WO2014098407A1 - Device and method for setting or transmitting resource element in multiple antenna system - Google Patents

Device and method for setting or transmitting resource element in multiple antenna system Download PDF

Info

Publication number
WO2014098407A1
WO2014098407A1 PCT/KR2013/011477 KR2013011477W WO2014098407A1 WO 2014098407 A1 WO2014098407 A1 WO 2014098407A1 KR 2013011477 W KR2013011477 W KR 2013011477W WO 2014098407 A1 WO2014098407 A1 WO 2014098407A1
Authority
WO
WIPO (PCT)
Prior art keywords
imr
terminal
specific
dmrs
specific imr
Prior art date
Application number
PCT/KR2013/011477
Other languages
French (fr)
Korean (ko)
Inventor
리지안준
박경민
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2014098407A1 publication Critical patent/WO2014098407A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to wireless communications, and more particularly, to an apparatus and method for setting or transmitting resource elements in a multi-antenna system.
  • the existing mobile communication system can support eight transmit antennas for beamforming operation.
  • the same physical resource block (PRB) may be scheduled or allocated to up to four user equipments (UEs). have.
  • UEs user equipments
  • a closely-spaced Xpolarized antenna such as 0.5 to 0.7 ⁇ , may be considered.
  • next generation mobile communication system aims to support up to 64 transmit antennas in a two-dimensional antenna configuration with respect to a closed loop (CL) MIMO operation, and supports up to 8 terminals. .
  • CL closed loop
  • An object of the present invention is to provide a method and apparatus for configuring a resource element of a downlink physical channel to control interference.
  • Another object of the present invention is to provide a method and apparatus for transmitting a resource element of a downlink physical channel configured to control interference.
  • Another technical problem of the present invention is to improve the performance of the receiver.
  • a method for configuring a resource element by a terminal in a multi-antenna system includes receiving a radio resource control (RRC) signaling from a base station for configuring a terminal specific interference measurement resource element (IMR) and the terminal specification Muting a portion to which a UE-specific IMR is allocated in the physical downlink shared channel (PDSCH) based on the IMR, and measuring interference from another UE.
  • RRC radio resource control
  • the RRC signaling may be configured such that the UE-specific IMR is located in the PDSCH, or the UE-specific IMR is configured to exist in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). May contain information.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DMRS DeModulation Reference Signal
  • a method of configuring a resource element by a base station in a multi-antenna system includes transmitting a Radio Resource Control (RRC) signaling for setting a UE-specific Interference Measurement Resource element (IMR) to the UE.
  • RRC Radio Resource Control
  • the RRC signaling is configured to configure the UE-specific IMR to be located in the PDSCH or to configure the UE-specific IMR to be present in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). May contain information.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DMRS DeModulation Reference Signal
  • a terminal for configuring a resource element in a multi-antenna system a receiver for receiving a Radio Resource Control (RRC) signaling from the base station for setting a terminal-specific Interference Measurement Resource element (IMR) and the terminal-specific IMR And an interference measuring unit configured to mute a portion to which a UE-specific IMR is allocated in a physical downlink shared channel (PDSCH) to measure interference from another UE.
  • the receiver includes UE-specific IMR configuration information for configuring the UE-specific IMR to be located in the PDSCH or for configuring the UE-specific IMR to exist in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS).
  • OFDM Orthogonal Frequency Division Multiplexing
  • DMRS DeModulation Reference Signal
  • a base station for configuring a resource element in a multi-antenna system includes a transmitter for transmitting to the terminal Radio Resource Control (RRC) signaling for setting a terminal-specific Interference Measurement Resource element (IMR).
  • RRC Radio Resource Control
  • IMR Interference Measurement Resource element
  • the RRC signaling is configured to configure the UE-specific IMR to be located in the PDSCH or to configure the UE-specific IMR to be present in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). May contain information.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DMRS DeModulation Reference Signal
  • interference from another user can be estimated or measured, and channel state information can be calculated or fed back based on this. Based on this feedback, the base station can schedule appropriate cooperative communications.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIGS. 2 and 3 illustrate a CSI-RS pattern according to an example of the present invention.
  • FIG. 4 illustrates a multiple antenna system according to an example of the present invention.
  • FIG. 5 is a flowchart illustrating a method of transmitting a DMRS to which the present invention is applied.
  • FIG. 6 is a flowchart illustrating an example of a method for setting a resource element according to the present invention.
  • FIG. 7 illustrates an example of an IMR resource configuration indicator configured for UE measurement IMR configuration according to the present invention.
  • FIG. 8 shows another example of an IMR resource configuration indicator for UE measurement IMR configuration according to the present invention.
  • FIG 9 illustrates an example in which a terminal measures interference (eg, MU-MIMO interference) by another terminal according to the present invention.
  • a terminal measures interference (eg, MU-MIMO interference) by another terminal according to the present invention.
  • FIG. 10 is a flowchart illustrating an example of an operation of a terminal for setting a resource element according to the present invention.
  • FIG. 11 is a flowchart illustrating an example of an operation of a base station for setting a resource element according to the present invention.
  • FIG. 12 is a block diagram illustrating a terminal and a base station for setting a resource element according to the present invention.
  • the term 'transmitting a channel' may be interpreted as meaning that information is transmitted through a specific channel.
  • the channel is a concept including both a control channel and a data channel
  • the control channel may be, for example, a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH).
  • the data channel may be, for example, a Physical Downlink Shared CHannel (PDSCH) or a Physical Uplink Shared CHannel (PUSCH).
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station 11 (evolved-NodeB, eNB).
  • Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c.
  • One base station may be responsible for multiple cells.
  • the base station 11 refers to a transceiver for performing information and control information sharing with the terminal for cellular communication, and includes a base station (BS), a base transceiver system (BTS), an access point (Access Point), Other terms, such as a femto base station, a home node B, a relay, and the like, may be called.
  • a cell is meant to encompass all of the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell, and the like.
  • the UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. It may be called a personal digital assistant, a wireless modem, a handheld device, or other terminology such as a terminal device or a wireless device.
  • downlink refers to a transmission link from the base station 11 to the terminal 12
  • uplink refers to a transmission link from the terminal 12 to the base station 11. it means.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-FDMA
  • OFDM-TDMA OFDM-FDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • Layers of a radio interface protocol between the terminal 12 and the base station 11 are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in communication systems.
  • the layer L1 may be divided into a second layer L2 and a third layer L3.
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel.
  • a physical downlink control channel is a resource allocation and transmission format of a downlink shared channel (DL-SCH), a resource of an uplink shared channel (UL-SCH).
  • Resource allocation of upper layer control messages such as allocation information, random access responses transmitted on a physical downlink shared channel (PDSCH), and transmission power control for individual terminals in any terminal group : TPC) can carry a set of commands.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • DCI downlink control information
  • the DCI may include an uplink or downlink resource allocation field, an uplink transmission power control command field, a control field for paging, a control field for indicating a random access response (RA response), and the like.
  • DCI has different uses according to its format, and fields defined in DCI are also different.
  • Table 1 shows an example of the DCI format, and one or more of the following DCI formats may be used, but not all formats should be used.
  • Table 1 DCI format Explanation 0 Used for scheduling of PUSCH (or uplink grant) One Used for scheduling one PDSCH codeword in one cell 1A Used for simple scheduling of one PDSCH codeword in one cell and a random access procedure initiated by a PDCCH command 1B Used for simple scheduling of one PDSCH codeword in one cell using precoding information 1C Used for brief scheduling of one PDSCH codeword and notification of MCCH change 1D Used for simple scheduling of one PDSCH codeword in one cell containing precoding and power offset information 2 Used for PDSCH scheduling for UE configured in spatial multiplexing mode 2A Used for PDSCH scheduling of UE configured in long delay CDD mode 2B Used in transfer mode 8 (double layer transfer) 2C Used in transfer mode 9 (multi-layer transfer) 2D Used to transmit TPC commands for PUCCH and PUSCH with power adjustment of 2 bits 3A Used to transmit TPC commands for PUCCH and PUSCH with single bit power adjustment 4 Used for scheduling of PUSCH (Uplink Grant).
  • it is used for PU
  • DCI format 0 is uplink scheduling information, format 1 for scheduling one PDSCH codeword, format 1A for compact scheduling of one PDSCH codeword, and very simple of DL-SCH.
  • Format 1C for scheduling format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode, format 2A for PDSCH scheduling in open-loop spatial multiplexing mode, and uplink channel Formats 3 and 3A for transmission of a transmission power control (TPC) command.
  • TPC transmission power control
  • Each field of the DCI is sequentially mapped to n information bits a 0 to a n-1 .
  • DCI is sequentially mapped to information bits having a total length of 44 bits
  • each DCI field is sequentially mapped to a 0 to a 43 .
  • DCI formats 0, 1A, 3, and 3A may all have the same payload size.
  • DCI format 0 may be called an uplink grant.
  • the wireless communication system 10 may be a multiple antenna system. Multiple antenna systems may be referred to as multiple-input multiple-output (MIMO) systems. Alternatively, the multiple antenna system may be a multiple input single output (MISO) system, a single input single output (SISO) system, or a single input multiple output (SIMO) system.
  • MIMO multiple input single output
  • SISO single input single output
  • SIMO single input multiple output
  • the MIMO system uses multiple transmit antennas and multiple receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • Multiple antenna transmit / receive schemes used for the operation of multiple antenna systems include frequency switched transmit diversity (FST), Space Frequency Block Code (SFBC), Space Time Block Code (STBC), and Cyclic Delay Diversity (CDD).
  • FST frequency switched transmit diversity
  • SFBC Space Frequency Block Code
  • STBC Space Time Block Code
  • CDD Cyclic Delay Diversity
  • TSTD time switched transmit diversity
  • the wireless communication system 10 needs to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like.
  • the process of restoring a transmission signal by compensating for distortion of a signal caused by a sudden change in channel environment is called channel estimation.
  • channel estimation it is also necessary to measure the channel state (channel state) for the cell to which the terminal 12 belongs or other cells.
  • a reference signal (RS) that the terminal 12 and the base station 11 know from each other may be used for channel estimation or channel state measurement.
  • the channel estimate estimated using the reference signal p ' 'Is' 'Because it depends on the value, 'We need to converge the value to zero.
  • the channel can be estimated by minimizing the effect of '.
  • the reference signal may be allocated to all subcarriers, or may be allocated between data subcarriers for transmitting data.
  • a signal having a specific transmission timing is composed of only a reference signal such as a preamble in order to obtain a gain of channel estimation performance.
  • the amount of data transmission can be increased.
  • resource elements used by one antenna to transmit a reference signal are not used by another antenna. This is to avoid interference between antennas.
  • the downlink reference signal includes a channel state information (CSI) reference signal (CSI-RS) and a demodulation RS (DMRS). Transmission patterns and configuration information are different for each reference signal.
  • CSI channel state information
  • CSI-RS channel state information reference signal
  • DMRS demodulation RS
  • CSI-RS may be used for estimation of channel state information (CSI).
  • the CSI-RS is placed in the frequency domain or time domain.
  • Channel quality indicator (CQI) Channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • CQI channel quality indicator
  • transmission mode 0 may be a mode supporting only a single antenna port
  • transmission mode 9 may be a mode capable of supporting up to 8 antenna ports.
  • first symbol (or signal) is carried over the first channel and the second symbol (or signal) is carried over the second channel
  • the first channel can be inferred by the second channel.
  • An antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed).
  • the resource element represents the smallest frequency-time unit to which the modulation symbol of the data channel or the modulation symbol of the control channel is mapped. If there are M subcarriers on one OFDM symbol, and one slot includes N OFDM symbols, one slot includes a total of 'M * N' resource elements.
  • antenna ports 0 to 3 may be sequentially mapped to each of the four physical antennas.
  • the number of antenna ports and the unique resource grid of each antenna port are determined depending on the reference signal configuration in the cell. For example, when the total number of physical antennas is 64, the number of antenna ports supporting CSI-RS is ⁇ 1, 2, 4, 8 according to the configuration of the CSI-RS and the arrangement of the CSI-RS ports in the physical antenna. , 16, 32, 64 ⁇ , and each antenna port may have a unique pattern for carrying a CSI-RS as shown in FIG. 2 or 3.
  • a unique pattern in which an antenna port carries a CSI-RS or a pattern in which a CSI-RS is mapped to a resource element is referred to as a 'CSI-RS pattern'.
  • FIG. 2 and 3 illustrate a CSI-RS pattern according to an example of the present invention.
  • 2 illustrates an example in which a CSI-RS is mapped to a resource element in the case of a normal cyclic prefix
  • FIG. 3 illustrates an example in which a CSI-RS is mapped to a resource element in the case of an extended CP. It is shown schematically.
  • R p represents a resource element used for CSI-RS transmission at the antenna port P.
  • R 15 means CSI-RS transmitted from antenna port 15.
  • the CSI-RS pattern is one in which CSI-RSs are mapped to resource elements (2, 5) and (2, 6) of antenna port 15.
  • the CSI-RS pattern is mapped to resource elements (2, 5) and (2, 6) of antenna ports 15 and 16, and that antenna ports 17 and Mapped to resource elements (8, 5) and (8, 6) of 18, mapped to resource elements (3, 5) and (3, 6) of antenna ports 19 and 20, and resource elements of antenna ports 21 and 22 Maps to (9, 5) and (9, 6).
  • each antenna port may have a unique CSI-RS pattern.
  • 2 and 3 illustrate a total of eight antenna ports 15 to 22 transmitting CSI-RS in a wireless communication system equipped with eight physical antennas.
  • this is only an example, and in the case of a wireless communication system having 64 physical antennas, up to 64 antenna ports may be supported, and in this case, antenna ports transmitting CSI-RS may be extended to antenna ports 15 to 63.
  • FIG. 4 illustrates a multiple antenna system according to an example of the present invention.
  • the multi-antenna system includes a base station 410 having a plurality of antennas and a terminal 420 having a plurality of antennas.
  • the base station 410 supports a total of 64 antennas as a two-dimensional antenna array having eight or more antenna ports.
  • the number of eight or more antenna ports supported by the base station 410 may be a corresponding number of any one of ⁇ 16, 32, 64 ⁇ . That is, the base station 410 may support an antenna port corresponding to a multiple of eight.
  • the base station 410 may support 10 terminals.
  • MU-MIMO multi-user MIMO
  • Network systems can design DMRS that supports multiple layers. Up to eight layers may be supported for a single user MIMO of a terminal for DMRS transmission, and up to four layers may be supported for a multi-user MIMO. In a wireless communication system supporting up to 64 physical antennas, up to eight layers may be supported for multi-user MIMO.
  • Reference signals are generally transmitted in sequence.
  • the reference signal sequence may use a PSK-based computer generated sequence.
  • PSKs include binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK).
  • the reference signal sequence may use a constant amplitude zero auto-correlation (CAZAC) sequence.
  • CAZAC sequences include a ZCoff-Chu based sequence, a ZC sequence with cyclic extension, a ZC sequence with truncation, and the like.
  • the reference signal sequence may use a pseudo-random (PN) sequence.
  • PN sequences include m-sequences, computer generated sequences, Gold sequences, and Kasami sequences.
  • the reference signal sequence may use a cyclically shifted sequence.
  • the parameter used for generating the DMRS sequence includes an antenna port number and a scrambling identity nCSID.
  • the present embodiment may additionally include information on the number of resource elements. These parameters may be referred to as information used to impart orthogonality to the DMRS sequence.
  • Parameters used for generation of a DMRS sequence are included in the DCI and transmitted.
  • the information fields included in the DCI may be at least one of the fields of the following table.
  • the DCI may include a carrier indicator field, a HARQ process number field, a transmission power control command field, a resource block allocation field, a downlink allocation index field, and particularly, a 4-bit sequence generation value field. do.
  • the information fields included in Table 2 are exemplary, and the technical idea of the present invention includes not only a DCI in which at least one information field is omitted, but also a DCI in which a new information field is added in addition to the information fields. .
  • the sequence generation value indicates a combination of an antenna port number, a scrambling identifier, a number of layers, and a number of resource elements. have.
  • the number of resource elements indicates the number of resource elements used to transmit the DMRS. If the sequence generation value is 4 bits, it can represent a total of 16 cases.
  • the maximum number of layers for DMRS is 8, up to two layers for multi-user MIMO (MU-MIMO mode), and up to 4
  • SU-MIMO single user-MIMO
  • MU-MIMO mode multi-user MIMO
  • An example of supporting the number of layers is described.
  • FIG. 5 is a flowchart illustrating a method of transmitting a DMRS to which the present invention is applied.
  • the base station determines a sequence generation value (S500).
  • the base station generates a DCI including the determined sequence generation value (S505).
  • the sequence generation value indicates a combination of the antenna port number, the scrambling identifier, the number of layers, and the number of resource elements.
  • the sequence generation value may be 4-bit information.
  • the DCI including the sequence generation value may be defined as shown in Table 2 above.
  • the information fields included in Table 2 are exemplary, and the technical idea of the present invention is not only DCI in which at least one information field is omitted, but also DCI in which a new information field is added in addition to the information fields. Include.
  • the number of resource elements indicates the number of resource elements used to transmit the DMRS. Since the sequence generation value is 4 bits, it can represent a total of 16 cases.
  • the base station maps the DCI including the determined sequence generation value to the PDCCH and transmits it to the terminal (S510).
  • the terminal monitors the PDCCH to which the DCI is mapped.
  • the terminal successfully decodes the PDCCH, the terminal acquires the DCI.
  • the information field in the DCI is analyzed to identify at least one of the number of layers indicated by the sequence generation value, the antenna port number, the scrambling identifier, and the number of resource elements.
  • the base station transmits the DMRS to the terminal using the DMRS sequence determined based on the sequence generation value (S515).
  • the terminal checks the DMRS sequence using at least one of the number of layers indicated by the sequence generation value, the antenna port number, the scrambling identifier, and the number of resource elements, and receives the DMRS from the base station by using the same.
  • DMRS may be transmitted through a data channel (eg, PDSCH).
  • the UE-specific IMR refers to a resource element in which one terminal measures an interference signal received by another terminal in a MU-MIMO system.
  • one terminal may adjust the interference by removing the interference signal received by the other terminal from the entire received signal. That is, MU-MIMO performance at the receiving end of the terminal can be improved by using the terminal specific IMR.
  • FIG. 6 is a flowchart illustrating an example of a method for setting a resource element according to the present invention.
  • the base station transmits information (or 'terminal specific IMR configuration information') for configuring the terminal specific IMR to the terminal (S600).
  • IMR setting information is also called IMR configuration information.
  • the UE-specific IMR configuration information may be received through RRC signaling.
  • the base station may configure the UE specific IMR through RRC signaling.
  • the UE-specific IMR may be configured to be located in a PDSCH region, and a subframe or subband for the UE-specific IMR should not be separately configured.
  • the UE-specific IMR may be present in an OFDM symbol including a DMRS (in particular, may be included in two OFDM symbols including a DMRS).
  • a physical resource block PRB
  • PRB may consist of 12 subcarriers and 6 or 7 OFDM symbols, and the PRB may include an 'OFDM symbol including DMRS'.
  • UE specific IMR may exist in two OFDM symbols including DMRS.
  • all of the OFDM symbols including the DMRS may be configured as a UE-specific IMR, or only a part may be configured as a UE-specific IMR.
  • the remaining part may further include a DMRS or CSI-RS.
  • the UE-specific IMR in two RE units in the Physical Resource Block (PRB), it is possible to avoid allocating REs more than necessary and to prevent overhead.
  • PRB Physical Resource Block
  • the scope of the present invention is not limited to two REs, and the UE-specific IMR may be composed of two or more REs.
  • the pattern of the terminal specific IMR may be configured to be similar to the pattern of DMRS.
  • DMRS may be covered through the UE-specific IMR.
  • information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
  • the UE-specific IMR configuration information may include an IMR resource configuration indicator (also referred to as an IMR resource configuration indicator or an IMR pattern indicator), an OCC indicator, an N DMRS ID, or an n SCID .
  • IMR resource configuration indicator also referred to as an IMR resource configuration indicator or an IMR pattern indicator
  • OCC indicator an OCC indicator
  • N DMRS ID and n SCID are values for determining UE-specific DMRS scrambling initial state
  • N DMRS ID is a virtual cell ID for DMRS scrambling initial state.
  • the following table shows an example of UE-specific IMR configuration information.
  • the UE-specific IMR configuration information may include only the IMR resource configuration indicator.
  • the UE-specific IMR configuration information may include only the IMR resource configuration indicator.
  • 'IMRResourceConfig' is an IMR resource configuration indicator and indicates an IMR pattern.
  • the IMR resource configuration indicator indicates whether each subcarrier includes a terminal specific IMR.
  • Each bit of the IMR resource configuration indicator may correspond to a subcarrier.
  • the IMR resource configuration indicator may be 12 bits, and the LSB may correspond to the smallest subcarrier index and the MSB may correspond to the largest subcarrier index.
  • the IMR resource configuration indicator indicates whether each subcarrier includes a terminal specific IMR.
  • the size of the IMR resource configuration indicator may be 8 bits, and each bit may correspond to an index of some subcarriers (eg, subcarriers not including CSI-RS) among 12 subcarriers of the PRB.
  • the following table shows another example of UE-specific IMR configuration information.
  • IMRResourceConfig Indicates IMR pattern, 12 bit or 8 bit OCC Indicator Indicates OCC cover for interferometry, 1 bit or 2 bits or 3 bits
  • N DMRS ID
  • DMRS scrambling initial state Virtual Cell ID DMRS scrambling initial state Virtual Cell ID
  • the virtual cell ID is a cell ID of the terminal that is likely to be paired (pairing) in the MU-MIMO mode operation.
  • the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, N DMRS ID and n SCID .
  • the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID .
  • the case in which the UE-specific IMR configuration information has a DMRS region means that a UE-specific IMR is set in a region allocated to transmit the DMRS. This is also referred to as UE-specific IMR is allocated to the DMRS region.
  • the UE-specific IMR may also share the DMRS.
  • the OCC indicator, N DMRS ID and n SCID are information transmitted to the terminal to allow the terminal to measure MU-MIMO interference based on the DMRS of another terminal.
  • the OCC indicator is an indicator indicating an OCC cover for interference measurement
  • N DMRS ID is a virtual cell ID for DMRS scrambling initial state
  • n SCID is a terminal specific DMRS scrambling initial state. The value to determine.
  • the OCC indicator, the N DMRS ID, and the n SCID may be the same format as that used in the existing DMRS. That is, the terminal specific IMR may be in a format further including an IMR resource configuration indicator in the DMRS.
  • the N DMRS ID is two virtual cell ID values for the terminal to be paired and is transmitted to the base station through the N DMRS ID field.
  • the OCC cover of the DMRS indicated by the OCC indicator may be of two types.
  • Table 5 shows an example of a 1-bit OCC indicator, that is, an OCC cover having a length of 2.
  • Table 6 shows an example of a 2-bit OCC indicator, that is, an OCC cover having a length of four.
  • Table 7 shows an example of a 3-bit OCC indicator, that is, an indicator indicating both an OCC cover of length 2 and an OCC cover of length 4.
  • OCC indicator OCC 000 No OCC 001 [+1 +1] 010 [-1 +1] 011 [+1 +1 +1 +1] 100 [+1 -1 +1 -1] 101 [+1 +1 -1 -1] 110 [+1 -1 -1 +1] 111 Reserved
  • the N DMRS ID is a virtual cell ID for the UE-specific DMRS scrambling initial state
  • the length of the N DMRS ID may be one of '0' to '503', and the unit may be a bit.
  • n SCID is a value for determining the UE-specific DMRS scrambling initial state, and has a value of '0' or '1'.
  • the UE-specific DMRS scrambling initial state may be determined as follows.
  • 'C init' may be an initial value of a pseudo-random sequence.
  • step S600 if the UE-specific IMR is allocated to the DMRS region through RRC signaling, the UE measures (or estimates) interference of another UE through the UE-specific IMR ( S605).
  • the portion to which the UE-specific IMR is allocated in the PDSCH received by the UE is muted (or the data of the PDSCH is removed from the corresponding region, or the data of the PDSCH is removed from the corresponding region). Ignored, or PDCSH is punctured in that region). Since the data to be transmitted to the terminal by the base station is muted in the terminal specific IMR of the PDSCH, the terminal specific IMR includes only other interference signals such as data or noise transmitted to other terminals.
  • the terminal may measure an interference signal (or a value including various noises) of another terminal by measuring a signal included in the terminal specific IMR.
  • a terminal of the MU-MIMO system may measure interference of another terminal based on the terminal specific IMR.
  • interference information obtained from another UE through UE-specific IMR may be applied to an advanced minimum-mean-square error (MMSE) receiver (eg, an MMSE IRC (interference rejection combination receiver). It can be used to improve the performance of detecting signal or data signals.
  • MMSE minimum-mean-square error
  • PRB bundling may be applied to the UE-specific IMR.
  • the size of the IMR resource configuration indicator is 12 bits.
  • the MSB 720 of the IMR resource configuration indicator corresponds to the smallest subcarrier index
  • the LSB 710 corresponds to the largest subcarrier index.
  • the LSB of the IMR resource configuration indicator may correspond to the smallest subcarrier index
  • the MSB may correspond to the largest subcarrier index.
  • a bit having a value of '1' among each bit of the IMR resource configuration indicator may indicate that a corresponding subcarrier includes a terminal measurement IMR.
  • a bit having a value of '0' among each bit of the IMR resource configuration indicator may indicate that a corresponding subcarrier includes UE measurement IMR.
  • FIG. 8 shows another example of an IMR resource configuration indicator for UE measurement IMR configuration according to the present invention. This is the case where the size of the IMR resource configuration is 8 bits.
  • the PRB may include subcarriers (eg, four) including REs that are likely to be occupied with the CSI-RS.
  • UE-specific IMRs may be included in the remaining subcarriers (eg, eight) except for subcarriers that may be allocated for CSI-RS.
  • the 8-bit IMR resource configuration indicator may indicate whether the subcarrier to which the CSI-RS is not allocated includes the UE-specific IMR. That is, a bit having a value of '1' among each bit of the IMR resource configuration indicator indicates that the corresponding subcarrier includes a terminal measurement IMR.
  • FIG. 9 illustrates an example in which a terminal measures interference (eg, MU-MIMO interference) by another terminal according to the present invention.
  • a terminal measuring interference eg, MU-MIMO interference
  • a terminal measuring interference will be described as 'UE i ' having an index 'i'.
  • a UE estimates a channel H through a region where a DMRS is allocated in a PRB (910, 920, 940), and measures interference R I through a region where a UE-specific IMR is allocated. Or estimate 930.
  • UE (UE i ) is based on the DMRS ' 'Can be estimated. If you have a precoding matrix of size 'Nt * R i ' Where 'H' is a channel matrix of size 'Nr * Nt', and 'C i ' is 'Nt * R i ' for the UE UE i calculated by the base station. It is a precoding matrix of magnitude.
  • Nr means the number of antennas on the receiving side
  • Nt means the number of antennas on the transmitting side
  • Ri means the number of all layers of the terminal.
  • the signal Y received by the UE UE i may be expressed as in the following equation.
  • 'I' is the sum of noise and inter-cell interference with respect to the UE UE i .
  • X i is a data symbol of the terminal UE i
  • X j is a data symbol of the other terminal UE j .
  • the terminal UE i is a data symbol of the received signal Y by a linear receiver. ) Can be obtained.
  • the following equation shows an example of a method of obtaining data symbols.
  • W i is the detection weight of the UE (UE i ).
  • the terminal sensed weight (W i) is described by dividing the terminal is within the specific case of the new IMR RE (for example, if it is not within the area DMRS) and the UE-specific IMR the DMRS region.
  • the UE UE i indicates that the PDSCH is determined for the region in which the UE-specific IMR is included. It is muted (or the data of the PDSCH is removed in the area, or the data of the PDSCH is ignored in the area, or the PDCSH is punctured in the area).
  • the received signal Y IMR in the UE-specific IMR region may be expressed by the following equation.
  • the correlation property of the sum 'I' of the noise and the inter-cell interference may be measured (or estimated) by a cell-specific reference signal RE (CRS RE), also referred to as R I.
  • CRS RE cell-specific reference signal RE
  • the UE UE i is not subject to interference from other terminals ( Can be measured (or estimated).
  • the UE may obtain a statistical property of interference (R MU-MIMO ) by combining the CRS RE and the UE-specific IMR
  • R MU-MIMO statistical property of interference
  • the MMSE IRC receiver can increase performance (eg, PDSCH sensing performance). For example, MMSE performance may be improved by suppressing intercell interference and MU-MIMO interference.
  • the following shows an example of a mathematical expression detecting weights (W i).
  • UE specific IMR is in DMRS area>
  • the 'OCC indicator', 'N DMRS ID ' and 'n SCID ' parameters included in the UE-specific IMR configuration information are valid (eg, UE specific IMR covers DMRS), and may indicate one antenna port DMRS or a sum of two antenna port DMRS.
  • the OCC length of the DMRS of another UE is 4 and the OCC length indicated by the OCC indicator is 2.
  • the UE uses other terminals by using the DMRS indicated by the parameters. Interference from can be measured (or estimated).
  • the UE UE i is precoded by the DMRS antenna port 7.
  • the UE-specific IMR indicates antenna port 8
  • UE UE i is precoded by another DMRS antenna port 8 to a precoded channel (UE) of UE j . ) Can be estimated.
  • MU-MIMO interference (R MU-MIMO ) can be obtained by the following equation.
  • MMSE IRC receiver can improve performance (for example, PDSCH detection performance).
  • performance for example, PDSCH detection performance.
  • FIG. 10 is a flowchart illustrating an example of an operation of a terminal for setting a resource element according to the present invention.
  • the terminal receives an RRC signaling for configuring terminal specific IMR from the base station (S1000).
  • the RRC message (eg, RRC connection reconfiguration message, RRC connection reconfiguration message) transmitted from the base station to the terminal may include information for setting the terminal specific IMR (that is, the terminal specific IMR configuration information).
  • the UE-specific IMR configuration information may be information for configuring the UE-specific IMR to be located in the PDSCH region.
  • the UE specific IMR configuration information may be information for configuring the UE specific IMR to exist in an OFDM symbol including DMRS.
  • the OFDM symbols including the DMRS may be configured in all of the UE-specific IMR or only part of the UE-specific IMR.
  • the remaining part may further include a DMRS or CSI-RS.
  • the pattern of the UE-specific IMR may be configured to be similar to the pattern of the DMRS.
  • DMRS may be covered through the UE-specific IMR.
  • information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
  • the UE specific IMR configuration information may include an IMR resource configuration indicator as shown in Table 3 above.
  • the IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
  • the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID as shown in Table 4 above.
  • the OCC indicator may indicate an OCC cover having a length of 2 or an OCC cover having a length of 4, and may be one of Tables 5 to 7.
  • n SCID and N DMRS ID may be a value for determining an UE-specific DMRS scrambling initial state as shown in Equation 2 above.
  • the IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
  • the UE After step S1000, the UE first detects the PDCCH in order to receive the PDSCH (S1005), and estimates the downlink channel based on the DMRS (estimate, S1010).
  • the terminal measures (or estimates) the interference (eg, MU-MIMO interference) based on the terminal specific IMR (S1015).
  • the terminal may measure interference in the same manner as in FIG. 9.
  • the UE Based on the configured UE-specific IMR, the UE mutes the portion of the PDSCH to which the UE-specific IMR is allocated (or removes data of the PDSCH in the corresponding region, or ignores the data of the PDSCH in the corresponding region, or in the corresponding region). Puncture the PDCSH). Through this, the terminal may distinguish (or measure) other interference signals such as a signal or noise transmitted to another terminal.
  • the UE calculates a received signal Y IMR in the UE-specific IMR region by using the UE-specific IMR as shown in the above equation, Based on the Y IMR , the CRS RE and the UE-specific IMR are combined to calculate a statistical characteristic of interference (R MU-MIMO ) as shown in Equation 6, and as shown in Equation 7 based on R MU-MIMO .
  • the terminal weight Wi may be calculated, and data may be obtained from the received signal using a linear receiver as shown in Equation 4 based on W i .
  • the mobile station its own channel (H i) to estimate and to estimate the channel (Hj) of the other terminals, as shown in the equation (8) on the basis of H i and H j
  • H i the statistical characteristics of the interference
  • W i the terminal weight (W i ) as shown in Equation 9 based on the R MU-MIMO
  • linear receiver as shown in Equation 4 based on W i Can be used to obtain data from the received signal.
  • the terminal detects the PDSCH through a receiver (eg, an MMSE IRC receiver) and receives data (S1020).
  • the terminal may improve the performance by applying the interference information from the other terminal to the MMSE receiver.
  • FIG. 11 is a flowchart illustrating an example of an operation of a base station for setting a resource element according to the present invention.
  • the base station configures a terminal specific IMR to the terminal using RRC signaling (S1100).
  • the RRC message eg, RRC connection reconfiguration message, RRC connection reconfiguration message
  • the RRC message transmitted from the base station to the terminal may include information for configuring the UE-specific IMR (ie, UE-specific IMR configuration information).
  • the UE-specific IMR configuration information may be information for configuring the UE-specific IMR to be located in the PDSCH region.
  • the UE specific IMR configuration information may be information for configuring the UE specific IMR to exist in an OFDM symbol including DMRS.
  • the OFDM symbols including the DMRS may be configured in all of the UE-specific IMR or only part of the UE-specific IMR.
  • the remaining part may further include a DMRS or CSI-RS.
  • the pattern of the UE-specific IMR may be configured to be similar to the pattern of the DMRS.
  • DMRS may be covered through the UE-specific IMR.
  • information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
  • the UE specific IMR configuration information may include an IMR resource configuration indicator as shown in Table 3 above.
  • the IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
  • the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID as shown in Table 4 above.
  • the OCC indicator may indicate an OCC cover having a length of 2 or an OCC cover having a length of 4, and may be one of Tables 5 to 7.
  • n SCID and N DMRS ID may be a value for determining an UE-specific DMRS scrambling initial state as shown in Equation 2 above.
  • the IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
  • the base station schedules downlink MU-MIMO transmission (S1105).
  • the base station transmits the PDSCH or the DMRS to the terminal (S1110). For example, based on the configured UE-specific IMR, the base station mutes the portion of the PDSCH to which the UE-specific IMR is allocated (or removes the data of the PDSCH in the corresponding region, or ignores the data of the PDSCH in the corresponding region, Or puncture PDCSH in that region).
  • FIG. 12 is a block diagram illustrating a terminal and a base station for setting a resource element according to the present invention.
  • the terminal 1200 includes a receiver 1205 or a controller 1210.
  • the controller 1210 includes a detector 1215, a channel estimator 1220, or an interference measurer 1225.
  • the receiver 1205 receives an RRC signaling for configuring a UE-specific IMR from the base station 1250.
  • the reception unit 1205 receives an RRC message (eg, an RRC connection reconfiguration message or an RRC connection reconfiguration message) including information for configuring terminal specific IMR (that is, terminal specific IMR configuration information).
  • the UE-specific IMR configuration information may be information for configuring the UE-specific IMR to be located in the PDSCH region.
  • the UE specific IMR configuration information may be information for configuring the UE specific IMR to exist in an OFDM symbol including DMRS.
  • the OFDM symbols including the DMRS may be configured in all of the UE-specific IMR or only part of the UE-specific IMR.
  • the remaining part may further include a DMRS or CSI-RS.
  • the pattern of the UE-specific IMR may be configured to be similar to the pattern of the DMRS.
  • DMRS may be covered through the UE-specific IMR.
  • information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
  • the UE specific IMR configuration information may include an IMR resource configuration indicator as shown in Table 3 above.
  • the IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
  • the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID as shown in Table 4 above.
  • the OCC indicator may indicate an OCC cover having a length of 2 or an OCC cover having a length of 4, and may be one of Tables 5 to 7.
  • n SCID and N DMRS ID may be a value for determining an UE-specific DMRS scrambling initial state as shown in Equation 2 above.
  • the IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
  • the detector 1215 first detects the PDCCH in order to receive the PDSCH, and the channel estimator 1220 estimates the downlink channel based on the DMRS.
  • the interference measuring unit 1225 measures (or estimates) interference (eg, MU-MIMO interference) based on the terminal specific IMR. For example, the interference measuring unit 1225 may measure interference in the same manner as in FIG. 9.
  • interference eg, MU-MIMO interference
  • the interference measuring unit 1225 mutes the portion of the PDSCH to which the UE-specific IMR is allocated (or removes the data of the PDSCH in the corresponding area, or ignores the data of the PDSCH in the corresponding area). , Or puncture the PDCSH in that region). Through this, the interference measuring unit 1225 may distinguish (or measure) other interference signals such as a signal or noise transmitted to another terminal.
  • the interference measuring unit 1225 uses the UE-specific IMR to receive the received signal (Y IMR) in the UE-specific IMR region as shown in the above equation. ) And calculate the statistical property of interference (R MU-MIMO ) by combining CRS RE and UE-specific IMR based on Y IMR as shown in Equation 6 above, and based on R MU-MIMO .
  • the terminal weight W i may be calculated, and data may be obtained from the received signal using a linear receiver as shown in Equation 4 based on W i .
  • the interference measuring unit 1225 estimates the channel H i of the terminal 1200 and also estimates the channel H j of the other terminal, thereby calculating H i and H j.
  • the interference measuring unit 1225 calculates the statistical characteristic of the interference (R MU-MIMO ) as shown in Equation 8, calculate the terminal weight (W i ) as shown in Equation 9 based on R MU-MIMO, and based on W i
  • data can be obtained from a received signal using a linear receiver.
  • the receiver 1205 detects a PDSCH through a receiver (eg, an MMSE IRC receiver) and receives data. Through this, the terminal 1200 may improve the performance by applying the interference information from the other terminal to the MMSE receiver.
  • a receiver eg, an MMSE IRC receiver
  • the controller 1260 may further include a scheduling unit 1265.
  • the transmitter 1255 transmits RRC signaling to configure the terminal specific IMR to the terminal 1200.
  • an RRC message eg, an RRC connection reconfiguration message or an RRC connection reconfiguration message
  • information ie, terminal specific IMR configuration information
  • terminal specific IMR configuration information for configuring terminal specific IMR. It may include.
  • the UE-specific IMR configuration information may be set such that the UE-specific IMR is located in a PDSCH region.
  • the UE-specific IMR configuration information may be set such that the UE-specific IMR is present in an OFDM symbol including DMRS.
  • the OFDM symbols including the DMRS may be configured in all of the UE-specific IMR or only part of the UE-specific IMR.
  • the remaining part may further include a DMRS or CSI-RS.
  • the pattern of the UE-specific IMR may be configured to be similar to the pattern of the DMRS.
  • DMRS may be covered through the UE-specific IMR.
  • information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
  • the UE specific IMR configuration information may include an IMR resource configuration indicator as shown in Table 3 above.
  • the IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
  • the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID as shown in Table 4 above.
  • the OCC indicator may indicate an OCC cover having a length of 2 or an OCC cover having a length of 4, and may be one of Tables 5 to 7.
  • n SCID and N DMRS ID may be a value for determining an UE-specific DMRS scrambling initial state as shown in Equation 2 above.
  • the IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
  • the scheduling unit 1265 schedules downlink MU-MIMO transmission.
  • the transmitter 1255 transmits the PDSCH or the DMRS to the terminal 1200. For example, based on the configured UE-specific IMR, the transmitter 1255 mutes the portion of the PDSCH to which the UE-specific IMR is allocated (or removes data of the PDSCH in the corresponding region, or data of the PDSCH in the corresponding region). Ignore or puncture the PDCSH in that region).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A device and method for setting a resource element in a multiple antenna system are disclosed. The present invention includes: receiving, from a base station, radio resource control signaling (RRC) for setting up a terminal-specific interference measurement resource element (IMR); and muting a portion of a physical downlink shared channel (PDSCH), to which the terminal-specific IMR is allocated, based on the terminal-specific IMR, to measure interference with another terminal.

Description

다중 안테나 시스템에서 자원 요소의 설정 또는 전송장치 및 방법Device or method for setting or transmitting resource element in multi-antenna system
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 다중 안테나 시스템에서 자원 요소를 설정하거나 전송하는 장치 및 방법에 관한 것이다. The present invention relates to wireless communications, and more particularly, to an apparatus and method for setting or transmitting resource elements in a multi-antenna system.
기존의 이동통신 시스템은 빔포밍(beamforming) 동작을 위해 8개의 송신 안테나를 지원할 수 있다. 특히 다중 사용자(Multi-User) MIMO(Multiple Input Multiple Output) 동작에 있어서, 최대 4개의 단말(user equipment: UE)에 동일한 물리자원블록(physical resource block: PRB)이 스케줄링되거나(scheduled) 할당될 수 있다. 이러한 차세대 이동통신 시스템에서 안테나의 구성과 관련하여, 예를 들어 0.5에서 0.7λ정도로 매우 근접한 간격의(closely-spaced) X 편극의(Xpolarized) 안테나가 고려될 수 있다.The existing mobile communication system can support eight transmit antennas for beamforming operation. In particular, in a multi-user multiple input multiple output (MIMO) operation, the same physical resource block (PRB) may be scheduled or allocated to up to four user equipments (UEs). have. In relation to the configuration of the antenna in this next generation mobile communication system, for example, a closely-spaced Xpolarized antenna, such as 0.5 to 0.7λ, may be considered.
한편, 차세대 이동통신 시스템은 폐루프(closed loop: CL) MIMO 동작과 관련하여 2차원의 안테나 구성으로 최대 64개까지의 송신 안테나를 지원하는 것을 목표로 하고 있으며, 최대 8개의 단말을 지원하고자 한다. Meanwhile, the next generation mobile communication system aims to support up to 64 transmit antennas in a two-dimensional antenna configuration with respect to a closed loop (CL) MIMO operation, and supports up to 8 terminals. .
더 많은 단말들을 지원함에 따라, 하나의 단말에 다른 단말이 가하는 간섭을 제어하는 방법이 요구된다.As more terminals are supported, a method of controlling interference caused by another terminal to one terminal is required.
본 발명의 기술적 과제는 간섭을 제어하기 위하여 하향링크 물리 채널의 자원 요소를 설정하는 방법 및 장치를 제공함에 있다.An object of the present invention is to provide a method and apparatus for configuring a resource element of a downlink physical channel to control interference.
본 발명의 다른 기술적 과제는 간섭을 제어하기 위하여 설정된 하향링크 물리 채널의 자원 요소를 전송하는 방법 및 장치를 제공함에 있다.Another object of the present invention is to provide a method and apparatus for transmitting a resource element of a downlink physical channel configured to control interference.
본 발명의 또 다른 기술적 과제는 수신기의 성능을 높이는데 있다.Another technical problem of the present invention is to improve the performance of the receiver.
본 발명의 일 양태에 따르면, 다중 안테나 시스템에서 단말에 의하여 자원 요소를 설정방법은 단말 특정 IMR(Interference Measurement Resource element)을 설정하는 RRC(Radio Resource Control) 시그널링을 기지국으로부터 수신하는 단계 및 상기 단말 특정 IMR을 기초로 PDSCH(Physical Downlink Shared Channel)에서 단말 특정 IMR이 할당되는 부분을 뮤트하여, 다른 단말로부터의 간섭을 측정하는 단계를 포함한다. 이때, 상기 RRC 시그널링은 상기 단말 특정 IMR이 상기 PDSCH에 위치하도록 설정하거나, 상기 단말 특정 IMR이 DMRS(DeModulation Reference Signal)를 포함하는 OFDM(Orthogonal Frequency Division Multiplexing) 심볼에 존재하도록 설정하는 단말 특정 IMR 설정 정보를 포함할 수 있다.According to an aspect of the present invention, a method for configuring a resource element by a terminal in a multi-antenna system includes receiving a radio resource control (RRC) signaling from a base station for configuring a terminal specific interference measurement resource element (IMR) and the terminal specification Muting a portion to which a UE-specific IMR is allocated in the physical downlink shared channel (PDSCH) based on the IMR, and measuring interference from another UE. In this case, the RRC signaling may be configured such that the UE-specific IMR is located in the PDSCH, or the UE-specific IMR is configured to exist in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). May contain information.
본 발명의 다른 양태에 따르면, 다중 안테나 시스템에서 기지국에 의하여 자원 요소를 설정방법은 단말 특정 IMR(Interference Measurement Resource element)을 설정하는 RRC(Radio Resource Control) 시그널링을 단말로 전송하는 단계를 포함한다. 이때, 상기 RRC 시그널링은 상기 단말 특정 IMR이 상기 PDSCH에 위치하도록 설정하거나, 상기 단말 특정 IMR이 DMRS(DeModulation Reference Signal)를 포함하는 OFDM(Orthogonal Frequency Division Multiplexing) 심볼에 존재하도록 설정하는 단말 특정 IMR 설정정보를 포함할 수 있다.According to another aspect of the present invention, a method of configuring a resource element by a base station in a multi-antenna system includes transmitting a Radio Resource Control (RRC) signaling for setting a UE-specific Interference Measurement Resource element (IMR) to the UE. In this case, the RRC signaling is configured to configure the UE-specific IMR to be located in the PDSCH or to configure the UE-specific IMR to be present in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). May contain information.
본 발명의 또 다른 양태에 따르면, 다중 안테나 시스템에서 자원 요소를 설정하는 단말은 단말 특정 IMR(Interference Measurement Resource element)을 설정하는 RRC(Radio Resource Control) 시그널링을 기지국으로부터 수신하는 수신부 및 상기 단말 특정 IMR을 기초로 PDSCH(Physical Downlink Shared Channel)에서 단말 특정 IMR이 할당되는 부분을 뮤트하여, 다른 단말로부터의 간섭을 측정하는 간섭 측정부를 포함한다. 상기 수신부는 상기 단말 특정 IMR이 상기 PDSCH에 위치하도록 설정하거나, 상기 단말 특정 IMR이 DMRS(DeModulation Reference Signal)를 포함하는 OFDM(Orthogonal Frequency Division Multiplexing) 심볼에 존재하도록 설정하는 단말 특정 IMR 설정정보를 포함하는 상기 RRC 시그널링을 수신할 수 있다.According to another aspect of the present invention, a terminal for configuring a resource element in a multi-antenna system, a receiver for receiving a Radio Resource Control (RRC) signaling from the base station for setting a terminal-specific Interference Measurement Resource element (IMR) and the terminal-specific IMR And an interference measuring unit configured to mute a portion to which a UE-specific IMR is allocated in a physical downlink shared channel (PDSCH) to measure interference from another UE. The receiver includes UE-specific IMR configuration information for configuring the UE-specific IMR to be located in the PDSCH or for configuring the UE-specific IMR to exist in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). The RRC signaling may be received.
본 발명의 또 다른 양태에 따르면, 다중 안테나 시스템에서 자원 요소를 설정하는 기지국은 단말 특정 IMR(Interference Measurement Resource element)을 설정하는 RRC(Radio Resource Control) 시그널링을 단말로 전송하는 전송부를 포함한다. 이때, 상기 RRC 시그널링은 상기 단말 특정 IMR이 상기 PDSCH에 위치하도록 설정하거나, 상기 단말 특정 IMR이 DMRS(DeModulation Reference Signal)를 포함하는 OFDM(Orthogonal Frequency Division Multiplexing) 심볼에 존재하도록 설정하는 단말 특정 IMR 설정정보를 포함할 수 있다.According to another aspect of the present invention, a base station for configuring a resource element in a multi-antenna system includes a transmitter for transmitting to the terminal Radio Resource Control (RRC) signaling for setting a terminal-specific Interference Measurement Resource element (IMR). In this case, the RRC signaling is configured to configure the UE-specific IMR to be located in the PDSCH or to configure the UE-specific IMR to be present in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). May contain information.
본 발명에 따르면, 다중 사용자 다중입력다중출력 시스템에서 다른 사용자로부터의 간섭을 추정하거나 측정할 수 있고, 이를 기초로 채널 상태 정보를 계산하거나 피드백할 수 있다. 이러한 피드백을 기초로 기지국은 적절한 협력 통신을 스케줄링할 수 있다.According to the present invention, in a multi-user multi-input multi-output system, interference from another user can be estimated or measured, and channel state information can be calculated or fed back based on this. Based on this feedback, the base station can schedule appropriate cooperative communications.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 2와 도 3은 본 발명의 일례에 따른 CSI-RS 패턴을 도시한 것이다. 2 and 3 illustrate a CSI-RS pattern according to an example of the present invention.
도 4는 본 발명의 일례에 따른 다중 안테나 시스템을 도시한 것이다.4 illustrates a multiple antenna system according to an example of the present invention.
도 5는 본 발명이 적용되는 DMRS를 전송하는 방법을 설명하는 흐름도이다.5 is a flowchart illustrating a method of transmitting a DMRS to which the present invention is applied.
도 6은 본 발명에 따라서 자원 요소를 설정하는 방법의 일 예를 나타낸 흐름도이다.6 is a flowchart illustrating an example of a method for setting a resource element according to the present invention.
도 7은 본 발명에 따라서 단말 측정 IMR 설정하는 IMR 자원 설정 지시자의 일 예를 나타낸다. 7 illustrates an example of an IMR resource configuration indicator configured for UE measurement IMR configuration according to the present invention.
도 8은 본 발명에 따라서 단말 측정 IMR 설정하는 IMR 자원 설정 지시자의 다른 예를 나타낸다.8 shows another example of an IMR resource configuration indicator for UE measurement IMR configuration according to the present invention.
도 9는 본 발명에 따라서 단말이 다른 단말에 의한 간섭(예, MU-MIMO 간섭)을 측정하는 것의 일 예를 나타낸다.9 illustrates an example in which a terminal measures interference (eg, MU-MIMO interference) by another terminal according to the present invention.
도 10은 본 발명에 따라서 자원 요소를 설정하는 단말의 동작의 일 예를 나타내는 순서도이다. 10 is a flowchart illustrating an example of an operation of a terminal for setting a resource element according to the present invention.
도 11은 본 발명에 따라서 자원 요소를 설정하는 기지국의 동작의 일 예를 나타내는 순서도이다. 11 is a flowchart illustrating an example of an operation of a base station for setting a resource element according to the present invention.
도 12는 본 발명에 따라서 자원 요소를 설정하는 단말과 기지국을 도시한 블록도이다.12 is a block diagram illustrating a terminal and a base station for setting a resource element according to the present invention.
이하, 본 명세서에서는 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that the detailed description of the related well-known configuration or function may obscure the subject matter of the present specification, the detailed description thereof will be omitted.
이하에서, '채널을 전송한다'라는 의미는 특정 채널을 통해 정보가 전송되는 의미로 해석될 수 있다. 여기서, 채널은 제어채널과 데이터 채널을 모두 포함하는 개념이며, 제어채널은 일례로 물리 하향링크 제어채널(Physical Downlink Control Channel: PDCCH) 혹은 물리 상향링크 제어채널(Physical Uplink Control Channel: PUCCH)이 될 수 있고, 데이터 채널은 일례로 물리 하향링크 공용채널(Physical Downlink Shared CHannel: PDSCH) 혹은 물리 상향링크 공용채널(Physical Uplink Shared CHannel: PUSCH)이 될 수 있다.In the following description, the term 'transmitting a channel' may be interpreted as meaning that information is transmitted through a specific channel. Here, the channel is a concept including both a control channel and a data channel, and the control channel may be, for example, a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH). The data channel may be, for example, a Physical Downlink Shared CHannel (PDSCH) or a Physical Uplink Shared CHannel (PUSCH).
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 1을 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)은 적어도 하나의 기지국(11; evolved-NodeB, eNB)을 포함한다. 각 기지국(11)은 특정 셀(cell)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 하나의 기지국은 다수의 셀을 담당할 수 있다. 본 발명에서 기지국(11)은 셀룰러 통신을 위해 단말과의 정보 및 제어 정보 공유 등을 수행하게 되는 송수신단을 의미하며 BS(Base Station), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토(femto) 기지국, 가내 기지국(Home nodeB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 셀은 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.Referring to FIG. 1, the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station 11 (evolved-NodeB, eNB). Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c. One base station may be responsible for multiple cells. In the present invention, the base station 11 refers to a transceiver for performing information and control information sharing with the terminal for cellular communication, and includes a base station (BS), a base transceiver system (BTS), an access point (Access Point), Other terms, such as a femto base station, a home node B, a relay, and the like, may be called. A cell is meant to encompass all of the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell, and the like.
단말(12; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 또는 단말 장치나 무선 장치 등 다른 용어로 불릴 수 있다.The UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. It may be called a personal digital assistant, a wireless modem, a handheld device, or other terminology such as a terminal device or a wireless device.
이하에서 하향링크(downlink)는 기지국(11)에서 단말(12) 방향의 전송링크(transmission link)를 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11) 방향으로의 전송링크를 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiplexing Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.Hereinafter, downlink refers to a transmission link from the base station 11 to the terminal 12, and uplink refers to a transmission link from the terminal 12 to the base station 11. it means. In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiplexing Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
단말(12)과 기지국(11) 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 모델의 하위 3개 계층을 바탕으로 제1 계층(L1), 제2 계층(L2), 제3 계층(L3)으로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공한다.Layers of a radio interface protocol between the terminal 12 and the base station 11 are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in communication systems. The layer L1 may be divided into a second layer L2 and a third layer L3. Among them, the physical layer belonging to the first layer provides an information transfer service using a physical channel.
물리계층에서 사용되는 몇몇 물리채널들이 있다. 물리하향링크 제어 채널(physical downlink control channel: 이하 PDCCH)은 하향링크 공용채널(Downlink Shared Channel: DL-SCH)의 자원 할당 및 전송 포맷, 상향링크 공용채널(Uplink Shared Channel: UL-SCH)의 자원 할당 정보, 물리하향링크 공용채널(physical downlink shared channel: PDSCH)상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 단말 그룹내 개별 단말들에 대한 전송 전력 제어(transmission power control: TPC) 명령(command)의 집합 등을 나를 수 있다. 복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다.There are several physical channels used in the physical layer. A physical downlink control channel (PDCCH) is a resource allocation and transmission format of a downlink shared channel (DL-SCH), a resource of an uplink shared channel (UL-SCH). Resource allocation of upper layer control messages, such as allocation information, random access responses transmitted on a physical downlink shared channel (PDSCH), and transmission power control for individual terminals in any terminal group : TPC) can carry a set of commands. A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
PDCCH에 맵핑되는 물리계층의 제어정보를 하향링크 제어정보(downlink control information; 이하 DCI)라고 한다. 즉, DCI는 PDCCH을 통해 전송된다. DCI는 상향링크 또는 하향링크 자원할당필드, 상향링크 전송전력제어 명령 필드, 페이징을 위한 제어필드, 랜덤 액세스 응답(RA response)을 지시(indicate)하기 위한 제어필드 등을 포함할 수 있다.Control information of the physical layer mapped to the PDCCH is referred to as downlink control information (DCI). That is, DCI is transmitted through the PDCCH. The DCI may include an uplink or downlink resource allocation field, an uplink transmission power control command field, a control field for paging, a control field for indicating a random access response (RA response), and the like.
DCI는 그 포맷(format)에 따라 사용용도가 다르고, DCI내에서 정의되는 필드(field)도 다르다. 표 1은 DCI 포맷의 일 예를 나타내며, 다음 DCI 포맷 중 하나 또는 복수의 포맷이 사용될 수 있으나, 반드시 모든 포맷이 사용되어야 하는 것은 아니다.DCI has different uses according to its format, and fields defined in DCI are also different. Table 1 shows an example of the DCI format, and one or more of the following DCI formats may be used, but not all formats should be used.
표 1
DCI 포맷(format) 설명
0 PUSCH(또는 상향링크 그랜트)의 스케줄링에 사용됨
1 1개 셀에서의 1개의 PDSCH 코드워드(codeword)의 스케줄링에 사용됨
1A 1개 셀에서의 1개의 PDSCH 코드워드의 간략한 스케줄링 및 PDCCH 명령에의해 초기화되는 랜덤 액세스 절차에 사용됨
1B 프리코딩 정보를 이용한 1개 셀에서의 1개의 PDSCH 코드워드의 간략한 스케줄링에 사용 됨
1C 1개의 PDSCH 코드워드의 간략한 스케줄링 및 MCCH 변경의 통지를 위해 사용됨
1D 프리코딩 및 전력 오프셋 정보를 포함하는 1개 셀에서의 1개의 PDSCH 코드워드의 간략 한 스케줄링에 사용됨
2 공간 다중화 모드로 구성되는 단말에 대한 PDSCH 스케줄링에 사용됨
2A 긴 지연(large delay)의 CDD 모드로 구성된 단말의 PDSCH 스케줄링에 사용됨
2B 전송모드 8(이중 레이어 전송)에서 사용됨
2C 전송모드 9(다중 레이어 전송)에서 사용됨
2D 2비트의 전력 조정을 포함하는 PUCCH와 PUSCH를 위한 TPC 명령의 전송에 사용됨
3A 단일 비트 전력 조정을 포함하는 PUCCH와 PUSCH를 위한 TPC 명령의 전송에 사용됨
4 PUSCH(상향링크 그랜트)의 스케줄링에 사용됨. 특히 공간 다중화 모드로 구성되는 단말 에 대한 PUSCH 스케줄링에 사용됨
Table 1
DCI format Explanation
0 Used for scheduling of PUSCH (or uplink grant)
One Used for scheduling one PDSCH codeword in one cell
1A Used for simple scheduling of one PDSCH codeword in one cell and a random access procedure initiated by a PDCCH command
1B Used for simple scheduling of one PDSCH codeword in one cell using precoding information
1C Used for brief scheduling of one PDSCH codeword and notification of MCCH change
1D Used for simple scheduling of one PDSCH codeword in one cell containing precoding and power offset information
2 Used for PDSCH scheduling for UE configured in spatial multiplexing mode
2A Used for PDSCH scheduling of UE configured in long delay CDD mode
2B Used in transfer mode 8 (double layer transfer)
2C Used in transfer mode 9 (multi-layer transfer)
2D Used to transmit TPC commands for PUCCH and PUSCH with power adjustment of 2 bits
3A Used to transmit TPC commands for PUCCH and PUSCH with single bit power adjustment
4 Used for scheduling of PUSCH (Uplink Grant). In particular, it is used for PUSCH scheduling for a terminal configured in a spatial multiplexing mode.
표 1을 참조하면, DCI 포맷 0은 상향링크 스케줄링 정보이고, 하나의 PDSCH 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, DL-SCH의 매우 간단한 스케줄링을 위한 포맷 1C, 폐루프(Closed-loop) 공간 다중화(spatial multiplexing) 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Open-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, 상향링크 채널을 위한 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3 및 3A 등이 있다.Referring to Table 1, DCI format 0 is uplink scheduling information, format 1 for scheduling one PDSCH codeword, format 1A for compact scheduling of one PDSCH codeword, and very simple of DL-SCH. Format 1C for scheduling, format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode, format 2A for PDSCH scheduling in open-loop spatial multiplexing mode, and uplink channel Formats 3 and 3A for transmission of a transmission power control (TPC) command.
DCI의 각 필드는 n개의 정보비트(information bit) a0 내지 an-1에 순차적으로 맵핑된다. 예를 들어, DCI가 총 44비트 길이의 정보비트에 맵핑된다고 하면, DCI 각 필드가 a0 내지 a43에 순차적으로 맵핑된다. 일 예로, DCI 포맷 0, 1A, 3, 3A는 모두 동일한 페이로드(payload) 크기를 가질 수 있다. DCI 포맷 0은 상향링크 그랜트(uplink grant)라 불릴 수도 있다.Each field of the DCI is sequentially mapped to n information bits a 0 to a n-1 . For example, suppose DCI is mapped to information bits having a total length of 44 bits, each DCI field is sequentially mapped to a 0 to a 43 . For example, DCI formats 0, 1A, 3, and 3A may all have the same payload size. DCI format 0 may be called an uplink grant.
무선통신 시스템(10)은 다중 안테나(multiple antenna) 시스템일 수 있다. 다중안테나 시스템은 다중입출력(multiple-input multiple-output; MIMO) 시스템이라 불릴 수 있다. 또는 다중안테나 시스템은 다중 입력 싱글 출력(multiple input single output; MISO) 시스템 또는 싱글 입력 싱글 출력(single input single output; SISO) 시스템 또는 싱글 입력 다중 출력(single input multiple output;SIMO) 시스템일 수도 있다. MIMO 시스템은 다수의 송신안테나와 다수의 수신 안테나를 사용한다. MISO 시스템은 다수의 송신안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 송신안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 송신안테나와 다수의 수신 안테나를 사용한다.The wireless communication system 10 may be a multiple antenna system. Multiple antenna systems may be referred to as multiple-input multiple-output (MIMO) systems. Alternatively, the multiple antenna system may be a multiple input single output (MISO) system, a single input single output (SISO) system, or a single input multiple output (SIMO) system. The MIMO system uses multiple transmit antennas and multiple receive antennas. The MISO system uses multiple transmit antennas and one receive antenna. The SISO system uses one transmit antenna and one receive antenna. The SIMO system uses one transmit antenna and multiple receive antennas.
다중 안테나 시스템의 운영(operation)을 위해 사용되는 다중 안테나 송수신 기법(scheme)은 FSTD(frequency switched transmit diversity), SFBC(Space Frequency Block Code), STBC(Space Time Block Code), CDD(Cyclic Delay Diversity), TSTD(time switched transmit diversity) 등이 사용될 수 있다.Multiple antenna transmit / receive schemes used for the operation of multiple antenna systems include frequency switched transmit diversity (FST), Space Frequency Block Code (SFBC), Space Time Block Code (STBC), and Cyclic Delay Diversity (CDD). TSTD (time switched transmit diversity) may be used.
무선통신 시스템(10)에서는 데이터의 송/수신, 시스템 동기 획득, 채널 정보 피드백 등을 위하여 상향링크 채널 또는 하향링크의 채널을 추정할 필요가 있다. 급격한 채널환경의 변화에 의하여 생기는 신호의 왜곡(distortion)을 보상하여 전송 신호를 복원하는 과정을 채널추정(channel estimation)이라고 한다. 또한 단말(12)이 속한 셀 혹은 다른 셀에 대한 채널 상태(channel state) 역시 측정할 필요가 있다. 일반적으로 채널 추정 또는 채널 상태 측정을 위해서 단말(12)과 기지국(11)이 상호 간에 알고 있는 참조 신호(RS: Reference Signal)를 이용할 수 있다.The wireless communication system 10 needs to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like. The process of restoring a transmission signal by compensating for distortion of a signal caused by a sudden change in channel environment is called channel estimation. In addition, it is also necessary to measure the channel state (channel state) for the cell to which the terminal 12 belongs or other cells. In general, a reference signal (RS) that the terminal 12 and the base station 11 know from each other may be used for channel estimation or channel state measurement.
참조 신호의 정보를 알고 있는 단말(12)은 수신된 참조 신호를 기반으로 채널을 추정하고 채널 값을 보상해서 기지국(11)에서 보낸 데이터를 정확히 얻어낼 수 있다. 만약 기지국(11)이 보내는 참조 신호를 p, 참조 신호가 전송 중에 겪게 되는 채널 정보를 h, 단말(12)에서 발생하는 열 잡음을 n, 단말(12)이 수신한 신호를 y라 하면 "y = h*p + n"과 같이 나타낼 수 있다. 이때 참조 신호 p는 단말(12)이 이미 알고 있기 때문에 LS(Least Square) 방식을 이용할 경우 다음 수학식과 같이 채널 정보(
Figure PCTKR2013011477-appb-I000001
)를 추정할 수 있다.
The terminal 12 knowing the information of the reference signal can accurately obtain the data sent from the base station 11 by estimating the channel and compensating the channel value based on the received reference signal. If the reference signal transmitted from the base station 11 is p, the channel information experienced by the reference signal during transmission is h, the thermal noise generated from the terminal 12 is n, and the signal received from the terminal 12 is y. = h * p + n ". In this case, since the reference signal p is already known to the terminal 12, when the LS (Least Square) method is used, channel information (
Figure PCTKR2013011477-appb-I000001
) Can be estimated.
수학식 1
Figure PCTKR2013011477-appb-M000001
Equation 1
Figure PCTKR2013011477-appb-M000001
여기서, 참조 신호 p를 이용하여 추정한 채널 추정값 '
Figure PCTKR2013011477-appb-I000002
'는 '
Figure PCTKR2013011477-appb-I000003
'값에 의존하게 되므로, 정확한 h값의 추정을 위해서는 '
Figure PCTKR2013011477-appb-I000004
'값을 0에 수렴시킬 필요가 있다. 많은 개수의 참조 신호를 이용함으로써 '
Figure PCTKR2013011477-appb-I000005
'의 영향을 최소화하여 채널을 추정할 수 있다.
Here, the channel estimate estimated using the reference signal p '
Figure PCTKR2013011477-appb-I000002
'Is'
Figure PCTKR2013011477-appb-I000003
'Because it depends on the value,
Figure PCTKR2013011477-appb-I000004
'We need to converge the value to zero. By using a large number of reference signals,
Figure PCTKR2013011477-appb-I000005
The channel can be estimated by minimizing the effect of '.
참조 신호는 모든 부반송파(subcarrier)에 할당될 수도 있고, 데이터를 전송하는 데이터 부반송파 사이에 할당될 수도 있다. 참조 신호가 모든 부반송파에 할당되는 방식에서는 채널 추정 성능의 이득을 얻기 위하여 특정 전송 타이밍의 신호가 프리앰블(preamble)과 같은 참조 신호만으로 이루어진다. 데이터 부반송파 사이에 참조 신호가 할당되는 방식에 의하면 데이터의 전송량을 증대시킬 수 있다. 다중 안테나 시스템에서는 한 안테나가 참조 신호를 전송하기 위해 사용한 자원 요소는 다른 안테나에서 사용되지 않는다. 이는 안테나 간 간섭을 주지 않기 위해서이다.The reference signal may be allocated to all subcarriers, or may be allocated between data subcarriers for transmitting data. In a method in which the reference signals are allocated to all subcarriers, a signal having a specific transmission timing is composed of only a reference signal such as a preamble in order to obtain a gain of channel estimation performance. According to a method in which reference signals are allocated between data subcarriers, the amount of data transmission can be increased. In a multi-antenna system, resource elements used by one antenna to transmit a reference signal are not used by another antenna. This is to avoid interference between antennas.
하향링크 참조 신호로는 CSI(Channel State Information) 참조 신호(CSI-RS)와 DMRS(DeModulation RS)가 있다. 참조 신호 마다 전송 패턴과 구성정보가 다르다.The downlink reference signal includes a channel state information (CSI) reference signal (CSI-RS) and a demodulation RS (DMRS). Transmission patterns and configuration information are different for each reference signal.
<1. CSI-RS><1. CSI-RS>
CSI-RS는 채널 상태 정보(CSI)의 추정을 위해 사용될 수 있다. CSI-RS는 주파수 영역 또는 시간 영역에서 배치된다. CSI-RS를 이용한 채널 상태의 추정을 통해 필요한 경우에 채널 품질 지시자(CQI: Channel Quality Indicator), 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator) 및 랭크 지시자(RI: Rank Indicator) 등이 채널 상태 정보로서 단말로부터 보고될 수 있다.CSI-RS may be used for estimation of channel state information (CSI). The CSI-RS is placed in the frequency domain or time domain. Channel quality indicator (CQI), precoding matrix indicator (PMI) and rank indicator (RI) rank information such as channel quality indicator (CQI), if necessary through the estimation of the channel state using the CSI-RS As reported from the terminal.
무선통신 시스템(10)은 여러가지 전송 모드(transmission mode)에 따라 동작할 수 있다. 예를 들어, 전송 모드 0은 단일 안테나 포트(antenna port)만을 지원하는 모드이고, 전송 모드 9는 8개의 안테나 포트까지 지원할 수 있는 모드일 수 있다. 여기서, 제1 심볼(또는 신호)이 제1 채널에 걸쳐 운반되고 제2 심볼(또는 신호)이 제2 채널에 걸쳐 운반될 때, 상기 제1 채널이 상기 제2 채널에 의해 유추될 수 있도록 상기 제1 심볼(또는 신호)과 상기 제2 심볼(또는 신호)을 함께 운반하는 것을 안테나 포트라 정의한다(An antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed).The wireless communication system 10 may operate in accordance with various transmission modes. For example, transmission mode 0 may be a mode supporting only a single antenna port, and transmission mode 9 may be a mode capable of supporting up to 8 antenna ports. Here, when the first symbol (or signal) is carried over the first channel and the second symbol (or signal) is carried over the second channel, the first channel can be inferred by the second channel. An antenna port is defined such that the channel over which a symbol on the antenna port is conveyed can be inferred from the channel over which another symbol on the same antenna port is conveyed).
하나의 안테나 포트에는 고유한 하나의 자원 그리드(resource grid)가 존재한다. 안테나 포트(p)를 위한 자원 그리드 내의 각 요소를 자원요소(resource element: RE)라 하며, 각 자원요소는 매 슬롯(slot) 내의 인덱스 쌍 (k,l)에 의해 식별된다(여기서, k=0,...,NDL RB*NRB sc-1이고, l=0,...,NDL symb-1이며, 'k'는 주파수 영역에서 부반송파(subcarrier) 인덱스이고, 'l'은 시간 영역에서의 심볼 인덱스이다). 자원요소는 데이터 채널의 변조 심벌 또는 제어 채널의 변조 심벌이 맵핑되는 가장 작은 주파수-시간 단위를 나타낸다. 한 OFDM 심벌 상에 M개의 부반송파가 있고, 한 슬롯이 N개의 OFDM 심벌을 포함한다면, 한 슬롯은 총 'M*N' 개의 자원 요소를 포함한다.There is one resource grid unique to one antenna port. Each element in the resource grid for antenna port p is called a resource element (RE), and each resource element is identified by an index pair (k, l) in every slot (where k = 0, ..., N DL RB * N RB sc -1, l = 0, ..., N DL symb -1, 'k' is the subcarrier index in the frequency domain, and 'l' is the Symbol index in the time domain). The resource element represents the smallest frequency-time unit to which the modulation symbol of the data channel or the modulation symbol of the control channel is mapped. If there are M subcarriers on one OFDM symbol, and one slot includes N OFDM symbols, one slot includes a total of 'M * N' resource elements.
다중 안테나 시스템에서 각 물리 안테나에는 서로 다른 안테나 포트가 맵핑될 수 있다. 예를 들어, 4개의 물리 안테나 각각에 안테나 포트0 내지 안테나 포트3이 차례로 맵핑될 수 있다.In the multi-antenna system, different antenna ports may be mapped to each physical antenna. For example, antenna ports 0 to 3 may be sequentially mapped to each of the four physical antennas.
안테나 포트 개수와, 각 안테나 포트의 고유한 자원 그리드는 셀 내의 참조신호 구성(reference signal configuration)에 의존하여 결정된다. 예를 들어 물리 안테나가 총 64개라 할 때, CSI-RS를 지원하는 안테나 포트의 개수는 CSI-RS의 구성 및 CSI-RS 포트를 물리 안테나에 배열하는 방식에 따라 {1, 2, 4, 8, 16, 32, 64} 중 어느 하나로 정의될 수 있고, 각 안테나 포트마다 도 2 또는 도 3과 같이 CSI-RS를 운반하는 고유한 패턴을 가질 수 있다. 이하에서 안테나 포트가 CSI-RS를 운반하는 고유한 패턴 또는 CSI-RS가 자원요소에 맵핑되는 패턴을 'CSI-RS 패턴'이라 한다.The number of antenna ports and the unique resource grid of each antenna port are determined depending on the reference signal configuration in the cell. For example, when the total number of physical antennas is 64, the number of antenna ports supporting CSI-RS is {1, 2, 4, 8 according to the configuration of the CSI-RS and the arrangement of the CSI-RS ports in the physical antenna. , 16, 32, 64}, and each antenna port may have a unique pattern for carrying a CSI-RS as shown in FIG. 2 or 3. Hereinafter, a unique pattern in which an antenna port carries a CSI-RS or a pattern in which a CSI-RS is mapped to a resource element is referred to as a 'CSI-RS pattern'.
도 2와 도 3은 본 발명의 일례에 따른 CSI-RS 패턴을 도시한 것이다. 도 2는 정규(normal) CP(cyclic prefix)의 경우에 CSI-RS가 자원요소에 맵핑되는 예를 나타내고, 도 3은 확장(extended) CP의 경우에 CSI-RS가 자원요소에 맵핑되는 일 예를 개략적으로 나타낸 것이다.2 and 3 illustrate a CSI-RS pattern according to an example of the present invention. 2 illustrates an example in which a CSI-RS is mapped to a resource element in the case of a normal cyclic prefix, and FIG. 3 illustrates an example in which a CSI-RS is mapped to a resource element in the case of an extended CP. It is shown schematically.
도 2 및 도 3을 참조하면, Rp는 안테나 포트 P에서 CSI-RS 전송에 사용되는 자원요소를 나타낸다. 예를 들어 R15는 안테나 포트 15에서 전송되는 CSI-RS를 의미한다. 예를 들어, 도 2에서 1개의 안테나 포트가 지원된다고 할 때, CSI-RS 패턴은 CSI-RS가 안테나 포트 15의 자원요소 (2, 5)와 (2, 6)에 맵핑되는 것이다. 또는 도 2에서 8개의 안테나 포트가 지원된다고 할 때, CSI-RS 패턴은 CSI-RS가 안테나 포트 15 및 16의 자원요소 (2, 5)와 (2, 6)에 맵핑되고, 안테나 포트 17 및 18의 자원요소 (8, 5)와 (8, 6)에 맵핑되며, 안테나 포트 19 및 20의 자원요소 (3, 5)와 (3, 6)에 맵핑되고, 안테나 포트 21 및 22의 자원요소 (9, 5)와 (9, 6)에 맵핑되는 것이다.2 and 3, R p represents a resource element used for CSI-RS transmission at the antenna port P. For example, R 15 means CSI-RS transmitted from antenna port 15. For example, when one antenna port is supported in FIG. 2, the CSI-RS pattern is one in which CSI-RSs are mapped to resource elements (2, 5) and (2, 6) of antenna port 15. Alternatively, in FIG. 2, when eight antenna ports are supported, the CSI-RS pattern is mapped to resource elements (2, 5) and (2, 6) of antenna ports 15 and 16, and that antenna ports 17 and Mapped to resource elements (8, 5) and (8, 6) of 18, mapped to resource elements (3, 5) and (3, 6) of antenna ports 19 and 20, and resource elements of antenna ports 21 and 22 Maps to (9, 5) and (9, 6).
이와 같이 각 안테나 포트의 개수마다 고유한 CSI-RS 패턴을 가질 수 있다. 도 2 및 도 3의 예시는 8개의 물리적 안테나가 구비된 무선통신 시스템에서, CSI-RS를 전송하는 안테나 포트 15 내지 22까지 총 8개를 정의한 것이다. 그러나 이는 예시일 뿐이고 64개의 물리적 안테나를 구비한 무선 통신 시스템의 경우 안테나 포트가 64개까지 지원될 수 있으며, 이 경우 CSI-RS를 전송하는 안테나 포트들은 안테나 포트 15 내지 63까지 확장될 수 있다.As such, each antenna port may have a unique CSI-RS pattern. 2 and 3 illustrate a total of eight antenna ports 15 to 22 transmitting CSI-RS in a wireless communication system equipped with eight physical antennas. However, this is only an example, and in the case of a wireless communication system having 64 physical antennas, up to 64 antenna ports may be supported, and in this case, antenna ports transmitting CSI-RS may be extended to antenna ports 15 to 63.
도 4는 본 발명의 일례에 따른 다중 안테나 시스템을 도시한 것이다.4 illustrates a multiple antenna system according to an example of the present invention.
도 4를 참조하면, 다중 안테나 시스템은 다수의 안테나를 구비한 기지국(410)과 다수의 안테나를 구비한 단말(420)을 포함한다. 기지국(410)은 8개 이상의 안테나 포트를 가진 2차원의 안테나 배열(array)로써 총 64개의 안테나를 지원한다. 일 예로, 기지국(410)이 지원하는 8개 이상의 안테나 포트의 개수는 {16, 32, 64} 중 어느 하나의 해당하는 개수일 수 있다. 즉, 기지국(410)은 8의 배수에 해당하는 안테나 포트를 지원할 수 있다. 여기서 기지국(410)이 다중 사용자 MIMO(Multi User-MIMO : MU-MIMO)동작을 지원하는 경우 10개의 단말을 지원할 수 있다. Referring to FIG. 4, the multi-antenna system includes a base station 410 having a plurality of antennas and a terminal 420 having a plurality of antennas. The base station 410 supports a total of 64 antennas as a two-dimensional antenna array having eight or more antenna ports. For example, the number of eight or more antenna ports supported by the base station 410 may be a corresponding number of any one of {16, 32, 64}. That is, the base station 410 may support an antenna port corresponding to a multiple of eight. Here, when the base station 410 supports the multi-user MIMO (MU-MIMO) operation, the base station 410 may support 10 terminals.
<2. DMRS><2. DMRS>
네트워크 시스템은 다수의 레이어를 지원하는 DMRS를 설계할 수 있다. DMRS의 전송을 위해 단말의 단일 사용자 MIMO(single user MIMO)를 위해 8개까지의 레이어가 지원될 수 있고, 다중 사용자 MIMO를 위해서는 4개까지의 레이어가 지원될 수 있었다. 64개까지의 물리적 안테나가 지원되는 무선 통신 시스템에서는 다중 사용자 MIMO를 위해 최대 8개까지의 레이어가 지원될 수도 있다. Network systems can design DMRS that supports multiple layers. Up to eight layers may be supported for a single user MIMO of a terminal for DMRS transmission, and up to four layers may be supported for a multi-user MIMO. In a wireless communication system supporting up to 64 physical antennas, up to eight layers may be supported for multi-user MIMO.
참조 신호는 일반적으로 시퀀스(sequence)로 전송된다. 참조 신호 시퀀스는 특별한 제한 없이 임의의 시퀀스가 사용될 수 있다. 참조 신호 시퀀스는 PSK(Phase Shift Keying) 기반의 컴퓨터를 통해 생성된 시퀀스(PSK-based computer generated sequence)를 사용할 수 있다. PSK의 예로는 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying) 등이 있다. 또는, 참조 신호 시퀀스는 CAZAC(Constant Amplitude Zero Auto-Correlation) 시퀀스를 사용할 수 있다. CAZAC 시퀀스의 예로는 ZC 기반 시퀀스(Zadoff-Chu based sequence), 순환 확장된 ZC 시퀀스(ZC sequence with cyclic extension), 절단 ZC 시퀀스(ZC sequence with truncation) 등이 있다. 또는, 참조 신호 시퀀스는 PN(pseudo-random) 시퀀스를 사용할 수 있다. PN 시퀀스의 예로는 m-시퀀스, 컴퓨터를 통해 생성된 시퀀스, 골드(Gold) 시퀀스, 카사미(Kasami) 시퀀스 등이 있다. 또, 참조 신호 시퀀스는 순환 쉬프트된 시퀀스(cyclically shifted sequence)를 이용할 수 있다.Reference signals are generally transmitted in sequence. As the reference signal sequence, any sequence may be used without particular limitation. The reference signal sequence may use a PSK-based computer generated sequence. Examples of PSKs include binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). Alternatively, the reference signal sequence may use a constant amplitude zero auto-correlation (CAZAC) sequence. Examples of CAZAC sequences include a ZCoff-Chu based sequence, a ZC sequence with cyclic extension, a ZC sequence with truncation, and the like. Alternatively, the reference signal sequence may use a pseudo-random (PN) sequence. Examples of PN sequences include m-sequences, computer generated sequences, Gold sequences, and Kasami sequences. In addition, the reference signal sequence may use a cyclically shifted sequence.
DMRS 시퀀스의 생성을 위해 사용되는 파라미터는 안테나 포트 번호, 스크램블링 식별자(scrambling identity) nCSID를 포함하며, 이외에 본 실시예는 자원요소의 개수 정보를 추가적으로 포함할 수 있다. 이러한 파라미터들은 DMRS 시퀀스의 직교성을 부여하는데 사용되는 정보라 할 수 있다.The parameter used for generating the DMRS sequence includes an antenna port number and a scrambling identity nCSID. In addition, the present embodiment may additionally include information on the number of resource elements. These parameters may be referred to as information used to impart orthogonality to the DMRS sequence.
DMRS 시퀀스의 생성을 위해 사용되는 파라미터들은 DCI에 포함되어 전송된다. 일례로 DCI에 포함된 정보필드들은 다음의 표의 필드 중 적어도 하나일 수 있다.Parameters used for generation of a DMRS sequence are included in the DCI and transmitted. For example, the information fields included in the DCI may be at least one of the fields of the following table.
표 2
필드 비트
반송파 지시자(carrier indicator) 0 내지 3비트
HARQ 프로세스 번호 FDD의 경우 3비트, TDD의 경우 4비트
PUCCH를 위한 전송전력제어(TPC) 명령 2비트
하향링크 할당 인덱스(downlink assignment index) 2비트
(각 전송블록마다) 변조 및 코딩 방식 5비트
(각 전송블록마다) 신규 데이터 지시자 1비트
(각 전송블록마다) 중복 버젼(redundancy version) 2비트
(자원블록 할당) 국부적 자원할당
Figure PCTKR2013011477-appb-I000006
비트
(자원블록 할당) 분산적 자원할당
Figure PCTKR2013011477-appb-I000007
비트 또는
Figure PCTKR2013011477-appb-I000008
비트
시퀀스 생성값 4비트
하향링크 할당 인덱스(downlink assignment index : DAI)
TABLE 2
field beat
Carrier indicator 0 to 3 bits
HARQ process number 3 bits for FDD, 4 bits for TDD
TPC command for PUCCH 2 bit
Downlink assignment index 2 bit
Modulation and coding scheme (for each transport block) 5 bit
New data indicator (for each transport block) 1 bit
Redundancy version (for each transport block) 2 bit
(Resource Block Allocation) Local Resource Allocation
Figure PCTKR2013011477-appb-I000006
beat
(Resource Block Allocation) Distributed Resource Allocation
Figure PCTKR2013011477-appb-I000007
Bit or
Figure PCTKR2013011477-appb-I000008
beat
Sequence generation value 4 bit
Downlink assignment index (DAI)
표 2를 참조하면, DCI는 반송파 지시자 필드, HARQ 프로세스 번호 필드, 전송전력제어 명령 필드, 자원블록 할당 필드, 하향링크 할당 인덱스 필드 등을 포함할 수 있으며, 특히 4비트의 시퀀스 생성값 필드를 포함한다. 표 2에 포함된 정보 필드들은 예시적인 것이고, 본 발명의 기술적 사상은 적어도 하나의 정보 필드가 생략된 형태의 DCI 뿐만 아니라, 상기 정보 필드들 이외에 새로운 정보 필드가 더 추가된 형태의 DCI도 포함한다.Referring to Table 2, the DCI may include a carrier indicator field, a HARQ process number field, a transmission power control command field, a resource block allocation field, a downlink allocation index field, and particularly, a 4-bit sequence generation value field. do. The information fields included in Table 2 are exemplary, and the technical idea of the present invention includes not only a DCI in which at least one information field is omitted, but also a DCI in which a new information field is added in addition to the information fields. .
표 2에서 시퀀스 생성값은 안테나 포트 번호(antenna port), 스크램블링 식별자, 레이어수(number of Layer) 및 자원요소의 개수(number of Resource element)의 조합을 지시하는 것으로서, 예를 들어 4비트일 수 있다. 자원 요소의 개수는 DMRS가 전송되는데 사용되는 자원요소의 개수를 지시한다. 시퀀스 생성값이 4비트이면 총 16가지 경우의 수를 나타낼 수 있다.In Table 2, the sequence generation value indicates a combination of an antenna port number, a scrambling identifier, a number of layers, and a number of resource elements. have. The number of resource elements indicates the number of resource elements used to transmit the DMRS. If the sequence generation value is 4 bits, it can represent a total of 16 cases.
단일 사용자 MIMO(single user-MIMO : SU-MIMO)에 대해, DMRS를 위한 최대 레이어 수는 8이며, 다중 사용자 MIMO(MU-MIMO 모드)에 대해서 최대 2개의 레이어 수를 지원하는 경우와, 최대 4개의 레이어 수를 지원하는 경우를 일 예로 설명한다. For single user-MIMO (SU-MIMO), the maximum number of layers for DMRS is 8, up to two layers for multi-user MIMO (MU-MIMO mode), and up to 4 An example of supporting the number of layers is described.
도 5는 본 발명이 적용되는 DMRS를 전송하는 방법을 설명하는 흐름도이다.5 is a flowchart illustrating a method of transmitting a DMRS to which the present invention is applied.
도 5를 참조하면, 기지국은 시퀀스 생성값을 결정한다(S500).Referring to FIG. 5, the base station determines a sequence generation value (S500).
기지국은 상기 결정된 시퀀스 생성값을 포함하는 DCI를 생성한다(S505). 시퀀스 생성값은 안테나 포트 번호, 스크램블링 식별자, 레이어 수 및 자원요소의 개수의 조합을 지시하며, 예를 들어 4비트 정보일 수 있다. 또한, 이러한 시퀀스 생성값을 포함하는 DCI는 상기 표 2와 같이 정의될 수 있다. 다만, 표 2에 포함된 정보 필드들은 예시적인 것이고, 본 발명의 기술적 사상은 적어도 하나의 정보 필드가 생략된 형태의 DCI 뿐만 아니라, 상기 정보 필드들 이외에 새로운 정보 필드가 더 추가된 형태의 DCI도 포함한다. 자원요소의 개수는 DMRS가 전송되는데 사용되는 자원요소의 개수를 지시한다. 시퀀스 생성값은 4비트이므로 총 16가지 경우의 수를 나타낼 수 있다.The base station generates a DCI including the determined sequence generation value (S505). The sequence generation value indicates a combination of the antenna port number, the scrambling identifier, the number of layers, and the number of resource elements. For example, the sequence generation value may be 4-bit information. In addition, the DCI including the sequence generation value may be defined as shown in Table 2 above. However, the information fields included in Table 2 are exemplary, and the technical idea of the present invention is not only DCI in which at least one information field is omitted, but also DCI in which a new information field is added in addition to the information fields. Include. The number of resource elements indicates the number of resource elements used to transmit the DMRS. Since the sequence generation value is 4 bits, it can represent a total of 16 cases.
기지국은 상기 결정된 시퀀스 생성값을 포함하는 DCI를 PDCCH에 맵핑하여 단말로 전송한다(S510). 단말은 기지국으로부터 상기 DCI를 수신하기 위해, 상기 DCI가 맵핑된 PDCCH를 모니터링(monitoring)한다. 단말이 PDCCH를 성공적으로 디코딩하면, 상기 DCI를 획득한다. 그리고 상기 DCI내의 정보필드를 분석하여, 시퀀스 생성값이 지시하는 레이어의 수, 안테나 포트 번호, 그리고 스크램블링 식별자, 자원요소의 개수 중 적어도 하나를 확인한다.The base station maps the DCI including the determined sequence generation value to the PDCCH and transmits it to the terminal (S510). In order to receive the DCI from the base station, the terminal monitors the PDCCH to which the DCI is mapped. When the terminal successfully decodes the PDCCH, the terminal acquires the DCI. The information field in the DCI is analyzed to identify at least one of the number of layers indicated by the sequence generation value, the antenna port number, the scrambling identifier, and the number of resource elements.
기지국은 시퀀스 생성값에 기반하여 결정된 DMRS 시퀀스를 사용하여, DMRS를 단말로 전송한다(S515). 단말은 시퀀스 생성값이 지시하는 레이어의 수, 안테나 포트 번호, 그리고 스크램블링 식별자, 자원요소의 개수 중 적어도 하나를 이용하여 DMRS 시퀀스를 확인하고, 이를 이용하여 DMRS를 기지국으로부터 수신한다. DMRS는 데이터 채널(예, PDSCH)을 통해 전송될 수 있다.The base station transmits the DMRS to the terminal using the DMRS sequence determined based on the sequence generation value (S515). The terminal checks the DMRS sequence using at least one of the number of layers indicated by the sequence generation value, the antenna port number, the scrambling identifier, and the number of resource elements, and receives the DMRS from the base station by using the same. DMRS may be transmitted through a data channel (eg, PDSCH).
이제, 본 발명에 따라서 다중 안테나 시스템에서 자원 요소의 설정 또는 전송장치 및 방법을 설명한다. 이하에서, 본 발명에 따라서 단말 특정 IMR(UE specific Interference Measurement Resource element)을 설정하고 상기 IMR 설정 정보를 송수신하는 방법이 제안된다. 단말 특정 IMR이란 MU-MIMO 시스템에서 하나의 단말이 다른 단말로 인하여 수신되는 간섭 신호를 측정하는 자원 요소를 말한다. 이때, 하나의 단말은 전체 수신 신호에서 상기 다른 단말로 인하여 수신되는 간섭 신호를 제거하여 간섭을 조정할 수 있다. 즉, 단말 특정 IMR을 이용하여 단말의 수신단에서의 MU-MIMO 성능을 개선시킬 수 있다.Now, an apparatus and method for setting or transmitting a resource element in a multi-antenna system according to the present invention will be described. Hereinafter, according to the present invention, a method of setting a UE specific IMR (UE specific Interference Measurement Resource element) and transmitting and receiving the IMR configuration information is proposed. The UE-specific IMR refers to a resource element in which one terminal measures an interference signal received by another terminal in a MU-MIMO system. In this case, one terminal may adjust the interference by removing the interference signal received by the other terminal from the entire received signal. That is, MU-MIMO performance at the receiving end of the terminal can be improved by using the terminal specific IMR.
도 6은 본 발명에 따라서 자원 요소를 설정하는 방법의 일 예를 나타낸 흐름도이다.6 is a flowchart illustrating an example of a method for setting a resource element according to the present invention.
도 6을 참조하면, 기지국은 단말 특정 IMR을 설정하는 정보(또는, '단말 특정 IMR 설정(configuration)정보'라한다)을 단말로 전송한다(S600). IMR 설정정보는 IMR 구성정보라고도 한다.Referring to FIG. 6, the base station transmits information (or 'terminal specific IMR configuration information') for configuring the terminal specific IMR to the terminal (S600). IMR setting information is also called IMR configuration information.
일 예로, 상기 단말 특정 IMR 설정정보는 RRC 시그널링(Radio Resource Control signaling)을 통해 수신될 수 있다. 기지국은 RRC 시그널링을 통해 단말 특정 IMR을 설정할 수 있다.For example, the UE-specific IMR configuration information may be received through RRC signaling. The base station may configure the UE specific IMR through RRC signaling.
상기 단말 특정 IMR은 PDSCH 영역에 위치하도록(located) 설정될 수 있으며, 단말 특정 IMR를 위한 서브프레임 또는 서브밴드(subband)가 별도로 설정되어야 하는 것은 아니다.The UE-specific IMR may be configured to be located in a PDSCH region, and a subframe or subband for the UE-specific IMR should not be separately configured.
또한, 단말 특정 IMR은 DMRS를 포함하는 OFDM 심볼에 존재(exit)할 수 있다(특히, DMRS를 포함하는 2개의 OFDM 심볼에 포함될 수 있다). 구체적으로, 물리자원블록(physical resource block : PRB)는 12개의 부반송파(subcarrier)와 6개 또는 7개의 OFDM 심볼로 구성될 수 있으며 PRB는 'DMRS를 포함하는 OFDM 심볼'을 포함할 수 있는데, 상기 DMRS를 포함하는 2개의 OFDM 심볼에 단말 특정 IMR가 존재(exit)할 수 있다.In addition, the UE-specific IMR may be present in an OFDM symbol including a DMRS (in particular, may be included in two OFDM symbols including a DMRS). Specifically, a physical resource block (PRB) may consist of 12 subcarriers and 6 or 7 OFDM symbols, and the PRB may include an 'OFDM symbol including DMRS'. UE specific IMR may exist in two OFDM symbols including DMRS.
이때, DMRS를 포함하는 OFDM 심볼은 모두 단말 특정 IMR으로 구성되거나 일부만 단말 특정 IMR로 구성될 수 있다. DMRS를 포함하는 OFDM 심볼의 일부만 단말 특정 IMR로 구성되는 경우, 나머지 부분에 DMRS 또는 CSI-RS를 더 포함할 수도 있다.In this case, all of the OFDM symbols including the DMRS may be configured as a UE-specific IMR, or only a part may be configured as a UE-specific IMR. When only a part of the OFDM symbol including the DMRS is configured by the UE-specific IMR, the remaining part may further include a DMRS or CSI-RS.
한편, PRB(Physical Resource Block)에 단말 특정 IMR를 2개의 RE단위로 설정함으로써 필요 이상의 RE를 할당하지 않을 수 있고 오버헤드가 생기는 것을 방지할 수 있다. 물론 본 발명의 범위가 2개의 RE로 한정되는 것은 아니며, 단말 특정 IMR은 2개의 이상의 RE로 구성될 수 있다.On the other hand, by setting the UE-specific IMR in two RE units in the Physical Resource Block (PRB), it is possible to avoid allocating REs more than necessary and to prevent overhead. Of course, the scope of the present invention is not limited to two REs, and the UE-specific IMR may be composed of two or more REs.
한편, 상기 단말 특정 IMR의 패턴은 DMRS의 패턴과 유사하도록 구성될 수 있다. 이때, 기지국에 의하여 단말 특정 IMR이 설정되면 DMRS는 상기 단말 특정 IMR를 통해 커버될 수도 있다. 또는, 단말 특정 IMR이 전송되는 PDSCH 영역에서 DMRS를 통해 전송하려는 정보도 함께 전송될 수 있다. 상기 PDSCH 영역에 할당되는 자원은 RRC 시그널링(signaling)에 의해 설정될 수 있다. Meanwhile, the pattern of the terminal specific IMR may be configured to be similar to the pattern of DMRS. In this case, if the UE-specific IMR is configured by the base station, DMRS may be covered through the UE-specific IMR. Alternatively, information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
다른 예로, 단말 특정 IMR 설정정보는 IMR 자원 설정 지시자(IMR resource configuration indicator, 또는 'IMR 패턴 지시자'라고도 한다), OCC 지시자(OCC indicator), NDMRS ID 또는 nSCID를 포함할 수 있다. 여기서, NDMRS ID 및 nSCID는 단말 특정 DMRS 스크램블링 초기 상태를 결정하기위한 값이며, 보다 자세하게는 NDMRS ID는 DMRS 스크램블링 초기 상태를 위한 가상 셀 ID(virtual Cell ID for DMRS scrambling initial state)이다.As another example, the UE-specific IMR configuration information may include an IMR resource configuration indicator (also referred to as an IMR resource configuration indicator or an IMR pattern indicator), an OCC indicator, an N DMRS ID, or an n SCID . Here, N DMRS ID and n SCID are values for determining UE-specific DMRS scrambling initial state, and more specifically, N DMRS ID is a virtual cell ID for DMRS scrambling initial state.
다음 표는 단말 특정 IMR 설정정보의 일 예를 나타낸다. The following table shows an example of UE-specific IMR configuration information.
표 3
정보 필드 설명
IMRResourceConfig IMR 패턴, 12 비트 또는 8비트
TABLE 3
Information field Explanation
IMRResourceConfig IMR pattern, 12 or 8 bits
표 3을 참조하면, 단말 특정 IMR 설정정보는 IMR 자원 설정 지시자만 포함할 수 있다. 예를 들어, 단말 특정 IMR가 DMRS 영역에 있지 않은 경우이거나, DMRS 관련 정보를 전송할 필요가 없는 경우에 단말 특정 IMR 설정정보는 IMR 자원 설정 지시자만 포함할 수 있다. Referring to Table 3, the UE-specific IMR configuration information may include only the IMR resource configuration indicator. For example, when the UE-specific IMR is not in the DMRS region or when it is not necessary to transmit DMRS-related information, the UE-specific IMR configuration information may include only the IMR resource configuration indicator.
여기서, 'IMRResourceConfig'는 IMR 자원 설정 지시자이며 IMR 패턴을 지시한다. 예를 들어, IMR 자원 설정 지시자는 각 부반송파가 단말 특정 IMR를 포함하는지 여부를 지시한다. Here, 'IMRResourceConfig' is an IMR resource configuration indicator and indicates an IMR pattern. For example, the IMR resource configuration indicator indicates whether each subcarrier includes a terminal specific IMR.
IMR 자원 설정 지시자의 각 비트는 부반송파에 대응될 수 있다. 예를 들어, IMR 자원 설정 지시자는 12비트일 수 있으며, LSB는 가장 작은 부반송파 인덱스(subcarrier index)에 대응되고 MSB는 가장 큰 부반송파 인덱스에 대응될 수 있다. IMR 자원 설정 지시자에 의해서, 각 부반송파에 단말 특정 IMR이 포함되어 있는지 여부가 지시된다(indicated). 다른 예로, IMR 자원 설정 지시자의 크기가 8비트일 수도 있으며, 각 비트는 PRB의 12 부반송파중 일부 부반송파(예를 들어, CSI-RS를 포함하지 않는 부반송파)의 인덱스에 각각 대응될 수 있다.Each bit of the IMR resource configuration indicator may correspond to a subcarrier. For example, the IMR resource configuration indicator may be 12 bits, and the LSB may correspond to the smallest subcarrier index and the MSB may correspond to the largest subcarrier index. The IMR resource configuration indicator indicates whether each subcarrier includes a terminal specific IMR. As another example, the size of the IMR resource configuration indicator may be 8 bits, and each bit may correspond to an index of some subcarriers (eg, subcarriers not including CSI-RS) among 12 subcarriers of the PRB.
다음 표는 단말 특정 IMR 설정정보의 다른 예를 나타낸다.The following table shows another example of UE-specific IMR configuration information.
표 4
정보 필드 설명
IMRResourceConfig IMR 패턴을 지시, 12 비트 또는 8비트
OCC 지시자(OCCIndicator) 간섭 측정을 위한 OCC 커버(cover)를 지시, 1비트 또는 2비트 또는 3비트
NDMRS ID DMRS 스크램블링 초기 상태를 위한 가상 셀 ID(DMRS scrambling initial state Virtual Cell ID)상기 가상 셀 ID은 MU-MIMO 모드 동작시 페어링(pairing) 될 가능성이 있는 단말의 셀 ID 임.
nSCID DMRS 스크램블링 초기 상태를 위한 nSCID
Table 4
Information field Explanation
IMRResourceConfig Indicates IMR pattern, 12 bit or 8 bit
OCC Indicator Indicates OCC cover for interferometry, 1 bit or 2 bits or 3 bits
N DMRS ID DMRS scrambling initial state Virtual Cell ID (DMRS scrambling initial state Virtual Cell ID) The virtual cell ID is a cell ID of the terminal that is likely to be paired (pairing) in the MU-MIMO mode operation.
n SCID N SCID for DMRS scrambling initial state
표 4를 참조하면, 단말 특정 IMR 설정정보는 IMR 자원 설정 지시자, OCC 지시자, NDMRS ID 및 nSCID를 포함할 수 있다. 단말 특정 IMR가 DMRS 영역에 있는 경우이거나 DMRS 관련 정보를 전송할 필요가 있는 경우 단말 특정 IMR 설정정보는 IMR 자원 설정 지시자, OCC 지시자, NDMRS ID 및 nSCID를 포함할 수 있다. 여기서, 단말 특정 IMR 설정정보가 DMRS 영역이 있는 경우란 DMRS가 전송되도록 할당된 영역에 단말 특정 IMR이 설정되는 경우를 말한다. 이를 단말 특정 IMR이 DMRS 영역에 할당된다고도 말한다. 또는, 단말 특정 IMR이 DMRS를 공유(share)한다고도 한다.Referring to Table 4, the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, N DMRS ID and n SCID . When the UE-specific IMR is in the DMRS region or when it is necessary to transmit DMRS-related information, the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID . Here, the case in which the UE-specific IMR configuration information has a DMRS region means that a UE-specific IMR is set in a region allocated to transmit the DMRS. This is also referred to as UE-specific IMR is allocated to the DMRS region. Alternatively, the UE-specific IMR may also share the DMRS.
여기서, OCC 지시자, NDMRS ID 및 nSCID는 단말이 다른 단말의 DMRS를 기초로 MU-MIMO 간섭을 측정하도록 허락(allow)하기 위하여 단말에게 전송되는 정보이다. OCC 지시자는 간섭 측정을 위한 OCC 커버를 지시하는 지시자이며, NDMRS ID는 DMRS 스크램블링 초기 상태를 위한 가상 셀 ID(virtual Cell ID for DMRS scrambling initial state)이며, nSCID는 단말 특정 DMRS 스크램블링 초기 상태를 결정하기 위한 값이다. Here, the OCC indicator, N DMRS ID and n SCID are information transmitted to the terminal to allow the terminal to measure MU-MIMO interference based on the DMRS of another terminal. The OCC indicator is an indicator indicating an OCC cover for interference measurement, N DMRS ID is a virtual cell ID for DMRS scrambling initial state, and n SCID is a terminal specific DMRS scrambling initial state. The value to determine.
일 예로, OCC 지시자, NDMRS ID 및 nSCID는 기존의 DMRS에서 사용되는 포맷과 동일한 포맷일 수 잇다. 즉, 단말 특정 IMR은 DMRS에 IMR 자원 설정 지시자를 더 포함하는 포맷일 수 있다. 상기 NDMRS ID 는 페어링될 단말에 대한 두 개의 가상 셀 ID(virtual cell ID) 값으로, 상기 NDMRS ID 필드를 통해 기지국으로 전달된다.For example, the OCC indicator, the N DMRS ID, and the n SCID may be the same format as that used in the existing DMRS. That is, the terminal specific IMR may be in a format further including an IMR resource configuration indicator in the DMRS. The N DMRS ID is two virtual cell ID values for the terminal to be paired and is transmitted to the base station through the N DMRS ID field.
한편, OCC 지시자가 지시하는 DMRS의 OCC 커버는 두가지 종류가 일 수 있다. 길이가 2인 OCC 커버 및 길이가 4인 OCC 커버이다. 이에 따라서, OCC 지시자는 적어도 3가지 형태가 가능하다.Meanwhile, the OCC cover of the DMRS indicated by the OCC indicator may be of two types. An OCC cover of length 2 and an OCC cover of length 4. Accordingly, at least three types of OCC indicators are possible.
표 5는 1비트 OCC 지시자, 즉, 길이가 2인 OCC 커버의 일 예를 나타낸다.Table 5 shows an example of a 1-bit OCC indicator, that is, an OCC cover having a length of 2.
표 5
OCC 지시자
Figure PCTKR2013011477-appb-I000009
0 [+1 +1]
1 [-1 +1]
Table 5
OCC indicator
Figure PCTKR2013011477-appb-I000009
0 [+1 +1]
One [-1 +1]
표 6은 2비트 OCC 지시자, 즉, 길이가 4인 OCC 커버의 일 예를 나타낸다.Table 6 shows an example of a 2-bit OCC indicator, that is, an OCC cover having a length of four.
표 6
OCC 지시자
Figure PCTKR2013011477-appb-I000010
00 [+1 +1 +1 +1]
01 [+1 -1 +1 -1]
10 [+1 +1 -1 -1]
11 [+1 -1 -1 +1]
Table 6
OCC indicator
Figure PCTKR2013011477-appb-I000010
00 [+1 +1 +1 +1]
01 [+1 -1 +1 -1]
10 [+1 +1 -1 -1]
11 [+1 -1 -1 +1]
표 7은 3비트 OCC 지시자, 즉, 길이가 2인 OCC 커버와 길이가 4인 OCC 커버를 모두 지시하는 지시자의 일 예를 나타낸다.Table 7 shows an example of a 3-bit OCC indicator, that is, an indicator indicating both an OCC cover of length 2 and an OCC cover of length 4.
표 7
OCC 지시자 OCC
000 No OCC
001 [+1 +1]
010 [-1 +1]
011 [+1 +1 +1 +1]
100 [+1 -1 +1 -1]
101 [+1 +1 -1 -1]
110 [+1 -1 -1 +1]
111 예약됨(reserved)
TABLE 7
OCC indicator OCC
000 No OCC
001 [+1 +1]
010 [-1 +1]
011 [+1 +1 +1 +1]
100 [+1 -1 +1 -1]
101 [+1 +1 -1 -1]
110 [+1 -1 -1 +1]
111 Reserved
한편, NDMRS ID는 단말 특정 DMRS 스크램블링 초기 상태를 위한 가상 셀 ID이며, NDMRS ID의 길이는 '0' 내지 '503' 중 하나일 수 있으며, 이때 단위는 비트일 수 있다.Meanwhile, the N DMRS ID is a virtual cell ID for the UE-specific DMRS scrambling initial state, and the length of the N DMRS ID may be one of '0' to '503', and the unit may be a bit.
또한, nSCID는 단말 특정 DMRS 스크램블링 초기 상태를 결정하기 위한 값이며, '0' 또는 '1' 중 하나의 값을 갖는다. In addition, n SCID is a value for determining the UE-specific DMRS scrambling initial state, and has a value of '0' or '1'.
nSCID 및 NDMRS ID를 기초로, 단말 특정 DMRS 스크램블링 초기 상태는 다음 수학식과 같이 결정될 수 있다. Based on the n SCID and the N DMRS ID , the UE-specific DMRS scrambling initial state may be determined as follows.
수학식 2
Figure PCTKR2013011477-appb-M000002
Equation 2
Figure PCTKR2013011477-appb-M000002
이때, 'Cinit'는 쓰도-랜덤 시퀀스(pseudo-random sequence)의 초기값(initial value)일 수도 있다.In this case, 'C init' may be an initial value of a pseudo-random sequence.
한편 단계 S600에 이어서, RRC 시그널링(signaling)을 통해 단말 특정 IMR이 DMRS 영역에 할당되면, 상기 단말 특정 IMR을 통해서 단말은 다른 단말의 간섭을 측정(measure)한다(또는 추정(estimate)한다)(S605).On the other hand, after step S600, if the UE-specific IMR is allocated to the DMRS region through RRC signaling, the UE measures (or estimates) interference of another UE through the UE-specific IMR ( S605).
단말이 다른 단말로부터의 간섭을 측정하는 과정을 구체적으로 설명한다.A process of measuring interference from another terminal by another terminal will be described in detail.
기지국이 설정한 단말 특정 IMR에 의하여, 단말이 수신하는 PDSCH에서 단말 특정 IMR이 할당되는 부분은 뮤트된다(muted)(또는, 해당 영역에서 PDSCH의 데이터가 제거된다, 또는 해당 영역에서 PDSCH의 데이터가 무시된다, 또는 해당 영역에서 PDCSH가 펑쳐링(puncturing) 된다). 기지국이 단말에게 전송하고자 하는 데이터가 PDSCH 중 단말 특정 IMR에서는 뮤트되므로, 상기 단말 특정 IMR는 다른 단말에게 전송하는 데이터 또는 잡음과 같은 기타 간섭 신호들만 포함한다. According to the UE-specific IMR set by the base station, the portion to which the UE-specific IMR is allocated in the PDSCH received by the UE is muted (or the data of the PDSCH is removed from the corresponding region, or the data of the PDSCH is removed from the corresponding region). Ignored, or PDCSH is punctured in that region). Since the data to be transmitted to the terminal by the base station is muted in the terminal specific IMR of the PDSCH, the terminal specific IMR includes only other interference signals such as data or noise transmitted to other terminals.
따라서, 단말은 단말 특정 IMR에 포함된 신호를 측정하여 다른 단말의 간섭 신호(또는 각종 잡음을 포함한 값)를 측정할 수 있다. 예를 들어, MU-MIMO 시스템의 단말은 상기 단말 특정 IMR을 기초로 다른 단말의 간섭을 측정할 수 있다Accordingly, the terminal may measure an interference signal (or a value including various noises) of another terminal by measuring a signal included in the terminal specific IMR. For example, a terminal of the MU-MIMO system may measure interference of another terminal based on the terminal specific IMR.
이와 같이 단말 특정 IMR을 통해 얻은 다른 단말로부터의 간섭 정보는 진화된(advanced) MMSE(minimum-mean-square error) 수신기(예, MMSE IRC(interference rejection combination) 수신기)에 적용될 수 있으며, 단말이 간섭 신호 또는 데이터 신호를 감지(detection)하는 성능을 개선하는데 사용될 수 있다.As such, interference information obtained from another UE through UE-specific IMR may be applied to an advanced minimum-mean-square error (MMSE) receiver (eg, an MMSE IRC (interference rejection combination receiver). It can be used to improve the performance of detecting signal or data signals.
한편, 단말 특정 IMR에 PRB 번들링(bundling)이 적용될 수도 있다.Meanwhile, PRB bundling may be applied to the UE-specific IMR.
도 7은 본 발명에 따라서 단말 측정 IMR 설정하는 IMR 자원 설정 지시자의 일 예를 나타낸다. IMR 자원 설정 지시자의 크기가 12비트인 경우이다.7 illustrates an example of an IMR resource configuration indicator configured for UE measurement IMR configuration according to the present invention. The size of the IMR resource configuration indicator is 12 bits.
도 7을 참조하면, IMR 자원 설정 지시자의 MSB(720)는 가장 작은 부반송파 인덱스(subcarrier index)에 대응되며, LSB(710)는 가장 큰 부반송파 인덱스에 대응된다. 다른 예로, IMR 자원 설정 지시자의 LSB는 가장 작은 부반송파 인덱스에 대응되며, MSB는 가장 큰 부반송파 인덱스에 대응될 수 있다. Referring to FIG. 7, the MSB 720 of the IMR resource configuration indicator corresponds to the smallest subcarrier index, and the LSB 710 corresponds to the largest subcarrier index. As another example, the LSB of the IMR resource configuration indicator may correspond to the smallest subcarrier index, and the MSB may correspond to the largest subcarrier index.
이때, IMR 자원 설정 지시자의 각 비트 중 '1'값을 갖는 비트는 대응되는 부반송파가 단말 측정 IMR을 포함함을 지시할 수 있다. 다른 예로, IMR 자원 설정 지시자의 각 비트 중 '0'값을 갖는 비트는 대응되는 부반송파가 단말 측정 IMR을 포함함을 지시할 수도 있다.In this case, a bit having a value of '1' among each bit of the IMR resource configuration indicator may indicate that a corresponding subcarrier includes a terminal measurement IMR. As another example, a bit having a value of '0' among each bit of the IMR resource configuration indicator may indicate that a corresponding subcarrier includes UE measurement IMR.
도 8은 본 발명에 따라서 단말 측정 IMR 설정하는 IMR 자원 설정 지시자의 다른 예를 나타낸다. IMR 자원 설정의 크기가 8비트인 경우이다.8 shows another example of an IMR resource configuration indicator for UE measurement IMR configuration according to the present invention. This is the case where the size of the IMR resource configuration is 8 bits.
도 8을 참조하면, PRB는 CSI-RS가 할당되는(occupied) 가능성(possible)이 있는 RE들을 포함하는 부반송파(예, 4개)를 포함할 수 있다. CSI-RS를 위해 할당되는 가능성이 있는 부반송파를 제외한 나머지 부반송파(예, 8개)에 단말 특정 IMR이 포함될 수 있다. 따라서, 크기가 8비트인 IMR 자원 설정 지시자는 CSI-RS가 할당될 가능성이 없는 부반송파가 단말 특정 IMR을 포함하는지 여부를 지시할 수 있다. 즉, IMR 자원 설정 지시자의 각 비트 중 '1'값을 갖는 비트는 대응되는 부반송파가 단말 측정 IMR을 포함함을 지시한다.Referring to FIG. 8, the PRB may include subcarriers (eg, four) including REs that are likely to be occupied with the CSI-RS. UE-specific IMRs may be included in the remaining subcarriers (eg, eight) except for subcarriers that may be allocated for CSI-RS. Accordingly, the 8-bit IMR resource configuration indicator may indicate whether the subcarrier to which the CSI-RS is not allocated includes the UE-specific IMR. That is, a bit having a value of '1' among each bit of the IMR resource configuration indicator indicates that the corresponding subcarrier includes a terminal measurement IMR.
도 9는 본 발명에 따라서 단말이 다른 단말에 의한 간섭(예, MU-MIMO 간섭)을 측정하는 것의 일 예를 나타낸다. 이하에서, 간섭을 측정하는 단말은 인덱스(index)가 'i'인 'UEi'로 설명한다.9 illustrates an example in which a terminal measures interference (eg, MU-MIMO interference) by another terminal according to the present invention. Hereinafter, a terminal measuring interference will be described as 'UE i ' having an index 'i'.
도 9를 참조하면, 단말은 PRB에서 DMRS가 할당된 영역을 통해 채널(H)을 추정하고(910, 920, 940), 단말 특정 IMR이 할당된 영역을 통해 간섭(RI)를 측정(measure) 또는 추정(estimate)한다(930).Referring to FIG. 9, a UE estimates a channel H through a region where a DMRS is allocated in a PRB (910, 920, 940), and measures interference R I through a region where a UE-specific IMR is allocated. Or estimate 930.
단말(UEi)은 DMRS를 기초로 채널 '
Figure PCTKR2013011477-appb-I000011
'를 추정(estimate)할 수 있다. 만약 'Nt * Ri' 크기의 프리코딩 매트릭스를 '
Figure PCTKR2013011477-appb-I000012
' 라고 표현한다면(express), 여기서, 'H'는 'Nr * Nt' 크기의 채널 매트릭스(channel matrix)이고, 'Ci'는 기지국에 의해 계산되는 단말 UEi를 위한 'Nt * Ri'크기의 프리코딩 매트릭스(precoding matrix)이다. 여기서, Nr은 수신측의 안테나 개수를 의미하고, Nt는 전송측의 안테나 개수를 의미하고, Ri는 단말의 전체 레이어의 개수를 의미한다.
UE (UE i ) is based on the DMRS '
Figure PCTKR2013011477-appb-I000011
'Can be estimated. If you have a precoding matrix of size 'Nt * R i '
Figure PCTKR2013011477-appb-I000012
Where 'H' is a channel matrix of size 'Nr * Nt', and 'C i ' is 'Nt * R i ' for the UE UE i calculated by the base station. It is a precoding matrix of magnitude. Here, Nr means the number of antennas on the receiving side, Nt means the number of antennas on the transmitting side, and Ri means the number of all layers of the terminal.
단말 UEi가 수신하는 신호(Y)는 다음 수학식과 같이 표현될 수 있다.The signal Y received by the UE UE i may be expressed as in the following equation.
수학식 3
Figure PCTKR2013011477-appb-M000003
Equation 3
Figure PCTKR2013011477-appb-M000003
여기서, 여기서, '
Figure PCTKR2013011477-appb-I000013
'(j=1,…,N and j≠i)는 다른 단말 UEj에 대한 채널이다. 'I'는 단말(UEi)에 대한 잡음(noise)과 셀 간 간섭(inter-cell interference)등을 합한 것이다. Xi는 단말 UEi의 데이터 심볼(data symbol), Xj는 다른 단말 UEj의 데이터 심볼이다.
Where, where
Figure PCTKR2013011477-appb-I000013
'(j = 1, ..., N and j ≠ i) is a channel for another UE UE j . 'I' is the sum of noise and inter-cell interference with respect to the UE UE i . X i is a data symbol of the terminal UE i , X j is a data symbol of the other terminal UE j .
단말(UEi)은 선형 수신기(linear receiver)에 의하여 수신 신호(Y)의 데이터 심볼(
Figure PCTKR2013011477-appb-I000014
)을 얻을 수 있다. 다음 수학식은 데이터 심볼을 구하는 방법의 일 예를 나타낸다.
The terminal UE i is a data symbol of the received signal Y by a linear receiver.
Figure PCTKR2013011477-appb-I000014
) Can be obtained. The following equation shows an example of a method of obtaining data symbols.
수학식 4
Figure PCTKR2013011477-appb-M000004
Equation 4
Figure PCTKR2013011477-appb-M000004
여기서 Wi는 단말(UEi)의 감지 가중치(detection weight)이다.Here, W i is the detection weight of the UE (UE i ).
단말의 감지 가중치(Wi)는 단말 특정 IMR이 새로운 RE인 경우(예, DMRS 영역내에 있지 않은 경우)와 단말 특정 IMR이 DMRS 영역 내에 있는 경우로 나누어 설명한다.Of the terminal sensed weight (W i) is described by dividing the terminal is within the specific case of the new IMR RE (for example, if it is not within the area DMRS) and the UE-specific IMR the DMRS region.
<1. 단말 특정 IMR이 새로운 RE인 경우><1. If the UE-specific IMR is a new RE>
단말 특정 IMR이 새로운 타입의 RE일 때(예, DMRS 영역 내가 아닌 경우 또는 상기 표 3과 같은 단말 특정 IMR 설정정보에 의하는 경우), 단말 UEi는 단말 특정 IMR가 포함되는 영역에 대하여 PDSCH가 뮤트된다(또는, 해당 영역에서 PDSCH의 데이터가 제거된다, 또는 해당 영역에서 PDSCH의 데이터가 무시된다, 또는 해당 영역에서 PDCSH가 펑쳐링된다). When the UE-specific IMR is a new type of RE (eg, when it is not in the DMRS region or by UE-specific IMR configuration information as shown in Table 3), the UE UE i indicates that the PDSCH is determined for the region in which the UE-specific IMR is included. It is muted (or the data of the PDSCH is removed in the area, or the data of the PDSCH is ignored in the area, or the PDCSH is punctured in the area).
이때, 단말 특정 IMR 영역에서의 수신신호(YIMR)는 다음 수학식과 같이 표현될 수 있다.In this case, the received signal Y IMR in the UE-specific IMR region may be expressed by the following equation.
수학식 5
Figure PCTKR2013011477-appb-M000005
Equation 5
Figure PCTKR2013011477-appb-M000005
여기서, 잡음과 셀간 간섭의 합 'I'의 상관 특성(correlation property)은 CRS RE(Cell-specific Reference Signal RE)에 의하여 측정(또는 추정)될 수 있으며, 이를 RI라고도 한다.Here, the correlation property of the sum 'I' of the noise and the inter-cell interference may be measured (or estimated) by a cell-specific reference signal RE (CRS RE), also referred to as R I.
따라서, RI를 이용하여 I에 의한 영향을 제거하여(또는 상쇄하여, 또는 감안하여), 단말 UEi는 다른 단말로부터의 간섭(
Figure PCTKR2013011477-appb-I000015
라 한다)을 측정(또는 추정)할 수 있다.
Thus, by using R I to remove (or cancel, or take into account) the effect of I, the UE UE i is not subject to interference from other terminals (
Figure PCTKR2013011477-appb-I000015
Can be measured (or estimated).
MU-MIMO 시스템에서, 단말은 간섭의 통계적 특성(statistic property, (RMU-MIMO)을 CRS RE와 단말 특정 IMR을 결합하여(joint) 얻을 수 있다. 다음 수학식은 RMU-MIMO의 일 예를 나타낸다.In the MU-MIMO system, the UE may obtain a statistical property of interference (R MU-MIMO ) by combining the CRS RE and the UE-specific IMR The following equation is an example of the R MU-MIMO . Indicates.
수학식 6
Figure PCTKR2013011477-appb-M000006
Equation 6
Figure PCTKR2013011477-appb-M000006
RMU-MIMO RI와 함께 '감지 가중치(Wi)'를 이용하여(또는 제어하여, 또는 조절하여) MMSE IRC 수신기는 성능(예, PDSCH 감지 성능)을 높일 수 있다. 예를 들어, 셀간 간섭과 MU-MIMO 간섭을 억제하여 MMSE 성능은 개선될 수 있다. 다음 수학식은 감지 가중치(Wi)의 일 예를 나타낸다.R MU-MIMO and Using (or controlling, or adjusting) the 'sensing weights W i ' with R I , the MMSE IRC receiver can increase performance (eg, PDSCH sensing performance). For example, MMSE performance may be improved by suppressing intercell interference and MU-MIMO interference. The following shows an example of a mathematical expression detecting weights (W i).
수학식 7
Figure PCTKR2013011477-appb-M000007
Equation 7
Figure PCTKR2013011477-appb-M000007
<2. 단말 특정 IMR이 DMRS영역 내에 있는 경우><2. UE specific IMR is in DMRS area>
만약 단말 특정 IMR이 DMRS 영역내에 있으면, 단말 특정 IMR 설정정보에 포함되는(또는 RRC 시그널링을 통해 전송되는) 파라미터인 'OCC 지시자', 'NDMRS ID' 및 'nSCID'는 유효하며(예, 단말 특정 IMR이 DMRS를 커버하며), 하나의 안테나 포트 DMRS(one antenna port DMRS) 또는 두 안테나 포트 DMRS의 합(sum of two antenna port DMRS)을 지시할 수 있다. If the UE-specific IMR is in the DMRS region, the 'OCC indicator', 'N DMRS ID ' and 'n SCID ' parameters included in the UE-specific IMR configuration information (or transmitted through RRC signaling) are valid (eg, UE specific IMR covers DMRS), and may indicate one antenna port DMRS or a sum of two antenna port DMRS.
이때 OCC 지시자, NDMRS ID 및 nSCID가 두 안테나 포트 DMRS의 합을 지시하는 경우는 다른 단말의 DMRS의 OCC 길이가 4이고 상기 OCC 지시자가 지시되는 OCC 길이가 2인 경우이다.In this case, when the OCC indicator, the N DMRS ID, and the n SCID indicate the sum of two antenna port DMRSs, the OCC length of the DMRS of another UE is 4 and the OCC length indicated by the OCC indicator is 2.
이와 같이 상기 파라미터들(OCC 지시자, NDMRS ID 및 nSCID)에 의하여 지시된 DMRS가 단말 자신의 DMRS가 아님을 단말이 아는 경우, 단말은 상기 파라미터들에 의하여 지시된 DMRS를 이용하여 다른 단말들로부터의 간섭을 측정(또는 추정)할 수 있다. As such, when the UE knows that the DMRS indicated by the parameters (OCC indicator, N DMRS ID, and n SCID ) is not the UE's own DMRS, the UE uses other terminals by using the DMRS indicated by the parameters. Interference from can be measured (or estimated).
이때, 단말 특정 IMR이 DMRS 영역내에 있는 경우, MU-MIMO에서 두 개의 단말의 간섭이 억제될 수 있다(suppressed). 하지만 단말 특정 IMR을 위하여 추가적으로 RE를 할당할 필요가 없기 때문에 오버헤드가 적은 장점이 있다.In this case, when the UE-specific IMR is in the DMRS region, interference of two UEs may be suppressed in MU-MIMO. However, since there is no need to additionally allocate an RE for UE-specific IMR, there is an advantage of less overhead.
예를 들어, 단말 UEi의 DMRS 포트가 '7'이면, 상기 DMRS 안테나 포트 7에 의하여 단말 UEi는 프리코딩된 채널(
Figure PCTKR2013011477-appb-I000016
)을 추정할 수 있다. 단말 특정 IMR이 안테나 포트 8을 지시하면, 단말 UEi는 상기 DMRS 안테나 포트 8에 의하여 다른 단말UEj의 프리코딩된 채널(
Figure PCTKR2013011477-appb-I000017
)을 추정할 수 있다.
For example, if the DMRS port of the UE UE i is '7', the UE UE i is precoded by the DMRS antenna port 7.
Figure PCTKR2013011477-appb-I000016
) Can be estimated. When the UE-specific IMR indicates antenna port 8, UE UE i is precoded by another DMRS antenna port 8 to a precoded channel (UE) of UE j .
Figure PCTKR2013011477-appb-I000017
) Can be estimated.
이 경우, MU-MIMO 간섭(RMU-MIMO)는 다음 수학식과 같이 구할 수 있다.In this case, MU-MIMO interference (R MU-MIMO ) can be obtained by the following equation.
수학식 8
Figure PCTKR2013011477-appb-M000008
Equation 8
Figure PCTKR2013011477-appb-M000008
RMU-MIMO 및 RI,와 함께 감지 가중치(Wi)를 이용하여(또는 제어하여, 또는 조절하여), MMSE IRC 수신기는 성능(예, PDSCH 감지 성능)을 높일 수 있다. 다음 수학식은 단말 UEi의 감지 가중치(Wi)의 다른 예를 나타낸다.R MU-MIMO and R I, with Detecting the weight (W i) using the (or to control, or to control), MMSE IRC receiver can improve performance (for example, PDSCH detection performance). The following shows another example of a mathematical expression of the terminal UE i sensing the weight (W i).
수학식 9
Figure PCTKR2013011477-appb-M000009
Equation 9
Figure PCTKR2013011477-appb-M000009
즉, 상기 감지 가중치(Wi)를 이용하여 단말은 프리코딩된 채널 '
Figure PCTKR2013011477-appb-I000018
'에 대한 단말 UEi의 간섭을 제거(또는 제어, 또는 조정, 또는 억제)할 수 있다.
That is, using the detected weights (W i) terminal precoded channel "
Figure PCTKR2013011477-appb-I000018
'May remove (or control, or adjust, or suppress) interference of UE UE i with respect to'.
도 10은 본 발명에 따라서 자원 요소를 설정하는 단말의 동작의 일 예를 나타내는 순서도이다. 10 is a flowchart illustrating an example of an operation of a terminal for setting a resource element according to the present invention.
도 10를 참조하면, 단말은 기지국으로부터 단말 특정 IMR을 설정하는 RRC 시그널링을 수신한다(S1000). 또는 기지국이 단말로 전송하는 RRC 메시지(예, RRC 연결 재설정 메시지, RRC 연결 재구성 메시지)는 단말 특정 IMR을 설정하는 정보(즉, 단말 특정 IMR 설정정보)를 포함할 수 있다.Referring to FIG. 10, the terminal receives an RRC signaling for configuring terminal specific IMR from the base station (S1000). Alternatively, the RRC message (eg, RRC connection reconfiguration message, RRC connection reconfiguration message) transmitted from the base station to the terminal may include information for setting the terminal specific IMR (that is, the terminal specific IMR configuration information).
일 예로, 상기 단말 특정 IMR 설정정보는 상기 단말 특정 IMR이 PDSCH 영역에 위치하도록 설정하는 정보일 수 있다.For example, the UE-specific IMR configuration information may be information for configuring the UE-specific IMR to be located in the PDSCH region.
다른 예로, 상기 단말 특정 IMR 설정정보는 상기 단말 특정 IMR이 DMRS를 포함하는 OFDM 심볼에 존재하도록 설정하는 정보일 수 있다.As another example, the UE specific IMR configuration information may be information for configuring the UE specific IMR to exist in an OFDM symbol including DMRS.
또 다른 예로, DMRS를 포함하는 OFDM 심볼은 모두 단말 특정 IMR으로 구성되거나 일부만 단말 특정 IMR로 구성될 수 있다. DMRS를 포함하는 OFDM 심볼의 일부만 단말 특정 IMR로 구성되는 경우, 나머지 부분에 DMRS 또는 CSI-RS를 더 포함할 수도 있다.As another example, the OFDM symbols including the DMRS may be configured in all of the UE-specific IMR or only part of the UE-specific IMR. When only a part of the OFDM symbol including the DMRS is configured by the UE-specific IMR, the remaining part may further include a DMRS or CSI-RS.
또 다른 예로, 단말 특정 IMR의 패턴은 DMRS의 패턴과 유사하도록 구성될 수 있다. 이때, 기지국에 의하여 단말 특정 IMR이 설정되면 DMRS는 상기 단말 특정 IMR를 통해 커버될 수도 있다. 또는, 단말 특정 IMR이 전송되는 PDSCH 영역에서 DMRS를 통해 전송하려는 정보도 함께 전송될 수 있다. 상기 PDSCH 영역에 할당되는 자원은 RRC 시그널링에 의해 설정될 수 있다. As another example, the pattern of the UE-specific IMR may be configured to be similar to the pattern of the DMRS. In this case, if the UE-specific IMR is configured by the base station, DMRS may be covered through the UE-specific IMR. Alternatively, information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
또 다른 예로, 단말 특정 IMR 설정정보는 상기 표 3과 같이 IMR 자원 설정 지시자를 포함할 수 있다. 상기 IMR 자원 설정 지시자는 상기 도 7 내지 도 8에서 설명한 지시자일 수 있다.As another example, the UE specific IMR configuration information may include an IMR resource configuration indicator as shown in Table 3 above. The IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
또 다른 예로, 단말 특정 IMR 설정정보는 상기 표 4와 같이 IMR 자원 설정지시자, OCC 지시자, NDMRS ID 및 nSCID를 포함할 수 있다. 이때, OCC 지시자는 길이가 2인 OCC 커버 또는 길이가 4인 OCC 커버를 지시할 수 있으며, 표 5 내지 표 7 중 하나일 수 있다. 또한, nSCID 및 NDMRS ID는 상기 수학식 2와 같이 단말 특정 DMRS 스크램블링 초기 상태를 결정하는 값일 수 있다. 상기 IMR 자원 설정 지시자는 상기 도 7 내지 도 8에서 설명한 지시자일 수 있다.As another example, the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID as shown in Table 4 above. In this case, the OCC indicator may indicate an OCC cover having a length of 2 or an OCC cover having a length of 4, and may be one of Tables 5 to 7. In addition, n SCID and N DMRS ID may be a value for determining an UE-specific DMRS scrambling initial state as shown in Equation 2 above. The IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
단계 S1000에 이어서, 단말은 PDSCH를 수신하기 위하여 먼저 PDCCH를 감지(detect)하고(S1005), DMRS를 기초로 하향링크 채널을 추정한다(estimate, S1010).After step S1000, the UE first detects the PDCCH in order to receive the PDSCH (S1005), and estimates the downlink channel based on the DMRS (estimate, S1010).
이어서, 단말은 단말 특정 IMR을 기초로 간섭(예, MU-MIMO 간섭)을 측정(또는 추정)한다(S1015). 일 예로, 단말은 상기 도 9와 같은 방법으로 간섭을 측정할 수 있다. Subsequently, the terminal measures (or estimates) the interference (eg, MU-MIMO interference) based on the terminal specific IMR (S1015). For example, the terminal may measure interference in the same manner as in FIG. 9.
설정된 단말 특정 IMR을 기초로, 단말은 PDSCH에서 단말 특정 IMR이 할당되는 부분을 뮤트한다(또는, 해당 영역에서 PDSCH의 데이터를 제거한다, 또는 해당 영역에서 PDSCH의 데이터를 무시한다, 또는 해당 영역에서 PDCSH를 펑쳐링한다). 이를 통해 단말은 다른 단말에게 전송하는 신호 또는 잡음과 같은 기타 간섭 신호들을 구별(또는 측정) 할 수 있다. Based on the configured UE-specific IMR, the UE mutes the portion of the PDSCH to which the UE-specific IMR is allocated (or removes data of the PDSCH in the corresponding region, or ignores the data of the PDSCH in the corresponding region, or in the corresponding region). Puncture the PDCSH). Through this, the terminal may distinguish (or measure) other interference signals such as a signal or noise transmitted to another terminal.
일 예로, 단말 특정 IMR이 새로운 RE인 경우(예, DMRS 영역내에 있지 않은 경우), 단말은 단말 특정 IMR을 이용하여 상기 수학식과 같이 단말 특정 IMR 영역에서의 수신신호(YIMR)을 계산하고, YIMR을 기초로 상기 수학식 6과 같이 CRS RE와 단말 특정 IMR을 결합(joint)하여 간섭의 통계적 특성(RMU-MIMO)을 계산하고, RMU-MIMO를 기초로 상기 수학식 7과 같이 단말 가중치(Wi)를 계산하고, Wi를 기초로 상기 수학식 4와 같이 선형 수신기를 이용하여 수신 신호로부터 데이터를 얻을 수 있다.For example, when the UE-specific IMR is a new RE (eg, not in the DMRS region), the UE calculates a received signal Y IMR in the UE-specific IMR region by using the UE-specific IMR as shown in the above equation, Based on the Y IMR , the CRS RE and the UE-specific IMR are combined to calculate a statistical characteristic of interference (R MU-MIMO ) as shown in Equation 6, and as shown in Equation 7 based on R MU-MIMO . The terminal weight Wi may be calculated, and data may be obtained from the received signal using a linear receiver as shown in Equation 4 based on W i .
다른 예로, 단말 특정 IMR이 DMRS 영역내에 있는 경우, 단말은 자신의 채널(Hi)을 추정하고 다른 단말의 채널(Hj)도 추정하여, Hi 및 Hj를 기초로 상기 수학식 8과 같이 간섭의 통계적 특성(RMU-MIMO)을 계산하고, RMU-MIMO를 기초로 상기 수학식 9과 같이 단말 가중치(Wi)를 계산하고, Wi를 기초로 상기 수학식 4와 같이 선형 수신기를 이용하여 수신 신호로부터 데이터를 얻을 수 있다.As another example, if the UE-specific IMR in the DMRS area, the mobile station its own channel (H i) to estimate and to estimate the channel (Hj) of the other terminals, as shown in the equation (8) on the basis of H i and H j Calculate the statistical characteristics (R MU-MIMO ) of the interference, calculate the terminal weight (W i ) as shown in Equation 9 based on the R MU-MIMO , and linear receiver as shown in Equation 4 based on W i Can be used to obtain data from the received signal.
단말은 수신기(예, MMSE IRC 수신기)를 통해 PDSCH를 감지하여(detect), 데이터를 수신한다(S1020). 단말은 측정한 다른 단말로부터의 간섭 정보를 MMSE 수신기에 적용하여 성능을 개선시킬 수 있다.The terminal detects the PDSCH through a receiver (eg, an MMSE IRC receiver) and receives data (S1020). The terminal may improve the performance by applying the interference information from the other terminal to the MMSE receiver.
도 11은 본 발명에 따라서 자원 요소를 설정하는 기지국의 동작의 일 예를 나타내는 순서도이다. 11 is a flowchart illustrating an example of an operation of a base station for setting a resource element according to the present invention.
도 11을 참조하면, 기지국은 RRC 시그널링을 이용하여 단말 특정 IMR을 단말에게 설정한다(S1100). 예를 들어, 기지국이 단말로 전송하는 RRC 메시지(예, RRC 연결 재설정 메시지, RRC 연결 재구성 메시지)는 단말 특정 IMR을 설정하는 정보(즉, 단말 특정 IMR 설정정보)를 포함할 수 있다.Referring to FIG. 11, the base station configures a terminal specific IMR to the terminal using RRC signaling (S1100). For example, the RRC message (eg, RRC connection reconfiguration message, RRC connection reconfiguration message) transmitted from the base station to the terminal may include information for configuring the UE-specific IMR (ie, UE-specific IMR configuration information).
일 예로, 상기 단말 특정 IMR 설정정보는 상기 단말 특정 IMR이 PDSCH 영역에 위치하도록 설정하는 정보일 수 있다.For example, the UE-specific IMR configuration information may be information for configuring the UE-specific IMR to be located in the PDSCH region.
다른 예로, 상기 단말 특정 IMR 설정정보는 상기 단말 특정 IMR이 DMRS를 포함하는 OFDM 심볼에 존재하도록 설정하는 정보일 수 있다.As another example, the UE specific IMR configuration information may be information for configuring the UE specific IMR to exist in an OFDM symbol including DMRS.
또 다른 예로, DMRS를 포함하는 OFDM 심볼은 모두 단말 특정 IMR으로 구성되거나 일부만 단말 특정 IMR로 구성될 수 있다. DMRS를 포함하는 OFDM 심볼의 일부만 단말 특정 IMR로 구성되는 경우, 나머지 부분에 DMRS 또는 CSI-RS를 더 포함할 수도 있다.As another example, the OFDM symbols including the DMRS may be configured in all of the UE-specific IMR or only part of the UE-specific IMR. When only a part of the OFDM symbol including the DMRS is configured by the UE-specific IMR, the remaining part may further include a DMRS or CSI-RS.
또 다른 예로, 단말 특정 IMR의 패턴은 DMRS의 패턴과 유사하도록 구성될 수 있다. 이때, 기지국에 의하여 단말 특정 IMR이 설정되면 DMRS는 상기 단말 특정 IMR를 통해 커버될 수도 있다. 또는, 단말 특정 IMR이 전송되는 PDSCH 영역에서 DMRS를 통해 전송하려는 정보도 함께 전송될 수 있다. 상기 PDSCH 영역에 할당되는 자원은 RRC 시그널링에 의해 설정될 수 있다. As another example, the pattern of the UE-specific IMR may be configured to be similar to the pattern of the DMRS. In this case, if the UE-specific IMR is configured by the base station, DMRS may be covered through the UE-specific IMR. Alternatively, information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
또 다른 예로, 단말 특정 IMR 설정정보는 상기 표 3과 같이 IMR 자원 설정 지시자를 포함할 수 있다. 상기 IMR 자원 설정 지시자는 상기 도 7 내지 도 8에서 설명한 지시자일 수 있다.As another example, the UE specific IMR configuration information may include an IMR resource configuration indicator as shown in Table 3 above. The IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
또 다른 예로, 단말 특정 IMR 설정정보는 상기 표 4와 같이 IMR 자원 설정지시자, OCC 지시자, NDMRS ID 및 nSCID를 포함할 수 있다. 이때, OCC 지시자는 길이가 2인 OCC 커버 또는 길이가 4인 OCC 커버를 지시할 수 있으며, 표 5 내지 표 7 중 하나일 수 있다. 또한, nSCID 및 NDMRS ID는 상기 수학식 2와 같이 단말 특정 DMRS 스크램블링 초기 상태를 결정하는 값일 수 있다. 상기 IMR 자원 설정 지시자는 상기 도 7 내지 도 8에서 설명한 지시자일 수 있다.As another example, the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID as shown in Table 4 above. In this case, the OCC indicator may indicate an OCC cover having a length of 2 or an OCC cover having a length of 4, and may be one of Tables 5 to 7. In addition, n SCID and N DMRS ID may be a value for determining an UE-specific DMRS scrambling initial state as shown in Equation 2 above. The IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
기지국은 하향링크 MU-MIMO 전송을 스케줄링한다(S1105). The base station schedules downlink MU-MIMO transmission (S1105).
기지국은 PDSCH 또는 DMRS를 단말로 전송한다(S1110). 예를 들어, 설정된 단말 특정 IMR을 기초로, 기지국은 PDSCH에서 단말 특정 IMR이 할당되는 부분을 뮤트한다(또는, 해당 영역에서 PDSCH의 데이터를 제거한다, 또는 해당 영역에서 PDSCH의 데이터를 무시한다, 또는 해당 영역에서 PDCSH를 펑쳐링한다). The base station transmits the PDSCH or the DMRS to the terminal (S1110). For example, based on the configured UE-specific IMR, the base station mutes the portion of the PDSCH to which the UE-specific IMR is allocated (or removes the data of the PDSCH in the corresponding region, or ignores the data of the PDSCH in the corresponding region, Or puncture PDCSH in that region).
도 12는 본 발명에 따라서 자원 요소를 설정하는 단말과 기지국을 도시한 블록도이다.12 is a block diagram illustrating a terminal and a base station for setting a resource element according to the present invention.
도 12를 참조하면, 단말(1200)은 수신부(1205) 또는 제어부(1210)를 포함한다. 제어부(1210)는 감지부(1215), 채널 추정부(1220) 또는 간섭 측정부(1225)를 포함한다.Referring to FIG. 12, the terminal 1200 includes a receiver 1205 or a controller 1210. The controller 1210 includes a detector 1215, a channel estimator 1220, or an interference measurer 1225.
수신부(1205)는 기지국(1250)으로부터 단말 특정 IMR을 설정하는 RRC 시그널링을 수신한다. 또는 수신부(1205)는 단말 특정 IMR을 설정하는 정보(즉, 단말 특정 IMR 설정정보)를 포함하는 RRC 메시지(예, RRC 연결 재설정 메시지, RRC 연결 재구성 메시지)를 수신한다.The receiver 1205 receives an RRC signaling for configuring a UE-specific IMR from the base station 1250. Alternatively, the reception unit 1205 receives an RRC message (eg, an RRC connection reconfiguration message or an RRC connection reconfiguration message) including information for configuring terminal specific IMR (that is, terminal specific IMR configuration information).
일 예로, 상기 단말 특정 IMR 설정정보는 상기 단말 특정 IMR이 PDSCH 영역에 위치하도록 설정하는 정보일 수 있다. For example, the UE-specific IMR configuration information may be information for configuring the UE-specific IMR to be located in the PDSCH region.
다른 예로, 상기 단말 특정 IMR 설정정보는 상기 단말 특정 IMR이 DMRS를 포함하는 OFDM 심볼에 존재하도록 설정하는 정보일 수 있다.As another example, the UE specific IMR configuration information may be information for configuring the UE specific IMR to exist in an OFDM symbol including DMRS.
또 다른 예로, DMRS를 포함하는 OFDM 심볼은 모두 단말 특정 IMR으로 구성되거나 일부만 단말 특정 IMR로 구성될 수 있다. DMRS를 포함하는 OFDM 심볼의 일부만 단말 특정 IMR로 구성되는 경우, 나머지 부분에 DMRS 또는 CSI-RS를 더 포함할 수도 있다.As another example, the OFDM symbols including the DMRS may be configured in all of the UE-specific IMR or only part of the UE-specific IMR. When only a part of the OFDM symbol including the DMRS is configured by the UE-specific IMR, the remaining part may further include a DMRS or CSI-RS.
또 다른 예로, 단말 특정 IMR의 패턴은 DMRS의 패턴과 유사하도록 구성될 수 있다. 이때, 기지국(1250)에 의하여 단말 특정 IMR이 설정되면 DMRS는 상기 단말 특정 IMR를 통해 커버될 수도 있다. 또는, 단말 특정 IMR이 전송되는 PDSCH 영역에서 DMRS를 통해 전송하려는 정보도 함께 전송될 수 있다. 상기 PDSCH 영역에 할당되는 자원은 RRC 시그널링에 의해 설정될 수 있다. As another example, the pattern of the UE-specific IMR may be configured to be similar to the pattern of the DMRS. At this time, if the UE-specific IMR is configured by the base station 1250, DMRS may be covered through the UE-specific IMR. Alternatively, information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
또 다른 예로, 단말 특정 IMR 설정정보는 상기 표 3과 같이 IMR 자원 설정 지시자를 포함할 수 있다. 상기 IMR 자원 설정 지시자는 상기 도 7 내지 도 8에서 설명한 지시자일 수 있다.As another example, the UE specific IMR configuration information may include an IMR resource configuration indicator as shown in Table 3 above. The IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
또 다른 예로, 단말 특정 IMR 설정정보는 상기 표 4와 같이 IMR 자원 설정지시자, OCC 지시자, NDMRS ID 및 nSCID를 포함할 수 있다. 이때, OCC 지시자는 길이가 2인 OCC 커버 또는 길이가 4인 OCC 커버를 지시할 수 있으며, 표 5 내지 표 7 중 하나일 수 있다. 또한, nSCID 및 NDMRS ID는 상기 수학식 2와 같이 단말 특정 DMRS 스크램블링 초기 상태를 결정하는 값일 수 있다. 상기 IMR 자원 설정 지시자는 상기 도 7 내지 도 8에서 설명한 지시자일 수 있다.As another example, the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID as shown in Table 4 above. In this case, the OCC indicator may indicate an OCC cover having a length of 2 or an OCC cover having a length of 4, and may be one of Tables 5 to 7. In addition, n SCID and N DMRS ID may be a value for determining an UE-specific DMRS scrambling initial state as shown in Equation 2 above. The IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
감지부(1215)는 PDSCH를 수신하기 위하여 먼저 PDCCH를 감지(detect)하고, 채널 추정부(1220)는 DMRS를 기초로 하향링크 채널을 추정한다(estimate).The detector 1215 first detects the PDCCH in order to receive the PDSCH, and the channel estimator 1220 estimates the downlink channel based on the DMRS.
간섭 측정부(1225)는 단말 특정 IMR을 기초로 간섭(예, MU-MIMO 간섭)을 측정(또는 추정)한다. 일 예로, 간섭 측정부(1225)는 상기 도 9와 같은 방법으로 간섭을 측정할 수 있다. The interference measuring unit 1225 measures (or estimates) interference (eg, MU-MIMO interference) based on the terminal specific IMR. For example, the interference measuring unit 1225 may measure interference in the same manner as in FIG. 9.
설정된 단말 특정 IMR을 기초로, 간섭 측정부(1225)는 PDSCH에서 단말 특정 IMR이 할당되는 부분을 뮤트한다(또는, 해당 영역에서 PDSCH의 데이터를 제거한다, 또는 해당 영역에서 PDSCH의 데이터를 무시한다, 또는 해당 영역에서 PDCSH를 펑쳐링한다). 이를 통해 간섭 측정부(1225)는 다른 단말에게 전송하는 신호 또는 잡음과 같은 기타 간섭 신호들을 구별(또는 측정) 할 수 있다. Based on the configured UE-specific IMR, the interference measuring unit 1225 mutes the portion of the PDSCH to which the UE-specific IMR is allocated (or removes the data of the PDSCH in the corresponding area, or ignores the data of the PDSCH in the corresponding area). , Or puncture the PDCSH in that region). Through this, the interference measuring unit 1225 may distinguish (or measure) other interference signals such as a signal or noise transmitted to another terminal.
일 예로, 단말 특정 IMR이 새로운 RE인 경우(예, DMRS 영역내에 있지 않은 경우), 간섭 측정부(1225)는 단말 특정 IMR을 이용하여 상기 수학식과 같이 단말 특정 IMR 영역에서의 수신신호(YIMR)을 계산하고, YIMR을 기초로 상기 수학식 6과 같이 CRS RE와 단말 특정 IMR을 결합(joint)하여 간섭의 통계적 특성(RMU-MIMO)을 계산하고, RMU-MIMO를 기초로 상기 수학식 7과 같이 단말 가중치(Wi)를 계산하고, Wi를 기초로 상기 수학식 4와 같이 선형 수신기를 이용하여 수신 신호로부터 데이터를 얻을 수 있다.For example, when the UE-specific IMR is a new RE (eg, not in the DMRS region), the interference measuring unit 1225 uses the UE-specific IMR to receive the received signal (Y IMR) in the UE-specific IMR region as shown in the above equation. ) And calculate the statistical property of interference (R MU-MIMO ) by combining CRS RE and UE-specific IMR based on Y IMR as shown in Equation 6 above, and based on R MU-MIMO . As shown in Equation 7, the terminal weight W i may be calculated, and data may be obtained from the received signal using a linear receiver as shown in Equation 4 based on W i .
다른 예로, 단말 특정 IMR이 DMRS 영역내에 있는 경우, 간섭 측정부(1225)는 단말(1200)의 채널(Hi)을 추정하고 다른 단말의 채널(Hj)도 추정하여, Hi 및 Hj를 기초로 상기 수학식 8과 같이 간섭의 통계적 특성(RMU-MIMO)을 계산하고, RMU-MIMO를 기초로 상기 수학식 9과 같이 단말 가중치(Wi)를 계산하고, Wi를 기초로 상기 수학식 4와 같이 선형 수신기를 이용하여 수신 신호로부터 데이터를 얻을 수 있다.As another example, when the UE-specific IMR is in the DMRS region, the interference measuring unit 1225 estimates the channel H i of the terminal 1200 and also estimates the channel H j of the other terminal, thereby calculating H i and H j. Calculate the statistical characteristic of the interference (R MU-MIMO ) as shown in Equation 8, calculate the terminal weight (W i ) as shown in Equation 9 based on R MU-MIMO, and based on W i As shown in Equation 4, data can be obtained from a received signal using a linear receiver.
수신부(1205)는 수신기(예, MMSE IRC 수신기)를 통해 PDSCH를 감지하여(detect), 데이터를 수신한다. 이를 통해, 단말(1200)은 측정한 다른 단말로부터의 간섭 정보를 MMSE 수신기에 적용하여 성능을 개선시킬 수 있다.The receiver 1205 detects a PDSCH through a receiver (eg, an MMSE IRC receiver) and receives data. Through this, the terminal 1200 may improve the performance by applying the interference information from the other terminal to the MMSE receiver.
한편, 기지국(1250)의 전송부(1255), 제어부(1260)를 포함한다. 제어부(1260)는 스케줄링부(1265)를 더 포함할 수 있다.On the other hand, the transmitter 1255 and the control unit 1260 of the base station 1250. The controller 1260 may further include a scheduling unit 1265.
전송부(1255) RRC 시그널링을 전송하여 단말 특정 IMR을 단말(1200)에게 설정한다. 예를 들어, 전송부(1255)가 단말(1200)로 전송하는 RRC 메시지(예, RRC 연결 재설정 메시지, RRC 연결 재구성 메시지)는 단말 특정 IMR을 설정하는 정보(즉, 단말 특정 IMR 설정정보)를 포함할 수 있다.The transmitter 1255 transmits RRC signaling to configure the terminal specific IMR to the terminal 1200. For example, an RRC message (eg, an RRC connection reconfiguration message or an RRC connection reconfiguration message) transmitted by the transmitter 1255 to the terminal 1200 may include information (ie, terminal specific IMR configuration information) for configuring terminal specific IMR. It may include.
일 예로, 상기 단말 특정 IMR 설정정보는 상기 단말 특정 IMR이 PDSCH 영역에 위치하도록 설정할 수 있다.For example, the UE-specific IMR configuration information may be set such that the UE-specific IMR is located in a PDSCH region.
다른 예로, 상기 단말 특정 IMR 설정정보는 상기 단말 특정 IMR이 DMRS를 포함하는 OFDM 심볼에 존재하도록 설정할 수 있다.As another example, the UE-specific IMR configuration information may be set such that the UE-specific IMR is present in an OFDM symbol including DMRS.
또 다른 예로, DMRS를 포함하는 OFDM 심볼은 모두 단말 특정 IMR으로 구성되거나 일부만 단말 특정 IMR로 구성될 수 있다. DMRS를 포함하는 OFDM 심볼의 일부만 단말 특정 IMR로 구성되는 경우, 나머지 부분에 DMRS 또는 CSI-RS를 더 포함할 수도 있다.As another example, the OFDM symbols including the DMRS may be configured in all of the UE-specific IMR or only part of the UE-specific IMR. When only a part of the OFDM symbol including the DMRS is configured by the UE-specific IMR, the remaining part may further include a DMRS or CSI-RS.
또 다른 예로, 단말 특정 IMR의 패턴은 DMRS의 패턴과 유사하도록 구성될 수 있다. 이때, 기지국(1250)에 의하여 단말 특정 IMR이 설정되면 DMRS는 상기 단말 특정 IMR를 통해 커버될 수도 있다. 또는, 단말 특정 IMR이 전송되는 PDSCH 영역에서 DMRS를 통해 전송하려는 정보도 함께 전송될 수 있다. 상기 PDSCH 영역에 할당되는 자원은 RRC 시그널링에 의해 설정될 수 있다. As another example, the pattern of the UE-specific IMR may be configured to be similar to the pattern of the DMRS. At this time, if the UE-specific IMR is configured by the base station 1250, DMRS may be covered through the UE-specific IMR. Alternatively, information to be transmitted through DMRS may also be transmitted in a PDSCH region in which UE-specific IMR is transmitted. Resources allocated to the PDSCH region may be configured by RRC signaling.
또 다른 예로, 단말 특정 IMR 설정정보는 상기 표 3과 같이 IMR 자원 설정 지시자를 포함할 수 있다. 상기 IMR 자원 설정 지시자는 상기 도 7 내지 도 8에서 설명한 지시자일 수 있다.As another example, the UE specific IMR configuration information may include an IMR resource configuration indicator as shown in Table 3 above. The IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
또 다른 예로, 단말 특정 IMR 설정정보는 상기 표 4와 같이 IMR 자원 설정지시자, OCC 지시자, NDMRS ID 및 nSCID를 포함할 수 있다. 이때, OCC 지시자는 길이가 2인 OCC 커버 또는 길이가 4인 OCC 커버를 지시할 수 있으며, 표 5 내지 표 7 중 하나일 수 있다. 또한, nSCID 및 NDMRS ID는 상기 수학식 2와 같이 단말 특정 DMRS 스크램블링 초기 상태를 결정하는 값일 수 있다. 상기 IMR 자원 설정 지시자는 상기 도 7 내지 도 8에서 설명한 지시자일 수 있다.As another example, the UE-specific IMR configuration information may include an IMR resource configuration indicator, an OCC indicator, an N DMRS ID, and an n SCID as shown in Table 4 above. In this case, the OCC indicator may indicate an OCC cover having a length of 2 or an OCC cover having a length of 4, and may be one of Tables 5 to 7. In addition, n SCID and N DMRS ID may be a value for determining an UE-specific DMRS scrambling initial state as shown in Equation 2 above. The IMR resource configuration indicator may be the indicator described with reference to FIGS. 7 to 8.
스케줄링부(1265)는 하향링크 MU-MIMO 전송을 스케줄링한다. The scheduling unit 1265 schedules downlink MU-MIMO transmission.
전송부(1255)는 PDSCH 또는 DMRS를 단말(1200)로 전송한다. 예를 들어, 설정된 단말 특정 IMR을 기초로, 전송부(1255)는 PDSCH에서 단말 특정 IMR이 할당되는 부분을 뮤트한다(또는, 해당 영역에서 PDSCH의 데이터를 제거한다, 또는 해당 영역에서 PDSCH의 데이터를 무시한다, 또는 해당 영역에서 PDCSH를 펑쳐링한다). The transmitter 1255 transmits the PDSCH or the DMRS to the terminal 1200. For example, based on the configured UE-specific IMR, the transmitter 1255 mutes the portion of the PDSCH to which the UE-specific IMR is allocated (or removes data of the PDSCH in the corresponding region, or data of the PDSCH in the corresponding region). Ignore or puncture the PDCSH in that region).
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (20)

  1. 다중 안테나 시스템에서 단말에 의하여 자원 요소를 설정방법에 있어서,In the multi-antenna system in the resource element configuration method by the terminal,
    단말 특정 IMR(Interference Measurement Resource element)을 설정하는 RRC(Radio Resource Control) 시그널링을 기지국으로부터 수신하는 단계; 및Receiving, from a base station, Radio Resource Control (RRC) signaling for configuring a terminal-specific Interference Measurement Resource element (IMR); And
    상기 단말 특정 IMR을 기초로 PDSCH(Physical Downlink Shared Channel)에서 단말 특정 IMR이 할당되는 부분을 뮤트하여, 다른 단말로부터의 간섭을 측정하는 단계를 포함하며,Muting a portion to which a terminal specific IMR is allocated in a physical downlink shared channel (PDSCH) based on the terminal specific IMR, and measuring interference from another terminal;
    상기 RRC 시그널링은 상기 단말 특정 IMR이 상기 PDSCH에 위치하도록 설정하거나, 상기 단말 특정 IMR이 DMRS(DeModulation Reference Signal)를 포함하는 OFDM(Orthogonal Frequency Division Multiplexing) 심볼에 존재하도록 설정하는 단말 특정 IMR 설정정보를 포함하는 것을 특징으로 하는 자원 요소 설정방법.The RRC signaling sets UE-specific IMR configuration information for configuring the UE-specific IMR to be located in the PDSCH or for configuring the UE-specific IMR to exist in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). Resource element setting method comprising the.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 단말 특정 IMR 설정정보는 PRB(Physical Resource Block)의 각 부반송파가 단말 특정 IMR를 포함하는지에 관한 IMR 패턴을 지시하는 IMR 자원 설정 지시자를 더 포함하는 자원 요소 설정방법. The terminal specific IMR configuration information further includes an IMR resource configuration indicator indicating an IMR pattern for whether each subcarrier of a PRB (Physical Resource Block) includes a terminal specific IMR.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 단말 특정 IMR 설정정보는 길이가 2인 OCC(Orthogonal Cover Code) 커버 또는 길이가 4인 OCC 커버를 지시하는 OCC 지시자를 더 포함하는 자원 요소 설정방법.The UE-specific IMR configuration information further includes an OCC indicator indicating an orthogonal cover code (OCC) cover having a length of 2 or an OCC cover having a length of 4.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 단말 특정 설정정보는 상기 DMRS를 통해 전송되는 정보를 더 포함하는 것을 특징하는 자원 요소 설정방법.The terminal specific configuration information further comprises information transmitted through the DMRS.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 단말 특정 IMR 설정정보는The terminal specific IMR configuration information
    상기 DMRS를 포함하는 OFDM 심볼의 일부는 상기 단말 특정 IMR로 설정하고, 상기 DMRS를 포함하는 OFDM 심볼의 나머지 부분은 DMRS 또는 CSI-RS(Channel State Information-RS)를 더 포함하도록 설정하는 것을 특징으로 하는 자원 요소 설정방법.A part of the OFDM symbol including the DMRS is set to the UE-specific IMR, and the remaining part of the OFDM symbol including the DMRS is configured to further include a DMRS or Channel State Information-RS (CSI-RS) How to set up resource elements.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 DMRS를 기초로 하향링크 채널을 추정하는 단계를 더 포함하며,Estimating a downlink channel based on the DMRS;
    상기 하향링크 채널을 기초로 상기 다른 단말로부터의 간섭 신호를 측정하는 것을 특징으로 하는 자원 요소 설정방법.And measuring an interference signal from the other terminal based on the downlink channel.
  7. 다중 안테나 시스템에서 기지국에 의하여 자원 요소를 설정방법에 있어서,In the multi-antenna system, a method for setting a resource element by a base station,
    단말 특정 IMR(Interference Measurement Resource element)을 설정하는 RRC(Radio Resource Control) 시그널링을 단말로 전송하는 단계를 포함하며,Transmitting radio resource control (RRC) signaling for setting a terminal-specific interference measurement resource element (IRM) to the terminal;
    상기 RRC 시그널링은 상기 단말 특정 IMR이 상기 PDSCH에 위치하도록 설정하거나, 상기 단말 특정 IMR이 DMRS(DeModulation Reference Signal)를 포함하는 OFDM(Orthogonal Frequency Division Multiplexing) 심볼에 존재하도록 설정하는 단말 특정 IMR 설정정보를 포함하는 것을 특징으로 하는 자원 요소 설정방법.The RRC signaling sets UE-specific IMR configuration information for configuring the UE-specific IMR to be located in the PDSCH or for configuring the UE-specific IMR to exist in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). Resource element setting method comprising the.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    하향링크 전송을 스케줄링하는 단계를 더 포함하며,Scheduling downlink transmission further;
    상기 스케줄링을 기초로 상기 PDSCH 또는 상기 DMRS를 상기 단말로 전송하는 것을 특징으로 하는 자원 요소 설정방법.And transmitting the PDSCH or the DMRS to the terminal based on the scheduling.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 PDSCH는 상기 단말 특정 IMR이 할당되는 부분을 뮤트되어 전송되는 것을 특징으로 하는 자원 요소 설정방법.The PDSCH is a method of configuring a resource element, characterized in that the muted portion is allocated to the terminal specific IMR is transmitted.
  10. 제 7 항에 있어서,The method of claim 7, wherein
    상기 단말 특정 IMR 설정정보는 PRB의 각 부반송파가 단말 특정 IMR를 포함하는지에 관한 IMR 패턴을 지시하는 IMR 자원 설정 지시자를 더 포함하는 자원 요소 설정방법. The terminal specific IMR configuration information further includes an IMR resource configuration indicator indicating an IMR pattern for whether each subcarrier of the PRB includes a terminal specific IMR.
  11. 제 7 항에 있어서,The method of claim 7, wherein
    상기 단말 특정 IMR 설정정보는 길이가 2인 OCC 커버 또는 길이가 4인 OCC 커버를 지시하는 OCC 지시자를 더 포함하는 자원 요소 설정방법.The terminal specific IMR configuration information further comprises an OCC indicator indicating an OCC cover of length 2 or an OCC cover of length 4.
  12. 제 11 항에 있어서, The method of claim 11,
    상기 단말 특정 설정정보는 상기 DMRS를 통해 전송되는 정보를 더 포함하는 것을 특징하는 자원 요소 설정방법.The terminal specific configuration information further comprises information transmitted through the DMRS.
  13. 다중 안테나 시스템에서 자원 요소를 설정하는 단말에 있어서,In a terminal for configuring a resource element in a multi-antenna system,
    단말 특정 IMR(Interference Measurement Resource element)을 설정하는 RRC(Radio Resource Control) 시그널링을 기지국으로부터 수신하는 수신부; 및A receiver configured to receive RRC (Radio Resource Control) signaling for configuring a terminal specific Interference Measurement Resource element (IMR); And
    상기 단말 특정 IMR을 기초로 PDSCH(Physical Downlink Shared Channel)에서 단말 특정 IMR이 할당되는 부분을 뮤트하여, 다른 단말로부터의 간섭을 측정하는 간섭 측정부를 포함하며,And an interference measuring unit for muting a portion to which a terminal specific IMR is allocated in a physical downlink shared channel (PDSCH) based on the terminal specific IMR and measuring interference from another terminal,
    상기 수신부는,The receiving unit,
    상기 단말 특정 IMR이 상기 PDSCH에 위치하도록 설정하거나, 상기 단말 특정 IMR이 DMRS(DeModulation Reference Signal)를 포함하는 OFDM(Orthogonal Frequency Division Multiplexing) 심볼에 존재하도록 설정하는 단말 특정 IMR 설정정보를 포함하는 상기 RRC 시그널링을 수신하는 것을 특징으로 하는 단말.The RRC including UE-specific IMR configuration information for configuring the UE-specific IMR to be located in the PDSCH or for configuring the UE-specific IMR to exist in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS) Terminal for receiving the signaling.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 수신부는,The receiving unit,
    PRB(Physical Resource Block)의 각 부반송파가 단말 특정 IMR를 포함하는지에 관한 IMR 패턴을 지시하는 IMR 자원 설정 지시자를 더 포함하는 상기 단말 특정 IMR 설정정보를 수신하는 것을 특징으로 하는 단말. And receiving the terminal specific IMR configuration information further comprising an IMR resource configuration indicator indicating an IMR pattern relating to whether each subcarrier of a physical resource block (PRB) includes a terminal specific IMR.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 수신부는The receiving unit
    길이가 2인 OCC 커버 또는 길이가 4인 OCC 커버를 지시하는 OCC 지시자를 더 포함하는 상기 단말 특정 IMR 설정정보를 수신하는 단말.And an OCC indicator indicating an OCC cover having a length of 2 or an OCC cover having a length of 4.
  16. 제 13 항에 있어서,The method of claim 13,
    상기 DMRS를 기초로 하향링크 채널을 추정하는 채널 추정부를 더 포함하며,A channel estimator for estimating a downlink channel based on the DMRS;
    상기 간섭 측정부는,The interference measuring unit,
    상기 하향링크 채널을 기초로 상기 다른 단말로부터의 간섭 신호를 측정하는 것을 특징으로 하는 단말.And measuring an interference signal from the other terminal based on the downlink channel.
  17. 다중 안테나 시스템에서 자원 요소를 설정하는 기지국에 있어서,In the base station for setting the resource element in a multi-antenna system,
    단말 특정 IMR(Interference Measurement Resource element)을 설정하는 RRC(Radio Resource Control) 시그널링을 단말로 전송하는 전송부를 포함하며,It includes a transmitter for transmitting to the terminal Radio Resource Control (RRC) signaling for setting a terminal-specific Interference Measurement Resource element (IMR),
    상기 RRC 시그널링은 상기 단말 특정 IMR이 상기 PDSCH에 위치하도록 설정하거나, 상기 단말 특정 IMR이 DMRS(DeModulation Reference Signal)를 포함하는 OFDM(Orthogonal Frequency Division Multiplexing) 심볼에 존재하도록 설정하는 단말 특정 IMR 설정정보를 포함하는 것을 특징으로 하는 기지국.The RRC signaling sets UE-specific IMR configuration information for configuring the UE-specific IMR to be located in the PDSCH or for configuring the UE-specific IMR to exist in an Orthogonal Frequency Division Multiplexing (OFDM) symbol including a DeModulation Reference Signal (DMRS). A base station comprising a.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 전송부는,The transmission unit,
    상기 PDSCH를 상기 단말 특정 IMR이 할당되는 부분을 뮤트하여 전송하는 것을 특징으로 하는 기지국.And transmitting the PDSCH by muting the portion to which the UE-specific IMR is allocated.
  19. 제 17 항에 있어서,The method of claim 17,
    상기 전송부는,The transmission unit,
    PRB의 각 부반송파가 단말 특정 IMR를 포함하는지에 관한 IMR 패턴을 지시하는 IMR 자원 설정 지시자를 더 포함하는 상기 단말 특정 IMR 설정정보를 전송하는 것을 특징으로 하는 기지국.And a base station-specific IMR configuration information further comprising an IMR resource configuration indicator indicating an IMR pattern relating to whether each subcarrier of a PRB includes a terminal-specific IMR.
  20. 제 19 항에 있어서,The method of claim 19,
    상기 전송부는,The transmission unit,
    길이가 2인 OCC 커버 또는 길이가 4인 OCC 커버를 지시하는 OCC 지시자를 더 포함하는 상기 단말 특정 IMR 설정정보를 전송하는 것을 특징으로 하는 기지국.And a terminal specific IMR configuration information further comprising an OCC indicator indicating an OCC cover having a length of 2 or an OCC cover having a length of 4.
PCT/KR2013/011477 2012-12-17 2013-12-11 Device and method for setting or transmitting resource element in multiple antenna system WO2014098407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120147370A KR20140078236A (en) 2012-12-17 2012-12-17 Apparatus and method of configuring or transmitting resource element in multiple antenna system
KR10-2012-0147370 2012-12-17

Publications (1)

Publication Number Publication Date
WO2014098407A1 true WO2014098407A1 (en) 2014-06-26

Family

ID=50978670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011477 WO2014098407A1 (en) 2012-12-17 2013-12-11 Device and method for setting or transmitting resource element in multiple antenna system

Country Status (2)

Country Link
KR (1) KR20140078236A (en)
WO (1) WO2014098407A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060466A1 (en) * 2014-10-17 2016-04-21 엘지전자 주식회사 Method for measuring inter-device interference in wireless communication system supporting fdr transmission, and apparatus therefor
WO2016072813A3 (en) * 2014-11-09 2016-06-30 엘지전자 주식회사 Method for ordering measuring of inter-device interference in wireless communication system, and device for same
WO2016159632A1 (en) * 2015-03-31 2016-10-06 삼성전자 주식회사 Inter-cell interference measurement method and device in flexible duplex system
WO2016167630A1 (en) * 2015-04-17 2016-10-20 삼성전자주식회사 Apparatus and method for transmitting reference signals in wireless communication system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3346624A4 (en) 2015-09-04 2018-08-08 Samsung Electronics Co., Ltd. Method and device for transmitting information related to reference signal
WO2018128297A1 (en) * 2017-01-09 2018-07-12 엘지전자 주식회사 Method for reporting measurement data, and terminal therefor
JP7008130B2 (en) 2018-03-16 2022-01-25 エルジー エレクトロニクス インコーポレイティド Methods for sending and receiving data in wireless communication systems and devices that support them

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110097623A (en) * 2010-02-23 2011-08-31 엘지전자 주식회사 A method and a user equipment for measuring interference, and a method and a base station for receiving interference information
WO2012096532A2 (en) * 2011-01-14 2012-07-19 엘지전자 주식회사 Method and device for setting channel status information measuring resource in a wireless communication system
US20120208547A1 (en) * 2011-02-11 2012-08-16 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/rrh system
US20120220327A1 (en) * 2009-11-08 2012-08-30 Moon Il Lee Method and a base station for transmitting a csi-rs, and a method and user equipment for receiving the csi-rs
US20120300749A1 (en) * 2010-01-25 2012-11-29 Nec Corporation Mobile station apparatus, base station apparatus, radio communication system, control method for mobile station, and control method for base station

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120220327A1 (en) * 2009-11-08 2012-08-30 Moon Il Lee Method and a base station for transmitting a csi-rs, and a method and user equipment for receiving the csi-rs
US20120300749A1 (en) * 2010-01-25 2012-11-29 Nec Corporation Mobile station apparatus, base station apparatus, radio communication system, control method for mobile station, and control method for base station
KR20110097623A (en) * 2010-02-23 2011-08-31 엘지전자 주식회사 A method and a user equipment for measuring interference, and a method and a base station for receiving interference information
WO2012096532A2 (en) * 2011-01-14 2012-07-19 엘지전자 주식회사 Method and device for setting channel status information measuring resource in a wireless communication system
US20120208547A1 (en) * 2011-02-11 2012-08-16 Qualcomm Incorporated Method and apparatus for enabling channel and interference estimations in macro/rrh system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078813A (en) * 2014-10-17 2017-08-18 Lg 电子株式会社 The method and its device disturbed in the wireless communication system for supporting FDR transmission between measuring apparatus
CN107078813B (en) * 2014-10-17 2021-07-06 Lg 电子株式会社 Method for measuring inter-device interference in wireless communication system supporting FDR transmission and apparatus therefor
US10516495B2 (en) 2014-10-17 2019-12-24 Lg Electronics Inc. Method for measuring inter-device interference in wireless communication system supporting FDR transmission, and apparatus therefor
WO2016060466A1 (en) * 2014-10-17 2016-04-21 엘지전자 주식회사 Method for measuring inter-device interference in wireless communication system supporting fdr transmission, and apparatus therefor
US10349298B2 (en) 2014-11-09 2019-07-09 Lg Electronics Inc. Method for ordering measuring of inter-device interference in wireless communication system, and device for same
US20170245167A1 (en) * 2014-11-09 2017-08-24 Lg Electronics Inc. Method for ordering measuring of inter-device interference in wireless communication system, and device for same
WO2016072813A3 (en) * 2014-11-09 2016-06-30 엘지전자 주식회사 Method for ordering measuring of inter-device interference in wireless communication system, and device for same
US10382993B2 (en) 2015-03-31 2019-08-13 Samsung Electronics Co., Ltd. Inter-cell interference measurement method and device in flexible duplex system
WO2016159632A1 (en) * 2015-03-31 2016-10-06 삼성전자 주식회사 Inter-cell interference measurement method and device in flexible duplex system
WO2016167630A1 (en) * 2015-04-17 2016-10-20 삼성전자주식회사 Apparatus and method for transmitting reference signals in wireless communication system
US10411932B2 (en) 2015-04-17 2019-09-10 Samsung Electronics Co., Ltd. Apparatus and method for transmitting reference signals in wireless communication system
US10958495B2 (en) 2015-04-17 2021-03-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting reference signals in wireless communication system
US11558228B2 (en) 2015-04-17 2023-01-17 Samsung Electronics Co., Ltd. Apparatus and method for transmitting reference signals in wireless communication system

Also Published As

Publication number Publication date
KR20140078236A (en) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2014069821A1 (en) Device and method for transmitting reference signal in multi-antenna system
WO2019240530A1 (en) Method and apparatus for performing communication in heterogeneous network
WO2017213461A1 (en) Method and apparatus for measurement reference signal and synchronization
WO2016163819A1 (en) Method for reporting channel state and apparatus therefor
WO2018056784A1 (en) Method for interference measurement in wireless communication system and apparatus for same
WO2010151092A2 (en) Method and apparatus for transmitting reference signals in uplink multiple input multiple output (mimo) transmission
WO2014098407A1 (en) Device and method for setting or transmitting resource element in multiple antenna system
WO2016043523A1 (en) Method and device for transmitting and receiving signal to and from enb by user equipment in wireless communication system that supports carrier aggregation
WO2016010379A1 (en) Method and device for estimating channel in wireless communication system
WO2019017753A1 (en) Method for reporting channel state in wireless communication system, and apparatus therefor
WO2016024731A1 (en) Method for channel state report in wireless communication system and apparatus therefor
WO2011155763A2 (en) Method and device for transmitting/receiving channel state information in coordinated multipoint communication system
WO2011083972A2 (en) Method and system for enabling resource block bundling in lte-a systems
WO2016072712A2 (en) Method for channel-related feedback and apparatus for same
WO2012128505A2 (en) Method and device for communicating device-to-device
WO2012002673A2 (en) Method and device for transmitting/receiving channel state information in a wireless communication system
WO2016013882A1 (en) Method and apparatus for transmitting channel state information in wireless access system
WO2011034340A2 (en) Method and apparatus for transmitting a downlink reference signal in a wireless communication system supporting multiple antennas
WO2016144050A1 (en) Method for transmitting signal in wireless communication system, and apparatus therefor
WO2014069956A1 (en) Method and apparatus for performing interference measurement in wireless communication system
WO2016018094A1 (en) Method for supporting d2d communication to which mimo technology is applied and device therefor
WO2016186378A1 (en) Method for feeding back reference signal information in multi-antenna wireless communication system and apparatus therefor
WO2011105726A2 (en) Method and user equipment for measuring interference, and method and base station for receiving interference information
WO2013055136A2 (en) Method and apparatus for transmitting a reference signal in a wireless communication system
WO2011046413A2 (en) Method and apparatus for transmitting multi-user mimo reference signal in wireless communication system for supporting relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865697

Country of ref document: EP

Kind code of ref document: A1