WO2016013882A1 - Method and apparatus for transmitting channel state information in wireless access system - Google Patents

Method and apparatus for transmitting channel state information in wireless access system Download PDF

Info

Publication number
WO2016013882A1
WO2016013882A1 PCT/KR2015/007668 KR2015007668W WO2016013882A1 WO 2016013882 A1 WO2016013882 A1 WO 2016013882A1 KR 2015007668 W KR2015007668 W KR 2015007668W WO 2016013882 A1 WO2016013882 A1 WO 2016013882A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
channel
partial channel
identification information
value
Prior art date
Application number
PCT/KR2015/007668
Other languages
French (fr)
Korean (ko)
Inventor
김형태
박종현
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/313,423 priority Critical patent/US10547356B2/en
Priority to JP2016568629A priority patent/JP6518268B2/en
Priority to EP15823923.6A priority patent/EP3174218A4/en
Priority to AU2015294786A priority patent/AU2015294786B2/en
Priority to CN201580038660.1A priority patent/CN106537809B/en
Priority to KR1020167030622A priority patent/KR102014797B1/en
Publication of WO2016013882A1 publication Critical patent/WO2016013882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method of transmitting channel state information in a wireless access system supporting massive multiple input multiple output (MIMO) and an apparatus for supporting the same.
  • MIMO massive multiple input multiple output
  • Multi-Input Multi-Output is a technology that improves the transmission and reception efficiency of data by using multiple transmission antennas and multiple reception antennas, instead of using one transmission antenna and one reception antenna.
  • MIMO Multi-Input Multi-Output
  • the receiving side receives data through a single antenna path, but using multiple antennas, the receiving end receives data through multiple paths. Therefore, the data transmission speed and the transmission amount can be improved, and the coverage can be increased.
  • Single-cell MIMO operation is a single user-MIMO (SU-MIMO) scheme in which one terminal receives a downlink signal in one cell and two or more terminals are downlinked in one cell. It can be divided into a multi-user-MIMO (MU-MIMO) scheme for receiving a link signal.
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • Channel estimation refers to a process of restoring a received signal by compensating for distortion of a signal caused by fading.
  • fading refers to a phenomenon in which the strength of a signal is rapidly changed due to multipath-time delay in a wireless communication system environment.
  • a reference signal known to both the transmitter and the receiver is required.
  • the reference signal may simply be referred to as a reference signal (RS) or a pilot according to the applied standard.
  • the downlink reference signal is a coherent such as a Physical Downlink Shared CHannel (PDSCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid Indicator CHannel (PHICH), and a Physical Downlink Control CHannel (PDCCH). Pilot signal for demodulation.
  • the downlink reference signal includes a common reference signal (CRS) shared by all terminals in a cell and a dedicated reference signal (DRS) only for a specific terminal.
  • CRS common reference signal
  • DRS dedicated reference signal
  • DRS-based data demodulation is considered to support efficient reference signal operation and advanced transmission scheme. That is, DRSs for two or more layers may be defined to support data transmission through an extended antenna. Since the DRS is precoded by the same precoder as the data, it is possible to easily estimate channel information for demodulating the data at the receiver without additional precoding information.
  • a separate reference signal other than the DRS is required to obtain uncoded channel information.
  • a reference signal for acquiring channel state information (CSI) may be defined at the receiving side, that is, CSI-RS.
  • CSI reporting Receiving CSI configuration information for the device; And transmitting identification information on the partial channel corresponding to the CSI among the CSI and all the channels according to the massive MIMO based on the CSI configuration information.
  • MIMO Massive Multiple Input Multiple Output
  • the partial channel corresponds to the antenna of the first column of the antenna array according to the massive MIMO when the identification information is the first value, and the partial channel corresponds to the first row of the antenna array according to the massive MIMO when the identification information is the second value. It can correspond to the antenna of.
  • the partial channel may be associated with a single codebook when the identification information is a first value, and the partial channel may be associated with a dual codebook when the identification information is a second value.
  • the partial channel When the identification information is the first value, the partial channel indicates that the ratio of the feedback frequency of the first partial channel and the second partial channel has a first ratio value, and when the identification information is the second value, the partial channel is set to the first value. It may indicate that the ratio of the feedback frequency of the first partial channel and the second partial channel has a second ratio value.
  • the identification information may be transmitted together with the CSI only when the CSI is a wideband PMI (Precoding Matrix Indicator), and may not be transmitted together when the CSI is a narrowband PMI.
  • PMI Precoding Matrix Indicator
  • the identification information is fed back together with a rank indicator (RI), and a PMI (Precoding Matrix Indicator) corresponding to the same partial channel may be transmitted until the updated identification information is transmitted together with the RI.
  • RI rank indicator
  • PMI Precoding Matrix Indicator
  • the partial channel information may include a partial CSI indicator (PCI).
  • PCI partial CSI indicator
  • CSI configuration information for CSI reporting, and to identify identification information of a partial channel corresponding to the CSI among all channels according to the CSI and the massive MIMO based on the CSI configuration information.
  • the partial channel corresponds to the antenna of the first column of the antenna array according to the massive MIMO when the identification information is the first value, and the partial channel corresponds to the first row of the antenna array according to the massive MIMO when the identification information is the second value. It can correspond to the antenna of.
  • the partial channel may be associated with a single codebook when the identification information is a first value, and the partial channel may be associated with a dual codebook when the identification information is a second value.
  • the partial channel When the identification information is the first value, the partial channel indicates that the ratio of the feedback frequency of the first partial channel and the second partial channel has a first ratio value, and when the identification information is the second value, the partial channel is set to the first value. It may indicate that the ratio of the feedback frequency of the first partial channel and the second partial channel has a second ratio value.
  • the identification information may be transmitted together with the CSI only when the CSI is a wideband PMI (Precoding Matrix Indicator), and may not be transmitted together when the CSI is a narrowband PMI.
  • PMI Precoding Matrix Indicator
  • the identification information is fed back together with a rank indicator (RI), and a PMI (Precoding Matrix Indicator) corresponding to the same partial channel may be transmitted until the updated identification information is transmitted together with the RI.
  • RI rank indicator
  • PMI Precoding Matrix Indicator
  • the partial channel information may include a partial CSI indicator (PCI).
  • PCI partial CSI indicator
  • a method for transmitting channel state information and a device supporting the same in a wireless access system supporting massive MIMO Massive Multiple Input Multiple Output
  • massive MIMO Massive Multiple Input Multiple Output
  • 1 is a diagram illustrating a structure of a downlink radio frame.
  • FIG. 2 is an exemplary diagram illustrating an example of a resource grid for one downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • FIG. 6 is a diagram illustrating a pattern of a conventional CRS and DRS.
  • FIG. 7 is a diagram illustrating an example of a DM RS pattern.
  • FIG. 8 is a diagram illustrating examples of a CSI-RS pattern.
  • FIG. 9 is a diagram for explaining an example of a method in which a CSI-RS is periodically transmitted.
  • FIG. 10 is a diagram for explaining an example of a method in which a CSI-RS is transmitted aperiodically.
  • FIG. 11 is a diagram for explaining an example in which two CSI-RS configurations are used.
  • FIG. 12 shows an example of a 64 port 2D-AAS antenna arrangement.
  • FIG. 13 shows an example of a cross-polarized (X-pol) antenna array AA.
  • FIG. 14 is an illustration of an A / B block in X-pol AA.
  • 15 to 23 are examples of a feedback method according to an embodiment of the present invention.
  • 24 is a flowchart showing an example of an embodiment of the present invention.
  • 25 is a diagram illustrating a configuration of a base station and a terminal that can be applied to an embodiment of the present invention.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like.
  • the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
  • the term “terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), a subscriber station (SS), and the like.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on the 3GPP LTE and LTE-A standards, but the technical spirit of the present invention is not limited thereto.
  • a structure of a downlink radio frame will be described with reference to FIG. 1.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • the downlink slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks in the frequency domain.
  • one downlink slot includes 7 OFDM symbols, and one resource block includes 12 subcarriers as an example, but is not limited thereto.
  • Each element on the resource grid is called a resource element (RE).
  • the resource element a (k, l) becomes a resource element located in the k-th subcarrier and the l-th OFDM symbol.
  • one resource block includes 12x7 resource elements (in the case of an extended CP, it includes 12x6 resource elements). Since the interval of each subcarrier is 15 kHz, one resource block includes about 180 kHz in the frequency domain.
  • NDL is the number of resource blocks included in a downlink slot. The value of NDL may be determined according to a downlink transmission bandwidth set by scheduling of a base station.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which a physical downlink shared channel (PDSCH) is allocated.
  • the basic unit of transmission is one subframe. That is, PDCCH and PDSCH are allocated over two slots.
  • Downlink control channels used in the 3GPP LTE system include, for example, a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical HARQ Indicator Channel.
  • PCFICH Physical Control Format Indicator Channel
  • PDCH Physical Downlink Control Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe.
  • the PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, on the PDSCH Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, and activation of voice over IP (VoIP) And the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in a combination of one or more consecutive Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • the CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the cell-RNTI (C-RNTI) identifier of the terminal may be masked to the CRC.
  • a paging indicator identifier P-RNTI
  • the PDCCH is for system information (more specifically, system information block (SIB))
  • SI-RNTI system information RNTI
  • RA-RNTI Random Access-RNTI
  • RA-RNTI may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the terminal.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • MIMO Multiple Input Multiple Output
  • MIMO technology does not rely on a single antenna path to receive an entire message. The entire data may be received by combining a plurality of pieces of data received through.
  • MIMO technology includes a spatial diversity technique and a spatial multiplexing technique.
  • the spatial diversity scheme can increase transmission reliability or widen a cell radius through diversity gain, which is suitable for data transmission for a mobile terminal moving at high speed.
  • Spatial multiplexing can increase the data rate without increasing the bandwidth of the system by simultaneously transmitting different data.
  • FIG. 5 is a configuration diagram of a wireless communication system having multiple antennas.
  • the number of transmit antennas is increased to NT and the number of receive antennas is increased to NR
  • theoretical channel transmission is proportional to the number of antennas, unlike a case where only a plurality of antennas are used in a transmitter or a receiver. Dose is increased. Therefore, the transmission rate can be improved and the frequency efficiency can be significantly improved.
  • the transmission rate may theoretically increase as the rate of increase rate Ri multiplied by the maximum transmission rate Ro when using a single antenna.
  • a transmission rate four times higher than a single antenna system may be theoretically obtained. Since the theoretical capacity increase of multi-antenna systems was proved in the mid 90's, various techniques to actively lead to the actual data rate improvement have been actively studied. In addition, some technologies are already being reflected in various wireless communication standards such as 3G mobile communication and next generation WLAN.
  • the research trends related to multi-antennas to date include the study of information theory aspects related to the calculation of multi-antenna communication capacity in various channel environments and multi-access environments, the study of wireless channel measurement and model derivation of multi-antenna systems, improvement of transmission reliability, and improvement of transmission rate. Research is being actively conducted from various viewpoints, such as research on space-time signal processing technology.
  • the communication method in a multi-antenna system will be described in more detail using mathematical modeling. It is assumed that there are NT transmit antennas and NR receive antennas in the system.
  • the transmission signal when there are NT transmit antennas, the maximum information that can be transmitted is NT. Each transmission information may have a different transmission power.
  • the transmission signal x may be considered in different ways according to two cases (for example, spatial diversity and spatial multiplexing).
  • spatial multiplexing different signals are multiplexed and the multiplexed signal is sent to the receiving side so that the elements of the information vector (s) have different values.
  • spatial diversity the same signal is repeatedly transmitted through a plurality of channel paths so that the elements of the information vector (s) have the same value.
  • a combination of spatial multiplexing and spatial diversity techniques can also be considered. That is, the same signal may be transmitted through, for example, three transmit antennas according to a spatial diversity scheme, and the remaining signals may be spatially multiplexed and transmitted to the receiver.
  • channels may be divided according to transmit / receive antenna indexes.
  • a channel passing from the transmitting antenna j to the receiving antenna i will be denoted as hij. Note that in hij, the order of the index is the receive antenna index first, and the index of the transmit antenna is later.
  • FIG. 5 (b) shows a channel from NT transmit antennas to receive antenna i.
  • the channels may be bundled and displayed in vector and matrix form.
  • the real channel is added with white noise (AWGN) after going through the channel matrix.
  • AWGN white noise
  • the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other. Thus, the rank of the matrix cannot be greater than the number of rows or columns.
  • 'rank' indicates the number of paths that can independently transmit a signal
  • 'number of layers' indicates the number of signal streams transmitted through each path.
  • the transmitting end since the transmitting end transmits the number of layers corresponding to the number of ranks used for signal transmission, unless otherwise specified, the rank has the same meaning as the number of layers.
  • the transmitted packet is transmitted through a wireless channel
  • signal distortion may occur during the transmission process.
  • the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
  • a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
  • the signal is called a pilot signal or a reference signal.
  • RSs can be classified into two types according to their purpose.
  • One is an RS used for channel information acquisition, and the other is an RS used for data demodulation. Since the former is an RS for allowing the terminal to acquire downlink channel information, the former should be transmitted over a wide band, and even if the terminal does not receive downlink data in a specific subframe, it should be able to receive and measure the corresponding RS.
  • Such RS is also used for measurement for handover and the like.
  • the latter is an RS that is transmitted together with the corresponding resource when the base station transmits a downlink, and the terminal can estimate the channel by receiving the corresponding RS, thus demodulating data. This RS should be transmitted in the area where data is transmitted.
  • the existing 3GPP LTE (eg, 3GPP LTE Release-8) system
  • two types of downlink RSs are defined for unicast services.
  • One of them is a common RS (CRS) and the other is a dedicated RS (DRS).
  • CRS is used for measurement of channel state information, measurement for handover, and the like, and may be referred to as cell-specific RS.
  • DRS is used for data demodulation and may be referred to as UE-specific RS.
  • DRS is used only for data demodulation, and CRS can be used for both purposes of channel information acquisition and data demodulation.
  • the CRS is a cell-specific RS and is transmitted every subframe for a wideband.
  • the CRS may be transmitted for up to four antenna ports according to the number of transmit antennas of the base station. For example, if the number of transmitting antennas of the base station is two, CRSs for antenna ports 0 and 1 are transmitted, and if four, CRSs for antenna ports 0 to 3 are transmitted.
  • FIG. 6 is a diagram illustrating patterns of CRSs and DRSs on one resource block (14 OFDM symbols in time x 12 subcarriers in frequency in case of a general CP) in a system in which a base station supports four transmit antennas.
  • resource elements RE denoted by 'R0', 'R1', 'R2' and 'R3' indicate positions of CRSs for antenna port indexes 0, 1, 2, and 3, respectively.
  • the resource element denoted as 'D' in FIG. 6 indicates the position of the DRS defined in the LTE system.
  • LTE-A system of the advanced evolution of the LTE system can support up to eight transmit antennas in the downlink. Therefore, RS for up to eight transmit antennas should also be supported. Since the downlink RS in the LTE system is defined for up to four antenna ports only, if the base station has four or more up to eight downlink transmission antennas in the LTE-A system, RSs for these antenna ports must be additionally defined. do. As RS for up to eight transmit antenna ports, both RS for channel measurement and RS for data demodulation should be considered.
  • Backward compatibility means that the existing LTE terminal supports to operate correctly in the LTE-A system. From the point of view of RS transmission, if RS is added for up to eight transmit antenna ports in the time-frequency domain where CRS defined in the LTE standard is transmitted every subframe over the entire band, the RS overhead becomes excessively large. do. Therefore, in designing RS for up to 8 antenna ports, consideration should be given to reducing RS overhead.
  • RS newly introduced in LTE-A system can be classified into two types. One of them is an RS for channel measurement for selecting a transmission rank, a modulation and coding scheme (MCS), a precoding matrix index (PMI), and the like.
  • MCS modulation and coding scheme
  • PMI precoding matrix index
  • CSI-RS Channel State Information RS
  • DM RS demodulation-reference signal
  • the CSI-RS for channel measurement purposes is characterized in that the CRS in the existing LTE system is designed for channel measurement-oriented purposes, unlike the CRS used for data demodulation at the same time as the channel measurement, handover, etc. have.
  • the CSI-RS may also be used for the purpose of measuring handover. Since the CSI-RS is transmitted only for the purpose of obtaining channel state information, unlike the CRS in the existing LTE system, the CSI-RS does not need to be transmitted every subframe.
  • the CSI-RS may be designed to be transmitted intermittently (eg, periodically) on the time axis.
  • a DM RS is transmitted to a terminal scheduled for data transmission.
  • the DM RS dedicated to a specific terminal may be designed to be transmitted only in a resource region in which the terminal is scheduled, that is, in a time-frequency region in which data for the terminal is transmitted.
  • FIG. 7 is a diagram illustrating an example of a DM RS pattern defined in an LTE-A system.
  • a position of a resource element in which a DM RS is transmitted is transmitted on one resource block in which downlink data is transmitted (14 OFDM symbols in time x 12 subcarriers in frequency).
  • the DM RS may be transmitted for four antenna ports (antenna port indexes 7, 8, 9 and 10) which are additionally defined in the LTE-A system.
  • DM RSs for different antenna ports may be divided into being located in different frequency resources (subcarriers) and / or different time resources (OFDM symbols) (ie, may be multiplexed in FDM and / or TDM schemes).
  • DM RSs for different antenna ports located on the same time-frequency resource may be distinguished from each other by orthogonal codes (ie, multiplexed in the CDM manner).
  • DM RSs for antenna ports 7 and 8 may be located in resource elements (REs) indicated as DM RS CDM group 1, which may be multiplexed by an orthogonal code.
  • DM RSs for antenna ports 9 and 10 may be located in resource elements indicated as DM RS group 2 in the example of FIG. 7, which may be multiplexed by an orthogonal code.
  • FIG. 8 is a diagram illustrating examples of a CSI-RS pattern defined in an LTE-A system.
  • FIG. 8 shows the location of a resource element in which a CSI-RS is transmitted on one resource block in which downlink data is transmitted (14 OFDM symbols in time x 12 subcarriers in frequency).
  • one of the CSI-RS patterns of FIGS. 8 (a) to 8 (e) may be used.
  • the CSI-RS may be transmitted for eight antenna ports (antenna port indexes 15, 16, 17, 18, 19, 20, 21, and 22) which are additionally defined in the LTE-A system.
  • CSI-RSs for different antenna ports may be divided into being located in different frequency resources (subcarriers) and / or different time resources (OFDM symbols) (ie, may be multiplexed in FDM and / or TDM schemes).
  • OFDM symbols ie, may be multiplexed in FDM and / or TDM schemes.
  • CSI-RSs for different antenna ports located on the same time-frequency resource may be distinguished from each other by orthogonal codes (ie, multiplexed in a CDM manner).
  • CSI-RSs for antenna ports 15 and 16 may be located in resource elements (REs) indicated as CSI-RS CDM group 1, which may be multiplexed by an orthogonal code.
  • REs resource elements
  • CSI-RSs for antenna ports 17 and 18 may be located in resource elements indicated as CSI-RS CDM group 2, which may be multiplexed by an orthogonal code.
  • CSI-RSs for antenna ports 19 and 20 may be located in resource elements indicated as CSI-RS CDM group 3, which may be multiplexed by an orthogonal code.
  • CSI-RSs for antenna ports 21 and 22 may be located in resource elements indicated as CSI-RS CDM group 4, which may be multiplexed by an orthogonal code.
  • the RS patterns of FIGS. 6 to 8 are merely exemplary and are not limited to specific RS patterns in applying various embodiments of the present invention. That is, even when RS patterns different from those of FIGS. 6 to 8 are defined and used, various embodiments of the present invention may be equally applied.
  • One CSI process is defined by associating one CSI-RS resource for signal measurement and one Interference Measurement resource (IMR) for interference measurement among a plurality of CSI-RSs and a plurality of IMRs configured for the UE.
  • IMR Interference Measurement resource
  • the UE feeds back CSI information derived from different CSI processes to a network (eg, a base station) with independent periods and subframe offsets.
  • each CSI process has an independent CSI feedback setting.
  • the CSI-RS resource, IMR resource association information, and CSI feedback configuration may be informed by the base station to the UE through higher layer signaling such as RRC for each CSI process. For example, it is assumed that the UE receives (sets) three CSI processes as shown in Table 1 below.
  • CSI-RS 0 and CSI-RS 1 indicate CSI-RSs received from Cell 2, which is a neighboring cell participating in cooperation with CSI-RS, which is received from Cell 1, which is a serving cell of a UE. If it is assumed that the IMR set for each CSI process of Table 1 is set as shown in Table 2,
  • IMR 0 cell 1 performs muting
  • cell 2 performs data transmission
  • the UE is configured to measure interference from cells other than cell 1 from IMR 0.
  • IMR 1 cell 2 muting
  • cell 1 performs data transmission
  • the UE is configured to measure interference from cells other than cell 2 from IMR 1.
  • IMR 2 both cell 1 and cell 2 perform muting, and the terminal is configured to measure interference from cells other than cell 1 and cell 2 from IMR 2.
  • CSI information of CSI process 0 represents optimal RI, PMI, CQI information when receiving data from cell 1.
  • CSI information of CSI process 1 represents optimal RI, PMI, and CQI information when data is received from cell 2.
  • CSI information of CSI process 2 represents optimal RI, PMI, and CQI information when data is received from cell 1 and no interference is received from cell 2.
  • a plurality of CSI processes configured (configured) for one UE share a mutually dependent value.
  • JT joint transmission
  • the channel of CSI Process 1 and Cell 2 which regards the channel of Cell 1 as a signal part, is regarded as the signal part.
  • the CSI process 2 is configured (configured) to one UE, the ranks of the CSI process 1 and the CSI process 2 and the selected subband index are the same to facilitate JT scheduling.
  • the period or pattern in which the CSI-RS is transmitted may be configured by the base station.
  • the UE In order to measure the CSI-RS, the UE must know the CSI-RS configuration for each CSI-RS antenna port of the cell to which the UE belongs.
  • the CSI-RS configuration includes a downlink subframe index in which the CSI-RS is transmitted and a time-frequency position of the CSI-RS resource element (RE) in the transmission subframe (for example, FIGS. 8A to 8E).
  • CSI-RS pattern), and CSI-RS sequence (a sequence used for CSI-RS purposes), which are pseudo-random according to a predetermined rule based on a slot number, a cell ID, a CP length, and the like. Generated), and the like. That is, a plurality of CSI-RS configurations may be used in any base station, and the base station may inform the CSI-RS configuration to be used for the terminal (s) in the cell among the plurality of CSI-RS configurations.
  • CSI-RSs for each antenna port may be multiplexed in an FDM, TDM and / or CDM scheme using orthogonal frequency resources, orthogonal time resources, and / or orthogonal code resources. have.
  • the base station informs the UEs in the cell of the CSI-RS information (CSI-RS configuration)
  • the time information includes subframe numbers through which CSI-RSs are transmitted, periods through which CSI-RSs are transmitted, subframe offsets through which CSI-RSs are transmitted, and CSI-RS resource elements (RE) of a specific antenna.
  • OFDM symbol numbers to be transmitted may be included.
  • the information about the frequency may include a frequency spacing through which the CSI-RS resource element RE of a specific antenna is transmitted, an offset or shift value of the RE on the frequency axis, and the like.
  • the CSI-RS may be periodically transmitted with an integer multiple of one subframe (eg, 5 subframe periods, 10 subframe periods, 20 subframe periods, 40 subframe periods, or 80 subframe periods). .
  • one radio frame includes 10 subframes (subframe numbers 0 to 9).
  • the transmission period of the CSI-RS of the base station is 10 ms (ie, 10 subframes), and the CSI-RS transmission offset is 3.
  • the offset value may have a different value for each base station so that CSI-RS of several cells may be evenly distributed in time.
  • the offset value may have one of 0 to 9.
  • the offset value may have one of 0 to 4
  • the offset value is one of 0 to 19.
  • the offset value When CSI-RS is transmitted in a period of 40 ms, the offset value may have one of 0 to 39. When CSI-RS is transmitted in a period of 80 ms, the offset value is one of 0 to 79. It can have a value of. This offset value indicates the value of the subframe where the base station transmitting the CSI-RS at a predetermined period starts the CSI-RS transmission.
  • the terminal When the base station informs the transmission period and the offset value of the CSI-RS, the terminal may receive the CSI-RS of the base station at the corresponding subframe location by using the value. The terminal may measure the channel through the received CSI-RS and report information such as CQI, PMI and / or Rank Indicator (RI) to the base station as a result. Except where CQI, PMI, and RI are distinguished from each other in this document, these may be collectively referred to as CQI (or CSI). In addition, the CSI-RS transmission period and offset may be separately designated for each
  • one radio frame includes 10 subframes (subframe numbers 0 to 9).
  • the subframe in which the CSI-RS is transmitted may appear in a specific pattern.
  • the CSI-RS transmission pattern may be configured in units of 10 subframes, and whether or not to transmit CSI-RS in each subframe may be designated as a 1-bit indicator.
  • 10 illustrates a CSI-RS pattern transmitted at subframe indexes 3 and 4 within 10 subframes (subframe indexes 0 to 9). Such an indicator may be provided to the terminal through higher layer signaling.
  • Configuration of the CSI-RS transmission may be configured in various ways as described above, and in order for the terminal to correctly receive the CSI-RS and perform channel measurement, the base station needs to inform the terminal of the CSI-RS configuration. There is. Embodiments of the present invention for informing the UE of the CSI-RS configuration will be described below.
  • the following two methods may be considered as a method of informing the UE of the CSI-RS configuration.
  • the first method is a method in which a base station broadcasts information on a CSI-RS configuration to terminals by using a dynamic broadcast channel (DBCH) signaling.
  • DBCH dynamic broadcast channel
  • the information when a base station notifies UEs about system information, the information may be transmitted through a BCH (broadcasting channel). If there is a lot of information about the system information to inform the terminal, the base station transmits the system information in the same manner as the general downlink data, but only the BCH, the PDCCH CRC of the corresponding data to a specific terminal identifier (for example, System information may be transmitted by masking using a system information identifier (SI-RNTI) rather than a C-RNTI. In this case, the actual system information is transmitted on the PDSCH region like general unicast data.
  • SI-RNTI system information identifier
  • DBCH dynamic BCH
  • PBCH physical broadcasting
  • SIB master information block
  • SIB system information block
  • SIB1 to SIB8 system information block
  • CSI-RS configuration which is new system information not defined in the existing SIB type
  • the second method is a method in which a base station informs each terminal of information about a CSI-RS configuration using Radio Resource Control (RRC) signaling. That is, information on the CSI-RS configuration may be provided to each of the terminals in the cell by using dedicated RRC signaling. For example, in a process of establishing a connection with a base station through an initial access or handover, the base station may inform the terminal of the CSI-RS configuration through RRC signaling. . Alternatively, when the base station transmits an RRC signaling message for requesting channel state feedback based on the CSI-RS measurement, the base station may inform the terminal of the CSI-RS configuration through the corresponding RRC signaling message.
  • RRC Radio Resource Control
  • a plurality of CSI-RS configurations may be used in any base station, and the base station may transmit CSI-RSs according to each CSI-RS configuration to the UE on a predetermined subframe.
  • the base station informs the user equipment of a plurality of CSI-RS configurations, and among them, what is the CSI-RS to be used for channel state measurement for channel quality information (CQI) or channel state information (CSI) feedback? You can let them know.
  • CQI channel quality information
  • CSI channel state information
  • FIG. 11 is a diagram for explaining an example in which two CSI-RS configurations are used.
  • one radio frame includes 10 subframes (subframe numbers 0 to 9).
  • the first CSI-RS configuration that is, the CSI-RS1 has a CSI-RS transmission period of 10 ms and a CSI-RS transmission offset of 3.
  • the second CSI-RS configuration that is, the CSI-RS2 has a CSI-RS transmission period of 10 ms and a CSI-RS transmission offset of 4.
  • the base station informs the user equipment of two CSI-RS configurations, and can inform which CSI-RS configuration is used for CQI (or CSI) feedback.
  • the terminal may perform channel state measurement using only the CSI-RS belonging to the corresponding CSI-RS configuration. Specifically, the channel state is determined as a function of the CSI-RS reception quality and the amount of noise / interference and the correlation coefficient.
  • the CSI-RS reception quality measurement is performed using only the CSI-RS belonging to the corresponding CSI-RS configuration.
  • the measurement may be performed in the corresponding CSI-RS transmission subframe or in designated subframes. Can be. For example, in the embodiment of FIG.
  • the UE when the UE receives a request for feedback from the base station from the first CSI-RS configuration (CSI-RS1), the UE receives a fourth subframe (subframe index 3 of one radio frame).
  • RSI is performed using CSI-RS transmitted from the Rx), and it may be designated to use an odd-numbered subframe separately for measuring the amount of noise / interference and correlation coefficient.
  • the CSI-RS reception quality measurement and the amount of noise / interference and the correlation coefficient measurement may be specified to be limited to a specific single subframe (for example, subframe index 3).
  • the received signal quality measured using CSI-RS is signal-to-interference plus noise ratio (SINR), which is simply S / (I + N) where S is received. Strength of the signal, I is the amount of interference, N is the amount of noise). S may be measured through the CSI-RS in the subframe including the CSI-RS in the subframe including the signal transmitted to the UE. Since I and N change according to the amount of interference from the neighboring cell, the direction of the signal from the neighboring cell, and the like, it can be measured through a CRS transmitted in a subframe for measuring S or a subframe separately designated.
  • SINR signal-to-interference plus noise ratio
  • the measurement of the amount of noise / interference and the correlation coefficient may be performed at a resource element (RE) to which a CRS or CSI-RS is transmitted in a corresponding subframe, or is set to facilitate measurement of noise / interference. It can also be done through a null resource element (Null RE).
  • RE resource element
  • Null RE null resource element
  • the UE In order to measure noise / interference in the CRS or CSI-RS RE, the UE first recovers the CRS or CSI-RS, and then subtracts the result from the received signal to leave only the noise and interference signals. Statistics of noise / interference can be obtained.
  • a null RE means a RE that the base station is empty without transmitting any signal (that is, the transmission power is zero (zero)) and facilitates signal measurement from other base stations except the base station.
  • CRS RE, CSI-RS RE, and Null RE may all be used to measure the amount of noise / interference and the correlation coefficient, but the base station may designate to the terminal as to which of these REs to measure the noise / interference. have. This is because it is necessary to appropriately designate the RE to be measured by the corresponding UE according to whether the signal of the neighbor cell transmitted to the RE location where the UE performs measurement is a data signal or a control signal, and the neighbor cell transmitted at the corresponding RE location. What is the signal of depends on whether the synchronization between the cells and the CRS configuration (configuration) and CSI-RS configuration (configuration), so that the base station can determine this to determine the measurement to perform the UE. That is, the base station may designate the terminal to measure noise / interference by using all or part of CRS RE, CSI-RS RE, and Null RE.
  • the base station may use a plurality of CSI-RS configuration, the base station informs the terminal of one or more CSI-RS configuration, and among them, the CSI-RS configuration to be used for CQI feedback And Null RE location.
  • the CSI-RS configuration to be used for CQI feedback by the terminal is expressed in terms of distinguishing it from a Null RE transmitted with a transmission power of 0, and a CSI-RS configuration transmitted with a non-zero transmission power. configuration).
  • the base station informs one CSI-RS configuration in which the terminal will perform channel measurement, and the terminal indicates that the CSI-RS is non-zero in the one CSI-RS configuration. It can be assumed to be transmitted at the transmit power.
  • the base station informs about the CSI-RS configuration (that is, about the Null RE location) transmitted at a transmission power of 0, and the terminal is located at the resource element (RE) location of the corresponding CSI-RS configuration. It can be assumed that the transmission power of 0 for (assume). In other words, the base station informs the user equipment of one CSI-RS configuration of non-zero transmission power, and if there is a CSI-RS configuration of transmission power of 0, the terminal indicates the corresponding Null RE location. You can let them know.
  • the base station informs a plurality of CSI-RS configuration to the terminal, among which all or part of the CSI-RS configuration to be used for CQI feedback ( configuration). Accordingly, the UE, which has received CQI feedback for a plurality of CSI-RS configurations, measures CQIs using CSI-RSs corresponding to each CSI-RS configuration, and measures the measured CQIs. Information can be sent together to the base station.
  • the base station may designate uplink resources required for transmitting the CQI of the terminal in advance for each CSI-RS configuration so that the terminal may transmit CQI for each of a plurality of CSI-RS configurations.
  • the information on the uplink resource designation may be provided to the terminal in advance through RRC signaling.
  • the base station may dynamically trigger the terminal to transmit CQI for each of a plurality of CSI-RS configurations to the base station. Dynamic triggering of CQI transmission may be performed over the PDCCH. Which CSI-RS configuration (CQI measurement) to be performed may be known to the UE through the PDCCH. The terminal receiving the PDCCH may feed back the CQI measurement result for the CSI-RS configuration designated in the corresponding PDCCH to the base station.
  • the transmission time of the CSI-RS corresponding to each of the plurality of CSI-RS configurations may be designated to be transmitted in another subframe or may be designated to be transmitted in the same subframe.
  • transmission of CSI-RSs according to different CSI-RS configurations is designated in the same subframe, it is necessary to distinguish them from each other.
  • one or more of time resources, frequency resources, and code resources of CSI-RS transmission may be differently applied.
  • the transmission RE position of the CSI-RS in the corresponding subframe is different according to the CSI-RS configuration (for example, the CSI-RS according to one CSI-RS configuration is the RE position of FIG. 8 (a)).
  • CSI-RS transmitted from the CSI-RS according to another CSI-RS configuration may be designated to be transmitted in the RE position of FIG. 8 (b) in the same subframe (division using time and frequency resources).
  • the CSI-RS scrambling codes may be differently used in different CSI-RS configurations to distinguish them from each other. It may be possible (division using code resources).
  • AAS Active Antenna System
  • AAS Active Antenna System
  • each antenna includes an active circuit.
  • AAS is expected to reduce the interference by changing the antenna pattern according to the situation, or to perform beamforming more efficiently.
  • the AAS is constructed in two dimensions (2D-AAS)
  • the main lobe of the antenna can be more efficiently adjusted in three dimensions in terms of the antenna pattern, and the transmission beam can be changed more actively according to the position of the receiver.
  • FIG. 12 shows an example of a 64 port 2D-AAS antenna arrangement.
  • the 2D-AAS may install an antenna in a vertical direction and a horizontal direction to construct a large amount of antenna system.
  • CSI-RS CSI-RS
  • the transmitting end should send a specific RS (eg, CSI-RS, hereinafter referred to as “CSI-RS” for convenience) to inform the receiving end of the channel from the transmitting end to the receiving end.
  • CSI-RS is designed as 1 port, 2 ports, 4 ports, 8 ports CSI-RS.
  • Each n-ports CSI-RS with n> 1 must use n REs for one RB. Therefore, in the case of 2D-AAS, if there are 8 antennas in the vertical direction and 8 in the horizontal direction, and thus have 64 antennas in total, 64 REs are used in one RB for the CSI-RS. do. Therefore, CSI-RS overhead depending on the number of antennas may be a problem.
  • the channel from the 2D-AAS to the receiver can be estimated as the kronecker product as follows.
  • H means an entire channel from a transmitting end to a receiving end
  • H T (j) means a channel from a transmitting end to a jth receiving antenna
  • H v (j) and H H (j) mean channels transmitted from the antenna element (or port) in the vertical direction and the horizontal direction to the jth antenna of the receiver, respectively.
  • H V (j) means a channel for the j-th antenna of the receiver from the A block antenna.
  • H H (j) assumes that only the antenna of the B block exists, and means a channel for the j-th antenna of the receiver from the antenna of the B block.
  • Equation 2 is an equation for explaining the present invention, the present invention can be applied even if the actual channel is not the same as the equation (2).
  • Two CSI-RSs may be configured by setting one CSI-RS having the antenna port Nv in the vertical direction as shown in A block of FIG. 12 and one CSI-RS having the antenna port N H in the horizontal direction as shown in the B block. .
  • the receiver After receiving two CSI-RSs, the receiver can infer a channel by Kronecker product of two channel matrices as shown in Equation 2.
  • Nv is the number of antennas in the vertical direction
  • N H is the number of antennas in the horizontal direction.
  • a cross-polarized antenna array (hereinafter referred to as X-pol AA) as shown in FIG. 13 may be considered.
  • the 64 ports antenna array can be configured as 8 row / 4 column x 2 polarization as shown in FIG.
  • FIG. 14 is an illustration of an A / B block in X-pol AA.
  • N-Tx CSI-RS and N-Tx PMI must be newly defined for CSI feedback, but RS overhead or feedback overhead is considered. In this case, it may be difficult to newly define N-Tx CSI-RS and PMI.
  • a part of the massive antenna may be set to CSI-RS in each of multiple CSI processes, and the UE may feed back CSI for each process.
  • CSI processes 1 and 2 are set to one UE, process 1 configures CSI-RS 1 corresponding to block A of FIG. 14 and process 2 configures CSI-RS 2 corresponding to block B of FIG. 14. give.
  • the UE raises feedback on the CSI-RSs 1 and 2 by using the CSI feedback chain configured for the two processes.
  • the CQI of each CSI process indicates the MCS that can be obtained when only a few of the massive antennas are used, not the CQIs that can be achieved when the entire massive antennas are used.
  • the base station receives the CQI of each CSI process and it is difficult to recalculate the CQI that can be achieved when using the entire massive antenna.
  • the RI of each CSI process indicates the RI that can be obtained when only a few of the massive antennas are used, not the RIs that can be achieved when the entire massive antennas are used. In this case, even if the base station receives the RI of each CSI process and recalculates the RI that can be achieved when using the entire massive antenna, it is difficult to recalculate the CQI corresponding to the recalculated RI.
  • the PMI of the CSI process indicates the PMI that can be obtained when only a few of the massive antennas are used, rather than the optimal PMI when the entire massive antennas are used.
  • a CSI process is configured for the UE, and the UE feeds back RI, PMI, and CQI that can be achieved when using the entire Massive Antenna through the process.
  • L CSI-RSs corresponding to one IMR and a massive MIMO antenna may be configured in one CSI process. That is, CSI process related information may be configured as follows.
  • CSI process information ⁇ IMR setting, 1st CSI-RS setting, 2nd CSI-RS setting,... , L-th CSI-RS Settings ⁇
  • the UE can estimate the total Massive MIMO channel from L CSI-RSs, and feeds back the entire channel into K PMIs.
  • K are due to the limitation of payload size.
  • the present invention relates to a method for feeding back a CSI with which CSI is information on which partial channel of the entire channel with the base station.
  • a base station can inform a UE of some or all channels of the transmit antenna through several CSI-RS configurations.
  • the UE ideally quantizes all channel information with the base station to PMI and feeds back at once, but considering realistic feedback overhead, after dividing the entire channel into several partial channels, the corresponding PMI is sequentially fed back.
  • the UE updates and updates only the PMI having the most effect, and informs the base station about which partial channel the PMI is determined based on, thereby reducing feedback overhead.
  • the UE may select one of the K partial channels and feed back only the PMI corresponding to the selected partial channel.
  • the CSI feedback capable partial channel candidate should be promised between the base station and the UE, and a separate control signal may be set for this purpose.
  • partial channels A and B each have a one-to-one correspondence with different CSI-RSs
  • partial channel selection for CSI feedback has the same meaning as selection of CSI-RS.
  • the base station informs the UE of the CSI-RS corresponding to the A block of FIG. 14 and the CSI-RS corresponding to the B block, and the UE transmits a downlink channel for vertical antennas through the CSI-RS corresponding to the A block.
  • the PMI is calculated by estimating the PMI
  • the PMI is calculated by estimating the downlink channels of the horizontal antennas through the CSI-RS corresponding to the B block.
  • the partial channels A and B selected by the UE can mean vertical PMI and horizontal PMI, respectively.
  • partial channels A and B may not have a one-to-one correspondence with the CSI-RS.
  • partial channel A may mean a composite channel of a channel estimated from two CSI-RSs
  • partial channel B may mean a channel estimated from one CSI-RS.
  • a first embodiment according to the present invention is directed to a method for a UE to select a partial channel.
  • the UE may select the partial channel with the most severe channel change and provide PMI feedback. This is because in the case of the partial channel where the channel change is not severe, the PMI sent in the past may be valid to some extent, so that it is effective to feed back the PMI of the partial channel with the severe channel change.
  • the UE may select the partial channel so that the CQI that can be obtained when updating the PMI is maximized.
  • the UE calculates the CQI for each case by considering all selectable partial channels, and selects the partial channel having the largest CQI among them.
  • Second embodiment method of feeding back the selected partial channel
  • a second embodiment according to the present invention is directed to a method in which a UE feeds back a selected partial channel to a base station.
  • the UE selects one partial channel among all partial channel candidates and calculates and feeds back a PMI based on the partial channel candidate.
  • the base station must know which partial channel the PMI fed back by the UE corresponds to.
  • the simplest way to feed back this information is to feed back information about the selected partial channel with the PMI.
  • the UE selects one of two partial channels whenever PMI feedback is provided and calculates the PMI based on the partial channel. And feed back the selected partial channel candidate.
  • 15 is an example of a feedback setting according to an embodiment of the present invention.
  • a partial channel is additionally selected (for example, PCI: partial CSI indicator) in addition to all subframes to which W1 and W2 are fed back.
  • PCI is expressed as 1 bit, and when PCI is 0 and 1, it means partial channels corresponding to 1st column vertical antennas and 1st row horizontal antennas, respectively.
  • W1 and W2 represent respective codebooks in the dual codebook, such as LTE 8Tx codebook or enhanced 4Tx codebook, RI means rank, and CQI means channel quality indicator.
  • Each partial channel may have a different codebook structure (eg, dual codebook or single codebook).
  • the A block of FIG. 14 uses a single codebook structure suitable for the ULA structure and the B block uses a dual codebook structure suitable for the X-Pol structure.
  • the base station may signal a codebook to be used for feedback for each partial channel to the UE.
  • the CSI feedback frame is set according to a more complex dual codebook, and when a single codebook PMI is fed back, the UE feeds back a single PMI instead of W1 or W2.
  • the codebook corresponding to the partial channel 1 in FIG. 15 has a dual structure consisting of W1 and W2, but the codebook corresponding to the partial channel 2 has a single structure (for example, a release-8 LTE 4Tx codebook), the reporting structure of FIG. Feedback of the codebook of partial channel 2 is ambiguous.
  • W1 jointly encoded with RI is assumed to be a codebook corresponding to partial channel 1, and feedback is performed without PCI, and PCI is fed back together only when W2 is fed back.
  • W2 shown in FIG. 15 is W2 of partial channel 1 or single PMI of partial channel 2.
  • the UE may limit the CSI feedback to be performed using the same codebook structure for all partial channels.
  • the CQI is fed back with the updated PMI.
  • the CQI is a value that can be achieved when the base station performs massive MIMO using the most recent PMIs, including the time point at which the CQI is fed back.
  • the RI may be a value in which different ranks corresponding to each of the multiple CSI-RSs are jointly encoded, or a single value commonly applied to the PMIs of all the multiple CSI-RSs.
  • the embodiment of FIG. 15 is a method of feeding back PCI together at every PMI feedback moment.
  • the frequency of feeding back PCI may be inefficient in terms of feedback overhead.
  • FIG. 14 when the channel change rates of the partial channel 1 and the partial channel 2 corresponding to each of the vertical antenna and the horizontal antenna are asymmetric, inefficiency increases.
  • PCI can be fed back over a longer period.
  • the UE feeds back PCI with the RI and reports the PMI corresponding to the same partial channel until the next PCI + RI is updated.
  • the partial channels 1 and 2 may be mapped to the vertical antenna and the horizontal antenna, respectively, and set as shown in FIG. 16 to provide more effective feedback.
  • the feedback ratio of the PMI corresponding to the partial channel 1 and the PMI corresponding to the partial channel 2 may be differently set according to the PCI value.
  • the feedback ratio of the PMI corresponding to the partial channel 1 and the PMI corresponding to the partial channel 2 may be interchanged according to the PCI value. For example, it is possible to select a feedback ratio between the two PMIs through a signaling between the base station and the UE at 1: 2 and to select a feedback ratio of 1: 2 to the two PMIs according to PCI.
  • the PMI corresponding to the partial channel 1 is reported at equal intervals with a ratio of 1: 2.
  • the existing mode 2-1 may be modified as shown in FIGS. 20 to 23.
  • the PMI feedback ratio of the two partial channels is set to 1: 3, and Wi1 having a long-term / wideband property is fed back with a long period compared to Wi2, so it is transmitted along with the PMI of another partial channel transmitted over a long period. That is, in subframes 1 and 9 of FIGS. 20 and 21, the PMI for one partial channel and the longterm / wideband PMI for the remaining partial channel are reported together.
  • the codebook of the partial channel 1 is a single codebook, one of W1--1 or W1--2 is not assumed to be reported as an identity precoder, and the other one of W1--1 or W1--2 is signleed. You can report by replacing it with a codebook. The same rule applies to the case where the PMI subchannel 2 is a single codebook.
  • the PCI is applied only to the PMI feedback, but may be extended to the remaining CSI feedback (eg, RI or CQI).
  • the fed back RI means the rank of the channel of the partial channel indicated by PCI.
  • the PCI in Figs. 16 to 18 tells which partial channel the RI value transmitted together is calculated from.
  • the feedback CQI means the CQI of the channel of the partial channel indicated by PCI.
  • the PCI indicates which partial channel the CQI value transmitted together is calculated from the channel.
  • CQI feedback may be applied in the same manner as the PMI feedback operation according to PCI in FIGS. 16 to 18.
  • 24 is a flowchart showing an example of an embodiment of the present invention.
  • the UE receives CSI configuration information for CSI reporting (S2401).
  • identification information on the partial channel corresponding to the CSI among the entire channels according to the CSI and the massive MIMO is transmitted based on the CSI configuration information (S2403).
  • Detailed contents thereof are the same as those of the first and second embodiments described above, and thus detailed description thereof will be omitted.
  • 25 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • a relay When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station 2510 and a terminal 2520.
  • the base station 2510 includes a processor 2513, a memory 2514, and radio frequency (RF) units 2511, 2512.
  • the processor 2513 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 2514 is connected to the processor 2513 and stores various information related to the operation of the processor 2513.
  • the RF unit 2516 is connected with the processor 2513 and transmits and / or receives a radio signal.
  • the terminal 2520 includes a processor 2523, a memory 2524, and RF units 2521 and 2522.
  • the processor 2523 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 2524 is connected to the processor 2523 and stores various information related to the operation of the processor 2523.
  • the RF units 2521 and 2522 are connected to the processor 2523 and transmit and / or receive a radio signal.
  • the base station 2510 and / or the terminal 2520 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNodeB (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Abstract

A method for a terminal transmitting channel state information (CSI) in a wireless access system that supports massive multiple-input multiple-output (MIMO) according to one embodiment of the present invention may comprise the steps of: receiving CSI configuration information for reporting CSI; and transmitting CSI and identification information with respect to the partial channel corresponding to the CSI of the full channel according to the massive MIMO, on the basis of the CSI configuration information.

Description

무선 접속 시스템에서 채널상태정보를 전송하는 방법 및 장치Method and apparatus for transmitting channel state information in wireless access system
본 발명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 대규모(Massive) MIMO (Multiple Input Multiple Output)를 지원하는 무선 접속 시스템에서 채널상태정보를 전송하는 방법 및 이를 지원하는 장치에 대한 것이다.The present invention relates to a wireless communication system, and more particularly, to a method of transmitting channel state information in a wireless access system supporting massive multiple input multiple output (MIMO) and an apparatus for supporting the same.
다중 입출력(MIMO: Multi-Input Multi-Output) 기술은 한 개의 송신 안테나와 한 개의 수신 안테나를 사용했던 것에서 탈피하여 다중 송신 안테나와 다중 수신 안테나를 사용하여 데이터의 송수신 효율을 향상시키는 기술이다. 단일 안테나를 사용하면 수신측은 데이터를 단일 안테나 경로(path)를 통해 수신하지만, 다중 안테나를 사용하면 수신단은 여러 경로를 통해 데이터를 수신한다. 따라서, 데이터 전송 속도와 전송량을 향상시킬 수 있고, 커버리지(coverage)를 증대시킬 수 있다. Multi-Input Multi-Output (MIMO) is a technology that improves the transmission and reception efficiency of data by using multiple transmission antennas and multiple reception antennas, instead of using one transmission antenna and one reception antenna. Using a single antenna, the receiving side receives data through a single antenna path, but using multiple antennas, the receiving end receives data through multiple paths. Therefore, the data transmission speed and the transmission amount can be improved, and the coverage can be increased.
단일-셀 (Single-cell) MIMO 동작은 하나의 셀에서 하나의 단말이 하향링크 신호를 수신하는 단일 사용자-MIMO (Single User-MIMO; SU-MIMO) 방식과 두 개 이상의 단말이 한 셀에서 하향링크 신호를 수신하는 다중 사용자-MIMO (Multi User-MIMO; MU-MIMO) 방식으로 나눌 수 있다. Single-cell MIMO operation is a single user-MIMO (SU-MIMO) scheme in which one terminal receives a downlink signal in one cell and two or more terminals are downlinked in one cell. It can be divided into a multi-user-MIMO (MU-MIMO) scheme for receiving a link signal.
채널 추정(channel estimation)은 페이딩(fading)에 의하여 생기는 신호의 왜곡을 보상함으로써 수신된 신호를 복원하는 과정을 말한다. 여기서 페이딩이란 무선통신 시스템 환경에서 다중경로(multi path)-시간지연(time delay)으로 인하여 신호의 강도가 급격히 변동되는 현상을 말한다. 채널추정을 위하여는 송신기와 수신기가 모두 알고 있는 참조신호(reference signal)가 필요하다. 또한, 참조 신호는 간단히 RS(Reference Signal) 또는 적용되는 표준에 따라 파일럿(Pilot)으로 지칭될 수도 있다. Channel estimation refers to a process of restoring a received signal by compensating for distortion of a signal caused by fading. Here, fading refers to a phenomenon in which the strength of a signal is rapidly changed due to multipath-time delay in a wireless communication system environment. For channel estimation, a reference signal known to both the transmitter and the receiver is required. In addition, the reference signal may simply be referred to as a reference signal (RS) or a pilot according to the applied standard.
하향링크 참조신호(downlink reference signal)는 PDSCH(Physical Downlink Shared CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등의 코히어런트(coherent) 복조를 위한 파일럿 신호이다. 하향링크 참조신호는 셀 내의 모든 단말이 공유하는 공용 참조신호(Common Reference Signal; CRS)와 특정 단말만을 위한 전용 참조신호(Dedicated Reference Signal; DRS)가 있다. 4 전송 안테나를 지원하는 기존의 통신 시스템 (예를 들어, LTE release(릴리즈) 8 또는 9 표준에 따른 시스템)에 비하여 확장된 안테나 구성을 갖는 시스템 (예를 들어, 8 전송 안테나를 지원하는 LTE-A 표준에 따른 시스템)에서는, 효율적인 참조신호의 운용과 발전된 전송 방식을 지원하기 위하여 DRS 기반의 데이터 복조를 고려하고 있다. 즉, 확장된 안테나를 통한 데이터 전송을 지원하기 위하여 2 이상의 레이어에 대한 DRS를 정의할 수 있다. DRS는 데이터와 동일한 프리코더에 의하여 프리코딩되므로 별도의 프리코딩 정보 없이 수신측에서 데이터를 복조하기 위한 채널 정보를 용이하게 추정할 수 있다. The downlink reference signal is a coherent such as a Physical Downlink Shared CHannel (PDSCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid Indicator CHannel (PHICH), and a Physical Downlink Control CHannel (PDCCH). Pilot signal for demodulation. The downlink reference signal includes a common reference signal (CRS) shared by all terminals in a cell and a dedicated reference signal (DRS) only for a specific terminal. LTE-based systems with extended antenna configurations (e.g., LTE-supporting 8 transmit antennas) compared to conventional communication systems supporting 4 transmit antennas (e.g., according to the LTE release 8 or 9 standard). In the system according to A standard, DRS-based data demodulation is considered to support efficient reference signal operation and advanced transmission scheme. That is, DRSs for two or more layers may be defined to support data transmission through an extended antenna. Since the DRS is precoded by the same precoder as the data, it is possible to easily estimate channel information for demodulating the data at the receiver without additional precoding information.
한편, 하향링크 수신측에서는 DRS를 통해서 확장된 안테나 구성에 대하여 프리코딩된 채널 정보를 획득할 수 있는 반면, 프리코딩되지 않은 채널 정보를 획득하기 위하여 DRS 이외의 별도의 참조신호가 요구된다. 이에 따라, LTE-A 표준에 따른 시스템에서는 수신측에서 채널 상태 정보(Channel State Information; CSI)를 획득하기 위한 참조신호, 즉 CSI-RS를 정의할 수 있다.Meanwhile, while the downlink receiving side can obtain precoded channel information for the extended antenna configuration through the DRS, a separate reference signal other than the DRS is required to obtain uncoded channel information. Accordingly, in the system according to the LTE-A standard, a reference signal for acquiring channel state information (CSI) may be defined at the receiving side, that is, CSI-RS.
상술한 바와 같은 논의를 바탕으로 이하에서는 대규모(Massive) MIMO (Multiple Input Multiple Output)를 지원하는 무선 접속 시스템에서 채널상태정보를 전송하는 방법 및 장치를 제안하고자 한다.Based on the above discussion, a method and apparatus for transmitting channel state information in a wireless access system supporting massive MIMO (Massive Multiple Input Multiple Output) are proposed.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the above technical problems, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 문제점을 해결하기 위하여, 본 발명의 일 실시예에 따른 대규모(Massive) MIMO (Multiple Input Multiple Output)를 지원하는 무선 접속 시스템에서 단말이 채널상태정보(CSI)를 전송하는 방법에 있어서, CSI 보고를 위한 CSI 설정 정보를 수신하는 단계; 및 상기 CSI 설정 정보를 기초로 CSI 및 상기 대규모 MIMO에 따른 전체 채널 중 상기 CSI에 대응하는 부분 채널에 대한 식별 정보를 전송하는 단계를 포함할 수 있다.In order to solve the above problem, in a method of transmitting a channel state information (CSI) by the terminal in a wireless access system that supports Massive Multiple Input Multiple Output (MIMO) according to an embodiment of the present invention, CSI reporting Receiving CSI configuration information for the device; And transmitting identification information on the partial channel corresponding to the CSI among the CSI and all the channels according to the massive MIMO based on the CSI configuration information.
상기 식별 정보가 제1값일 때 상기 부분 채널은 상기 대규모 MIMO에 따른 안테나 배열 중 첫번째 열의 안테나에 대응하고, 상기 식별 정보가 제2값일 때 상기 부분 채널은 상기 대규모 MIMO에 따른 상기 안테나 배열 중 첫번째 행의 안테나에 대응할 수 있다.The partial channel corresponds to the antenna of the first column of the antenna array according to the massive MIMO when the identification information is the first value, and the partial channel corresponds to the first row of the antenna array according to the massive MIMO when the identification information is the second value. It can correspond to the antenna of.
상기 식별 정보가 제1값일 때 상기 부분 채널은 싱글 코드북에 연관되고, 상기 식별 정보가 제2값일 때 상기 부분 채널은 듀얼 코드북에 연관될 수 있다.The partial channel may be associated with a single codebook when the identification information is a first value, and the partial channel may be associated with a dual codebook when the identification information is a second value.
상기 식별 정보가 제1값일 때 상기 부분 채널은 제1 부분 채널과 제2 부분 채널의 피드백 빈도에 대한 비율이 제1 비율값을 가지는 것을 나타내고, 상기 식별 정보가 제2값일 때 상기 부분 채널은 제1 부분 채널과 제2 부분 채널의 피드백 빈도에 대한 비율이 제2 비율값을 가지는 것을 나타낼 수 있다.When the identification information is the first value, the partial channel indicates that the ratio of the feedback frequency of the first partial channel and the second partial channel has a first ratio value, and when the identification information is the second value, the partial channel is set to the first value. It may indicate that the ratio of the feedback frequency of the first partial channel and the second partial channel has a second ratio value.
상기 식별 정보는 상기 CSI가 광대역 PMI (Precoding Matrix Indicator)인 경우에만 상기 CSI와 함께 전송되고, 상기 CSI가 협대역 PMI인 경우 함께 전송되지 않을 수 있다.The identification information may be transmitted together with the CSI only when the CSI is a wideband PMI (Precoding Matrix Indicator), and may not be transmitted together when the CSI is a narrowband PMI.
상기 식별 정보는 RI (Rank Indicator)와 함께 피드백되고, 업데이트된 상기 식별 정보가 상기 RI와 함께 전송될 때까지 동일한 부분 채널에 대응하는 PMI (Precoding Matrix Indicator)가 전송될 수 있다.The identification information is fed back together with a rank indicator (RI), and a PMI (Precoding Matrix Indicator) corresponding to the same partial channel may be transmitted until the updated identification information is transmitted together with the RI.
상기 부분 채널 정보는 PCI(Partial CSI Indicator)를 포함할 수 있다.The partial channel information may include a partial CSI indicator (PCI).
본 발명의 다른 실시예에 따른 대규모(Massive) MIMO (Multiple Input Multiple Output)를 지원하는 무선 접속 시스템에서 채널상태정보(CSI)를 전송하는 단말에 있어서, RF(Radio Frequency) 유닛; 및 프로세서를 포함하고, 상기 프로세서는, CSI 보고를 위한 CSI 설정 정보를 수신하고, 상기 CSI 설정 정보를 기초로 CSI 및 상기 대규모 MIMO에 따른 전체 채널 중 상기 CSI에 대응하는 부분 채널에 대한 식별 정보를 전송하도록 구성될 수 있다.A terminal for transmitting channel state information (CSI) in a wireless access system supporting Massive Multiple Input Multiple Output (MIMO), according to another embodiment of the present invention, comprising: a radio frequency (RF) unit; And a processor, wherein the processor is configured to receive CSI configuration information for CSI reporting, and to identify identification information of a partial channel corresponding to the CSI among all channels according to the CSI and the massive MIMO based on the CSI configuration information. Can be configured to transmit.
상기 식별 정보가 제1값일 때 상기 부분 채널은 상기 대규모 MIMO에 따른 안테나 배열 중 첫번째 열의 안테나에 대응하고, 상기 식별 정보가 제2값일 때 상기 부분 채널은 상기 대규모 MIMO에 따른 상기 안테나 배열 중 첫번째 행의 안테나에 대응할 수 있다.The partial channel corresponds to the antenna of the first column of the antenna array according to the massive MIMO when the identification information is the first value, and the partial channel corresponds to the first row of the antenna array according to the massive MIMO when the identification information is the second value. It can correspond to the antenna of.
상기 식별 정보가 제1값일 때 상기 부분 채널은 싱글 코드북에 연관되고, 상기 식별 정보가 제2값일 때 상기 부분 채널은 듀얼 코드북에 연관될 수 있다.The partial channel may be associated with a single codebook when the identification information is a first value, and the partial channel may be associated with a dual codebook when the identification information is a second value.
상기 식별 정보가 제1값일 때 상기 부분 채널은 제1 부분 채널과 제2 부분 채널의 피드백 빈도에 대한 비율이 제1 비율값을 가지는 것을 나타내고, 상기 식별 정보가 제2값일 때 상기 부분 채널은 제1 부분 채널과 제2 부분 채널의 피드백 빈도에 대한 비율이 제2 비율값을 가지는 것을 나타낼 수 있다.When the identification information is the first value, the partial channel indicates that the ratio of the feedback frequency of the first partial channel and the second partial channel has a first ratio value, and when the identification information is the second value, the partial channel is set to the first value. It may indicate that the ratio of the feedback frequency of the first partial channel and the second partial channel has a second ratio value.
상기 식별 정보는 상기 CSI가 광대역 PMI (Precoding Matrix Indicator)인 경우에만 상기 CSI와 함께 전송되고, 상기 CSI가 협대역 PMI인 경우 함께 전송되지 않을 수 있다.The identification information may be transmitted together with the CSI only when the CSI is a wideband PMI (Precoding Matrix Indicator), and may not be transmitted together when the CSI is a narrowband PMI.
상기 식별 정보는 RI (Rank Indicator)와 함께 피드백되고, 업데이트된 상기 식별 정보가 상기 RI와 함께 전송될 때까지 동일한 부분 채널에 대응하는 PMI (Precoding Matrix Indicator)가 전송될 수 있다.The identification information is fed back together with a rank indicator (RI), and a PMI (Precoding Matrix Indicator) corresponding to the same partial channel may be transmitted until the updated identification information is transmitted together with the RI.
상기 부분 채널 정보는 PCI(Partial CSI Indicator)를 포함할 수 있다.The partial channel information may include a partial CSI indicator (PCI).
본 발명의 실시예에 따르면 대규모(Massive) MIMO (Multiple Input Multiple Output)를 지원하는 무선 접속 시스템에서 채널상태정보를 전송하는 방법 및 이를 지원하는 장치를 제공할 수 있다.According to an embodiment of the present invention, a method for transmitting channel state information and a device supporting the same in a wireless access system supporting massive MIMO (Massive Multiple Input Multiple Output) can be provided.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide an embodiment of the present invention and together with the description, illustrate the technical idea of the present invention.
도 1은 하향링크 무선 프레임의 구조를 나타내는 도면이다. 1 is a diagram illustrating a structure of a downlink radio frame.
도 2는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일례를 나타낸 예시도이다. 2 is an exemplary diagram illustrating an example of a resource grid for one downlink slot.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 3 is a diagram illustrating a structure of a downlink subframe.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 4 is a diagram illustrating a structure of an uplink subframe.
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다. 5 is a configuration diagram of a wireless communication system having multiple antennas.
도 6은 기존의 CRS 및 DRS의 패턴을 나타내는 도면이다. 6 is a diagram illustrating a pattern of a conventional CRS and DRS.
도 7 은 DM RS 패턴의 일례를 나타내는 도면이다. 7 is a diagram illustrating an example of a DM RS pattern.
도 8 은 CSI-RS 패턴의 예시들을 나타내는 도면이다. 8 is a diagram illustrating examples of a CSI-RS pattern.
도 9 는 CSI-RS가 주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이다. 9 is a diagram for explaining an example of a method in which a CSI-RS is periodically transmitted.
도 10 은 CSI-RS 가 비주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이다. 10 is a diagram for explaining an example of a method in which a CSI-RS is transmitted aperiodically.
도 11 은 2 개의 CSI-RS 설정(configuration)이 사용되는 예를 설명하기 위한 도면이다.FIG. 11 is a diagram for explaining an example in which two CSI-RS configurations are used.
도 12는 64포트의 2D-AAS 안테나 배열의 일례를 나타낸다.12 shows an example of a 64 port 2D-AAS antenna arrangement.
도 13은 cross-polarized (X-pol) 안테나 배열(AA)의 일례를 나타낸다. 13 shows an example of a cross-polarized (X-pol) antenna array AA.
도 14는 X-pol AA에서 A/B 블록의 예시이다.14 is an illustration of an A / B block in X-pol AA.
도 15내지 도 23은 본 발명의 일 실시예에 따른 피드백 방법의 일례이다.15 to 23 are examples of a feedback method according to an embodiment of the present invention.
도 24는 본 발명의 실시예의 일례를 나타내는 흐름도이다.24 is a flowchart showing an example of an embodiment of the present invention.
도 25은 본 발명의 일 실시예에 적용될 수 있는 기지국 및 단말의 구성을 도시한 도면이다.25 is a diagram illustrating a configuration of a base station and a terminal that can be applied to an embodiment of the present invention.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. In the present specification, embodiments of the present invention will be described based on a relationship between data transmission and reception between a base station and a terminal. Here, the base station has a meaning as a terminal node of the network that directly communicates with the terminal. The specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. A 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like. The repeater may be replaced by terms such as relay node (RN) and relay station (RS). In addition, the term “terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), a subscriber station (SS), and the like.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 LTE-A 표준을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various radio access systems. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA). UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. LTE-A (Advanced) is the evolution of 3GPP LTE. WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on the 3GPP LTE and LTE-A standards, but the technical spirit of the present invention is not limited thereto.
도 1을 참조하여 하향링크 무선 프레임의 구조에 대하여 설명한다. A structure of a downlink radio frame will be described with reference to FIG. 1.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 데이터 패킷 전송은 서브프레임 (Subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.In a cellular OFDM wireless packet communication system, uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols. The 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
도 1은 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다. 1 is a diagram illustrating a structure of a type 1 radio frame. The downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain. The time it takes for one subframe to be transmitted is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms. One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. In the 3GPP LTE system, since OFDMA is used in downlink, an OFDM symbol represents one symbol period. An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period. A resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one slot.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.The number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP). CP has an extended CP (normal CP) and a normal CP (normal CP). For example, when an OFDM symbol is configured by a general CP, the number of OFDM symbols included in one slot may be seven. When the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP. In the case of an extended CP, for example, the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.When a general CP is used, since one slot includes 7 OFDM symbols, one subframe includes 14 OFDM symbols. In this case, the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.The structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
도 2는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일례를 나타낸 예시도이다. 이는 OFDM 심볼이 일반 CP로 구성된 경우이다. 도 2를 참조하면, 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDM 심볼을 포함하고, 하나의 자원블록은 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. 자원 그리드 상의 각 요소(element)를 자원요소(RE)라 한다. 예를 들어, 자원 요소 a(k,l)은 k번째 부반송파와 l번째 OFDM 심볼에 위치한 자원 요소가 된다. 일반 CP의 경우에, 하나의 자원블록은 12×7 자원요소를 포함한다 (확장된 CP의 경우에는 12×6 자원요소를 포함한다). 각 부반송파의 간격은 15kHz이므로, 하나의 자원블록은 주파수영역에서 약 180kHz을 포함한다. NDL은 하향링크 슬롯에 포함되는 자원블록의 수이다. NDL의 값은 기지국의 스케줄링에 의해 설정되는 하향링크 전송 대역폭(bandwidth)에 따라 결정될 수 있다.2 is an exemplary diagram illustrating an example of a resource grid for one downlink slot. This is the case in which an OFDM symbol consists of a normal CP. Referring to FIG. 2, the downlink slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks in the frequency domain. Here, one downlink slot includes 7 OFDM symbols, and one resource block includes 12 subcarriers as an example, but is not limited thereto. Each element on the resource grid is called a resource element (RE). For example, the resource element a (k, l) becomes a resource element located in the k-th subcarrier and the l-th OFDM symbol. In the case of a normal CP, one resource block includes 12x7 resource elements (in the case of an extended CP, it includes 12x6 resource elements). Since the interval of each subcarrier is 15 kHz, one resource block includes about 180 kHz in the frequency domain. NDL is the number of resource blocks included in a downlink slot. The value of NDL may be determined according to a downlink transmission bandwidth set by scheduling of a base station.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Chancel; PDSCH)이 할당되는 데이터 영역에 해당한다. 전송의 기본 단위는 하나의 서브프레임이 된다. 즉, 2 개의 슬롯에 걸쳐 PDCCH 및 PDSCH가 할당된다. 3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.3 is a diagram illustrating a structure of a downlink subframe. Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated. The remaining OFDM symbols correspond to data regions to which a physical downlink shared channel (PDSCH) is allocated. The basic unit of transmission is one subframe. That is, PDCCH and PDSCH are allocated over two slots. Downlink control channels used in the 3GPP LTE system include, for example, a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical HARQ Indicator Channel. Physical Hybrid automatic repeat request Indicator Channel (PHICH). The PCFICH is transmitted in the first OFDM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe. The PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission. Control information transmitted through the PDCCH is referred to as downlink control information (DCI). DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group. The PDCCH is a resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, on the PDSCH Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, and activation of voice over IP (VoIP) And the like. A plurality of PDCCHs may be transmitted in the control region. The terminal may monitor the plurality of PDCCHs. The PDCCH is transmitted in a combination of one or more consecutive Control Channel Elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel. The CCE corresponds to a plurality of resource element groups. The format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs. The base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information. The CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH. If the PDCCH is for a specific terminal, the cell-RNTI (C-RNTI) identifier of the terminal may be masked to the CRC. Or, if the PDCCH is for a paging message, a paging indicator identifier (P-RNTI) may be masked to the CRC. If the PDCCH is for system information (more specifically, system information block (SIB)), the system information identifier and system information RNTI (SI-RNTI) may be masked to the CRC. Random Access-RNTI (RA-RNTI) may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the terminal.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical uplink shared channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.4 is a diagram illustrating a structure of an uplink subframe. The uplink subframe may be divided into a control region and a data region in the frequency domain. A physical uplink control channel (PUCCH) including uplink control information is allocated to the control region. In the data area, a physical uplink shared channel (PUSCH) including user data is allocated. In order to maintain a single carrier characteristic, one UE does not simultaneously transmit a PUCCH and a PUSCH. PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
다중안테나(MIMO) 시스템의 모델링Modeling of Multiple Antenna (MIMO) Systems
MIMO((Multiple Input Multiple Output) 시스템은 다중 송신 안테나와 다중 수신 안테나를 사용하여 데이터의 송수신 효율을 향상시키는 시스템이다. MIMO 기술은 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않고, 복수개의 안테나를 통해 수신되는 복수개의 데이터 조각들을 조합하여 전체 데이터를 수신할 수 있다. Multiple Input Multiple Output (MIMO) is a system that improves the transmission and reception efficiency of data by using multiple transmit antennas and multiple receive antennas.MIMO technology does not rely on a single antenna path to receive an entire message. The entire data may be received by combining a plurality of pieces of data received through.
MIMO 기술에는 공간 다이버시티(Spatial diversity) 기법과 공간 다중화(Spatial multiplexing) 기법 등이 있다. 공간 다이버시티 기법은 다이버시티 이득(gain)을 통해 전송 신뢰도(reliability)를 높이거나 셀 반경을 넓힐 수 있어, 고속으로 이동하는 단말에 대한 데이터 전송에 적합하다. 공간 다중화 기법은 서로 다른 데이터를 동시에 전송함으로써 시스템의 대역폭을 증가시키지 않고 데이터 전송률을 증가시킬 수 있다.MIMO technology includes a spatial diversity technique and a spatial multiplexing technique. The spatial diversity scheme can increase transmission reliability or widen a cell radius through diversity gain, which is suitable for data transmission for a mobile terminal moving at high speed. Spatial multiplexing can increase the data rate without increasing the bandwidth of the system by simultaneously transmitting different data.
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다. 도 5(a)에 도시된 바와 같이 송신 안테나의 수를 NT 개로, 수신 안테나의 수를 NR 개로 늘리면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가한다. 따라서, 전송 레이트를 향상시키고 주파수 효율을 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트(Ro)에 레이트 증가율(Ri)이 곱해진 만큼 증가할 수 있다.5 is a configuration diagram of a wireless communication system having multiple antennas. As shown in FIG. 5 (a), when the number of transmit antennas is increased to NT and the number of receive antennas is increased to NR, theoretical channel transmission is proportional to the number of antennas, unlike a case where only a plurality of antennas are used in a transmitter or a receiver. Dose is increased. Therefore, the transmission rate can be improved and the frequency efficiency can be significantly improved. As the channel transmission capacity is increased, the transmission rate may theoretically increase as the rate of increase rate Ri multiplied by the maximum transmission rate Ro when using a single antenna.
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 다중안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후 이를 실질적인 데이터 전송률 향상으로 이끌어 내기 위한 다양한 기술들이 현재까지 활발히 연구되고 있다. 또한, 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다. For example, in a MIMO communication system using four transmit antennas and four receive antennas, a transmission rate four times higher than a single antenna system may be theoretically obtained. Since the theoretical capacity increase of multi-antenna systems was proved in the mid 90's, various techniques to actively lead to the actual data rate improvement have been actively studied. In addition, some technologies are already being reflected in various wireless communication standards such as 3G mobile communication and next generation WLAN.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발히 연구가 진행되고 있다.The research trends related to multi-antennas to date include the study of information theory aspects related to the calculation of multi-antenna communication capacity in various channel environments and multi-access environments, the study of wireless channel measurement and model derivation of multi-antenna systems, improvement of transmission reliability, and improvement of transmission rate. Research is being actively conducted from various viewpoints, such as research on space-time signal processing technology.
다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체적으로 설명한다. 상기 시스템에는 NT개의 송신 안테나와 NR개의 수신 안테나가 존재한다고 가정한다. The communication method in a multi-antenna system will be described in more detail using mathematical modeling. It is assumed that there are NT transmit antennas and NR receive antennas in the system.
송신 신호를 살펴보면, NT개의 송신 안테나가 있는 경우 전송 가능한 최대 정보는 NT개이다. 각각의 전송 정보는 전송 전력이 다를 수 있다. Looking at the transmission signal, when there are NT transmit antennas, the maximum information that can be transmitted is NT. Each transmission information may have a different transmission power.
한편, 송신신호 x 는 2 가지 경우(예를 들어, 공간 다이버시티 및 공간 다중화)에 따라 다른 방법으로 고려될 수 있다. 공간 다중화의 경우, 상이한 신호가 다중화되고 다중화된 신호가 수신측으로 전송되어, 정보 벡터(들)의 요소(element)가 상이한 값을 가진다. 한편, 공간 다이버시티의 경우에는, 동일한 신호가 복수개의 채널 경로를 통하여 반복적으로 전송되어, 정보 벡터(들)의 요소가 동일한 값을 가진다. 물론, 공간 다중화 및 공간 다이버시티 기법의 조합 역시 고려할 수 있다. 즉, 동일한 신호가 예를 들어 3 개의 전송 안테나를 통해 공간 다이버시티 기법에 따라 전송되고, 나머지 신호들은 공간 다중화되어 수신측으로 전송될 수도 있다. On the other hand, the transmission signal x may be considered in different ways according to two cases (for example, spatial diversity and spatial multiplexing). In the case of spatial multiplexing, different signals are multiplexed and the multiplexed signal is sent to the receiving side so that the elements of the information vector (s) have different values. On the other hand, in the case of spatial diversity, the same signal is repeatedly transmitted through a plurality of channel paths so that the elements of the information vector (s) have the same value. Of course, a combination of spatial multiplexing and spatial diversity techniques can also be considered. That is, the same signal may be transmitted through, for example, three transmit antennas according to a spatial diversity scheme, and the remaining signals may be spatially multiplexed and transmitted to the receiver.
다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테나 인덱스에 따라 구분될 수 있다. 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을 hij로 표시하기로 한다. hij에서, 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신 안테나의 인덱스가 나중임에 유의한다. In the case of modeling a channel in a multi-antenna wireless communication system, channels may be divided according to transmit / receive antenna indexes. A channel passing from the transmitting antenna j to the receiving antenna i will be denoted as hij. Note that in hij, the order of the index is the receive antenna index first, and the index of the transmit antenna is later.
도 5(b)에 NT 개의 송신 안테나에서 수신 안테나 i로의 채널을 도시하였다. 상기 채널을 묶어서 벡터 및 행렬 형태로 표시할 수 있다. 5 (b) shows a channel from NT transmit antennas to receive antenna i. The channels may be bundled and displayed in vector and matrix form.
실제 채널에는 채널 행렬을 거친 후에 백색잡음(AWGN; Additive White Gaussian Noise)이 더해진다. The real channel is added with white noise (AWGN) after going through the channel matrix.
행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수 보다 클 수 없다. The rank of a matrix is defined as the minimum number of rows or columns that are independent of each other. Thus, the rank of the matrix cannot be greater than the number of rows or columns.
MIMO 전송에 있어서 '랭크(Rank)'는 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어(layer)의 개수'는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다. In MIMO transmission, 'rank' indicates the number of paths that can independently transmit a signal, and 'number of layers' indicates the number of signal streams transmitted through each path. In general, since the transmitting end transmits the number of layers corresponding to the number of ranks used for signal transmission, unless otherwise specified, the rank has the same meaning as the number of layers.
참조 신호 (Reference Signal; Reference Signal; RSRS ) )
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호 (Pilot Signal) 또는 참조 신호 (Reference Signal)라고 한다. When transmitting a packet in a wireless communication system, since the transmitted packet is transmitted through a wireless channel, signal distortion may occur during the transmission process. In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information. In order to find out the channel information, a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used. The signal is called a pilot signal or a reference signal.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로 별도의 참조 신호가 존재하여야 한다.When transmitting and receiving data using multiple antennas, it is necessary to know the channel condition between each transmitting antenna and the receiving antenna to receive the correct signal. Therefore, a separate reference signal must exist for each transmit antenna.
이동 통신 시스템에서 참조신호(RS)는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 하나는 채널 정보 획득을 위해 사용되는 RS이고, 다른 하나는 데이터 복조를 위해 사용되는 RS이다. 전자는 단말이 하향 링크 채널 정보를 획득하도록 하기 위한 RS이므로 광대역으로 전송되어야 하고, 특정 서브프레임에서 하향링크 데이터를 수신하지 않는 단말이라도 해당 RS를 수신하고 측정할 수 있어야 한다. 이러한 RS는 핸드 오버 등을 위한 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 자원에 함께 보내는 RS로서, 단말은 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이러한 RS는 데이터가 전송되는 영역에 전송되어야 한다.In a mobile communication system, RSs can be classified into two types according to their purpose. One is an RS used for channel information acquisition, and the other is an RS used for data demodulation. Since the former is an RS for allowing the terminal to acquire downlink channel information, the former should be transmitted over a wide band, and even if the terminal does not receive downlink data in a specific subframe, it should be able to receive and measure the corresponding RS. Such RS is also used for measurement for handover and the like. The latter is an RS that is transmitted together with the corresponding resource when the base station transmits a downlink, and the terminal can estimate the channel by receiving the corresponding RS, thus demodulating data. This RS should be transmitted in the area where data is transmitted.
기존의 3GPP LTE(예를 들어, 3GPP LTE 릴리즈-8) 시스템에서는 유니캐스트(unicast) 서비스를 위해서 2 가지 종류의 하향링크 RS 를 정의한다. 그 중 하나는 공용 참조신호(Common RS; CRS)이고, 다른 하나는 전용 참조신호(Dedicated RS; DRS) 이다. CRS 는 채널 상태에 대한 정보 획득 및 핸드오버 등을 위한 측정 등을 위해서 사용되고, 셀-특정(cell-specific) RS 라고 칭할 수도 있다. DRS 는 데이터 복조를 위해 사용되고, 단말-특정(UE-specific) RS 라고 칭할 수도 있다. 기존의 3GPP LTE 시스템에서 DRS 는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용될 수 있다. In the existing 3GPP LTE (eg, 3GPP LTE Release-8) system, two types of downlink RSs are defined for unicast services. One of them is a common RS (CRS) and the other is a dedicated RS (DRS). The CRS is used for measurement of channel state information, measurement for handover, and the like, and may be referred to as cell-specific RS. DRS is used for data demodulation and may be referred to as UE-specific RS. In the existing 3GPP LTE system, DRS is used only for data demodulation, and CRS can be used for both purposes of channel information acquisition and data demodulation.
CRS는 셀-특정으로 전송되는 RS 이며, 광대역(wideband)에 대해서 매 서브프레임마다 전송된다. CRS는 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대해서 전송될 수 있다. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0~3 번 안테나 포트에 대한 CRS가 각각 전송된다. The CRS is a cell-specific RS and is transmitted every subframe for a wideband. The CRS may be transmitted for up to four antenna ports according to the number of transmit antennas of the base station. For example, if the number of transmitting antennas of the base station is two, CRSs for antenna ports 0 and 1 are transmitted, and if four, CRSs for antenna ports 0 to 3 are transmitted.
도 6은 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 하나의 자원블록 (일반 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 × 주파수 상으로 12 부반송파) 상에서 CRS 및 DRS의 패턴을 나타내는 도면이다. 도 6에서 'R0', 'R1', 'R2' 및 'R3' 로 표시된 자원 요소(RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위치를 나타낸다. 한편, 도 6에서 'D'로 표시된 자원 요소는 LTE 시스템에서 정의되는 DRS의 위치를 나타낸다.FIG. 6 is a diagram illustrating patterns of CRSs and DRSs on one resource block (14 OFDM symbols in time x 12 subcarriers in frequency in case of a general CP) in a system in which a base station supports four transmit antennas. In FIG. 6, resource elements RE denoted by 'R0', 'R1', 'R2' and 'R3' indicate positions of CRSs for antenna port indexes 0, 1, 2, and 3, respectively. Meanwhile, the resource element denoted as 'D' in FIG. 6 indicates the position of the DRS defined in the LTE system.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서는, 하향링크에서 최대 8개의 송신 안테나를 지원할 수 있다. 따라서, 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서의 하향링크 RS는 최대 4개의 안테나 포트에 대해서만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트들에 대한 RS가 추가적으로 정의되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS로서, 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 고려되어야 한다. LTE-A system of the advanced evolution of the LTE system, can support up to eight transmit antennas in the downlink. Therefore, RS for up to eight transmit antennas should also be supported. Since the downlink RS in the LTE system is defined for up to four antenna ports only, if the base station has four or more up to eight downlink transmission antennas in the LTE-A system, RSs for these antenna ports must be additionally defined. do. As RS for up to eight transmit antenna ports, both RS for channel measurement and RS for data demodulation should be considered.
LTE-A 시스템을 설계함에 있어서 중요한 고려 사항 중 하나는 역방향 호환성(backward compatibility)이다. 역방향 호환성이란, 기존의 LTE 단말이 LTE-A 시스템에서도 올바르게 동작하도록 지원하는 것을 의미한다. RS 전송 관점에서 보았을 때, LTE 표준에서 정의되어 있는 CRS가 전 대역으로 매 서브프레임마다 전송되는 시간-주파수 영역에 최대 8개의 송신 안테나 포트에 대한 RS를 추가하는 경우, RS 오버헤드가 지나치게 커지게 된다. 따라서, 최대 8 안테나 포트에 대한 RS를 새롭게 설계함에 있어서 RS 오버헤드를 줄이는 것이 고려되어야 한다.One of the important considerations in designing an LTE-A system is backward compatibility. Backward compatibility means that the existing LTE terminal supports to operate correctly in the LTE-A system. From the point of view of RS transmission, if RS is added for up to eight transmit antenna ports in the time-frequency domain where CRS defined in the LTE standard is transmitted every subframe over the entire band, the RS overhead becomes excessively large. do. Therefore, in designing RS for up to 8 antenna ports, consideration should be given to reducing RS overhead.
LTE-A 시스템에서 새롭게 도입되는 RS는 크게 2 가지로 분류할 수 있다. 그 중 하나는 전송 랭크, 변조및코딩기법(Modulation and Coding Scheme; MCS), 프리코딩행렬인덱스(프리코딩 Matrix Index; PMI) 등의 선택을 위한 채널 측정 목적의 RS인 채널상태정보-참조신호(Channel State Information RS; CSI-RS)이고, 다른 하나는 최대 8 개의 전송 안테나를 통해 전송되는 데이터를 복조하기 위한 목적의 RS 인 복조-참조신호(DeModulation RS; DM RS)이다. RS newly introduced in LTE-A system can be classified into two types. One of them is an RS for channel measurement for selecting a transmission rank, a modulation and coding scheme (MCS), a precoding matrix index (PMI), and the like. Channel State Information RS (CSI-RS), and the other is a demodulation-reference signal (DM RS) which is an RS for demodulating data transmitted through up to eight transmit antennas.
채널 측정 목적의 CSI-RS는, 기존의 LTE 시스템에서의 CRS가 채널 측정, 핸드오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리, 채널 측정 위주의 목적을 위해서 설계되는 특징이 있다. 물론 CSI-RS 역시 핸드오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로, 기존의 LTE 시스템에서의 CRS와 달리, 매 서브프레임마다 전송되지 않아도 된다. 따라서, CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로(예를 들어, 주기적으로) 전송되도록 설계될 수 있다.CSI-RS for channel measurement purposes is characterized in that the CRS in the existing LTE system is designed for channel measurement-oriented purposes, unlike the CRS used for data demodulation at the same time as the channel measurement, handover, etc. have. Of course, the CSI-RS may also be used for the purpose of measuring handover. Since the CSI-RS is transmitted only for the purpose of obtaining channel state information, unlike the CRS in the existing LTE system, the CSI-RS does not need to be transmitted every subframe. Thus, to reduce the overhead of the CSI-RS, the CSI-RS may be designed to be transmitted intermittently (eg, periodically) on the time axis.
만약 어떤 하향링크 서브프레임 상에서 데이터가 전송되는 경우에는, 데이터 전송이 스케줄링된 단말에게 전용으로(dedicated) DM RS가 전송된다. 특정 단말 전용의 DM RS는, 해당 단말이 스케줄링된 자원영역, 즉 해당 단말에 대한 데이터가 전송되는 시간-주파수 영역에서만 전송되도록 설계될 수 있다.If data is transmitted on a downlink subframe, a DM RS is transmitted to a terminal scheduled for data transmission. The DM RS dedicated to a specific terminal may be designed to be transmitted only in a resource region in which the terminal is scheduled, that is, in a time-frequency region in which data for the terminal is transmitted.
도 7 은 LTE-A 시스템에서 정의되는 DM RS 패턴의 일례를 나타내는 도면이다. 도 7에서는 하향링크 데이터가 전송되는 하나의 자원블록(일반 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 × 주파수 상으로 12 부반송파) 상에서 DM RS 가 전송되는 자원요소의 위치를 나타낸다. DM RS 는 LTE-A 시스템에서 추가적으로 정의되는 4 개의 안테나 포트(안테나 포트 인덱스 7, 8, 9 및 10)에 대하여 전송될 수 있다. 서로 다른 안테나 포트에 대한 DM RS 는 상이한 주파수 자원(부반송파) 및/또는 상이한 시간 자원(OFDM 심볼)에 위치하는 것으로 구분될 수 있다(즉, FDM 및/또는 TDM 방식으로 다중화될 수 있다). 또한, 동일한 시간-주파수 자원 상에 위치하는 서로 다른 안테나 포트에 대한 DM RS 들은 서로 직교 코드(orthogonal code)에 의해서 구분될 수 있다(즉, CDM 방식으로 다중화될 수 있다). 도 7 의 예시에서 DM RS CDM 그룹 1 로 표시된 자원요소(RE) 들에는 안테나 포트 7 및 8 에 대한 DM RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 마찬가지로, 도 7 의 예시에서 DM RS 그룹 2 로 표시된 자원요소들에는 안테나 포트 9 및 10 에 대한 DM RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다.7 is a diagram illustrating an example of a DM RS pattern defined in an LTE-A system. In FIG. 7, a position of a resource element in which a DM RS is transmitted is transmitted on one resource block in which downlink data is transmitted (14 OFDM symbols in time x 12 subcarriers in frequency). The DM RS may be transmitted for four antenna ports ( antenna port indexes 7, 8, 9 and 10) which are additionally defined in the LTE-A system. DM RSs for different antenna ports may be divided into being located in different frequency resources (subcarriers) and / or different time resources (OFDM symbols) (ie, may be multiplexed in FDM and / or TDM schemes). In addition, DM RSs for different antenna ports located on the same time-frequency resource may be distinguished from each other by orthogonal codes (ie, multiplexed in the CDM manner). In the example of FIG. 7, DM RSs for antenna ports 7 and 8 may be located in resource elements (REs) indicated as DM RS CDM group 1, which may be multiplexed by an orthogonal code. Likewise, DM RSs for antenna ports 9 and 10 may be located in resource elements indicated as DM RS group 2 in the example of FIG. 7, which may be multiplexed by an orthogonal code.
도 8 은 LTE-A 시스템에서 정의되는 CSI-RS 패턴의 예시들을 나타내는 도면이다. 도 8에서는 하향링크 데이터가 전송되는 하나의 자원블록(일반 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 × 주파수 상으로 12 부반송파) 상에서 CSI-RS 가 전송되는 자원요소의 위치를 나타낸다. 어떤 하향링크 서브프레임에서 도 8(a) 내지 8(e) 중 하나의 CSI-RS 패턴이 이용될 수 있다. CSI-RS 는 LTE-A 시스템에서 추가적으로 정의되는 8 개의 안테나 포트(안테나 포트 인덱스 15, 16, 17, 18, 19, 20, 21 및 22) 에 대하여 전송될 수 있다. 서로 다른 안테나 포트에 대한 CSI-RS 는 상이한 주파수 자원(부반송파) 및/또는 상이한 시간 자원(OFDM 심볼)에 위치하는 것으로 구분될 수 있다(즉, FDM 및/또는 TDM 방식으로 다중화될 수 있다). 또한, 동일한 시간-주파수 자원 상에 위치하는 서로 다른 안테나 포트에 대한 CSI-RS 들은 서로 직교 코드(orthogonal code)에 의해서 구분될 수 있다(즉, CDM 방식으로 다중화될 수 있다). 도 8(a) 의 예시에서 CSI-RS CDM 그룹 1 로 표시된 자원요소(RE) 들에는 안테나 포트 15 및 16 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 2 로 표시된 자원요소들에는 안테나 포트 17 및 18 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 3 으로 표시된 자원요소들에는 안테나 포트 19 및 20 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 4 로 표시된 자원요소들에는 안테나 포트 21 및 22 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a)를 기준으로 설명한 동일한 원리가 도 8(b) 내지 8(e)에 적용될 수 있다. 8 is a diagram illustrating examples of a CSI-RS pattern defined in an LTE-A system. FIG. 8 shows the location of a resource element in which a CSI-RS is transmitted on one resource block in which downlink data is transmitted (14 OFDM symbols in time x 12 subcarriers in frequency). In any downlink subframe, one of the CSI-RS patterns of FIGS. 8 (a) to 8 (e) may be used. The CSI-RS may be transmitted for eight antenna ports ( antenna port indexes 15, 16, 17, 18, 19, 20, 21, and 22) which are additionally defined in the LTE-A system. CSI-RSs for different antenna ports may be divided into being located in different frequency resources (subcarriers) and / or different time resources (OFDM symbols) (ie, may be multiplexed in FDM and / or TDM schemes). In addition, CSI-RSs for different antenna ports located on the same time-frequency resource may be distinguished from each other by orthogonal codes (ie, multiplexed in a CDM manner). In the example of FIG. 8 (a), CSI-RSs for antenna ports 15 and 16 may be located in resource elements (REs) indicated as CSI-RS CDM group 1, which may be multiplexed by an orthogonal code. In the example of FIG. 8A, CSI-RSs for antenna ports 17 and 18 may be located in resource elements indicated as CSI-RS CDM group 2, which may be multiplexed by an orthogonal code. In the example of FIG. 8 (a), CSI-RSs for antenna ports 19 and 20 may be located in resource elements indicated as CSI-RS CDM group 3, which may be multiplexed by an orthogonal code. In the example of FIG. 8A, CSI-RSs for antenna ports 21 and 22 may be located in resource elements indicated as CSI-RS CDM group 4, which may be multiplexed by an orthogonal code. The same principle described with reference to FIG. 8 (a) may be applied to FIGS. 8 (b) to 8 (e).
도 6 내지 8 의 RS 패턴들은 단지 예시적인 것이며, 본 발명의 다양한 실시예들을 적용함에 있어서 특정 RS 패턴에 한정되는 것이 아니다. 즉, 도 6 내지 8 과 다른 RS 패턴이 정의 및 사용되는 경우에도 본 발명의 다양한 실시예들은 동일하게 적용될 수 있다.The RS patterns of FIGS. 6 to 8 are merely exemplary and are not limited to specific RS patterns in applying various embodiments of the present invention. That is, even when RS patterns different from those of FIGS. 6 to 8 are defined and used, various embodiments of the present invention may be equally applied.
CSI-CSI- RSRS 설정(configuration) Configuration
단말에게 설정된 복수 개의 CSI-RS 와 복수 개의 IMR 중에서, 신호 측정을 위한 하나의 CSI-RS 자원과, 간섭 measure를 위한 하나의 Interference measurement resource (IMR)을 연관하여(association) 하나의 CSI 프로세스가 정의될 수 있다. 단말은 서로 다른 CSI 프로세스로부터 유도된 CSI 정보는 독립적인 주기 와 서브프레임 오프셋(subframe offset)을 가지고 네트워크(예를 들어, 기지국)로 피드백 된다. One CSI process is defined by associating one CSI-RS resource for signal measurement and one Interference Measurement resource (IMR) for interference measurement among a plurality of CSI-RSs and a plurality of IMRs configured for the UE. Can be. The UE feeds back CSI information derived from different CSI processes to a network (eg, a base station) with independent periods and subframe offsets.
즉, 각각의 CSI 프로세스는 독립적인 CSI 피드백 설정을 갖는다. 이러한 CSI-RS resource와 IMR resource association 정보 및 CSI 피드백 설정등은 CSI 프로세스 별로 RRC등의 상위 계층 시그널링을 통해 기지국이 단말에게 알려줄 수 있다. 예를 들어, 단말은 표 1과 같은 세 개의 CSI 프로세스를 설정(설정)받는다고 가정한다.That is, each CSI process has an independent CSI feedback setting. The CSI-RS resource, IMR resource association information, and CSI feedback configuration may be informed by the base station to the UE through higher layer signaling such as RRC for each CSI process. For example, it is assumed that the UE receives (sets) three CSI processes as shown in Table 1 below.
표 1
Figure PCTKR2015007668-appb-T000001
Table 1
Figure PCTKR2015007668-appb-T000001
표 1에서 CSI-RS 0와 CSI-RS 1은 각각 단말의 serving 셀인 셀 1으로부터 수신하는 CSI-RS와 협력에 참여하는 이웃 셀인 셀 2로부터 수신하는 CSI-RS를 나타낸다. 만약 표 1의 각각의 CSI 프로세스에 대하여 설정된 IMR에 대하여 표 2와 같이 설정되었다고 가정한다면,In Table 1, CSI-RS 0 and CSI-RS 1 indicate CSI-RSs received from Cell 2, which is a neighboring cell participating in cooperation with CSI-RS, which is received from Cell 1, which is a serving cell of a UE. If it is assumed that the IMR set for each CSI process of Table 1 is set as shown in Table 2,
표 2
Figure PCTKR2015007668-appb-T000002
TABLE 2
Figure PCTKR2015007668-appb-T000002
IMR 0에서 셀 1은 muting을 셀 2는 데이터 송신을 수행하며, 단말은 IMR 0 로부터 셀 1을 제외한 다른 셀들로부터의 간섭을 측정하도록 설정된다. 마찬가지로, IMR 1에서 셀 2는 muting을 셀 1는 데이터 송신을 수행하며, 단말은 IMR 1 로부터 셀 2을 제외한 다른 셀들로부터의 간섭을 측정하도록 설정된다. 또한, IMR 2에서 셀 1과 셀 2 모두 muting을 수행하며, 단말은 IMR 2 로부터 셀 1과 셀 2을 제외한 다른 셀들로부터의 간섭을 측정하도록 설정된다. In IMR 0, cell 1 performs muting, cell 2 performs data transmission, and the UE is configured to measure interference from cells other than cell 1 from IMR 0. Similarly, in IMR 1, cell 2 muting, cell 1 performs data transmission, and the UE is configured to measure interference from cells other than cell 2 from IMR 1. In addition, in IMR 2, both cell 1 and cell 2 perform muting, and the terminal is configured to measure interference from cells other than cell 1 and cell 2 from IMR 2.
따라서, 표 1 및 표 2에서 나타낸 바와 같이, CSI 프로세스 0의 CSI 정보는 셀 1으로부터 데이터를 수신하는 경우 최적 RI, PMI, CQI 정보를 나타낸다. CSI 프로세스 1의 CSI 정보는 셀 2으로부터 데이터를 수신하는 경우 최적 RI, PMI, CQI 정보를 나타낸다. CSI 프로세스 2의 CSI 정보는 셀 1으로부터 데이터를 수신하고, 셀 2로부터 간섭을 전혀 받지 않는 경우 최적 RI, PMI, CQI 정보를 나타낸다.Therefore, as shown in Table 1 and Table 2, CSI information of CSI process 0 represents optimal RI, PMI, CQI information when receiving data from cell 1. CSI information of CSI process 1 represents optimal RI, PMI, and CQI information when data is received from cell 2. CSI information of CSI process 2 represents optimal RI, PMI, and CQI information when data is received from cell 1 and no interference is received from cell 2.
하나의 단말에게 설정(설정)된 복수의 CSI 프로세스는 서로 종속적인 값을 공유하는 것이 바람직하다. 예를 들어, 셀 1과 셀 2의 JT(joint transmission)의 경우, 셀 1의 채널을 시그널 파트(signal part)로 간주하는 CSI 프로세스 1과 셀 2의 채널을 시그널 파트(signal part)로 간주하는 CSI 프로세스 2가 한 단말에게 설정(설정)되었을 경우 CSI 프로세스 1과 CSI 프로세스 2의 랭크(rank) 및 선택된 서브밴드 인덱스가 같아야 JT 스케줄링이 용이하다. It is preferable that a plurality of CSI processes configured (configured) for one UE share a mutually dependent value. For example, in the case of joint transmission (JT) of Cell 1 and Cell 2, the channel of CSI Process 1 and Cell 2, which regards the channel of Cell 1 as a signal part, is regarded as the signal part. When the CSI process 2 is configured (configured) to one UE, the ranks of the CSI process 1 and the CSI process 2 and the selected subband index are the same to facilitate JT scheduling.
CSI-RS가 전송되는 주기나 패턴은 기지국이 설정(configuration) 할 수 있다. CSI-RS를 측정하기 위해서 단말은 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS 설정(configuration)을 알고 있어야 한다. CSI-RS 설정에는, CSI-RS가 전송되는 하향링크 서브프레임 인덱스, 전송 서브프레임 내에서 CSI-RS 자원요소(RE)의 시간-주파수 위치(예를 들어, 도 8(a) 내지 8(e)와 같은 CSI-RS 패턴), 그리고 CSI-RS 시퀀스(CSI-RS 용도로 사용되는 시퀀스로서, 슬롯 번호, 셀 ID, CP 길이 등에 기초하여 소정의 규칙에 따라 유사-랜덤(pseudo-random)하게 생성됨) 등이 포함될 수 있다. 즉, 임의의(given) 기지국에서 복수개의 CSI-RS 설정(configuration)이 사용될 수 있고, 기지국은 복수개의 CSI-RS 설정 중에서 셀 내의 단말(들)에 대해 사용될 CSI-RS 설정을 알려줄 수 있다.The period or pattern in which the CSI-RS is transmitted may be configured by the base station. In order to measure the CSI-RS, the UE must know the CSI-RS configuration for each CSI-RS antenna port of the cell to which the UE belongs. The CSI-RS configuration includes a downlink subframe index in which the CSI-RS is transmitted and a time-frequency position of the CSI-RS resource element (RE) in the transmission subframe (for example, FIGS. 8A to 8E). CSI-RS pattern), and CSI-RS sequence (a sequence used for CSI-RS purposes), which are pseudo-random according to a predetermined rule based on a slot number, a cell ID, a CP length, and the like. Generated), and the like. That is, a plurality of CSI-RS configurations may be used in any base station, and the base station may inform the CSI-RS configuration to be used for the terminal (s) in the cell among the plurality of CSI-RS configurations.
또한, 각각의 안테나 포트에 대한 CSI-RS 는 구별될 필요가 있으므로, 각각의 안테나 포트에 대한 CSI-RS 가 전송되는 자원은 서로 직교(orthogonal)해야 한다. 도 8 과 관련하여 설명한 바와 같이, 각각의 안테나 포트에 대한 CSI-RS 들은 직교하는 주파수 자원, 직교하는 시간 자원 및/또는 직교하는 코드 자원을 이용하여 FDM, TDM 및/또는 CDM 방식으로 다중화될 수 있다.In addition, since the CSI-RS for each antenna port needs to be distinguished, resources to which the CSI-RS is transmitted for each antenna port should be orthogonal to each other. As described in connection with FIG. 8, CSI-RSs for each antenna port may be multiplexed in an FDM, TDM and / or CDM scheme using orthogonal frequency resources, orthogonal time resources, and / or orthogonal code resources. have.
CSI-RS에 관한 정보(CSI-RS 설정(configuration))를 기지국이 셀 내의 단말들에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, 시간에 대한 정보에는, CSI-RS가 전송되는 서브프레임 번호들, CSI-RS 가 전송되는 주기, CSI-RS가 전송되는 서브프레임 오프셋, 특정 안테나의 CSI-RS 자원요소(RE)가 전송되는 OFDM 심볼 번호 등이 포함될 수 있다. 주파수에 대한 정보에는 특정 안테나의 CSI-RS 자원요소(RE)가 전송되는 주파수 간격(spacing), 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 포함될 수 있다. When the base station informs the UEs in the cell of the CSI-RS information (CSI-RS configuration), it is necessary to first inform the information about the time-frequency to which the CSI-RS for each antenna port is mapped. Specifically, the time information includes subframe numbers through which CSI-RSs are transmitted, periods through which CSI-RSs are transmitted, subframe offsets through which CSI-RSs are transmitted, and CSI-RS resource elements (RE) of a specific antenna. OFDM symbol numbers to be transmitted may be included. The information about the frequency may include a frequency spacing through which the CSI-RS resource element RE of a specific antenna is transmitted, an offset or shift value of the RE on the frequency axis, and the like.
도 9 는 CSI-RS가 주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이다. CSI-RS는 한 서브프레임의 정수 배의 주기(예를 들어, 5 서브프레임 주기, 10 서브프레임 주기, 20 서브프레임 주기, 40 서브프레임 주기 또는 80 서브프레임 주기)를 가지고 주기적으로 전송될 수 있다. 9 is a diagram for explaining an example of a method in which a CSI-RS is periodically transmitted. The CSI-RS may be periodically transmitted with an integer multiple of one subframe (eg, 5 subframe periods, 10 subframe periods, 20 subframe periods, 40 subframe periods, or 80 subframe periods). .
도 9 에서는 하나의 무선 프레임이 10 개의 서브프레임(서브프레임 번호 0 내지 9)로 구성되는 것을 도시한다. 도 9 에서는, 예를 들어, 기지국의 CSI-RS의 전송 주기가 10ms (즉, 10 서브프레임) 이고, CSI-RS 전송 오프셋(Offset)은 3 인 경우를 도시한다. 여러 셀들의 CSI-RS가 시간 상에서 고르게 분포할 수 있도록 상기 오프셋 값은 기지국마다 각각 다른 값을 가질 수 있다. 10ms의 주기로 CSI-RS가 전송되는 경우, 오프셋 값은 0~9 중 하나를 가질 수 있다. 이와 유사하게, 예를 들어 5ms의 주기로 CSI-RS가 전송되는 경우 오프셋 값은 0~4 중 하나의 값을 가질 수 있고, 20ms의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~19 중 하나의 값을 가질 수 있고, 40ms의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~39 중 하나의 값을 가질 수 있으며, 80ms의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~79 중 하나의 값을 가질 수 있다. 이 오프셋 값은, 소정의 주기로 CSI-RS 를 전송하는 기지국이 CSI-RS 전송을 시작하는 서브프레임의 값을 나타낸다. 기지국이 CSI-RS의 전송 주기와 오프셋 값을 알려주면, 단말은 그 값을 이용하여 해당 서브프레임 위치에서 기지국의 CSI-RS를 수신할 수 있다. 단말은 수신한 CSI-RS를 통해 채널을 측정하고 그 결과로서 CQI, PMI 및/또는 RI(Rank Indicator) 와 같은 정보를 기지국에게 보고할 수 있다. 본 문서에서 CQI, PMI 및 RI 를 구별하여 설명하는 경우를 제외하고, 이들을 통칭하여 CQI (또는 CSI) 라 칭할 수 있다. 또한, CSI-RS 전송 주기 및 오프셋은 CSI-RS 설정(configuration) 별로 별도로 지정될 수 있다. In FIG. 9, one radio frame includes 10 subframes (subframe numbers 0 to 9). In FIG. 9, for example, the transmission period of the CSI-RS of the base station is 10 ms (ie, 10 subframes), and the CSI-RS transmission offset is 3. The offset value may have a different value for each base station so that CSI-RS of several cells may be evenly distributed in time. When the CSI-RS is transmitted in a period of 10 ms, the offset value may have one of 0 to 9. Similarly, for example, when the CSI-RS is transmitted with a period of 5 ms, the offset value may have one of 0 to 4, and when the CSI-RS is transmitted with a period of 20 ms, the offset value is one of 0 to 19. When CSI-RS is transmitted in a period of 40 ms, the offset value may have one of 0 to 39. When CSI-RS is transmitted in a period of 80 ms, the offset value is one of 0 to 79. It can have a value of. This offset value indicates the value of the subframe where the base station transmitting the CSI-RS at a predetermined period starts the CSI-RS transmission. When the base station informs the transmission period and the offset value of the CSI-RS, the terminal may receive the CSI-RS of the base station at the corresponding subframe location by using the value. The terminal may measure the channel through the received CSI-RS and report information such as CQI, PMI and / or Rank Indicator (RI) to the base station as a result. Except where CQI, PMI, and RI are distinguished from each other in this document, these may be collectively referred to as CQI (or CSI). In addition, the CSI-RS transmission period and offset may be separately designated for each CSI-RS configuration.
도 10 은 CSI-RS 가 비주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이다. 도 10 에서는 하나의 무선 프레임이 10 개의 서브프레임(서브프레임 번호 0 내지 9)으로 구성되는 것을 도시한다. 도 10 에서와 같이 CSI-RS 가 전송되는 서브프레임은 특정 패턴으로 나타날 수 있다. 예를 들어, CSI-RS 전송 패턴이 10 서브프레임 단위로 구성될 수 있고, 각각의 서브프레임에서 CSI-RS 전송 여부를 1 비트 지시자로 지정할 수 있다. 도 10 의 예시에서는 10 개의 서브프레임(서브프레임 인덱스 0 내지 9) 내의 서브프레임 인덱스 3 및 4 에서 전송되는 CSI-RS 패턴을 도시하고 있다. 이러한 지시자는 상위 계층 시그널링을 통해 단말에게 제공될 수 있다. 10 is a diagram for explaining an example of a method in which a CSI-RS is transmitted aperiodically. In FIG. 10, one radio frame includes 10 subframes (subframe numbers 0 to 9). As shown in FIG. 10, the subframe in which the CSI-RS is transmitted may appear in a specific pattern. For example, the CSI-RS transmission pattern may be configured in units of 10 subframes, and whether or not to transmit CSI-RS in each subframe may be designated as a 1-bit indicator. 10 illustrates a CSI-RS pattern transmitted at subframe indexes 3 and 4 within 10 subframes (subframe indexes 0 to 9). Such an indicator may be provided to the terminal through higher layer signaling.
CSI-RS 전송에 대한 설정(configuration)은 전술한 바와 같이 다양하게 구성될 수 있으며, 단말이 올바르게 CSI-RS 를 수신하여 채널 측정을 수행하도록 하기 위해서는, 기지국이 CSI-RS 설정을 단말에게 알려줄 필요가 있다. CSI-RS 설정을 단말에게 알려주는 본 발명의 실시예들에 대해서 이하에서 설명한다.Configuration of the CSI-RS transmission may be configured in various ways as described above, and in order for the terminal to correctly receive the CSI-RS and perform channel measurement, the base station needs to inform the terminal of the CSI-RS configuration. There is. Embodiments of the present invention for informing the UE of the CSI-RS configuration will be described below.
CSI-CSI- RSRS 설정을 알려주는 방식 How to tell your settings
일반적으로 기지국이 단말에게 CSI-RS 설정(configuration)을 알려주는 방식으로 다음 두 가지 방식이 고려될 수 있다. In general, the following two methods may be considered as a method of informing the UE of the CSI-RS configuration.
첫 번째 방식은, 동적 브로드캐스트 채널(Dynamic Broadcast Channel; DBCH) 시그널링을 이용하여 CSI-RS 설정(configuration)에 관한 정보를 기지국이 단말들에게 브로드캐스팅하는 방식이다. The first method is a method in which a base station broadcasts information on a CSI-RS configuration to terminals by using a dynamic broadcast channel (DBCH) signaling.
기존의 LTE 시스템에서 시스템 정보에 대한 내용을 기지국이 단말들에게 알려줄 때 보통 BCH(Broadcasting Channel)를 통해서 해당 정보를 전송할 수 있다. 만약 단말에게 알려줄 시스템 정보에 대한 내용이 많아서 BCH 만으로는 다 전송할 수 없는 경우에는, 기지국은 일반 하향링크 데이터와 같은 방식으로 시스템 정보를 전송하되, 해당 데이터의 PDCCH CRC를 특정 단말 식별자(예를 들어, C-RNTI)가 아닌 시스템 정보 식별자(SI-RNTI)를 이용하여 마스킹하여 시스템 정보를 전송할 수 있다. 이 경우에, 실제 시스템 정보는 일반 유니캐스트 데이터와 같이 PDSCH 영역 상에서 전송된다. 이에 따라, 셀 안의 모든 단말들은 SI-RNTI를 이용하여 PDCCH를 디코딩 한 후, 해당 PDCCH가 가리키는 PDSCH를 디코딩하여 시스템 정보를 획득할 수 있다. 이와 같은 방식의 브로드캐스팅 방식을 일반적인 브로드캐스팅 방식인 PBCH(Physical BCH)와 구분하여 DBCH(Dynamic BCH) 라고 칭할 수 있다. In a conventional LTE system, when a base station notifies UEs about system information, the information may be transmitted through a BCH (broadcasting channel). If there is a lot of information about the system information to inform the terminal, the base station transmits the system information in the same manner as the general downlink data, but only the BCH, the PDCCH CRC of the corresponding data to a specific terminal identifier (for example, System information may be transmitted by masking using a system information identifier (SI-RNTI) rather than a C-RNTI. In this case, the actual system information is transmitted on the PDSCH region like general unicast data. Accordingly, all terminals in the cell can obtain system information by decoding the PDCCH using the SI-RNTI and then decoding the PDSCH indicated by the corresponding PDCCH. Such a broadcasting method may be referred to as a dynamic BCH (DBCH) by distinguishing it from a physical broadcasting (PBCH) which is a general broadcasting method.
한편, 기존의 LTE 시스템에서 브로드캐스팅되는 시스템 정보는 크게 두 가지로 나눌 수 있다. 그 중 하나는 PBCH를 통해 전송되는 MIB(Master Information Block)이고, 다른 하나는 PDSCH 영역 상에서 일반 유니캐스트 데이터와 다중화되어 전송되는 SIB(System Information Block)이다. 기존의 LTE 시스템에서 SIB 타입 1 내지 SIB 타입 8 (SIB1 내지 SIB8) 으로서 전송되는 정보들을 정의하고 있으므로, 기존의 SIB 타입에 정의되지 않는 새로운 시스템 정보인 CSI-RS 설정(configuration)에 대한 정보를 위해서 새로운 SIB 타입을 정의할 수 있다. 예를 들어, SIB9 또는 SIB10을 정의하고 이를 통해서 CSI-RS 설정(configuration)에 대한 정보를 기지국이 DBCH 방식으로 셀 내 단말들에게 알려줄 수 있다. On the other hand, system information broadcast in the existing LTE system can be largely divided into two. One of them is a master information block (MIB) transmitted through a PBCH, and the other is a system information block (SIB) transmitted by being multiplexed with general unicast data on a PDSCH region. Since information transmitted as SIB type 1 to SIB type 8 (SIB1 to SIB8) is defined in an existing LTE system, information about CSI-RS configuration, which is new system information not defined in the existing SIB type, is defined. You can define a new SIB type. For example, the SIB9 or SIB10 may be defined, and the base station may inform the UEs in the cell of the CSI-RS configuration through the DBCH scheme.
두 번째 방식은 RRC(Radio Resource Control) 시그널링을 이용하여 CSI-RS 설정(configuration)에 관한 정보를 기지국이 각각의 단말에게 알려주는 방식이다. 즉, 전용(dedicated) RRC 시그널링을 사용하여 CSI-RS 설정에 대한 정보가 셀 내의 단말들 각각에게 제공될 수 있다. 예를 들어, 단말이 초기 액세스 또는 핸드오버를 통해서 기지국과 연결(connection)을 확립(establish)하는 과정에서, 기지국이 해당 단말에게 RRC 시그널링을 통해 CSI-RS 설정(configuration)을 알려 주도록 할 수 있다. 또는 기지국이 단말에게 CSI-RS 측정에 기반한 채널 상태 피드백을 요구하는 RRC 시그널링 메시지를 전송할 때에, 해당 RRC 시그널링 메시지를 통해 CSI-RS 설정(configuration)을 해당 단말에게 알려 주도록 할 수도 있다.The second method is a method in which a base station informs each terminal of information about a CSI-RS configuration using Radio Resource Control (RRC) signaling. That is, information on the CSI-RS configuration may be provided to each of the terminals in the cell by using dedicated RRC signaling. For example, in a process of establishing a connection with a base station through an initial access or handover, the base station may inform the terminal of the CSI-RS configuration through RRC signaling. . Alternatively, when the base station transmits an RRC signaling message for requesting channel state feedback based on the CSI-RS measurement, the base station may inform the terminal of the CSI-RS configuration through the corresponding RRC signaling message.
CSI-CSI- RSRS 설정의 지시(indication) Indication of the setting
임의의 기지국에서 다수의 CSI-RS 설정(configuration)이 이용될 수 있고, 기지국은 각각의 CSI-RS 설정에 따른 CSI-RS 를 미리 결정된 서브프레임 상에서 단말에게 전송할 수 있다. 이 경우, 기지국은 단말에게 다수의 CSI-RS 설정(configuration)을 알려주며, 그 중에서 CQI(Channel Quality Information) 또는 CSI(Channel State Information) 피드백을 위한 채널 상태 측정에 사용될 CSI-RS 가 무엇인지를 단말에게 알려줄 수 있다. A plurality of CSI-RS configurations may be used in any base station, and the base station may transmit CSI-RSs according to each CSI-RS configuration to the UE on a predetermined subframe. In this case, the base station informs the user equipment of a plurality of CSI-RS configurations, and among them, what is the CSI-RS to be used for channel state measurement for channel quality information (CQI) or channel state information (CSI) feedback? You can let them know.
이와 같이 기지국이 단말에서 사용될 CSI-RS 설정(configuration) 및 채널 측정에 이용될 CSI-RS 를 지시(indication)하는 것에 대한 실시예를 이하에서 설명한다.As described above, an embodiment of the CSI-RS configuration to be used in the terminal and the indication of the CSI-RS to be used for channel measurement will be described below.
도 11 은 2 개의 CSI-RS 설정(configuration)이 사용되는 예를 설명하기 위한 도면이다. 도 11 에서는 하나의 무선 프레임이 10 개의 서브프레임(서브프레임 번호 0 내지 9)으로 구성되는 것을 도시한다. 도 11에서 제 1 CSI-RS 설정(configuration), 즉, CSI-RS1은 CSI-RS의 전송 주기가 10ms 이고, CSI-RS 전송 오프셋이 3 이다. 도 11 에서 제 2 CSI-RS 설정(configuration), 즉, CSI-RS2는 CSI-RS의 전송 주기가 10ms 이고, CSI-RS 전송 오프셋이 4 이다. 기지국은 단말에게 두 개의 CSI-RS 설정(configuration)에 대한 정보를 알려주며, 그 중에서 어떤 CSI-RS 설정(configuration)을 CQI(또는 CSI) 피드백을 위해 사용할지를 알려줄 수 있다.FIG. 11 is a diagram for explaining an example in which two CSI-RS configurations are used. In FIG. 11, one radio frame includes 10 subframes (subframe numbers 0 to 9). In FIG. 11, the first CSI-RS configuration, that is, the CSI-RS1 has a CSI-RS transmission period of 10 ms and a CSI-RS transmission offset of 3. In FIG. 11, the second CSI-RS configuration, that is, the CSI-RS2 has a CSI-RS transmission period of 10 ms and a CSI-RS transmission offset of 4. The base station informs the user equipment of two CSI-RS configurations, and can inform which CSI-RS configuration is used for CQI (or CSI) feedback.
단말은 특정 CSI-RS 설정(configuration)에 대한 CQI 피드백을 기지국으로부터 요청 받으면, 해당 CSI-RS 설정(configuration)에 속하는 CSI-RS 만을 이용하여 채널 상태 측정을 수행할 수 있다. 구체적으로, 채널 상태는 CSI-RS 수신 품질과 잡음/간섭의 양과 상관계수의 함수로 결정되는데, CSI-RS 수신 품질 측정은 해당 CSI-RS 설정(configuration)에 속하는 CSI-RS 만을 이용하여 수행되고, 잡음/간섭의 양과 상관계수(예를 들어, 간섭의 방향을 나타내는 간섭 공분산 행렬(Interference Covariance Matrix) 등)를 측정하기 위해서는 해당 CSI-RS 전송 서브프레임에서 또는 지정된 서브프레임들에서 측정이 수행될 수 있다. 예를 들어, 도 11 의 실시예에서 단말이 제 1 CSI-RS 설정(CSI-RS1) 에 대한 피드백을 기지국으로부터 요청 받았을 경우에, 단말은 하나의 무선 프레임의 4 번째 서브프레임(서브프레임 인덱스 3)에서 전송되는 CSI-RS를 이용하여 수신 품질 측정을 수행하며, 잡음/간섭의 양과 상관계수 측정을 위해서는 별도로 홀수 번째 서브프레임을 사용하도록 지정 받을 수 있다. 또는, CSI-RS 수신 품질 측정과 잡음/간섭의 양과 상관계수 측정을 특정 단일 서브프레임(예를 들어, 서브프레임 인덱스 3)에 한정하여 측정하도록 지정할 수도 있다.When the terminal receives a request for CQI feedback for a specific CSI-RS configuration from the base station, the terminal may perform channel state measurement using only the CSI-RS belonging to the corresponding CSI-RS configuration. Specifically, the channel state is determined as a function of the CSI-RS reception quality and the amount of noise / interference and the correlation coefficient. The CSI-RS reception quality measurement is performed using only the CSI-RS belonging to the corresponding CSI-RS configuration. In order to measure the amount of noise / interference and the correlation coefficient (e.g., an interference covariance matrix indicating the direction of the interference), the measurement may be performed in the corresponding CSI-RS transmission subframe or in designated subframes. Can be. For example, in the embodiment of FIG. 11, when the UE receives a request for feedback from the base station from the first CSI-RS configuration (CSI-RS1), the UE receives a fourth subframe (subframe index 3 of one radio frame). RSI is performed using CSI-RS transmitted from the Rx), and it may be designated to use an odd-numbered subframe separately for measuring the amount of noise / interference and correlation coefficient. Alternatively, the CSI-RS reception quality measurement and the amount of noise / interference and the correlation coefficient measurement may be specified to be limited to a specific single subframe (for example, subframe index 3).
예를 들어, CSI-RS 를 이용하여 측정된 수신 신호 품질은 신호-대-간섭및잡음비(Signal-to-Interference plus Noise Ratio; SINR)로서 간략하게 S/(I+N) (여기서 S 는 수신신호의 강도, I 는 간섭의 양, N 은 노이즈의 양)으로 표현될 수 있다. S 는 해당 단말에게 전송되는 신호를 포함하는 서브프레임에서 CSI-RS 를 포함하는 서브프레임에서 CSI-RS를 통해서 측정될 수 있다. I 및 N 은 주변 셀로부터의 간섭의 양, 주변 셀로부터의 신호의 방향 등에 따라 변화하므로, S 를 측정하는 서브프레임 또는 별도로 지정되는 서브프레임에서 전송되는 CRS 등을 통해서 측정할 수 있다. For example, the received signal quality measured using CSI-RS is signal-to-interference plus noise ratio (SINR), which is simply S / (I + N) where S is received. Strength of the signal, I is the amount of interference, N is the amount of noise). S may be measured through the CSI-RS in the subframe including the CSI-RS in the subframe including the signal transmitted to the UE. Since I and N change according to the amount of interference from the neighboring cell, the direction of the signal from the neighboring cell, and the like, it can be measured through a CRS transmitted in a subframe for measuring S or a subframe separately designated.
여기서, 잡음/간섭의 양과 상관계수의 측정은, 해당 서브프레임내의 CRS 또는 CSI-RS가 전송되는 자원요소(Resource Element, RE)에서 이루어질 수도 있고, 또는 잡음/간섭의 측정을 용이하게 하기 위하여 설정된 널 자원요소(Null RE)를 통해 이루어 질 수도 있다. CRS 또는 CSI-RS RE에서 잡음/간섭을 측정하기 위하여, 단말은 먼저 CRS 또는 CSI-RS를 복구(recover)한 뒤, 그 결과를 수신신호에서 빼서(subtract) 잡음과 간섭 신호만 남겨서, 이로부터 잡음/간섭의 통계치를 얻을 수 있다. Null RE는 해당 기지국이 어떠한 신호도 전송하지 않고 비워둔(즉, 전송 전력이 0 (zero) 인) RE를 의미하고, 해당 기지국을 제외한 다른 기지국으로부터의 신호 측정을 용이하게 하여준다. 잡음/간섭의 양과 상관계수의 측정을 위하여 CRS RE, CSI-RS RE 및 Null RE를 모두 사용 할 수도 있으나, 기지국은 그 중에서 어떤 RE들을 사용하여 잡음/간섭을 측정할지에 대해서 단말기에게 지정해줄 수도 있다. 이는, 단말이 측정을 수행하는 RE 위치에 전송되는 이웃 셀의 신호가 데이터 신호인지 제어 신호인지 등에 따라 해당 단말이 측정할 RE 를 적절하게 지정하는 것이 필요하기 때문이며, 해당 RE 위치에서 전송되는 이웃 셀의 신호가 무엇인지는 셀간 동기가 맞는지 여부 그리고 CRS 설정(configuration)과 CSI-RS 설정(configuration) 등에 따라 달라지므로 기지국에서 이를 파악하여 단말에게 측정을 수행할 RE를 지정해줄 수 있다. 즉, 기지국은 CRS RE, CSI-RS RE 및 Null RE 중에서 전부 또는 일부를 사용하여 잡음/간섭을 측정하도록 단말기에 지정해 줄 수 있다.The measurement of the amount of noise / interference and the correlation coefficient may be performed at a resource element (RE) to which a CRS or CSI-RS is transmitted in a corresponding subframe, or is set to facilitate measurement of noise / interference. It can also be done through a null resource element (Null RE). In order to measure noise / interference in the CRS or CSI-RS RE, the UE first recovers the CRS or CSI-RS, and then subtracts the result from the received signal to leave only the noise and interference signals. Statistics of noise / interference can be obtained. A null RE means a RE that the base station is empty without transmitting any signal (that is, the transmission power is zero (zero)) and facilitates signal measurement from other base stations except the base station. CRS RE, CSI-RS RE, and Null RE may all be used to measure the amount of noise / interference and the correlation coefficient, but the base station may designate to the terminal as to which of these REs to measure the noise / interference. have. This is because it is necessary to appropriately designate the RE to be measured by the corresponding UE according to whether the signal of the neighbor cell transmitted to the RE location where the UE performs measurement is a data signal or a control signal, and the neighbor cell transmitted at the corresponding RE location. What is the signal of depends on whether the synchronization between the cells and the CRS configuration (configuration) and CSI-RS configuration (configuration), so that the base station can determine this to determine the measurement to perform the UE. That is, the base station may designate the terminal to measure noise / interference by using all or part of CRS RE, CSI-RS RE, and Null RE.
예를 들어, 기지국은 복수개의 CSI-RS 설정(configuration)을 사용할 수 있고, 기지국은 단말기에 하나 이상의 CSI-RS 설정(configuration)을 알려주면서 그 중에서 CQI 피드백에 이용될 CSI-RS 설정(configuration) 및 Null RE 위치에 대해서 알려줄 수 있다. 단말기가 CQI 피드백에 이용할 CSI-RS 설정(configuration)은, 0 의 전송 전력으로 전송되는 Null RE 와 구별하는 측면에서 표현하자면, 0이 아닌(non-zero) 전송 전력으로 전송되는 CSI-RS 설정(configuration)이라고 할 수 있다. 예를 들어, 기지국은 단말이 채널측정을 수행할 하나의 CSI-RS 설정(configuration)을 알려주고, 단말은 상기 하나의 CSI-RS 설정(configuration)에서 CSI-RS 가 0이 아닌(non-zero) 전송 전력으로 전송되는 것으로 가정(assume)할 수 있다. 이에 추가적으로, 기지국은 0의 전송 전력으로 전송되는 CSI-RS 설정(configuration)에 대해서(즉, Null RE 위치에 대해서) 알려주고, 단말은 해당 CSI-RS 설정(configuration)의 자원요소(RE) 위치에 대해 0의 전송 전력임을 가정(assume)할 수 있다. 달리 표현하자면, 기지국은 0 이 아닌 전송 전력의 하나의 CSI-RS 설정(configuration)을 단말에게 알려주면서, 0의 전송 전력의 CSI-RS 설정(configuration)이 존재하는 경우에는 해당 Null RE 위치를 단말에게 알려줄 수 있다. For example, the base station may use a plurality of CSI-RS configuration, the base station informs the terminal of one or more CSI-RS configuration, and among them, the CSI-RS configuration to be used for CQI feedback And Null RE location. The CSI-RS configuration to be used for CQI feedback by the terminal is expressed in terms of distinguishing it from a Null RE transmitted with a transmission power of 0, and a CSI-RS configuration transmitted with a non-zero transmission power. configuration). For example, the base station informs one CSI-RS configuration in which the terminal will perform channel measurement, and the terminal indicates that the CSI-RS is non-zero in the one CSI-RS configuration. It can be assumed to be transmitted at the transmit power. In addition, the base station informs about the CSI-RS configuration (that is, about the Null RE location) transmitted at a transmission power of 0, and the terminal is located at the resource element (RE) location of the corresponding CSI-RS configuration. It can be assumed that the transmission power of 0 for (assume). In other words, the base station informs the user equipment of one CSI-RS configuration of non-zero transmission power, and if there is a CSI-RS configuration of transmission power of 0, the terminal indicates the corresponding Null RE location. You can let them know.
위와 같은 CSI-RS 설정(configuration)의 지시 방안에 대한 변형예로서, 기지국은 단말기에 다수의 CSI-RS 설정(configuration)을 알려주고, 그 중에서 CQI 피드백에 이용될 전부 또는 일부의 CSI-RS 설정(configuration)에 대해서 알려줄 수 있다. 이에 따라, 다수의 CSI-RS 설정(configuration)에 대한 CQI 피드백을 요청 받은 단말은, 각각의 CSI-RS 설정(configuration)에 해당하는 CSI-RS를 이용하여 CQI를 측정하고, 측정된 다수의 CQI 정보들을 함께 기지국으로 전송할 수 있다. As a variation of the above CSI-RS configuration indicating method, the base station informs a plurality of CSI-RS configuration to the terminal, among which all or part of the CSI-RS configuration to be used for CQI feedback ( configuration). Accordingly, the UE, which has received CQI feedback for a plurality of CSI-RS configurations, measures CQIs using CSI-RSs corresponding to each CSI-RS configuration, and measures the measured CQIs. Information can be sent together to the base station.
또는, 단말이 다수의 CSI-RS 설정(configuration) 각각에 대한 CQI 를 기지국으로 전송할 수 있도록, 기지국은 단말의 CQI 전송에 필요한 상향링크 자원을 각각의 CSI-RS 설정(configuration) 별로 미리 지정할 수 있고, 이러한 상향링크 자원 지정에 대한 정보는 RRC 시그널링을 통하여 미리 단말에게 제공될 수 있다. Alternatively, the base station may designate uplink resources required for transmitting the CQI of the terminal in advance for each CSI-RS configuration so that the terminal may transmit CQI for each of a plurality of CSI-RS configurations. The information on the uplink resource designation may be provided to the terminal in advance through RRC signaling.
또는, 기지국은 단말로 하여금 다수의 CSI-RS 설정(configuration) 각각에 대한 CQI 를 기지국으로 전송하도록 동적으로 트리거링(trigger) 할 수 있다. CQI 전송의 동적인 트리거링은 PDCCH를 통해서 수행될 수 있다. 어떤 CSI-RS 설정(configuration)에 대한 CQI 측정을 수행할지가 PDCCH를 통해 단말에게 알려질 수 있다. 이러한 PDCCH 를 수신하는 단말은 해당 PDCCH 에서 지정된 CSI-RS 설정(configuration) 에 대한 CQI 측정 결과를 기지국으로 피드백할 수 있다. Alternatively, the base station may dynamically trigger the terminal to transmit CQI for each of a plurality of CSI-RS configurations to the base station. Dynamic triggering of CQI transmission may be performed over the PDCCH. Which CSI-RS configuration (CQI measurement) to be performed may be known to the UE through the PDCCH. The terminal receiving the PDCCH may feed back the CQI measurement result for the CSI-RS configuration designated in the corresponding PDCCH to the base station.
다수의 CSI-RS 설정(configuration)의 각각에 해당하는 CSI-RS의 전송 시점은 다른 서브프레임에서 전송되도록 지정될 수도 있고, 또는 동일한 서브프레임에서 전송되도록 지정될 수도 있다. 동일 서브프레임에서 서로 다른 CSI-RS 설정(configuration)에 따른 CSI-RS의 전송이 지정되는 경우, 이들을 서로 구별하는 것이 필요하다. 서로 다른 CSI-RS 설정(configuration)에 따른 CSI-RS들을 구별하기 위해서, CSI-RS 전송의 시간 자원, 주파수 자원 및 코드 자원 중 하나 이상을 다르게 적용할 수 있다. 예를 들어, 해당 서브프레임에서 CSI-RS의 전송 RE 위치가 CSI-RS 설정(configuration) 별로 다르게 (예를 들어, 하나의 CSI-RS 설정에 따른 CSI-RS 는 도 8(a) 의 RE 위치에서 전송되고, 다른 하나의 CSI-RS 설정에 따른 CSI-RS 는 동일한 서브프레임에서 도 8(b)의 RE 위치에서 전송되도록) 지정할 수 있다(시간 및 주파수 자원을 이용한 구분). 또는, 서로 다른 CSI-RS 설정(configuration)에 따른 CSI-RS들이 동일한 RE 위치에서 전송되는 경우에, 서로 다른 CSI-RS 설정(configuration)에서 CSI-RS 스크램블링 코드를 상이하게 사용함으로써 서로 구분되게 할 수도 있다(코드 자원을 이용한 구분).The transmission time of the CSI-RS corresponding to each of the plurality of CSI-RS configurations may be designated to be transmitted in another subframe or may be designated to be transmitted in the same subframe. When transmission of CSI-RSs according to different CSI-RS configurations is designated in the same subframe, it is necessary to distinguish them from each other. In order to distinguish CSI-RSs according to different CSI-RS configurations, one or more of time resources, frequency resources, and code resources of CSI-RS transmission may be differently applied. For example, the transmission RE position of the CSI-RS in the corresponding subframe is different according to the CSI-RS configuration (for example, the CSI-RS according to one CSI-RS configuration is the RE position of FIG. 8 (a)). CSI-RS transmitted from the CSI-RS according to another CSI-RS configuration may be designated to be transmitted in the RE position of FIG. 8 (b) in the same subframe (division using time and frequency resources). Alternatively, when CSI-RSs according to different CSI-RS configurations are transmitted in the same RE location, the CSI-RS scrambling codes may be differently used in different CSI-RS configurations to distinguish them from each other. It may be possible (division using code resources).
AAS (Active Antenna System)AAS (Active Antenna System)
LTE 릴리즈-12 이후에 AAS를 활용한 안테나 시스템이 도입되려 한다. AAS (Active Antenna System)는 각각의 안테나가 능동 회로를 포함하는 능동 안테나로 구성되어 있다. AAS는 상황에 맞추어 안테나 pattern을 변화시킴으로써 간섭을 줄이거나, 빔포밍을 더욱 효율적으로 수행할 것으로 기대되고 있다. 이러한 AAS를 2차원으로 구축(2D-AAS)하게 되면, 안테나 pattern 측면에서 안테나의 main lobe를 3차원적으로 더욱 효율적으로 조절하여, 수신단의 위치에 따라 더욱 적극적으로 송신빔을 변화시킬 수 있다. After LTE Release-12, an antenna system utilizing AAS will be introduced. AAS (Active Antenna System) is composed of an active antenna each antenna includes an active circuit. AAS is expected to reduce the interference by changing the antenna pattern according to the situation, or to perform beamforming more efficiently. When the AAS is constructed in two dimensions (2D-AAS), the main lobe of the antenna can be more efficiently adjusted in three dimensions in terms of the antenna pattern, and the transmission beam can be changed more actively according to the position of the receiver.
도 12는 64포트의 2D-AAS 안테나 배열의 일례를 나타낸다.12 shows an example of a 64 port 2D-AAS antenna arrangement.
도 12를 참조하면, 2D-AAS는 안테나를 수직 방향과 수평 방향으로 설치하여, 다량의 안테나 시스템을 구축할 수 있다.Referring to FIG. 12, the 2D-AAS may install an antenna in a vertical direction and a horizontal direction to construct a large amount of antenna system.
2D-AAS가 도입될 경우, 송신단으로부터 수신단까지의 채널을 수신단에게 알려 주기 위해 송신단은 특정 RS(예를 들면, CSI-RS, 이하에서는 편의상 “CSI-RS”로 칭함)를 보내 주어야 한다. 현재 LTE시스템에서는 CSI-RS가 1 port, 2 ports, 4 ports, 8 ports CSI-RS 로 설계가 되어 있다. n>1인 각각의 n-ports CSI-RS는 한 RB에 n개의 RE를 사용해야 한다. 따라서, 만약, 2D-AAS의 경우, 안테나가 수직 방향으로 8개, 수평 방향으로 8개가 있어 전체 64개의 안테나를 가졌다면, 기존의 방식으로는 한 RB에 64개의 RE를 CSI-RS를 위해서 사용해야 한다. 따라서, 안테나 개수에 따른 CSI-RS overhead가 문제될 수 있다.When 2D-AAS is introduced, the transmitting end should send a specific RS (eg, CSI-RS, hereinafter referred to as “CSI-RS” for convenience) to inform the receiving end of the channel from the transmitting end to the receiving end. In the current LTE system, CSI-RS is designed as 1 port, 2 ports, 4 ports, 8 ports CSI-RS. Each n-ports CSI-RS with n> 1 must use n REs for one RB. Therefore, in the case of 2D-AAS, if there are 8 antennas in the vertical direction and 8 in the horizontal direction, and thus have 64 antennas in total, 64 REs are used in one RB for the CSI-RS. do. Therefore, CSI-RS overhead depending on the number of antennas may be a problem.
이러한 문제를 해결하기 위해, 일부의 CSI-RS 포트만을 사용해서 나머지 포트에서 오는 채널까지 유추하는 방법을 이용할 수 있다. 이를 위한 하나의 방법으로서, 2D-AAS로부터 수신단으로의 채널을 다음과 같이 kronecker product로 추정할 수 있다. To solve this problem, it is possible to use only a few CSI-RS ports to infer the channel coming from the remaining ports. As one method for this, the channel from the 2D-AAS to the receiver can be estimated as the kronecker product as follows.
[수학식 1][Equation 1]
Figure PCTKR2015007668-appb-I000001
Figure PCTKR2015007668-appb-I000001
수학식 1에서 H는 송신단에서 수신단까지 전체 채널을 의미하고, HT (j)는 송신단에서 j번째 수신 안테나까지 채널을 의미한다. Hv (j)와 HH (j)는 각각 수직방향과 수평방향의 안테나 element(또는 port)에서 수신단의 j번째 안테나로 전송되는 채널을 의미한다. 도 12에서 HV (j)는 A 블록의 안테나만 존재한다고 가정하고 A블록 안테나로부터 수신단의 j번째 안테나에 대한 채널을 의미한다. HH (j)는 B 블록의 안테나만 존재한다고 가정하고, B블록의 안테나로부터 수신단의 j번째 안테나에 대한 채널을 의미한다. In Equation 1, H means an entire channel from a transmitting end to a receiving end, and H T (j) means a channel from a transmitting end to a jth receiving antenna. H v (j) and H H (j) mean channels transmitted from the antenna element (or port) in the vertical direction and the horizontal direction to the jth antenna of the receiver, respectively. In FIG. 12, it is assumed that only the antenna of the A block exists, and H V (j) means a channel for the j-th antenna of the receiver from the A block antenna. H H (j) assumes that only the antenna of the B block exists, and means a channel for the j-th antenna of the receiver from the antenna of the B block.
이하에서는, 설명의 편의를 위하여 임의의 1개의 수신 안테나 입장에서 설명을 하며, 모든 과정은 다른 수신 안테나에도 모두 적용 가능하다. 또한, 다음과 같이 송신단에서 (j) index를 제거한 임의의 1개의 수신 안테나까지의 채널만을 이용해 설명한다.Hereinafter, for the convenience of explanation, the description will be made from any one reception antenna position, and all processes may be applied to all other reception antennas. In addition, the following description will be made using only channels up to any one receiving antenna from which the (j) index is removed at the transmitting end.
[수학식 2][Equation 2]
Figure PCTKR2015007668-appb-I000002
Figure PCTKR2015007668-appb-I000002
한편, 수학식 2는 본 발명의 설명을 위한 수학식이며, 실제 채널이 수학식 2와 같지 않아도 본 발명을 적용 가능하다.On the other hand, Equation 2 is an equation for explaining the present invention, the present invention can be applied even if the actual channel is not the same as the equation (2).
도 12의 A블록과 같이 수직 방향의 안테나 포트 Nv를 가진 CSI-RS 1개와 B블록과 같이 수평 방향의 안테나 포트 NH를 가진 CSI-RS 1개를 설정해서 2개의 CSI-RS를 설정할 수 있다. 수신단은 수신한 2개의 CSI-RS를 측정한 뒤, 2개의 채널 matrix를 수학식 2와 같이 Kronecker product하여 채널을 유추할 수 있다. Nv는 수직방향의 안테나 개수이고, NH는 수평방향의 안테나 개수이다. 이 방법을 사용하면, 기존의 2, 4, 8 port CSI-RS를 가지고도 64 port에서 오는 채널까지도 수신단에게 알려줄 수 있다는 장점이 있다.Two CSI-RSs may be configured by setting one CSI-RS having the antenna port Nv in the vertical direction as shown in A block of FIG. 12 and one CSI-RS having the antenna port N H in the horizontal direction as shown in the B block. . After receiving two CSI-RSs, the receiver can infer a channel by Kronecker product of two channel matrices as shown in Equation 2. Nv is the number of antennas in the vertical direction, and N H is the number of antennas in the horizontal direction. Using this method, even if the existing 2, 4, 8 port CSI-RS, even the channel coming from 64 port can be informed to the receiver.
도 12와 같은 co-polarized antenna array 대신 도 13과 같은 cross-polarized antenna array(이하 X-pol AA)를 고려할 수 있다. 이 경우는 64 ports antenna array를 도 13과 같이 8 row / 4 column x 2 polarization으로 구성할 수 있다.Instead of the co-polarized antenna array shown in FIG. 12, a cross-polarized antenna array (hereinafter referred to as X-pol AA) as shown in FIG. 13 may be considered. In this case, the 64 ports antenna array can be configured as 8 row / 4 column x 2 polarization as shown in FIG.
도 14는 X-pol AA에서 A/B 블록의 예시이다.14 is an illustration of an A / B block in X-pol AA.
정리하면, 기지국이 많은 수의 송신 안테나를 가지고 있는 N-tx Massive MIMO 환경에서는 CSI 피드백을 위해 N-Tx CSI-RS와 N-Tx PMI가 새롭게 정의되어야 하지만, RS 오버 헤드 또는 피드백 오버 헤드를 고려했을 때, N-Tx CSI-RS와 PMI를 새롭게 정의하는 것은 어려울 수 있다. 이에 대한 대안으로서 기존 M-Tx (M=8이하) 안테나 CSI-RS와 M-Tx PMI를 활용하여 Massive MIMO 피드백을 지원할 수 있다. 구체적으로 아래와 같이 크게 두 가지 피드백 방법 중 하나로 동작할 수 있다.In summary, in an N-tx Massive MIMO environment where a base station has a large number of transmit antennas, N-Tx CSI-RS and N-Tx PMI must be newly defined for CSI feedback, but RS overhead or feedback overhead is considered. In this case, it may be difficult to newly define N-Tx CSI-RS and PMI. As an alternative, the conventional M-Tx (M = 8 or less) antenna CSI-RS and M-Tx PMI may be used to support massive MIMO feedback. In more detail, it can operate as one of two feedback methods.
첫 번째 피드백 방법으로 multiple CSI process 각각에 Massive 안테나의 일부를 CSI-RS로 설정하고 UE로 하여금 process 별 CSI를 피드백하게 할 수 있다. 예를 들어, CSI process 1과 2를 한 UE에게 설정 해주고, process 1에는 도 14의 A 블록에 해당하는 CSI-RS 1을 process 2에는 도 14의 B 블록에 해당하는 CSI-RS 2을 configure 해 준다. UE는 상기 두 process 별로 설정된 CSI feedback chain을 이용하여 CSI-RS 1과 2에 대한 피드백을 올린다. As a first feedback method, a part of the massive antenna may be set to CSI-RS in each of multiple CSI processes, and the UE may feed back CSI for each process. For example, CSI processes 1 and 2 are set to one UE, process 1 configures CSI-RS 1 corresponding to block A of FIG. 14 and process 2 configures CSI-RS 2 corresponding to block B of FIG. 14. give. The UE raises feedback on the CSI- RSs 1 and 2 by using the CSI feedback chain configured for the two processes.
하지만 이 경우 아래와 같은 문제점이 존재한다. However, the following problem exists in this case.
첫 번째 문제점으로, 각 CSI process의 CQI는 massive 안테나 전체를 사용했을 때 달성 가능한 CQI가 아니라 massive 안테나 중 극히 일부 안테나만을 사용했을 때 얻어 질 수 있는 MCS를 indication 한다. 이 경우 기지국은 각 CSI process의 CQI를 수신하여 massive 안테나 전체를 사용했을 때 달성 가능한 CQI를 재 계산하기 어렵다.As a first problem, the CQI of each CSI process indicates the MCS that can be obtained when only a few of the massive antennas are used, not the CQIs that can be achieved when the entire massive antennas are used. In this case, the base station receives the CQI of each CSI process and it is difficult to recalculate the CQI that can be achieved when using the entire massive antenna.
두 번째 문제점으로, 각 CSI process의 RI는 massive 안테나 전체를 사용했을 때 달성 가능한 RI가 아니라 massive 안테나 중 극히 일부 안테나만을 사용했을 때 얻어 질 수 있는 RI를 indication 한다. 이 경우 기지국이 각 CSI process의 RI를 수신하여 massive 안테나 전체를 사용했을 때 달성 가능한 RI를 재 계산하더라도 재 계산된 RI에 맞는 CQI를 재 계산하기 어렵다.As a second problem, the RI of each CSI process indicates the RI that can be obtained when only a few of the massive antennas are used, not the RIs that can be achieved when the entire massive antennas are used. In this case, even if the base station receives the RI of each CSI process and recalculates the RI that can be achieved when using the entire massive antenna, it is difficult to recalculate the CQI corresponding to the recalculated RI.
세 번째 문제점으로 CSI process의 PMI는 massive 안테나 전체를 사용했을 때 최적 PMI가 아니라 massive 안테나 중 극히 일부 안테나만을 사용했을 때 얻어 질 수 있는 PMI를 indication 한다. As a third problem, the PMI of the CSI process indicates the PMI that can be obtained when only a few of the massive antennas are used, rather than the optimal PMI when the entire massive antennas are used.
이러한 문제점을 해결하기 위해 아래 두 번째 의 피드백 방법을 고려할 수 있다.To solve this problem, we can consider the following second feedback method.
첫 번째 피드백 방법의 문제점을 해결하기 위한 두 번째 Massive MIMO 피드백 방법으로, UE에게 하나의 CSI process를 configure하고 UE는 그 Process를 통해 Massive 안테나 전체를 사용했을 때 달성 수 있는 RI, PMI, CQI를 피드백 하는 방식이 있다. 이때 한 CSI process 내에는 IMR 한 개와 Massive MIMO 안테나에 해당하는 L 개의 CSI-RS 가 configure 될 수 있다. 즉, 다음과 같이 CSI process 관련 정보가 구성될 수 있다. As a second Massive MIMO feedback method to solve the problem of the first feedback method, a CSI process is configured for the UE, and the UE feeds back RI, PMI, and CQI that can be achieved when using the entire Massive Antenna through the process. There is a way. At this time, L CSI-RSs corresponding to one IMR and a massive MIMO antenna may be configured in one CSI process. That is, CSI process related information may be configured as follows.
CSI process information = {IMR 설정, 1st CSI-RS 설정, 2nd CSI-RS 설정, …, L-th CSI-RS 설정} CSI process information = {IMR setting, 1st CSI-RS setting, 2nd CSI-RS setting,… , L-th CSI-RS Settings}
이러한 방법에서 UE는 L 개의 CSI-RS로부터 전체 Massive MIMO 채널을 추정할 수 있으며, K개의 PMI로 전체 채널을 나누어 피드백하게 되는데, 현재 PUCCH feedback format을 고려해 볼 때, payload size의 한계로 인해 모든 K개의 PMI를 한꺼번에 피드백 할 수 없는 문제가 발생한다. 즉, multiple CSI-RS 각각에 해당하는 multiple PMI를 한번에 피드백 하기에는 오버 헤드가 큰 문제가 있다.In this way, the UE can estimate the total Massive MIMO channel from L CSI-RSs, and feeds back the entire channel into K PMIs.In consideration of the PUCCH feedback format, all K are due to the limitation of payload size. There is a problem that can not feed back the PMI at once. That is, there is a big overhead in feeding back multiple PMIs corresponding to each of multiple CSI-RSs at once.
따라서, 이러한 문제를 해결하기 위하여 아래와 같은 본 발명의 실시예를 적용할 수 있다.Therefore, the following embodiments of the present invention can be applied to solve this problem.
본 발명에 따른 실시예Embodiment according to the present invention
본 발명은 UE가 CSI를 피드백 할 때 해당 CSI가 기지국과의 전체 채널 중 어떤 부분 채널에 대한 정보인지도 함께 피드백 하는 방법에 대한 것이다. 많은 수의 송신 안테나를 가지고 있는 Massive MIMO 환경에서 기지국은 한 UE에게 여러 CSI-RS 설정(configuration)을 통해 송신 안테나의 일부 또는 전체 채널을 알려 줄 수 있다. 이때 이상적으로 UE는 기지국과의 전체 채널 정보를 PMI로 양자화하여 한번에 피드백하는 것이 바람직하지만 현실적인 피드백 오버헤드를 고려했을 때, 전제 채널을 여러 부분 채널로 나눈 뒤, 이에 해당하는 PMI를 순차적으로 피드백 할 수 있다. 본 발명에 따르면 UE는 가장 효과가 큰 PMI만을 업데이트 한 뒤 피드백 하고, 해당 PMI가 어떤 부분 채널을 기준으로 결정된 것인지 기지국에게 알려 주어 피드백 오버헤드를 감소시킬 수 있다.The present invention relates to a method for feeding back a CSI with which CSI is information on which partial channel of the entire channel with the base station. In a massive MIMO environment having a large number of transmit antennas, a base station can inform a UE of some or all channels of the transmit antenna through several CSI-RS configurations. At this time, the UE ideally quantizes all channel information with the base station to PMI and feeds back at once, but considering realistic feedback overhead, after dividing the entire channel into several partial channels, the corresponding PMI is sequentially fed back. Can be. According to the present invention, the UE updates and updates only the PMI having the most effect, and informs the base station about which partial channel the PMI is determined based on, thereby reducing feedback overhead.
구체적으로, UE는 K개의 부분 채널 중 한 가지를 선택하고, 선택된 부분 채널에 해당하는 PMI만을 피드백 할 수 있다. 이 때 CSI 피드백 가능한 부분 채널 후보는 기지국과 UE 사이에 약속되어야 하며, 이를 위해 별도의 제어 시그널이 설정될 수 있다. 부분 채널 A와 B가 각각 서로 다른 CSI-RS와 일대일 대응 관계 일 경우, CSI 피드백을 위한 부분 채널 선택은 CSI-RS의 선택과 동일한 의미를 지닌다.In more detail, the UE may select one of the K partial channels and feed back only the PMI corresponding to the selected partial channel. In this case, the CSI feedback capable partial channel candidate should be promised between the base station and the UE, and a separate control signal may be set for this purpose. When partial channels A and B each have a one-to-one correspondence with different CSI-RSs, partial channel selection for CSI feedback has the same meaning as selection of CSI-RS.
예를 들어, 기지국은 도 14의 A 블록에 해당하는 CSI-RS와 B 블록에 해당하는 CSI-RS를 UE에게 알려주고, UE는 A 블록에 해당하는 CSI-RS를 통해 vertical antennas 에 대한 하향 링크 채널을 추정하여 PMI를 계산하고, B 블록에 해당하는 CSI-RS를 통해 horizontal antennas 에 대한 하향 링크 채널을 추정하여 PMI를 계산한다. 전자를 vertical PMI 그리고 후자를 horizontal PMI라고 할 때, 결과적으로 UE가 선택하는 부분 채널 A와 B이란 각각 vertical PMI와 horizontal PMI를 의미할 수 있다. 또는, 부분 채널 A와 B는 CSI-RS와 일대일 대응 관계가 아닐 수 있다. 일례로 부분 채널 A는 두 CSI-RS로부터 추정된 채널의 composite channel을 의미할 수 있으며 부분 채널 B는 하나의 CSI-RS로부터 추정된 채널을 의미한다. For example, the base station informs the UE of the CSI-RS corresponding to the A block of FIG. 14 and the CSI-RS corresponding to the B block, and the UE transmits a downlink channel for vertical antennas through the CSI-RS corresponding to the A block. The PMI is calculated by estimating the PMI, and the PMI is calculated by estimating the downlink channels of the horizontal antennas through the CSI-RS corresponding to the B block. When the former is referred to as vertical PMI and the latter as horizontal PMI, the partial channels A and B selected by the UE can mean vertical PMI and horizontal PMI, respectively. Alternatively, partial channels A and B may not have a one-to-one correspondence with the CSI-RS. For example, partial channel A may mean a composite channel of a channel estimated from two CSI-RSs, and partial channel B may mean a channel estimated from one CSI-RS.
이하에서는 UE가 부분 채널 정보를 선택하는 방법, 그리고 UE가 선택된 부분 채널의 CSI를 기지국에게 피드백 하는 구체적 방법에 대하여 설명한다.Hereinafter, a method of selecting partial channel information by the UE and a specific method of feeding back CSI of the selected partial channel to the base station will be described.
제1 실시예(부분 채널 선택 방법)First Embodiment (Partial Channel Selection Method)
본 발명에 따른 제1 실시예는 UE가 부분 채널을 선택하는 방법에 대한 것이다. A first embodiment according to the present invention is directed to a method for a UE to select a partial channel.
구체적으로, UE는 채널 변화가 가장 심한 부분 채널 선택하여 PMI 피드백을 할 수 있다. 이는 채널 변화가 심하지 않은 부분 채널의 경우 과거에 보냈던 PMI가 어느 정도 유효할 수 있으므로, 채널 변화가 심한 부분 채널의 PMI를 피드백 하는 것이 효과적이기 때문이다. In detail, the UE may select the partial channel with the most severe channel change and provide PMI feedback. This is because in the case of the partial channel where the channel change is not severe, the PMI sent in the past may be valid to some extent, so that it is effective to feed back the PMI of the partial channel with the severe channel change.
또는 UE는 PMI를 업데이트 하였을 때 얻어 질 수 있는 CQI가 최대화되도록 부분 채널를 선택할 수 있다. UE는 선택할 수 있는 모든 부분 채널을 고려해 각 경우에 대한 CQI를 계산하고, 이 중 CQI 가 가장 큰 부분 채널를 선택할 수 있다.Alternatively, the UE may select the partial channel so that the CQI that can be obtained when updating the PMI is maximized. The UE calculates the CQI for each case by considering all selectable partial channels, and selects the partial channel having the largest CQI among them.
제2 실시예(선택된 부분 채널을 피드백하는 방법)Second embodiment (method of feeding back the selected partial channel)
본 발명에 따른 제2 실시예는 UE가 기지국에게 선택된 부분 채널을 피드백하는 방법에 대한 것이다.A second embodiment according to the present invention is directed to a method in which a UE feeds back a selected partial channel to a base station.
UE는 전체 부분 채널 후보 중 하나의 부분 채널을 선택하고 이를 기준으로 PMI를 계산하여 피드백하는 데, 이 때 기지국은 UE가 피드백 한 PMI가 어떤 부분 채널에 해당하는 것인지 알아야 한다. 이 정보를 피드백하는 가장 간단한 방법은 PMI와 함께 선택된 부분 채널에 대한 정보를 피드백 하는 것이다. The UE selects one partial channel among all partial channel candidates and calculates and feeds back a PMI based on the partial channel candidate. At this time, the base station must know which partial channel the PMI fed back by the UE corresponds to. The simplest way to feed back this information is to feed back information about the selected partial channel with the PMI.
예를 들어, 도 14과 같이 블록 A, B에 해당하는 두 개의 부분 채널이 존재할 때, UE는 PMI 피드백이 이루어 질 때마다 두 부분 채널 중 하나를 선택하고, 그 부분 채널을 기준으로 계산한 PMI 및 선택된 부분 채널 후보를 함께 피드백 한다. For example, when there are two partial channels corresponding to blocks A and B, as shown in FIG. 14, the UE selects one of two partial channels whenever PMI feedback is provided and calculates the PMI based on the partial channel. And feed back the selected partial channel candidate.
도 15는 본 발명의 실시예에 따른 피드백 설정의 일례이다.15 is an example of a feedback setting according to an embodiment of the present invention.
도 15와 같이 feedback mode가 설정된 경우 W1, W2가 피드백 되는 모든 subframe에 추가적으로 어떤 부분 채널이 선택 되었는지 (예를 들면, PCI: Partial CSI Indicator) 를 함께 피드백 한다. 이 경우 두 개의 부분 채널을 가정하였으므로 PCI는 1bit으로 표현되며, PCI가 0 과 1 일 때 각각 1st column vertical antennas와 1st row horizontal antennas 에 해당하는 부분 채널을 의미한다. When the feedback mode is set as shown in FIG. 15, a partial channel is additionally selected (for example, PCI: partial CSI indicator) in addition to all subframes to which W1 and W2 are fed back. In this case, since two partial channels are assumed, PCI is expressed as 1 bit, and when PCI is 0 and 1, it means partial channels corresponding to 1st column vertical antennas and 1st row horizontal antennas, respectively.
기본적으로 W1과 W2가 피드백 되는 모든 서브 프레임에서 독립적인 PCI가 피드백 되지만, PCI를 W1 또는 W2 중 하나와 함께만 피드백 하는 방식도 이용할 수 있다. 예를 들어 PCI는 W1과 함께만 피드백 되며, W2의 CSI-RS는 가장 최근 리포트 된 PCI값에 따라 결정된다. 한편, 도 15 등에서 W1, W2는 LTE 8Tx codebook 또는 enhanced 4Tx codebook 과 같이 dual codebook 에서 각각의 codebook 을 나타내며, RI는 rank, CQI는 channel quality indicator를 의미한다.By default, independent PCI is fed back in every subframe where W1 and W2 are fed back, but you can also use PCI to feed back only with either W1 or W2. For example, PCI is fed back only with W1, and the CSI-RS of W2 is determined by the most recently reported PCI value. Meanwhile, in FIG. 15, W1 and W2 represent respective codebooks in the dual codebook, such as LTE 8Tx codebook or enhanced 4Tx codebook, RI means rank, and CQI means channel quality indicator.
부분 채널은 각각 다른 코드북 구조 (예를 들면, dual codebook or single codebook)를 가질 수 있다. 예를 들어, 도 14의 A 블록은 ULA 구조에 적합한 single codebook structure를 이용하고 B 블록은 X-Pol 구조에 적합한 dual codebook structure를 이용한다. 이를 위해 각 부분 채널 별로 피드백에 사용할 코드북을 기지국이 UE에게 시그널링 해줄 수 있다. 이 경우 CSI feedback frame은 보다 복잡한 dual codebook에 맞추어 설정하고 single codebook PMI가 피드백 되는 경우 UE는 W1 또는 W2 대신 single PMI를 피드백 한다. 이하에서는 더욱 구체적인 실시 예를 설명한다.Each partial channel may have a different codebook structure (eg, dual codebook or single codebook). For example, the A block of FIG. 14 uses a single codebook structure suitable for the ULA structure and the B block uses a dual codebook structure suitable for the X-Pol structure. To this end, the base station may signal a codebook to be used for feedback for each partial channel to the UE. In this case, the CSI feedback frame is set according to a more complex dual codebook, and when a single codebook PMI is fed back, the UE feeds back a single PMI instead of W1 or W2. Hereinafter, more specific embodiments will be described.
만약 도 15에서 부분 채널 1에 해당하는 코드북은 W1과 W2로 이루어진 dual 구조이지만, 부분 채널 2에 해당하는 코드북은 single 구조이면 (예를 들면, 릴리즈-8 LTE 4Tx codebook) 도 15의 리포팅 구조로 부분 채널 2의 코드북을 피드백하는 것이 모호하다. 이 경우 RI와 함께 joint encoding 되는 W1을 항상 부분 채널 1에 해당하는 코드북으로 가정하여 PCI 없이 피드백하고, W2가 피드백 되는 경우에만 PCI를 함께 피드백 한다. 그 결과 도 15에 나타난 W2가 부분 채널 1의 W2인지 아니면 부분 채널 2의 single PMI인지를 알려줄 수 있다.If the codebook corresponding to the partial channel 1 in FIG. 15 has a dual structure consisting of W1 and W2, but the codebook corresponding to the partial channel 2 has a single structure (for example, a release-8 LTE 4Tx codebook), the reporting structure of FIG. Feedback of the codebook of partial channel 2 is ambiguous. In this case, W1 jointly encoded with RI is assumed to be a codebook corresponding to partial channel 1, and feedback is performed without PCI, and PCI is fed back together only when W2 is fed back. As a result, it may be indicated whether W2 shown in FIG. 15 is W2 of partial channel 1 or single PMI of partial channel 2. FIG.
또는 상기와 같이 코드북 구조가 달라 복잡해 지는 문제를 방지하기 위해 UE는 모든 부분 채널에 대해 동일한 코드북 구조를 이용하여 CSI 피드백을 수행하도록 제한을 둘 수 있다.Alternatively, in order to prevent the complexity of the codebook structure as described above, the UE may limit the CSI feedback to be performed using the same codebook structure for all partial channels.
도 15에서 CQI는 update된 PMI와 함께 피드백 된다. 이 때 CQI는 CQI가 피드백 되는 시점을 포함하여 가장 최근 PMI들을 이용하여 기지국이 massive MIMO를 수행했을 때 달성 할 수 있는 값이다. RI는 multiple CSI-RS 각각에 해당하는 서로 다른 rank 가 joint encoding 된 값일 수 있으며, 또는 모든 multiple CSI-RS의 PMI에 공통 적용되는 single value 일 수 있다.In FIG. 15, the CQI is fed back with the updated PMI. At this time, the CQI is a value that can be achieved when the base station performs massive MIMO using the most recent PMIs, including the time point at which the CQI is fed back. The RI may be a value in which different ranks corresponding to each of the multiple CSI-RSs are jointly encoded, or a single value commonly applied to the PMIs of all the multiple CSI-RSs.
또한, 도 15의 실시예는 매 PMI 피드백 순간 마다 PCI를 함께 피드백하는 방식인데, 이 경우 PCI를 피드백하는 빈도가 높아 피드백 오버헤드 측면에서 비 효율적일 수 있다. 예를 들어, 도 14에서 vertical antenna와 horizontal antenna 각각에 해당하는 부분 채널 1과 부분 채널 2의 채널 변화율이 비대칭 적인 경우 비효율성은 커진다. 이러한 경우 보다 긴 주기로 PCI를 피드백 할 수 있다. 예를 들어, UE는 PCI를 RI와 함께 피드백하고 다음 PCI + RI 가 업데이트 될 때까지 동일 부분 채널에 해당하는 PMI를 리포트한다. In addition, the embodiment of FIG. 15 is a method of feeding back PCI together at every PMI feedback moment. In this case, the frequency of feeding back PCI may be inefficient in terms of feedback overhead. For example, in FIG. 14, when the channel change rates of the partial channel 1 and the partial channel 2 corresponding to each of the vertical antenna and the horizontal antenna are asymmetric, inefficiency increases. In this case, PCI can be fed back over a longer period. For example, the UE feeds back PCI with the RI and reports the PMI corresponding to the same partial channel until the next PCI + RI is updated.
또는 PCI를 RI와 함께 피드백하되, 다음과 같이 동작할 수 있다. PCI=0인 경우 PCI 리포트 시점부터 일정 시간 동안 부분 채널 1에 대한 PMI를 피드백하고 이후부터 다음 PCI가 리포트 될 때까지 부분 채널 2에 대한 PMI를 피드백한다. 이 때 일정 시간이란 사전에 기지국이 UE에게 RRC signaling 해주거나 고정된 값일 수 있다. PCI=1인 경우 PCI 리포트 시점부터 다음 PCI가 리포트 될 때까지 부분 채널 2에 대한 PMI를 피드백한다. Alternatively, the PCI may be fed back with the RI, but may operate as follows. If PCI = 0, the PMI is fed back to the partial channel 1 for a certain time from the PCI report time, and the PMI is fed back to the partial channel 2 until the next PCI is reported. In this case, the predetermined time may be a RRC signaling or a fixed value to the UE in advance. If PCI = 1, feed back the PMI for partial channel 2 from the PCI report time until the next PCI is reported.
도 16은 이러한 피드백 방법의 일례이다. vertical antenna의 채널이 horizontal antenna의 채널에 비해 채널 변화 속도가 느리다면 부분 채널 1과 2를 각각 vertical antenna와 horizontal antenna에 mapping하여 도 16과 같이 설정하면 보다 효과적인 피드백이 이루어 질 수 있다. 16 is an example of such a feedback method. If the channel speed of the vertical antenna is slower than the channel of the horizontal antenna, the partial channels 1 and 2 may be mapped to the vertical antenna and the horizontal antenna, respectively, and set as shown in FIG. 16 to provide more effective feedback.
도 16에서는 부분 채널 1에 해당하는 PMI가 일정 기간 동안 이후 한번에 전송되었으나, 또 다른 방법으로 PCI=0일 경우 부분 채널 1에 해당하는 PMI가 부분 채널 2에 해당하는 PMI와 일정 비율을 유지하며 균등한 시간 간격으로 피드백 될 수 있다. 도 17에서 부분 채널 1에 해당하는 PMI와 부분 채널 2에 해당하는 PMI가 1:2의 피드백 비율을 유지하며 균등한 간격으로 리포트 된다. 이러한 피드백 비율은 기지국이 UE에게 알려 줄 수 있다. In FIG. 16, the PMI corresponding to the partial channel 1 has been transmitted at a later time for a certain period of time. However, when PCI = 0, the PMI corresponding to the partial channel 1 maintains a uniform ratio with the PMI corresponding to the partial channel 2 in another method. Can be fed back at one time interval. In FIG. 17, the PMI corresponding to the partial channel 1 and the PMI corresponding to the partial channel 2 are reported at equal intervals while maintaining a feedback ratio of 1: 2. This feedback rate can be informed by the base station to the UE.
또 다른 방법으로 PCI 값에 따라 부분 채널 1에 해당하는 PMI와 부분 채널 2에 해당하는 PMI의 피드백 비율을 다르게 설정할 수 있다. 도 18은 PCI=0일 경우 두 PMI가 1:2의 비율을 가지고 균등 간격으로 리포트 되며, PCI=1인 경우 두 PMI가 1:1의 비율을 가지고 균등 간격으로 리포트 되는 예를 보여준다. 이러한 피드백 비율은 기지국이 UE에게 알려 줄 수 있다. Alternatively, the feedback ratio of the PMI corresponding to the partial channel 1 and the PMI corresponding to the partial channel 2 may be differently set according to the PCI value. FIG. 18 shows an example in which two PMIs are reported at equal intervals with a ratio of 1: 2 when PCI = 0, and two PMIs are reported at equal intervals with a ratio of 1: 1 when PCI = 1. This feedback rate can be informed by the base station to the UE.
또 다른 방법으로 PCI 값에 따라 부분 채널 1에 해당하는 PMI와 부분 채널 2에 해당하는 PMI의 피드백 비율을 서로 바꾸어 설정할 수 있다. 예를 들어 상기 두 PMI의 피드백 비율을 1:2로 기지국과 UE사이 시그널링을 통해 약속하고 PCI에 따라 1:2의 피드백 비율을 어떻게 두 PMI에 mapping할 지 선택할 수 있다. 도 19는 PCI=0일 경우 부분 채널 1에 해당하는 PMI와 부분 채널 2에 해당하는 PMI가 1:2의 비율을 가지고 균등 간격으로 리포트 되며, PCI=1일 경우 부분 채널 2에 해당하는 PMI와 부분 채널 1에 해당하는 PMI가 1:2의 비율을 가지고 균등 간격으로 리포트 되는 예를 나타낸다.Alternatively, the feedback ratio of the PMI corresponding to the partial channel 1 and the PMI corresponding to the partial channel 2 may be interchanged according to the PCI value. For example, it is possible to select a feedback ratio between the two PMIs through a signaling between the base station and the UE at 1: 2 and to select a feedback ratio of 1: 2 to the two PMIs according to PCI. FIG. 19 shows that PMI corresponding to partial channel 1 and PMI corresponding to partial channel 2 are reported at equal intervals with a ratio of 1: 2 when PCI = 0, and PMI corresponding to partial channel 2 when PCI = 1. For example, the PMI corresponding to the partial channel 1 is reported at equal intervals with a ratio of 1: 2.
도 19와 같이 PCI 값을 이용할 때 (즉, 각 부분 채널에 해당하는 PMI의 피드백 비율을 서로 바꾸어 설정하는 용도로 PCI를 이용할 때) 기존 mode 2-1은 도 20 내지 23과 같이 변형될 수 있다. 도 20은 PCI=1, PTI=0 경우의 일례이고, 도 21은 PCI=0, PTI=1 경우의 일례이며, 도 22는 PCI=1, PTI=1 경우의 일례이다.When using the PCI value as shown in FIG. 19 (that is, when using the PCI for the purpose of changing the feedback ratio of the PMI corresponding to each partial channel), the existing mode 2-1 may be modified as shown in FIGS. 20 to 23. . 20 is an example of the case of PCI = 1 and PTI = 0, FIG. 21 is an example of the case of PCI = 0 and PTI = 1, and FIG.22 is an example of the case of PCI = 1 and PTI = 1.
여기서 두 부분 채널의 PMI 피드백 비율은 1:3으로 설정되었으며, long-term/wideband 속성을 갖는 Wi1은 Wi2와 비교해서 긴 주기로 피드백 되므로 긴 주기로 전송되는 다른 부분 채널의 PMI와 함께 전송한다. 즉 도 20, 21의 subframe 1, 9에서 하나의 부분 채널에 대한 PMI와 나머지 부분 채널에 대한 longterm/wideband PMI가 함께 리포트 된다.Here, the PMI feedback ratio of the two partial channels is set to 1: 3, and Wi1 having a long-term / wideband property is fed back with a long period compared to Wi2, so it is transmitted along with the PMI of another partial channel transmitted over a long period. That is, in subframes 1 and 9 of FIGS. 20 and 21, the PMI for one partial channel and the longterm / wideband PMI for the remaining partial channel are reported together.
도 20 내지 23에서 부분 채널 1의 codebook이 single codebook 일 경우 W1--1 또는 W1--2 중 하나를 identity precoder로 가정하여 리포트하지 않으며, W1--1 또는 W1--2 중 나머지 하나를 signle codebook으로 대체하여 리포트 할 수 있다. PMI 부분 채널 2가 single codebook인 경우에 대해서도 마찬가지의 규칙을 적용한다.20 to 23, if the codebook of the partial channel 1 is a single codebook, one of W1--1 or W1--2 is not assumed to be reported as an identity precoder, and the other one of W1--1 or W1--2 is signleed. You can report by replacing it with a codebook. The same rule applies to the case where the PMI subchannel 2 is a single codebook.
상술한 실시예에서 PCI는 PMI 피드백에만 적용되었지만, 나머지 CSI 피드백 (예를 들면, RI 또는 CQI) 에 확장 적용될 수 있다. In the above-described embodiment, the PCI is applied only to the PMI feedback, but may be extended to the remaining CSI feedback (eg, RI or CQI).
예를 들어 RI에 PCI를 개념을 적용하면, 해당 피드백 된 RI는 PCI가 지시하는 부분 채널의 채널의 rank를 의미한다. 이 경우, 도 16 내지 18에서 PCI는 함께 전송되는 RI 값이 어떤 부분 채널의 채널로부터 계산된 것인지를 알려 준다. For example, if PCI is applied to RI, the fed back RI means the rank of the channel of the partial channel indicated by PCI. In this case, the PCI in Figs. 16 to 18 tells which partial channel the RI value transmitted together is calculated from.
만약 CQI에 PCI를 개념을 적용하면, 해당 피드백 된 CQI는 PCI가 지시하는 부분 채널의 채널의 CQI를 의미한다. 이 경우 도 15에서 PCI는 함께 전송되는 CQI 값이 어떤 부분 채널의 채널로부터 계산된 것인지를 알려 준다. 또한 도 16 내지 18에서 PCI에 따른 PMI 피드백 운용과 동일한 방식으로 CQI 피드백을 적용할 수 있다.If the concept of PCI is applied to CQI, the feedback CQI means the CQI of the channel of the partial channel indicated by PCI. In this case, in FIG. 15, the PCI indicates which partial channel the CQI value transmitted together is calculated from the channel. In addition, CQI feedback may be applied in the same manner as the PMI feedback operation according to PCI in FIGS. 16 to 18.
도 24는 본 발명의 실시예의 일례를 나타내는 흐름도이다.24 is a flowchart showing an example of an embodiment of the present invention.
먼저, UE는 CSI 보고를 위한 CSI 설정 정보를 수신한다(S2401). 다음으로 CSI 설정 정보를 기초로 CSI 및 대규모 MIMO에 따른 전체 채널 중 CSI에 대응하는 부분 채널에 대한 식별 정보를 전송한다(S2403). 이에 대한 구체적인 내용은 상술한 제1 및 제2 실시예의 내용과 동일하므로 상세한 설명은 생략한다.First, the UE receives CSI configuration information for CSI reporting (S2401). Next, identification information on the partial channel corresponding to the CSI among the entire channels according to the CSI and the massive MIMO is transmitted based on the CSI configuration information (S2403). Detailed contents thereof are the same as those of the first and second embodiments described above, and thus detailed description thereof will be omitted.
도 25는 본 발명에 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 25 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다.When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link, and communication is performed between the relay and the terminal in the access link. Therefore, the base station or the terminal illustrated in the figure may be replaced with a relay according to the situation.
도 25를 참조하면, 무선 통신 시스템은 기지국(2510) 및 단말(2520)을 포함한다. 기지국(2510)은 프로세서(2513), 메모리(2514) 및 무선 주파수(Radio Frequency, RF) 유닛(2511, 2512)을 포함한다. 프로세서(2513)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(2514)는 프로세서(2513)와 연결되고 프로세서(2513)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(2516)은 프로세서(2513)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(2520)은 프로세서(2523), 메모리(2524) 및 RF 유닛(2521, 2522)을 포함한다. 프로세서(2523)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(2524)는 프로세서(2523)와 연결되고 프로세서(2523)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(2521, 2522)은 프로세서(2523)와 연결되고 무선 신호를 송신 및/또는 수신한다. 기지국(2510) 및/또는 단말(2520)은 단일 안테나 또는 다중 안테나를 가질 수 있다.Referring to FIG. 25, a wireless communication system includes a base station 2510 and a terminal 2520. The base station 2510 includes a processor 2513, a memory 2514, and radio frequency (RF) units 2511, 2512. The processor 2513 may be configured to implement the procedures and / or methods proposed by the present invention. The memory 2514 is connected to the processor 2513 and stores various information related to the operation of the processor 2513. The RF unit 2516 is connected with the processor 2513 and transmits and / or receives a radio signal. The terminal 2520 includes a processor 2523, a memory 2524, and RF units 2521 and 2522. The processor 2523 may be configured to implement the procedures and / or methods proposed by the present invention. The memory 2524 is connected to the processor 2523 and stores various information related to the operation of the processor 2523. The RF units 2521 and 2522 are connected to the processor 2523 and transmit and / or receive a radio signal. The base station 2510 and / or the terminal 2520 may have a single antenna or multiple antennas.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNodeB(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. A base station may be replaced by terms such as a fixed station, a Node B, an eNodeB (eNB), an access point, and the like.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital 신호 processors), DSPDs(digital 신호 processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of a hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor.
상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable those skilled in the art to implement and practice the invention. Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will understand that various modifications and changes can be made without departing from the scope of the present invention. For example, those skilled in the art can use each of the configurations described in the above-described embodiments in combination with each other. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.The invention can be embodied in other specific forms without departing from the spirit and essential features of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention. The present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein. In addition, the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship or may be incorporated as new claims by post-application correction.
본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있다.The present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Claims (14)

  1. 대규모(Massive) MIMO (Multiple Input Multiple Output)를 지원하는 무선 접속 시스템에서 단말이 채널상태정보(CSI)를 전송하는 방법에 있어서,In a method for a terminal to transmit channel state information (CSI) in a wireless access system supporting massive MIMO (Massive) Multiple Input Multiple Output (MIMO),
    CSI 보고를 위한 CSI 설정 정보를 수신하는 단계; 및Receiving CSI configuration information for CSI reporting; And
    상기 CSI 설정 정보를 기초로 CSI 및 상기 대규모 MIMO에 따른 전체 채널 중 상기 CSI에 대응하는 부분 채널에 대한 식별 정보를 전송하는 단계Transmitting identification information of a partial channel corresponding to the CSI among all channels according to the CSI and the massive MIMO based on the CSI configuration information;
    를 포함하는, 채널상태정보 전송 방법.The channel state information transmission method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 식별 정보가 제1값일 때 상기 부분 채널은 상기 대규모 MIMO에 따른 안테나 배열 중 첫번째 열의 안테나에 대응하고,When the identification information is the first value, the partial channel corresponds to the antenna of the first column of the antenna array according to the massive MIMO,
    상기 식별 정보가 제2값일 때 상기 부분 채널은 상기 대규모 MIMO에 따른 상기 안테나 배열 중 첫번째 행의 안테나에 대응하는, 채널상태정보 전송 방법.And when the identification information is the second value, the partial channel corresponds to the antenna of the first row of the antenna array according to the massive MIMO.
  3. 제1항에 있어서,The method of claim 1,
    상기 식별 정보가 제1값일 때 상기 부분 채널은 싱글 코드북에 연관되고,The partial channel is associated with a single codebook when the identification information is a first value,
    상기 식별 정보가 제2값일 때 상기 부분 채널은 듀얼 코드북에 연관되는, 채널상태정보 전송 방법.And the partial channel is associated with a dual codebook when the identification information is a second value.
  4. 제1항에 있어서,The method of claim 1,
    상기 식별 정보가 제1값일 때 상기 부분 채널은 제1 부분 채널과 제2 부분 채널의 피드백 빈도에 대한 비율이 제1 비율값을 가지는 것을 나타내고, When the identification information is the first value, the partial channel indicates that the ratio of the feedback frequency of the first partial channel and the second partial channel has a first ratio value,
    상기 식별 정보가 제2값일 때 상기 부분 채널은 제1 부분 채널과 제2 부분 채널의 피드백 빈도에 대한 비율이 제2 비율값을 가지는 것을 나타내는, 채널상태정보 전송 방법.And when the identification information is the second value, the partial channel indicates that the ratio of the feedback frequency of the first partial channel and the second partial channel has a second ratio value.
  5. 제1항에 있어서,The method of claim 1,
    상기 식별 정보는 상기 CSI가 광대역 PMI (Precoding Matrix Indicator)인 경우에만 상기 CSI와 함께 전송되고, 상기 CSI가 협대역 PMI인 경우 함께 전송되지 않는, 채널상태정보 전송 방법.The identification information is transmitted together with the CSI only when the CSI is a wideband PMI (Precoding Matrix Indicator), and is not transmitted together when the CSI is a narrowband PMI.
  6. 제1항에 있어서,The method of claim 1,
    상기 식별 정보는 RI (Rank Indicator)와 함께 피드백되고, 업데이트된 상기 식별 정보가 상기 RI와 함께 전송될 때까지 동일한 부분 채널에 대응하는 PMI (Precoding Matrix Indicator)가 전송되는, 채널상태정보 전송 방법.And the identification information is fed back with a Rank Indicator (RI), and a Precoding Matrix Indicator (PMI) corresponding to the same partial channel is transmitted until the updated identification information is transmitted with the RI.
  7. 제1항에 있어서,The method of claim 1,
    상기 부분 채널 정보는 PCI(Partial CSI Indicator)를 포함하는, 채널상태정보 전송 방법.The partial channel information includes a PCI (Partial CSI Indicator), channel state information transmission method.
  8. 대규모(Massive) MIMO (Multiple Input Multiple Output)를 지원하는 무선 접속 시스템에서 채널상태정보(CSI)를 전송하는 단말에 있어서,A terminal for transmitting channel state information (CSI) in a wireless access system supporting massive MIMO (Massive) Multiple Input Multiple Output (MIMO),
    RF(Radio Frequency) 유닛; 및RF (Radio Frequency) unit; And
    프로세서를 포함하고, Includes a processor,
    상기 프로세서는,The processor,
    CSI 보고를 위한 CSI 설정 정보를 수신하고,Receive CSI configuration information for CSI reporting,
    상기 CSI 설정 정보를 기초로 CSI 및 상기 대규모 MIMO에 따른 전체 채널 중 상기 CSI에 대응하는 부분 채널에 대한 식별 정보를 전송하도록 구성되는, 단말.And transmitting identification information on a partial channel corresponding to the CSI among all channels according to the CSI and the massive MIMO based on the CSI configuration information.
  9. 제8항에 있어서,The method of claim 8,
    상기 식별 정보가 제1값일 때 상기 부분 채널은 상기 대규모 MIMO에 따른 안테나 배열 중 첫번째 열의 안테나에 대응하고,When the identification information is the first value, the partial channel corresponds to the antenna of the first column of the antenna array according to the massive MIMO,
    상기 식별 정보가 제2값일 때 상기 부분 채널은 상기 대규모 MIMO에 따른 상기 안테나 배열 중 첫번째 행의 안테나에 대응하는, 단말.And when the identification information is the second value, the partial channel corresponds to the antenna of the first row of the antenna array according to the massive MIMO.
  10. 제8항에 있어서,The method of claim 8,
    상기 식별 정보가 제1값일 때 상기 부분 채널은 싱글 코드북에 연관되고,The partial channel is associated with a single codebook when the identification information is a first value,
    상기 식별 정보가 제2값일 때 상기 부분 채널은 듀얼 코드북에 연관되는, 단말.The partial channel is associated with a dual codebook when the identification information is a second value.
  11. 제8항에 있어서,The method of claim 8,
    상기 식별 정보가 제1값일 때 상기 부분 채널은 제1 부분 채널과 제2 부분 채널의 피드백 빈도에 대한 비율이 제1 비율값을 가지는 것을 나타내고, When the identification information is the first value, the partial channel indicates that the ratio of the feedback frequency of the first partial channel and the second partial channel has a first ratio value,
    상기 식별 정보가 제2값일 때 상기 부분 채널은 제1 부분 채널과 제2 부분 채널의 피드백 빈도에 대한 비율이 제2 비율값을 가지는 것을 나타내는, 단말.And when the identification information is the second value, the partial channel indicates that the ratio of the feedback frequency of the first partial channel and the second partial channel has a second ratio value.
  12. 제8항에 있어서,The method of claim 8,
    상기 식별 정보는 상기 CSI가 광대역 PMI (Precoding Matrix Indicator)인 경우에만 상기 CSI와 함께 전송되고, 상기 CSI가 협대역 PMI인 경우 함께 전송되지 않는, 단말.The identification information is transmitted together with the CSI only when the CSI is a wideband PMI (Precoding Matrix Indicator), and is not transmitted together when the CSI is a narrowband PMI.
  13. 제8항에 있어서,The method of claim 8,
    상기 식별 정보는 RI (Rank Indicator)와 함께 피드백되고, 업데이트된 상기 식별 정보가 상기 RI와 함께 전송될 때까지 동일한 부분 채널에 대응하는 PMI (Precoding Matrix Indicator)가 전송되는, 단말.The identification information is fed back with a RI (Rank Indicator), the terminal is transmitted, Precoding Matrix Indicator (PMI) corresponding to the same partial channel until the updated identification information is transmitted with the RI.
  14. 제8항에 있어서,The method of claim 8,
    상기 부분 채널 정보는 PCI(Partial CSI Indicator)를 포함하는, 단말.The partial channel information includes a partial CSI indicator (PCI).
PCT/KR2015/007668 2014-07-23 2015-07-23 Method and apparatus for transmitting channel state information in wireless access system WO2016013882A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/313,423 US10547356B2 (en) 2014-07-23 2015-07-23 Method and apparatus for transmitting channel state information in wireless access system
JP2016568629A JP6518268B2 (en) 2014-07-23 2015-07-23 Method and apparatus for transmitting channel state information in a wireless access system
EP15823923.6A EP3174218A4 (en) 2014-07-23 2015-07-23 Method and apparatus for transmitting channel state information in wireless access system
AU2015294786A AU2015294786B2 (en) 2014-07-23 2015-07-23 Method and apparatus for transmitting channel state information in wireless access system
CN201580038660.1A CN106537809B (en) 2014-07-23 2015-07-23 Method and apparatus for transmitting channel state information in wireless access system
KR1020167030622A KR102014797B1 (en) 2014-07-23 2015-07-23 Method and apparatus for transmitting channel state information in wireless access system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462028306P 2014-07-23 2014-07-23
US62/028,306 2014-07-23

Publications (1)

Publication Number Publication Date
WO2016013882A1 true WO2016013882A1 (en) 2016-01-28

Family

ID=55163341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007668 WO2016013882A1 (en) 2014-07-23 2015-07-23 Method and apparatus for transmitting channel state information in wireless access system

Country Status (7)

Country Link
US (1) US10547356B2 (en)
EP (1) EP3174218A4 (en)
JP (1) JP6518268B2 (en)
KR (1) KR102014797B1 (en)
CN (1) CN106537809B (en)
AU (1) AU2015294786B2 (en)
WO (1) WO2016013882A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018165873A1 (en) * 2017-03-14 2018-09-20 Oppo广东移动通信有限公司 Uplink signal transmission method and related device
JP2019506084A (en) * 2016-02-03 2019-02-28 株式会社Nttドコモ User device and wireless communication method
JP2019513336A (en) * 2016-03-30 2019-05-23 日本電気株式会社 Method for transmission and reception of reference signals
US10547356B2 (en) 2014-07-23 2020-01-28 Lg Electronics Inc. Method and apparatus for transmitting channel state information in wireless access system
JP2020162147A (en) * 2016-03-30 2020-10-01 日本電気株式会社 Method executed by base station and ue
US10840983B2 (en) 2018-06-15 2020-11-17 Samsung Electronics Co., Ltd. Apparatus and method for integrated beamforming in wireless communication system
JP2022009525A (en) * 2016-03-30 2022-01-14 日本電気株式会社 Method executed by base station and ue, base station, and ue
WO2022061782A1 (en) * 2020-09-25 2022-03-31 Oppo广东移动通信有限公司 Channel state information feedback method and apparatus, and terminal device, and storage medium

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10181964B2 (en) * 2014-05-02 2019-01-15 Lg Electronics Inc. Method and apparatus for channel estimation
KR102246362B1 (en) * 2014-10-24 2021-04-28 삼성전자주식회사 Method and apparatus for wireless grid-computing
US11218261B2 (en) * 2015-06-01 2022-01-04 Qualcomm Incorporated Channel state information reference signals in contention-based spectrum
WO2017088896A1 (en) * 2015-11-23 2017-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Antenna system configuration
US10056956B2 (en) * 2016-03-24 2018-08-21 Samsung Electronics Co., Ltd. Precoder codebook for CSI reporting in advanced wireless communication systems
CN108023849A (en) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 The method for reporting and device of a kind of channel condition information
CN111431569B (en) 2019-01-09 2022-07-08 苹果公司 Encoding enhanced type II channel state information
US20230064830A1 (en) * 2021-08-25 2023-03-02 Mediatek Inc. Method and user equipment for determining precoder of mimo system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258964A1 (en) * 2012-03-30 2013-10-03 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
US20130258965A1 (en) * 2012-03-29 2013-10-03 Qualcomm Incorporated Channel state information reference signal (csi-rs) configuration and csi reporting restrictions
US20130272151A1 (en) * 2012-03-30 2013-10-17 Nokia Siemens Networks Oy Reference Signal Design And Signaling For Per-User Elevation MIMO
US20140016549A1 (en) * 2012-07-12 2014-01-16 Samsung Electronics Co., Ltd Methods and apparatus for codebook subset restriction for two-dimensional advanced antenna systems
US20140098689A1 (en) * 2012-09-28 2014-04-10 Interdigital Patent Holdings, Inc. Wireless communication using multi-dimensional antenna configuration

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016648B2 (en) * 2001-12-18 2006-03-21 Ixi Mobile (Israel) Ltd. Method, system and computer readable medium for downloading a software component to a device in a short distance wireless network
US8707291B2 (en) * 2008-10-31 2014-04-22 Echostar Technologies L.L.C. Firmware recovery of wireless devices
US8379705B2 (en) * 2009-08-04 2013-02-19 Qualcomm Incorporated Hierarchical feedback of channel state information for wireless communication
ES2643337T3 (en) * 2010-09-15 2017-11-22 Huawei Technologies Co., Ltd. Communication system and method for returning information on channel states in wireless communication systems
CN102938688B (en) * 2011-08-15 2015-05-27 上海贝尔股份有限公司 Method and device for channel measurement and feedback of multi-dimensional antenna array
US9912430B2 (en) * 2012-07-06 2018-03-06 Samsung Electronics Co. Ltd. Method and apparatus for channel state information feedback reporting
US20140045510A1 (en) * 2012-07-25 2014-02-13 Nec Laboratories America, Inc. Coordinated Multipoint Transmission and Reception (CoMP)
US9509383B2 (en) * 2013-04-29 2016-11-29 Lg Electronics Inc. Method and apparatus for transmitting channel state information in wireless communication system
EP3174218A4 (en) 2014-07-23 2018-03-14 LG Electronics Inc. -1- Method and apparatus for transmitting channel state information in wireless access system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258965A1 (en) * 2012-03-29 2013-10-03 Qualcomm Incorporated Channel state information reference signal (csi-rs) configuration and csi reporting restrictions
US20130258964A1 (en) * 2012-03-30 2013-10-03 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
US20130272151A1 (en) * 2012-03-30 2013-10-17 Nokia Siemens Networks Oy Reference Signal Design And Signaling For Per-User Elevation MIMO
US20140016549A1 (en) * 2012-07-12 2014-01-16 Samsung Electronics Co., Ltd Methods and apparatus for codebook subset restriction for two-dimensional advanced antenna systems
US20140098689A1 (en) * 2012-09-28 2014-04-10 Interdigital Patent Holdings, Inc. Wireless communication using multi-dimensional antenna configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3174218A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547356B2 (en) 2014-07-23 2020-01-28 Lg Electronics Inc. Method and apparatus for transmitting channel state information in wireless access system
JP2020115692A (en) * 2016-02-03 2020-07-30 株式会社Nttドコモ User device, wireless communication method, and base station
JP2019506084A (en) * 2016-02-03 2019-02-28 株式会社Nttドコモ User device and wireless communication method
JP7337747B2 (en) 2016-02-03 2023-09-04 株式会社Nttドコモ User equipment, wireless communication method, base station and system
JP2020162147A (en) * 2016-03-30 2020-10-01 日本電気株式会社 Method executed by base station and ue
US10764008B2 (en) 2016-03-30 2020-09-01 Nec Corporation Methods and apparatuses for transmitting and receiving reference signals
JP2022009525A (en) * 2016-03-30 2022-01-14 日本電気株式会社 Method executed by base station and ue, base station, and ue
US11251920B2 (en) 2016-03-30 2022-02-15 Nec Corporation Methods and apparatuses for transmitting and receiving reference signals
JP7160165B2 (en) 2016-03-30 2022-10-25 日本電気株式会社 Method performed by base station and UE, base station and UE
JP2019513336A (en) * 2016-03-30 2019-05-23 日本電気株式会社 Method for transmission and reception of reference signals
WO2018165873A1 (en) * 2017-03-14 2018-09-20 Oppo广东移动通信有限公司 Uplink signal transmission method and related device
US11139871B2 (en) 2017-03-14 2021-10-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink signal transmission method and related device
US10840983B2 (en) 2018-06-15 2020-11-17 Samsung Electronics Co., Ltd. Apparatus and method for integrated beamforming in wireless communication system
WO2022061782A1 (en) * 2020-09-25 2022-03-31 Oppo广东移动通信有限公司 Channel state information feedback method and apparatus, and terminal device, and storage medium

Also Published As

Publication number Publication date
KR20170002404A (en) 2017-01-06
US10547356B2 (en) 2020-01-28
JP6518268B2 (en) 2019-05-22
KR102014797B1 (en) 2019-08-27
US20170195017A1 (en) 2017-07-06
EP3174218A4 (en) 2018-03-14
CN106537809A (en) 2017-03-22
EP3174218A1 (en) 2017-05-31
CN106537809B (en) 2020-01-10
AU2015294786B2 (en) 2018-01-25
AU2015294786A1 (en) 2016-12-15
JP2017522768A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2016013882A1 (en) Method and apparatus for transmitting channel state information in wireless access system
WO2016010379A1 (en) Method and device for estimating channel in wireless communication system
WO2012096476A2 (en) Method and device for transmitting/receiving downlink reference signal in wireless communication system
WO2016186378A1 (en) Method for feeding back reference signal information in multi-antenna wireless communication system and apparatus therefor
WO2011155763A2 (en) Method and device for transmitting/receiving channel state information in coordinated multipoint communication system
WO2012096532A2 (en) Method and device for setting channel status information measuring resource in a wireless communication system
WO2012002673A2 (en) Method and device for transmitting/receiving channel state information in a wireless communication system
WO2016163819A1 (en) Method for reporting channel state and apparatus therefor
WO2016018100A1 (en) Method for reporting channel state, and device therefor
WO2014069821A1 (en) Device and method for transmitting reference signal in multi-antenna system
WO2016018094A1 (en) Method for supporting d2d communication to which mimo technology is applied and device therefor
WO2016021999A1 (en) Method for transmitting d2d signal of terminal in d2d communication, and device for same
WO2011046317A2 (en) Method and apparatus for mode switching between a multi-cell coordinated communication mode and a single-cell mimo communication mode
WO2016089081A1 (en) Method for relaying d2d link in wireless communication system and device for performing same
WO2012015238A2 (en) Method and device whereby base station allocates nodes to terminal in a semi-static fashion in multi-node system
WO2013025051A2 (en) Method and apparatus for inter-cell interference coordination for transmission point group
WO2019017753A1 (en) Method for reporting channel state in wireless communication system, and apparatus therefor
WO2011034340A2 (en) Method and apparatus for transmitting a downlink reference signal in a wireless communication system supporting multiple antennas
WO2016111524A1 (en) Method for estimating channel status in wireless communication system, and apparatus therefor
WO2011046413A2 (en) Method and apparatus for transmitting multi-user mimo reference signal in wireless communication system for supporting relay
WO2016043523A1 (en) Method and device for transmitting and receiving signal to and from enb by user equipment in wireless communication system that supports carrier aggregation
WO2011078571A2 (en) Apparatus for performing comp communication using a precoded sounding reference signal, and method for same
WO2016018101A1 (en) Method for estimating channel, and device therefor
WO2016117968A1 (en) Uplink mimo communication method in wireless communication system and apparatus therefor
WO2012099412A2 (en) Method and apparatus for transmitting an uplink signal by a relay in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15823923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167030622

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016568629

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15313423

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201608214

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015294786

Country of ref document: AU

Date of ref document: 20150723

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015823923

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015823923

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE