WO2014097346A1 - Heat exchanger and sanitary cleaning device with same - Google Patents

Heat exchanger and sanitary cleaning device with same Download PDF

Info

Publication number
WO2014097346A1
WO2014097346A1 PCT/JP2012/008053 JP2012008053W WO2014097346A1 WO 2014097346 A1 WO2014097346 A1 WO 2014097346A1 JP 2012008053 W JP2012008053 W JP 2012008053W WO 2014097346 A1 WO2014097346 A1 WO 2014097346A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
heat transfer
flow path
transfer surface
heat exchanger
Prior art date
Application number
PCT/JP2012/008053
Other languages
French (fr)
Japanese (ja)
Inventor
良一 古閑
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12886907.0A priority Critical patent/EP2784407B1/en
Priority to JP2013552748A priority patent/JP5460937B1/en
Priority to PCT/JP2012/008053 priority patent/WO2014097346A1/en
Priority to CN201280056799.5A priority patent/CN104011479B/en
Publication of WO2014097346A1 publication Critical patent/WO2014097346A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/24Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • E03D9/08Devices in the bowl producing upwardly-directed sprays; Modifications of the bowl for use with such devices ; Bidets; Combinations of bowls with urinals or bidets; Hot-air or other devices mounted in or on the bowl, urinal or bidet for cleaning or disinfecting

Definitions

  • the present invention relates to a heat exchanger and a sanitary washing apparatus including the heat exchanger, and more particularly to a heat exchanger provided in a water supply path having an upstream end to be connected to a water supply source and having a downstream end connected to a nozzle.
  • the present invention relates to a sanitary washing device.
  • a heat exchanger shown in Patent Document 1 is known as a heat exchanger that is installed in a limited narrow space such as a sanitary washing device installed in a toilet and has a very small flow rate.
  • a flow path space between the heat transfer surface of the flat heater and the casing, a header portion between the flow path space and the water inlet, and a guide rib is provided in the header portion.
  • the washing water that has flowed into the header portion from the water inlet is guided by the guide ribs in the header portion and flows into the flow path space.
  • the washing water which flowed into the channel space flows in a laminar flow by natural convection along the heat transfer surface of the flat heater.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a compact heat exchanger capable of reducing the generation of scale and a sanitary washing apparatus having the compact heat exchanger.
  • a heat exchanger is a flat plate heater having a heat transfer surface extending in the vertical direction, a main surface facing the heat transfer surface of the flat plate heater, and positioned below the flat plate heater.
  • a casing having a heater accommodating space defined by a lower surface, an upper surface located above the flat heater, and both side surfaces sandwiching the flat heater, and the heater accommodating space includes the heat transfer surface.
  • a flow path space formed in a gap between the main surface and the casing, the casing being opened in the lower surface and extending in the extending direction of the lower end of the flat heater, and the heater accommodating space
  • An inlet that communicates with the heater, an outlet that is provided above the inlet and communicates with the heater housing space, and an inflow that extends in the extending direction of the lower end of the flat heater below the heater housing space
  • a communication passage connected to the inflow passage and connected to the heater accommodating space via the inflow port, and projecting from the main surface toward the heat transfer surface in the flow passage space, and both side surfaces
  • a plurality of first ribs extending between the second ribs and a second rib extending in a direction perpendicular to the extending direction of the lower end of the flat heater in the communication path.
  • the present invention has the configuration described above, and has an effect that it is possible to provide a compact heat exchanger capable of reducing the generation of scale and a sanitary washing apparatus including the heat exchanger.
  • FIG. 2 It is a perspective view which shows the sanitary washing apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows schematically the structure of the washing
  • the heat exchanger includes a flat heater having a heat transfer surface extending in the vertical direction, a main surface facing the heat transfer surface of the flat heater, and a lower surface located below the flat heater.
  • a casing having a heater accommodating space defined by an upper surface located above the flat heater and both side surfaces sandwiching the flat heater, and the heater accommodating space includes the heat transfer surface and the casing.
  • the casing includes a flow path space formed in a gap with the main surface facing the casing, and the casing is opened in the lower surface and extends in the extending direction of the lower end of the flat plate heater.
  • An inflow port that is in communication with the heater housing space, and an inflow passage that extends in the extending direction of the lower end of the flat plate heater below the heater housing space.
  • a communication passage connected to the inlet passage and connected to the heater housing space via the inlet, and projecting from the main surface toward the heat transfer surface in the flow passage space, between the both side surfaces And a plurality of first ribs extending in the communication path and a second rib extending in a direction perpendicular to the extending direction of the lower end of the flat heater in the communication path.
  • the heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the first rib has a cross-sectional shape in which a protruding dimension from the main surface is higher on the outlet side than on the inlet side. You may do it.
  • a heat exchanger is the heat exchanger according to the first or second aspect, wherein the flow path space includes a first flow path communicating with the inflow port, and a position closer to the outflow port than the first flow path. And a second channel having a gap size larger than the gap size of the first channel, and the first rib may be disposed in the second channel.
  • a heat exchanger according to a fourth aspect of the present invention is the heat exchanger according to the third aspect, wherein the distance between the first rib and the heat transfer surface of the flat heater is larger than the gap size of the first flow path. May be.
  • a heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to any one of the first to fourth aspects, wherein the distance between the first rib and the heat transfer surface of the flat heater is greater than that of the first rib.
  • the plurality of first ribs may be formed so as to be larger than the distance between the first rib arranged on the inlet side and the heat transfer surface of the flat plate heater.
  • a heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, wherein the inflow path includes a water inlet opening perpendicularly to an extending direction of a lower end of the flat heater. You may go out.
  • a sanitary washing apparatus comprising: the heat exchanger according to any one of claims 1 to 6; and a water supply provided with the heat exchanger and having an upstream end to be connected to a water supply source And a nozzle connected to the downstream end of the water supply channel.
  • FIG. 1 is a perspective view showing a sanitary washing device according to Embodiment 1 of the present invention.
  • the sanitary washing device 10 is disposed on a toilet 12 in a toilet and includes a main body 16, a toilet seat 18, a toilet lid 20, and an operation unit 22.
  • the main body 16 is disposed on the rear side of the toilet seat 18, that is, on the rear side as viewed from the seated user.
  • the main body 16 is a horizontally long casing, and a heat exchanger 28 having a substantially rectangular parallelepiped shape is provided therein as a cleaning unit.
  • FIG. 2 is a diagram schematically showing the configuration of the cleaning unit in the sanitary cleaning apparatus shown in FIG.
  • the cleaning unit includes a water supply path 24, a heat exchanger 28, and a nozzle 32, and may further include a tank 26 and an electromagnetic valve 27.
  • Each component in the cleaning unit is controlled by the control unit 29.
  • the water supply path 24 includes an upstream end to be connected to the water supply source 30 and a downstream end connected to the nozzle 32.
  • a heat exchanger 28, a tank 26, and an electromagnetic valve 27 are provided in this water supply path 24 in order toward the downstream side. For this reason, tap water (fluid, liquid, washing water) from the water supply source 30 is introduced into the nozzle 32 via the heat exchanger 28 and the tank 26 through the water supply path 24.
  • FIG. 3 is an external view showing a configuration of the heat exchanger 28 viewed from the front side.
  • the heat exchanger 28 includes a rectangular parallelepiped casing 38, and a water inlet 80 and a water outlet 82 are provided on one side surface of the casing 38.
  • the casing 38 has a substantially rectangular shape when viewed from the front, and is formed such that the length in the left-right direction is larger than the height in the vertical direction.
  • the water outlet 82 is provided above the water inlet 80, and the water inlet 80 and the water outlet 82 protrude from the side surface of the casing 38.
  • the “length direction” of the heat exchanger 28 is also referred to as “X direction” or “left-right direction”, and the “height direction” is also referred to as “Z direction” or “vertical direction”.
  • FIG. 4 is an external view showing the configuration of the heat exchanger 28 as viewed from the direction of the arrow (side surface side) in FIG.
  • the side surface of the casing 38 of the heat exchanger 28 has a vertically long and substantially rectangular shape, and the thickness dimension thereof is smaller than the height dimension.
  • the “thickness direction” of the heat exchanger 28 is also referred to as “Y direction” or “front-rear direction”.
  • FIG. 5 is a cross-sectional view showing the configuration of the heat exchanger 28 cut along the line BB shown in FIG. 6A is a cross-sectional view showing the configuration of the heat exchanger 28 cut along the line CC shown in FIG.
  • a flat plate heater 34 is provided in the casing 38.
  • the flat heater 34 is a member for heating the cleaning water, and is accommodated in the heater accommodating space 48 of the casing 38.
  • the flat heater 34 has a rectangular flat plate shape, and both surfaces thereof (two surfaces facing the front side and the back side in a state of being accommodated in the heater accommodating space 48) are the first heat transfer surface 36a and the second heat transfer surface 36a.
  • the heat transfer surface 36 includes the heat surface 36b.
  • the first and second heat transfer surfaces 36a and 36b are controlled so as not to be locally higher than a predetermined temperature.
  • This predetermined temperature is set to 100 ° C. or lower, preferably 80 ° C. or lower, which is the boiling point of water. However, the predetermined temperature may be appropriately determined according to the concentration of ions such as calcium and magnesium contained in water, the required durability time of the heater, and the like.
  • the casing 38 is a housing for accommodating the flat heater 34 in its internal space (heater accommodating space 48).
  • the casing 38 has an inflow path 50 and a communication path 52 in addition to the heater accommodating space 48 therein, and has a water inlet 80 connected to the inflow path 50 and an upper portion of the heater accommodating space 48 on the side.
  • the water outlet 82 is provided.
  • the casing 38 is configured, for example, by combining a first flow path forming member 40 and a second flow path forming member 42 that are divided on the XZ plane.
  • the heater accommodating space 48 is substantially plate-shaped, and is defined by the inner surface of the casing 38, that is, two front and rear main surfaces 48a, two left and right side surfaces 48b, an upper surface 48c, and a lower surface 48d.
  • the two front and rear main surfaces 48a are opposed to the first and second heat transfer surfaces 36a and 36b of the flat heater 34, respectively, and extend in parallel to the heat transfer surfaces 36a and 36b.
  • the left and right side surfaces 48b extend perpendicular to the heat transfer surfaces 36a and 36b so as to sandwich the flat heater 34 therebetween.
  • the upper surface 48 c is located above the flat heater 34 and extends in the extending direction of the upper end of the flat heater 34 (that is, the X direction (left-right direction)).
  • the lower surface 48d is located below the flat heater 34, faces the lower end of the flat heater 34, and extends in the extending direction (that is, the X direction (left-right direction)).
  • the inflow port 70 opens at a lower surface 48d that defines the lower portion of the heater accommodating space 48, and extends in the extending direction of the lower end of the flat heater 34 (that is, the X direction (left and right direction)).
  • the outflow port 72 is disposed above the inflow port 70, and opens to, for example, a side surface 48 b that defines one side of the heater accommodating space 48, and communicates with the outflow port 82 of the casing 38. .
  • the lower part of the heater housing space 48 communicates with the inflow port 70, and the upper part communicates with the outflow port 72.
  • the flow path space 74 is formed in a gap between the main surface 48 a that defines the heater housing space 48 and the heat transfer surface 36 of the flat heater 34. That is, the flow path space 74 includes a first flow path space 74a in a gap between one (front side, front side) main surface 48a and the first heat transfer surface 36a and the other (back side, rear side) main surface. And a second flow path space 74b in the gap between 48a and the second heat transfer surface 36b.
  • the flow path space 74 is divided into a plurality (three in this embodiment) in the vertical direction according to the difference in the width (thickness) dimension of the gap between the main surface 48a and the heat transfer surface 36. That is, the flow path space 74 includes a lower flow path 74f, a middle flow path 74s, and an upper flow path 74t. These three flow paths 74f, 74s, and 74t have the same size in the left-right direction (X direction), but the width dimension (the dimension in the front-rear direction) is larger in the upper flow path.
  • the width dimension and the cross-sectional area in the XY plane of the flow path space 74 increase in stages in the order of the lower flow path 74f, the middle flow path 74s, and the upper flow path 74t.
  • the width dimension w1 of the lower flow path 74f is larger than any of the width dimension of the inflow port 70 and the distance from the heat transfer surface 36 of the maximum velocity flow described later, for example, 0.5-1. Set to 0 mm.
  • the width dimension w2 of the middle channel 74s is larger than both the width dimension w1 and the width dimension from which bubbles are removed, and is set to 1.5 to 3.0 mm, for example.
  • the width dimension w3 of the upper flow path 74t is set to be larger than both the width dimension w2 and the width dimension from which bubbles are removed.
  • the buffer rib 76 is provided in the wide middle flow path 74s and the upper flow path 74t, and forms a first rib for mixing the flow in the flow paths 74s and 74t.
  • six buffer ribs 76 are arranged on each main surface 48a forming the middle flow path 74s, and two buffer ribs 76 are arranged on each main surface 48a forming the upper flow path 74t.
  • the plurality of buffer ribs 76 extend in the left-right direction (X direction), and are provided in parallel to each other so as to be equally spaced in the up-down direction (Z direction).
  • Each buffer rib 76 protrudes from the main surface 48 a forming the heater accommodating space 48 toward each heat transfer surface 36, and extends over the entire length between both side surfaces 48 b of the heater accommodating space 48.
  • the distance between the buffer rib 76 and each heat transfer surface 36 is larger than the width w1 of the lower flow path 74f and smaller than half of the widths w2 and w3 of the middle flow path 74s and the upper flow path 74t.
  • the height of the buffer rib 76 from the main surface 48a is set. Further, the height (protrusion dimension) of the buffer rib 76 from the main surface 48a is set so that the flow of the maximum speed described later is positioned between the buffer rib 76 and each heat transfer surface 36.
  • the buffer rib 76 If the height of the buffer rib 76 is too large, bubbles cannot pass between the buffer rib 76 and the heat transfer surface 36. On the other hand, if the height of the buffer rib 76 is too small, the flow in the flow paths 74s and 74t cannot be sufficiently mixed, or the flow in the flow paths 74s and 74t cannot be accelerated.
  • the inflow path 50 extends in the extending direction (left-right direction) of the lower end of the flat heater 34, and one end thereof is connected to the water inlet 80.
  • an opening 78 is provided in the upper part of the inflow channel 50.
  • the opening 78 is provided over the entire length of the inflow passage 50 and extends in the extending direction of the lower end of the flat heater 34.
  • the width dimension (front-rear direction dimension) of the opening 78 is narrower than the width dimension of the lower flow path 74 f of the flow path space 74, specifically based on the flow rate per unit time of the wash water flowing from the water inlet 80. It is done.
  • the width of the opening 78 is too narrow, the pressure loss of the washing water that passes through the opening 78 increases. On the other hand, if the width of the opening 78 is too wide, the front and rear speeds of the cleaning water flowing in from the water inlet 80 are sufficiently reduced in the inflow path 50 and then the cleaning water is passed through the opening 78 upward. Becomes difficult.
  • the communication path 52 is a flow path for connecting the inlet 70 of the heater housing space 48 and the opening 78 of the inflow path 50 to increase the speed of the washing water flowing upward from the opening 78 toward the inlet 70. .
  • the communication path 52 extends in the extending direction of the lower end of the flat heater 34 and extends upward while being bent in the front-rear direction from the opening 78 toward the inflow port 70. More specifically, the communication passage 52 extends upward from the opening 78, bends at a substantially right angle in the middle and extends in the front-rear direction, further bends at a substantially right angle in the middle and extends upward, and flows into the inflow port. 70 (see also FIG. 7 described later).
  • the width dimension of the communication path 52 and the cross-sectional area of the XY plane are smaller than the width dimension of the inflow path 50 and the cross-sectional area of the XY plane, and the width dimension of the lower flow path 74f of the flow path space 74 and the cross-sectional area of the XY plane.
  • FIG. 6B is an enlarged view of a range D in FIG. 6A.
  • the buffer rib 76 has a substantially right triangle or trapezoidal cross section in the YZ plane, and the height from the main surface 48a is larger than that of the inlet 70 (FIG. 6A). 72 (FIG. 5) is large.
  • the buffer rib 76 has an inclined surface 76a, a top portion 76b, and a vertical surface 76c.
  • the slope 76a rises smoothly at an obtuse angle from the main surface 48a to the top 76b obliquely upward. That is, the inclined surface 76a is a surface that approaches the heat transfer surface 36 and moves upward to reach the top portion 76b.
  • the top portion 76 b is farthest from the main surface 48 a in the buffer rib 76, in other words, is located closest to the heat transfer surface 36.
  • the vertical surface 76c is a surface extending perpendicularly to the heat transfer surface 36 and the main surface 48a from the top 76b.
  • the cross-sectional shape of the buffer rib 76 on the YZ plane is not limited to the right triangle shape or trapezoidal shape shown in FIG. 6B.
  • the angle formed between the upstream surface (the above-mentioned “slope 76a”) and the main surface 48a in the flow of the washing water is larger than the angle formed between the downstream surface (the “vertical surface 76c”) and the main surface 48a. It is preferable to be configured to be large.
  • the buffer rib 76 protruding from the main surface 48 a toward the heat transfer surface 36 has a height dimension from the main surface 48 a toward the upper end of the flat heater 34 in the YZ plane perpendicular to the heat transfer surface 36. It has at least an inclined surface that becomes higher. The inclined surface is preferably inclined so as to guide the flow of the washing water from the inlet 70 side toward the outlet 72.
  • FIG. 7 is an enlarged view of a range E in FIG. 6A.
  • the guide rib 53 is a second rib that guides the cleaning water flowing through the communication passage 52 while rectifying upward, and includes a first guide rib portion 60 and a second guide rib portion 68. Yes.
  • the L-shaped first guide rib portion 60 extends upward from the opening 78 of the inflow passage 50 and bends in the front-rear direction along the communication path 52.
  • the second guide rib portion 68 extends upward from the vicinity of the first guide rib portion 60 toward the inlet 70 of the heater accommodating space 48.
  • a plurality of these guide ribs 53 are arranged at intervals in the left-right direction.
  • the intervals between the plurality of guide ribs 53 are set according to the flow rate of the cleaning water flowing from the inflow path 50 to the communication path 52. For example, when the cleaning water flows at a substantially uniform flow rate in the left-right direction, the arrangement intervals of the plurality of guide ribs 53 are set equal. When a large amount of washing water flows on the water inlet 80 side in the left-right direction, the closer to the water inlet 80, the narrower the interval between the plurality of guide ribs 53 is set.
  • FIG. 8 is an external view showing a configuration when the first flow path forming member 40 is viewed from the inner surface side (rear).
  • FIG. 9 is a perspective view of the first flow path forming member 40.
  • the first flow path forming member 40 includes an inner surface and an outer surface parallel to the XZ plane. This inner surface refers to one of the two surfaces of the first flow path forming member 40 including the main surface 48 a that defines the heater accommodating space 48.
  • the outer surface refers to the other surface of both surfaces of the first flow path forming member 40.
  • the first flow path forming member 40 is formed of a resin excellent in heat resistance, impact resistance, and workability, for example, a reinforced ABS resin obtained by compounding glass fiber with ABS resin.
  • the first flow path forming member 40 mainly includes a first plate-like portion 54 that forms an internal space of the casing 38 (the heater accommodating space 48, the inflow passage 50, and the communication passage 52), and the periphery of the first plate-like portion 54. And a first flange 56 provided to surround the first flange 56.
  • first plate-like portion 54 that forms an internal space of the casing 38 (the heater accommodating space 48, the inflow passage 50, and the communication passage 52), and the periphery of the first plate-like portion 54.
  • a first flange 56 provided to surround the first flange 56.
  • a first protrusion 55 is provided above the first plate-like portion 54 and below the first flange 56.
  • the first protrusion 55 protrudes rearward from one surface of the first plate-like portion 54 and extends in the left-right direction. Furthermore, it bends downward at one of the left and right directions (closer to the water outlet 82), and as a result, it is generally L-shaped as a whole.
  • a first recess 57 formed in a substantially L shape along the first protrusion 55 is provided below the first protrusion 55.
  • the first recess 57 has a bottom surface that is recessed forward with respect to the top surface of the first protrusion 55.
  • a first wall upper portion 59 is provided below the first depression 57.
  • the top surface of the first wall upper portion 59 has a substantially rectangular shape, and the top surface forms a main surface 48a as will be described later. Accordingly, as described above, the plurality of buffer ribs 76 are extended over the entire area in the left-right direction on the top surface (main surface 48a) of the first wall upper portion 59.
  • a first lateral protrusion 58 extending in the left-right direction is provided below the first wall upper portion 59. The first lateral protrusion 58 protrudes further rearward from the top surface of the first wall upper portion 59, and the cross section on the YZ plane is rectangular as shown in FIG.
  • a first wall lower portion 61 is provided below the first lateral protrusion 58.
  • the first wall lower portion 61 has a bottom surface that is recessed forward with respect to the top surface of the first lateral protrusion 58, and this bottom surface extends in the left-right direction along the first lateral protrusion 58. Yes.
  • a first vertical protrusion 60 is provided at the first lateral protrusion 58 and the first wall lower portion 61. More specifically, the first vertical protrusion 60 is composed of a portion protruding downward from the lower surface of the first lateral protrusion 58 and a portion protruding rearward from the bottom surface of the first wall lower portion 61, as viewed from the side. It is substantially L-shaped (see FIG. 7).
  • FIG. 10 is an external view showing a configuration when the second flow path forming member 42 is viewed from the inner surface side (front).
  • FIG. 11 is a perspective view of the second flow path forming member 42.
  • the second flow path forming member 42 includes an inner surface and an outer surface parallel to the XZ plane. This inner surface refers to one of the two surfaces of the second flow path forming member 42 including the main surface 48 a that defines the heater accommodation space 48.
  • the outer surface refers to the other surface of both surfaces of the second flow path forming member 42.
  • the second flow path forming member 42 is formed of a resin excellent in heat resistance, impact resistance and workability.
  • the second flow path forming member 42 includes a second plate-like portion 62 that mainly forms an internal space of the casing 38 (the heater accommodating space 48, the inflow passage 50, and the communication passage 52), and the periphery of the second plate-like portion 62. And a second flange 64 provided so as to surround the outer periphery. The second flange 64 is formed to protrude forward with respect to the second plate-like portion 62.
  • the front-facing surface of each portion is appropriately referred to as a “top surface” or a “bottom surface”.
  • the second plate-like portion 62 has a second wall portion 65 that occupies most of the region surrounded by the second flange 64.
  • the top surface of the second wall portion 65 has a substantially rectangular shape, and the top surface forms a main surface 48a as will be described later. Therefore, as already described, the plurality of buffer ribs 76 extend over the entire region in the left-right direction on the top surface (main surface 48a) of the second wall portion 65.
  • a second lateral protrusion 66 extending in the left-right direction is provided below the second wall portion 65.
  • the second lateral protrusion 66 is formed in a step shape, and has a low part 66a having a small forward protruding dimension and a high part 66b on the lower side and having a large forward protruding dimension. .
  • the second horizontal protrusion 66 is provided with a plurality of second vertical protrusions 68.
  • the second vertical protrusion 68 is provided on the top surface of the low portion 66a of the second horizontal protrusion 66, protrudes forward from the top surface, and extends in the vertical direction.
  • a second recess 67 extending in the left-right direction is provided below the second lateral protrusion 66.
  • the second recessed portion 67 has a bottom surface that is recessed backward with respect to the top surface of the second lateral protrusion 66.
  • each of the first protrusion 55 and the first wall lower portion 61 of the first flow path forming member 40 is placed inside the second flange 64 of the second flow path forming member 42.
  • the first flange 56 of the first flow path forming member 40 and the second flange 64 of the second flow path forming member 42 are joined in a watertight manner by ultrasonic welding.
  • the casing 38 is formed.
  • the upper surface of the heater defines a part of the heater housing space 48.
  • the lower surface of the second flange 64 of the second flow path forming member 42, the top surface of the second wall portion 65, and the upper surface of the lower portion 66 a of the second lateral protrusion 66 constitute another part of the heater accommodating space 48.
  • the top surface of the first wall upper portion 59 forms a main surface 48 a that faces the first heat transfer surface 36 a of the flat heater 34, and the top surface of the second wall portion 65 is the second surface of the flat heater 34.
  • the main surface 48a which opposes the heat-transfer surface 36b is comprised.
  • the upper surface of the first lateral protrusion 58 and the upper surface of the lower portion 66 a of the second lateral protrusion 66 form a lower surface 48 d that faces the lower end of the flat heater 34.
  • the communication path 52 is defined by the interval and the interval between the bottom surface of the first wall lower portion 61 and the top surface of the high portion 66 b of the second lateral protrusion 66.
  • the lower part of the top surface of the first wall lower part 61 covers the opening of the second recess part 67 and defines the inflow path 50.
  • the first vertical protrusion 60 forms a first guide rib portion 60 of the guide rib 53
  • the second vertical protrusion 68 forms a second guide rib portion 68 of the guide rib 53.
  • the flat heater 34 includes a ceramic base 44, a heating wire 46, and electrodes (not shown).
  • the heating wire 46 is a resistor pattern printed on the ceramic substrate 44, and both ends thereof are connected to electrodes. When an electric current is passed through the heating wire 46 from the electrode, the heating wire 46 generates heat, the ceramic base 44 having excellent heat conduction transfers the heat, and each heat transfer surface 36 becomes high temperature.
  • a heating wire 46 is provided on the ceramic substrate 44 so that the amount of heat generated per unit area on the heat transfer surface 36 increases as it goes downward. For example, as shown in FIG.
  • the washing water is increased in speed upward and passes through the communication path 52 at a high speed. Thereby, the bubbles contained in the cleaning water pass through the communication path 52 without staying along the fast flow of the cleaning water.
  • the cleaning water passes between the guide ribs 53 in the communication passage 52.
  • the guide rib 53 extending in the vertical direction guides the cleaning water upward perpendicular to the horizontal direction, and the flow rate of the cleaning water flowing from the communication path 52 into the heater accommodating space 48 is substantially uniform in the horizontal direction.
  • the shape of each part is designed so that the Reynolds number of the fluid (washing water) in the lower channel 74f, the middle channel 74s, and the upper channel 74t is about 200 or less. That is, the wash water flowing through each flow path space 74 flows in a laminar flow state because the Reynolds number is much smaller than the critical Reynolds number: 2300.
  • the flow of cleaning water is fast and forced convection occurs. Therefore, the flow of the cleaning water has a high speed in the width direction (front-rear direction) with respect to the heat transfer surface 36, the heat transfer rate from the heat transfer surface 36 to the cleaning water is increased, and the cleaning water is efficiently heated. . Further, the heat transfer surface 36 applies heat to the washing water, and the temperature is lowered, so that the heat transfer surface 36 is prevented from being overheated. Further, the flow is fast in the lower flow path 74f, and the bubbles contained in the wash water are quickly carried upward along with the flow.
  • FIG. 13A is a drawing schematically showing the flow of cleaning water in the heater accommodating space 48.
  • FIG. 13B is a drawing schematically showing a flow of cleaning water in a heater housing space without a buffer rib.
  • the cleaning water flows from the lower flow path 74f of the heater accommodating space 48 into the middle flow path 74s.
  • the width of the flow path space 74 is suddenly widened in the direction in which the main surface 48a of the casing 38 is away from the heat transfer surface 36 at the boundary portion from the lower flow path 74f to the middle flow path 74s.
  • separation of the flow occurs, and the flow along the main surface 48a is separated to the heat transfer surface 36 side.
  • this separated flow merges with the natural convection flow along the heat transfer surface 36, and the flow on the heat transfer surface 36 side becomes faster. Thereby, a heat transfer rate becomes high and washing water is heated quickly.
  • the flow separated from the main surface 48a is at a lower temperature than the flow along the heat transfer surface 36, the flow along the heat transfer surface 36 is suppressed from boiling by mixing them.
  • the washing water flows in a laminar flow by natural convection. For this reason, as shown in FIG. 13B, the washing water flows in parallel along the heat transfer surface 36 in the flow path space 74 without the buffer rib 76. Since the speed of the flow by this natural convection is very small, the temperature of the wash water in the vicinity of the heat transfer surface 36 becomes very high and is likely to boil.
  • a curve F in FIG. 14 schematically represents the speed of the cleaning water at each position on the straight line S temporarily provided along the width direction of the heater accommodating space.
  • the speed of the washing water flowing through the position on the straight line S is increased.
  • the length of the arrow shown between the straight line S and the curve F indicating the flow of the maximum speed schematically represents the speed of the washing water at the base end position Sm of the arrow.
  • FIG. 15 is a graph showing the relationship between the vertical position (horizontal axis) in the flow path space of FIG. 13A and the distance (vertical axis) from the heat transfer surface of the flow at the maximum speed and the flow at the minimum speed.
  • the range of 0 to 15 mm corresponds to the lower flow path 74f
  • the range of 15 to 40 mm corresponds to the middle flow path 74s
  • the range of 40 to 50 mm corresponds to the upper flow path 74t.
  • the line indicated by max indicates the position of the flow at the maximum speed.
  • the flow of the maximum speed at which the washing water speed is the highest is located at a distance of about 0.5 mm from the heat transfer surface 36.
  • the flow at the maximum speed is located in the vicinity of the heat transfer surface 36 at a distance of about 0.5 mm from the heat transfer surface 36.
  • the distance from the heat transfer surface 36 of the flow at the maximum speed is slightly increased as the vertical position in the flow path space 74 is directed upward.
  • the flow rate space 74 gradually increases in width toward the upper side, so that the flow at the maximum speed is separated from the heat transfer surface 36.
  • the height of the buffer rib 76 is set so that the flow at the maximum speed is located between the buffer rib 76 and the heat transfer surface 36, the flow at the maximum speed is blocked by the buffer rib 76. Absent. Therefore, the maximum speed flow in the vicinity of the heat transfer surface 36 can be maintained at a high speed.
  • the flow speed near the heat transfer surface 36 is large, and the flow on the main surface 48a side is mixed with the flow near the heat transfer surface 36 as described above with reference to FIG. 13A.
  • the flow rate of the washing water is increased at the top portion 76b of the buffer rib 76 having a small cross-sectional area of the flow path, and the flow of the maximum velocity near the heat transfer surface 36 is further accelerated. Therefore, the heat transfer rate from the heat transfer surface 36 to the cleaning water increases, and the cleaning water is efficiently heated.
  • the height of the buffer rib 76 is set to a size that allows bubbles to escape, the bubbles are pushed up by this fast flow and rise without staying in the middle flow path 74s.
  • the wash water that has flowed through the middle flow path 74s flows into the upper flow path 74t and is heated by the heat transfer surface 36 or mixed with the flow as in the case of the middle flow path 74s.
  • the flow path space 74 is directed to the outlet 72. In this way, the wash water heated substantially uniformly flows out from the water outlet 82 through the outlet 72.
  • the wash water flowing in the length direction by the guide rib 53 of the communication passage 52 is guided in the height direction. Then, the washing water uniformly flows into the channel space 74 in the length direction, and quickly flows through the channel space 74 in a laminar flow in the height direction. For this reason, the wash water efficiently exchanges heat with the heat transfer surface 36 in the height direction in the flow path space 74, and the temperature distribution on the heat transfer surface 36 becomes uniform. Therefore, it is possible to prevent the flat heater 34 from being cracked or cracked by the thermal stress due to the temperature difference of the flat heater.
  • the washing water flows in a laminar flow upward in the flow path space 74, the bubbles are smoothly conveyed upward in this laminar flow. Therefore, it is possible to prevent the bubbles from adhering to the heat transfer surface 36 and the scale to be generated on the heat transfer surface 36 or the heat transfer surface 36 to be locally heated.
  • the size of the inflow passage 50 is increased, or the width of the communication passage 52 is extremely reduced. There is a need.
  • the size of the inflow path 50 is increased, the heat exchanger 28 is increased in size. Further, if the width of the communication path 52 is very narrow, the pressure loss increases.
  • the inflow passage 50 can be downsized and the pressure loss can be reduced.
  • the flow on the main surface 48a side joins the flow at the maximum speed near the heat transfer surface 36, so that the flow near the heat transfer surface 36 becomes faster. For this reason, the heat transfer rate from the heat transfer surface 36 to the cleaning water is improved, and the cleaning water is efficiently heated from the heat transfer surface 36. Further, since the bubbles are quickly conveyed upward by the fast flow, scale generation on the heat transfer surface 36 due to the adhesion of the bubbles is prevented.
  • Buffer ribs 76 are provided in the middle channel 74s and the upper channel 74t where natural convection occurs, and the flow on the main surface 48a side merges with the flow in the vicinity of the heat transfer surface 36 by the buffer ribs 76. Therefore, the temperature of the high-temperature washing water near the heat transfer surface 36 is reduced by the low-temperature washing water on the main surface 48a side, and boiling of the washing water, generation of bubbles and generation of scale are prevented.
  • the buffer rib 76 is arranged at a position that does not hinder the flow at the maximum speed. For this reason, the flow on the main surface 48a side merges with the maximum velocity flow near the heat transfer surface 36, and the velocity of the maximum velocity flow increases. Thereby, the heat transfer rate from the heat transfer surface 36 in the vicinity of the heat transfer surface 36 to the cleaning water is improved, and the cleaning water is efficiently heated. Further, the bubbles are rapidly carried upward by the fast flow along the heat transfer surface 36, and the adhesion of bubbles and the generation of scale on the heat transfer surface 36 are prevented.
  • the buffer rib 76 has a substantially right triangle shape, mixing of the flow, acceleration of the flow, and movement of the bubbles are performed smoothly.
  • the water inlet 80 was provided in the end of the length direction of the inflow path 50, it is not limited to this position.
  • the water inlet 80 may be provided in the side part or the lower part of the inflow channel 50.
  • the width of the communication path 52 from the inflow path 50 to the heater accommodating space 48 is set to be constant.
  • the communication path 52 may be formed so that the width becomes narrower from the inflow path 50 toward the heater accommodating space 48. In this case, the speed of the washing water increases as the width becomes narrower. For this reason, bubbles are quickly discharged upward without staying in the communication path 52.
  • the first guide rib portion 60 and the second guide rib portion 68 constitute the guide rib 53.
  • the guide rib may be constituted by one of the first guide rib portion 60 and the second guide rib portion 68.
  • the first guide rib portion 60 and the second guide rib portion 68 may be connected to form a guide rib.
  • the 1st guide rib part 60 was L-shaped and the 2nd guide rib part 68 was linear, these shapes are not restricted to this.
  • the cross section of the buffer rib 76 on the YZ plane is formed in a substantially right triangle, but the present invention is not limited to this.
  • the cross-sectional shape is formed in another triangular shape such as a regular triangle shape, a polygonal shape such as a quadrangular shape, or a shape surrounded by a curve.
  • the outlet 72 is opened in the side surface 48b of the heater accommodating space 48, but is not limited to this position.
  • the outlet 72 may be disposed above the inlet 70 such as the upper surface 48 c of the heater accommodating space 48.
  • the heat exchanger of the present invention and the sanitary washing apparatus provided with the heat exchanger are useful as a compact heat exchanger capable of reducing the generation of scale and a sanitary washing apparatus provided with the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

A heat exchanger (28) is provided with a flat plate-like heater (34) and a casing (38). A heater housing space (48) includes a flow passage space (74). The casing has an inlet opening (70), an outlet opening (72), an inlet passage (50), a connection passage (52), first ribs (76), and a second rib (53). The first ribs protrude in the flow passage space from a main surface (48a) toward a heat transfer surface (36) and are extended between side surfaces (48b). The second rib is extended in the connection passage in the direction perpendicular to the direction in which the lower end of the flat plate-like heater extends.

Description

熱交換器およびそれを備える衛生洗浄装置Heat exchanger and sanitary washing apparatus provided with the same
 本発明は、熱交換器およびそれを備える衛生洗浄装置に関し、特に、給水源に接続されるべき上流端を有しかつ下流端がノズルに接続された給水路に設けられる熱交換器およびそれを備える衛生洗浄装置に関する。 The present invention relates to a heat exchanger and a sanitary washing apparatus including the heat exchanger, and more particularly to a heat exchanger provided in a water supply path having an upstream end to be connected to a water supply source and having a downstream end connected to a nozzle. The present invention relates to a sanitary washing device.
 従来、トイレに設置される衛生洗浄装置などの限られた狭い空間に設置され、その流量が非常に少ない熱交換器として、たとえば、特許文献1に示す熱交換器が知られている。この熱交換器では、平板状ヒータの伝熱面とケーシングとの間の流路スペースと、流路スペースと入水口との間のヘッダ部とが備えられ、ヘッダ部内に案内リブが設けられている。この入水口からヘッダ部へ流入した洗浄水は、ヘッダ部内の案内リブにより案内されて、流路スペースに流入する。そして、流路スペースに流入した洗浄水は平板状ヒータの伝熱面に沿って自然対流により層流で流れる。 Conventionally, for example, a heat exchanger shown in Patent Document 1 is known as a heat exchanger that is installed in a limited narrow space such as a sanitary washing device installed in a toilet and has a very small flow rate. In this heat exchanger, a flow path space between the heat transfer surface of the flat heater and the casing, a header portion between the flow path space and the water inlet, and a guide rib is provided in the header portion. Yes. The washing water that has flowed into the header portion from the water inlet is guided by the guide ribs in the header portion and flows into the flow path space. And the washing water which flowed into the channel space flows in a laminar flow by natural convection along the heat transfer surface of the flat heater.
特開2012-233677号公報JP 2012-233677 A
 しかしながら、特許文献1に示す熱交換器では自然対流による層流の洗浄水は、その流速が遅く、伝熱面に沿って直線状に流れる。このため、伝熱面の近くを流れる洗浄水と伝熱面から遠い位置を流れる洗浄水との入れ替わりが生じにくい。よって、伝熱面の近くを流れる洗浄水には伝熱面から常に熱が与えられることにより、伝熱面の近傍の洗浄水が非常に高温になる。よって、特に、スケールの原因となる多量のカルシウムイオンなどを含む硬水が伝熱面の近傍で沸騰すると、伝熱面にスケールが付着し易くなる。 However, in the heat exchanger shown in Patent Document 1, laminar wash water by natural convection has a low flow velocity and flows linearly along the heat transfer surface. For this reason, the replacement of the cleaning water flowing near the heat transfer surface and the cleaning water flowing away from the heat transfer surface hardly occurs. Therefore, the washing water flowing near the heat transfer surface is always given heat from the heat transfer surface, so that the washing water near the heat transfer surface becomes very hot. Therefore, in particular, when hard water containing a large amount of calcium ions or the like causing the scale boils in the vicinity of the heat transfer surface, the scale easily adheres to the heat transfer surface.
 本発明はこのような課題を解決するためになされたものであり、スケールの発生を低減することができるコンパクトな熱交換器およびそれを備える衛生洗浄装置を提供することを目的としている。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a compact heat exchanger capable of reducing the generation of scale and a sanitary washing apparatus having the compact heat exchanger.
 本発明のある態様に係る、熱交換器は、上下方向に延びる伝熱面を有する平板状ヒータと、前記平板状ヒータの伝熱面に対向する主面、前記平板状ヒータの下方に位置する下面、前記平板状ヒータの上方に位置する上面、及び前記平板状ヒータを間に挟む両側面、により画定されたヒータ収容空間を有するケーシングと、を備え、前記ヒータ収容空間は、前記伝熱面とこれに対向する前記主面との間隙に形成された流路スペースを含み、前記ケーシングは、前記下面において開口して前記平板状ヒータの下端の延在方向に延設され、前記ヒータ収容空間に連通する流入口と、前記流入口より上方に設けられて前記ヒータ収容空間に連通する流出口と、前記ヒータ収容空間の下方において前記平板状ヒータの下端の延在方向に延設された流入路と、前記流入路に接続され、かつ、前記流入口を介して前記ヒータ収容空間に接続された連通路と、前記流路スペースにおいて前記主面から前記伝熱面に向かって突出し、前記両側面の間に亘って延設された複数の第1リブと、前記連通路において前記平板状ヒータの下端の延在方向に直交する方向に延設された第2リブと、を有する。 A heat exchanger according to an aspect of the present invention is a flat plate heater having a heat transfer surface extending in the vertical direction, a main surface facing the heat transfer surface of the flat plate heater, and positioned below the flat plate heater. A casing having a heater accommodating space defined by a lower surface, an upper surface located above the flat heater, and both side surfaces sandwiching the flat heater, and the heater accommodating space includes the heat transfer surface. And a flow path space formed in a gap between the main surface and the casing, the casing being opened in the lower surface and extending in the extending direction of the lower end of the flat heater, and the heater accommodating space An inlet that communicates with the heater, an outlet that is provided above the inlet and communicates with the heater housing space, and an inflow that extends in the extending direction of the lower end of the flat heater below the heater housing space And a communication passage connected to the inflow passage and connected to the heater accommodating space via the inflow port, and projecting from the main surface toward the heat transfer surface in the flow passage space, and both side surfaces A plurality of first ribs extending between the second ribs and a second rib extending in a direction perpendicular to the extending direction of the lower end of the flat heater in the communication path.
 本発明は、以上に説明した構成を有し、スケールの発生を低減することができるコンパクトな熱交換器およびそれを備える衛生洗浄装置を提供することができるという効果を奏する。 The present invention has the configuration described above, and has an effect that it is possible to provide a compact heat exchanger capable of reducing the generation of scale and a sanitary washing apparatus including the heat exchanger.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
本発明の実施形態1に係る衛生洗浄装置を示す斜視図である。It is a perspective view which shows the sanitary washing apparatus which concerns on Embodiment 1 of this invention. 図1に示す衛生洗浄装置における洗浄ユニットの構成を概略的に示す図である。It is a figure which shows schematically the structure of the washing | cleaning unit in the sanitary washing apparatus shown in FIG. 図2の熱交換器をその正面側から見た外観図である。It is the external view which looked at the heat exchanger of FIG. 2 from the front side. 図2の熱交換器をその側面側から見た外観図である。It is the external view which looked at the heat exchanger of FIG. 2 from the side surface side. 図4に示すB―B線に沿って切断した熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger cut | disconnected along the BB line shown in FIG. 図5に示すC―C線に沿って切断した熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger cut | disconnected along CC line shown in FIG. 図6Aの範囲Dの拡大図である。It is an enlarged view of the range D of FIG. 6A. 図6Aの範囲Eの拡大図である。It is an enlarged view of the range E of FIG. 6A. 図3の熱交換器に用いられる第一流路形成部材をその内面側から見た外観図である。It is the external view which looked at the 1st flow-path formation member used for the heat exchanger of FIG. 3 from the inner surface side. 図9の第一流路形成部材を示す斜視図である。It is a perspective view which shows the 1st flow-path formation member of FIG. 図3の熱交換器に用いられる第二流路形成部材をその内面側から見た外観図である。It is the external view which looked at the 2nd flow-path formation member used for the heat exchanger of FIG. 3 from the inner surface side. 図10の第二流路形成部材を示す斜視図である。It is a perspective view which shows the 2nd flow-path formation member of FIG. 図3の熱交換器に用いられる平板状ヒータを模式的に示す外観図である。It is an external view which shows typically the flat heater used for the heat exchanger of FIG. 図3の熱交換器に用いられる平板状ヒータを模式的に示す外観図である。It is an external view which shows typically the flat heater used for the heat exchanger of FIG. 図6Aのヒータ収容空間における流れを模式的に示した図である。It is the figure which showed typically the flow in the heater accommodating space of FIG. 6A. バッファリブのないヒータ収容空間における流れを模式的に示した図である。It is the figure which showed typically the flow in the heater accommodation space without a buffer rib. 図6Aの流路スペースにおける流れの速度分布を示す図である。It is a figure which shows the velocity distribution of the flow in the flow-path space of FIG. 6A. 図13Aの流路スペースにおける高さと、最大速度の流れおよび最小速度の流れの伝熱面からの距離との関係を示すグラフである。It is a graph which shows the relationship between the height in the flow-path space of FIG. 13A, and the distance from the heat-transfer surface of the flow of the maximum speed, and the flow of the minimum speed.
 第1の本発明に係る熱交換器は、上下方向に延びる伝熱面を有する平板状ヒータと、前記平板状ヒータの伝熱面に対向する主面、前記平板状ヒータの下方に位置する下面、前記平板状ヒータの上方に位置する上面、及び前記平板状ヒータを間に挟む両側面、により画定されたヒータ収容空間を有するケーシングと、を備え、前記ヒータ収容空間は、前記伝熱面とこれに対向する前記主面との間隙に形成された流路スペースを含み、前記ケーシングは、前記下面において開口して前記平板状ヒータの下端の延在方向に延設され、前記ヒータ収容空間に連通する流入口と、前記流入口より上方に設けられて前記ヒータ収容空間に連通する流出口と、前記ヒータ収容空間の下方において前記平板状ヒータの下端の延在方向に延設された流入路と、前記流入路に接続され、かつ、前記流入口を介して前記ヒータ収容空間に接続された連通路と、前記流路スペースにおいて前記主面から前記伝熱面に向かって突出し、前記両側面の間に亘って延設された複数の第1リブと、前記連通路において前記平板状ヒータの下端の延在方向に直交する方向に延設された第2リブと、を有する。 The heat exchanger according to the first aspect of the present invention includes a flat heater having a heat transfer surface extending in the vertical direction, a main surface facing the heat transfer surface of the flat heater, and a lower surface located below the flat heater. A casing having a heater accommodating space defined by an upper surface located above the flat heater and both side surfaces sandwiching the flat heater, and the heater accommodating space includes the heat transfer surface and the casing. The casing includes a flow path space formed in a gap with the main surface facing the casing, and the casing is opened in the lower surface and extends in the extending direction of the lower end of the flat plate heater. An inflow port that is in communication with the heater housing space, and an inflow passage that extends in the extending direction of the lower end of the flat plate heater below the heater housing space. When, A communication passage connected to the inlet passage and connected to the heater housing space via the inlet, and projecting from the main surface toward the heat transfer surface in the flow passage space, between the both side surfaces And a plurality of first ribs extending in the communication path and a second rib extending in a direction perpendicular to the extending direction of the lower end of the flat heater in the communication path.
 第2の本発明に係る熱交換器は、第1の発明において、前記第1リブは、前記主面からの突出寸法が前記流入口側に比べて前記流出口側で高くなる断面形状を有していてもよい。 The heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the first rib has a cross-sectional shape in which a protruding dimension from the main surface is higher on the outlet side than on the inlet side. You may do it.
 第3の本発明に係る熱交換器は、第1または第2の発明において、前記流路スペースは、前記流入口に連通する第1流路と、前記第1流路より前記流出口側に設けられ、かつ、前記第1流路の間隙寸法より大きい間隙寸法を有する第2流路と、を含み、前記第1リブが前記第2流路に配置されていてもよい。 A heat exchanger according to a third aspect of the present invention is the heat exchanger according to the first or second aspect, wherein the flow path space includes a first flow path communicating with the inflow port, and a position closer to the outflow port than the first flow path. And a second channel having a gap size larger than the gap size of the first channel, and the first rib may be disposed in the second channel.
 第4の本発明に係る熱交換器は、第3の発明において、前記第1リブと前記平板状ヒータの伝熱面との間の距離が前記第1流路の間隙寸法より大きく形成されていてもよい。 A heat exchanger according to a fourth aspect of the present invention is the heat exchanger according to the third aspect, wherein the distance between the first rib and the heat transfer surface of the flat heater is larger than the gap size of the first flow path. May be.
 第5の本発明に係る熱交換器は、第1~第4のいずれかの発明において、前記第1リブと前記平板状ヒータの伝熱面との間の距離が、当該第1リブより前記流入口側に配された前記第1リブと前記平板状ヒータの伝熱面との間の距離より大きくなるように、複数の前記第1リブが形成されていてもよい。 A heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to any one of the first to fourth aspects, wherein the distance between the first rib and the heat transfer surface of the flat heater is greater than that of the first rib. The plurality of first ribs may be formed so as to be larger than the distance between the first rib arranged on the inlet side and the heat transfer surface of the flat plate heater.
 第6の本発明に係る熱交換器は、第1~第5のいずれかの発明において、前記流入路は、前記平板状ヒータの下端の延在方向に対して垂直に開口する入水口を含んでいてもよい。 A heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, wherein the inflow path includes a water inlet opening perpendicularly to an extending direction of a lower end of the flat heater. You may go out.
 第7の本発明に係る衛生洗浄装置は、請求項1~6のいずれか1つに記載の熱交換器と、前記熱交換器が設けられ、給水源に接続されるべき上流端を有する給水路と、前記給水路の下流端に接続されたノズルと、を備えている。 According to a seventh aspect of the present invention, there is provided a sanitary washing apparatus comprising: the heat exchanger according to any one of claims 1 to 6; and a water supply provided with the heat exchanger and having an upstream end to be connected to a water supply source And a nozzle connected to the downstream end of the water supply channel.
 以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
 なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。 In the following, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted.
 (実施の形態1)
  (衛生洗浄装置の構成)
 図1は、本発明の実施形態1に係る衛生洗浄装置を示す斜視図である。衛生洗浄装置10は、図1に示すように、トイレ内の便器12の上に配設され、本体16、便座18、便蓋20および操作部22を備えている。本体16は、便座18の後側、つまり着座した使用者から見て背後側に配設されている。本体16は、横長の筐体であって、この内部に略直方体形状の熱交換器28が洗浄ユニットとして設けられている。
(Embodiment 1)
(Configuration of sanitary washing device)
FIG. 1 is a perspective view showing a sanitary washing device according to Embodiment 1 of the present invention. As shown in FIG. 1, the sanitary washing device 10 is disposed on a toilet 12 in a toilet and includes a main body 16, a toilet seat 18, a toilet lid 20, and an operation unit 22. The main body 16 is disposed on the rear side of the toilet seat 18, that is, on the rear side as viewed from the seated user. The main body 16 is a horizontally long casing, and a heat exchanger 28 having a substantially rectangular parallelepiped shape is provided therein as a cleaning unit.
 図2は、図1に示す衛生洗浄装置における洗浄ユニットの構成を概略的に示す図である。この図2に示すように、洗浄ユニットは、給水路24、熱交換器28およびノズル32を有し、タンク26および電磁弁27をさらに有していてもよい。この洗浄ユニットにおける各構成は制御部29により制御されている。給水路24は、給水源30に接続されるべき上流端と、ノズル32に接続されている下流端とを含んでいる。この給水路24に熱交換器28、タンク26および電磁弁27が下流側に向かって順に設けられている。このため、給水源30からの水道水(流体、液体、洗浄水)は給水路24により熱交換器28およびタンク26を介してノズル32に導入される。そして、使用者による操作部22(図1)の操作で電磁弁27が開けられると、熱交換器28で温められタンク26で温度調整された温水がノズル32からシャワー状に便器12(図1)の開口に向かって吐出する。 FIG. 2 is a diagram schematically showing the configuration of the cleaning unit in the sanitary cleaning apparatus shown in FIG. As shown in FIG. 2, the cleaning unit includes a water supply path 24, a heat exchanger 28, and a nozzle 32, and may further include a tank 26 and an electromagnetic valve 27. Each component in the cleaning unit is controlled by the control unit 29. The water supply path 24 includes an upstream end to be connected to the water supply source 30 and a downstream end connected to the nozzle 32. A heat exchanger 28, a tank 26, and an electromagnetic valve 27 are provided in this water supply path 24 in order toward the downstream side. For this reason, tap water (fluid, liquid, washing water) from the water supply source 30 is introduced into the nozzle 32 via the heat exchanger 28 and the tank 26 through the water supply path 24. Then, when the solenoid valve 27 is opened by the operation of the operation unit 22 (FIG. 1) by the user, the hot water heated by the heat exchanger 28 and adjusted in temperature by the tank 26 is discharged from the nozzle 32 into the toilet bowl 12 (FIG. 1). )
  (熱交換器の構成)
 図3は、熱交換器28をその正面側から見た構成を示す外観図である。図3に示すように、熱交換器28は直方体形状のケーシング38を備え、ケーシング38の一方の側面に入水口80および出水口82が設けられている。ケーシング38は、正面視すると略長方形状であって、その左右方向の長さ寸法が上下方向の高さ寸法より大きく形成されている。出水口82は入水口80の上方に設けられ、入水口80および出水口82はケーシング38の側面から突き出している。なお、以下の説明では、熱交換器28の「長さ方向」を「X方向」あるいは「左右方向」とも称し、「高さ方向」を「Z方向」あるいは「上下方向」とも称する。
(Configuration of heat exchanger)
FIG. 3 is an external view showing a configuration of the heat exchanger 28 viewed from the front side. As shown in FIG. 3, the heat exchanger 28 includes a rectangular parallelepiped casing 38, and a water inlet 80 and a water outlet 82 are provided on one side surface of the casing 38. The casing 38 has a substantially rectangular shape when viewed from the front, and is formed such that the length in the left-right direction is larger than the height in the vertical direction. The water outlet 82 is provided above the water inlet 80, and the water inlet 80 and the water outlet 82 protrude from the side surface of the casing 38. In the following description, the “length direction” of the heat exchanger 28 is also referred to as “X direction” or “left-right direction”, and the “height direction” is also referred to as “Z direction” or “vertical direction”.
 図4は、熱交換器28を図3の矢視方向(側面側)から見た構成を示す外観図である。図4に示すように、熱交換器28のケーシング38の側面は縦長の略長方形状であって、その厚さ寸法が高さ寸法より小さく形成されている。なお、以下の説明では、熱交換器28の「厚さ方向」を「Y方向」あるいは「前後方向」とも称する。 FIG. 4 is an external view showing the configuration of the heat exchanger 28 as viewed from the direction of the arrow (side surface side) in FIG. As shown in FIG. 4, the side surface of the casing 38 of the heat exchanger 28 has a vertically long and substantially rectangular shape, and the thickness dimension thereof is smaller than the height dimension. In the following description, the “thickness direction” of the heat exchanger 28 is also referred to as “Y direction” or “front-rear direction”.
 図5は、図4に示すB―B線に沿って切断した熱交換器28の構成を示す断面図である。また、図6Aは、図5に示すC―C線に沿って切断した熱交換器28の構成を示す断面図である。これら図5及び図6Aに示すように、ケーシング38内には平板状ヒータ34が備えられている。 FIG. 5 is a cross-sectional view showing the configuration of the heat exchanger 28 cut along the line BB shown in FIG. 6A is a cross-sectional view showing the configuration of the heat exchanger 28 cut along the line CC shown in FIG. As shown in FIGS. 5 and 6A, a flat plate heater 34 is provided in the casing 38.
 平板状ヒータ34は、洗浄水を加熱する部材であって、ケーシング38のヒータ収容空間48に収容されている。平板状ヒータ34は、矩形の平板形状であって、その両面(ヒータ収容空間48に収容された状態で、正面側及び背面側を向く2つの面)が第一伝熱面36aおよび第二伝熱面36bを含む伝熱面36で構成されている。なお、これら第一および第二伝熱面36a、36bは、局部的に所定温度より高くならないように制御されている。この所定温度は、水の沸点である100℃以下、好ましくは80℃以下に設定される。ただし、所定温度は、水に含まれているカルシウムやマグネシウムなどのイオン濃度や、ヒータの所要耐久時間などにより、適宜決められてもよい。 The flat heater 34 is a member for heating the cleaning water, and is accommodated in the heater accommodating space 48 of the casing 38. The flat heater 34 has a rectangular flat plate shape, and both surfaces thereof (two surfaces facing the front side and the back side in a state of being accommodated in the heater accommodating space 48) are the first heat transfer surface 36a and the second heat transfer surface 36a. The heat transfer surface 36 includes the heat surface 36b. The first and second heat transfer surfaces 36a and 36b are controlled so as not to be locally higher than a predetermined temperature. This predetermined temperature is set to 100 ° C. or lower, preferably 80 ° C. or lower, which is the boiling point of water. However, the predetermined temperature may be appropriately determined according to the concentration of ions such as calcium and magnesium contained in water, the required durability time of the heater, and the like.
 ケーシング38は、その内部空間(ヒータ収容空間48)に平板状ヒータ34を収容するための筐体である。ケーシング38は、その内部にヒータ収容空間48に加えて流入路50および連通路52を有し、側部には、流入路50に接続された入水口80、およびヒータ収容空間48の上部に接続された出水口82を有する。ケーシング38は、たとえば、XZ平面で分割された第一流路形成部材40および第二流路形成部材42を組み合わせることにより構成されている。 The casing 38 is a housing for accommodating the flat heater 34 in its internal space (heater accommodating space 48). The casing 38 has an inflow path 50 and a communication path 52 in addition to the heater accommodating space 48 therein, and has a water inlet 80 connected to the inflow path 50 and an upper portion of the heater accommodating space 48 on the side. The water outlet 82 is provided. The casing 38 is configured, for example, by combining a first flow path forming member 40 and a second flow path forming member 42 that are divided on the XZ plane.
 ヒータ収容空間48は略板形状であって、ケーシング38の内面、すなわち、前後2つの主面48a、左右2つの側面48b、上面48cおよび下面48dで画定されている。前後2つの主面48aは、平板状ヒータ34の第一および第二伝熱面36a、36bにそれぞれ対向して、かつ、各伝熱面36a、36bに対して平行に広がっている。左右2つの側面48bは、その間に平板状ヒータ34を挟むように、各伝熱面36a、36bに対して垂直に広がっている。上面48cは、平板状ヒータ34の上方に位置し、平板状ヒータ34の上端の延在方向(即ち、X方向(左右方向))に延びている。下面48dは、平板状ヒータ34の下方に位置し、平板状ヒータ34の下端に対向しその延在方向(即ち、X方向(左右方向))に延びている。 The heater accommodating space 48 is substantially plate-shaped, and is defined by the inner surface of the casing 38, that is, two front and rear main surfaces 48a, two left and right side surfaces 48b, an upper surface 48c, and a lower surface 48d. The two front and rear main surfaces 48a are opposed to the first and second heat transfer surfaces 36a and 36b of the flat heater 34, respectively, and extend in parallel to the heat transfer surfaces 36a and 36b. The left and right side surfaces 48b extend perpendicular to the heat transfer surfaces 36a and 36b so as to sandwich the flat heater 34 therebetween. The upper surface 48 c is located above the flat heater 34 and extends in the extending direction of the upper end of the flat heater 34 (that is, the X direction (left-right direction)). The lower surface 48d is located below the flat heater 34, faces the lower end of the flat heater 34, and extends in the extending direction (that is, the X direction (left-right direction)).
 ヒータ収容空間48には、流入口70、流出口72および流路スペース74が設けられている。流入口70は、図6Aに示すように、ヒータ収容空間48の下部を画定する下面48dにおいて開口し、平板状ヒータ34の下端の延在方向(即ち、X方向(左右方向))に延びる。流出口72は、図5に示すように、流入口70の上方に配置され、たとえば、ヒータ収容空間48の一方の側部を画定する側面48bに開口して、ケーシング38の出水口82と通ずる。また、ヒータ収容空間48の下部は流入口70と通じ、上部は流出口72と通ずる。 In the heater accommodating space 48, an inlet 70, an outlet 72, and a flow path space 74 are provided. As shown in FIG. 6A, the inflow port 70 opens at a lower surface 48d that defines the lower portion of the heater accommodating space 48, and extends in the extending direction of the lower end of the flat heater 34 (that is, the X direction (left and right direction)). As shown in FIG. 5, the outflow port 72 is disposed above the inflow port 70, and opens to, for example, a side surface 48 b that defines one side of the heater accommodating space 48, and communicates with the outflow port 82 of the casing 38. . The lower part of the heater housing space 48 communicates with the inflow port 70, and the upper part communicates with the outflow port 72.
 流路スペース74は、ヒータ収容空間48を画定する主面48aと平板状ヒータ34の伝熱面36との間の間隙に形成されている。すなわち、流路スペース74は、一方(正面側,前側)の主面48aと第一伝熱面36aとの間の間隙の第一流路スペース74aと、他方(背面側,後側)の主面48aと第二伝熱面36bとの間の間隙の第二流路スペース74bとを有している。 The flow path space 74 is formed in a gap between the main surface 48 a that defines the heater housing space 48 and the heat transfer surface 36 of the flat heater 34. That is, the flow path space 74 includes a first flow path space 74a in a gap between one (front side, front side) main surface 48a and the first heat transfer surface 36a and the other (back side, rear side) main surface. And a second flow path space 74b in the gap between 48a and the second heat transfer surface 36b.
 流路スペース74は、主面48aと伝熱面36との間隙の幅(厚さ)寸法の違いに応じて、上下方向に複数(この実施の形態では、3つ)に区分けされている。すなわち、流路スペース74は、下部流路74f、中部流路74sおよび上部流路74tにより構成されている。これらの3つの流路74f、74s、74tは、その左右方向(X方向)の寸法はそれぞれ等しいが、その幅寸法(前後方向の寸法)は上方の流路ほど大きくなっている。このため、流路スペース74における幅寸法およびXY面での断面積は、下部流路74f、中部流路74sおよび上部流路74tの順で段階的に大きくなっていく。具体的には、下部流路74fの幅寸法w1は、流入口70の幅寸法や後述する最大速度の流れの伝熱面36からの距離の何れよりも大きく、たとえば、0.5~1.0mmに設定される。中部流路74sの幅寸法w2は、幅寸法w1や気泡が抜ける幅寸法の何れよりも大きく、たとえば、1.5~3.0mmに設定される。上部流路74tの幅寸法w3は、幅寸法w2や気泡が抜ける幅寸法の何れよりも大きく設定される。 The flow path space 74 is divided into a plurality (three in this embodiment) in the vertical direction according to the difference in the width (thickness) dimension of the gap between the main surface 48a and the heat transfer surface 36. That is, the flow path space 74 includes a lower flow path 74f, a middle flow path 74s, and an upper flow path 74t. These three flow paths 74f, 74s, and 74t have the same size in the left-right direction (X direction), but the width dimension (the dimension in the front-rear direction) is larger in the upper flow path. For this reason, the width dimension and the cross-sectional area in the XY plane of the flow path space 74 increase in stages in the order of the lower flow path 74f, the middle flow path 74s, and the upper flow path 74t. Specifically, the width dimension w1 of the lower flow path 74f is larger than any of the width dimension of the inflow port 70 and the distance from the heat transfer surface 36 of the maximum velocity flow described later, for example, 0.5-1. Set to 0 mm. The width dimension w2 of the middle channel 74s is larger than both the width dimension w1 and the width dimension from which bubbles are removed, and is set to 1.5 to 3.0 mm, for example. The width dimension w3 of the upper flow path 74t is set to be larger than both the width dimension w2 and the width dimension from which bubbles are removed.
 バッファリブ76は、幅が広い中部流路74sおよび上部流路74tに設けられ、これらの流路74s、74t内の流れを混ぜるための第1リブを成す。この実施形態では、中部流路74sを形成する各主面48aにおいて6つのバッファリブ76が配置され、上部流路74tを形成する各主面48aにおいて2つのバッファリブ76が配置されている。これら複数のバッファリブ76は、たとえば、左右方向(X方向)へ延設されており、かつ、上下方向(Z方向)に等間隔となるように互いに平行に設けられている。各バッファリブ76は、ヒータ収容空間48を形成する主面48aから各伝熱面36に向かって突出し、ヒータ収容空間48の両側面48bの間の全長に亘って延びている。バッファリブ76と各伝熱面36との間の距離が、下部流路74fの幅寸法w1より大きく、かつ、中部流路74sおよび上部流路74tの幅w2、w3の半分より小さくなるように、主面48aからのバッファリブ76の高さが設定される。また、バッファリブ76と各伝熱面36との間に後述する最大速度の流れが位置するように、主面48aからのバッファリブ76の高さ(突出寸法)が設定される。このバッファリブ76の高さ寸法が大きすぎると、気泡がバッファリブ76と伝熱面36と間を通過することができなくなる。一方、バッファリブ76の高さ寸法が小さすぎると、流路74s、74t内の流れを十分に混ぜたり、流路74s、74t内の流れを速めたりすることができなくなる。 The buffer rib 76 is provided in the wide middle flow path 74s and the upper flow path 74t, and forms a first rib for mixing the flow in the flow paths 74s and 74t. In this embodiment, six buffer ribs 76 are arranged on each main surface 48a forming the middle flow path 74s, and two buffer ribs 76 are arranged on each main surface 48a forming the upper flow path 74t. For example, the plurality of buffer ribs 76 extend in the left-right direction (X direction), and are provided in parallel to each other so as to be equally spaced in the up-down direction (Z direction). Each buffer rib 76 protrudes from the main surface 48 a forming the heater accommodating space 48 toward each heat transfer surface 36, and extends over the entire length between both side surfaces 48 b of the heater accommodating space 48. The distance between the buffer rib 76 and each heat transfer surface 36 is larger than the width w1 of the lower flow path 74f and smaller than half of the widths w2 and w3 of the middle flow path 74s and the upper flow path 74t. The height of the buffer rib 76 from the main surface 48a is set. Further, the height (protrusion dimension) of the buffer rib 76 from the main surface 48a is set so that the flow of the maximum speed described later is positioned between the buffer rib 76 and each heat transfer surface 36. If the height of the buffer rib 76 is too large, bubbles cannot pass between the buffer rib 76 and the heat transfer surface 36. On the other hand, if the height of the buffer rib 76 is too small, the flow in the flow paths 74s and 74t cannot be sufficiently mixed, or the flow in the flow paths 74s and 74t cannot be accelerated.
 図5に示すように、流入路50は、平板状ヒータ34の下端の延在方向(左右方向)に延び、その一端が入水口80に接続される。図6Aに示すように、流入路50の上部に開口部78が設けられている。開口部78は、流入路50の全長に亘って設けられ、平板状ヒータ34の下端の延在方向に延びる。開口部78の幅寸法(前後方向寸法)は、流路スペース74の下部流路74fの幅寸法より狭く、具体的には入水口80から流入する洗浄水の単位時間当たりの流量に基づいて定められる。開口部78の幅が狭すぎると、開口部78を通過する洗浄水の圧力損失が大きくなる。一方、開口部78の幅が広すぎると、入水口80からの流入する洗浄水の前後方向の速度を流入路50において十分に落とした上で、洗浄水を上方へ開口部78を通過させることが難しくなる。 As shown in FIG. 5, the inflow path 50 extends in the extending direction (left-right direction) of the lower end of the flat heater 34, and one end thereof is connected to the water inlet 80. As shown in FIG. 6A, an opening 78 is provided in the upper part of the inflow channel 50. The opening 78 is provided over the entire length of the inflow passage 50 and extends in the extending direction of the lower end of the flat heater 34. The width dimension (front-rear direction dimension) of the opening 78 is narrower than the width dimension of the lower flow path 74 f of the flow path space 74, specifically based on the flow rate per unit time of the wash water flowing from the water inlet 80. It is done. If the width of the opening 78 is too narrow, the pressure loss of the washing water that passes through the opening 78 increases. On the other hand, if the width of the opening 78 is too wide, the front and rear speeds of the cleaning water flowing in from the water inlet 80 are sufficiently reduced in the inflow path 50 and then the cleaning water is passed through the opening 78 upward. Becomes difficult.
 連通路52は、ヒータ収容空間48の流入口70と流入路50の開口部78とを繋ぎ、開口部78から流入口70に向かって上方へ流れる洗浄水の速度を高めるための流路である。連通路52は、平板状ヒータ34の下端の延在方向に延び、また、開口部78から流入口70に向かって前後方向に屈曲しながら上方に延びる。より具体的に説明すると、連通路52は、開口部78から上方へ延び、途中で略直角に屈曲して前後方向へ延び、更に途中で略直角に屈曲して上方へと延びて、流入口70へと至る(後述の図7も参照)。連通路52の幅寸法およびXY面の断面積は、流入路50の幅寸法およびXY面の断面積、ならびに流路スペース74の下部流路74fの幅寸法およびXY面の断面積より小さい。 The communication path 52 is a flow path for connecting the inlet 70 of the heater housing space 48 and the opening 78 of the inflow path 50 to increase the speed of the washing water flowing upward from the opening 78 toward the inlet 70. . The communication path 52 extends in the extending direction of the lower end of the flat heater 34 and extends upward while being bent in the front-rear direction from the opening 78 toward the inflow port 70. More specifically, the communication passage 52 extends upward from the opening 78, bends at a substantially right angle in the middle and extends in the front-rear direction, further bends at a substantially right angle in the middle and extends upward, and flows into the inflow port. 70 (see also FIG. 7 described later). The width dimension of the communication path 52 and the cross-sectional area of the XY plane are smaller than the width dimension of the inflow path 50 and the cross-sectional area of the XY plane, and the width dimension of the lower flow path 74f of the flow path space 74 and the cross-sectional area of the XY plane.
 図6Bは、図6Aの範囲Dの拡大図である。図6Bに示すように、バッファリブ76は、YZ面における断面は略直角三角形状または台形状であって、主面48aからの高さ寸法が流入口70(図6A)側に比べて流出口72(図5)側で大きい。このバッファリブ76は、斜面76a、頂部76bおよび垂直面76cを有する。斜面76aは、斜め上方に向かって主面48aから頂部76bへ鈍角で滑らかに立ち上がる。すなわち、斜面76aは、伝熱面36に近づきつつ上方へ向かい、頂部76bに至る面である。頂部76bは、バッファリブ76の中では主面48aから最も離れており、換言すれば、伝熱面36に最も近い位置にある。垂直面76cは、頂部76bから、伝熱面36や主面48aに対して垂直に延びる面である。なお、バッファリブ76のYZ平面での断面形状は図6Bに示す直角三角形状または台形状に限定されない。但し、洗浄水の流れにおける上流側の面(上記「斜面76a」)と主面48aとの成す角度が、下流側の面(上記「垂直面76c」)と主面48aとの成す角度よりも、大きくなるように構成されていることが好ましい。また、主面48aから伝熱面36に向かって突出するバッファリブ76は、伝熱面36に対して垂直なYZ平面において主面48aからの高さ寸法が平板状ヒータ34の上端に向かって高くなる、傾斜面を少なくとも有している。この傾斜面は、流入口70側から流出口72に向けて洗浄水の流れを案内するように傾斜していることが好ましい。 FIG. 6B is an enlarged view of a range D in FIG. 6A. As shown in FIG. 6B, the buffer rib 76 has a substantially right triangle or trapezoidal cross section in the YZ plane, and the height from the main surface 48a is larger than that of the inlet 70 (FIG. 6A). 72 (FIG. 5) is large. The buffer rib 76 has an inclined surface 76a, a top portion 76b, and a vertical surface 76c. The slope 76a rises smoothly at an obtuse angle from the main surface 48a to the top 76b obliquely upward. That is, the inclined surface 76a is a surface that approaches the heat transfer surface 36 and moves upward to reach the top portion 76b. The top portion 76 b is farthest from the main surface 48 a in the buffer rib 76, in other words, is located closest to the heat transfer surface 36. The vertical surface 76c is a surface extending perpendicularly to the heat transfer surface 36 and the main surface 48a from the top 76b. The cross-sectional shape of the buffer rib 76 on the YZ plane is not limited to the right triangle shape or trapezoidal shape shown in FIG. 6B. However, the angle formed between the upstream surface (the above-mentioned “slope 76a”) and the main surface 48a in the flow of the washing water is larger than the angle formed between the downstream surface (the “vertical surface 76c”) and the main surface 48a. It is preferable to be configured to be large. Further, the buffer rib 76 protruding from the main surface 48 a toward the heat transfer surface 36 has a height dimension from the main surface 48 a toward the upper end of the flat heater 34 in the YZ plane perpendicular to the heat transfer surface 36. It has at least an inclined surface that becomes higher. The inclined surface is preferably inclined so as to guide the flow of the washing water from the inlet 70 side toward the outlet 72.
 図7は、図6Aの範囲Eの拡大図である。図7に示すように、案内リブ53は、連通路52を流れる洗浄水を上方へ整流しつつ導く第2リブであって、第一案内リブ部分60および第二案内リブ部分68により構成されている。L字状の第一案内リブ部分60は、流入路50の開口部78から上方に延び、連通路52に沿って前後方向に屈曲する。第二案内リブ部分68は、第一案内リブ部分60の近傍からヒータ収容空間48の流入口70に向かって上方に延びる。これらの案内リブ53は、図5に示すように、左右方向において間隔を開けて複数配置されている。この複数の案内リブ53の配置間隔は、流入路50から連通路52へ流入する洗浄水の流量に応じて設定される。たとえば、左右方向においてほぼ均一な流量で洗浄水が流入する場合、複数の案内リブ53の配置間隔は等しく設定される。左右方向において入水口80側で多くの流量の洗浄水が流入する場合、入水口80に近いほど複数の案内リブ53の配置間隔が狭く設定される。 FIG. 7 is an enlarged view of a range E in FIG. 6A. As shown in FIG. 7, the guide rib 53 is a second rib that guides the cleaning water flowing through the communication passage 52 while rectifying upward, and includes a first guide rib portion 60 and a second guide rib portion 68. Yes. The L-shaped first guide rib portion 60 extends upward from the opening 78 of the inflow passage 50 and bends in the front-rear direction along the communication path 52. The second guide rib portion 68 extends upward from the vicinity of the first guide rib portion 60 toward the inlet 70 of the heater accommodating space 48. As shown in FIG. 5, a plurality of these guide ribs 53 are arranged at intervals in the left-right direction. The intervals between the plurality of guide ribs 53 are set according to the flow rate of the cleaning water flowing from the inflow path 50 to the communication path 52. For example, when the cleaning water flows at a substantially uniform flow rate in the left-right direction, the arrangement intervals of the plurality of guide ribs 53 are set equal. When a large amount of washing water flows on the water inlet 80 side in the left-right direction, the closer to the water inlet 80, the narrower the interval between the plurality of guide ribs 53 is set.
 図8は、第一流路形成部材40を内面側(後方)から見たときの構成を示す外観図である。図9は、第一流路形成部材40の斜視図である。これら図8及び図9に示すように、第一流路形成部材40は、XZ面に平行な内面および外面を含む。この内面は、第一流路形成部材40の両面のうち、ヒータ収容空間48を画定する主面48aを含む一方の面を言う。一方、外面は、第一流路形成部材40の両面のうち他方の面を言う。第一流路形成部材40は、耐熱性、耐衝撃性や加工性に優れた樹脂、たとえば、それぞれABS樹脂にガラス繊維をコンパウンドした強化ABS樹脂で形成されている。 FIG. 8 is an external view showing a configuration when the first flow path forming member 40 is viewed from the inner surface side (rear). FIG. 9 is a perspective view of the first flow path forming member 40. As shown in FIGS. 8 and 9, the first flow path forming member 40 includes an inner surface and an outer surface parallel to the XZ plane. This inner surface refers to one of the two surfaces of the first flow path forming member 40 including the main surface 48 a that defines the heater accommodating space 48. On the other hand, the outer surface refers to the other surface of both surfaces of the first flow path forming member 40. The first flow path forming member 40 is formed of a resin excellent in heat resistance, impact resistance, and workability, for example, a reinforced ABS resin obtained by compounding glass fiber with ABS resin.
 第一流路形成部材40は、主にケーシング38の内部空間(ヒータ収容空間48、流入路50、及び連通路52)を形成する第一板状部54と、第一板状部54の周囲を囲むように設けられた第一フランジ56とを有する。なお、以下での第一流路形成部材40の説明では、各部位のうち後方へ向く面を適宜「天面」あるいは「底面」と称する。 The first flow path forming member 40 mainly includes a first plate-like portion 54 that forms an internal space of the casing 38 (the heater accommodating space 48, the inflow passage 50, and the communication passage 52), and the periphery of the first plate-like portion 54. And a first flange 56 provided to surround the first flange 56. In the following description of the first flow path forming member 40, the surface facing rearward among the respective portions is appropriately referred to as “top surface” or “bottom surface”.
 第一板状部54の上部であって第一フランジ56の下方には、第一突条部55が設けられている。この第一突条部55は、第一板状部54の一方の面から後方へ向けて突出しており、かつ、左右方向へ延びている。更に、左右方向の一方(出水口82に近い方)にて下方へ湾曲し、その結果、全体的には略L字状を成している。第一突条部55の下方には、第一突条部55に沿うようにして略L字状に形成された第一窪み部57が設けられている。第一窪み部57は、第一突条部55の天面に対して前方へ窪んだ底面を有している。 A first protrusion 55 is provided above the first plate-like portion 54 and below the first flange 56. The first protrusion 55 protrudes rearward from one surface of the first plate-like portion 54 and extends in the left-right direction. Furthermore, it bends downward at one of the left and right directions (closer to the water outlet 82), and as a result, it is generally L-shaped as a whole. Below the first protrusion 55, a first recess 57 formed in a substantially L shape along the first protrusion 55 is provided. The first recess 57 has a bottom surface that is recessed forward with respect to the top surface of the first protrusion 55.
 第一窪み部57の下方には、第一壁上部59が設けられている。この第一壁上部59は、その天面が略長方形状を成し、該天面が後述するように主面48aを成している。従って、この第一壁上部59の天面(主面48a)には、既に説明したように、複数のバッファリブ76が左右方向の全域に亘って延設されている。第一壁上部59の下方には、左右方向へ延びる第一横突部58が設けられている。第一横突部58は、第一壁上部59の天面から更に後方へ突出しており、図7に示すようにYZ面での断面が矩形状を成している。 A first wall upper portion 59 is provided below the first depression 57. The top surface of the first wall upper portion 59 has a substantially rectangular shape, and the top surface forms a main surface 48a as will be described later. Accordingly, as described above, the plurality of buffer ribs 76 are extended over the entire area in the left-right direction on the top surface (main surface 48a) of the first wall upper portion 59. A first lateral protrusion 58 extending in the left-right direction is provided below the first wall upper portion 59. The first lateral protrusion 58 protrudes further rearward from the top surface of the first wall upper portion 59, and the cross section on the YZ plane is rectangular as shown in FIG.
 第一横突部58の下方には、第一壁下部61が設けられている。第一壁下部61は、第一横突部58の天面に対して前方へ窪んだ底面を有しており、この底面は、第一横突部58に沿って左右方向へ延設されている。これら第一横突部58と第一壁下部61とにおいて、第一縦突部60が設けられている。より詳しくは、この第一縦突部60は、第一横突部58の下面から下方へ突出する部分と、第一壁下部61の底面から後方へ突出する部分とで構成され、側面視で略L字状を成している(図7参照)。 A first wall lower portion 61 is provided below the first lateral protrusion 58. The first wall lower portion 61 has a bottom surface that is recessed forward with respect to the top surface of the first lateral protrusion 58, and this bottom surface extends in the left-right direction along the first lateral protrusion 58. Yes. A first vertical protrusion 60 is provided at the first lateral protrusion 58 and the first wall lower portion 61. More specifically, the first vertical protrusion 60 is composed of a portion protruding downward from the lower surface of the first lateral protrusion 58 and a portion protruding rearward from the bottom surface of the first wall lower portion 61, as viewed from the side. It is substantially L-shaped (see FIG. 7).
 図10は、第二流路形成部材42を内面側(前方)から見たときの構成を示す外観図である。図11は、第二流路形成部材42の斜視図である。これら図10及び図11に示すように、第二流路形成部材42は、XZ面に平行な内面および外面を含む。この内面は、第二流路形成部材42の両面のうち、ヒータ収容空間48を画定する主面48aを含む一方の面を言う。一方、外面は、第二流路形成部材42の両面のうち他方の面を言う。第二流路形成部材42は、第一流路形成部材40と同様に、耐熱性、耐衝撃性や加工性に優れた樹脂で形成されている。 FIG. 10 is an external view showing a configuration when the second flow path forming member 42 is viewed from the inner surface side (front). FIG. 11 is a perspective view of the second flow path forming member 42. As shown in FIGS. 10 and 11, the second flow path forming member 42 includes an inner surface and an outer surface parallel to the XZ plane. This inner surface refers to one of the two surfaces of the second flow path forming member 42 including the main surface 48 a that defines the heater accommodation space 48. On the other hand, the outer surface refers to the other surface of both surfaces of the second flow path forming member 42. Similar to the first flow path forming member 40, the second flow path forming member 42 is formed of a resin excellent in heat resistance, impact resistance and workability.
 第二流路形成部材42は、主にケーシング38の内部空間(ヒータ収容空間48、流入路50、及び連通路52)を形成する第二板状部62と、第二板状部62の周囲を囲むように設けられた第二フランジ64とを有する。この第二フランジ64は、第二板状部62に対して前方へ突出して形成されている。なお、以下での第二流路形成部材42の説明では、各部位のうち前方へ向く面を適宜「天面」あるいは「底面」と称する。 The second flow path forming member 42 includes a second plate-like portion 62 that mainly forms an internal space of the casing 38 (the heater accommodating space 48, the inflow passage 50, and the communication passage 52), and the periphery of the second plate-like portion 62. And a second flange 64 provided so as to surround the outer periphery. The second flange 64 is formed to protrude forward with respect to the second plate-like portion 62. In the following description of the second flow path forming member 42, the front-facing surface of each portion is appropriately referred to as a “top surface” or a “bottom surface”.
 第二板状部62は、第二フランジ64に囲まれた領域の大部分を占める第二壁部65を有する。この第二壁部65は、その天面が略長方形状を成し、該天面が後述するように主面48aを成している。従って、この第二壁部65の天面(主面48a)には、既に説明したように、複数のバッファリブ76が左右方向の全域に亘って延びている。第二壁部65の下方には、左右方向へ延びる第二横突部66が設けられている。第二横突部66は段状に形成されており、前方への突出寸法が小さい低部66aと、その下側にあって、前方への突出寸法が大きい高部66bとを有している。 The second plate-like portion 62 has a second wall portion 65 that occupies most of the region surrounded by the second flange 64. The top surface of the second wall portion 65 has a substantially rectangular shape, and the top surface forms a main surface 48a as will be described later. Therefore, as already described, the plurality of buffer ribs 76 extend over the entire region in the left-right direction on the top surface (main surface 48a) of the second wall portion 65. A second lateral protrusion 66 extending in the left-right direction is provided below the second wall portion 65. The second lateral protrusion 66 is formed in a step shape, and has a low part 66a having a small forward protruding dimension and a high part 66b on the lower side and having a large forward protruding dimension. .
 第二横突部66には、複数の第二縦突部68が設けられている。この第二縦突部68は、第二横突部66のうち低部66aの天面に設けられており、この天面から前方へ突出し、かつ、上下方向へ延びている。第二横突部66の下方には、左右方向へ延びる第二窪み部67が設けられている。この第二窪み部67は、第二横突部66の天面に対して後方へ窪んだ底面を有している。 The second horizontal protrusion 66 is provided with a plurality of second vertical protrusions 68. The second vertical protrusion 68 is provided on the top surface of the low portion 66a of the second horizontal protrusion 66, protrudes forward from the top surface, and extends in the vertical direction. A second recess 67 extending in the left-right direction is provided below the second lateral protrusion 66. The second recessed portion 67 has a bottom surface that is recessed backward with respect to the top surface of the second lateral protrusion 66.
 図6Aに示すように、第一流路形成部材40の第一突条部55および第一壁下部61のそれぞれが、第二流路形成部材42の第二フランジ64の内側に入るようにして、第一流路形成部材40の第一フランジ56と第二流路形成部材42の第二フランジ64とを超音波溶着により水密的に接合する。これにより、ケーシング38が形成される。このケーシング38において、第一流路形成部材40の第一突条部55の天面および下面、第一窪み部57の底面、第一壁上部59の上面および天面、ならびに第一横突部58の上面が、ヒータ収容空間48の一部を画定している。また、第二流路形成部材42の第二フランジ64の下面、第二壁部65の天面、第二横突部66の低部66aの上面が、ヒータ収容空間48の別の一部を画定している。また、第一壁上部59の天面が、平板状ヒータ34の第一伝熱面36aと対向する主面48aを成し、第二壁部65の天面が、平板状ヒータ34の第二伝熱面36bと対向する主面48aを成している。さらに、第一横突部58の上面および第二横突部66の低部66aの上面が、平板状ヒータ34の下端と対向する下面48dを成している。第一横突部58の天面と第二横突部66の低部66aの天面との間隔、第一横突部58の下面と第二横突部66の高部66bの上面との間隔、及び、第一壁下部61の底面と第二横突部66の高部66bの天面との間隔によって、連通路52が画定されている。第一壁下部61の天面の下部が、第二窪み部67の開口を覆い、流入路50を画定している。また、第一縦突部60は案内リブ53の第一案内リブ部分60を成し、第二縦突部68は案内リブ53の第二案内リブ部分68を成している。 As shown in FIG. 6A, each of the first protrusion 55 and the first wall lower portion 61 of the first flow path forming member 40 is placed inside the second flange 64 of the second flow path forming member 42. The first flange 56 of the first flow path forming member 40 and the second flange 64 of the second flow path forming member 42 are joined in a watertight manner by ultrasonic welding. Thereby, the casing 38 is formed. In this casing 38, the top and bottom surfaces of the first protrusion 55 of the first flow path forming member 40, the bottom surface of the first recess 57, the top and top surfaces of the first wall upper portion 59, and the first lateral protrusion 58. The upper surface of the heater defines a part of the heater housing space 48. Further, the lower surface of the second flange 64 of the second flow path forming member 42, the top surface of the second wall portion 65, and the upper surface of the lower portion 66 a of the second lateral protrusion 66 constitute another part of the heater accommodating space 48. Defined. Further, the top surface of the first wall upper portion 59 forms a main surface 48 a that faces the first heat transfer surface 36 a of the flat heater 34, and the top surface of the second wall portion 65 is the second surface of the flat heater 34. The main surface 48a which opposes the heat-transfer surface 36b is comprised. Furthermore, the upper surface of the first lateral protrusion 58 and the upper surface of the lower portion 66 a of the second lateral protrusion 66 form a lower surface 48 d that faces the lower end of the flat heater 34. The distance between the top surface of the first lateral projection 58 and the top surface of the lower portion 66a of the second lateral projection 66, the lower surface of the first lateral projection 58 and the upper surface of the high portion 66b of the second lateral projection 66. The communication path 52 is defined by the interval and the interval between the bottom surface of the first wall lower portion 61 and the top surface of the high portion 66 b of the second lateral protrusion 66. The lower part of the top surface of the first wall lower part 61 covers the opening of the second recess part 67 and defines the inflow path 50. The first vertical protrusion 60 forms a first guide rib portion 60 of the guide rib 53, and the second vertical protrusion 68 forms a second guide rib portion 68 of the guide rib 53.
 図12A及び図12Bは、平板状ヒータを模式的に示す外観図である。平板状ヒータ34は、図12Aおよび図12Bに示すように、セラミック基体44、電熱線46および電極(図示せず)により構成されている。電熱線46は、セラミック基体44上に印刷された抵抗体パターンであって、その両端は電極に接続されている。電熱線46に電極から電流が通されると、電熱線46が発熱し、熱伝導が優れるセラミック基体44がその熱を伝え、各伝熱面36が高温になる。この伝熱面36における単位面積当たりの発熱量は下方ほど高くなるように、電熱線46がセラミック基体44上に設けられている。たとえば、図12Aに示すように、電熱線46の断面積が下方ほど細くなる場合、電熱線46の抵抗値が下方ほど大きくなり、伝熱面36における単位面積当たりの発熱量が下方ほど高くなる。また、他の例として、図12Bに示すように、蛇行して配置される電熱線46の間隔が下方ほど小さい場合、伝熱面36における単位面積当たりの発熱量が下方ほど高くなる。 12A and 12B are external views schematically showing a flat heater. As shown in FIGS. 12A and 12B, the flat heater 34 includes a ceramic base 44, a heating wire 46, and electrodes (not shown). The heating wire 46 is a resistor pattern printed on the ceramic substrate 44, and both ends thereof are connected to electrodes. When an electric current is passed through the heating wire 46 from the electrode, the heating wire 46 generates heat, the ceramic base 44 having excellent heat conduction transfers the heat, and each heat transfer surface 36 becomes high temperature. A heating wire 46 is provided on the ceramic substrate 44 so that the amount of heat generated per unit area on the heat transfer surface 36 increases as it goes downward. For example, as shown in FIG. 12A, when the cross-sectional area of the heating wire 46 becomes thinner as it goes downward, the resistance value of the heating wire 46 becomes larger as it goes downward, and the heat generation amount per unit area on the heat transfer surface 36 becomes higher as it goes downward. . As another example, as shown in FIG. 12B, when the interval between the heating wires 46 meanderingly decreases as it goes downward, the amount of heat generated per unit area on the heat transfer surface 36 increases as it goes downward.
  (熱交換器における洗浄水の流れ)
 熱交換器28では、図5および図6Aに示すように、水道に接続された入水口80から流入路50へ洗浄水が流入する。このとき、水道の給水圧力により洗浄水は長さ方向に流入路50内を流れる。ここで、流入路50のXY面における断面積に比べて開口部78のXY面における断面積が小さい。このため、洗浄水は、流入路50内において、その左右方向(X方向)の速度が低減されて、開口部78から連通路52に流入する。
(Flow of washing water in heat exchanger)
In the heat exchanger 28, as shown in FIGS. 5 and 6A, the wash water flows into the inflow path 50 from the water inlet 80 connected to the water supply. At this time, the wash water flows in the inflow path 50 in the length direction due to the water supply pressure. Here, the cross-sectional area of the opening 78 in the XY plane is smaller than the cross-sectional area of the inflow channel 50 in the XY plane. For this reason, in the inflow path 50, the speed of the left-right direction (X direction) is reduced, and the wash water flows into the communication path 52 from the opening 78.
 この連通路52におけるXY面における断面積は小さいままであるため、洗浄水は、上方への速度が高められて、速い速度で連通路52を通過する。これにより、洗浄水に含まれている気泡は、洗浄水の速い流れに沿って留まることなく連通路52を通り抜ける。ここで、連通路52において洗浄水は案内リブ53の間を通る。このとき、上下方向に延びる案内リブ53は、左右方向に対して垂直な上方へ洗浄水を導き、連通路52からヒータ収容空間48へ流入する洗浄水の流量は左右方向においてほぼ均一になる。 Since the cross-sectional area on the XY plane in the communication path 52 remains small, the washing water is increased in speed upward and passes through the communication path 52 at a high speed. Thereby, the bubbles contained in the cleaning water pass through the communication path 52 without staying along the fast flow of the cleaning water. Here, the cleaning water passes between the guide ribs 53 in the communication passage 52. At this time, the guide rib 53 extending in the vertical direction guides the cleaning water upward perpendicular to the horizontal direction, and the flow rate of the cleaning water flowing from the communication path 52 into the heater accommodating space 48 is substantially uniform in the horizontal direction.
 流入口70からヒータ収容空間48に流入した洗浄水は、第一流路スペース74aおよび第二流路スペース74bへ均等に分かれて流れる。この時の各流路スペース74では下部流路74f、中部流路74sおよび上部流路74tにおける流体(洗浄水)のレイノルズ数が約200以下となるように各部の形状が設計されている。即ち、各流路スペース74を流れる洗浄水は、レイノルズ数が臨界レイノルズ数:2300より非常に小さいため、層流状態で流れる。 The washing water that has flowed into the heater accommodating space 48 from the inlet 70 flows equally divided into the first flow path space 74a and the second flow path space 74b. In each channel space 74 at this time, the shape of each part is designed so that the Reynolds number of the fluid (washing water) in the lower channel 74f, the middle channel 74s, and the upper channel 74t is about 200 or less. That is, the wash water flowing through each flow path space 74 flows in a laminar flow state because the Reynolds number is much smaller than the critical Reynolds number: 2300.
 そして、下部流路74fではXY面における断面積が比較的小さいため、洗浄水の流れは速く、強制対流が生じる。よって、洗浄水の流れは伝熱面36に対して幅方向(前後方向)に速度が大きく、伝熱面36から洗浄水への熱伝達率が高くなり、洗浄水は効率的に加熱される。また、伝熱面36は、洗浄水に熱を与え、その温度が低下することにより、伝熱面36の過熱が防止される。また、下部流路74fでは流れが速く、洗浄水に含まれている気泡が流れに伴い速やかに上方に運ばれる。さらに、下部流路74fにおける伝熱面36の単位面積当たりの発熱量が高く設定されていても、流入口70から下部流路74fへ流入した洗浄水は低温状態であり、かつその洗浄水の速い流速で熱伝達率が高い。このため、洗浄水が滞留したり、局所的に加熱されたりすることが抑制されるので、洗浄水が沸騰して気泡が発生することもない。 And since the cross-sectional area in the XY plane is relatively small in the lower flow path 74f, the flow of cleaning water is fast and forced convection occurs. Therefore, the flow of the cleaning water has a high speed in the width direction (front-rear direction) with respect to the heat transfer surface 36, the heat transfer rate from the heat transfer surface 36 to the cleaning water is increased, and the cleaning water is efficiently heated. . Further, the heat transfer surface 36 applies heat to the washing water, and the temperature is lowered, so that the heat transfer surface 36 is prevented from being overheated. Further, the flow is fast in the lower flow path 74f, and the bubbles contained in the wash water are quickly carried upward along with the flow. Further, even if the heat generation amount per unit area of the heat transfer surface 36 in the lower flow path 74f is set high, the wash water flowing into the lower flow path 74f from the inlet 70 is in a low temperature state, and the wash water High heat transfer rate at high flow rate. For this reason, since it is suppressed that washing water stagnates or is heated locally, washing water boils and a bubble is not generated.
 図13Aは、ヒータ収容空間48における洗浄水の流れを模式的に示す図面である。図13Bは、バッファリブのないヒータ収容空間における洗浄水の流れを模式的に示す図面である。この図13Aに示すように、ヒータ収容空間48の下部流路74fから中部流路74sへと洗浄水が流入する。このように、下部流路74fから中部流路74sに向かう境界部分では、ケーシング38の主面48aが伝熱面36から離れる方向へと、流路スペース74の幅が急に広くなっている。ここで、流れの剥離が生じ、主面48aに沿っていた流れが伝熱面36側に離れる。このため、この剥離した流れが伝熱面36に沿った自然対流の流れと合流し、伝熱面36側の流れが速くなる。これにより、熱伝達率が高くなり、洗浄水が速やかに加熱される。また、主面48aから剥離した流れは伝熱面36に沿った流れより低温であるため、これらが混ざることにより、伝熱面36に沿った流れが高温になって沸騰することが抑えられる。 FIG. 13A is a drawing schematically showing the flow of cleaning water in the heater accommodating space 48. FIG. 13B is a drawing schematically showing a flow of cleaning water in a heater housing space without a buffer rib. As shown in FIG. 13A, the cleaning water flows from the lower flow path 74f of the heater accommodating space 48 into the middle flow path 74s. As described above, the width of the flow path space 74 is suddenly widened in the direction in which the main surface 48a of the casing 38 is away from the heat transfer surface 36 at the boundary portion from the lower flow path 74f to the middle flow path 74s. Here, separation of the flow occurs, and the flow along the main surface 48a is separated to the heat transfer surface 36 side. For this reason, this separated flow merges with the natural convection flow along the heat transfer surface 36, and the flow on the heat transfer surface 36 side becomes faster. Thereby, a heat transfer rate becomes high and washing water is heated quickly. In addition, since the flow separated from the main surface 48a is at a lower temperature than the flow along the heat transfer surface 36, the flow along the heat transfer surface 36 is suppressed from boiling by mixing them.
 中部流路74sでは幅が広くXY面における断面積が大きいため、洗浄水は自然対流により層流で流れる。このため、図13Bに示すように、バッファリブ76がない流路スペース74では伝熱面36に沿って平行に洗浄水が流れる。この自然対流による流れの速度は非常に小さいため、特に、伝熱面36近傍の洗浄水は、その温度が非常に高くなり、沸騰し易くなる。 Since the middle channel 74s is wide and has a large cross-sectional area on the XY plane, the washing water flows in a laminar flow by natural convection. For this reason, as shown in FIG. 13B, the washing water flows in parallel along the heat transfer surface 36 in the flow path space 74 without the buffer rib 76. Since the speed of the flow by this natural convection is very small, the temperature of the wash water in the vicinity of the heat transfer surface 36 becomes very high and is likely to boil.
 これに対して、図13Aに示すように、バッファリブ76が設けられた中部流路74sでは、伝熱面36から遠く主面48aに沿った流れは、層流のまま、バッファリブ76の斜面76aに従ってスムーズに流れ、伝熱面36側に寄せられる。これにより、伝熱面36から遠い流れが伝熱面36近傍の流れと合流し、伝熱面36から遠い低温の洗浄水によって伝熱面36近傍の洗浄水の過度の昇温が低減される。このため、伝熱面36の近傍で洗浄水が沸騰することが防止される。 On the other hand, as shown in FIG. 13A, in the middle channel 74 s provided with the buffer rib 76, the flow along the main surface 48 a far from the heat transfer surface 36 remains laminar, and the inclined surface of the buffer rib 76. It flows smoothly according to 76a and is brought close to the heat transfer surface 36 side. As a result, the flow far from the heat transfer surface 36 merges with the flow near the heat transfer surface 36, and the excessive temperature rise of the wash water near the heat transfer surface 36 is reduced by the low temperature wash water far from the heat transfer surface 36. . For this reason, it is prevented that the washing water boils in the vicinity of the heat transfer surface 36.
 また、中部流路74sを流れる洗浄水は、図14に示す速度分布で流れている。図14の曲線Fは、ヒータ収容空間の幅方向に沿って仮設した直線S上の各位置における洗浄水の速度を概略的に表している。この直線Sと曲線Fとの間の長さ寸法が大きいほど、その直線S上の位置を流れる洗浄水の速度が大きくなる。具体的には、伝熱面36および主面48aに近いほど洗浄水の速度が小さく、幅方向の中央より伝熱面36に近い位置で洗浄水の速度が最大になる。この最大速度の流れを示す、直線Sと曲線Fとの間に示される矢印の長さは、その矢印の基端位置Smにおける洗浄水の速度を模式的に表している。 Further, the washing water flowing through the middle channel 74s flows with the velocity distribution shown in FIG. A curve F in FIG. 14 schematically represents the speed of the cleaning water at each position on the straight line S temporarily provided along the width direction of the heater accommodating space. As the length dimension between the straight line S and the curved line F is larger, the speed of the washing water flowing through the position on the straight line S is increased. Specifically, the closer to the heat transfer surface 36 and the main surface 48a, the lower the speed of the cleaning water, and the maximum speed of the cleaning water at a position closer to the heat transfer surface 36 than the center in the width direction. The length of the arrow shown between the straight line S and the curve F indicating the flow of the maximum speed schematically represents the speed of the washing water at the base end position Sm of the arrow.
 図15は、図13Aの流路スペースにおける上下方向の位置(横軸)と、最大速度の流れ及び最小速度の流れの伝熱面からの距離(縦軸)との関係を示すグラフである。なお、図15のグラフにおいて、0~15mmの範囲が下部流路74fに相当し、15~40mmの範囲が中部流路74sに相当し、40~50mmの範囲が上部流路74tに相当する。また、このグラフにおいて、maxで示す線が最大速度の流れの位置を示す。この図15に示すように、洗浄水の速度が最も大きい最大速度の流れは、伝熱面36から約0.5mmの距離に位置している。 FIG. 15 is a graph showing the relationship between the vertical position (horizontal axis) in the flow path space of FIG. 13A and the distance (vertical axis) from the heat transfer surface of the flow at the maximum speed and the flow at the minimum speed. In the graph of FIG. 15, the range of 0 to 15 mm corresponds to the lower flow path 74f, the range of 15 to 40 mm corresponds to the middle flow path 74s, and the range of 40 to 50 mm corresponds to the upper flow path 74t. In this graph, the line indicated by max indicates the position of the flow at the maximum speed. As shown in FIG. 15, the flow of the maximum speed at which the washing water speed is the highest is located at a distance of about 0.5 mm from the heat transfer surface 36.
 「max」で示す線によれば、最大速度の流れは、その伝熱面36からの距離が約0.5mmであって、伝熱面36の近傍に位置している。ただし、最大速度の流れの伝熱面36からの距離は、流路スペース74での上下方向の位置が上方へ向かうなるほどわずかに大きくなっている。このように、流路スペース74ではその幅が上方に向かって段階的に広くなることにより、最大速度の流れは伝熱面36から離れる。これに対して、最大速度の流れがバッファリブ76と伝熱面36との間に位置するようにバッファリブ76の高さが設定されているため、最大速度の流れはバッファリブ76により遮られない。よって、伝熱面36の近傍の最大速度の流れは、その速度を高い状態で維持することができる。 According to the line indicated by “max”, the flow at the maximum speed is located in the vicinity of the heat transfer surface 36 at a distance of about 0.5 mm from the heat transfer surface 36. However, the distance from the heat transfer surface 36 of the flow at the maximum speed is slightly increased as the vertical position in the flow path space 74 is directed upward. As described above, the flow rate space 74 gradually increases in width toward the upper side, so that the flow at the maximum speed is separated from the heat transfer surface 36. On the other hand, since the height of the buffer rib 76 is set so that the flow at the maximum speed is located between the buffer rib 76 and the heat transfer surface 36, the flow at the maximum speed is blocked by the buffer rib 76. Absent. Therefore, the maximum speed flow in the vicinity of the heat transfer surface 36 can be maintained at a high speed.
 このように、伝熱面36近傍の速度の流れの速度が大きい上、図13Aを用いて上述したように、伝熱面36近傍の速度の流れに主面48a側の流れが混合する。このため、流路の断面積が小さいバッファリブ76の頂部76bにおいて洗浄水の流速が速まり、伝熱面36に近い位置の最大速度の流れがさらに速まる。よって、伝熱面36から洗浄水への熱伝達率が増し、洗浄水が効率的に加熱される。また、バッファリブ76の高さは泡が抜ける大きさに設定されているため、この速い流れによって泡が押し上げられて、中部流路74sに留まることなく上昇する。 Thus, the flow speed near the heat transfer surface 36 is large, and the flow on the main surface 48a side is mixed with the flow near the heat transfer surface 36 as described above with reference to FIG. 13A. For this reason, the flow rate of the washing water is increased at the top portion 76b of the buffer rib 76 having a small cross-sectional area of the flow path, and the flow of the maximum velocity near the heat transfer surface 36 is further accelerated. Therefore, the heat transfer rate from the heat transfer surface 36 to the cleaning water increases, and the cleaning water is efficiently heated. Further, since the height of the buffer rib 76 is set to a size that allows bubbles to escape, the bubbles are pushed up by this fast flow and rise without staying in the middle flow path 74s.
 そして、洗浄水がバッファリブ76の頂部76bを通ると、垂直面76cによって中部流路74sの幅は急に広がる。このため、流れの剥離が生じ、主面48a側の流れが伝熱面36側へ離れる。これにより、流れが再び混合されて、伝熱面36側の洗浄水の温度が低下し、洗浄水の温度が流路の幅方向において均等になる。 When the washing water passes through the top portion 76b of the buffer rib 76, the width of the middle channel 74s is suddenly widened by the vertical surface 76c. For this reason, separation of the flow occurs, and the flow on the main surface 48a side is separated to the heat transfer surface 36 side. As a result, the flows are mixed again, the temperature of the cleaning water on the heat transfer surface 36 side is lowered, and the temperature of the cleaning water becomes uniform in the width direction of the flow path.
 このように、中部流路74sを流れた洗浄水は、上部流路74tに流入し、中部流路74sの場合と同様に伝熱面36により加熱されたり、流れが混合されたりしながら、図5に示すように、流路スペース74を流出口72へ向かう。このように、ほぼ均一に加熱された洗浄水は、流出口72を介して出水口82から流出する。 In this way, the wash water that has flowed through the middle flow path 74s flows into the upper flow path 74t and is heated by the heat transfer surface 36 or mixed with the flow as in the case of the middle flow path 74s. As shown in FIG. 5, the flow path space 74 is directed to the outlet 72. In this way, the wash water heated substantially uniformly flows out from the water outlet 82 through the outlet 72.
  (効果)
 連通路52および案内リブ53により高さ方向の洗浄水の速い流れが形成され、バッファリブ76によりその流速が流路スペース74内において保持される。これにより、泡が留まることなく速やかに上方に排出され、また、伝熱面36からの熱伝達率が向上し、さらに、伝熱面36の過熱が防止される。この結果、熱交換器28のコンパクト化が図られ、かつ、スケールの発生が防止される。さらに、段階的に拡大する流路スペース74によりこれらの効果が促進される。
(effect)
A rapid flow of cleaning water in the height direction is formed by the communication passage 52 and the guide rib 53, and the flow velocity is held in the flow path space 74 by the buffer rib 76. As a result, bubbles are quickly discharged upward without staying, the heat transfer rate from the heat transfer surface 36 is improved, and overheating of the heat transfer surface 36 is prevented. As a result, the heat exchanger 28 can be made compact, and scale generation can be prevented. Furthermore, these effects are promoted by the channel space 74 that expands in stages.
 すなわち、連通路52の案内リブ53により長さ方向に流入する洗浄水は、高さ方向に案内される。そして、洗浄水は、長さ方向において均一に流路スペース74に流入し、流路スペース74を高さ方向に層流で速やかに流れる。このため、流路スペース74において高さ方向において一様に洗浄水が伝熱面36と効率的に熱交換し、伝熱面36の温度分布が一様になる。よって、板状ヒータの温度差による熱応力で平板状ヒータ34に亀裂や割れなどが生じることが防がれる。 That is, the wash water flowing in the length direction by the guide rib 53 of the communication passage 52 is guided in the height direction. Then, the washing water uniformly flows into the channel space 74 in the length direction, and quickly flows through the channel space 74 in a laminar flow in the height direction. For this reason, the wash water efficiently exchanges heat with the heat transfer surface 36 in the height direction in the flow path space 74, and the temperature distribution on the heat transfer surface 36 becomes uniform. Therefore, it is possible to prevent the flat heater 34 from being cracked or cracked by the thermal stress due to the temperature difference of the flat heater.
 また、流路スペース74を洗浄水が上方へ層流で流れることにより、泡がこの層流にスムーズに上方に運ばれる。よって、泡が伝熱面36に付着して、スケールが伝熱面36に発生したり、伝熱面36が局部的に高温になったりすることが防がれる。 Further, since the washing water flows in a laminar flow upward in the flow path space 74, the bubbles are smoothly conveyed upward in this laminar flow. Therefore, it is possible to prevent the bubbles from adhering to the heat transfer surface 36 and the scale to be generated on the heat transfer surface 36 or the heat transfer surface 36 to be locally heated.
 さらに、入水口80からの給水圧力が高い場合、洗浄水の長さ方向の速度を低減するためには、流入路50のサイズを大きくしたり、連通路52の幅を非常に細くしたりする必要がある。流入路50のサイズを大きくすると、熱交換器28が大型化してしまう。また、連通路52の幅を非常に細くすると、圧力損失が大きくなってしまう。これに対し、案内リブ53により洗浄水の長さ方向の速度が低減されるため、流入路50の小型化および圧力損失の低下を実現することができる。 Further, when the water supply pressure from the water inlet 80 is high, in order to reduce the speed in the length direction of the wash water, the size of the inflow passage 50 is increased, or the width of the communication passage 52 is extremely reduced. There is a need. When the size of the inflow path 50 is increased, the heat exchanger 28 is increased in size. Further, if the width of the communication path 52 is very narrow, the pressure loss increases. On the other hand, since the speed of the cleaning water in the length direction is reduced by the guide rib 53, the inflow passage 50 can be downsized and the pressure loss can be reduced.
 下部流路74f、中部流路74sおよび上部流路74tと段階的に流路スペース74の幅が広がることにより、主面48aからの流れの剥離が生じ、伝熱面36近傍の高温の流れに主面48a側の低温の流れが合流する。このため、伝熱面36近傍の洗浄水および伝熱面36の温度が低減し、沸騰による泡の発生およびスケールの生成が低減される。 As the width of the flow path space 74 gradually increases from the lower flow path 74f, the middle flow path 74s, and the upper flow path 74t, flow separation from the main surface 48a occurs, resulting in a high-temperature flow near the heat transfer surface 36. The low-temperature flows on the main surface 48a side merge. For this reason, the temperature of the washing water in the vicinity of the heat transfer surface 36 and the heat transfer surface 36 are reduced, and the generation of bubbles and the generation of scale due to boiling are reduced.
 また、伝熱面36近傍の最大速度の流れに主面48a側の流れが合流することにより、伝熱面36近傍の流れが速くなる。このため、伝熱面36から洗浄水に対する熱伝達率が向上し、洗浄水が伝熱面36から効率的に加熱される。さらに、速い流れによって泡が速やかに上方に運ばれるため、泡の付着による伝熱面36におけるスケールの生成が防止される。 Also, the flow on the main surface 48a side joins the flow at the maximum speed near the heat transfer surface 36, so that the flow near the heat transfer surface 36 becomes faster. For this reason, the heat transfer rate from the heat transfer surface 36 to the cleaning water is improved, and the cleaning water is efficiently heated from the heat transfer surface 36. Further, since the bubbles are quickly conveyed upward by the fast flow, scale generation on the heat transfer surface 36 due to the adhesion of the bubbles is prevented.
 自然対流が生じる中部流路74sおよび上部流路74tにバッファリブ76が設けられ、このバッファリブ76により主面48a側の流れが伝熱面36近傍の流れに合流している。よって、伝熱面36近傍の高温の洗浄水の温度が主面48a側の低温の洗浄水により低減され、洗浄水の沸騰、泡の発生およびスケールの生成が防止される。 Buffer ribs 76 are provided in the middle channel 74s and the upper channel 74t where natural convection occurs, and the flow on the main surface 48a side merges with the flow in the vicinity of the heat transfer surface 36 by the buffer ribs 76. Therefore, the temperature of the high-temperature washing water near the heat transfer surface 36 is reduced by the low-temperature washing water on the main surface 48a side, and boiling of the washing water, generation of bubbles and generation of scale are prevented.
 また、バッファリブ76が最大速度の流れを阻害しない位置に配されている。このため、伝熱面36近傍の最大速度の流れに主面48a側の流れが合流し、最大速度の流れの速度が増加する。これにより、伝熱面36近傍における伝熱面36から洗浄水への熱伝達率が向上し、洗浄水が効率的に加熱される。さらに、伝熱面36に沿った速い流れにより泡が速やかに上方に運ばれ、伝熱面36における泡の付着およびスケールの生成が防止される。 Also, the buffer rib 76 is arranged at a position that does not hinder the flow at the maximum speed. For this reason, the flow on the main surface 48a side merges with the maximum velocity flow near the heat transfer surface 36, and the velocity of the maximum velocity flow increases. Thereby, the heat transfer rate from the heat transfer surface 36 in the vicinity of the heat transfer surface 36 to the cleaning water is improved, and the cleaning water is efficiently heated. Further, the bubbles are rapidly carried upward by the fast flow along the heat transfer surface 36, and the adhesion of bubbles and the generation of scale on the heat transfer surface 36 are prevented.
 さらに、バッファリブ76が略直角三角形状を有することにより、流れの混合、流れの加速および泡の移動がスムーズに行われる。 Furthermore, since the buffer rib 76 has a substantially right triangle shape, mixing of the flow, acceleration of the flow, and movement of the bubbles are performed smoothly.
  (実施の形態2)
 上記実施の形態1では、ヒータ収容空間48の主面48aからのバッファリブ76の高さは全て等しかった。これに対して、流出口72側に向かってバッファリブ76の高さが低くなるように設定してもよい。これにより、バッファリブ76と伝熱面36との間の距離が流出口72側に向かって広がる。このため、泡が加熱され、流出口72側に向かって泡が大きくなっても、泡はバッファリブ76と伝熱面36との間をスムーズに通過することができる。よって、伝熱面36における泡の付着およびスケールの発生をさらに抑制することができる。
(Embodiment 2)
In the first embodiment, all the heights of the buffer ribs 76 from the main surface 48a of the heater accommodating space 48 are equal. On the other hand, you may set so that the height of the buffer rib 76 may become low toward the outflow port 72 side. As a result, the distance between the buffer rib 76 and the heat transfer surface 36 increases toward the outlet 72. For this reason, even if a bubble is heated and a bubble becomes large toward the outflow port 72 side, a bubble can pass between the buffer rib 76 and the heat-transfer surface 36 smoothly. Therefore, it is possible to further suppress bubble adhesion and scale generation on the heat transfer surface 36.
  (その他の変形例)
 上記実施の形態では、入水口80は流入路50の長さ方向の一端に設けられていたが、この位置に限定されない。たとえば、入水口80は、流入路50の側部または下部に設けられていてもよい。
(Other variations)
In the said embodiment, although the water inlet 80 was provided in the end of the length direction of the inflow path 50, it is not limited to this position. For example, the water inlet 80 may be provided in the side part or the lower part of the inflow channel 50.
 上記実施の形態では、流入路50からヒータ収容空間48まで連通路52の幅が一定に設定されていた。これに対して、流入路50からヒータ収容空間48に向かって幅が狭くなるように、連通路52が形成されていてもよい。この場合、幅が狭くなるに伴い、洗浄水の速度が速くなる。このため、泡が連通路52に留まることなく、速やかに上方に排出される。 In the above embodiment, the width of the communication path 52 from the inflow path 50 to the heater accommodating space 48 is set to be constant. On the other hand, the communication path 52 may be formed so that the width becomes narrower from the inflow path 50 toward the heater accommodating space 48. In this case, the speed of the washing water increases as the width becomes narrower. For this reason, bubbles are quickly discharged upward without staying in the communication path 52.
 上記実施の形態では、第一案内リブ部分60および第二案内リブ部分68により案内リブ53が構成されていた。これに対して、第一案内リブ部分60および第二案内リブ部分68のいずれか一方により案内リブが構成されていてもよい。また、第一案内リブ部分60および第二案内リブ部分68が連結して案内リブが形成されてもよい。さらに、第一案内リブ部分60がL字状であって、第二案内リブ部分68が直線状であったが、これらの形状はこれに限らない。 In the above embodiment, the first guide rib portion 60 and the second guide rib portion 68 constitute the guide rib 53. On the other hand, the guide rib may be constituted by one of the first guide rib portion 60 and the second guide rib portion 68. The first guide rib portion 60 and the second guide rib portion 68 may be connected to form a guide rib. Furthermore, although the 1st guide rib part 60 was L-shaped and the 2nd guide rib part 68 was linear, these shapes are not restricted to this.
 上記実施の形態では、バッファリブ76のYZ面における断面が略直角三角形状に形成されていたが、これに限定されない。たとえば、断面形状が正三角形状など他の三角形状、四角形状などの多角形状、または曲線で囲まれた形状など形成される。 In the above-described embodiment, the cross section of the buffer rib 76 on the YZ plane is formed in a substantially right triangle, but the present invention is not limited to this. For example, the cross-sectional shape is formed in another triangular shape such as a regular triangle shape, a polygonal shape such as a quadrangular shape, or a shape surrounded by a curve.
 上記実施の形態では、流出口72は、ヒータ収容空間48の側面48bに開口したが、この位置に限らない。流出口72は、ヒータ収容空間48の上面48cなど、流入口70の上方に配置されていればよい。 In the above embodiment, the outlet 72 is opened in the side surface 48b of the heater accommodating space 48, but is not limited to this position. The outlet 72 may be disposed above the inlet 70 such as the upper surface 48 c of the heater accommodating space 48.
 また、上記全実施の形態は、互いに相手を排除しない限り、互いに組み合わせてもよい。 Further, all the above embodiments may be combined with each other as long as they do not exclude each other.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明の熱交換器およびそれを備える衛生洗浄装置は、スケールの発生を低減することができるコンパクトな熱交換器およびそれを備える衛生洗浄装置等として有用である。 The heat exchanger of the present invention and the sanitary washing apparatus provided with the heat exchanger are useful as a compact heat exchanger capable of reducing the generation of scale and a sanitary washing apparatus provided with the same.
 10  衛生洗浄装置
 24  給水路
 28  熱交換器
 30  給水源
 32  ノズル
 34  平板状ヒータ
 36  伝熱面
 38  ケーシング
 48  ヒータ収容空間(収容空間)
 48a 主面
 48b 側面
 48d 下面
 50  流入路
 52  連通路
 53  案内リブ(第2リブ)
 70  流入口
 72  流出口
 74  流路スペース
 74f 下部流路(第1流路)
 74s 中部流路(第2流路)
 74t 上部流路(第2流路)
 76  バッファリブ(第1リブ)
 78  開口部
 80  入水口
DESCRIPTION OF SYMBOLS 10 Sanitary washing device 24 Water supply path 28 Heat exchanger 30 Water supply source 32 Nozzle 34 Flat heater 36 Heat transfer surface 38 Casing 48 Heater accommodation space (accommodation space)
48a main surface 48b side surface 48d lower surface 50 inflow path 52 communication path 53 guide rib (second rib)
70 Inlet 72 Outlet 74 Channel space 74f Lower channel (first channel)
74s Middle channel (second channel)
74t Upper channel (second channel)
76 Buffer rib (first rib)
78 Opening 80 Entrance

Claims (7)

  1.  上下方向に延びる伝熱面を有する平板状ヒータと、
     前記平板状ヒータの伝熱面に対向する主面、前記平板状ヒータの下方に位置する下面、前記平板状ヒータの上方に位置する上面、及び前記平板状ヒータを間に挟む両側面、により画定されたヒータ収容空間を有するケーシングと、を備え、
     前記ヒータ収容空間は、前記伝熱面とこれに対向する前記主面との間隙に形成された流路スペースを含み、
     前記ケーシングは、
     前記下面において開口して前記平板状ヒータの下端の延在方向に延設され、前記ヒータ収容空間に連通する流入口と、
     前記流入口より上方に設けられて前記ヒータ収容空間に連通する流出口と、
     前記ヒータ収容空間の下方において前記平板状ヒータの下端の延在方向に延設された流入路と、
     前記流入路に接続され、かつ、前記流入口を介して前記ヒータ収容空間に接続された連通路と、
     前記流路スペースにおいて前記主面から前記伝熱面に向かって突出し、前記両側面の間に亘って延設された複数の第1リブと、
     前記連通路において前記平板状ヒータの下端の延在方向に直交する方向に延設された第2リブと、を有する、熱交換器。
    A flat heater having a heat transfer surface extending in the vertical direction;
    Defined by a main surface facing the heat transfer surface of the flat heater, a lower surface positioned below the flat heater, an upper surface positioned above the flat heater, and both side surfaces sandwiching the flat heater. A casing having a heater containing space,
    The heater accommodating space includes a flow path space formed in a gap between the heat transfer surface and the main surface facing the heat transfer surface,
    The casing is
    An inflow opening that opens in the lower surface and extends in the extending direction of the lower end of the flat heater, and communicates with the heater accommodating space;
    An outlet provided above the inlet and communicating with the heater housing space;
    An inflow path extending in the extending direction of the lower end of the flat heater under the heater accommodating space;
    A communication path connected to the inflow path and connected to the heater accommodating space via the inlet;
    A plurality of first ribs protruding from the main surface toward the heat transfer surface in the flow path space and extending between the both side surfaces;
    And a second rib extending in a direction orthogonal to an extending direction of the lower end of the flat heater in the communication path.
  2.  前記第1リブは、前記主面からの突出寸法が前記流入口側に比べて前記流出口側で高くなる断面形状を有している、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the first rib has a cross-sectional shape in which a protruding dimension from the main surface is higher on the outlet side than on the inlet side.
  3.  前記流路スペースは、前記流入口に連通する第1流路と、前記第1流路より前記流出口側に設けられ、かつ、前記第1流路の間隙寸法より大きい間隙寸法を有する第2流路と、を含み、
     前記第1リブが前記第2流路に配置されている、請求項1または2に記載の熱交換器。
    The flow path space is a first flow path that communicates with the inflow port, and a second flow path that is provided closer to the outflow port than the first flow path and has a gap size larger than the gap size of the first flow path. A flow path,
    The heat exchanger according to claim 1 or 2, wherein the first rib is disposed in the second flow path.
  4.  前記第1リブと前記平板状ヒータの伝熱面との間の距離が前記第1流路の間隙寸法より大きく形成されている、請求項3に記載の熱交換器。 The heat exchanger according to claim 3, wherein a distance between the first rib and a heat transfer surface of the flat heater is formed larger than a gap dimension of the first flow path.
  5.  前記第1リブと前記平板状ヒータの伝熱面との間の距離が、当該第1リブより前記流入口側に配された前記第1リブと前記平板状ヒータの伝熱面との間の距離より大きくなるように、複数の前記第1リブが形成されている、請求項1~4のいずれか一項に記載の熱交換器。 The distance between the first rib and the heat transfer surface of the flat plate heater is between the first rib disposed on the inlet side of the first rib and the heat transfer surface of the flat plate heater. The heat exchanger according to any one of claims 1 to 4, wherein a plurality of the first ribs are formed so as to be larger than the distance.
  6.  前記流入路は、前記平板状ヒータの下端の延在方向に対して垂直に開口する入水口を含む、請求項1~5のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein the inflow path includes a water inlet opening perpendicularly to an extending direction of a lower end of the flat heater.
  7.  請求項1~6のいずれか1つに記載の熱交換器と、
     前記熱交換器が設けられ、給水源に接続されるべき上流端を有する給水路と、
     前記給水路の下流端に接続されたノズルと、を備えている、衛生洗浄装置。
    A heat exchanger according to any one of claims 1 to 6;
    A water supply channel provided with said heat exchanger and having an upstream end to be connected to a water supply source;
    And a nozzle connected to the downstream end of the water supply channel.
PCT/JP2012/008053 2012-12-17 2012-12-17 Heat exchanger and sanitary cleaning device with same WO2014097346A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12886907.0A EP2784407B1 (en) 2012-12-17 2012-12-17 Heat exchanger and sanitary washing device comprising heat exchanger
JP2013552748A JP5460937B1 (en) 2012-12-17 2012-12-17 Heat exchanger and sanitary washing apparatus provided with the same
PCT/JP2012/008053 WO2014097346A1 (en) 2012-12-17 2012-12-17 Heat exchanger and sanitary cleaning device with same
CN201280056799.5A CN104011479B (en) 2012-12-17 2012-12-17 Heat exchanger and sanitary cleaning device with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/008053 WO2014097346A1 (en) 2012-12-17 2012-12-17 Heat exchanger and sanitary cleaning device with same

Publications (1)

Publication Number Publication Date
WO2014097346A1 true WO2014097346A1 (en) 2014-06-26

Family

ID=50619327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008053 WO2014097346A1 (en) 2012-12-17 2012-12-17 Heat exchanger and sanitary cleaning device with same

Country Status (4)

Country Link
EP (1) EP2784407B1 (en)
JP (1) JP5460937B1 (en)
CN (1) CN104011479B (en)
WO (1) WO2014097346A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840A (en) * 1981-06-22 1983-01-05 Matsushita Electric Ind Co Ltd Heat exchanger
WO2011027576A1 (en) * 2009-09-07 2011-03-10 パナソニック株式会社 Heat exchanger
JP2012233677A (en) 2011-04-22 2012-11-29 Panasonic Corp Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05840A (en) * 1991-06-18 1993-01-08 Mitsubishi Materials Corp Ceramic slurry and production of ceramic structural body by using this slurry
AU2003242090A1 (en) * 2003-06-05 2005-01-04 Matsushita Ecology Systems Co., Ltd. Heat exchanger
WO2012144122A1 (en) * 2011-04-22 2012-10-26 パナソニック株式会社 Hygienic cleaning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840A (en) * 1981-06-22 1983-01-05 Matsushita Electric Ind Co Ltd Heat exchanger
WO2011027576A1 (en) * 2009-09-07 2011-03-10 パナソニック株式会社 Heat exchanger
JP2012233677A (en) 2011-04-22 2012-11-29 Panasonic Corp Heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2784407A4

Also Published As

Publication number Publication date
EP2784407B1 (en) 2022-08-17
JP5460937B1 (en) 2014-04-02
EP2784407A4 (en) 2015-02-25
CN104011479B (en) 2015-05-13
EP2784407A1 (en) 2014-10-01
CN104011479A (en) 2014-08-27
JPWO2014097346A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2011027576A1 (en) Heat exchanger
JP6348576B2 (en) Heat sink for linear motor
JP4697535B2 (en) Exhaust member and heat source device
JP5460937B1 (en) Heat exchanger and sanitary washing apparatus provided with the same
JP5945714B2 (en) Heat pump water heater
JP5306290B2 (en) Combustion device
KR101399717B1 (en) Sanitary washing device
JP5945722B2 (en) Heat exchanger and sanitary washing toilet seat equipped with it
JP5747165B2 (en) Heat exchanger
JP5534117B2 (en) Manufacturing method of heat exchanger
JP5945717B2 (en) Heat exchanger and sanitary washing toilet seat equipped with it
JP2021526311A (en) Jet collision cooling system and method
EP3012549B1 (en) Heating device and sanitary washing device with such a heating device
US20120148220A1 (en) Heat exchanger
JP2012225621A (en) Heat exchanger
JP2017215084A (en) Fluid heating device
JP2012233677A5 (en)
JP2009036397A (en) Hot water storage type electric water heater
CN217610751U (en) Fluid heater and have its intelligent closestool lid and intelligent closestool
JP2018048786A (en) Cistern device and instrument with cistern device having the cistern device
JP2018048785A (en) Cistern device and instrument with cistern device having the cistern device
JP7062941B2 (en) Cistern and hot water heater
CN103562650B (en) Instantaneous heating equipment
KR101886238B1 (en) Instantaneous water heater and hot water providing device having the same
JP2017168716A (en) Cooling device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013552748

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012886907

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE