CN112035783A - Wind power characteristic evaluation method based on time-frequency analysis - Google Patents
Wind power characteristic evaluation method based on time-frequency analysis Download PDFInfo
- Publication number
- CN112035783A CN112035783A CN202010910287.7A CN202010910287A CN112035783A CN 112035783 A CN112035783 A CN 112035783A CN 202010910287 A CN202010910287 A CN 202010910287A CN 112035783 A CN112035783 A CN 112035783A
- Authority
- CN
- China
- Prior art keywords
- wind power
- time
- formula
- index
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000013210 evaluation model Methods 0.000 claims abstract description 6
- 230000009466 transformation Effects 0.000 claims abstract 2
- 239000011159 matrix material Substances 0.000 claims description 42
- 239000013598 vector Substances 0.000 claims description 34
- 238000005070 sampling Methods 0.000 claims description 31
- 238000001228 spectrum Methods 0.000 claims description 25
- 230000007704 transition Effects 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 239000011541 reaction mixture Substances 0.000 claims 2
- 238000011160 research Methods 0.000 abstract description 6
- 230000007812 deficiency Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Theoretical Computer Science (AREA)
- Operations Research (AREA)
- Mathematical Physics (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Development Economics (AREA)
- Pure & Applied Mathematics (AREA)
- Quality & Reliability (AREA)
- Educational Administration (AREA)
- Health & Medical Sciences (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Game Theory and Decision Science (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Power Engineering (AREA)
- Software Systems (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Wind Motors (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种基于时频分析的风电功率特征评价方法,属于电气工程技术领域。The invention relates to a wind power feature evaluation method based on time-frequency analysis, and belongs to the technical field of electrical engineering.
背景技术Background technique
随着传统能源的日益枯竭,人们日益关注可再生能源的发展。在众多可再生能源中风能作为一种绿色环保的可再生能源,其发展迅速。但是风能存在波动性、随机性和间歇性,导致风电场输出的风电功率也具有波动性、随机性和间歇性。随着风电功率在电网中的渗透率增加,具有波动性、随机性和间歇性的风电功率并网对电网的调度影响也增大。因此需对风电功率特征进行分析评价,以明确风电功率并网对电网调度的影响程度。With the increasing depletion of traditional energy, people pay more and more attention to the development of renewable energy. Among the many renewable energy sources, wind energy is developing rapidly as a kind of green and environment-friendly renewable energy. However, there are fluctuations, randomness and intermittency in wind energy, which lead to the volatility, randomness and intermittency of wind power output from wind farms. As the penetration rate of wind power in the power grid increases, the grid-connected wind power with volatility, randomness and intermittency also increases the dispatching impact on the power grid. Therefore, it is necessary to analyze and evaluate the characteristics of wind power to clarify the degree of influence of wind power on grid dispatch.
现有的研究主要从时域或频域视角进行风电功率的特征分析。从时域对风电功率进行特征分析,能够获得风电功率在各时段的出力,掌握风电功率的变化趋势和波动特征,但无法得知风电功率波动分量的频率组成及各波动分量的能量大小,因而在风电并网调度中无法合理安排具有不同响应速度的发电机组的出力。从频域对风电功率进行特征分析,能得出风电功率波动发生的频率及其能量信息,但不能获知各波动分量发生的时间信息,因而在风电并网调度中无法准确制定发电机组在不同时段的出力。综上所述,仅仅从时域或频域角度对风电功率进行特征分析,都具有很大的片面性。因此迫切需要同时从时域和频域上来分析风电功率特征,即进行风电功率的时频分析,得到风电功率在时频域上的特征指标,从而为更加合理的进行风电并网调度奠定基础。Existing research mainly analyzes the characteristics of wind power from the perspective of time domain or frequency domain. By analyzing the characteristics of wind power from the time domain, the output of wind power in each period can be obtained, and the variation trend and fluctuation characteristics of wind power can be grasped, but the frequency composition of wind power fluctuation components and the energy of each fluctuation component cannot be known. The output of generator sets with different response speeds cannot be reasonably arranged in wind power grid-connected scheduling. By analyzing the characteristics of wind power from the frequency domain, the frequency of wind power fluctuation and its energy information can be obtained, but the time information of each fluctuation component cannot be obtained, so it is impossible to accurately determine the generator set in different time periods in wind power grid-connected scheduling. output. To sum up, it is very one-sided to analyze the characteristics of wind power only from the perspective of time domain or frequency domain. Therefore, it is urgent to analyze the characteristics of wind power from the time domain and frequency domain at the same time, that is, to perform time-frequency analysis of wind power to obtain the characteristic indicators of wind power in the time-frequency domain, so as to lay the foundation for more reasonable wind power grid-connected scheduling.
此外,现有文献对风电功率的特征分析主要从风电功率的波动性入手,但对风电功率本身固有的随机性和间歇性的研究不够充分。风电功率的随机性表现为风电出力的不确定性和不可预测性;风电功率的间歇性表现为风电功率在某段时间内的出力为零或者极小。风电功率的随机性和间歇性都会对风电并网调度造成极大的不利影响:风电功率的强随机性会造成风电功率预测误差增大,从而影响发电调度计划的合理制定;风电功率的间歇性会威胁电网的功率平衡,影响电网的频率稳定性。In addition, the feature analysis of wind power in the existing literature mainly starts from the volatility of wind power, but the research on the inherent randomness and intermittency of wind power itself is insufficient. The randomness of wind power is represented by the uncertainty and unpredictability of wind power output; the intermittent performance of wind power is that the output of wind power is zero or extremely small in a certain period of time. The randomness and intermittency of wind power will cause great adverse effects on grid-connected wind power dispatching: the strong randomness of wind power will increase the forecast error of wind power, thereby affecting the rational formulation of power generation dispatching plans; the intermittency of wind power It will threaten the power balance of the power grid and affect the frequency stability of the power grid.
综上所述,传统的风电功率特征分析主要采用时域和频域方法,分析结果具有片面性,难以为风电功率特征评价和风电功率调度提供全面、完整的信息。To sum up, the traditional wind power feature analysis mainly adopts the time domain and frequency domain methods, and the analysis results are one-sided, and it is difficult to provide comprehensive and complete information for wind power feature evaluation and wind power scheduling.
发明内容SUMMARY OF THE INVENTION
本发明为了解决上述现有技术存在的不足之处,提出一种基于时频分析的风电功率特征评价方法,以期通过对风电功率进行时频分析和从其时频谱中提取风电功率波动性、间歇性及随机性特征指标进行特征评价,得到更为全面合理的风电功率特征评价结果,以解决仅仅从时域或频域无法对风电功率特征进行全面评价的问题,并弥补对风电功率间歇性及随机性指标研究的不足,为风电功率并网调度提供一定的参考作用。In order to solve the above-mentioned shortcomings of the prior art, the present invention proposes a method for evaluating the characteristics of wind power based on time-frequency analysis, in order to extract the fluctuation, intermittent and intermittent characteristics of wind power by performing time-frequency analysis on wind power and extracting the frequency spectrum from the wind power. In order to solve the problem that the wind power characteristics cannot be comprehensively evaluated only from the time domain or frequency domain, and make up for the intermittent and The lack of random index research provides a certain reference for wind power grid-connected scheduling.
为了达到上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
本发明一种基于时频分析的风电功率特征评价方法的特点是按照如下步骤进行:The characteristics of a wind power feature evaluation method based on time-frequency analysis of the present invention are performed according to the following steps:
步骤1.已知某风电场采样间隔为ΔT的风电功率序列{P(j)},j=0,1,…,N-1,利用式(1)对其进行离散S变换,得到时间采样点为j、频率采样点为n的风电功率时频谱S[j,n]:Step 1. It is known that the wind power sequence {P(j)} with a sampling interval of ΔT in a wind farm, j=0,1,...,N-1, use formula (1) to perform discrete S transform on it to obtain the time sampling The frequency spectrum S[j,n] of wind power with point j and frequency sampling point n:
式(1)中,j表示时间采样点,j=0,1,…,N-1;n表示频率采样点,n=0,1,…,N/2;i为虚数单位;m为频率平移量;N表示采样点总数,且N为偶数;P(j)表示时间采样点为j时的风电功率;exp表示以自然常数e为底的指数函数;In formula (1), j represents the time sampling point, j=0,1,...,N-1; n represents the frequency sampling point, n=0,1,...,N/2; i is the imaginary unit; m is the frequency translation amount; N represents the total number of sampling points, and N is an even number; P(j) represents the wind power when the time sampling point is j; exp represents the exponential function with the natural constant e as the base;
步骤2.针对风电功率的波动性,利用式(2)和式(3)分别在风电功率时频域上定义时频域均值m(t,f)和时频域方差 Step 2. In view of the volatility of wind power, use equations (2) and (3) to define the time-frequency domain mean m (t, f) and the time-frequency domain variance in the time-frequency domain of wind power respectively.
步骤3.针对风电功率的随机性,利用式(4)在时频域上定义风电功率的时频谱熵ε(t,f):Step 3. Aiming at the randomness of wind power, use formula (4) to define the time-spectrum entropy ε (t,f) of wind power in the time-frequency domain:
步骤4.针对风电功率的间歇性,在时频域上定义风电功率的总间歇次数nsum及风电功率的平均间歇持续时间tmean;Step 4. For the intermittency of wind power, define the total intermittent times n sum of wind power and the average intermittent duration t mean of wind power in the time-frequency domain;
步骤4.1.利用式(5)计算风电功率在时频谱上时间采样点为j时的间歇状态量C(j):Step 4.1. Use formula (5) to calculate the intermittent state quantity C(j) of wind power when the time sampling point is j on the time spectrum:
式(5)中,Smin为风电功率的时频间歇值;In formula (5), S min is the time-frequency intermittent value of wind power;
步骤4.2.利用式(6)计算风电功率在时间采样点为j时的间歇状态转变量c(j):Step 4.2. Use equation (6) to calculate the intermittent state transition c(j) of wind power when the time sampling point is j:
式(6)中,C(j+1)表示风电功率在时频谱上时间采样点为j+1时的间歇状态量;In formula (6), C(j+1) represents the intermittent state quantity of wind power when the time sampling point on the time spectrum is j+1;
步骤4.3.利用式(7)计算风电功率总间歇次数nsum:Step 4.3. Use formula (7) to calculate the total intermittent times n sum of wind power:
步骤4.4.利用式(8)计算风电功率平均间歇持续时间tmean:Step 4.4. Use formula (8) to calculate the average intermittent duration t mean of wind power:
式(8)中,ΔT为风电功率的采样间隔;In formula (8), ΔT is the sampling interval of wind power;
步骤4.5.利用式(9)构成风电功率的特征指标向量x:Step 4.5. Use formula (9) to form the characteristic index vector x of wind power:
x=[x1,x2,…,xi,…,x5] (9)x=[x 1 ,x 2 ,..., xi ,...,x 5 ] (9)
式(9)中,xi表示第i个特征指标值,x1,x2,x3,x4,x5分别为风电功率的时频域均值m(t,f)、时频域方差时频谱熵ε(t,f)、间歇次数nsum、间歇平均时间tmean;i=1,2,…,5;In formula (9), x i represents the i-th characteristic index value, x 1 , x 2 , x 3 , x 4 , and x 5 are the time-frequency domain mean m (t, f) and time-frequency domain variance of wind power, respectively. Time spectrum entropy ε (t,f) , interval times n sum , interval average time t mean ; i=1,2,...,5;
步骤5.构建D个风电场的指标矩阵X;Step 5. Construct the index matrix X of D wind farms;
步骤5.1.对每个风电场按照步骤1到步骤4进行风电功率的特征指标计算,利用式(10)构建每个风电场的指标向量{xd,d=1,2,…,D}:Step 5.1. Calculate the characteristic index of wind power according to steps 1 to 4 for each wind farm, and use formula (10) to construct the index vector {x d ,d=1,2,...,D} of each wind farm:
xd=[xd1,xd2,…,xdi,…,xd5] (10)x d =[x d1 ,x d2 ,...,x di ,...,x d5 ] (10)
式(9)中,xdi表示第d个风电场的第i个特征指标值;xd1,xd2,xd3,xd4,xd5分别为第d个风电场风电功率的时频域均值、时频域方差、时频谱熵、间歇次数、间歇平均时间;In formula (9), x di represents the i-th characteristic index value of the d-th wind farm; x d1 , x d2 , x d3 , x d4 , and x d5 are the time-frequency domain mean values of the wind power of the d-th wind farm, respectively , time-frequency domain variance, time-spectrum entropy, interval times, interval average time;
步骤5.2.利用式(11)得到D个风电场的指标矩阵X:Step 5.2. Use formula (11) to obtain the index matrix X of D wind farms:
步骤6.利用层次分析法建立基于时频分析的风电功率特征评价模型,对D个风电场中每个风电场的并网风电功率进行特征评价;Step 6. Use AHP to establish a wind power characteristic evaluation model based on time-frequency analysis, and perform characteristic evaluation on the grid-connected wind power of each of the D wind farms;
步骤6.1.构建判断矩阵A;Step 6.1. Construct judgment matrix A;
利用式(12)构建指标的判断矩阵A:Use formula (12) to construct the judgment matrix A of the index:
式(12)中,aij表示式(9)所示的特征指标向量x中第i个指标xi和第j个指标xj相比的重要性标度;当i=j时,令aij=1,当i≠j时,令aij=1/aji;In equation (12), a ij represents the importance scale of the ith index x i compared with the j th index x j in the feature index vector x shown in equation (9); when i=j, let a ij =1, when i≠j, let a ij =1/a ji ;
步骤6.2.利用式(13)构建标准判断矩阵 Step 6.2. Use formula (13) to construct a standard judgment matrix
式(13)中,表示式(9)所示的特征指标向量x中第i个指标xi和第j个指标xj相比的重要性标度标准值;In formula (13), The importance scale standard value of the ith index x i compared with the jth index x j in the feature index vector x shown in expression (9);
步骤6.3.利用式(14)计算指标权重向量w:Step 6.3. Use formula (14) to calculate the index weight vector w:
式(14)中,上标T表示向量的转置;In formula (14), the superscript T represents the transpose of the vector;
步骤6.4.层次分析法一致性检验;Step 6.4. AHP consistency check;
利用式(15)得到最大特征根λmax:Use formula (15) to get the maximum characteristic root λ max :
式(15)中,(Aw)i为判断矩阵A与指标权重向量w的乘积所构成的向量Aw中第i个元素,wi表示指标权重向量w中第i个元素;In formula (15), (Aw) i is the i-th element in the vector Aw formed by the product of the judgment matrix A and the indicator weight vector w, and w i represents the i-th element in the indicator weight vector w;
利用式(16)得到所述判断矩阵A的一致性指标CI:Use formula (16) to obtain the consistency index C I of the judgment matrix A:
利用式(17)得到判断矩阵A的一致性比率CR:Use formula (17) to obtain the consistency ratio CR of the judgment matrix A:
式(17)中,RI为平均随机一致性指标;In formula (17), R I is the average random consistency index;
当CR<δ时,表示判断矩阵A满足一致性;否则,重新调整判断矩阵A使其满足一致性;δ表示所设定的一致性比率阈值;When C R <δ, it means that the judgment matrix A satisfies the consistency; otherwise, the judgment matrix A is re-adjusted to meet the consistency; δ indicates the set consistency ratio threshold;
步骤6.5.指标矩阵X标准化;Step 6.5. Standardize the indicator matrix X;
对步骤5中D个风电场的指标矩阵X进行标准化,利用式(18)得到标准指标矩阵 Standardize the index matrix X of the D wind farms in step 5, and use the formula (18) to obtain the standard index matrix
式(18)中,表示第d个风电场风电功率的第i个特征指标标准值;In formula (18), Represents the standard value of the i-th characteristic index of the wind power of the d-th wind farm;
步骤6.6.获得D个风电场的风电功率特征评价结果;Step 6.6. Obtain the wind power characteristic evaluation results of D wind farms;
根据指标权重向量w及标准指标矩阵利用式(19)得到D个风电场的风电功率特征评价向量v:According to the indicator weight vector w and the standard indicator matrix Using Equation (19), the wind power characteristic evaluation vector v of D wind farms is obtained:
与现有技术相比,本发明有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
本发明解决了仅仅从时域或频域无法对风电功率特征进行全面评价的问题,并弥补了对风电功率随机性及间歇性指标研究的不足。通过对风电功率进行时频分析,从其时频谱中提取特征指标,建立风电功率特征评价模型,从而得到更加准确有效的风电功率特征评价结果,为风电功率并网调度提供一定的参考作用。具体效果体现在以下几个方面:The invention solves the problem that the wind power characteristics cannot be comprehensively evaluated only from the time domain or the frequency domain, and makes up for the deficiency of the research on the randomness and intermittent index of the wind power. Through time-frequency analysis of wind power, characteristic indicators are extracted from the time spectrum, and a wind power characteristic evaluation model is established, so as to obtain more accurate and effective wind power characteristic evaluation results, and provide a certain reference for wind power grid-connected scheduling. The specific effects are reflected in the following aspects:
1.本发明采用步骤1所示的离散S变换对风电功率进行时频分析,得到风电功率时频谱,从而能够准确描述风电功率在各时刻的频率成分及其能量变化,为之后的风电功率特征评价提供了更加具体全面的风电功率特征信息;1. The present invention uses the discrete S transform shown in step 1 to perform time-frequency analysis on wind power to obtain the time spectrum of wind power, so that the frequency components and energy changes of wind power at each moment can be accurately described, which are the characteristics of wind power in the future. The evaluation provides more specific and comprehensive information on the characteristics of wind power;
2.本发明采用步骤3所示的用于反映信号随机程度的时频谱熵ε(t,f)来定义风电功率在时频谱上的随机性,采用步骤4所示的风电功率的总间歇次数nsum及风电功率的平均间歇持续时间tmean来定义风电功率在时频谱上的间歇性,从而弥补了对风电功率随机性及间歇性指标研究的不足;2. The present invention uses the time spectrum entropy ε (t, f) shown in step 3 to reflect the randomness of the signal to define the randomness of wind power on the time spectrum, and uses the total intermittent times of wind power shown in step 4. n sum and the average intermittent duration t mean of wind power to define the intermittent of wind power in time spectrum, thus making up for the lack of research on wind power randomness and intermittent index;
3.本发明采用步骤6所示的层次分析法建立基于时频分析的风电功率特征评价模型,得到的评价结果能更全面有效地反映风电功率特征,从而为风电功率并网调度提供更加有效的参考。3. The present invention adopts the analytic hierarchy process shown in step 6 to establish an evaluation model of wind power characteristics based on time-frequency analysis, and the obtained evaluation results can more comprehensively and effectively reflect the characteristics of wind power, thereby providing a more effective method for grid-connected dispatching of wind power. refer to.
附图说明Description of drawings
图1是本发明基于时频分析的风电功率特征评价方法的流程图。FIG. 1 is a flow chart of the method for evaluating the characteristics of wind power based on time-frequency analysis according to the present invention.
具体实施方式Detailed ways
本实施例中,如图1所示,一种基于时频分析的风电功率特征评价方法是按照如下步骤进行:In this embodiment, as shown in FIG. 1 , a method for evaluating wind power characteristics based on time-frequency analysis is performed according to the following steps:
步骤1.已知某风电场采样间隔为ΔT的风电功率序列{P(j)},j=0,1,…,N-1,利用式(1)对其进行离散S变换,得到时间采样点为j、频率采样点为n的风电功率时频谱S[j,n]:Step 1. It is known that the wind power sequence {P(j)}, j=0, 1, . Spectrum S[j,n] of wind power with point j and frequency sampling point n:
式(1)中,j表示时间采样点,j=0,1,…,N-1;n表示频率采样点,n=0,1,…,N/2;i为虚数单位;m为频率平移量;N表示采样点总数,且N为偶数;P(j)表示时间采样点为j时的风电功率;exp表示以自然常数e为底的指数函数;In formula (1), j represents the time sampling point, j=0, 1, ..., N-1; n represents the frequency sampling point, n=0, 1, ..., N/2; i is the imaginary unit; m is the frequency translation amount; N represents the total number of sampling points, and N is an even number; P(j) represents the wind power when the time sampling point is j; exp represents the exponential function with the natural constant e as the base;
步骤2.针对风电功率的波动性,利用式(2)和式(3)分别在风电功率时频域上定义时频域均值m(t,f)和时频域方差 Step 2. In view of the volatility of wind power, use equations (2) and (3) to define the time-frequency domain mean m (t, f) and the time-frequency domain variance in the time-frequency domain of wind power respectively.
时频域均值m(t,f)越大,说明风电功率的平均能量越大,其并网波动对电网的影响也越大;时频域方差表示风电功率在时频域的波动程度,时频域方差越大,风电功率波动越剧烈,对电网的影响也越大;The larger the mean value m (t, f) in the time-frequency domain, the greater the average energy of wind power, and the greater the impact of its grid-connected fluctuations on the power grid; the variance in the time-frequency domain is greater. Indicates the degree of wind power fluctuation in the time-frequency domain, and the variance in the time-frequency domain The larger the value, the more severe the wind power fluctuation, and the greater the impact on the power grid;
步骤3.针对风电功率的随机性,利用式(4)在时频域上定义风电功率的时频谱熵ε(t,f) Step 3. In view of the randomness of wind power, use formula (4) to define the time-spectrum entropy ε (t, f) of wind power in the time-frequency domain
时频谱熵ε(t,f)表示风电功率在时频域上的随机性,时频谱熵ε(t,f)值越大,风电功率随机性越强,可预测性越弱,从而影响发电调度计划的合理制定;The time-spectral entropy ε (t, f) represents the randomness of wind power in the time-frequency domain. The larger the value of the time-spectral entropy ε (t, f) , the stronger the randomness and the weaker the predictability of wind power, which affects the power generation. Reasonable formulation of scheduling plans;
步骤4.针对风电功率的间歇性,在时频域上定义风电功率的总间歇次数nsum及风电功率的平均间歇持续时间tmean;Step 4. For the intermittency of wind power, define the total intermittent times n sum of wind power and the average intermittent duration t mean of wind power in the time-frequency domain;
步骤4.1.利用式(5)计算风电功率在时频谱上时间采样点为j时的间歇状态量C(j):Step 4.1. Use formula (5) to calculate the intermittent state quantity C(j) of wind power when the time sampling point is j on the time spectrum:
式(5)中,Smin为风电功率的时频间歇值,本实施例中取为5%×m(t,f);当C(j)=1时表示j时的风电功率为间歇状态,当C(j)=0时表示j时的风电功率为非间歇状态;In formula (5), S min is the time-frequency intermittent value of wind power, which is taken as 5%×m (t, f) in this embodiment; when C(j)=1, it means that the wind power at j is an intermittent state , when C(j)=0, it means that the wind power at j is a non-intermittent state;
步骤4.2.利用式(6)计算风电功率在时间采样点为j时的间歇状态转变量c(j):Step 4.2. Use equation (6) to calculate the intermittent state transition c(j) of wind power when the time sampling point is j:
式(6)中,C(j+1)表示风电功率在时频谱上时间采样点为j+1时的间歇状态量;当c(j)=1时表示j时的风电功率由非间歇状态转变成间歇状态;In formula (6), C(j+1) represents the intermittent state quantity of the wind power when the time sampling point is j+1 on the time spectrum; when c(j)=1, it represents that the wind power at j is changed from the non-intermittent state. into an intermittent state;
步骤4.3.利用式(7)计算风电功率总间歇次数nsum:Step 4.3. Use formula (7) to calculate the total intermittent times n sum of wind power:
步骤4.4.利用式(8)计算风电功率平均间歇持续时间tmean:Step 4.4. Use formula (8) to calculate the average intermittent duration t mean of wind power:
式(8)中,ΔT为风电功率的采样间隔;In formula (8), ΔT is the sampling interval of wind power;
利用总间歇次数nsum及平均间歇持续时间tmean表示风电功率的间歇性,总间歇次数nsum越多,平均间歇持续时间tmean越长,表明风电功率的间歇性越强,对电网的功率平衡威胁越大,更容易影响电网的频率稳定性;The total intermittent times n sum and the average intermittent duration t mean are used to represent the intermittency of wind power. The greater the balance threat is, the easier it is to affect the frequency stability of the power grid;
步骤4.5.将上述5个指标放在一起,利用式(9)构成风电功率的特征指标向量x:Step 4.5. Put the above five indicators together, and use the formula (9) to form the characteristic index vector x of wind power:
x=[x1,x2,…,xi,…,x5] (9)x=[x 1 , x 2 ,..., xi ,...,x 5 ] (9)
式(9)中,xi表示第i个特征指标值;x1,x2,x3,x4,x5分别为风电功率的时频域均值m(t,f)、时频域方差时频谱熵ε(t,f)、间歇次数nsum、间歇平均时间tmean;i=1,2,…,5;In formula (9), x i represents the ith characteristic index value; x 1 , x 2 , x 3 , x 4 , and x 5 are the time-frequency domain mean m (t, f) and time-frequency domain variance of wind power, respectively Time spectrum entropy ε (t, f) , interval times n sum , interval average time t mean ; i=1, 2,..., 5;
步骤5.构建D个风电场的指标矩阵X;Step 5. Construct the index matrix X of D wind farms;
步骤5.1.对每个风电场按照步骤1到步骤4进行风电功率的特征指标计算,利用式(10)构建每个风电场的指标向量{xd,d=1,2,…,D}:Step 5.1. Calculate the characteristic index of wind power according to steps 1 to 4 for each wind farm, and use formula (10) to construct the index vector {x d , d=1, 2, ..., D} of each wind farm:
xd=[xd1,xd2,…,xdi,…,xd5] (10)x d =[x d1 , x d2 , ..., x di , ..., x d5 ] (10)
式(9)中,xdi表示第d个风电场的第i个特征指标值;xd1,xd2,xd3,xd4,xd5分别为第d个风电场风电功率的时频域均值、时频域方差、时频谱熵、间歇次数、间歇平均时间;In formula (9), x di represents the i-th characteristic index value of the d-th wind farm; x d1 , x d2 , x d3 , x d4 , and x d5 are the time-frequency domain mean values of the wind power of the d-th wind farm, respectively , time-frequency domain variance, time-spectrum entropy, interval times, interval average time;
步骤5.2.利用式(11)得到D个风电场的指标矩阵X:Step 5.2. Use formula (11) to obtain the index matrix X of D wind farms:
步骤6.利用层次分析法建立基于时频分析的风电功率特征评价模型,对D个风电场中每个风电场的并网风电功率进行特征评价;Step 6. Use AHP to establish a wind power characteristic evaluation model based on time-frequency analysis, and perform characteristic evaluation on the grid-connected wind power of each of the D wind farms;
步骤6.1.构建判断矩阵A;Step 6.1. Construct judgment matrix A;
利用式(12)构建指标的判断矩阵A:Use formula (12) to construct the judgment matrix A of the index:
式(12)中,aij表示式(9)所示的特征指标向量x中第i个指标xi和第j个指标xj相比的重要性标度;当i=j时,令aij=1,当i≠j时,令aij=1/aji;In equation (12), a ij represents the importance scale of the ith index x i compared with the j th index x j in the feature index vector x shown in equation (9); when i=j, let a ij =1, when i≠j, let a ij =1/a ji ;
本实施例中取风电功率的时频域均值m(t,f)、时频域方差间歇次数nsum、间歇平均时间tmean四个特征指标两两之间的重要性程度相同,风电功率的时频谱熵ε(t,f)与其他四个指标相比都稍微重要,因此判断矩阵A可取式(1*)中的值:In this embodiment, the time-frequency domain mean value m (t, f) and the time-frequency domain variance of the wind power are taken Intermittent times n sum , intermittent average time t mean four characteristic indicators have the same degree of importance, and the time-spectrum entropy ε (t, f) of wind power is slightly more important than the other four indicators, so the judgment matrix A can take the value in formula (1*):
步骤6.2.利用式(13)构建标准判断矩阵 Step 6.2. Use formula (13) to construct a standard judgment matrix
式(13)中,表示式(9)所示的特征指标向量x中第i个指标xi和第j个指标xj相比的重要性标度标准值;In formula (13), The importance scale standard value of the ith index x i compared with the jth index x j in the feature index vector x shown in expression (9);
步骤6.3.利用式(14)计算指标权重向量w:Step 6.3. Use formula (14) to calculate the index weight vector w:
式(14)中,上标T表示向量的转置;In formula (14), the superscript T represents the transpose of the vector;
步骤6.4.层次分析法一致性检验;Step 6.4. AHP consistency check;
利用式(15)得到最大特征根λmax:Use formula (15) to get the maximum characteristic root λ max :
式(15)中,(Aw)i为判断矩阵A与指标权重向量w的乘积所构成的向量Aw中第i个元素,wi表示指标权重向量w中第i个元素;In formula (15), (Aw) i is the i-th element in the vector Aw formed by the product of the judgment matrix A and the indicator weight vector w, and w i represents the i-th element in the indicator weight vector w;
利用式(16)得到所述判断矩阵A的一致性指标CI:Use formula (16) to obtain the consistency index C I of the judgment matrix A:
利用式(17)得到判断矩阵A的一致性比率CR:Use formula (17) to obtain the consistency ratio CR of the judgment matrix A:
式(17)中,RI为平均随机一致性指标,它只与判断矩阵的阶数相关,本发明判断矩阵阶数为5,δ=1.12;In formula (17), R I is the average random consistency index, which is only related to the order of the judgment matrix. The order of the judgment matrix in the present invention is 5, and δ=1.12;
当CR<δ时,表示判断矩阵A满足一致性;否则,重新调整判断矩阵A使其满足一致性;δ表示所设定的一致性比率阈值,默认δ=0.1;When C R < δ, it means that the judgment matrix A satisfies the consistency; otherwise, the judgment matrix A is re-adjusted to meet the consistency; δ represents the set consistency ratio threshold, and the default δ=0.1;
步骤6.5.指标矩阵X标准化;Step 6.5. Standardize the indicator matrix X;
对步骤5中D个风电场的指标矩阵X进行标准化,利用式(18)得到标准指标矩阵 Standardize the index matrix X of the D wind farms in step 5, and use the formula (18) to obtain the standard index matrix
式(18)中,表示第d个风电场风电功率的第i个特征指标标准值;In formula (18), Represents the standard value of the i-th characteristic index of the wind power of the d-th wind farm;
步骤6.6.获得D个风电场的风电功率特征评价结果;Step 6.6. Obtain the wind power characteristic evaluation results of D wind farms;
根据指标权重向量w及标准指标矩阵利用式(19)得到D个风电场的风电功率特征评价向量v:According to the indicator weight vector w and the standard indicator matrix Using Equation (19), the wind power characteristic evaluation vector v of D wind farms is obtained:
影响程度向量v中第d个元素vd表示第d个风电场的风电功率接入电网对电网调度的影响程度,其值越大,表示对电网调度的影响越大。The d-th element v d in the influence degree vector v represents the influence degree of the wind power of the d-th wind farm connected to the grid on the grid dispatching. The larger the value, the greater the influence on the grid dispatching.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010910287.7A CN112035783B (en) | 2020-09-02 | 2020-09-02 | Wind power characteristic evaluation method based on time-frequency analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010910287.7A CN112035783B (en) | 2020-09-02 | 2020-09-02 | Wind power characteristic evaluation method based on time-frequency analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112035783A true CN112035783A (en) | 2020-12-04 |
CN112035783B CN112035783B (en) | 2023-11-07 |
Family
ID=73591211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010910287.7A Active CN112035783B (en) | 2020-09-02 | 2020-09-02 | Wind power characteristic evaluation method based on time-frequency analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112035783B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113033904A (en) * | 2021-04-02 | 2021-06-25 | 合肥工业大学 | Wind power prediction error analysis and classification method based on S transformation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120131842A (en) * | 2011-05-26 | 2012-12-05 | 대한민국(기상청장) | Site Analysis System and Method for Wind Power |
CN103236026A (en) * | 2013-05-03 | 2013-08-07 | 东南大学 | Optimizing method of high-permeability throughput type power system planning scheme |
WO2014101515A1 (en) * | 2012-12-24 | 2014-07-03 | 国家电网公司 | Method for designing automatic generation control model under grid connection of intermittent energy |
CN110084495A (en) * | 2019-04-15 | 2019-08-02 | 国网甘肃省电力公司电力科学研究院 | A kind of Electric Power Network Planning evaluation method for considering wind-electricity integration and influencing |
-
2020
- 2020-09-02 CN CN202010910287.7A patent/CN112035783B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120131842A (en) * | 2011-05-26 | 2012-12-05 | 대한민국(기상청장) | Site Analysis System and Method for Wind Power |
WO2014101515A1 (en) * | 2012-12-24 | 2014-07-03 | 国家电网公司 | Method for designing automatic generation control model under grid connection of intermittent energy |
CN103236026A (en) * | 2013-05-03 | 2013-08-07 | 东南大学 | Optimizing method of high-permeability throughput type power system planning scheme |
CN110084495A (en) * | 2019-04-15 | 2019-08-02 | 国网甘肃省电力公司电力科学研究院 | A kind of Electric Power Network Planning evaluation method for considering wind-electricity integration and influencing |
Non-Patent Citations (2)
Title |
---|
杨列銮;杨斌;但扬清;王维洲;刘文颖;: "含大规模风电电网综合安全评估模型研究", 电力科技与环保, no. 02 * |
陈良;李欣然;黄际元;谭庄熙;李朋;: "基于幅频特性的储能系统参与调频的效果评价方法", 电力系统及其自动化学报, no. 01 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113033904A (en) * | 2021-04-02 | 2021-06-25 | 合肥工业大学 | Wind power prediction error analysis and classification method based on S transformation |
CN113033904B (en) * | 2021-04-02 | 2022-09-13 | 合肥工业大学 | Analysis and classification method of wind power prediction error based on S transform |
Also Published As
Publication number | Publication date |
---|---|
CN112035783B (en) | 2023-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105654207A (en) | Wind power prediction method based on wind speed information and wind direction information | |
CN111275238B (en) | Large-scale power station photovoltaic output sequence generation method based on hourly clear sky index | |
CN111860600A (en) | A method for selecting user power consumption characteristics based on maximum correlation and minimum redundancy criterion | |
CN111027775A (en) | Step hydropower station generating capacity prediction method based on long-term and short-term memory network | |
CN107392363A (en) | A kind of CEEMD and random forest short-term wind power prediction method | |
CN111626473A (en) | Two-stage photovoltaic power prediction method considering error correction | |
CN115775053A (en) | Distributed photovoltaic power short-term prediction method based on improved similar time method | |
CN108565865B (en) | A risk assessment method for an AC-DC hybrid system with wind power | |
CN112950067A (en) | Power consumer electricity utilization efficiency assessment method based on fuzzy comprehensive evaluation | |
CN110824586A (en) | Precipitation prediction method based on improved decision tree algorithm | |
CN109902340A (en) | A Multi-source-Load Joint Scenario Generation Method Considering Complex Meteorological Coupling Characteristics | |
CN105225000A (en) | A kind of wind power probability model nonparametric probability method optimized based on Fuzzy Ordered | |
CN117374917A (en) | A multiple regression prediction method and device for ultra-short-term power load | |
CN112803403A (en) | Offshore wind power clustering effect multi-level evaluation method based on time-frequency characteristics | |
CN116777153A (en) | Distribution network flexibility attribution analysis method considering distributed energy access | |
CN112035783A (en) | Wind power characteristic evaluation method based on time-frequency analysis | |
CN103218755B (en) | Adopt the micro-grid evaluation method of anti-non-extension entropy | |
CN110363338B (en) | Cos attenuated atomic decomposition and chaos theory-based wind power ultra-short-term prediction method | |
CN118739290A (en) | A method and system for predicting new energy power generation based on meteorological elements | |
CN105354761B (en) | Safety and efficiency evaluation method and system for accessing wind power into power grid | |
Zheng et al. | Characteristics for wind energy and wind turbines by considering vertical wind shear | |
CN117972485A (en) | A method for evaluating the health of a fan based on dynamic fuzzy theory | |
CN116415433A (en) | Offshore wind farm output spatial correlation prediction method, system, equipment and storage medium | |
CN113642784B (en) | Wind power ultra-short-term prediction method considering fan state | |
CN116599036A (en) | Two-stage non-invasive load decomposition method based on TCN and Informar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |