WO2014098425A1 - 폴리락타이드 수지의 제조방법 - Google Patents

폴리락타이드 수지의 제조방법 Download PDF

Info

Publication number
WO2014098425A1
WO2014098425A1 PCT/KR2013/011613 KR2013011613W WO2014098425A1 WO 2014098425 A1 WO2014098425 A1 WO 2014098425A1 KR 2013011613 W KR2013011613 W KR 2013011613W WO 2014098425 A1 WO2014098425 A1 WO 2014098425A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactide resin
polylactide
lactide
catalyst
ring
Prior art date
Application number
PCT/KR2013/011613
Other languages
English (en)
French (fr)
Inventor
손정민
박승영
윤성철
심도용
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2015527404A priority Critical patent/JP2015524873A/ja
Priority to CN201380004301.5A priority patent/CN103998484A/zh
Priority to EP13844587.9A priority patent/EP2937370A4/en
Priority to US14/242,501 priority patent/US20140213752A1/en
Publication of WO2014098425A1 publication Critical patent/WO2014098425A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a method for producing a polylactide resin.
  • Polylactide (black polylactic acid) resin is a kind of resin containing the repeating unit of the following general formula. Unlike conventional oil-based resins, these polylactide resins are based on biomass, which makes it possible to utilize renewable resources and produce less global warming gas C0 2 than conventional resins. In addition, it is an environmentally friendly material such as being biodegraded by moisture and microorganisms in landfills, and has a suitable mechanical strength comparable to that of conventional crude oil-based resins.
  • polylactide resins have been mainly used for disposable packaging / containers, coatings, foams, films / sheets, and textiles. Recently, polylactide resins have been mixed with existing resins such as ABS, polycarbonate, or polypropylene. After reinforcement, efforts to use semi-permanent applications such as mobile phone exterior materials or automobile interior materials have been actively made. However, the polylactide resin is biodegradable by the catalyst used in the production or by factors such as moisture in the air, and thus its range of use is limited.
  • the ring-opening polymerization method of the lactide monomer is required to produce the lactide monomer from lactic acid, but it requires a higher cost than the polycondensation polymerization, but a relatively large molecular weight resin can be obtained and the polymerization control is advantageously applied commercially.
  • Lewis acid is used as the organometallic catalyst used in the ring-opening polymerization of lactide, and a representative catalyst such as tin (II) 2-ethylhexanoate (hereinafter, Sn- (0ct) 2 ) is used.
  • Sn-catalyst is added together with alcohols as an initiator, activated by the Sn- (0R) 2 form by the initiator, and then the polymerization proceeds.
  • Sn- (0ct) 2 reacts with an alcohol initiator to produce octanoic acid, which is converted into the active species of t in (monoalkoxide) or tin (dialkoxide).
  • the ring-opening polymerization reaction of such lactide monomers generally proceeds to bulk polymerization.
  • Bulk polymerization is a polymerization reaction that is substantially free of solvent, wherein substantially no solvent is used by using a small amount of solvent to dissolve the catalyst, for example, up to 1 ml of solvent per lKg of lactide monomer used. This is a concept that can be covered up to.
  • the viscosity of the polylactide melt is increased.
  • These high viscosity polylactide melts have low fluidity, low feed rates, long residence times at high temperatures for removal of residual lactide in the volatilization process, resulting in discoloration of the resin, and accelerated thermal decomposition.
  • the present invention includes the step of ring-opening polymerization of the lactide monomer in the presence of an aromatic monomer remover, thereby facilitating the transfer of the polylactide melt, the residual lactide removal efficiency is increased to reduce the residence time in the silver, polylactide resin It is to provide a method for producing a polylactide resin that can minimize discoloration and thermal decomposition.
  • the present invention includes the step of ring-opening polymerization of a lactide monomer in the presence of an organometallic catalyst and an aromatic monomer scavenger, and preparing a polylactide resin using 0.1 to 20 parts by weight of an aromatic monomer scavenger based on 100 parts by weight of the lactide monomer. Provide a method.
  • the aromatic monomer remover may be at least one selected from the group consisting of ethylbenzene, toluene, xylene, diphenyl ether, chlorobenzene, benzene, and dichlorobenzene.
  • the organometallic catalyst may be added at a ratio of 0.001 to 1.0 mole to 100 moles of the lactide monomer.
  • the organometallic catalyst may be a Sn-containing catalyst.
  • the Sn-containing catalyst may be a Sn- (Oct) 2 catalyst.
  • the ring-opening polymerization may be carried out in the presence of an initiator containing a hydroxy group-containing compound.
  • the hydroxy group-containing compound may be 8 or more carbon atoms.
  • the initiator may be added in a ratio of 0.001 to 1 mole with respect to 100 moles of lactide monomer.
  • the ring-opening polymerization may be carried out by solution phase polymerization.
  • the ring-opening polymerization may be performed for 5 to 8 hours at a temperature of 120 to 220 ° C.
  • a polylactide resin prepared by the above method.
  • the polylactide resin may have a weight average molecular weight of 10,000 to 1,000,000.
  • the polylactide resin may have an acidity value of less than 50 meq / kg.
  • the method for producing a polylactide resin according to the present invention can lower the viscosity of the polylactide melt during the polymerization process, thereby facilitating the transfer of the polylactide melt and removing residual lactide due to the low viscosity of the polylactide melt. Higher efficiency reduces residence time at high temperatures, minimizing discoloration and pyrolysis of polylactide resins.
  • FIG. 2 is a graph showing a change in L-lactide melting point according to the amount of ethylbenzene added according to Test Example 2 of the present invention.
  • the present invention includes the step of ring-opening polymerization of a lactide monomer in the presence of an organometallic catalyst and an aromatic monomer remover, wherein the polylactide resin is used in an amount of 0.1 to 20 parts by weight of the aromatic monomer remover based on 100 parts by weight of the lactide monomer. It provides a manufacturing method.
  • the present invention provides a polylactide resin composition comprising a polylactide resin and a polylactide resin prepared by the above method.
  • lactide may be classified into L-lactide composed of L-lactic acid, D-lactide composed of D-lactic acid, and meso-lactide composed of one L-form and one D-form.
  • a mixture of 50:50 L-lactide and D-lactide is called D, L-lactide or rac-lactide.
  • L-lactide black which has high optical purity, is known to obtain L- or D-polylactide (PLLA or PDLA) having very high stereoregularity by polymerization using only D-lactide.
  • Polylactide is known to have higher crystallization rate and higher crystallization rate than polylactide having low optical purity.
  • lactide monomer in the present specification is defined to include all types of lactide regardless of the difference in the properties of the lactide according to each form and the difference in the properties of the polylactide formed therefrom.
  • polylactide resin is defined to refer to a homopolymer or copolymer »inclusively comprising repeating units of the following general formula.
  • Such a 'polylactide resin' may be prepared, including the step of forming the following repeating unit by the ring-opening polymerization of the above-described 'lactide monomer', the polymer after the ring-opening polymerization and the formation process of the following repeating unit is completed It may be referred to as the 'polylactide resin'.
  • the category of 'lactide monomer' includes all types of lactide as described above.
  • the category of the polymer that can be referred to as the 'polylactide resin' the polymer in all states after the ring-opening polymerization and the formation of the repeating unit is completed, For example, the polymer in the crude or refined state after the ring-opening polymerization is completed, the polymer included in the liquid or solid resin composition before the molding of the product, or the polymer included in the plastic or fabric that is finished molding the product may be included. have.
  • the physical properties (acidity, weight average molecular weight or residual catalyst amount, etc.) of the 'polylactide resin' may be defined as the physical properties of the polymer in any state after the ring-opening polymerization and the formation of the repeating unit are completed. Can be.
  • the term 'polylactide resin composition' includes or is prepared from the 'polylactide resin' and is defined as referring to any composition before or after molding a product.
  • the category of the composition which may be referred to as the 'polylactide resin composition' may include not only liquid or solid resin compositions exhibiting a state of master batch or pellets before molding, but also plastic or fabric after molding. have.
  • a ring-opening polymerization of the lactide monomer in the presence of an organometallic catalyst and an aromatic monomer remover using 0.1 to 20 parts by weight of an aromatic monomer remover based on 100 parts by weight of the lactide monomer
  • a method for producing a polylactide resin is provided.
  • the method for producing a polylactide resin can reduce the viscosity of the polylactide melt during the polymerization process by using the aromatic monomer remover as described above, thereby facilitating the transfer of the polylactide melt, and the polylactide melt. Due to the low viscosity of the residual lactide removal efficiency is increased to reduce the residence time at high temperatures to minimize the discoloration and thermal decomposition of the polmo lactide resin.
  • the aromatic monomer scavenger may be defined as meaning a monomer scavenger including a structure having a benzene ring, and may be used without limitation in the composition as long as it can dissolve the lactide monomer and the organometallic catalyst, specifically, ethyl Benzene, toluene, xylene, diphenyl ether, It may be selected from the group consisting of chlorobenzene, benzene, and dichlorobenzene.
  • the aromatic monomer remover may be used 0.1 to 20 parts by weight based on 100 parts by weight of lactide monomer. This is because when the monomer remover is used in an amount less than ⁇ parts by weight relative to the lactide monomer loo part, the viscosity reduction effect of the polylactide melt is insignificant. This is because the polymer is difficult to handle after the polymerization, and the polymerization operation temperature is usually higher than the boiling point of the monomer remover, causing high vapor pressure.
  • the organometallic catalyst may be added at a ratio of 0.001 to 1.0 mole to 100 moles of the lactide monomer.
  • the addition amount of the organometallic catalyst is not limited in its configuration, but may preferably be added in a ratio of 0.001 to 1.0 mole to 100 moles of lactide monomer. If the addition ratio of such a catalyst is too small, the polymerization activity is not sufficient, and if the addition ratio of the catalyst is too large, on the contrary, if the addition ratio of the catalyst is too large, the amount of residual catalyst of the produced polylactide resin is increased, so that the decomposition of the resin or the molecular weight decrease and the resin May cause discoloration, etc.
  • the organometallic catalyst may be a Sn-containing catalyst, and the Sn-containing catalyst may be a Sn- (Oct) 2 catalyst.
  • Lewis acid is used as the organometallic catalyst used for the ring-opening polymerization of lactide, and Sn-catalyst such as tin (II) 2-ethylhexanoate (hereinafter, Sn- (Oct) 2 ) is used.
  • Sn-catalyst is added together with alcohols as an initiator, activated by Sn- (OR) 2 form by the initiator, and then polymerization proceeds.
  • Sn- (Oct) 2 reacts the alcohol with an initiator to produce octanoic acid, which is converted into the active species form of tin (monoalkoxide) or tin (dialkoxide).
  • the ring-opening polymerization may be performed in the presence of an initiator containing a hydroxy group-containing compound.
  • an initiator may react with the catalyst to form substantial catalytically active species and serve to initiate the ring-opening polymerization reaction.
  • the initiator may play a role in controlling the molecular weight by participating in some depolymerization or decomposition of the resin.
  • a compound having a hydroxy group can be used without particular limitation.
  • a compound having a hydroxy group when such a compound has a carbon number of less than 8, the molecular weight may be low to vaporize at the ring-opening polymerization temperature, and thus may be difficult to participate in the polymerization reaction. Therefore, it is preferable to use a hydroxy group containing compound having 8 or more carbon atoms as the initiator.
  • such an initiator may be added in an amount of 0.001 to 1 mol based on 100 mol of the lactide monomer to proceed with the ring-opening polymerization. If the addition ratio of such an initiator is too small, the molecular weight of the resin obtained by ring-opening polymerization may be too high, and subsequent processing may be difficult. If the addition ratio of the initiator is too large, the molecular weight and polymerization activity of the resin may be lowered.
  • lactide monomer may be prepared from lactic acid.
  • lactide monomers can also be any form of lactide, including any form of lactide, including L, L-lactide, D, L-lactide or D, D-lactide, and the like.
  • the ring-opening polymerization may be carried out by solution phase polymerization.
  • solution phase polymerization when the polymerization reaction proceeds, the viscosity of the polymerization liquid can be kept low, which is advantageous for mixing, and is advantageous in that polymerization water transfer is easy.
  • the ring-opening polymerization may be performed for 0.5 to 8 hours at a temperature of 120 to 220 ° C.
  • the ring-opening polymerization of the lactide monomer may be performed at a temperature of 120 to 220 ° C.
  • the polymerization reaction may proceed for 0.5 to 8 hours at the above temperature conditions, but is not limited to the time described above.
  • a polylactide resin prepared by the above-described manufacturing method.
  • the polylactide resin produced by the above production method appears to have a high molecular weight, specifically, a weight average molecular weight of 100,000 to 1,000,000.
  • the catalyst produced The polylactide resin has an acidity of less than 50 meq / kg, preferably an acidity of less than 30 meq / kg, and most preferably an acidity of less than 10 meq / kg.
  • a polylactide resin composition comprising the polylactide resin described above.
  • the polylactide resin composition includes a high molecular weight polylactide resin
  • the polylactide resin composition is expected to exhibit excellent physical and mechanical properties, and thus may be preferably used in semi-permanent applications such as electronic product packaging or automotive interior materials.
  • the polylactide resin composition includes a biodegradable polylactide resin
  • the polylactide resin composition may be used in the manufacture of a biodegradable container such as a disposable container, a disposable fork, or a disposable product.
  • the polylactide ⁇ resin composition may include polylactide resin alone or may include polycarbonate resin, ABS resin or polypropylene resin.
  • the polylactide resin composition is not limited in its constitution, but in consideration of durability and deterioration of mechanical properties, the polylactide resin is preferably 50% by weight. It may comprise less than%.
  • the composition is not limited, but the composition is more than 60% by weight of polylactide resin, more preferably at least 80% by weight of polylactide resin It may include. '
  • polylactide resin composition may further include various additives previously included in various resin compositions.
  • the polylactide resin composition may be a liquid or solid resin composition before molding the final product, or may be a plastic or a fabric in a final product state, and the final plastic or textile product may be a conventional method according to each product type. It can be prepared by.
  • preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, these examples are only for illustrating the present invention. As will be understood, the scope of the present invention is not to be construed as limited by these examples.
  • a polylactide resin was prepared in the same manner as in Example 1 except that 90 g of ethylbenzene was used. Comparative Example 1
  • the polylactide resin was prepared by polymerization while stirring at 180 ° C. for 300 minutes at a rate of 100 rpm. Comparative Example 2
  • a polylactide resin was prepared by adding 755 g of L-lactide, 0.07 g of Sn- (Oct) 2 catalyst, and 45 g of 1-butanol to a 2 L polymerization reactor and polymerizing with stirring at a speed of 100 rpm at 180 degrees for 300 minutes. Comparative Example 3
  • Example 1 (B2Lf47 EB 5%), Example 2 (B2Lf48) using ethylbenzene compared to the polylactide resin prepared according to Comparative Example l (B2Lf46 EB 0%) without using ethyl benzene EB 3%), and the polylactide resin prepared according to Example 3)) showed a low torque value.
  • the torque value of the polylactide resin in the present invention is 10 to 50 is appropriate. If it is less than 10, the fluidity is too high. This is because there is a problem that handling is difficult, and when the viscosity exceeds 50, there is a problem that the viscosity is too large.
  • the melting point of L-lactide was recorded using DSC (Differential Scanning Calorimeter) (mettle-toledo) by adding 45, 90, 135, 180, 450, and 900 g of ethylbenzene to 900 g of L-lactide, respectively. .
  • DSC Different Scanning Calorimeter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 폴리락타이드 수지의 제조방법에 관한 것으로, 유기 금속 촉매 및 방향족 모노머 제거제의 존재 하에서 락타이드 단량체를 개환 중합하는 단계를 포함하며, 상기 락타이드 단량체 100 중량부에 대하여 방향족 모노머 제거제 0.1 내지 20 중량부를 사용하는 폴리락타이드 수지의 제조방법을 제공한다.

Description

【명세서】
【발명의 명칭】
폴리락타이드 수지의 제조방법
【기술분야】
본 발명은 폴리락타이드 수지의 제조방법에 관한 것이다.
【배경기술】
폴리락타이드 (흑은 폴리락트산) 수지는 하기 일반식의 반복 단위를 포함하는 수지의 일종이다. 이러한 폴리락타이드 수지는 기존의 원유기반의 수지와 달리 바이오매스 (biomass)를 기반으로 하기 때문에, 재생자원의 활용이 가능하고, 생산 시 기존의 수지에 비해 지구 온난화가스인 C02가 적게 배출되며, 매립 시 수분 및 미생물에 의해 생분해되는 등의 친환경적인 속성과 함께 기존의 원유 기반 수지에 준하는 적절한 기계적 강도를 지닌 소재이다.
[일반식]
Figure imgf000002_0001
이러한 폴리락타이드 수지는 주로 일회용 포장 /용기, 코팅, 발포, 필름 /시트 및 섬유 용도로 사용되어 왔고, 최근에는 폴리락타이드 수지를 ABS, 폴리카보네이트 또는 폴리프로필렌 등의 기존 수지와 흔합하여 물성을 보강한 후, 휴대폰 외장재 또는 자동차 내장재 등의 반영구적 용도로 사용하려는 노력이 활발해지고 있다. 그러나, 폴리락타이드 수지는 제조 시 사용된 촉매나, 공기 중의 수분 등의 인자에 의하여 자체적으로 생분해되는 등 폴리락타이드 자체의 물성적 약점으로 인해 아직까지는 그 웅용 범위가 제한되고 있는 상황이다.
한편, 이전에 알려진 폴리락타이드 수지의 제조 방법으로는 락트산을 직접 축중합하거나, 락타이드 모노머를 유기 금속 촉매 하에 개환 중합 (ring opening polymer izat ion)하는 방법이 알려져 있다. 이 중, 직접 축중합하는 방법은 저가의 고분자를 만들 수는 있지만, 증량 평균 분자량 10만 이상의 고분자량을 갖는 중합체를 얻기 어렵기 때문에, 폴리락타이드 수지의 물리적, 기계적 물성을 층분히 확보하기 어렵다. 또한, 락타이드 모노머의 개환 중합 방법은 락트산에서 락타이드 모노머를 제조하여야 하므로 축중합에 비해 높은 단가가 소요되지만, 상대적으로 큰 분자량의 수지를 얻을 수 있고 중합 조절이 유리해서 상업적으로 적용되고 있다.
한편, 락타이드의 개환 중합에 사용되고 있는 유기금속 촉매로 루이스산이 사용되고 있고 대표적으로 tin(II) 2-ethylhexanoate (이하, Sn-(0ct)2)과 같은 -촉매가 사용되고 있다. Sn-촉매는 개환 중합 시, 개시제로 알코을류와 함께 첨가되고, 개시제에 의해 Sn-(0R)2 형태로 활성화된 후, 중합이 진행된다. 특히 Sn-(0ct)2 은 알코올 개시제와 반응하여, 옥탄산 (octanoic acid)을 생성하며, t in(monoalkoxide) 혹은 tin(dialkoxide)의 활성종 형태로 전환된다.
상기와 같은 락타이드 단량체의 개환 중합 반응은 일반적으로 벌크 (bulk) 중합으로 진행된다. 벌크 중합이란 실질적으로 용매를 사용하지 않는 중합 반응으로, 여기서 실질적으로 용매를 사용하지 않는다 함은 촉매를 용해시키기 위한 소량의 용매, 예를 들어, 사용 락타이드 단량체 lKg 당 최대 1ml 미만의 용매를 사용하는 경우까지 포괄할 수 있는 개념이다. 그러나, 이러한 벌크 중합 반응의 경우 중합 반응이 진행되면서 폴리락타이드 멜트 (melt)의 점도가 높아지게 된다. 이러한 높은 점도의 폴리락타이드 멜트는 유동성이 낮아 이송 속도가 느리고, 휘발 공정에서의 잔류 락타이드 제거를 위해 고온에서 체류시간이 길어져 수지가 변색되고, 열분해가 촉진되는 문제점이 있었다.
【발명의 내용】
【해결하려는 과제】
본 발명은 방향족 모노머 제거제의 존재 하에서 락타이드 단량체를 개환 중합하는 단계를 포함함으로써, 폴리락타이드 멜트의 이송을 용이하게 하고, 잔류 락타이드 제거 효율이 높아져 고은에서 체류시간을 줄여 주어 폴리락타이드 수지의 변색 및 열분해를 최소화 할 수 있는 폴리락타이드 수지의 제조방법을 제공하는 것이다.
【과제의 해결 수단】 본 발명은 유기 금속 촉매 및 방향족 모노머 제거제의 존재 하에서 락타이드 단량체를 개환 중합하는 단계를 포함하며, 상기 락타이드 단량체 100 중량부에 대하여 방향족 모노머 제거제 0.1 내지 20 중량부를 사용하는 폴리락타이드 수지의 제조방법을 제공한다.
또한, 상기 방향족 모노머 제거제는 에틸벤젠, 를루엔, 자일렌, 디페닐에테르, 클로로벤젠, 벤젠, 및 다이클로로벤젠으로 구성되는 군으로부터 선택된 하나 이상일 수 있다.
그리고, 상기 유기 금속 촉매는 상기 락타이드 단량체 100 몰에 대해 0.001 내지 1.0 몰의 비율로 첨가될 수 있다ᅳ
또한, 상기 유기 금속 촉매는 Sn 함유 촉매일 수 있다.
여기서, 상기 Sn 함유 촉매는 Sn-(Oct)2 촉매일 수 있다.
여기에서, 상기 개환 중합은 히드록시기 함유 화합물을 포함하는 개시제의 존재 하에 진행될 수 있다.
또한, 여기서 상기 히드록시기 함유 화합물은 탄소수 8 이상일 수 있다.
여기에서, 상기 개시제는 락타이드 단량체의 100 몰에 대해 0.001 내지 1몰의 비율로 첨가될 수 있다.
또한, 상기 개환 중합은 용액 상 중합으로 진행될 수 있다.
그리고, 상기 개환 중합은 120 내지 220°C의 온도에서 으5 내지 8시간 동안 진행될 수 있다.
본 발명의 일 측면에 의하면, 상기 방법으로 제조된 폴리락타이드 수지가 제공된다.
여기서, 상기 폴리락타이드 수지는 10,000 내지 1,000,000 의 중량평균분자량을 가질 수 있다.
또한., 상기 폴리락타이드 수지는 산도값이 50meq/kg 미만일 수 있다. 【발명의 효과】
본 발명에 따른 폴리락타이드 수지의 제조방법은, 중합 공정 중에 플리락타이드 멜트의 점도를 낮출 수 있어 폴리락타이드 멜트의 이송을 용이하게 하고, 폴리락타이드 멜트의 낮은 점도로 인해 잔류 락타이드 제거 효율이 높아져 고온에서 체류시간을 줄여 주어 폴리락타이드 수지의 변색 및 열분해를 최소화할 수 있다.
【도면의 간단한 설명】
도 1 은, 본 발명의 실시예 1, 2, 및 비교예 1 에 따라 제조된 폴리락타이드 수지의 중합 반웅 동안 반웅기 impeller 의 torque 를 측정한 그래프이다.
도 2 는, 본 발명의 시험예 2 에 따라 에틸벤젠 첨가량에 따른 L- lactide 녹는점의 변화를 나타낸 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다ᅳ 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명은, 유기 금속 촉매 및 방향족 모노머 제거제의 존재 하에서 락타이드 단량체를 개환 중합하는 단계를 포함하며, 상기 락타이드 단량체 100 중량부에 대하여 방향족 모노머 제거제 0.1 내지 20 중량부를 사용하는 폴리락타이드 수지의 제조방법을 제공한다.
또한, 본 발명은 상기 방법으로 제조된 폴리락타이드 수지 및 폴리락타이드 수지를 포함하는 폴리락타이드 수지 조성물을 제공한다.
이하, 본 발명의 구현예에 따른 폴리락타이드 수지의 제조방법에 대하여 보다 상세하게 설명한다.
명시적인 다른 기재가 없는 한, 본 명세서 전체에서 사용되는 몇 가지 용어는 다음과 같이 정의된다. 본 명세서 전체에서 특별한 언급이 없는 한 '포함 ' 또는 '함유 '라 함은 어떤 구성 요소 (또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다. 또한, 본 명세서 전체에서, '락타이드 단량체'다음과 같이 정의될 수 있다. 통상 락타이드는 L-락트산으로 이루어진 L-락타이드, D-락트산으로 이루어진 D-락타이드, L-형태와 D-형태가 각각 하나씩으로 이루어진 meso- 락타이드로 구분될 수 있다. 또한, L-락타이드 와 D-락타이드가 50:50 으로 섞여있는 것을 D,L- 락타이드 혹은 rac-락타이드라고 한다. 이들 락타이드 중 광학적 순도가 높은 L- 락타이드 흑은 D-락타이드만을 이용해 중합을 진행하면 입체 규칙성이 매우 높은 L- 혹은 D-폴리락타이드 (PLLA 혹은 PDLA)가 얻어지는 것으로 알려져 있고, 이러한 폴리락타이드는 광학적 순도가 낮은 폴리락타이드 대비 결정화 속도가 빠르고 결정화도 또한 높은 것으로 알려져 있다. 다만, 본 명세서에서 '락타이드 단량체 '라 함은 각 형태에 따른 락타이드의 특성 차이 및 이로부터 형성된 폴리락타이드의 특성 차이에 관계없이 모든 형태의 락타이드를 포함하는 것으로 정의된다. 그리고, 본 명세서 전체에서, '폴리락타이드 수지'라 함은 하기 일반식의 반복 단위를 포함하는 단일 중합체 또는 공중합체 » 포괄적으로 지칭하는 것으로 정의된다.
이러한 '폴리락타이드 수지'는 상술한 '락타이드 모노머 '의 개환 중합에 의해 하기 반복 단위를 형성하는 단계를 포함하여 제조될 수 있으며, 이러한 개환 중합 및 하기 반복 단위의 형성 공정이 완료된 후의 중합체를 상기 '폴리락타이드 수지'로 지칭할 수 있다. 이때, '락타이드 모노머 '의 범주에는 모든 형태의 락타이드가 포함됨은 상술한 바와 같다.
[일반식]
Figure imgf000006_0001
상기 '폴리락타이드 수지'로 지칭될 수 있는 중합체의 범주에는, 상기 개환 중합 및 반복 단위의 형성 공정이 완료된 후의 모든 상태의 중합체, 예를 들어, 상기 개환 중합이 완료된 후의 미정제 또는 정제된 상태의 중합체, 제품 성형 전의 액상 또는 고상의 수지 조성물에 포함된 중합체, 또는 제품 성형이 완료된 플라스틱 또는 직물 등에 포함된 중합체 등이 모두 포함될 수 있다. 따라서, 본 명세서 전체에서, '폴리락타이드 수지'의 물성 (산도, 중량 평균 분자량 또는 잔류 촉매량 등)은 상기 개환 중합 및 반복 단위의 형성 공정이 완료된 후의 임의의 상태를 띄는 중합체의 물성으로 정의될 수 있다.
또한, 본 명세서 전체에서, '폴리락타이드 수지 조성물 '이라 함은 상기 '폴리락타이드 수지'를 포함하거나 이로부터 제조되는 것으로, 제품 성형 전 또는 제품 성형 후의 임의의 조성물을 지칭하는 것으로 정의된다. 이러한 '폴리락타아드 수지 조성물 '로 지칭될 수 있는 조성물의 범주에는, 제품 성형 전의 마스터 배치 또는 펠렛 등의 상태를 띄는 액상 또는 고상의 수지 조성물 뿐만 아니라, 제품 성형 후의 플라스틱 또는 직물 등도 모두 포괄될 수 있다. 본 발명의 일 구현예에 따르면, 유기 금속 촉매 및 방향족 모노머 제거제의 존재 하에서 락타이드 단량체를 개환 중합하는 단계를 포함하며, 상기 락타이드 단량체 100 중량부에 대하여 방향족 모노머 제거제 0.1 내지 20 중량부를 사용하는 폴리락타이드 수지의 제조방법이 제공된다.
본 발명에 따른 플리락타이드 수지의 제조방법은 상기와 같이 방향족 모노머 제거제를 사용함으로서, 중합 공정 중에 폴리락타이드 멜트의 점도를 낮출 수 있어 폴리락타이드 멜트의 이송을 용이하게 하고, 폴리락타이드 멜트의 낮은 점도로 인해 잔류 락타이드 제거 효율이 높아져 고온에서 체류시간을 줄여 주어 폴뫼락타이드 수지의 변색 및 열분해를 최소화 할 수 있는 특징을 가진다.
상기 방향족 모노머 제거제는 벤젠 고리를 가지는 구조를 포함하는 모노머 제거제를 의미하는 것으로 정의할 수 있으며, 락타이드 단량체 및 상기 유기금속 촉매를 용해 가능한 것이면 그 구성의 한정이 없이 사용될 수 있으나, 구체적으로는 에틸벤젠, 를루엔, 자일렌, 디페닐에테르, 클로로벤젠, 벤젠, 및 다이클로로벤젠 으로 구성되는 군으로부터 선택될 수 있다.
또한, 상기 방향족 모노머 제거제는 락타이드 단량체 100 중량부에 대하여 0.1 내지 20 중량부를 사용할 수 있다. 이는 모노머 제거제를 락타이드 단량체 loo 중량부에 대하여 αι 중량부 미만으로 사용할 경우 폴리락타이드 멜트의 점도 감소 효과가 미미한 문제가 있고, 20 중량부를 초과하여 사용할 경우 분자량이 낮아짐에 따라 점도도 너무 낮아지기 때문에 중합 후 폴리머의 핸들링이 어려우며, 중합 운전온도가 보통 모노머 제거제의 끓는점보다 높기 때문에 높은 증기압을 유발하는 문제점이 있기 때문이다.
그리고, 상기 유기 금속 촉매는 상기 락타이드 단량체 100 몰에 대해 0.001 내지 1.0 몰의 비율로 첨가될 수 있다.
유기금속 촉매의 적가량은 그 구성의 한정은 없으나, 바람직하게 락타이드 단량체 100 몰에 대해 0.001 내지 1.0 몰의 비율로 첨가할 수 있다. 만일, 이러한 촉매의 첨가 비율이 지나치게 작아지면 중합 활성이 충분치 못하여 바람직하지 않으며, 반대로 촉매의 첨가 비율이 지나치게 커지는 경우 제조된 폴리락타이드 수지의 잔류 촉매량이 커져 가공 시 수지의 분해 또는 분자량 감소 및 수지의 변색 등을 초래할 수 있다
한편, 상기 유기 금속 촉매는 Sn 함유 촉매일 수 있고, 이러한 Sn 함유 촉매는 Sn-(Oct)2 촉매일 수 있다. 일반적으로 락타이드의 개환 중합에 사용되고 있는 유기금속 촉매로 루이스산이 사용되고 있고 대표적으로 tin(II) 2-ethylhexanoate (이하, Sn-(Oct)2)과 같은 Sn-촉매가 사용되고 있다. Sn- 촉매는 개환 중합 시, 개시제로 알코올류와 함께 첨가되고, 개시제에 의해 Sn-(OR)2 형태로 활성화된 후, 중합이 진행된다. 특히 Sn-(Oct)2 은 알코을 개시제와 반웅하여, 옥탄산 (octanoic acid)을 생성하며, tin(monoalkoxide) 혹은 tin(dialkoxide)의 활성종 형태로 전환된다.
상기와 같이, 상기 Sn 함유 촉매로 Sn-(Oct)2 촉매를 사용할 경우, 개환 중합은 히드록시기 함유 화합물을 포함하는 개시제의 존재 하에 진행될 수 있다. 이러한 개시제는 상기 촉매와 반웅하여 실질적인 촉매 활성종을 형성하고 상기 개환 중합 반웅을 개시하는 역할을 할 수 있다. 또한, 상기 개시제는 일부 해중합 또는 수지의 분해에 관여하여 분자량을 조절하는 역할을 할 수도 있다.
이러한 개시제로는 히드록시기를 갖는 화합물을 별다른 제한 없이 사용할 수 있다. 다만, 이러한 화합물이 8 미만의 탄소수를 갖는 경우 분자량이 낮아 개환 중합 온도에 기화될 수 있고, 이 때문에 중합 반웅에 참여하기 어렵게 될 수 있다. 따라서, 상기 개시제로는 탄소수 8 이상의 히드록시기 함유 화합물을 사용함이 바람직하다.
그리고, 이러한 개시제는 락타이드 단량체의 100 몰에 대해 0.001 내지 1 몰의 비율로 첨가되어 상기 개환 중합이 진행될 수 있다. 만일, 이러한 개시제의 첨가 비율이 지나치게 작아지면 개환 중합에 의해 얻어지는 수지의 분자량이 너무 높아 이후의 가공이 어렵게 될 수 있으며, 개시제의 첨가 비율이 지나치게 커지면 수지의 분자량과 중합 활성이 낮아질 수 있다.
한편, 상기 락타이드 단량체는 락트산으로부터 제조될 수 있다. 또한, 이러한 락타이드 모노머는 모든 형태의 락타이드, 예를 들어, L, L-락타이드, D, L-락타이드 또는 D, D-락타이드 등을 포함한 어떠한 형태의 락타이드로도 될 수 있다.
또한, 상기 개환 중합은 용액 상 중합으로 진행될 수 있다. 이러한 용액 상 중합을 하는 경우, 중합 반웅이 진행될 때, 중합액의 점도를 낮게 유지할 수 있어 흔합에 유리하며, 중합 수 이송이 쉬운 점에서 유리하다. 그리고, 상기 개환 중합은 120 내지 220°C의 온도에서 0.5 내지 8시간 동안 진행될 수 있다.
그리고, 상기 락타이드 모노머의 개환 중합은 120 내지 220 °C의 온도에서 진행될 수 있다. 한편, 상기와 같은 온도 조건에서는 0.5 내지 8 시간 동안 중합 반웅이 진행될 수 있으나, 상술한 시간에 한정되지 않는다. 한편, 발명의 또 다른 구현예에 따라 상술한 제조방법으로 제조된 폴리락타이드 수지가 제공된다. 상기와 같은 제조 방법으로 제조된 폴리락타이드 수지는 분자량이 높게 나타나는데, 구체적으로 100,000 내지 1,000,000 의 중량평균분자량을 갖는다. 또한, 상기의 촉매로 제조된 폴리락타이드 수지는 50 meq/kg 미만의 산도를, 바람직하게는 30 meq/kg 미만의 산도를, 가장 바람직하게는 10 meq/kg 미만의 산도를 갖는다.
한편, 발명의 또 다른 구현예에 따라 상술한 폴리락타이드 수지를 포함하는 폴리락타이드 수지 조성물이 제공된다.
이러한 폴리락타이드 수지 조성물은 고분자량의 폴리락타이드 수지를 포함함에 따라, 우수한 물리적, 기계적 물성을 나타낼 것으로 기대되어 전자제품 패키징 혹은 자동차 내장재 등의 반영구적 용도로 바람직하게 사용될 수 있다.
또한, 폴리락타이드 수지 조성물은 생분해성 폴리락타이드 수지를 포함함에 따라, 일회용 용기, 일회용 포크 등의 생분해성 용기 또는 일회용품 등의 제조에도 사용될 수 있다.
이때, 상기 폴리락타이드 ^수지 조성물은 폴리락타이드 수지를 단독으로 포함하거나 폴리카보네이트 수지, ABS 수지 또는 폴리프로필렌 수지 등을 함께 포함할 수도 있다. 다만, 전자의 전자제품 패키징 흑은 자동차 내장재 등의 용도로 사용되는 경우, 상기 폴리락타이드 수지 조성물은 그 구성의 한정은 없으나, 내구성 등와 기계적 물성 저하를 고려하여 바람직하게 폴리락타이드 수지를 50 중량 % 미만으로 포함할 수 있다. 또한, 일회용품 등 생분해성이 더욱 요구되는 제품의 제조에 사용되는 경우, 그 구성에 한정은 없으나 상기 조성물은 60 중량% 이상의 폴리락타이드 수지를, 더욱 바람직하게는 80 중량% 이상의 폴리락타이드 수지를 포함할 수 있다. '
또한, 상기 폴리락타이드 수지 조성물은 이전부터 여러 가지 수지 조성물에 포함되던 다양한 첨가제를 더 포함할 수도 있다.
그리고, 상기 폴리락타이드 수지 조성물은 최종 제품 성형 전의 액상 또는 고상 수지 조성물로 되거나, 최종 제품 상태의 플라스틱 또는 직물 등으로 될 수도 있는데, 상기 최종 플라스틱 또는 직물 제품 등은 각 제품 형태에 따른 통상적인 방법에 의해 제조될 수 있다. 이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명하기로 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다. 실시예 1
L-lactide 755g, Sn-(Oct)2 촉매 0.07g, 및 에틸벤젠 45g 을 2L 중합 반웅기에 넣고 180 도에서 300 분 동안 lOOrpm 의 속도로 교반하면서 중합하여 폴리락타이드 수지를 제조하였다. 실시예 2
에틸벤젠을 26g 사용한 ᅵ. 것을 제외하고는 실시예 1 과 같이 폴리락타이드 수지를 제조하였다. 실시예 3
에틸벤젠을 90g 사용한 것을 제외하고는 실시예 1 과 같이 폴리락타이드 수지를 제조하였다. 비교예 1
L-lactide 755g, 및 Sn-(Oct)2 촉매 0.07g 을 2L 중합 반웅기에 넣고
180도에서 300분 동안 lOOrpm의 속도로 교반하면서 중합하여 폴리락타이드 수지를 제조하였다. 비교예 2
L-lactide 755g, Sn-(Oct)2 촉매 0.07g, 및 1-butanol 45g 을 2L 중합 반웅기에 넣고 180 도에서 300 분 동안 lOOrpm 의 속도로 교반하면서 중합하여 폴리락타이드 수지를 제조하였다. 비교예 3
L-lactide 755g, Sn-(Oct)2 촉매 0.07g, 및 에틸벤젠 450g 을 2L 중합 반응기에 넣고 180 도에서 300 분 동안 lOOrpm 의 속도로 교반하면서 중합하여 폴리락타이드 수지를 제조하였다. 시험예 1
실시예들, 및 비교예들에 따라 얻어진 폴리락타이드 수지들의 전환율, 분자량, 및 증합개시부터 300 분 후까지의 반웅기 impeller 의 torque 를 각각 측정하였다.
전환율은 Varian Unity Inova 500MHz NMR(Varian 사)을 사용하여 측정하였고, 분자량은 GPC(gel permeation chromatography)를 사용하여 측정하였다. 측정결과는 표 1 에 나타내었고, 시간에 따른 torque 측정 결과는 도 1에 나타내었다.
【표 1]
Figure imgf000012_0001
도 1 에서 나타나듯이, 에틸벤젠을 사용하지 아니한 비교예 l(B2Lf46 EB 0%)에 따라 제조된 폴리락타이드 수지에 비하여 에틸벤젠을 사용한 실시예 l(B2Lf47 EB 5%), 실시예 2(B2Lf48 EB 3%), 및 실시예 3 어) 따라 제조된 폴리락타이드 수지가 낮은 torque 값을 보임을 알 수 있었다ᅳ
한편, 에틸벤젠 대신 1-butanol 을 사용한 비교예 2 의 경우, 합성이 어렵다는 문제가 있고, 에틸벤젠의 함량이 과다한 비교예 3 의 경우는 유동성이 너무 높기 때문에 중합 후 수지의 핸들링이 어렵다는 문제가 있음을 알 수 있었다.
즉, 본 발명에서 폴리락타이드 수지의 torque 값은 10 내지 50 가 적절하다. 10 미만일 경우 유동성이 너무 높기 때문에 중합 후 수지의 핸들링이 어려운 문제가 있고, 50 을 초과하는 경우 점도가 너무 큰 문제가 있기 때문이다.
결국, 본 발명에 따른 폴리락타이드 제조방법에 따르면, 중합공정 중에 폴리락타이드 멜트의 점도를 낮출 수 있어 폴리락타이드 멜트의 이송을 용이하게 하고, 폴리락타이드 멜트의 낮은 점도로 인해 잔류 락타이드 제거 효율이 높아져 고온에서 체류시간을 줄여 주어 폴리락타이드 수지의 변색 및 열분해를 최소화할 수 있음을 알 수 있었다. 시험예 2
L-lactide 900g에 에틸벤젠 45, 90, 135, 180, 450, 900g을 각각 첨가하고, 가열하면서, DSC(Differential Scanning Calorimeter)(mettle-toledo 사)를 사용하여 L-lactide의 녹는점을 기록하였다. 측정 결과는 도 2에 나타내었다.
도 2 에서 볼 수 있듯이, 에틸벤젠의 첨가량이 증가할수록 락타이드 단량체의 녹는점이 낮아짐을 알 수 있었다. 이로 인해 본 발명에 따른 폴리락타이드 제조방법은 증합 전 락타이드 단량체를 기존 공정 보다 낮은 온도에서 녹여 중합 반웅기로 이송이 가능한 장점을 가지는 것을 알 수 있었다. 이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims

【특허청구범위】
【청구항 1】
유기 금속 촉매 및 방향족 모노머 제거제의 존재 하에서 락타이드 단량체를 개환 중합하는 단계를 포함하며,
상기 락타이드 단량체 100 중량부에 대하여 방향족 모노머 제거제
0.1 내지 20 중량부를 사용하는 폴리락타이드 수지의 제조방법.
【청구항 2】
제 1 항에 있어서, 상기 방향족 모노머 제거제는 에틸벤젠, 를루엔, 자일렌, 디페닐에테르, 벤젠, 클로로벤젠, 및 다이클로로벤젠으로 구성되는 군으로부터 선택된 하나 이상인 폴리락타이드 수지의 제조방법.
【청구항 3】
제 1 항에 있어서, 상기 유기 금속 촉매는 상기 락타이드 단량체 100 몰에 대해 0.001 내지 1.0 몰의 비율로 첨가되는 폴리락타이드 수지의 제조 방법.
【청구항 4】
제 1 항에 있어서, 상기 유기 금속 촉매는 Sn 함유 촉매인 폴리락타 이드 수지의 제조방법.
【청구항 5】
제 4 항에 있어서, 상기 Sn 함유 촉매는 Sn-(Oct)2 촉매인 폴리락타 이드 수지의 제조방법.
【청구항 6】
제 5 항에 있어서, 상기 개환 중합은 히드록시기 함유 화합물을 포함하는 개시제의 존재 하에 진행되는 폴리락타이드 수지의 제조 방법ᅳ
【청구항 7]
제 6 항에 있어서, 상기 히드록시기 함유 화합물은 탄소수 8 이상인 폴리락타이드 수지의 제조 방법.
【청구항 8】
제 6 항에 있어서, 상기 개시제는 락타이드 단량체의 100 몰에 대해 0.001 내지 1몰의 비율로 첨가되는 폴리락타이드 수지의 제조 방법.
【청구항 9】 제 1 항에 있어서, 상기 개환 중합은 용액 상 중합으로 진행되는 폴리락타이드 수지의 제조방법.
【청구항 10]
제 1 항에 있어서, 상기 개환 중합은 120 내지 220 °C의 온도에서 0.5 내지 8시간 동안 진행되는 폴리락타이드 수지의 제조 방법.
【청구항 111
제 1 항 내지 제 10 항 중 어느 한 항에 따른 방법으로 제조된 폴리락타이드 수지.
【청구항 12】
게 11 항에 있어서, 10,000 내지 1,000,000 의 중량평균분자량을 갖는 플리락타이드 수지.
【청구항 13】
제 11항에 있어서, 산도값이 50meq/kg 미만인 폴리락타이드 수지. 【청구항 14】
제 11항의 폴리락타이드 수지를 포함하는 폴리락타이드 수지 조성물.
PCT/KR2013/011613 2012-12-17 2013-12-13 폴리락타이드 수지의 제조방법 WO2014098425A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015527404A JP2015524873A (ja) 2012-12-17 2013-12-13 ポリラクチド樹脂の製造方法
CN201380004301.5A CN103998484A (zh) 2012-12-17 2013-12-13 聚丙交酯树脂的制备方法
EP13844587.9A EP2937370A4 (en) 2012-12-17 2013-12-13 PROCESS FOR PRODUCING POLYLACTIDE RESIN
US14/242,501 US20140213752A1 (en) 2012-12-17 2014-04-01 Preparation method of polylactide resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120147592 2012-12-17
KR10-2012-0147592 2012-12-17
KR1020130154950A KR101548314B1 (ko) 2012-12-17 2013-12-12 폴리락타이드 수지의 제조방법
KR10-2013-0154950 2013-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/242,501 Continuation US20140213752A1 (en) 2012-12-17 2014-04-01 Preparation method of polylactide resin

Publications (1)

Publication Number Publication Date
WO2014098425A1 true WO2014098425A1 (ko) 2014-06-26

Family

ID=51130131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011613 WO2014098425A1 (ko) 2012-12-17 2013-12-13 폴리락타이드 수지의 제조방법

Country Status (6)

Country Link
US (1) US20140213752A1 (ko)
EP (1) EP2937370A4 (ko)
JP (1) JP2015524873A (ko)
KR (1) KR101548314B1 (ko)
CN (1) CN103998484A (ko)
WO (1) WO2014098425A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357034A (en) * 1992-09-08 1994-10-18 Camelot Technologies Inc. Lactide polymerization
US20090203852A1 (en) * 2006-07-26 2009-08-13 Mitsui Chemicals, Inc. Polylactic acid resin composition and molded article thereof
KR20110024610A (ko) * 2009-09-02 2011-03-09 주식회사 엘지화학 폴리락타이드 수지 제조용 유기금속 촉매, 상기 유기금속 촉매를 이용한 폴리락타이드 수지의 제조 방법, 및 이에 의해 제조된 폴리락타이드 수지
US20110130513A1 (en) * 2009-12-02 2011-06-02 Chi-Mei Corporation Method for producing bead-shaped polylactide pellets
US20110275749A1 (en) * 2009-01-16 2011-11-10 Biobase Corporation Polylactic Acid Resin Composition and Additive for Polylactic Acid Resin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136017A (en) * 1991-02-22 1992-08-04 Polysar Financial Services S.A. Continuous lactide polymerization
HUP0000732A3 (en) * 1996-04-23 2000-11-28 Ipsen Mfg Ireland Ltd Acidic polylactic polymers
US20060095122A1 (en) * 2004-10-29 2006-05-04 Advanced Cardiovascular Systems, Inc. Implantable devices comprising biologically absorbable star polymers and methods for fabricating the same
US20090171065A1 (en) * 2006-02-16 2009-07-02 Toray Industries, Inc. A Corporation Of Japan Polyether-polylactic acid composition and polylactic acid film containing same
EP2050789B1 (en) * 2006-07-26 2013-06-19 Mitsui Chemicals, Inc. Polylactic acid resin composition, molded body thereof and polylactic acid compound
CN102596973B (zh) * 2009-09-02 2016-01-20 Lg化学株式会社 有机锡化合物、其制备方法及使用该有机锡化合物制备聚交酯的方法
KR101027163B1 (ko) * 2009-12-18 2011-04-05 주식회사 엘지화학 폴리락타이드 수지, 이의 제조 방법 및 이를 포함하는 폴리락타이드 수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357034A (en) * 1992-09-08 1994-10-18 Camelot Technologies Inc. Lactide polymerization
US20090203852A1 (en) * 2006-07-26 2009-08-13 Mitsui Chemicals, Inc. Polylactic acid resin composition and molded article thereof
US20110275749A1 (en) * 2009-01-16 2011-11-10 Biobase Corporation Polylactic Acid Resin Composition and Additive for Polylactic Acid Resin
KR20110024610A (ko) * 2009-09-02 2011-03-09 주식회사 엘지화학 폴리락타이드 수지 제조용 유기금속 촉매, 상기 유기금속 촉매를 이용한 폴리락타이드 수지의 제조 방법, 및 이에 의해 제조된 폴리락타이드 수지
US20110130513A1 (en) * 2009-12-02 2011-06-02 Chi-Mei Corporation Method for producing bead-shaped polylactide pellets

Also Published As

Publication number Publication date
EP2937370A4 (en) 2016-08-17
KR101548314B1 (ko) 2015-08-28
JP2015524873A (ja) 2015-08-27
US20140213752A1 (en) 2014-07-31
CN103998484A (zh) 2014-08-20
KR20140078555A (ko) 2014-06-25
EP2937370A1 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP7171120B2 (ja) ブロック共重合体の製造方法
EP2603546B1 (en) Polysiloxane-polylactide block copolymer and preparation method thereof
JP2014525505A (ja) 脂肪族−芳香族コポリエステル、組成物、及びコポリエステルの製造法
US9415382B2 (en) Polylactide resin and preparation method thereof
KR101476378B1 (ko) 변성 폴리락타이드 수지 및 그 제조방법
KR101183226B1 (ko) 유기 금속복합체, 촉매 조성물 및 폴리락타이드 수지의 제조 방법
KR101183225B1 (ko) 폴리락타이드 수지, 이의 제조 방법 및 이를 포함하는 폴리락타이드 수지 조성물
JP5636438B2 (ja) ポリラクチド樹脂、その製造方法およびこれを含むポリラクチド樹脂組成物
WO2014098425A1 (ko) 폴리락타이드 수지의 제조방법
KR101536269B1 (ko) 폴리락타이드 수지의 제조 방법
KR101501683B1 (ko) 저산도를 갖는 폴리락타이드 수지의 제조 방법 및 이에 의해 제조된 폴리락타이드 수지
JP7486609B2 (ja) 共重合体およびその製造方法
CN115427478B (zh) 聚乳酸立构复合物及其制备方法
KR101553333B1 (ko) 폴리락타이드 수지의 제조 방법
KR20230022136A (ko) 생분해성 폴리(락트산-β-4-하이드록시부티레이트) 블록 공중합체 및 이를 포함하는 물품
JP5129944B2 (ja) ポリ乳酸組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013844587

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE