system for determining joint output characteristic of wind-solar combined power generation system |
CN111162566A (en) * | 2020-01-21 | 2020-05-15 | 中国电力科学研究院有限公司 | Method and system for determining joint output characteristic of wind-solar combined power generation system |
CN112035783A (en) * | 2020-09-02 | 2020-12-04 | 合肥工业大学 | Wind power characteristic evaluation method based on time-frequency analysis |
CN112035783B (en) * | 2020-09-02 | 2023-11-07 | 合肥工业大学 | Wind power characteristic evaluation method based on time-frequency analysis |
CN112235154A (en) * | 2020-09-09 | 2021-01-15 | 广州安食通信息科技有限公司 | Data processing method, system, device and medium based on Internet of things |
CN112271759A (en) * | 2020-10-09 | 2021-01-26 | 中国南方电网有限责任公司 | Method, system and device for optimizing wind power frequency modulation parameters under multi-frequency modulation resource framework |
CN112418614A (en) * | 2020-11-04 | 2021-02-26 | 华北电力大学 | Method and system for determining adjustability resource construction scheme of power system |
CN112418614B (en) * | 2020-11-04 | 2024-01-30 | 华北电力大学 | Method and system for determining adjustable resource construction scheme of power system |
CN112398165A (en) * | 2020-11-05 | 2021-02-23 | 贵州电网有限责任公司 | New energy consumption capacity assessment method based on extreme scene analysis |
CN112564132A (en) * | 2020-12-15 | 2021-03-26 | 深圳供电局有限公司 | Wind power primary frequency modulation potential uncertainty modeling method |
CN113221358A (en) * | 2021-05-13 | 2021-08-06 | 浙江大学 | Standby output optimization method of electric-gas coupling system based on reliability parameters |
CN113659590A (en) * | 2021-07-02 | 2021-11-16 | 国电南瑞科技股份有限公司 | Parameter optimization method and system for energy storage battery participating in secondary frequency modulation of power grid |
CN113783188A (en) * | 2021-08-31 | 2021-12-10 | 国网江苏省电力有限公司技能培训中心 | Power grid automatic power generation control simulation method considering new energy |
CN113783188B (en) * | 2021-08-31 | 2024-03-26 | 国网江苏省电力有限公司技能培训中心 | Power grid automatic power generation control simulation method considering new energy |
CN113765123B (en) * | 2021-09-03 | 2023-09-19 | 广东电网有限责任公司电力调度控制中心 | New energy source automatic control strategy analysis method and system |
CN113765123A (en) * | 2021-09-03 | 2021-12-07 | 广东电网有限责任公司电力调度控制中心 | New energy automatic control strategy analysis method and system |
CN113777927A (en) * | 2021-09-15 | 2021-12-10 | 西北工业大学 | Design method of event-triggered performance-guaranteeing controller of power system |
CN113937790B (en) * | 2021-10-12 | 2024-02-06 | 云南电网有限责任公司电力科学研究院 | Matching method for primary frequency modulation and secondary frequency modulation of electrochemical energy storage system |
CN113937790A (en) * | 2021-10-12 | 2022-01-14 | 云南电网有限责任公司电力科学研究院 | Matching method for primary frequency modulation and secondary frequency modulation of electrochemical energy storage system |
CN113872223A (en) * | 2021-11-15 | 2021-12-31 | 许继集团有限公司 | Frequency modulation method and device for regional-level hundred-percent new energy power system |
CN114069655A (en) * | 2021-11-16 | 2022-02-18 | 辽宁东科电力有限公司 | Primary frequency modulation and secondary frequency modulation coordination control method for wind power plant |
CN114243757A (en) * | 2021-11-17 | 2022-03-25 | 南瑞集团有限公司 | Hydropower station AGC control system and method in automatic mode |
CN114243757B (en) * | 2021-11-17 | 2023-09-29 | 南瑞集团有限公司 | Hydropower station AGC control system and hydropower station AGC control method in automatic mode |
CN114243805A (en) * | 2021-12-20 | 2022-03-25 | 华北电力大学 | Synchronous machine system frequency response analysis calculation method considering speed regulator amplitude limiting |
CN114243805B (en) * | 2021-12-20 | 2023-01-10 | 华北电力大学 | Synchronous machine system frequency response analysis calculation method considering speed regulator amplitude limiting |
CN114421508B (en) * | 2022-01-21 | 2024-03-26 | 太原理工大学 | Energy storage secondary frequency modulation control method based on frequency partition efficiency evaluation |
CN114421508A (en) * | 2022-01-21 | 2022-04-29 | 太原理工大学 | Energy storage secondary frequency modulation control method based on frequency partition efficiency evaluation |
CN114243730A (en) * | 2022-02-09 | 2022-03-25 | 广东电网有限责任公司 | Method and device for configuring primary frequency modulation reserve capacity of power supply after wind power integration |
CN114243730B (en) * | 2022-02-09 | 2024-04-23 | 广东电网有限责任公司 | Method and device for configuring primary frequency modulation standby capacity of power supply after wind power grid connection |
CN115313523A (en) * | 2022-07-12 | 2022-11-08 | 南瑞集团有限公司 | Frequency correction control strategy configuration method, system, storage medium and computing equipment |
CN115049323A (en) * | 2022-08-16 | 2022-09-13 | 东方电子股份有限公司 | Virtual power plant monitoring system based on distributed resource collaboration |
CN116111616A (en) * | 2023-04-13 | 2023-05-12 | 清华大学 | Multi-time space scale power system frequency full-track coordination optimization control method |
CN116565942A (en) * | 2023-04-17 | 2023-08-08 | 国网山东省电力公司泰安供电公司 | AGC scheduling method of photovoltaic inverter based on 5G network |
CN118214077A (en) * | 2024-05-14 | 2024-06-18 | 国网浙江省电力有限公司 | Grid-connected planning method based on digestion capability evaluation |
Also Published As
Publication number | Publication date |
---|---|
CN103066620B (en) | 2014-10-22 |
CN103066620A (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014101515A1 (en) | Method for designing automatic generation control model under grid connection of intermittent energy | |
Shi et al. | Comprehensive evaluation index system for wind power utilization levels in wind farms in China | |
WO2017067120A1 (en) | Method for acquiring low-voltage ride-through data of photovoltaic power station | |
CN102055188A (en) | Ultra-short term wind power forecasting method based on time series method | |
Fan et al. | Review of developments and insights into an index system of wind power utilization level | |
CN105244890A (en) | Reactive power optimization method for new energy grid connection | |
Habib et al. | Demand and application of energy storage technology in renewable energy power system | |
CN102957166B (en) | Method for quickly calculating wind-power allocation ratio based on trajectory sensitivity | |
CN110277802B (en) | Real-time prediction method and system for active power of wind power plant | |
CN106485593A (en) | A kind of grid side generation of electricity by new energy is limited analysis of causes method | |
Wang et al. | Evaluation Method of Wind Power Consumption Limitation in Power System with High Proportion of Wind Power | |
Wei et al. | Study on characteristics evaluation index of renewable power output and application on renewable energy development planning | |
Su et al. | Research on Smart Grid Policy and Technical Support | |
Rui et al. | The Research of Practicality Evaluation Index System of New Energy Combined Power Project | |
Zhang et al. | Study on renewable energy integration with electric thermal storage in demand-side—Part II: Sequential production simulation based sensitivity analysis | |
CN104063812A (en) | Method for evaluating low voltage ride-through performance of wind-solar complementary power generation system | |
Zhang | The current state, problems and development strategies of the wind power industry in the three northeast provinces of China | |
Wang et al. | A calculation model for wind power consumed by electric heating load based on multi-state probability distribution | |
Xue et al. | The Research on Systematic Development Degree of SGLS Based on Social-Economic-Environmental Index | |
Yajun et al. | The reliability evaluation of the power system containing wind farm using the improved state space partition method | |
Zhou et al. | Summary of large-scale wind farm and photovoltaic power plant cluster control system | |
Li et al. | Assessment of distributed new energy-bearing capacity of new power systems with multisource complementary characteristics | |
Liu et al. | Analysis of wind power characteristics of typical wind farm in Inner Mongolia area | |
Ren et al. | Distribution network rapid supply power capability calculation based on contribution degree stratified sampling | |
Duan et al. | Quantitative Evaluation of the Impact of Wind Power Model Accuracy on Safety and Stability Analysis of Xinjiang Power Grid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13869693 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13869693 Country of ref document: EP Kind code of ref document: A1 |