WO2014098335A1 - 종채널과 횡채널을 갖는 고체산화물 연료전지 - Google Patents

종채널과 횡채널을 갖는 고체산화물 연료전지 Download PDF

Info

Publication number
WO2014098335A1
WO2014098335A1 PCT/KR2013/006049 KR2013006049W WO2014098335A1 WO 2014098335 A1 WO2014098335 A1 WO 2014098335A1 KR 2013006049 W KR2013006049 W KR 2013006049W WO 2014098335 A1 WO2014098335 A1 WO 2014098335A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
reaction gas
fuel cell
solid oxide
oxide fuel
Prior art date
Application number
PCT/KR2013/006049
Other languages
English (en)
French (fr)
Inventor
손현민
이상철
국병근
박상균
박상현
Original Assignee
포스코에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포스코에너지 주식회사 filed Critical 포스코에너지 주식회사
Priority to CN201380061652.XA priority Critical patent/CN104813528B/zh
Priority to JP2015547827A priority patent/JP6001193B2/ja
Priority to US14/442,222 priority patent/US10446856B2/en
Priority to DK13866257.2T priority patent/DK2937926T3/en
Priority to EP13866257.2A priority patent/EP2937926B1/en
Publication of WO2014098335A1 publication Critical patent/WO2014098335A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell having a vertical channel and a horizontal channel, and more particularly, to a solid oxide fuel cell in which a vertical channel and a horizontal channel are formed in a separator constituting a solid oxide fuel cell.
  • a fuel cell is an energy conversion device that uses an electrochemical reaction between an oxidant and a fuel.
  • the fuel cell converts the chemical energy of the fuel into electrical energy without undergoing a process of converting the chemical energy into thermal and mechanical energy. As an eco-friendly and future power source, much research is being conducted.
  • the fuel cells may be phosphoric acid fuel cells (PAFCs), polymer electrolyte membrane fuel cells (PEMFCs), molten carbonate fuel cells (MCFCs), Direct methanol fuel cells (DMFCs), solid oxide fuel cells (SOFCs) and the like can be divided into.
  • PAFCs phosphoric acid fuel cells
  • PEMFCs polymer electrolyte membrane fuel cells
  • MCFCs molten carbonate fuel cells
  • DMFCs Direct methanol fuel cells
  • SOFCs solid oxide fuel cells
  • SOFCs which are composed of solid phases such as ceramics and metals, have many advantages such as the highest energy efficiency, the variety of fuel choices, and the recycling of waste heat.
  • a fuel electrode current collector unit of a solid oxide fuel cell is disclosed.
  • FIG. 1 is an exploded perspective view of a main configuration of a solid oxide fuel cell according to the prior art.
  • the prior art includes a unit cell in which an anode, an electrolyte, and a cathode are sequentially stacked, and a separator plate stacked on the anode side. And a separator stacked on the cathode side.
  • Channels are formed on both sides of the separator, although not shown in FIG. 1, a positive electrode current collector is interposed between the positive electrode side separator and the positive electrode, and a negative electrode current collector is interposed between the negative electrode separator and the negative electrode.
  • electromotive force is generated by an electrochemical reaction occurring at the electrodes (anode and cathode).
  • air or fuel gas is introduced to one side of the channel and exits to the other side.
  • the fuel cell is formed with an inlet through which the reaction gas flows in and an outlet through which the reaction gas flows out.
  • the electrochemical reaction takes place uniformly over the entire area where the reaction gas passes through the fuel cell, but in practice, the reaction gas is concentrated at the inlet side, and the concentration of the reaction gas is low at the outlet side.
  • electricity is not generated evenly over the entire area of the current collector, and much electricity is generated at the inlet side of the current collector, and relatively little electricity is generated at the outlet side of the current collector.
  • the present invention has been conceived to solve the above problems, and an object thereof is to provide a solid oxide fuel cell in which an electrochemical reaction occurs uniformly over the entire area of the reaction gas passing through the fuel cell.
  • Another object of the present invention is to provide a solid oxide fuel cell having a structure in which deterioration of the inlet side and the outlet side of the reaction gas can occur relatively uniformly.
  • a solid oxide fuel cell includes: a unit cell formed by stacking a positive electrode, an electrolyte, and a negative electrode; Channels through which the reaction gas can flow are formed on both sides, and the channel includes a vertical channel parallel to the direction in which the reaction gas flows, and a transverse plate intersecting the direction in which the reaction gas flows; And a current collector interposed between the unit cell and the separator, wherein the vertical channel width is widened from the reaction gas inlet toward the reaction gas outlet.
  • both sides of the separation plate is formed with a projection partitioned by the longitudinal channel and the transverse channel, the projection is trapezoidal shape.
  • both sides of the separation plate is formed with a projection partitioned by the longitudinal channel and the transverse channel, the projection is a hexagonal shape.
  • the width of the transverse channel is widened from the reaction gas inlet toward the reaction gas outlet.
  • the width of the end channel of the end side of the reaction gas outlet is 1.5 to 3 times the width of the end channel of the end of the reaction gas inlet.
  • both sides of the separation plate is formed with protrusions partitioned by the vertical channel and the transverse channel, the current collector covers both the vertical channel, the transverse channel and the protrusion.
  • any one longitudinal channel formed on one surface of the separation plate is disposed at a position corresponding to an interval between the vertical channels formed adjacent to each other on the other surface of the separation plate.
  • the solid oxide fuel cell further includes an end plate in which a channel parallel to a direction in which the reaction gas flows and a channel crossing the direction in which the reaction gas flows are formed on only one surface.
  • FIG. 1 is an exploded perspective view of a main configuration of a solid oxide fuel cell according to the prior art.
  • FIG. 2 is an exploded perspective view of a part of a solid oxide fuel cell according to a preferred embodiment of the present invention.
  • FIG 3 is a plan view of a separator used in a solid oxide fuel cell according to a preferred embodiment of the present invention.
  • FIG 4 is a plan view of a modification of the separator used in the solid oxide fuel cell according to the preferred embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view of a solid oxide fuel cell according to a preferred embodiment of the present invention.
  • Figure 3 is a plan view of a separator used in a solid oxide fuel cell according to a preferred embodiment of the present invention.
  • fuel cell solid oxide fuel cell according to the present invention
  • the solid oxide fuel cell 100 includes a unit cell 10, a separator plate 20, and a current collector.
  • the unit cell 10 is formed by stacking a positive electrode 13, an electrolyte 12, and a negative electrode 11.
  • a perovskite compound such as LaSrMnO 3 (LSM) and LaSrCoFeO 3 (LSCF) may be used, and zirconia (rare earth system; YSZ or Sc 2 O 3 + ZrO 2 (ScSZ)) may be used as the electrolyte 12.
  • Etc.) ceria (CeO 2), bismuth oxide (Bi 2 O 3), perovskite-based powders of one or more may be used, the cathode (11, the anode) and the metal such as Ni and A mixture of tria stabilized zirconia (ZrO 2 + 8 Y 2 O 3, YSZ) and the like may be used.
  • the unit cell 10 is formed by stacking at least three layers of the anode 13, the electrolyte 12, and the cathode 11.
  • Separation plate 20 is a channel through which the reaction gas flow is formed on both sides.
  • the reaction gas refers to fuel gas and air, and as the fuel gas, pure hydrogen, methane, propane, butane, or the like may be directly used or modified.
  • air is used to include a gas mixed with oxygen in addition to ordinary air.
  • the reaction gas is introduced into the fuel cell 100 from the X side and discharged from the fuel cell 100 toward the Y side. Therefore, the side marked X is called the inlet, and the side marked Y is called the outlet.
  • the channel consists of a longitudinal channel 22 parallel to the direction in which the reaction gas flows and a transverse channel 24 intersecting the direction in which the reaction gas flows. Therefore, the protrusions 26 partitioned by the vertical channel 22 and the transverse channel 24 are formed on the surface of the separator 20. Meanwhile, in FIG. 2, the widths of the vertical channels 22 and the transverse channels 24 are exaggerated for convenience of description, and a larger number of the vertical channels 22 narrower than those shown in FIG. 2. Of course, the horizontal channel 24 may be formed in the separation plate 20.
  • the vertical channel 22 formed on the upper surface of the separator 20 and the vertical channel 22 formed on the lower surface of the separator 20 are formed at positions corresponding to each other. have. That is, based on the thickness direction of the separator 20, the vertical channels 22 are formed on both the upper and lower surfaces of the separator 20, or the protrusions 26 are formed on both the upper and lower surfaces of the separator 20. It is.
  • the separator 20 does not necessarily have to be vertically symmetrical in this way.
  • any one longitudinal channel 22 formed on one surface of the separation plate 20 may be disposed at a position corresponding to an interval between the vertical channels 22 formed adjacent to each other on the other surface of the separation plate 20. have. That is, in the case of the section in which the vertical channel 22 is formed on the upper surface of the separation plate 20 when the separation plate 20 is not formed up-down symmetrically and based on the thickness direction of the separation plate 20, this section The lower surface of the projections 26 may be formed, and in the case of the section in which the projections 26 are formed on the upper surface of the separation plate 20, the vertical channel 22 may be formed on the lower surface of the section. In other words, the vertical channels 22 formed on the upper and lower surfaces of the separator 20 may be staggered from each other.
  • vertical channels 22 formed on the upper and lower surfaces of the separator 20 are formed in the same direction, and horizontal channels 24 formed on the upper and lower surfaces of the separator 20 are formed in the same direction.
  • the vertical channel 22 formed on the upper surface of the separating plate 20 and the vertical channel 22 formed on the lower surface intersect with each other, and formed on the horizontal channel 24 and the lower surface formed on the upper surface of the separating plate 20.
  • the transverse channels 24 may be arranged to intersect with each other.
  • An electrical power collector is interposed between the unit cell 10 and the separation plate 20.
  • the current collector is not indicated by a clear reference numeral in FIG. 2, this is for convenience, and the current collector may be assumed to be applied to the upper and lower surfaces of the separator 20. Since both sides of the separating plate 20 are composed of the vertical channel 22 and the transverse channel 24, and the protrusions 26 which occupy an area excluding the area occupied by the channels 22 and 24, the current collector is described above.
  • the vertical channel 22, the horizontal channel 24, and the protrusion 26 may be formed to cover all of them.
  • an electron conductive perovskite compound may be used as the current collector.
  • FIG 3 is a plan view of a separator 20 used in a solid oxide fuel cell according to a preferred embodiment of the present invention.
  • the width of the vertical channel 22 is formed to widen from the reaction gas inlet toward the reaction gas outlet. That is, the width D Y of the side of the vertical channel 22 relatively close to the outlet is wider than the width D X of the side closer to the inlet.
  • the shape of the protrusions 26 has a trapezoidal shape.
  • the shape of the protrusions 26 does not necessarily have to be trapezoidal.
  • 4 is a plan view of a modification of the separator 20 used in the solid oxide fuel cell 100 according to a preferred embodiment of the present invention.
  • the protrusion 26 may be formed in a hexagonal shape. . That is, in the modified example shown in FIG. 4, the plurality of protrusions 26 may have a shape similar to that of a honey comb.
  • the width D Y of the side of the vertical channel 22 relatively close to the outlet is wider than the width D X of the side closer to the inlet.
  • the width of the transverse channel 24 may be formed to widen toward the reaction gas outlet direction from the reaction gas inlet. That is, the width W Y of the side of the transverse channel 24 that is relatively close to the outlet may be formed to be wider than the width W X of the side that is relatively close to the inlet.
  • the reaction gas is driven toward the inlet and the outlet, which is a problem of the prior art.
  • the problem of lowering the concentration of the reaction gas on the side is significantly improved.
  • the reaction gas has a property of spreading from a narrow space to a wider space, and the channels 22 and 24 are wider toward the outlet, so that the reaction gas can be uniformly spread in the region from the inlet to the outlet. Electrochemical reactions may occur uniformly over the entire area where the reaction gas passes through the fuel cell 100.
  • the current collectors applied to the channels 22 and 24 cannot contact the positive electrode 13 or the negative electrode 11, and only the current collector applied to the protrusions 26 is connected to the positive electrode 13 or the negative electrode 11. Can be contacted.
  • the current collecting efficiency is improved as the area of the current collector in contact with the positive electrode 13 or the negative electrode 11 becomes larger, and as a result, the larger the area of the protruding portion 26, the higher the current collecting efficiency.
  • the reaction gas of the fuel cell 100 when the width of the end channel 22 of the reaction gas outlet 22 is 1.5 to 3 times the width of the end channel 22 of the reaction gas inlet, the reaction gas of the fuel cell 100 It was experimentally confirmed that not only spreads evenly over the entire area, but also the area of the protrusions 26 can be kept sufficiently wide. In addition, it was confirmed that the current collection efficiency was the highest under these conditions.
  • FIG. 5 is a longitudinal sectional view of a solid oxide fuel cell according to a preferred embodiment of the present invention.
  • the end plate 30 In the finished fuel cell 100, it is not desirable for the channels 22 and 24 to be exposed to the outside. Therefore, it is desirable to arrange an end plate 30 on the top and bottom surfaces of the fuel cell 100. Accordingly, the end plate 30 has the longitudinal channel 22 and the transverse channel 24 formed only on one surface thereof.
  • the fuel cell 100 includes an end plate 30, a unit cell 10, a separation plate 20, a unit cell 10, a separation plate 20, a unit cell 10, and an end.
  • Plate 30 may be stacked in sequence, the same number of unit cells 10 and the separating plate 20 is added to the fuel cell 100 to form a fuel cell 100 of higher capacity. You may.
  • the current collector is interposed between the end plate 30 and the unit cell 10, and between the separation plate 20 and the unit cell 10.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 전자식 분리판에 종채널과 횡채널이 형성된 고체산화물 연료전지에 관한 것으로서, 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지는: 양극, 전해질, 음극이 적층되어 형성된 단위셀; 반응가스가 흐를 수 있는 채널이 양면에 형성되며, 상기 채널은 상기 반응가스가 흐르는 방향과 나란한 종채널과, 상기 반응가스가 흐르는 방향과 교차하는 횡채널로 이루어져 있는 분리판; 및 상기 단위셀과 상기 분리판 사이에 개재되는 집전체;를 포함하며, 상기 종채널의 폭은 반응가스 유입구로부터 반응가스 유출구 방향을 향하여 넓어진다.

Description

종채널과 횡채널을 갖는 고체산화물 연료전지
본 발명은 종채널과 횡채널을 갖는 고체산화물 연료전지에 관한 것으로서, 더욱 상세하게는 고체산화물 연료전지를 이루고 있는 분리판에 종채널과 횡채널이 형성된 고체산화물 연료전지에 관한 것이다.
본 출원은 2012년 12월 18일에 출원된 한국특허출원 제10-2012-0148194호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
연료전지는 산화제와 연료의 전기화학 반응을 이용한 에너지 변환 장치로서 연료의 화학 에너지를 열·기계적인 에너지로 전환하는 과정을 거치지 않고 전기 에너지로 변환시켜 주어 기존의 발전 시스템에 비하여 발전 효율이 높고, 친환경적이며, 미래의 전력원으로 현재 많은 연구가 진행되고 있다.
연료전지는 사용 전해질과 연료에 따라 인산형 연료전지(phosphoric acid fuel cells, PAFCs), 고분자 전해질 멤브레인 연료전지(polymer electrolyte membrane fuel cells, PEMFCs), 용융 탄산염 연료전지(molten carbonate fuel cells, MCFCs), 직접 메탄올 연료전지(direct methanol fuel cells, DMFCs), 고체 산화물 연료 전지(solid oxide fuel cells, SOFCs) 등으로 나눌 수 있다. 각 연료전지들은 서로 다른 작동 온도와 이에 따른 구성 요소를 가지는 데, PEMFCs는 80℃ 근방, PAFCs는 200℃ 근방, MCFCs는 650℃ 근방, 그리고 SOFCs는 800℃ 근방의 작동 범위를 갖는다.
이 중에서 구성 물질이 모두 세라믹, 금속과 같은 고체상으로 이루어진 SOFCs는 가장 높은 에너지 효율, 연료선택의 다양성 및 폐열의 재활용과 같은 많은 장점들을 가지고 있다.
예컨대, 일본공개특허 제2011-210568호를 참조하면, 고체산화물 연료전지의 연료극 집전체 유니트가 개시되어 있다.
도 1은 종래기술에 따른 고체산화물 연료전지를 이루는 주요구성의 분해사시도로서, 도 1을 참조하면 종래기술은, 양극, 전해질, 음극이 순차적으로 적층된 단위셀과, 상기 양극쪽에 적층되는 분리판과 상기 음극쪽에 적층되는 분리판을 구비한다.
분리판의 양면에는 채널이 형성되어 있으며, 비록 도 1에 도시되지는 않았으나, 양극쪽 분리판과 양극 사이에는 양극 집전체가 개재되고, 음극쪽 분리판과 음극 사이에는 음극 집전체가 개재된다.
양극과 분리판 사이의 채널에는 공기가 흐르고, 음극과 분리판 사이의 채널에는 연료가스가 흐르며, 이들 반응가스(공기, 연료가스)의 흐름에 의하여 전해질 층에서 산소 또는 수소이온전도 형상이 유도되며, 이와 함께 전극(양극, 음극)에서 발생하는 전기화학반응에 의하여 기전력이 발생하게 된다.
상기 종래기술의 경우, 공기 또는 연료가스는 상기 채널의 일측으로 유입되어 타측으로 빠져나가게 된다. 다시 말해, 연료전지는 반응가스가 유입되는 유입구와 반응가스가 빠져나가는 유출구가 형성된다.
반응가스가 연료전지를 통과하는 면적 전체에 걸쳐서 전기화학반응이 균일하게 일어나는 것이 이상적이나, 실제로는 유입구쪽에 반응가스가 몰리게 되고, 유출구쪽은 반응가스의 농도가 낮다. 이로 인해, 집전체 전체의 면적에 걸쳐서 고르게 전기가 생성되지 않고, 집전체의 유입구쪽 부분에서 전기가 많이 생성되며, 집전체의 유출구쪽에서는 전기가 비교적 적게 생성된다.
이러한 현상은 연료전지의 집전효율을 떨어뜨리는 요인이 된다. 뿐만 아니라, 유입구쪽에서 반응이 더 강하게 일어나기 때문에, 유출구쪽에 비해 유입구쪽은 열화(deterioration)가 훨씬 심각하게 발생하게 된다.
따라서, 유출구쪽은 열화가 미미하더라도 유입구쪽에 발생한 심한 열화로 인하여 연료전지의 수명이 크게 단축되는 문제가 발생하게 된다.
본 발명은 상술한 문제점을 해결하기 위해 착상된 것으로서, 반응가스가 연료전지를 통과하는 면적 전체에 걸쳐서 전기화학반응이 균일하게 일어나는 고체산화물 연료전지를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 반응가스의 유입구쪽과 유출구쪽의 열화가 비교적 균일하게 발생할 수 있는 구조를 갖는 고체산화물 연료전지를 제공하는 것에 있다.
본 발명의 또 다른 목적은 수명의 향상된 고체산화물 연료전지를 제공하는 것에 있다.
상기와 같은 목적을 달성하기 위하여 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지는: 양극, 전해질, 음극이 적층되어 형성된 단위셀; 반응가스가 흐를 수 있는 채널이 양면에 형성되며, 상기 채널은 상기 반응가스가 흐르는 방향과 나란한 종채널과, 상기 반응가스가 흐르는 방향과 교차하는 횡채널로 이루어져 있는 분리판; 및 상기 단위셀과 상기 분리판 사이에 개재되는 집전체;를 포함하며, 상기 종채널의 폭은 반응가스 유입구로부터 반응가스 유출구 방향을 향하여 넓어진다.
바람직하게, 상기 분리판의 양면에는 상기 종채널과 상기 횡채널에 의하여 구획되는 돌출부가 형성되며, 상기 돌출부는 사다리꼴 형상이다.
바람직하게, 상기 분리판의 양면에는 상기 종채널과 상기 횡채널에 의하여 구획되는 돌출부가 형성되며, 상기 돌출부는 육각형 형상이다.
바람직하게, 상기 횡채널의 폭은 상기 반응가스 유입구로부터 상기 반응가스 유출구 방향을 향하여 넓어진다.
바람직하게, 상기 반응가스 유출구의 단부쪽 종채널의 폭은 상기 반응가스 유입구의 단부쪽 종채널의 폭의 1.5~3배이다.
바람직하게, 상기 분리판의 양면에는 상기 종채널과 상기 횡채널에 의하여 구획되는 돌출부가 형성되며, 상기 집전체는 상기 종채널과 상기 횡채널과 상기 돌출부를 모두 덮는다.
바람직하게, 상기 분리판의 일면에 형성된 어느 하나의 종채널은, 상기 분리판의 타면에 서로 인접하여 형성된 종채널의 사이구간에 대응되는 위치에 배치된다.
바람직하게, 상기 고체산화물 연료전지는, 상기 반응가스가 흐르는 방향과 나란한 채널과 상기 반응가스가 흐르는 방향과 교차하는 채널이 일면에만 형성되어 있는 엔드판(End plate)을 더 구비한다.
본 발명에 따르면, 반응가스가 연료전지를 통과하는 면적 전체에 걸쳐서 전기화학반응이 균일하게 일어나는 고체산화물 연료전지를 제공할 수 있다.
또한, 반응가스의 유입구쪽과 유출구쪽의 열화가 비교적 균일하게 발생할 수 있는 구조를 갖는 고체산화물 연료전지를 제공할 수 있다.
또한, 수명의 향상된 고체산화물 연료전지를 제공할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1은 종래기술에 따른 고체산화물 연료전지를 이루는 주요구성의 분해사시도이다.
도 2는 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지의 일부구성의 분해사시도이다.
도 3은 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지에 사용되는 분리판의 평면도이다.
도 4는 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지에 사용되는 분리판의 변형례의 평면도이다.
도 5는 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지의 종단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 종채널과 횡채널을 갖는 고체산화물 연료전지에 대하여 상세히 설명하기로 한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도면에서 각 구성요소 또는 그 구성요소를 이루는 특정 부분의 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 따라서, 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다. 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그러한 설명은 생략하도록 한다.
도 2는 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지의 일부구성의 분해사시도이고, 도 3은 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지에 사용되는 분리판의 평면도이다.
도 2 및 도 3을 참조하여, 본 발명에 따른 고체산화물 연료전지(이하, ‘연료전지’라 함)에 대하여 설명하도록 한다.
본 발명에 따른 고체산화물 연료전지(100)는, 단위셀(10), 분리판(20), 집전체를 구비한다.
단위셀(10)은 양극(13), 전해질(12), 음극(11)이 적층되어 형성된다.
여기서 양극(13, 공기극)의 재료로는 LaSrMnO3(LSM), LaSrCoFeO3(LSCF) 등의 페로브스카이트계 화합물이 사용될 수 있고, 전해질(12)로는 지르코니아(희토류계 ; YSZ 혹은 Sc2O3 + ZrO2(ScSZ)등)계, 세리아(CeO2)계, 비스무스산화물(Bi2O3)계, 페로브스카이트(perovskite)계 중의 하나 또는 그 이상의 분말이 사용될 수 있으며, 음극(11, 연료극)으로는 Ni 등의 금속과 이트리아 안정화 지르코니아(ZrO2 + 8Y2O3, YSZ) 등과 써메트(Cermet)의 혼합물이 사용될 수 있다. 또한, 상기 단위셀(10)은 양극(13), 전해질(12), 음극(11)이 최소 3층 이상 적층되어 형성된다.
분리판(20)은 반응가스가 흐를 수 있는 채널이 양면에 형성된다. 여기서, 반응가스란 연료가스와 공기를 말하며, 연료가스로는 순수한 수소, 메탄, 프로판, 부탄 등이 직접 사용되거나 개질하여 사용될 수 있다. 그리고, 공기란 통상적인 공기 외에도 산소가 혼합된 기체를 포함하는 의미로 사용되었음을 밝혀둔다.
도 2를 기준으로, 반응가스는 X쪽으로부터 연료전지(100)에 유입되어 Y쪽을 향하여 연료전지(100)로부터 배출된다. 따라서, X로 표시된 쪽을 유입부, Y로 표시된 쪽을 유출부라 칭하기로 한다.
상기 채널은 반응가스가 흐르는 방향과 나란한 종채널(22)과, 반응가스가 흐르는 방향과 교차하는 횡채널(24)로 이루어진다. 따라서, 분리판(20)의 표면에는 종채널(22)과 횡채널(24)에 의하여 구획되는 돌출부(26)가 형성된다. 한편, 도 2에서는 설명의 편의를 위하여 상기 종채널(22)과 횡채널(24)의 폭은 과장되게 표시되었으며, 도 2에 도시된 것보다 폭이 좁은 더 많은 개수의 종채널(22) 및 횡채널(24)이 분리판(20)에 형성될 수 있음은 물론이다.
도 2에 도시된 분리판(20)을 살펴보면, 분리판(20)의 상면에 형성된 종채널(22)과 분리판(20)의 하면에 형성된 종채널(22)이 서로 대응되는 위치에 형성되어 있다. 즉, 분리판(20)의 두께 방향을 기준으로 하였을 때, 분리판(20)의 상하면에 모두 종채널(22)이 형성되어 있거나, 분리판(20)의 상하면에 모두 돌출부(26)가 형성되어 있다.
그러나, 분리판(20)이 반드시 이와 같이 상하대칭이어야만 하는 것은 아니다. 예컨대, 분리판(20)의 일면에 형성된 어느 하나의 종채널(22)은, 상기 분리판(20)의 타면에 서로 인접하여 형성된 종채널(22)의 사이구간에 대응되는 위치에 배치될 수도 있다. 즉, 분리판(20)이 상하대칭으로 형성되지 않고, 분리판(20)의 두께 방향을 기준으로 하였을 때, 분리판(20)의 상면에 종채널(22)이 형성된 구간의 경우, 이 구간의 하면에는 돌출부(26)가 형성될 수 있으며, 분리판(20)의 상면에 돌출부(26)가 형성된 구간의 경우, 이 구간의 하면에는 종채널(22)이 형성될 수 있다. 다시 말해, 분리판(20)의 상하면에 형성된 종채널(22)은 서로 엇갈리게 배치될 수 있다.
또한, 도 2에는 분리판(20)의 상하면에 형성된 종채널(22)끼리 서로 같은 방향으로 형성되고, 분리판(20)의 상하면에 형성된 횡채널(24)끼리 서로 같은 방향으로 형성된 것으로 도시되어 있으나, 이러한 배열에 한정되는 것은 아니다. 예컨대, 분리판(20)의 상면에 형성된 종채널(22)과 하면에 형성된 종채널(22)이 서로 교차하도록 배치되고, 분리판(20)의 상면에 형성된 횡채널(24)과 하면에 형성된 횡채널(24)이 서로 교차하도록 배치될 수도 있다.
분리판(20)에 대한 더욱 상세한 내용은 후술하도록 한다.
집전체는 상기 단위셀(10)과 상기 분리판(20) 사이에 개재된다. 도 2에는 집전체가 명확한 도면부호로 표시되어 있지는 않으나, 이는 편의를 위한 것으로서 집전체는 분리판(20)의 상하면에 도포된 것으로 상정하면 무방하다. 분리판(20)의 양면은 종채널(22)과 횡채널(24), 및 이 채널들(22, 24)이 차지하는 영역을 제외한 영역을 차지하는 돌출부(26)로 이루어져 있기 때문에, 집전체는 상기 종채널(22)과, 횡채널(24)과, 돌출부(26)를 모두 덮도록 형성될 수 있다.
상기 집전체로는 예컨대, 전자전도성 페로브스카이트계 화합물이 사용될 수 있다.
도 3은 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지에 사용되는 분리판(20)의 평면도이다.
이하에서는 도 3을 추가로 참조하여 분리판(20)에 대하여 더욱 상세하게 설명하도록 한다.
도 3에서 확인할 수 있는 것과 같이, 종채널(22)의 폭은 반응가스 유입구로부터 반응가스 유출구 방향을 향하여 넓어지도록 형성된다. 즉, 종채널(22)의 구간 중 상대적으로 유출구에 가까운 쪽의 폭(DY)은 상대적으로 유입구에 가까운 쪽의 폭(DX)보다 넓다. 따라서, 도 3에 도시된 실시예의 경우, 돌출부(26)의 형상은 사다리꼴 형상을 갖는다.
그러나, 돌출부(26)의 형상이 반드시 사다리꼴로 형성되어야만 하는 것은 아니다. 도 4는 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지(100)에 사용되는 분리판(20)의 변형례의 평면도이며, 도 4를 참조하면 돌출부(26)는 육각형 형상으로 형성될 수도 있다. 즉, 도 4에 도시된 변형례의 경우, 복수 개의 돌출부(26)는 마치 벌집(honey comb)과 흡사한 형상을 이룰 수 있다.
도 4에서도 도 3과 마찬가지로, 종채널(22)의 구간 중 상대적으로 유출구에 가까운 쪽의 폭(DY)은 상대적으로 유입구에 가까운 쪽의 폭(DX)보다 넓다.
한편, 횡채널(24)의 폭도 반응가스 유입구로부터 반응가스 유출구 방향을 향하여 넓어지도록 형성될 수 있다. 즉, 횡채널(24)의 구간 중 상대적으로 유출구에 가까운 쪽의 폭(WY)은 상대적으로 유입구에 가까운 쪽의 폭(WX)보다 넓게 형성될 수 있다.
이와 같이, 종채널(22)의 폭이 유출구 방향을 향하여 넓어지도록 형성되거나, 횡채널(24)의 폭이 유출구 방향을 향하여 넓어지도록 형성되면, 종래기술의 문제점인, 유입구쪽으로 반응가스가 몰리고 유출구쪽의 반응가스의 농도가 낮아지는 문제점이 현격하게 개선된다. 반응가스는 좁은 공간으로부터 보다 넓은 공간으로 퍼져나가려는 성질을 가지며, 유출구쪽으로 갈수록 채널(22, 24)이 넓어지기 때문에, 반응가스는 유입구로부터 유출구에 걸친 영역에 균일하게 퍼질 수 있으며, 이로 인해, 반응가스가 연료전지(100)를 통과하는 면적 전체에 걸쳐서 전기화학반응이 균일하게 일어날 수 있다.
한편, 채널(22, 24)에 도포된 집전체는 양극(13) 또는 음극(11)과 접촉할 수 없고, 돌출부(26)에 도포된 집전체만이 양극(13) 또는 음극(11)과 접촉할 수 있다. 집전효율은 양극(13) 또는 음극(11)과 접촉하는 집전체의 면적이 클수록 좋아지기 때문에 결국, 돌출부(26)의 영역이 넓을수록 집전효율이 높아지게 된다.
즉, 반응가스가 균일하게 퍼지는 측면에 있어서는, 출구쪽 채널(22, 24)의 폭이 클수록 유리하더라도, 채널(22, 24)의 폭이 커질수록 돌출부(26)의 면적이 줄어든다는 문제가 발생한다. 따라서, 이러한 상충관계(Trade-off)를 적절히 조절할 필요가 있다.
본 발명의 발명자는, 반응가스 유출구의 단부쪽 종채널(22)의 폭이 반응가스 유입구의 단부쪽 종채널(22)의 폭의 1.5~3배일 경우에, 반응가스가 연료전지(100)의 전체 면적에 걸쳐서 고르게 퍼질 뿐만 아니라, 돌출부(26)의 면적도 충분히 넓게 유지할 수 있다는 것을 실험적으로 확인하였다. 또한, 이러한 조건일 때, 집전효율이 가장 높아진다는 것을 확인할 수 있었다.
그리고, 반응가스가 연료전지(100)의 전체 면적에 걸쳐서 고르게 퍼지기 때문에 유입구쪽과 유출구쪽의 열화가 비교적 균일하게 발생하게 되며, 따라서 유입구만 먼저 열화되는 현상이 발생하지 않으므로 연료전지(100)의 수명이 향상되는 장점이 있다.
도 5는 본 발명의 바람직한 실시예에 따른 고체산화물 연료전지의 종단면도이다.
완성된 연료전지(100)에서, 채널(22, 24)이 외부로 노출되는 것은 바람직하지 않다. 따라서, 연료전지(100)의 최상면과 최하면에는 엔드판(30, End plate)를 배치하는 것이 바람직하다. 따라서, 엔드판(30)은 종채널(22)과 횡채널(24)이 일면에만 형성된다.
도 5에 도시된 것과 같이 연료전지(100)는 엔드판(30), 단위셀(10), 분리판(20), 단위셀(10), 분리판(20), 단위셀(10), 엔드판(30)이 차례로 적층된 구조를 가질 수 있으며, 서로 같은 개수의 단위셀(10)과 분리판(20)이 상기 연료전지(100)에 추가되어 더 높은 용량의 연료전지(100)를 형성할 수도 있다.
비록, 도 5에 도시되지는 않았으나, 엔드판(30)과 단위셀(10)의 사이, 그리고, 분리판(20)과 단위셀(10) 사이에 집전체가 개재됨은 물론이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (8)

  1. 양극, 전해질, 음극이 적층되어 형성된 단위셀;
    반응가스가 흐를 수 있는 채널이 양면에 형성되며, 상기 채널은 상기 반응가스가 흐르는 방향과 나란한 종채널과, 상기 반응가스가 흐르는 방향과 교차하는 횡채널로 이루어져 있는 분리판; 및
    상기 단위셀과 상기 분리판 사이에 개재되는 집전체;를 포함하며,
    상기 종채널의 폭은 반응가스 유입구로부터 반응가스 유출구 방향을 향하여 넓어지는 것을 특징으로 하는 고체산화물 연료전지.
  2. 제1항에 있어서,
    상기 분리판의 양면에는 상기 종채널과 상기 횡채널에 의하여 구획되는 돌출부가 형성되며, 상기 돌출부는 사다리꼴 형상인 것을 특징으로 하는 고체산화물 연료전지.
  3. 제1항에 있어서,
    상기 분리판의 양면에는 상기 종채널과 상기 횡채널에 의하여 구획되는 돌출부가 형성되며, 상기 돌출부는 육각형 형상인 것을 특징으로 하는 고체산화물 연료전지.
  4. 제1항에 있어서,
    상기 횡채널의 폭은 상기 반응가스 유입구로부터 상기 반응가스 유출구 방향을 향하여 넓어지는 것을 특징으로 하는 고체산화물 연료전지.
  5. 제1항에 있어서,
    상기 반응가스 유출구의 단부쪽 종채널의 폭은 상기 반응가스 유입구의 단부쪽 종채널의 폭의 1.5~3배인 것을 특징으로 하는 고체산화물 연료전지.
  6. 제1항에 있어서,
    상기 분리판의 양면에는 상기 종채널과 상기 횡채널에 의하여 구획되는 돌출부가 형성되며, 상기 집전체는 상기 종채널과 상기 횡채널과 상기 돌출부를 모두 덮는 것을 특징으로 하는 고체산화물 연료전지.
  7. 제1항에 있어서,
    상기 분리판의 일면에 형성된 어느 하나의 종채널은, 상기 분리판의 타면에 서로 인접하여 형성된 종채널의 사이구간에 대응되는 위치에 배치된 것을 특징으로 하는 고체산화물 연료전지.
  8. 제1항에 있어서,
    상기 반응가스가 흐르는 방향과 나란한 채널과 상기 반응가스가 흐르는 방향과 교차하는 채널이 일면에만 형성되어 있는 엔드판(End plate)을 더 구비한 것을 특징으로 하는 고체산화물 연료전지.
PCT/KR2013/006049 2012-12-18 2013-07-08 종채널과 횡채널을 갖는 고체산화물 연료전지 WO2014098335A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380061652.XA CN104813528B (zh) 2012-12-18 2013-07-08 具有纵向通道和横向通道的固态氧化物燃料电池
JP2015547827A JP6001193B2 (ja) 2012-12-18 2013-07-08 縦チャンネルと横チャンネルを有する固体酸化物燃料電池
US14/442,222 US10446856B2 (en) 2012-12-18 2013-07-08 Solid oxide fuel cell having longitudinal and lateral channels
DK13866257.2T DK2937926T3 (en) 2012-12-18 2013-07-08 Solid oxide fuel cell with a vertical channel and a transverse channel.
EP13866257.2A EP2937926B1 (en) 2012-12-18 2013-07-08 Solid oxide fuel cell having vertical channel and transverse channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120148194A KR101432386B1 (ko) 2012-12-18 2012-12-18 종채널과 횡채널을 갖는 고체산화물 연료전지
KR10-2012-0148194 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014098335A1 true WO2014098335A1 (ko) 2014-06-26

Family

ID=50978621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006049 WO2014098335A1 (ko) 2012-12-18 2013-07-08 종채널과 횡채널을 갖는 고체산화물 연료전지

Country Status (7)

Country Link
US (1) US10446856B2 (ko)
EP (1) EP2937926B1 (ko)
JP (1) JP6001193B2 (ko)
KR (1) KR101432386B1 (ko)
CN (1) CN104813528B (ko)
DK (1) DK2937926T3 (ko)
WO (1) WO2014098335A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102256503B1 (ko) * 2015-02-23 2021-05-27 한국조선해양 주식회사 고체 산화물 연료전지 스택
KR20180000448A (ko) * 2016-06-23 2018-01-03 주식회사 경동나비엔 온도 조절용 열교환 수단을 구비한 연료전지
KR102140126B1 (ko) * 2016-11-14 2020-07-31 주식회사 엘지화학 연료전지용 분리판 및 이를 이용한 연료전지
KR102309661B1 (ko) * 2017-08-18 2021-10-06 주식회사 엘지화학 고체 산화물 연료전지 스택
CN110137526B (zh) * 2018-02-02 2024-03-01 武汉众宇动力系统科技有限公司 燃料电池电堆以及燃料电池单体及其阴极板
CN109830705B (zh) * 2019-03-01 2021-02-05 山东大学 一种燃料电池极板结构及电堆
JP7176490B2 (ja) * 2019-07-19 2022-11-22 トヨタ車体株式会社 燃料電池スタック
JP7136030B2 (ja) * 2019-07-19 2022-09-13 トヨタ車体株式会社 燃料電池スタック
GB2589611A (en) * 2019-12-04 2021-06-09 Afc Energy Plc Reactant gas plates, electrochemical cells, cell stack and power supply systems
CN112635786B (zh) * 2020-12-22 2022-05-10 新源动力股份有限公司 一种提高电堆流体分配均一性的方法及电堆
FR3127639B1 (fr) * 2021-09-29 2023-10-27 Commissariat Energie Atomique Interconnecteur pour empilement de cellules à oxydes solides de type SOEC/SOFC comportant des éléments en relief différents
CN115642269B (zh) * 2022-11-07 2023-04-25 浙江大学 一种固体氧化物燃料电池结构及其优化设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031697A (ko) * 2001-02-27 2004-04-13 이 아이 듀폰 디 네모아 앤드 캄파니 전기화학 장치를 위한 유체 유동장
KR20040038751A (ko) * 2002-10-28 2004-05-08 한국전력공사 가스채널을 갖는 고체 산화물 연료전지
KR20060020015A (ko) * 2004-08-30 2006-03-06 삼성에스디아이 주식회사 연료 전지 시스템 및 그 스택
KR100665391B1 (ko) * 2004-10-30 2007-01-04 한국전력공사 개선된 구조의 평판형 고체산화물 연료전지
KR20070037207A (ko) * 2005-09-30 2007-04-04 삼성에스디아이 주식회사 분리판 및 이를 채용한 연료전지
JP2011210568A (ja) 2010-03-30 2011-10-20 Mitsubishi Materials Corp 固体酸化物形燃料電池の燃料極集電体ユニット
JP2011528159A (ja) * 2008-07-15 2011-11-10 ダイムラー・アクチェンゲゼルシャフト 特に隣接する2つの膜電極構造間に配置するための、燃料電池構造用双極性プレート

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1092447A (en) * 1913-08-21 1914-04-07 Charles S Leland Glazier's tool.
AU728452B2 (en) * 1997-11-14 2001-01-11 Mitsubishi Heavy Industries, Ltd. Solid electrolyte fuel cell
JPH11297341A (ja) * 1998-04-03 1999-10-29 Murata Mfg Co Ltd 固体電解質型燃料電池
JP4019554B2 (ja) * 1998-08-03 2007-12-12 トヨタ自動車株式会社 燃料電池セパレータ用多連凹凸板の製造方法
JP4395952B2 (ja) * 2000-01-14 2010-01-13 トヨタ自動車株式会社 燃料電池セパレータの成形装置および成形方法
US7097931B2 (en) 2002-02-27 2006-08-29 E. I. Du Pont De Nemours And Company Fluid flow-fields for electrochemical devices
US7125625B2 (en) * 2002-05-31 2006-10-24 Lynnetech, Inc. Electrochemical cell and bipolar assembly for an electrochemical cell
EP1447869A1 (en) * 2003-02-15 2004-08-18 Haldor Topsoe A/S Interconnect device, fuel cell and fuel cell stack
US7374838B2 (en) * 2003-06-10 2008-05-20 Ballard Power Systems Inc. Electrochemical fuel cell with fluid distribution layer having non-uniform permeability
GB2413001A (en) * 2004-04-02 2005-10-12 Morgan Crucible Co Flow field plate geometries
EP1732154A1 (en) * 2005-06-10 2006-12-13 Atomic Energy Council - Institute of Nuclear Energy Research Flow Channel on Interconnect of Planar Solid Oxide Fuel Cell
JP4951925B2 (ja) * 2005-10-11 2012-06-13 トヨタ自動車株式会社 燃料電池用ガスセパレータおよび燃料電池
DE102005051583A1 (de) 2005-10-27 2007-05-03 Airbus Deutschland Gmbh Brennstoffzellensystem für die Versorgung von Luftfahrzeugen
US20080032172A1 (en) * 2006-08-04 2008-02-07 Subhasish Mukerjee Conductive coating for solid oxide fuel cell
JP2008053032A (ja) * 2006-08-24 2008-03-06 Ngk Insulators Ltd ガス流通部材、積層焼結体および電気化学セル
JP5315615B2 (ja) * 2007-02-08 2013-10-16 日産自動車株式会社 燃料電池及びセパレータ
WO2010151419A1 (en) * 2009-06-24 2010-12-29 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Microfluidic devices for dialysis
JP5682778B2 (ja) * 2010-12-27 2015-03-11 日産自動車株式会社 燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031697A (ko) * 2001-02-27 2004-04-13 이 아이 듀폰 디 네모아 앤드 캄파니 전기화학 장치를 위한 유체 유동장
KR20040038751A (ko) * 2002-10-28 2004-05-08 한국전력공사 가스채널을 갖는 고체 산화물 연료전지
KR20060020015A (ko) * 2004-08-30 2006-03-06 삼성에스디아이 주식회사 연료 전지 시스템 및 그 스택
KR100665391B1 (ko) * 2004-10-30 2007-01-04 한국전력공사 개선된 구조의 평판형 고체산화물 연료전지
KR20070037207A (ko) * 2005-09-30 2007-04-04 삼성에스디아이 주식회사 분리판 및 이를 채용한 연료전지
JP2011528159A (ja) * 2008-07-15 2011-11-10 ダイムラー・アクチェンゲゼルシャフト 特に隣接する2つの膜電極構造間に配置するための、燃料電池構造用双極性プレート
JP2011210568A (ja) 2010-03-30 2011-10-20 Mitsubishi Materials Corp 固体酸化物形燃料電池の燃料極集電体ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937926A4

Also Published As

Publication number Publication date
DK2937926T3 (en) 2016-10-10
JP6001193B2 (ja) 2016-10-05
EP2937926A1 (en) 2015-10-28
CN104813528A (zh) 2015-07-29
EP2937926A4 (en) 2015-11-18
EP2937926B1 (en) 2016-07-20
JP2016504730A (ja) 2016-02-12
US10446856B2 (en) 2019-10-15
KR101432386B1 (ko) 2014-08-20
KR20140078904A (ko) 2014-06-26
US20160028094A1 (en) 2016-01-28
CN104813528B (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
WO2014098335A1 (ko) 종채널과 횡채널을 갖는 고체산화물 연료전지
WO2014104584A1 (ko) 연료 전지용 스택 구조물
EP1701402A1 (en) Systems and methods for minimizing temperature differences and gradients in solid oxide fuel cells
JPH08273696A (ja) 燃料電池スタック構造
WO2010123219A2 (ko) 평관형 구조체를 이용한 고체산화물 연료전지용 스택
WO2012091460A2 (ko) 고체산화물 연료전지와 이의 제조방법 및 연료극 제조를 위한 테이프 캐스팅 장치
WO2013183884A1 (ko) 연료 전지용 집전판 및 이를 포함하는 스택 구조물
WO2013183885A1 (ko) 연료 전지용 스택 구조물 및 그의 구성
EP1685621B1 (en) Multi-cell fuel layer and system
KR101120134B1 (ko) 평관형 고체산화물 셀 스택
WO2011149174A1 (ko) 고체산화물 연료전지 적층 구조물
WO2012015113A1 (ko) 평관형 고체산화물 셀 스택
KR100815207B1 (ko) 고체산화물 연료전지
KR20190025661A (ko) 전기 화학 반응 단셀 및 전기 화학 반응 셀 스택
KR20200094876A (ko) 고체산화물 연료전지와 고체산화물 전해셀
KR100808028B1 (ko) 단전지들이 평면 배열된 등가의 대면적 연료전지 및 이에사용되는 압축형 밀봉재
WO2014092357A1 (ko) 연료 전지용 스택 구조물
WO2012053803A2 (ko) 고체산화물 연료전지
US9865889B2 (en) Solid electrolyte fuel battery having anode and cathode gas supply channels with different cross-section areas
WO2014042367A1 (ko) 연료 전지용 연결재 및 이를 포함하는 구조체
WO2014109600A1 (ko) 연료전지용 스택 및 그 제조방법
WO2023128447A1 (ko) 구조적 변형이 방지되는 고체산화물 연료전지용 집전체
WO2014119924A1 (ko) 싱글 챔버 방식의 박막형 sofc 및 그 제조방법
WO2017034336A1 (ko) 고체산화물 연료전지 및 이를 포함하는 전지모듈
WO2014081177A1 (ko) 응집현상 감소를 위한 박막형 sofc 스택

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14442222

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013866257

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013866257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015547827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE