WO2014097714A1 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor device Download PDFInfo
- Publication number
- WO2014097714A1 WO2014097714A1 PCT/JP2013/077551 JP2013077551W WO2014097714A1 WO 2014097714 A1 WO2014097714 A1 WO 2014097714A1 JP 2013077551 W JP2013077551 W JP 2013077551W WO 2014097714 A1 WO2014097714 A1 WO 2014097714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- metal film
- substrate
- interface
- laser beam
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000004065 semiconductor Substances 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 133
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 66
- 229910052751 metal Inorganic materials 0.000 claims abstract description 55
- 239000002184 metal Substances 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 239000010936 titanium Substances 0.000 claims abstract description 35
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 34
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 19
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 13
- 238000004088 simulation Methods 0.000 description 22
- 238000000137 annealing Methods 0.000 description 16
- 238000005224 laser annealing Methods 0.000 description 11
- 238000004151 rapid thermal annealing Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910021334 nickel silicide Inorganic materials 0.000 description 3
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/048—Making electrodes
- H01L21/0485—Ohmic electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/66196—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
- H01L29/66204—Diodes
- H01L29/66212—Schottky diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
Definitions
- the present invention relates to a method for manufacturing a semiconductor device in which a metal silicide film is formed on the surface of a substrate made of silicon carbide (SiC).
- SiC having a wider band gap than silicon has been attracting attention.
- a vertical semiconductor device typified by a Schottky barrier diode
- an element structure is formed on one surface, and an ohmic electrode is formed on the other surface (back surface).
- a metal silicide such as nickel silicide is used as the ohmic electrode.
- the metal silicide is formed by performing rapid thermal annealing (RTA) or the like after forming a metal film on the back surface.
- an element structure is formed on one surface of an SiC substrate and then the other surface (back surface) is ground to thin the substrate.
- the element resistance can be reduced.
- the metal silicide film must be formed on the back surface of the substrate after the element structure is formed and the substrate is thinned. For this reason, the element structure formed on one surface of the substrate is affected by heat when the metal silicide film is formed on the other surface (back surface).
- the electrical characteristics of the semiconductor power device may deteriorate.
- An object of the present invention is to provide a manufacturing method in which an element structure formed on one surface of a substrate is hardly affected by heat generated during heat treatment for forming a metal silicide film.
- a metal film made of nickel or titanium on a first surface of a substrate made of silicon carbide Irradiating the metal film with a pulsed laser beam having a wavelength in the ultraviolet region to cause a silicide reaction at the interface between the substrate and the metal film, thereby forming a metal silicide film,
- a method of manufacturing a semiconductor device is provided in which the pulse laser beam is irradiated under a condition that the surface of the metal film does not melt.
- FIGS. EA to 1F are cross-sectional views of a substrate in the course of manufacturing a semiconductor device manufacturing method according to an embodiment.
- FIGS. EA to 1F are cross-sectional views of the substrate in the middle of the manufacturing process of the semiconductor device manufacturing method according to the embodiment.
- FIG. 2A is a graph showing a simulation result of the relationship between the maximum temperature at the interface between the substrate and the nickel film and the thickness of the nickel film when annealing is performed under the condition of a pulse width of 10 ns
- FIG. It is a graph which shows the simulation result of the relationship between the maximum ultimate temperature of the surface of a nickel film, and the thickness of a nickel film.
- FIG. 3A is a graph showing a simulation result of the relationship between the maximum temperature at the interface between the substrate and the nickel film and the thickness of the nickel film when annealing is performed under the condition of a pulse width of 20 ns
- FIG. It is a graph which shows the simulation result of the relationship between the maximum ultimate temperature of the surface of a nickel film, and the thickness of a nickel film.
- FIG. 4A is a graph showing a simulation result of the relationship between the maximum temperature at the interface between the substrate and the nickel film and the thickness of the nickel film when annealing is performed under the condition of a pulse width of 30 ns. It is a graph which shows the simulation result of the relationship between the maximum ultimate temperature of the surface of a nickel film, and the thickness of a nickel film.
- FIG. 5A is a graph showing a simulation result of the relationship between the maximum temperature at the interface between the substrate and the nickel film and the thickness of the nickel film when annealing is performed under the condition of a pulse width of 50 ns
- FIG. It is a graph which shows the simulation result of the relationship between the maximum ultimate temperature of the surface of a nickel film, and the thickness of a nickel film.
- FIG. 6A is a graph showing a simulation result of the relationship between the maximum temperature at the interface between the substrate and the titanium film and the thickness of the titanium film when annealing is performed under the condition of a pulse width of 10 ns
- FIG. It is a graph which shows the simulation result of the relationship between the maximum ultimate temperature of the surface of a titanium film, and the thickness of a titanium film.
- FIGS. 1A to 1F a method of manufacturing a semiconductor device according to an embodiment will be described.
- a p-type guard ring 11 is formed in one surface layer portion of a substrate 10 made of n-type SiC by ion implantation.
- the surface opposite to the surface on which the guard ring 11 is formed is referred to as a “first surface” 10A, and the surface on which the guard ring 11 is formed is referred to as a “second surface” 10B.
- an insulating film 12 made of silicon oxide is formed on the second surface 10B.
- the insulating film 12 has an opening that exposes a region surrounded by the guard ring 11.
- a Schottky electrode 13 is formed on the surface of the substrate 10 exposed at the bottom surface of the opening formed in the insulating film 12.
- Schottky contact is realized by performing a heat treatment after forming a titanium film.
- a surface electrode 14 is formed on the Schottky electrode 13.
- aluminum is used for the surface electrode 14.
- the guard ring 11, the Schottky electrode 13, and the surface electrode 14 are referred to as “element structure” 15.
- the substrate 10 is thinned by grinding the substrate 10 from the first surface 10A.
- a metal film 16 is formed on the first surface 10A of the substrate 10.
- the metal film 16 for example, nickel (Ni) or titanium (Ti) is used.
- laser annealing is performed by irradiating the metal film 16 with a pulse laser beam 20. This laser annealing is performed while moving the incident region of the pulse laser beam 20 within the surface of the metal film 16.
- the overlap ratio of the incident region is, for example, 50% to 90%.
- a metal silicide film 17 is formed at the interface between the substrate 10 and the metal film 16.
- This laser annealing is performed under the condition that the surface of the metal film 16 does not melt. When the surface of the metal film 16 is melted, the surface of the metal film 16 becomes rough after solidification. In the method according to the embodiment, since the annealing is performed under the condition that the surface of the metal film 16 is not melted, the surface roughness of the metal film 16 can be suppressed. Performing silicidation at the interface without melting the surface of the metal film is referred to as “non-molten silicidation”.
- the pulse width of the pulse laser beam 20 is shorter than the heating time by rapid thermal annealing (RTA).
- RTA rapid thermal annealing
- the pulsed laser beam 20 having a wavelength range that does not transmit through the substrate 10 is used, the pulsed laser beam does not reach the element structure 15 formed on the second surface 10B. For this reason, the temperature rise of the 2nd surface 10B of the board
- the annealing method according to the embodiment is employed, the temperature rise of the element structure 15 can be suppressed as compared with the case where RTA is employed.
- FIG. 3A, FIG. 4A, and FIG. 5A show the relationship between the maximum temperature reached at the interface between the substrate and the nickel film (hereinafter simply referred to as “interface”) and the thickness of the nickel film.
- the horizontal axis represents the thickness of the nickel film in the unit “nm”, and the vertical axis represents the maximum temperature reached at the interface in the unit “° C.”.
- 2B, FIG. 3B, FIG. 4B, and FIG. 5B show the relationship between the maximum temperature reached on the surface of the nickel film (hereinafter simply referred to as “surface”) and the thickness of the nickel film.
- the horizontal axis represents the thickness of the nickel film in the unit “nm”, and the vertical axis represents the maximum surface temperature of the surface in the unit “° C.”.
- 2A and 2B show simulation results when the pulse width Pw of the pulse laser beam is 10 ns.
- 3A and 3B show simulation results when the pulse width Pw of the pulse laser beam is 20 ns.
- 4A and 4B show simulation results when the pulse width Pw of the pulse laser beam is 30 ns.
- 5A and 5B show simulation results when the pulse width Pw of the pulse laser beam is 50 ns.
- the rhombus symbol, square symbol, triangle symbol, and circle symbol in FIGS. 2A and 2B each have a pulse energy density (hereinafter simply referred to as “pulse energy density”) of 1.2 J / cm 2 on the surface of the nickel film. This corresponds to the case where laser annealing is performed under the conditions of 3 J / cm 2 , 1.4 J / cm 2 , and 1.5 J / cm 2 .
- the rhombus, square, triangle, and circle symbols in FIGS. 3A and 3B have pulse energy densities of 1.6 J / cm 2 , 1.7 J / cm 2 , 1.8 J / cm 2 , and 1.9 J, respectively.
- the rhombus, square, triangle, and circle symbols in FIGS. 4A and 4B have pulse energy densities of 1.8 J / cm 2 , 2.0 J / cm 2 , 2.2 J / cm 2 , and 2.4 J, respectively. This corresponds to the case where laser annealing is performed under the condition of / cm 2 .
- the rhombus, square, triangle, and circle symbols in FIGS. 5A and 5B have pulse energy densities of 2.4 J / cm 2 , 2.6 J / cm 2 , 2.8 J / cm 2 , and 3.0 J, respectively. This corresponds to the case where laser annealing is performed under the condition of / cm 2 .
- the “pulse energy density” is obtained by dividing the energy per pulse of the pulse laser beam by the area of the beam cross section.
- the area of a region surrounded by a closed curve connecting positions where the light intensity is 1 ⁇ 2 of the maximum value in the beam cross section is adopted as the “area of the beam cross section”.
- the maximum temperature at the interface does not reach 950 ° C. when the thickness of the nickel film is about 20 nm or less. This is because the substrate made of SiC acts as a heat sink and heat is not accumulated at the interface.
- the thickness of the nickel film is 30 nm or more, the maximum temperature reached at the interface becomes 950 ° C. or more within a pulse energy density of at least 1.3 to 1.5 J / cm 2 .
- the pulse energy density is made higher, there will be an annealing condition that makes the maximum temperature at the interface more than 950 ° C. even if the thickness of the nickel film is less than 20 nm.
- the thickness of the nickel film is preferably 30 nm or more.
- the maximum temperature at the interface decreases as the film thickness increases.
- the maximum temperature at the interface can be 950 ° C. or more.
- the maximum temperature at the interface can be made 950 ° C. or more by adjusting the pulse energy density.
- the maximum surface temperature increases as the nickel film becomes thicker. This is because when the nickel film is thin, the temperature rise of the surface of the nickel film is suppressed by the heat sink effect of the substrate, and when the nickel film is thick, the heat sink effect of the substrate is weakened.
- the surface temperature of the nickel film exceeds 1455 ° C., which is the melting point of nickel, the surface is melted. In order to avoid melting of the surface, it is preferable to perform annealing under the condition that the maximum surface temperature is 1455 ° C. or less.
- the maximum temperature reached at the interface can be made 950 ° C. or more.
- the pulse energy density of the pulse laser beam to be irradiated is set in a range lower than the magnitude at which the maximum temperature reached on the surface of the nickel film is equal to the melting point of nickel.
- the maximum temperature at the interface can be set to 950 ° C. or more within the thickness range of 30 nm to 250 nm.
- the maximum temperature at the interface can be set to 950 ° C. or more within the thickness range of 30 nm to 250 nm of the nickel film.
- the maximum temperature at the interface is set to 950 ° C. or more, and The maximum temperature reached on the surface can be made 1455 ° C. or lower.
- the maximum temperature at the interface can be set to 950 ° C. or more within the thickness range of 30 nm to 200 nm.
- the maximum temperature at the interface can be made 950 ° C. or higher.
- the maximum temperature reached at the interface can be set to 950 ° C. or more within the thickness range of the nickel film of 30 nm to 200 nm.
- the maximum temperature at the interface can be made 950 ° C. or more by adjusting the pulse energy density.
- the maximum temperature at the interface is set to 950 ° C. or more, and The maximum temperature reached on the surface can be made 1455 ° C. or lower.
- the maximum temperature at the interface can be set to 950 ° C. or more within the thickness range of 30 nm to 250 nm.
- the maximum temperature at the interface can be increased to 950 ° C. or more within the thickness range of 30 nm to 250 nm.
- the maximum temperature at the interface is set to 950 ° C. or more, and The maximum temperature reached on the surface can be made 1455 ° C. or lower.
- Annealing can be performed under conditions where the maximum temperature reached 950 ° C. or higher and the surface maximum temperature reached 1455 ° C. or lower. That is, non-molten silicidation can be performed.
- the pulse energy density required to increase the maximum temperature at the interface to 950 ° C. or higher increases as the pulse width increases. .
- the pulse width is less than 10 ns, the surface is locally heated, making it difficult to transfer heat to the interface.
- the pulse width is preferably 10 ns or more. If the pulse width is longer than 50 ns, the pulse energy density required for setting the maximum temperature at the interface to 950 ° C. or higher increases, and the annealing efficiency decreases. In order to perform efficient annealing, the pulse width is preferably 50 ns or less.
- FIG. 6A to FIG. 6B preferable conditions for laser annealing when titanium is used for the metal film 16 (FIG. 1E) will be described.
- a titanium film is formed on the surface of a substrate made of 4H—SiC and the titanium film is irradiated with a pulsed laser beam having a wavelength of 355 nm, the highest temperature at the interface between the substrate and the titanium film, and the highest surface of the titanium film The ultimate temperature was determined by simulation. 6A to 6B show the simulation results.
- FIG. 6A shows the relationship between the maximum temperature reached at the interface between the substrate and the titanium film (hereinafter simply referred to as “interface”) and the thickness of the titanium film.
- the horizontal axis represents the thickness of the titanium film in the unit “nm”, and the vertical axis represents the maximum temperature reached at the interface in the unit “° C.”.
- FIG. 6B shows the relationship between the maximum temperature reached on the surface of the titanium film (hereinafter simply referred to as “surface”) and the thickness of the titanium film.
- the abscissa represents the thickness of the titanium film in the unit “nm”, and the ordinate represents the highest surface temperature in the unit “° C.”.
- the pulse width Pw of the pulse laser beam was 10 ns.
- the rhombus symbols, square symbols, triangle symbols, and circle symbols in FIGS. 6A and 6B each have a pulse energy density (hereinafter simply referred to as “pulse energy density”) of 0.8 J / cm 2 on the surface of the titanium film.
- pulse energy density 0.8 J / cm 2 on the surface of the titanium film.
- the maximum temperature at the interface can be set to 950 ° C. or more within the range of the thickness of the titanium film of 30 nm to 150 nm.
- the maximum temperature at the interface is set to 950 ° C. or more, and The highest surface temperature can be made 1668 ° C. or lower, which is the melting point of titanium.
- the wavelength of the pulse laser beam is set to 355 nm, but it is possible to perform non-molten silicidation under substantially the same conditions using a pulse laser beam in the ultraviolet region with a wavelength of 300 nm to 400 nm.
- a pulse laser beam a third harmonic of a solid-state laser such as an Nd: YAG laser, an Nd: YVO 4 laser, or an Nd: YLF laser, an excimer laser, or the like can be used.
- the pulse laser beam 20 incident on the metal film 16 does not reach the second surface 10B of the substrate 10. For this reason, the temperature rise of the element structure 15 can be suppressed.
- the pulse width Pw is set in the range of 10 ns to 50 ns, but there are annealing conditions that enable non-molten silicidation even in the range of the pulse width Pw of 50 ns or more.
- the pulse width Pw is 50 ns or more, it is preferable to increase the pulse energy density in order to maintain a sufficient peak power density.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
A metal film that is formed of nickel or titanium is formed on a first surface of a substrate that is formed of silicon carbide. A metal silicide film is formed by causing a silicide reaction at the interface between the substrate and the metal film by irradiating the metal film with a pulse laser beam having a wavelength in the ultraviolet region. During the process for forming the metal silicide film, the pulse laser beam is irradiated under the conditions where the surface of the metal film does not melt.
Description
本発明は、炭化シリコン(SiC)からなる基板の表面に金属シリサイド膜を形成する半導体装置の製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device in which a metal silicide film is formed on the surface of a substrate made of silicon carbide (SiC).
半導体パワーデバイス用の半導体材料として、シリコンよりも広いバンドギャップを有するSiCが注目されている。ショットキバリアダイオードに代表される縦型半導体デバイスにおいては、一方の表面に素子構造が形成され、他方の表面(背面)にオーミック電極が形成される。オーミック電極として、ニッケルシリサイド等の金属シリサイドが用いられる。金属シリサイドは、背面に金属膜を形成した後、ラピッドサーマルアニール(RTA)等を行うことにより形成される。
As a semiconductor material for semiconductor power devices, SiC having a wider band gap than silicon has been attracting attention. In a vertical semiconductor device typified by a Schottky barrier diode, an element structure is formed on one surface, and an ohmic electrode is formed on the other surface (back surface). A metal silicide such as nickel silicide is used as the ohmic electrode. The metal silicide is formed by performing rapid thermal annealing (RTA) or the like after forming a metal film on the back surface.
半導体パワーデバイスの素子抵抗を低減させるために、SiC基板の一方の表面に素子構造を形成した後、他方の表面(背面)を研削して基板を薄くする手法が採用される。基板を薄くすることにより、素子抵抗を低減させることができる。基板を薄くするための研削を行わない場合には、素子構造を形成する前に、背面に金属シリサイド膜を形成しておくことが可能である。ところが、素子構造を形成した後に、基板を薄くする手法を採用する場合には、素子構造を形成し、かつ基板を薄くした後に、基板の背面に金属シリサイド膜を形成しなければならない。このため、基板の一方の表面に形成されている素子構造が、他方の表面(背面)に金属シリサイド膜を形成するときの熱の影響を受ける。素子構造が熱の影響を受けると、半導体パワーデバイスの電気的特性が低下する場合がある。
In order to reduce the element resistance of a semiconductor power device, a method is adopted in which an element structure is formed on one surface of an SiC substrate and then the other surface (back surface) is ground to thin the substrate. By reducing the thickness of the substrate, the element resistance can be reduced. When grinding for thinning the substrate is not performed, it is possible to form a metal silicide film on the back surface before forming the element structure. However, when the method of thinning the substrate after the element structure is formed, the metal silicide film must be formed on the back surface of the substrate after the element structure is formed and the substrate is thinned. For this reason, the element structure formed on one surface of the substrate is affected by heat when the metal silicide film is formed on the other surface (back surface). When the element structure is affected by heat, the electrical characteristics of the semiconductor power device may deteriorate.
本発明の目的は、基板の一方の表面に形成されている素子構造が、金属シリサイド膜形成のための熱処理時に発生する熱の影響を受けにくい製造方法を提供することである。
An object of the present invention is to provide a manufacturing method in which an element structure formed on one surface of a substrate is hardly affected by heat generated during heat treatment for forming a metal silicide film.
本発明の一観点によると、
炭化シリコンからなる基板の第1の表面に、ニッケルまたはチタンからなる金属膜を形成する工程と、
前記金属膜に紫外域の波長を有するパルスレーザビームを照射して、前記基板と前記金属膜との界面においてシリサイド反応を生じさせることにより、金属シリサイド膜を形成する工程と
を有し、
前記金属シリサイド膜を形成する工程において、前記金属膜の表面が溶融しない条件で前記パルスレーザビームを照射する半導体装置の製造方法が提供される。 According to one aspect of the invention,
Forming a metal film made of nickel or titanium on a first surface of a substrate made of silicon carbide;
Irradiating the metal film with a pulsed laser beam having a wavelength in the ultraviolet region to cause a silicide reaction at the interface between the substrate and the metal film, thereby forming a metal silicide film,
In the step of forming the metal silicide film, a method of manufacturing a semiconductor device is provided in which the pulse laser beam is irradiated under a condition that the surface of the metal film does not melt.
炭化シリコンからなる基板の第1の表面に、ニッケルまたはチタンからなる金属膜を形成する工程と、
前記金属膜に紫外域の波長を有するパルスレーザビームを照射して、前記基板と前記金属膜との界面においてシリサイド反応を生じさせることにより、金属シリサイド膜を形成する工程と
を有し、
前記金属シリサイド膜を形成する工程において、前記金属膜の表面が溶融しない条件で前記パルスレーザビームを照射する半導体装置の製造方法が提供される。 According to one aspect of the invention,
Forming a metal film made of nickel or titanium on a first surface of a substrate made of silicon carbide;
Irradiating the metal film with a pulsed laser beam having a wavelength in the ultraviolet region to cause a silicide reaction at the interface between the substrate and the metal film, thereby forming a metal silicide film,
In the step of forming the metal silicide film, a method of manufacturing a semiconductor device is provided in which the pulse laser beam is irradiated under a condition that the surface of the metal film does not melt.
パルスレーザビームの照射によってシリサイド反応を生じさせることにより、RTA等でシリサイド反応を生じさせる場合に比べて、基板の第1の表面とは反対側の表面の温度上昇を抑制することができる。
By causing a silicidation reaction by irradiation with a pulsed laser beam, it is possible to suppress an increase in the temperature of the surface opposite to the first surface of the substrate as compared with the case where the silicidation reaction is caused by RTA or the like.
図1A~図1Fを参照して、実施例による半導体装置の製造方法について説明する。
With reference to FIGS. 1A to 1F, a method of manufacturing a semiconductor device according to an embodiment will be described.
図1Aに示すように、n型SiCからなる基板10の一方の表層部に、イオン注入によりp型のガードリング11を形成する。ガードリング11が形成された表面とは反対側の表面を「第1の表面」10Aといい、ガードリング11が形成された表面を「第2の表面」10Bということとする。図1Bに示すように、第2の表面10Bに、酸化シリコンからなる絶縁膜12を形成する。絶縁膜12には、ガードリング11に囲まれた領域を露出させる開口が形成されている。
As shown in FIG. 1A, a p-type guard ring 11 is formed in one surface layer portion of a substrate 10 made of n-type SiC by ion implantation. The surface opposite to the surface on which the guard ring 11 is formed is referred to as a “first surface” 10A, and the surface on which the guard ring 11 is formed is referred to as a “second surface” 10B. As shown in FIG. 1B, an insulating film 12 made of silicon oxide is formed on the second surface 10B. The insulating film 12 has an opening that exposes a region surrounded by the guard ring 11.
図1Cに示すように、絶縁膜12に形成されている開口の底面に露出している基板10の表面に、ショットキ電極13を形成する。一例として、チタン膜を形成した後、熱処理を行うことにより、ショットキコンタクトが実現される。ショットキ電極13の上に表面電極14を形成する。表面電極14には、例えばアルミニウムが用いられる。ガードリング11、ショットキ電極13、及び表面電極14を、「素子構造」15ということとする。
As shown in FIG. 1C, a Schottky electrode 13 is formed on the surface of the substrate 10 exposed at the bottom surface of the opening formed in the insulating film 12. As an example, Schottky contact is realized by performing a heat treatment after forming a titanium film. A surface electrode 14 is formed on the Schottky electrode 13. For example, aluminum is used for the surface electrode 14. The guard ring 11, the Schottky electrode 13, and the surface electrode 14 are referred to as “element structure” 15.
図1Dに示すように、基板10を第1の表面10Aから研削することにより、基板10を薄くする。図1Eに示すように、基板10の第1の表面10Aに、金属膜16を形成する。金属膜16には、例えばニッケル(Ni)、チタン(Ti)が用いられる。
As shown in FIG. 1D, the substrate 10 is thinned by grinding the substrate 10 from the first surface 10A. As shown in FIG. 1E, a metal film 16 is formed on the first surface 10A of the substrate 10. For the metal film 16, for example, nickel (Ni) or titanium (Ti) is used.
図1Fに示すように、金属膜16にパルスレーザビーム20を照射することにより、レーザアニールを行う。このレーザアニールは、パルスレーザビーム20の入射領域を金属膜16の表面内で移動させながら行われる。入射領域のオーバラップ率は、例えば50%~90%とする。
As shown in FIG. 1F, laser annealing is performed by irradiating the metal film 16 with a pulse laser beam 20. This laser annealing is performed while moving the incident region of the pulse laser beam 20 within the surface of the metal film 16. The overlap ratio of the incident region is, for example, 50% to 90%.
このレーザアニールにより、基板10と金属膜16との界面に、金属シリサイド膜17が形成される。このレーザアニールは、金属膜16の表面が溶融しない条件で行われる。金属膜16の表面が溶融すると、固化した後、金属膜16の表面が荒れてしまう。実施例による方法では、金属膜16の表面が溶融しない条件でアニールが行われるため、金属膜16の表面荒れを抑制することができる。金属膜の表面を溶融させることなく、界面でシリサイド化を行うことを「非溶融シリサイド化」ということとする。
By this laser annealing, a metal silicide film 17 is formed at the interface between the substrate 10 and the metal film 16. This laser annealing is performed under the condition that the surface of the metal film 16 does not melt. When the surface of the metal film 16 is melted, the surface of the metal film 16 becomes rough after solidification. In the method according to the embodiment, since the annealing is performed under the condition that the surface of the metal film 16 is not melted, the surface roughness of the metal film 16 can be suppressed. Performing silicidation at the interface without melting the surface of the metal film is referred to as “non-molten silicidation”.
金属膜16の表面が、全体としては融点に達していなくても、物性上、「表面の極一部分がわずかに溶融する場合が考えられる。ここで、「金属膜の表面を溶融させることなく」という表現は、金属膜の表面荒れに影響を及ぼす程度の実質的な溶融が生じないことを意味しており、表面荒れにほとんど影響を及ぼさない程度のわずかな溶融が生じることまで排除しているわけではない。
Even if the surface of the metal film 16 does not reach the melting point as a whole, from the viewpoint of physical properties, “a case where a very small part of the surface melts slightly is considered. Here,“ without melting the surface of the metal film ”. The expression means that there is no substantial melting to the extent that it affects the surface roughness of the metal film, and even the slight melting to the extent that it hardly affects the surface roughness is excluded. Do not mean.
パルスレーザビーム20のパルス幅は、ラピッドサーマルアニール(RTA)による加熱時間よりも短い。基板10を透過しない波長域のパルスレーザビーム20を使用すると、パルスレーザビームは第2の表面10Bに形成された素子構造15まで到達しない。このため、基板10の第2の表面10Bの温度上昇が軽減される。実施例によるアニール方法を採用すると、RTAを採用する場合に比べて、素子構造15の温度上昇を抑制することができる。
The pulse width of the pulse laser beam 20 is shorter than the heating time by rapid thermal annealing (RTA). When the pulsed laser beam 20 having a wavelength range that does not transmit through the substrate 10 is used, the pulsed laser beam does not reach the element structure 15 formed on the second surface 10B. For this reason, the temperature rise of the 2nd surface 10B of the board | substrate 10 is reduced. When the annealing method according to the embodiment is employed, the temperature rise of the element structure 15 can be suppressed as compared with the case where RTA is employed.
次に、図2A~図5Bを参照して、金属膜16(図1E)にニッケルを用いた場合のレーザアニールの好ましい条件について説明する。4H-SiCからなる基板の表面に、ニッケル膜を形成し、ニッケル膜に波長355nmのパルスレーザビームを照射したときの、基板とニッケル膜との界面の最高到達温度、及びニッケル膜の表面の最高到達温度をシミュレーションにより求めた。図2A~図5Bに、シミュレーション結果を示す。
Next, with reference to FIG. 2A to FIG. 5B, preferable conditions for laser annealing when nickel is used for the metal film 16 (FIG. 1E) will be described. When the nickel film is formed on the surface of the substrate made of 4H—SiC, and the pulsed laser beam having a wavelength of 355 nm is irradiated on the nickel film, the highest temperature at the interface between the substrate and the nickel film and the highest surface of the nickel film The ultimate temperature was determined by simulation. 2A to 5B show simulation results.
図2A、図3A、図4A、及び図5Aに、基板とニッケル膜との界面(以下、単に「界面」という。)の最高到達温度とニッケル膜の厚さとの関係を示す。横軸は、ニッケル膜の厚さを単位「nm」で表し、縦軸は、界面の最高到達温度を単位「℃」で表す。図2B、図3B、図4B、及び図5Bに、ニッケル膜の表面(以下、単に「表面」という。)の最高到達温度と、ニッケル膜の厚さとの関係を示す。横軸は、ニッケル膜の厚さを単位「nm」で表し、縦軸は、表面の最高到達温度を単位「℃」で表す。
2A, FIG. 3A, FIG. 4A, and FIG. 5A show the relationship between the maximum temperature reached at the interface between the substrate and the nickel film (hereinafter simply referred to as “interface”) and the thickness of the nickel film. The horizontal axis represents the thickness of the nickel film in the unit “nm”, and the vertical axis represents the maximum temperature reached at the interface in the unit “° C.”. 2B, FIG. 3B, FIG. 4B, and FIG. 5B show the relationship between the maximum temperature reached on the surface of the nickel film (hereinafter simply referred to as “surface”) and the thickness of the nickel film. The horizontal axis represents the thickness of the nickel film in the unit “nm”, and the vertical axis represents the maximum surface temperature of the surface in the unit “° C.”.
図2A及び図2Bは、パルスレーザビームのパルス幅Pwを10nsにした場合のシミュレーション結果を示す。図3A及び図3Bは、パルスレーザビームのパルス幅Pwを20nsにした場合のシミュレーション結果を示す。図4A及び図4Bは、パルスレーザビームのパルス幅Pwを30nsにした場合のシミュレーション結果を示す。図5A及び図5Bは、パルスレーザビームのパルス幅Pwを50nsにした場合のシミュレーション結果を示す。
2A and 2B show simulation results when the pulse width Pw of the pulse laser beam is 10 ns. 3A and 3B show simulation results when the pulse width Pw of the pulse laser beam is 20 ns. 4A and 4B show simulation results when the pulse width Pw of the pulse laser beam is 30 ns. 5A and 5B show simulation results when the pulse width Pw of the pulse laser beam is 50 ns.
図2A及び図2Bの菱形記号、四角記号、三角記号、及び丸記号は、それぞれニッケル膜の表面におけるパルスエネルギ密度(以下、単に「パルスエネルギ密度」という。)が1.2J/cm2、1.3J/cm2、1.4J/cm2、及び1.5J/cm2の条件でレーザアニールを行った場合に対応する。図3A及び図3Bの菱形記号、四角記号、三角記号、及び丸記号は、それぞれパルスエネルギ密度が1.6J/cm2、1.7J/cm2、1.8J/cm2、及び1.9J/cm2の条件でレーザアニールを行った場合に対応する。図4A及び図4Bの菱形記号、四角記号、三角記号、及び丸記号は、それぞれパルスエネルギ密度が1.8J/cm2、2.0J/cm2、2.2J/cm2、及び2.4J/cm2の条件でレーザアニールを行った場合に対応する。図5A及び図5Bの菱形記号、四角記号、三角記号、及び丸記号は、それぞれパルスエネルギ密度が2.4J/cm2、2.6J/cm2、2.8J/cm2、及び3.0J/cm2の条件でレーザアニールを行った場合に対応する。
The rhombus symbol, square symbol, triangle symbol, and circle symbol in FIGS. 2A and 2B each have a pulse energy density (hereinafter simply referred to as “pulse energy density”) of 1.2 J / cm 2 on the surface of the nickel film. This corresponds to the case where laser annealing is performed under the conditions of 3 J / cm 2 , 1.4 J / cm 2 , and 1.5 J / cm 2 . The rhombus, square, triangle, and circle symbols in FIGS. 3A and 3B have pulse energy densities of 1.6 J / cm 2 , 1.7 J / cm 2 , 1.8 J / cm 2 , and 1.9 J, respectively. This corresponds to the case where laser annealing is performed under the condition of / cm 2 . The rhombus, square, triangle, and circle symbols in FIGS. 4A and 4B have pulse energy densities of 1.8 J / cm 2 , 2.0 J / cm 2 , 2.2 J / cm 2 , and 2.4 J, respectively. This corresponds to the case where laser annealing is performed under the condition of / cm 2 . The rhombus, square, triangle, and circle symbols in FIGS. 5A and 5B have pulse energy densities of 2.4 J / cm 2 , 2.6 J / cm 2 , 2.8 J / cm 2 , and 3.0 J, respectively. This corresponds to the case where laser annealing is performed under the condition of / cm 2 .
「パルスエネルギ密度」は、パルスレーザビームの1パルスあたりのエネルギを、ビーム断面の面積で除算して得られる。本明細書において、「ビーム断面の面積」として、ビーム断面内において、光強度が最大値の1/2となる位置を結ぶ閉曲線に囲まれた領域の面積を採用した。
The “pulse energy density” is obtained by dividing the energy per pulse of the pulse laser beam by the area of the beam cross section. In this specification, the area of a region surrounded by a closed curve connecting positions where the light intensity is ½ of the maximum value in the beam cross section is adopted as the “area of the beam cross section”.
パルスレーザビーム照射後の、界面の最高到達温度が約950℃以上になると、基板とニッケル膜との界面でシリサイド反応が生じ、ニッケルシリサイド膜が形成される。
When the maximum temperature reached at the interface after pulse laser beam irradiation reaches about 950 ° C. or higher, a silicide reaction occurs at the interface between the substrate and the nickel film, and a nickel silicide film is formed.
図2Aに示すように、パルス幅が10nsのとき、ニッケル膜の厚さが約20nm以下であると、界面の最高到達温度が950℃に達しない。これは、SiCからなる基板がヒートシンクとして作用し、界面に熱が蓄積されないためである。ニッケル膜の厚さを30nm以上にすると、パルスエネルギ密度が少なくとも1.3~1.5J/cm2の範囲内で、界面の最高到達温度が950℃以上になる。
As shown in FIG. 2A, when the pulse width is 10 ns, the maximum temperature at the interface does not reach 950 ° C. when the thickness of the nickel film is about 20 nm or less. This is because the substrate made of SiC acts as a heat sink and heat is not accumulated at the interface. When the thickness of the nickel film is 30 nm or more, the maximum temperature reached at the interface becomes 950 ° C. or more within a pulse energy density of at least 1.3 to 1.5 J / cm 2 .
パルスエネルギ密度をより高くすれば、ニッケル膜の厚さが20nm以下であっても、界面の最高到達温度を950℃以上にするアニール条件が存在するであろう。しかし、後に図2Bを参照して説明するように、パルスエネルギ密度を高くすると、ニッケル膜の表面が溶融しやすくなる。このため、界面にニッケルシリサイド膜を形成するために、ニッケル膜の厚さを30nm以上にすることが好ましい。
If the pulse energy density is made higher, there will be an annealing condition that makes the maximum temperature at the interface more than 950 ° C. even if the thickness of the nickel film is less than 20 nm. However, as described later with reference to FIG. 2B, when the pulse energy density is increased, the surface of the nickel film is easily melted. For this reason, in order to form a nickel silicide film at the interface, the thickness of the nickel film is preferably 30 nm or more.
ニッケル膜の厚さが30nm以上の範囲では、膜厚が厚くなるに従って、界面の最高到達温度が低下する。ただし、少なくとも膜厚が200nm以下の範囲で、パルスエネルギ密度を1.4J/cm2以上にすると、界面の最高到達温度を950℃以上にすることができる。図2Aには示されていないが、ニッケル膜の厚さが250nm以上であっても、パルスエネルギ密度を調節すれば、界面の最高到達温度を950℃以上にすることができる。
In the range where the thickness of the nickel film is 30 nm or more, the maximum temperature at the interface decreases as the film thickness increases. However, when the pulse energy density is 1.4 J / cm 2 or more at least in the range where the film thickness is 200 nm or less, the maximum temperature at the interface can be 950 ° C. or more. Although not shown in FIG. 2A, even if the thickness of the nickel film is 250 nm or more, the maximum temperature at the interface can be made 950 ° C. or more by adjusting the pulse energy density.
図2Bに示すように、ニッケル膜が厚くなるに従って、表面の最高到達温度が高くなる。ニッケル膜が薄いと、基板のヒートシンク効果によって、ニッケル膜の表面の温度上昇が抑制され、ニッケル膜が厚くなると、基板のヒートシンク効果が弱まるためである。ニッケル膜の表面温度が、ニッケルの融点である1455℃を超えると、表面が溶融してしまう。表面の溶融を回避するために、表面の最高到達温度が1455℃以下の条件でアニールを行うことが好ましい。
As shown in FIG. 2B, the maximum surface temperature increases as the nickel film becomes thicker. This is because when the nickel film is thin, the temperature rise of the surface of the nickel film is suppressed by the heat sink effect of the substrate, and when the nickel film is thick, the heat sink effect of the substrate is weakened. When the surface temperature of the nickel film exceeds 1455 ° C., which is the melting point of nickel, the surface is melted. In order to avoid melting of the surface, it is preferable to perform annealing under the condition that the maximum surface temperature is 1455 ° C. or less.
一例として、パルスエネルギ密度を1.3J/cm2以上の条件の下で、ニッケル膜の厚さを調節することにより、界面の最高到達温度を950℃以上にすることができる。パルスエネルギ密度を高くすると、ニッケル膜の表面の最高到達温度がニッケルの融点以上になる。照射するパルスレーザビームのパルスエネルギ密度は、ニッケル膜の表面の最高到達温度がニッケルの融点と等しくなる大きさよりも低い範囲内に設定される。
As an example, by adjusting the thickness of the nickel film under the condition where the pulse energy density is 1.3 J / cm 2 or more, the maximum temperature reached at the interface can be made 950 ° C. or more. When the pulse energy density is increased, the maximum temperature reached on the surface of the nickel film becomes equal to or higher than the melting point of nickel. The pulse energy density of the pulse laser beam to be irradiated is set in a range lower than the magnitude at which the maximum temperature reached on the surface of the nickel film is equal to the melting point of nickel.
図3Aに示すように、パルス幅が20nsのときにも、ニッケル膜の厚さが30nm~250nmの範囲内で、界面の最高到達温度を950℃以上にすることができる。例えば、パルスエネルギ密度を1.9J/cm2にすると、ニッケル膜の厚さ30nm~250nmの範囲内で、界面の最高到達温度を950℃以上にすることができる。
As shown in FIG. 3A, even when the pulse width is 20 ns, the maximum temperature at the interface can be set to 950 ° C. or more within the thickness range of 30 nm to 250 nm. For example, when the pulse energy density is set to 1.9 J / cm 2 , the maximum temperature at the interface can be set to 950 ° C. or more within the thickness range of 30 nm to 250 nm of the nickel film.
図3Bに示すように、一例として、パルスエネルギ密度が1.8J/cm2以上の条件の下で、ニッケル膜の厚さを調節することにより、界面の最高到達温度を950℃以上にし、かつ表面の最高到達温度を1455℃以下にすることができる。
As shown in FIG. 3B, by way of example, by adjusting the thickness of the nickel film under a condition where the pulse energy density is 1.8 J / cm 2 or more, the maximum temperature at the interface is set to 950 ° C. or more, and The maximum temperature reached on the surface can be made 1455 ° C. or lower.
図4Aに示すように、パルス幅が30nsのときにも、ニッケル膜の厚さが30nm~200nmの範囲内で、界面の最高到達温度を950℃以上にすることができる。図4Aには示されていないが、ニッケル膜の厚さが250nmのときにも、界面の最高到達温度を950℃以上にすることができる。例えば、パルスエネルギ密度を2.2J/cm2にすると、ニッケル膜の厚さ30nm~200nmの範囲内で、界面の最高到達温度を950℃以上にすることができる。図4Aには示されていないが、ニッケル膜の厚さが250nm以上であっても、パルスエネルギ密度を調節すれば、界面の最高到達温度を950℃以上にすることができる。
As shown in FIG. 4A, even when the pulse width is 30 ns, the maximum temperature at the interface can be set to 950 ° C. or more within the thickness range of 30 nm to 200 nm. Although not shown in FIG. 4A, even when the thickness of the nickel film is 250 nm, the maximum temperature at the interface can be made 950 ° C. or higher. For example, when the pulse energy density is 2.2 J / cm 2 , the maximum temperature reached at the interface can be set to 950 ° C. or more within the thickness range of the nickel film of 30 nm to 200 nm. Although not shown in FIG. 4A, even if the thickness of the nickel film is 250 nm or more, the maximum temperature at the interface can be made 950 ° C. or more by adjusting the pulse energy density.
図4Bに示すように、一例として、パルスエネルギ密度が2.2J/cm2以上の条件の下で、ニッケル膜の厚さを調節することにより、界面の最高到達温度を950℃以上にし、かつ表面の最高到達温度を1455℃以下にすることができる。
As shown in FIG. 4B, as an example, by adjusting the thickness of the nickel film under the condition where the pulse energy density is 2.2 J / cm 2 or more, the maximum temperature at the interface is set to 950 ° C. or more, and The maximum temperature reached on the surface can be made 1455 ° C. or lower.
図5Aに示すように、パルス幅が50nsのときにも、ニッケル膜の厚さが30nm~250nmの範囲内で、界面の最高到達温度を950℃以上にすることができる。例えば、パルスエネルギ密度を2.8J/cm2にすると、ニッケル膜の厚さが30nm~250nmの範囲内で、界面の最高到達温度を950℃以上にすることができる。
As shown in FIG. 5A, even when the pulse width is 50 ns, the maximum temperature at the interface can be set to 950 ° C. or more within the thickness range of 30 nm to 250 nm. For example, when the pulse energy density is 2.8 J / cm 2 , the maximum temperature at the interface can be increased to 950 ° C. or more within the thickness range of 30 nm to 250 nm.
図5Bに示すように、一例として、パルスエネルギ密度が2.8J/cm2以上の条件の下で、ニッケル膜の厚さを調節することにより、界面の最高到達温度を950℃以上にし、かつ表面の最高到達温度を1455℃以下にすることができる。
As shown in FIG. 5B, by way of example, by adjusting the thickness of the nickel film under the condition where the pulse energy density is 2.8 J / cm 2 or more, the maximum temperature at the interface is set to 950 ° C. or more, and The maximum temperature reached on the surface can be made 1455 ° C. or lower.
図2A~図5Bを参照して説明したように、パルス幅が10ns~50nsの範囲内、かつニッケル膜の厚さが30nm~250nmの範囲内で、パルスエネルギ密度を調節することにより、界面の最高到達温度が950℃以上になり、かつ表面の最高到達温度が1455℃以下となる条件でアニールを行うことができる。すなわち、非溶融シリサイド化を行うことが可能になる。
As described with reference to FIGS. 2A to 5B, by adjusting the pulse energy density within the range of the pulse width of 10 ns to 50 ns and the thickness of the nickel film of 30 nm to 250 nm, Annealing can be performed under conditions where the maximum temperature reached 950 ° C. or higher and the surface maximum temperature reached 1455 ° C. or lower. That is, non-molten silicidation can be performed.
パルスエネルギ密度を一定にしたまま、パルス幅を長くすると、ピークパワー密度が低くなってしまう。ピークパワー密度の低下によって、界面の最高到達温度が950℃に達しにくくなる。このため、図2A、図3A、図4A、図5Aに示したように、界面の最高到達温度を950℃以上にするために必要なパルスエネルギ密度は、パルス幅が長くなるに従って高くなっている。
When the pulse width is increased while the pulse energy density is kept constant, the peak power density is lowered. Due to the decrease in the peak power density, the maximum temperature reached at the interface hardly reaches 950 ° C. Therefore, as shown in FIG. 2A, FIG. 3A, FIG. 4A, and FIG. 5A, the pulse energy density required to increase the maximum temperature at the interface to 950 ° C. or higher increases as the pulse width increases. .
パルス幅が10ns未満になると、表面が局所的に加熱され、界面まで熱が伝わりにくくなる。表面の温度上昇を抑制して、界面まで熱を伝えるために、パルス幅を10ns以上にすることが好ましい。パルス幅が50nsより長くなると、界面の最高到達温度を950℃以上にするために必要なパルスエネルギ密度が高くなってしまい、アニール効率が低下する。効率的なアニールを行うために、パルス幅を50ns以下にすることが好ましい。
When the pulse width is less than 10 ns, the surface is locally heated, making it difficult to transfer heat to the interface. In order to suppress the temperature rise on the surface and conduct heat to the interface, the pulse width is preferably 10 ns or more. If the pulse width is longer than 50 ns, the pulse energy density required for setting the maximum temperature at the interface to 950 ° C. or higher increases, and the annealing efficiency decreases. In order to perform efficient annealing, the pulse width is preferably 50 ns or less.
次に、図6A~図6Bを参照して、金属膜16(図1E)にチタンを用いた場合のレーザアニールの好ましい条件について説明する。4H-SiCからなる基板の表面に、チタン膜を形成し、チタン膜に波長355nmのパルスレーザビームを照射したときの、基板とチタン膜との界面の最高到達温度、及びチタン膜の表面の最高到達温度をシミュレーションにより求めた。図6A~図6Bに、シミュレーション結果を示す。
Next, referring to FIG. 6A to FIG. 6B, preferable conditions for laser annealing when titanium is used for the metal film 16 (FIG. 1E) will be described. When a titanium film is formed on the surface of a substrate made of 4H—SiC and the titanium film is irradiated with a pulsed laser beam having a wavelength of 355 nm, the highest temperature at the interface between the substrate and the titanium film, and the highest surface of the titanium film The ultimate temperature was determined by simulation. 6A to 6B show the simulation results.
図6Aに、基板とチタン膜との界面(以下、単に「界面」という。)の最高到達温度とチタン膜の厚さとの関係を示す。横軸は、チタン膜の厚さを単位「nm」で表し、縦軸は、界面の最高到達温度を単位「℃」で表す。図6Bに、チタン膜の表面(以下、単に「表面」という。)の最高到達温度と、チタン膜の厚さとの関係を示す。横軸は、チタン膜の厚さを単位「nm」で表し、縦軸は、表面の最高到達温度を単位「℃」で表す。パルスレーザビームのパルス幅Pwは10nsとした。
FIG. 6A shows the relationship between the maximum temperature reached at the interface between the substrate and the titanium film (hereinafter simply referred to as “interface”) and the thickness of the titanium film. The horizontal axis represents the thickness of the titanium film in the unit “nm”, and the vertical axis represents the maximum temperature reached at the interface in the unit “° C.”. FIG. 6B shows the relationship between the maximum temperature reached on the surface of the titanium film (hereinafter simply referred to as “surface”) and the thickness of the titanium film. The abscissa represents the thickness of the titanium film in the unit “nm”, and the ordinate represents the highest surface temperature in the unit “° C.”. The pulse width Pw of the pulse laser beam was 10 ns.
図6A及び図6Bの菱形記号、四角記号、三角記号、及び丸記号は、それぞれチタン膜の表面におけるパルスエネルギ密度(以下、単に「パルスエネルギ密度」という。)が0.8J/cm2、1.0J/cm2、1.2J/cm2、及び1.4J/cm2の条件でレーザアニールを行った場合の界面の最高到達温度を示す。チタンは、ニッケルに比べて熱伝導度が低いため、基板とチタン膜との界面まで熱が伝わりにくい。このため、界面の温度を950℃まで加熱したとき、ニッケル膜の表面の温度上昇に比べてチタン膜の表面の温度上昇が大きい。
The rhombus symbols, square symbols, triangle symbols, and circle symbols in FIGS. 6A and 6B each have a pulse energy density (hereinafter simply referred to as “pulse energy density”) of 0.8 J / cm 2 on the surface of the titanium film. The maximum temperature at the interface when laser annealing is performed under the conditions of 0.0 J / cm 2 , 1.2 J / cm 2 , and 1.4 J / cm 2 is shown. Since titanium has a lower thermal conductivity than nickel, heat is not easily transmitted to the interface between the substrate and the titanium film. For this reason, when the interface temperature is heated to 950 ° C., the temperature rise on the surface of the titanium film is larger than the temperature rise on the surface of the nickel film.
図6Aに示すように、パルス幅が10nsのとき、チタン膜の厚さが30nm~150nmの範囲内で、界面の最高到達温度を950℃以上にすることができる。
As shown in FIG. 6A, when the pulse width is 10 ns, the maximum temperature at the interface can be set to 950 ° C. or more within the range of the thickness of the titanium film of 30 nm to 150 nm.
図6Bに示すように、一例として、パルスエネルギ密度が1.2J/cm2以上の条件の下で、チタン膜の厚さを調節することにより、界面の最高到達温度を950℃以上にし、かつ表面の最高到達温度をチタンの融点である1668℃以下にすることができる。
As shown in FIG. 6B, by way of example, by adjusting the thickness of the titanium film under a condition where the pulse energy density is 1.2 J / cm 2 or more, the maximum temperature at the interface is set to 950 ° C. or more, and The highest surface temperature can be made 1668 ° C. or lower, which is the melting point of titanium.
ニッケル膜を用いたときのシミュレーション結果から、パルス幅を長くすると、界面の最高到達温度が950℃以上になるアニール条件を維持したまま、ニッケル膜の表面の温度が上昇しにくくなることが確認された。ニッケル膜に代えてチタン膜を用いた場合でも、パルス幅を長くすると、界面の最高到達温度が950℃以上になるアニール条件を維持したまま、チタン膜の表面の温度上昇を抑制することができる。
From the simulation results when using a nickel film, it was confirmed that increasing the pulse width makes it difficult for the surface temperature of the nickel film to rise while maintaining the annealing conditions at which the maximum interface temperature reaches 950 ° C or higher. It was. Even when a titanium film is used instead of the nickel film, if the pulse width is increased, the temperature rise on the surface of the titanium film can be suppressed while maintaining the annealing condition where the maximum temperature at the interface is 950 ° C. or higher. .
チタン膜の厚さが30nm~100nmの範囲内で、界面の最高到達温度が950℃、かつチタン膜の表面の最高到達温度が1668℃以下となるアニール条件が存在することがシミュレーションにより確認された。パルス幅が20ns以上、かつパルスエネルギ密度が1.6J/cm2以上の条件で、非溶融シリサイド化が可能であることが確認された。パルスエネルギ密度は、チタン膜の表面の最高到達温度がチタンの融点と等しくなる大きさよりも低い範囲内に設定される。
It was confirmed by simulation that there are annealing conditions in which the maximum reached temperature at the interface is 950 ° C. and the maximum reached temperature on the surface of the titanium film is 1668 ° C. or less within the thickness range of 30 nm to 100 nm. . It was confirmed that non-molten silicidation was possible under the conditions of a pulse width of 20 ns or more and a pulse energy density of 1.6 J / cm 2 or more. The pulse energy density is set in a range lower than the magnitude at which the maximum temperature reached on the surface of the titanium film is equal to the melting point of titanium.
上記シミュレーションでは、パルスレーザビームの波長を355nmとしたが、波長300nm~400nmの紫外域のパルスレーザビームを用いても、ほぼ同様の条件で非溶融シリサイド化を行うことが可能である。パルスレーザビームとして、Nd:YAGレーザ、Nd:YVO4レーザ、Nd:YLFレーザ等の固体レーザの3倍高調波、エキシマレーザ等を用いることができる。
In the above simulation, the wavelength of the pulse laser beam is set to 355 nm, but it is possible to perform non-molten silicidation under substantially the same conditions using a pulse laser beam in the ultraviolet region with a wavelength of 300 nm to 400 nm. As the pulse laser beam, a third harmonic of a solid-state laser such as an Nd: YAG laser, an Nd: YVO 4 laser, or an Nd: YLF laser, an excimer laser, or the like can be used.
SiCは、この波長域の光を吸収するため、金属膜16(図1F)に入射したパルスレーザビーム20が、基板10の第2の表面10Bまで到達しない。このため、素子構造15の温度上昇を抑制することができる。
Since SiC absorbs light in this wavelength range, the pulse laser beam 20 incident on the metal film 16 (FIG. 1F) does not reach the second surface 10B of the substrate 10. For this reason, the temperature rise of the element structure 15 can be suppressed.
上記シミュレーションでは、パルス幅Pwを10ns~50nsの範囲に設定したが、パルス幅Pwが50ns以上の範囲にも、非溶融シリサイド化を行うことが可能なアニール条件が存在する。パルス幅Pwが50ns以上になると、十分なピークパワー密度を維持するために、パルスエネルギ密度を高くすることが好ましい。
In the above simulation, the pulse width Pw is set in the range of 10 ns to 50 ns, but there are annealing conditions that enable non-molten silicidation even in the range of the pulse width Pw of 50 ns or more. When the pulse width Pw is 50 ns or more, it is preferable to increase the pulse energy density in order to maintain a sufficient peak power density.
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
10 基板
10A 第1の表面
10B 第2の表面
11 ガードリング
12 絶縁膜
13 ショットキ電極
14 表面電極
15 素子構造
16 金属膜
17 金属シリサイド膜
20 パルスレーザビーム 10substrate 10A first surface 10B second surface 11 guard ring 12 insulating film 13 Schottky electrode 14 surface electrode 15 element structure 16 metal film 17 metal silicide film 20 pulse laser beam
10A 第1の表面
10B 第2の表面
11 ガードリング
12 絶縁膜
13 ショットキ電極
14 表面電極
15 素子構造
16 金属膜
17 金属シリサイド膜
20 パルスレーザビーム 10
Claims (6)
- 炭化シリコンからなる基板の第1の表面に、ニッケルまたはチタンからなる金属膜を形成する工程と、
前記金属膜に紫外域の波長を有するパルスレーザビームを照射して、前記基板と前記金属膜との界面においてシリサイド反応を生じさせることにより、金属シリサイド膜を形成する工程と
を有し、
前記金属シリサイド膜を形成する工程において、前記金属膜の表面が溶融しない条件で前記パルスレーザビームを照射する半導体装置の製造方法。 Forming a metal film made of nickel or titanium on a first surface of a substrate made of silicon carbide;
Irradiating the metal film with a pulsed laser beam having a wavelength in the ultraviolet region to cause a silicide reaction at the interface between the substrate and the metal film, thereby forming a metal silicide film,
A method of manufacturing a semiconductor device, wherein, in the step of forming the metal silicide film, the pulsed laser beam is irradiated under a condition that a surface of the metal film is not melted. - 前記パルスレーザビームの波長が300nm~400nmの範囲内であり、
前記金属膜がニッケルからなり、前記金属膜の厚さが30nm~250nmの範囲内である請求項1に記載の半導体装置の製造方法。 The pulsed laser beam has a wavelength in the range of 300 nm to 400 nm;
The method of manufacturing a semiconductor device according to claim 1, wherein the metal film is made of nickel, and the thickness of the metal film is in a range of 30 nm to 250 nm. - 前記パルスレーザビームのパルス幅が10ns以上であり、前記基板の前記第1の表面におけるパルスエネルギ密度が1.3J/cm2以上であり、かつ前記金属膜の表面の最高到達温度がニッケルの融点と等しくなる大きさよりも低い請求項2に記載の半導体装置の製造方法。 The pulse width of the pulse laser beam is 10 ns or more, the pulse energy density on the first surface of the substrate is 1.3 J / cm 2 or more, and the highest temperature reached on the surface of the metal film is the melting point of nickel. The method for manufacturing a semiconductor device according to claim 2, wherein the method is lower than a size equal to.
- 前記パルスレーザビームの波長が300nm~400nmの範囲内であり、
前記金属膜がチタンからなり、前記金属膜の厚さが30nm~100nmの範囲内である請求項1に記載の半導体装置の製造方法。 The pulsed laser beam has a wavelength in the range of 300 nm to 400 nm;
The method of manufacturing a semiconductor device according to claim 1, wherein the metal film is made of titanium, and the thickness of the metal film is in a range of 30 nm to 100 nm. - 前記パルスレーザビームのパルス幅が10ns以上であり、前記基板の前記第1の表面におけるパルスエネルギ密度が1.2J/cm2以上であり、かつ前記金属膜の表面の最高到達温度がチタンの融点と等しくなる大きさよりも低い請求項4に記載の半導体装置の製造方法。 The pulse width of the pulse laser beam is 10 ns or more, the pulse energy density on the first surface of the substrate is 1.2 J / cm 2 or more, and the highest temperature reached on the surface of the metal film is the melting point of titanium. The method for manufacturing a semiconductor device according to claim 4, wherein the method is lower than a size equal to.
- 前記金属膜を形成する工程の前に、さらに、
前記基板の、前記第1の表面とは反対側の第2の表面に、素子構造を形成する工程と、
前記素子構造を形成した後、前記基板を、前記第1の表面から研削することにより薄くする工程と
を含み、
前記金属膜を形成する工程において、薄くされた前記基板の前記第1の表面に前記金属膜を形成する請求項1乃至5のいずれか1項に記載の半導体装置の製造方法。 Before the step of forming the metal film,
Forming an element structure on a second surface of the substrate opposite to the first surface;
After forming the device structure, the substrate is thinned by grinding from the first surface,
The method for manufacturing a semiconductor device according to claim 1, wherein in the step of forming the metal film, the metal film is formed on the first surface of the thinned substrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-277573 | 2012-12-20 | ||
JP2012277573A JP2014123589A (en) | 2012-12-20 | 2012-12-20 | Manufacturing method of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014097714A1 true WO2014097714A1 (en) | 2014-06-26 |
Family
ID=50978064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/077551 WO2014097714A1 (en) | 2012-12-20 | 2013-10-10 | Method for manufacturing semiconductor device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2014123589A (en) |
TW (1) | TW201426828A (en) |
WO (1) | WO2014097714A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113345806A (en) * | 2021-04-23 | 2021-09-03 | 北京华卓精科科技股份有限公司 | Laser annealing method of SiC-based semiconductor |
CN113851374A (en) * | 2021-11-05 | 2021-12-28 | 南京航空航天大学 | Surface pretreatment method for power input end for improving discharge processing efficiency of semiconductor material |
CN114414747A (en) * | 2022-03-14 | 2022-04-29 | 绍兴中芯集成电路制造股份有限公司 | Verification method for laser annealing uniformity |
CN117438297A (en) * | 2023-12-18 | 2024-01-23 | 合肥晶合集成电路股份有限公司 | Semiconductor device and preparation method thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2637210A1 (en) * | 2012-03-05 | 2013-09-11 | ABB Technology AG | Power semiconductor device and method for manufacturing thereof |
JP6323252B2 (en) * | 2014-08-20 | 2018-05-16 | 住友電気工業株式会社 | Method for manufacturing silicon carbide semiconductor device |
JP2016046449A (en) * | 2014-08-26 | 2016-04-04 | 住友重機械工業株式会社 | Semiconductor element manufacturing method |
JP6425457B2 (en) * | 2014-08-26 | 2018-11-21 | 住友重機械工業株式会社 | Semiconductor device manufacturing method |
JP6757728B2 (en) * | 2014-12-08 | 2020-09-23 | アーベーベー・シュバイツ・アーゲーABB Schweiz AG | Wide bandgap junction Barrier Schottky diode manufacturing method. |
JP2016127157A (en) * | 2015-01-05 | 2016-07-11 | 住友重機械工業株式会社 | Laser annealing device and method for manufacturing semiconductor element |
JP6639922B2 (en) * | 2016-01-20 | 2020-02-05 | 国立大学法人広島大学 | Silicon carbide semiconductor device and method of manufacturing the same |
JP2017224694A (en) * | 2016-06-15 | 2017-12-21 | 三菱電機株式会社 | Sic semiconductor device and manufacturing method therefor |
JP7428481B2 (en) * | 2019-06-07 | 2024-02-06 | 住友重機械工業株式会社 | Laser annealing method and laser control device |
JP7544449B2 (en) | 2021-03-12 | 2024-09-03 | 富士電機株式会社 | Method for manufacturing silicon carbide semiconductor device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08264468A (en) * | 1994-09-12 | 1996-10-11 | Ion Kogaku Kenkyusho:Kk | Impurity doping method to silicon carbide and electrode formation method |
JPH10284436A (en) * | 1997-04-11 | 1998-10-23 | Matsushita Electric Ind Co Ltd | Method of forming ohmic electrode |
JP2007534143A (en) * | 2003-08-14 | 2007-11-22 | クリー インコーポレイテッド | Local annealing of metal-silicon carbide ohmic contacts and devices so formed |
JP2010186991A (en) * | 2009-01-16 | 2010-08-26 | Showa Denko Kk | Method for manufacturing semiconductor element, semiconductor element, and semiconductor device |
JP2012069798A (en) * | 2010-09-24 | 2012-04-05 | Toyota Motor Corp | Method of manufacturing semiconductor device |
JP2012099598A (en) * | 2010-11-01 | 2012-05-24 | Sumitomo Electric Ind Ltd | Semiconductor device and manufacturing method thereof |
JP2012156390A (en) * | 2011-01-27 | 2012-08-16 | Sumitomo Heavy Ind Ltd | Laser annealing method and laser annealing apparatus |
-
2012
- 2012-12-20 JP JP2012277573A patent/JP2014123589A/en active Pending
-
2013
- 2013-10-10 WO PCT/JP2013/077551 patent/WO2014097714A1/en active Application Filing
- 2013-10-17 TW TW102137488A patent/TW201426828A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08264468A (en) * | 1994-09-12 | 1996-10-11 | Ion Kogaku Kenkyusho:Kk | Impurity doping method to silicon carbide and electrode formation method |
JPH10284436A (en) * | 1997-04-11 | 1998-10-23 | Matsushita Electric Ind Co Ltd | Method of forming ohmic electrode |
JP2007534143A (en) * | 2003-08-14 | 2007-11-22 | クリー インコーポレイテッド | Local annealing of metal-silicon carbide ohmic contacts and devices so formed |
JP2010186991A (en) * | 2009-01-16 | 2010-08-26 | Showa Denko Kk | Method for manufacturing semiconductor element, semiconductor element, and semiconductor device |
JP2012069798A (en) * | 2010-09-24 | 2012-04-05 | Toyota Motor Corp | Method of manufacturing semiconductor device |
JP2012099598A (en) * | 2010-11-01 | 2012-05-24 | Sumitomo Electric Ind Ltd | Semiconductor device and manufacturing method thereof |
JP2012156390A (en) * | 2011-01-27 | 2012-08-16 | Sumitomo Heavy Ind Ltd | Laser annealing method and laser annealing apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113345806A (en) * | 2021-04-23 | 2021-09-03 | 北京华卓精科科技股份有限公司 | Laser annealing method of SiC-based semiconductor |
CN113345806B (en) * | 2021-04-23 | 2024-03-05 | 北京华卓精科科技股份有限公司 | Laser annealing method of SiC-based semiconductor |
CN113851374A (en) * | 2021-11-05 | 2021-12-28 | 南京航空航天大学 | Surface pretreatment method for power input end for improving discharge processing efficiency of semiconductor material |
CN114414747A (en) * | 2022-03-14 | 2022-04-29 | 绍兴中芯集成电路制造股份有限公司 | Verification method for laser annealing uniformity |
CN114414747B (en) * | 2022-03-14 | 2022-08-12 | 中芯越州集成电路制造(绍兴)有限公司 | Verification method for laser annealing uniformity |
CN117438297A (en) * | 2023-12-18 | 2024-01-23 | 合肥晶合集成电路股份有限公司 | Semiconductor device and preparation method thereof |
CN117438297B (en) * | 2023-12-18 | 2024-02-27 | 合肥晶合集成电路股份有限公司 | Semiconductor device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201426828A (en) | 2014-07-01 |
JP2014123589A (en) | 2014-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014097714A1 (en) | Method for manufacturing semiconductor device | |
JP6164220B2 (en) | Manufacturing method of semiconductor device | |
JP4924690B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
WO2016031312A1 (en) | Method for manufacturing semiconductor element | |
US8501548B2 (en) | Method for producing a semiconductor device using laser annealing for selectively activating implanted dopants | |
BR112016022522A2 (en) | SOLAR CELL SHEET-BASED METALIZATION | |
JP2007123300A (en) | Method for activating impurities, laser annealer, semiconductor device and method for fabricating same | |
JP2013033953A (en) | Method for curing defects in semiconductor layer | |
JP2010186991A (en) | Method for manufacturing semiconductor element, semiconductor element, and semiconductor device | |
JPWO2006087786A1 (en) | Manufacturing method of solar cell | |
JP2003229568A (en) | Manufacturing method for semiconductor device and semiconductor device | |
JP2010212530A (en) | Method of manufacturing semiconductor device | |
JP5962475B2 (en) | Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device | |
KR20130108001A (en) | Selective low-temperature ohmic contact formation method for iii-nitride heterostructure device | |
JP2012146716A (en) | Manufacturing method of semiconductor device | |
JP2012004185A (en) | Method of manufacturing silicon carbide semiconductor device | |
JP6425457B2 (en) | Semiconductor device manufacturing method | |
JP6091703B2 (en) | Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device | |
JPWO2006098513A1 (en) | Heat treatment method and semiconductor crystallization method | |
JP2004039984A (en) | Manufacturing method for semiconductor device using laser irradiation | |
JP6165313B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP7155759B2 (en) | Semiconductor device and method for manufacturing semiconductor device | |
WO2014128113A1 (en) | Method for forming metal silicide layers | |
WO2018179798A1 (en) | Semiconductor device manufacturing method | |
TW201405857A (en) | Method for manufacturing a photovoltaic device using laser irradiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866073 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13866073 Country of ref document: EP Kind code of ref document: A1 |