WO2012144122A1 - Hygienic cleaning device - Google Patents

Hygienic cleaning device Download PDF

Info

Publication number
WO2012144122A1
WO2012144122A1 PCT/JP2012/001522 JP2012001522W WO2012144122A1 WO 2012144122 A1 WO2012144122 A1 WO 2012144122A1 JP 2012001522 W JP2012001522 W JP 2012001522W WO 2012144122 A1 WO2012144122 A1 WO 2012144122A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat transfer
heater
inflow portion
water
Prior art date
Application number
PCT/JP2012/001522
Other languages
French (fr)
Japanese (ja)
Inventor
良一 古閑
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011095749A external-priority patent/JP5786129B2/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020127022666A priority Critical patent/KR101399717B1/en
Priority to CN201280000811.0A priority patent/CN102859086B/en
Publication of WO2012144122A1 publication Critical patent/WO2012144122A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/103Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance with bare resistances in direct contact with the fluid
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • E03D9/08Devices in the bowl producing upwardly-directed sprays; Modifications of the bowl for use with such devices ; Bidets; Combinations of bowls with urinals or bidets; Hot-air or other devices mounted in or on the bowl, urinal or bidet for cleaning or disinfecting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • F24H9/146Connecting elements of a heat exchanger

Definitions

  • the present invention relates to a sanitary washing apparatus, and more particularly, to a sanitary washing apparatus having a nozzle that ejects hot water.
  • a flat heater is accommodated vertically in a rectangular parallelepiped casing having a small thickness.
  • Two flow paths are formed along each of the heat transfer surfaces of the flat heater so as to meander upward in the horizontal direction. While the flat heater is driven, the washing water flows along each flow path, and the temperature is raised to an appropriate temperature (see, for example, Patent Document 1).
  • the flat heater becomes locally hot due to the scale, a temperature difference occurs in the flat heater. Due to the thermal stress due to this temperature difference, in a flat plate heater using ceramics as a heating element, the flat plate heater is cracked or broken, and the flat plate heater fails.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a sanitary washing apparatus capable of ensuring a necessary flow rate of washing water and preventing failure.
  • a sanitary washing device has a nozzle, an upstream end to be connected to a water supply source, and a water supply path whose downstream end is connected to the nozzle, and heat exchange provided in the water supply path
  • the heat exchanger includes an inflow portion, an outflow portion located above the inflow portion, a lower end portion communicated with the inflow portion, an upper end portion communicated with the outflow portion, and a vertical direction.
  • a plate-like heater housing space formed to extend to the heater, and heat transfer that is accommodated in the heater housing space of the casing so as to extend in the vertical direction and faces the main surface of the heater housing space
  • a flat plate-like heater including a surface, and a flow path space formed in a gap between the heat transfer surface and the main surface of the heater housing space, and the flow path space is formed on the inflow portion side.
  • the width of the gap is smaller than the width of the gap on the outflow portion side. It is formed in so that.
  • the present invention has the above-described configuration, and has an effect that it is possible to provide a sanitary washing device that can secure a necessary flow rate of washing water and prevent failure.
  • FIG. 3 is a cross-sectional view showing the heat exchanger cut along line AA in FIG. 2.
  • FIG. 4 is a longitudinal sectional view showing a heat exchanger cut along a line BB in FIG. 3. It is an enlarged view of the area
  • the present inventors examined a heat exchanger in which a flow path was formed along both heat transfer surfaces of a flat heater.
  • heat exchangers are designed on the assumption that the heat transfer amounts on both heat transfer surfaces to the wash water are approximately the same. If there is a large difference in the amount of heat transfer on both sides, a local boiling phenomenon may occur in the flow path on one side, and bubbles may be generated. Such bubbles increase the flow resistance of the washing water in the flow path, the flow rate balance in both flow paths is lost, and the difference in the amount of heat transfer becomes larger.
  • a temperature sensor such as a thermistor may be provided near the water outlet of the heat exchanger. In this case, if bubbles grow large and adhere to the temperature sensor, the temperature sensor cannot contact the cleaning water. For this reason, a temperature sensor cannot detect appropriately.
  • the bubbles adhere to the heat transfer surface and grow large, the bubbles are interposed between the heat transfer surface and the washing water, and both are dissociated. In this case, it becomes difficult to transfer heat from the heat transfer surface to the washing water, and the temperature of the heat transfer surface increases greatly. The temperature difference between the heat transfer surface to which bubbles are attached and the opposite heat transfer surface is increased. Due to the thermal stress, the flat heater is deformed and the life of the heat exchanger is shortened.
  • the most dominant factor that the scale adheres to the heat transfer surface is the temperature of the heat transfer surface.
  • the set temperature of the heat transfer surface is determined to be 100 ° C. or lower, preferably 80 ° C. or lower, at which boiling occurs.
  • the set temperature of the heat transfer surface is appropriately determined by the scale concentration of tap water, the required durability time of the heater, and the like. If a part of the heat transfer surface exceeds the set temperature, the scale adheres to that part and the scale becomes an obstacle to heat transfer. In order to avoid this, the area of the heat transfer surface may be increased. However, this is not preferable because it increases the cost of the heat exchanger.
  • the watt density or heat transfer coefficient distribution of the flat heater so that the temperature of the heat transfer surface is substantially uniform as a whole.
  • the size of the heat transfer surface is minimum, and the temperature of the heat transfer surface can be set to a set temperature or less, but the cost of the flat heater is increased.
  • the flow path thickness is very thin, local non-uniformity in the flow velocity tends to occur. Since the thickness of the flow path: 0.5 mm is smaller than the order of the thickness of the speed boundary layer: several mm, the speed boundary layer covers the entire flow path. Therefore, the velocity gradient changes depending on the channel thickness, and the non-uniform flow velocity is likely to occur due to the non-uniform channel thickness.
  • the velocity boundary layer is a fluid layer where the velocity is zero on the heat transfer surface and the velocity changes rapidly. For this reason, the force which discharges the bubble on a heat-transfer surface from on a heat-transfer surface is weak. Further, when the channel thickness is small, the size of bubbles generated in the channel tends to be larger than the channel thickness. In this case, the foam is deformed corresponding to the thickness of the flow path, and a push-up force is generated by the surface tension of the foam, so that the foam is difficult to move. Therefore, bubbles stay in the flow path, and unevenness of the flow rate tends to be locally generated by the bubbles.
  • the heat transfer surface temperature rises significantly locally in a flat watt heater with a high watt density such that the watt density is 30 W / cm 2 or more. Boiling occurs at this point, and bubbles are further generated. For this reason, the non-uniformity of the flow is promoted, and the heat transfer surface is burned out.
  • the heat exchanger becomes compact and the heat transfer area can be easily increased.
  • the flow tends to be non-uniform. For this reason, when a superheated part is produced partially, heat concentrates on this superheated part, the washing water of this part evaporates, and a bubble is produced. If the bubbles do not flow out, this part is further heated. As a result, when the bubbles become large and the heat transfer surface becomes extremely hot, the heater is destroyed.
  • the present invention has been made based on the above findings.
  • a sanitary washing device has a nozzle, an upstream end to be connected to a water supply source, and a water supply path whose downstream end is connected to the nozzle, and heat exchange provided in the water supply path
  • the heat exchanger includes an inflow portion, an outflow portion located above the inflow portion, a lower end portion communicated with the inflow portion, an upper end portion communicated with the outflow portion, and a vertical direction.
  • a plate-like heater housing space formed to extend to the heater, and heat transfer that is accommodated in the heater housing space of the casing so as to extend in the vertical direction and faces the main surface of the heater housing space
  • a flat plate-like heater including a surface, and a flow path space formed in a gap between the heat transfer surface and the main surface of the heater housing space, and the flow path space is formed on the inflow portion side.
  • the width of the gap is smaller than the width of the gap on the outflow portion side. It is formed in so that.
  • the flat heater may be configured such that the heat generation density on the inflow portion side is larger than the heat generation density on the outflow portion side.
  • the flat heater includes a ceramic base and a heating wire formed by pattern printing on the ceramic base, and a cross-sectional area of the heating wire on the inflow portion side is the outflow It may be smaller than the cross-sectional area of the heating wire on the part side.
  • the flat heater includes a ceramic base and a heating wire formed by pattern printing on the ceramic base, and an interval between the heating wires adjacent to each other on the inflow portion side is as follows. It may be larger than the interval between the heating wires adjacent to each other on the outflow portion side.
  • the heat exchanger further includes a water inlet, and a header portion formed between the water inlet and the inflow portion.
  • a throttle channel that gradually narrows toward the inflow portion.
  • the Z direction shown in each drawing indicates the vertical direction.
  • the X direction indicates a direction orthogonal to the vertical direction and parallel to the heat transfer surfaces 20 a and 20 b of the flat heater 20.
  • the Y direction indicates a direction orthogonal to both the Z direction and the X direction.
  • the cross-sectional area indicates an area in a plane perpendicular to the flow of the cleaning water.
  • FIG. 9 is a schematic diagram illustrating a main configuration of the sanitary washing device 1 according to the first embodiment.
  • the sanitary washing device 1 includes a nozzle 7, a water supply path 9 having an upstream end to be connected to the water supply source 8, and a downstream end connected to the nozzle 7, and a heat exchanger 10 provided in the water supply path 9. Prepare.
  • FIG. 10 is a cross-sectional view showing the heat exchanger 10 mounted on the sanitary washing device 1 of FIG.
  • the heat exchanger 10 has an inflow portion 10a, an outflow portion 10b positioned above the inflow portion 10a, a lower end portion that communicates with the inflow portion 10a, an upper end portion that communicates with the outflow portion 10b, and extends vertically.
  • a casing 23 including a plate-shaped heater housing space 23c formed therein, and is accommodated in the heater housing space 23c of the casing 23 so as to extend in the vertical direction, and is opposed to the main surfaces 30a and 40a of the heater housing space 23c.
  • a flow path space 25 formed in a gap between the heat transfer surfaces 20a and 20b and the main surfaces 30a and 40a of the heater accommodating space 23c.
  • the flow path space 25 is formed such that the width of the gap on the inflow portion 10a side is smaller than the width of the gap on the outflow portion 10b side.
  • the “vertical direction” is a concept including both the vertical direction and the direction intersecting the vertical direction.
  • the “heater accommodating space” means a space including a region where the heater is present and a space in contact with the region, assuming that the heater is removed from the casing.
  • the “flow path space” is a flow path formed so as to guide a fluid (here, water) along the pair of heat transfer surfaces of the flat heater in the casing.
  • the washing water flows from the water supply source 8 through the water supply passage 9. Wash water flows into the heat exchanger 10 in the water supply channel 9 and is heated here. The wash water that has reached a high temperature flows out of the heat exchanger 10 and is supplied to the nozzle 7. Thereby, hot water is ejected from the nozzle 7.
  • the washing water flows into the heater accommodating space 23c of the casing 23 from the inflow portion 10a.
  • the washing water enters between the planar main surfaces 30 a and 40 a of the heater housing space 23 c and the heat transfer surfaces 20 a and 20 b of the flat heater 20 and passes through the flow path space 25. At this time, the washing water is heated by the heat transfer surfaces 20a and 20b, and the temperature rises.
  • the width of the gap on the inflow portion 10a side is smaller than the width of the gap on the outflow portion 10b side. For this reason, the cleaning water flowing through the flow path space 25 is accelerated in forced convection on the inflow portion 10a side.
  • the velocity gradient of the boundary layer between the heat transfer surfaces 20a and 20b and the washing water increases, and the heat transfer coefficient increases. Heat is applied to the washing water from the heat transfer surfaces 20a and 20b, the temperature of the heat transfer surfaces 20a and 20b is low, and scales are prevented from adhering to the heat transfer surfaces 20a and 20b.
  • Wash water flows from the inflow portion 10a side to the outflow portion 10b side by forced convection.
  • the washing water is further heated by the heat transfer surfaces 20a and 20b on the outflow portion 10b side.
  • the air mixed in the cleaning water expands and bubbles are generated. Since the width of the gap on the outflow portion 10b side is large, the bubbles exit to the outflow portion 10b without staying in the flow path space 25.
  • the temperature of the washing water rises and the density thereof decreases, so that an upward flow of natural convection occurs, and the washing water flows to the outflow portion 10b. Since the width of the gap on the outflow portion 10b side is large, bubbles are easily removed by the upward flow of natural convection, and the heat transfer rate from the heat transfer surfaces 20a, 20b to the washing water is improved.
  • the bubbles are smoothly discharged, so that heat exchange between the washing water and the heat transfer surfaces 20a and 20b is stably performed without being inhibited by the bubbles.
  • bubbles do not adhere to the heat transfer surfaces 20a and 20b, and this portion is heated to prevent a temperature difference between the heat transfer surfaces 20a and 20b. Thereby, it can prevent that the heat-transfer surfaces 20a and 20b are not deform
  • FIG. 1 shows a toilet in which a sanitary washing device 1 according to Embodiment 2 is attached to a toilet bowl 2.
  • the sanitary washing device 1 is disposed on the upper surface of the toilet bowl 2.
  • the sanitary washing device 1 includes a main body part 3, a toilet seat part 4, a toilet lid part 5, and an operation part 6.
  • the main body 3 is disposed on the rear side of the toilet seat 4, that is, on the rear side as viewed from the seated user.
  • the main body 3 is a horizontally long casing 3a and houses the water supply passage 9 and the heat exchanger 10 shown in FIG.
  • the main body unit 3 houses a cleaning unit, a drying unit, a control unit for controlling these operations, and the like (not shown).
  • the water supply channel 9 introduces tap water (fluid, liquid, washing water) into the nozzle 7 through the heat exchanger 10 from a water supply facility (water supply source 8) attached to the building where the toilet 2 is installed.
  • a water supply facility water supply source 8
  • the cleaning unit is driven. Washing water is warmed by the heat exchanger 10, and the hot water is discharged from the nozzle 7 in a shower shape toward the opening of the toilet 2.
  • FIG. 2 is a plan view showing the front of the heat exchanger 10.
  • FIG. 3 is a plan view showing the right main surface of the heat exchanger 10.
  • FIG. 4 is a cross-sectional view showing the heat exchanger 10 cut along the line AA in FIG.
  • FIG. 5 is a longitudinal sectional view showing the heat exchanger 10 cut along the line BB in FIG. 6 is an enlarged view of a region C in FIG.
  • the heat exchanger 10 has a small thickness in the Y direction and a rectangular shape in the XZ direction. As shown in FIG. 4, the heat exchanger 10 includes a flat heater 20, a first flow path forming member 21, and a second flow path forming member 22.
  • a casing 23 is formed by the first flow path forming member 21 and the second flow path forming member 22.
  • the first flow path forming member 21 and the second flow path forming member 22 are each formed of, for example, a reinforced ABS resin obtained by compounding a glass fiber with an ABS resin.
  • the first flow path forming member 21 is disposed on the first heat transfer surface 20a side of the flat heater 20.
  • the first flow path forming member 21 includes a base portion 30 and a shelf step portion 31.
  • the base portion 30 includes a base surface (main surface) 30a.
  • the base surface 30a has a planar shape and faces the first heat transfer surface 20a.
  • the thickness of the base portion 30 in the Y direction changes.
  • the thickness of the base 30 on the outflow part 10 b side from the shelf step part 31 is smaller than the inflow part 10 a side from the shelf step part 31.
  • the base surface 30a on the inflow portion 10a side from the shelf step portion 31 is closer to the first heat transfer surface 20a than the base surface 30a on the outflow portion 10b side.
  • the width between the base surface 30a on the inflow portion 10a side and the first heat transfer surface 20a is narrower than the width between the base surface 30a on the outflow portion 10b side and the first heat transfer surface 20a.
  • the first flow path forming member 21 is provided with a wall-like flange portion 32 around the entire periphery of the base portion 30.
  • An engagement groove 33 is formed at the distal end of the flange portion 32, and the engagement groove 33 is formed along the entire circumference of the flange portion 32.
  • the second flow path forming member 22 is disposed on the second heat transfer surface 20 b side of the flat heater 20.
  • the second flow path forming member 22 includes a base portion 40 and a shelf step portion 41.
  • the base portion 40 includes a base surface (main surface) 40a.
  • the base surface 40a has a planar shape and faces the second heat transfer surface 20b.
  • the thickness of the base portion 40 in the Y direction changes.
  • the thickness of the base portion 40 on the outflow portion 10b side from the shelf step portion 41 is smaller than the shelf step portion 41 on the inflow portion 10a side.
  • the base surface 40a on the inflow portion side from the shelf step portion 41 is closer to the second heat transfer surface 20b than the base surface 40a on the outflow portion 10b side.
  • the width between the base surface 40a on the inflow portion 10a side and the second heat transfer surface 20b is narrower than the width between the base surface 40a on the outflow portion 10b side and the second heat transfer surface 20b.
  • the second flow path forming member 22 is provided with a wall-like flange portion 42 around the entire periphery of the base portion 40.
  • the flange part 42 protrudes toward the opposite side of the base surface 40a.
  • tip part of the flange part 42 is return
  • An engagement protrusion 43 is provided at the tip of the tip, and the engagement protrusion 43 is formed over the entire circumference of the flange portion 42.
  • the flange portion 42 of the second flow path forming member 22 enters the flange portion 32 of the first flow path forming member 21, and the engaging protrusion of the second flow path forming member 22 enters the engaging groove 33 of the first flow path forming member 21. 43 fits.
  • the engagement protrusion 43 is fixed to the engagement groove 33 by ultrasonic welding. Thereby, the 1st flow path formation member 21 and the 2nd flow path formation member 22 are watertightly joined, and the casing 23 is formed.
  • the casing 23 has two side surfaces, two main surfaces, a top surface, and a bottom surface, and includes a substantially rectangular hollow portion surrounded by these. This substantially rectangular hollow portion constitutes a plate-shaped heater accommodating space 23c.
  • the heater housing space 23c extends in the vertical direction.
  • the lower end portion of the heater accommodating space 23c communicates with the inflow portion 10a, and the upper end portion communicates with the outflow portion 10b.
  • the water inlet 23a and the water outlet 23b open on one side.
  • the opening of the water outlet 23b becomes the outflow part 10b.
  • the water inlet 23a is provided at one end lower portion of the side surface, and is connected to the upstream end of the water supply channel 9 (FIG. 9).
  • the water outlet 23b is provided at the upper end of the side surface and is connected to the downstream end of the water supply channel 9 (FIG. 9).
  • Two main surfaces in the XZ direction are formed by base surfaces 30a and 40a, respectively.
  • the top surface faces the upper end of the flat heater 20.
  • the top surface is inclined so that the gap between the top surface and the upper end of the flat heater 20 becomes wider as it approaches the water outlet 23b.
  • the bottom surface faces the lower end of the flat heater 20.
  • the inflow portion 10a of the flow path space 25 opens on the top surface, and the inflow portion 10a extends in the X direction.
  • a flow path space 25 and a header portion 45 are formed inside the casing 23.
  • the flow path space 25 includes a flow path between the first heat transfer surface 20a and the base surface 30a and a flow path between the second heat transfer surface 20b and the base surface 40a. These two flow paths are formed symmetrically on both sides of the flat heater 20.
  • Each of the two channels has an inlet side channel 25a and an outlet side channel 25b.
  • the inlet-side flow path 25a is provided on the side closer to the water inlet 23a below the shelf steps 31, 41.
  • the outlet side flow path 25b is provided on the side closer to the water outlet 23b above the shelf steps 31, 41.
  • the Y-axis direction thickness of the inlet-side channel 25a is smaller than the Y-axis direction thickness of the outlet-side channel 25b.
  • the header part 45 is provided between the inflow part 10a of the flow path space 25 and the water inlet 23a, and extends in the X direction.
  • the header part 45 includes a header part main flow path 45a and a header part throttle flow path 45b.
  • the cross-sectional area in the XY direction of the header portion main flow passage 45a is wider than that of the header portion restriction flow passage 45b. That is, the channel cross-sectional area in the XY direction is orthogonal to the flow of cleaning water flowing from the water inlet 23a to the inflow portion 10a.
  • the flow passage cross-sectional area of the header portion restriction flow passage 45b gradually decreases from the header portion main flow passage 45a toward the inflow portion 10a from the inflow portion 10a.
  • the header throttle channel 45b has a crank shape.
  • the header portion narrowing channel 45b includes a vertical portion 45bb, a horizontal portion 45bc, and a vertical portion 45bd. In the order of the vertical portion 45bb, the horizontal portion 45bc, and the vertical portion 45bd, the cross-sectional areas become smaller (that is, narrower).
  • the flat heater 20 is accommodated in the heater accommodating space 23c of the casing 23 and extends in the vertical direction.
  • the flat heater 20 has a rectangular flat plate shape and includes first and second heat transfer surfaces 20a and 20b on both surfaces.
  • the flat heater 20 includes a ceramic substrate 20k, a resistor pattern 20p, and electrodes (not shown).
  • the temperature of the heat transfer surfaces 20a and 20b is prevented from being locally higher than a predetermined temperature.
  • This predetermined temperature is generally set to 100 ° C. or lower, preferably 80 ° C. or lower, at which boiling occurs in the temperature of the heat transfer surfaces 20a and 20b. Further, the predetermined temperature is appropriately determined depending on the scale concentration of tap water, the required durability time of the heater, and the like.
  • the resistor pattern 20p has a resistor printed on the ceramic substrate 20k.
  • the resistor pattern 20p forms a heating wire (heater wire) and generates heat when energized from the electrodes. As shown in FIG. 7, the heater wire extends long in the X direction and spreads upward in the Z direction while meandering.
  • the heater wire width 20s in the inlet-side channel 25a is narrower than the heater wire width 20s in the outlet-side channel 25b, and the heater wire has a smaller cross-sectional area. The smaller the heater wire width 20s and the smaller the heater wire cross-sectional area, the greater the resistance value of the heater wire. Therefore, the resistance value of the heater wire in the inlet side channel 25a is higher than the resistance value of the heater wire in the outlet side channel 25b.
  • the heat generation density in the resistor pattern 20p in the inlet-side flow path 25a is higher than the heat generation density in the resistor pattern 20p in the outlet-side flow path 25b.
  • the cleaning water enters the header part main flow path 45a of the header part 45. Since the cross-sectional area of the header section throttle flow path 45b is much smaller than the cross-sectional area of the header section main flow path 45a, the resistance from the header section main flow path 45a to the header section throttle flow path 45b is in the X direction of the header section main flow path 45a. Greater than the resistance. Therefore, most of the washing water flows in the X direction of the header part main flow path 45a, and the washing water uniformly fills the header part main flow path 45a. Then, the washing water flows from the header part main flow path 45a to the header part throttle flow path 45b.
  • the flow path cross-sectional area of the header portion narrowing flow path 45b is gradually narrowed, the flow of cleaning water becomes gradually faster. Further, there is no place where air stays in the header throttle channel 45b. For this reason, even if air is mixed in the washing water, the air is carried toward the inflow portion 10a without accumulating.
  • the washing water flows from the inflow portion 10a into the inlet-side flow path 25a, the bubbles rise smoothly by buoyancy along the flow path space 25 in the vertical direction. Further, the bubbles flow to the outflow portion 10b along the top surface of the casing 23 that increases toward the outflow portion 10b. And a bubble is discharged
  • the washing water flows from the inflow portion 10 a into the inlet side flow path 25 a of the flow path space 25.
  • the inlet side channel 25a which is a region where the channel thickness is thin, the flow rate of the cleaning water is fast.
  • the velocity gradient of the boundary layer between each heat transfer surface 20a, 20b of the flat heater 20 and the cleaning water is large, and the heat transfer coefficient between each heat transfer surface 20a, 20b and the cleaning water is large.
  • the heat generation density in the resistor pattern 20p in the inlet-side flow path 25a is high. Therefore, the washing water is heated by the heat transfer surfaces 20a and 20b and becomes high temperature, and its density is reduced. As a result, the washing water rises and flows from the inlet side channel 25a into the outlet side channel 25b.
  • the temperature of each heat transfer surface 20a, 20b tends to increase.
  • the temperature of the cleaning water in the inlet-side flow path 25a is low, the subcool (degree of cooling with respect to the boiling temperature of water) increases and the cleaning water takes a lot of heat from the heat transfer surfaces 20a and 20b.
  • the flow path thickness is thin and the flow rate of the washing water is fast. Therefore, the washing water does not have such a high heat transfer rate that the local boiling phenomenon occurs.
  • the bubbles rise through the outlet side channel 25b having a thick channel in the outlet side channel 25b.
  • the bubbles are discharged from the water outlet 23b.
  • the washing water having such a high temperature flows into the water supply channel 9 from the outlet 23b.
  • the temperature of the wash water is adjusted by a tank (not shown) or the like.
  • the solenoid valve is opened, warm washing water is discharged from the nozzle 7.
  • the header portion restricting passage 45b has a crank shape, the passage in the header portion restricting passage 45b becomes longer. For this reason, even if the cross-sectional area in the header throttle channel 45b is slightly increased, it is possible to ensure channel resistance in the header throttle channel 45b. As a result, the cleaning water can uniformly flow into the header throttle channel 45b over the entire length of the header main channel 45a.
  • a uniform and fast flow of cleaning water along the heat transfer surfaces 20a and 20b is formed in the flow path space 25 by the header throttle flow path 45b.
  • the heat transfer rate between each heat transfer surface 20a, 20b and the washing water is increased.
  • washing water can be heated efficiently.
  • it can suppress that the temperature of each heat-transfer surface 20a, 20b is low, and a scale adheres to each heat-transfer surface 20a, 20b.
  • bubbles generated on the heat transfer surfaces 20a and 20b are easily removed, and the occurrence of local scales and damage to the flat heater 20 due to thermal stress are prevented, and the heat transfer surfaces 20a and 20b and cleaning water
  • stable heat exchange is possible without hindering the heat exchange.
  • the inlet-side channel 25a is close to the header throttle channel 45b and has a small channel thickness. For this reason, in the inlet side flow path 25a, the quick flow from the header part throttle flow path 45b is maintained. Therefore, the velocity gradient in the boundary layer between each heat transfer surface 20a, 20b and the wash water is large, and the heat transfer coefficient due to forced convection between each heat transfer surface 20a, 20b and the wash water is large. The washing water is efficiently heated and the flat heater 20 is prevented from being damaged.
  • the flat heater 20 heats the cleaning water by the heat transfer surfaces 20a and 20b on both the front and back surfaces, there is almost no heat dissipation loss. For this reason, the high heat efficiency of the heat exchanger 10 can be realized and the apparatus can be made compact.
  • the flat heater 20 is suppressed from being heated to such a high temperature that a local boiling phenomenon occurs, and local scale generation is prevented. For this reason, although a heat capacity is small compared with a metal, even if it uses a ceramic for the flat heater 20 if it is easy to break, the crack is prevented and the lifetime of the sanitary washing apparatus 1 is extended.
  • the temperature sensor can appropriately detect the temperature.
  • the bubbles do not become large by discharging the bubbles.
  • a situation is avoided in which large bubbles are attached to the temperature sensor, and the temperature sensor cannot contact the cleaning water due to the large bubbles and cannot detect the temperature of the cleaning water.
  • the forced convection of the washing water and the discharge of the bubbles suppress the scale from adhering to the heat transfer surfaces 20a and 20b. Thereby, in order to avoid the heat transfer failure by a scale, it is not necessary to increase the area of the heat-transfer surfaces 20a and 20b. Therefore, the cost increase of the sanitary washing device 1 can be prevented and the size can be reduced.
  • the sectional area of the header throttle channel 45b is gradually narrower, and the sectional area of the inlet-side channel 25a is narrower than that of the outlet-side channel 25b in the channel space 25. Thereby, even if it does not make flow path thickness thin, the uniform quick flow of the washing water along each heat-transfer surface 20a, 20b is formed.
  • each heat transfer surface 20a, 20b is such that the outlet side flow path 25b is smaller than the inlet side flow path 25a.
  • the flow rate of the washing water is larger in the inlet side channel 25a than in the outlet side channel 25b.
  • the inlet side flow path 25a is higher than the outlet side flow path 25b.
  • the heater wire width 20s in the inlet-side channel 25a is formed to be narrower than the heater wire width 20s in the outlet-side channel 25b.
  • the heater wire width is not limited to 20s.
  • the interval 20h between the heater wires adjacent to each other in the inlet-side channel 25a is narrower than that in the outlet-side channel 25b.
  • the heat generation density in the resistor pattern 20p in the inlet-side flow path 25a is higher than the heat generation density in the resistor pattern 20p in the outlet-side flow path 25b.
  • the header throttle channel 45b has a substantially crank shape, and its channel cross-sectional area is gradually narrowed.
  • the shape of the header throttle channel 45b is not limited to a substantially crank.
  • the header portion restriction channel may be formed by a substantially “ ⁇ ”-shaped cross section formed by two sides of the vertical portion 45bb and the horizontal portion 45bc shown in FIG.
  • it is not limited to what a flow-path cross-sectional area is narrowed in steps.
  • the header restricting flow path may be formed with a triangular cross section whose interval becomes narrower upward. In this case, the flow path cross-sectional area is narrowed gradually.
  • the thickness of the base portions 30 and 40 in the Y direction is changed stepwise by the shelf steps 31 and 41 in the members 21 and 22.
  • two flow paths 25 a and 25 b having different cross-sectional areas are provided in the flow path space 25.
  • each member 21 and 22 may be formed so that the thickness of the base parts 30 and 40 in the Y direction gradually changes.
  • the channel space 25 is provided with one channel whose cross-sectional area gradually changes.
  • the sanitary washing apparatus of the present invention is useful as a sanitary washing apparatus that can secure a necessary flow rate of washing water and prevent failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)

Abstract

This hygienic cleaning device (1) is provided with a nozzle (7), a water supply path (9), and a heat exchanger (10). The heat exchanger (10) has a casing (23), a flat plate-shaped heater (20), and a flow path space (25). The flow path space is formed in such a manner that the width of gaps measured on the inlet section side is less than the width of the gaps measured on the outlet section side.

Description

衛生洗浄装置Sanitary washing device
 本発明は、衛生洗浄装置に関し、特に、温水を噴出するノズルを有する衛生洗浄装置に関する。 The present invention relates to a sanitary washing apparatus, and more particularly, to a sanitary washing apparatus having a nozzle that ejects hot water.
 従来、温水をノズルから噴出する衛生洗浄装置が知られている。 Conventionally, a sanitary washing device that ejects hot water from a nozzle is known.
 たとえば、厚み寸法の小さい直方体形状のケーシング内に平板状のヒータが縦置きに収納されている。平板状ヒータの両伝熱面の夫々に沿って、水平方向に蛇行させつつ上方へ向かう2つの流路が形成されている。この平板状ヒータを駆動している間に、洗浄水は、各流路に沿って通流し、適温にまで昇温する(たとえば、特許文献1参照)。 For example, a flat heater is accommodated vertically in a rectangular parallelepiped casing having a small thickness. Two flow paths are formed along each of the heat transfer surfaces of the flat heater so as to meander upward in the horizontal direction. While the flat heater is driven, the washing water flows along each flow path, and the temperature is raised to an appropriate temperature (see, for example, Patent Document 1).
特開平10-220876号公報Japanese Patent Laid-Open No. 10-220876
 従来例では、蛇行する流路において洗浄水が滞留したり気泡が停滞したりする部分が生じる可能性がある。このような洗浄水が滞留する部分では、洗浄水が局所的に沸騰する。この局部的な沸騰部分では平板状ヒータの表面に洗浄水に含まれるカルシウム成分等が固着し、スケールが生成する。スケールによって洗浄水への熱伝達が阻害され、平板状ヒータの局所的な高温化を招く。さらに、スケールの生成が助長され、堆積したスケールで洗浄水の流路抵抗が高くなる。これにより、必要な洗浄水の流量が確保できなくなる可能性がある。 In the conventional example, there is a possibility that a portion where the washing water stays or the bubbles stagnate in the meandering flow path. In such a portion where the washing water stays, the washing water boils locally. In this local boiling portion, the calcium component contained in the washing water adheres to the surface of the flat heater, and a scale is generated. The heat transfer to the washing water is hindered by the scale, resulting in a local high temperature of the flat heater. Furthermore, the generation of scale is promoted, and the flow path resistance of the washing water is increased in the accumulated scale. Thereby, there is a possibility that a necessary flow rate of cleaning water cannot be secured.
 また、気泡が停滞する部分では、洗浄水の滞留および平板状ヒータの局部的な高温化などを招き、上記の問題が生じる。 Also, in the part where the bubbles stagnate, the above problems occur due to the retention of washing water and the local high temperature of the flat heater.
 さらに、スケールにより平板状ヒータが局部的に高温になると、平板状ヒータに温度差が生じる。この温度差による熱応力によって、セラミックスを発熱体に用いた平板状ヒータでは、平板状ヒータに亀裂や割れなどが生じ、平板状ヒータが故障してしまう。 Furthermore, when the flat heater becomes locally hot due to the scale, a temperature difference occurs in the flat heater. Due to the thermal stress due to this temperature difference, in a flat plate heater using ceramics as a heating element, the flat plate heater is cracked or broken, and the flat plate heater fails.
 本発明はこのような課題を解決するためになされたものであり、必要な洗浄水の流量を確保し、かつ故障を防止することが可能な衛生洗浄装置を提供することを目的としている。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a sanitary washing apparatus capable of ensuring a necessary flow rate of washing water and preventing failure.
 本発明のある態様に係る、衛生洗浄装置は、ノズルと、給水源に接続されるべき上流端を有し、下流端が前記ノズルに接続された給水路と、前記給水路に設けられる熱交換器とを備え、前記熱交換器が、流入部と、前記流入部より上方に位置する流出部と、下端部が前記流入部に連通し、上端部が前記流出部に連通し、且つ上下方向に延びるように形成された板状のヒータ収容空間と、を含むケーシングと、前記ケーシングのヒータ収容空間に上下方向に延在するように収容され、前記ヒータ収容空間の主面に対向する伝熱面を含む平板状ヒータと、前記伝熱面と前記ヒータ収容空間の主面との間の間隙に形成された流路スペースと、を有し、前記流路スペースは、前記流入部側の前記間隙の幅が、前記流出部側の前記間隙の幅より小さくなるように形成されている。 A sanitary washing device according to an aspect of the present invention has a nozzle, an upstream end to be connected to a water supply source, and a water supply path whose downstream end is connected to the nozzle, and heat exchange provided in the water supply path The heat exchanger includes an inflow portion, an outflow portion located above the inflow portion, a lower end portion communicated with the inflow portion, an upper end portion communicated with the outflow portion, and a vertical direction. A plate-like heater housing space formed to extend to the heater, and heat transfer that is accommodated in the heater housing space of the casing so as to extend in the vertical direction and faces the main surface of the heater housing space A flat plate-like heater including a surface, and a flow path space formed in a gap between the heat transfer surface and the main surface of the heater housing space, and the flow path space is formed on the inflow portion side. The width of the gap is smaller than the width of the gap on the outflow portion side. It is formed in so that.
 本発明は、以上に説明した構成を有し、必要な洗浄水の流量を確保し、かつ故障を防止することが可能な衛生洗浄装置を提供することができるという効果を奏する。 The present invention has the above-described configuration, and has an effect that it is possible to provide a sanitary washing device that can secure a necessary flow rate of washing water and prevent failure.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
本発明の実施の形態2に係る衛生洗浄装置が便器に装着された状態を示す斜視図であるIt is a perspective view which shows the state with which the sanitary washing apparatus which concerns on Embodiment 2 of this invention was mounted | worn with the toilet bowl. 図1の衛生洗浄装置に搭載される熱交換器の正面を示す平面図である。It is a top view which shows the front of the heat exchanger mounted in the sanitary washing apparatus of FIG. 図2の熱交換器の右側主面を示す平面図である。It is a top view which shows the right main surface of the heat exchanger of FIG. 図2のA-A線に沿って切断した熱交換器を示す横断面図である。FIG. 3 is a cross-sectional view showing the heat exchanger cut along line AA in FIG. 2. 図3のB-B線に沿って切断した熱交換器を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a heat exchanger cut along a line BB in FIG. 3. 図4のCの領域の拡大図である。It is an enlarged view of the area | region of C of FIG. 図4の熱交換器に形成された電熱線を示す平面図である。It is a top view which shows the heating wire formed in the heat exchanger of FIG. 図4の熱交換器に形成された電熱線の変形例を示す平面図である。It is a top view which shows the modification of the heating wire formed in the heat exchanger of FIG. 本発明の実施の形態1に係る衛生洗浄装置の主要構成を示す模式図である。It is a schematic diagram which shows the main structures of the sanitary washing apparatus which concerns on Embodiment 1 of this invention. 図9の衛生洗浄装置に搭載された熱交換器を示す横断面図である。It is a cross-sectional view which shows the heat exchanger mounted in the sanitary washing apparatus of FIG. 本発明の変形例に係る衛生洗浄装置の主要構成を示す模式図である。It is a schematic diagram which shows the main structures of the sanitary washing apparatus which concerns on the modification of this invention.
 (本発明の基礎となった知見)
 本発明者らは、平板状ヒータの両伝熱面に沿って流路を形成した熱交換器について検討した。
(Knowledge that became the basis of the present invention)
The present inventors examined a heat exchanger in which a flow path was formed along both heat transfer surfaces of a flat heater.
 一般に、洗浄水に対する両伝熱面側のそれぞれ伝熱量がほぼ同じであることを前提として、熱交換器が設計される。仮に両側の伝熱量に大きな相違が生じると、一方側の流路において局所的な沸騰現象が発生し、気泡が生じる可能性がある。このような気泡により流路中の洗浄水の通流抵抗が高くなり、両流路における流量バランスが崩れ、伝熱量の差がより大きくなってしまう。 Generally, heat exchangers are designed on the assumption that the heat transfer amounts on both heat transfer surfaces to the wash water are approximately the same. If there is a large difference in the amount of heat transfer on both sides, a local boiling phenomenon may occur in the flow path on one side, and bubbles may be generated. Such bubbles increase the flow resistance of the washing water in the flow path, the flow rate balance in both flow paths is lost, and the difference in the amount of heat transfer becomes larger.
 また、熱交換器の出水口近傍にサーミスタなどの温度センサが設けられることがある。この場合、気泡が、大きく成長し、温度センサに付着すると、温度センサが洗浄水に接触できない。このため、温度センサは適切に検知することができなくなる。 Also, a temperature sensor such as a thermistor may be provided near the water outlet of the heat exchanger. In this case, if bubbles grow large and adhere to the temperature sensor, the temperature sensor cannot contact the cleaning water. For this reason, a temperature sensor cannot detect appropriately.
 さらに、気泡が伝熱面に付着し大きく成長すると、気泡は、伝熱面と洗浄水との間に介在し、両者を解離させてしまう。この場合、熱が伝熱面から洗浄水へ伝達することが困難になり、伝熱面の温度が大きく上昇する。気泡が付着した伝熱面と、その反対の伝熱面との温度差が大きくなる。この熱応力に起因して、平板状ヒータに変形等が生じ、熱交換器の寿命が短かくなる。 Furthermore, when the bubbles adhere to the heat transfer surface and grow large, the bubbles are interposed between the heat transfer surface and the washing water, and both are dissociated. In this case, it becomes difficult to transfer heat from the heat transfer surface to the washing water, and the temperature of the heat transfer surface increases greatly. The temperature difference between the heat transfer surface to which bubbles are attached and the opposite heat transfer surface is increased. Due to the thermal stress, the flat heater is deformed and the life of the heat exchanger is shortened.
 スケールが伝熱面に付着する最も支配的な要因は、伝熱面の温度である。一般的に、スケールの付着を抑制するために伝熱面の設定温度は、沸騰が発生する100℃以下、好ましくは80℃以下に決められる。また、伝熱面の設定温度は、水道水のスケール濃度やヒータの所要耐久時間などによっても、適宜決められる。伝熱面の一部でも設定温度を超えると、その部分にスケールが付着し、スケールが伝熱障害となる。これを回避するため、伝熱面の面積を増やせば良い。しかし、これは熱交換器のコスト増となるため、好ましくない。また、伝熱面の温度が全体的にほぼ均一になるように、平板状ヒータのワット密度または熱伝達率の分布を設定することも考えられる。この場合、伝熱面のサイズが最小で、伝熱面の温度を設定温度以下にすることができるが、平板状ヒータのコストが高くなってしまう。 The most dominant factor that the scale adheres to the heat transfer surface is the temperature of the heat transfer surface. In general, in order to suppress the adhesion of scale, the set temperature of the heat transfer surface is determined to be 100 ° C. or lower, preferably 80 ° C. or lower, at which boiling occurs. In addition, the set temperature of the heat transfer surface is appropriately determined by the scale concentration of tap water, the required durability time of the heater, and the like. If a part of the heat transfer surface exceeds the set temperature, the scale adheres to that part and the scale becomes an obstacle to heat transfer. In order to avoid this, the area of the heat transfer surface may be increased. However, this is not preferable because it increases the cost of the heat exchanger. It is also conceivable to set the watt density or heat transfer coefficient distribution of the flat heater so that the temperature of the heat transfer surface is substantially uniform as a whole. In this case, the size of the heat transfer surface is minimum, and the temperature of the heat transfer surface can be set to a set temperature or less, but the cost of the flat heater is increased.
 また、スケールなどの原因となる気泡の発生を抑制したり、気泡の排出を促したりするため、洗浄水の速度を更に大きくすることも考えられる。この場合、伝熱面から洗浄水への熱伝達率が向上し、伝熱面のサイズを小さくすることができる。しかしながら、一般に、温水洗浄便座に使用される衛生洗浄装置では、洗浄水の1回当たりの使用水量が少ない。このため、流路の厚みを非常に薄くして、洗浄水の流速を高めなければならない。通常、洗浄水の流量の最大値は500cc/min程度である。この流量値に対して流速をさらに高めるためには、流路厚みを0.5mm以内に設定する必要がある。このように流路厚みが非常に薄くすると、局所的な流速の不均一性が生じやすい。この流路厚み:0.5mmは、速度境界層の厚さ:数mmのオーダよりも小さくなるため、速度境界層が流路全域を覆う。よって、流路厚みにより速度勾配が変化し、流路厚みの不均一による流速の不均一が生じやすい。 It is also conceivable to further increase the speed of the washing water in order to suppress the generation of bubbles that cause scale and the like, or to promote the discharge of bubbles. In this case, the heat transfer rate from the heat transfer surface to the washing water is improved, and the size of the heat transfer surface can be reduced. However, generally, in a sanitary washing device used for a warm water washing toilet seat, the amount of water used per wash water is small. For this reason, the flow path must be made very thin to increase the flow rate of the washing water. Usually, the maximum value of the flow rate of cleaning water is about 500 cc / min. In order to further increase the flow rate with respect to this flow rate value, it is necessary to set the channel thickness within 0.5 mm. Thus, when the flow path thickness is very thin, local non-uniformity in the flow velocity tends to occur. Since the thickness of the flow path: 0.5 mm is smaller than the order of the thickness of the speed boundary layer: several mm, the speed boundary layer covers the entire flow path. Therefore, the velocity gradient changes depending on the channel thickness, and the non-uniform flow velocity is likely to occur due to the non-uniform channel thickness.
 また、速度境界層は、伝熱面で速度がゼロであり、速度が急激に変化する流体層である。このため、伝熱面上の泡を伝熱面上から排出させる力が弱い。また、流路厚みが薄いと、流路中に生じた泡の大きさが流路厚みよりも大きくなり易い。この場合、泡は流路厚みに対応して変形し、泡の表面張力で押し上げ力が発生するため、泡は動きにくくなる。したがって、泡が流路中に滞留し、この泡により流速の不均一が局部的に生じやすい。 Also, the velocity boundary layer is a fluid layer where the velocity is zero on the heat transfer surface and the velocity changes rapidly. For this reason, the force which discharges the bubble on a heat-transfer surface from on a heat-transfer surface is weak. Further, when the channel thickness is small, the size of bubbles generated in the channel tends to be larger than the channel thickness. In this case, the foam is deformed corresponding to the thickness of the flow path, and a push-up force is generated by the surface tension of the foam, so that the foam is difficult to move. Therefore, bubbles stay in the flow path, and unevenness of the flow rate tends to be locally generated by the bubbles.
 この局所的な流速の不均一が生じると、ワット密度が30W/cm2以上となるような高ワット密度の平板状ヒータでは、伝熱面温度が局所的に大幅に上昇する。この箇所で沸騰が生じ、さらに泡が発生する。このため、流れの不均一が助長され、伝熱面がバーンアウトする。 When this local non-uniform flow velocity occurs, the heat transfer surface temperature rises significantly locally in a flat watt heater with a high watt density such that the watt density is 30 W / cm 2 or more. Boiling occurs at this point, and bubbles are further generated. For this reason, the non-uniformity of the flow is promoted, and the heat transfer surface is burned out.
 圧力損失が増加するため、洗浄水の流速を大幅に大きくすることは困難である。また、速度が不均一になるため、流路厚みを薄くするも難しい。さらに、流路を水平方向に蛇行させると、流路を流れる洗浄水の距離および時間が長く、流路断面積が小さいため、気泡により洗浄水の流れが滞り易い。よって、蛇行する流路も好ましくない。 ∙ Since the pressure loss increases, it is difficult to greatly increase the flow rate of the washing water. Moreover, since the speed becomes non-uniform, it is difficult to reduce the thickness of the flow path. Furthermore, if the flow path is meandered in the horizontal direction, the distance and time of the wash water flowing through the flow path is long and the cross-sectional area of the flow path is small. Therefore, a meandering flow path is also not preferable.
 平板型のヒータを熱交換器に用いると、熱交換器がコンパクトになり、また、伝熱面積を大きくし易い。しかし、強制対流により伝熱面に沿った均一で速い流れを生成することが難しかった。また、伝熱面に沿った速い流れを生成するため、上記の通り、流路の厚みを薄くすると、流れが不均一になり易い。このため、部分的に過熱部を生じると、この過熱部に熱が集中し、この部分の洗浄水が蒸発し、気泡が生じる。気泡が流出しなければ、この部分はさらに加熱される。これにより、気泡が大きくなり、伝熱面が極度に高温になると、ヒータが破壊する。 If a flat heater is used for the heat exchanger, the heat exchanger becomes compact and the heat transfer area can be easily increased. However, it was difficult to generate a uniform and fast flow along the heat transfer surface by forced convection. Moreover, in order to generate a fast flow along the heat transfer surface, as described above, if the thickness of the flow path is reduced, the flow tends to be non-uniform. For this reason, when a superheated part is produced partially, heat concentrates on this superheated part, the washing water of this part evaporates, and a bubble is produced. If the bubbles do not flow out, this part is further heated. As a result, when the bubbles become large and the heat transfer surface becomes extremely hot, the heater is destroyed.
 また、伝熱面に沿った薄く速い流れを形成するため、流路の流入部に扁平な絞り部を設ける方法も考えられる。しかし、絞り部に空気などが溜まりやすく、この気泡が流れを不均一にする。このように、流路の流入部に扁平な絞り部を設けることにも課題がある。 Also, in order to form a thin and fast flow along the heat transfer surface, a method of providing a flat throttle portion at the inflow portion of the flow path is also conceivable. However, air or the like tends to accumulate in the throttle portion, and the bubbles make the flow non-uniform. Thus, there is a problem in providing a flat throttle portion at the inflow portion of the flow path.
 さらに、家庭の水道配管中においても、流体中に空気が含まれる。このため、空気などの気泡を熱交換器内に留まらせることなくスムーズに排出する必要がある。 In addition, air is contained in the fluid even in domestic water supply pipes. For this reason, it is necessary to smoothly discharge bubbles such as air without staying in the heat exchanger.
 本発明は、上記知見に基づいてなされたものである。 The present invention has been made based on the above findings.
 本発明の実施の形態に係る衛生洗浄装置は、ノズルと、給水源に接続されるべき上流端を有し、下流端が前記ノズルに接続された給水路と、前記給水路に設けられる熱交換器とを備え、前記熱交換器が、流入部と、前記流入部より上方に位置する流出部と、下端部が前記流入部に連通し、上端部が前記流出部に連通し、且つ上下方向に延びるように形成された板状のヒータ収容空間と、を含むケーシングと、前記ケーシングのヒータ収容空間に上下方向に延在するように収容され、前記ヒータ収容空間の主面に対向する伝熱面を含む平板状ヒータと、前記伝熱面と前記ヒータ収容空間の主面との間の間隙に形成された流路スペースと、を有し、前記流路スペースは、前記流入部側の前記間隙の幅が、前記流出部側の前記間隙の幅より小さくなるように形成されている。 A sanitary washing device according to an embodiment of the present invention has a nozzle, an upstream end to be connected to a water supply source, and a water supply path whose downstream end is connected to the nozzle, and heat exchange provided in the water supply path The heat exchanger includes an inflow portion, an outflow portion located above the inflow portion, a lower end portion communicated with the inflow portion, an upper end portion communicated with the outflow portion, and a vertical direction. A plate-like heater housing space formed to extend to the heater, and heat transfer that is accommodated in the heater housing space of the casing so as to extend in the vertical direction and faces the main surface of the heater housing space A flat plate-like heater including a surface, and a flow path space formed in a gap between the heat transfer surface and the main surface of the heater housing space, and the flow path space is formed on the inflow portion side. The width of the gap is smaller than the width of the gap on the outflow portion side. It is formed in so that.
 衛生洗浄装置では、前記平板状ヒータは、前記流入部側の発熱密度が、前記流出部側の発熱密度より大きくなるように構成されていてもよい。 In the sanitary washing device, the flat heater may be configured such that the heat generation density on the inflow portion side is larger than the heat generation density on the outflow portion side.
 衛生洗浄装置では、前記平板状ヒータは、セラミック基体と、前記セラミック基体上にパターン印刷にて形成された電熱線と、を有し、前記流入部側の前記電熱線の断面積が、前記流出部側の前記電熱線の断面積より小さくてもよい。 In the sanitary washing device, the flat heater includes a ceramic base and a heating wire formed by pattern printing on the ceramic base, and a cross-sectional area of the heating wire on the inflow portion side is the outflow It may be smaller than the cross-sectional area of the heating wire on the part side.
 衛生洗浄装置では、前記平板状ヒータは、セラミック基体と、前記セラミック基体上にパターン印刷して形成された電熱線と、を有し、前記流入部側の互いに隣接する前記電熱線の間隔が、前記流出部側の互いに隣接する前記電熱線の間隔より大きくてもよい。 In the sanitary washing apparatus, the flat heater includes a ceramic base and a heating wire formed by pattern printing on the ceramic base, and an interval between the heating wires adjacent to each other on the inflow portion side is as follows. It may be larger than the interval between the heating wires adjacent to each other on the outflow portion side.
 衛生洗浄装置では、熱交換機が、入水口と、前記入水口と前記流入部との間に形成されたヘッダ部と、をさらに有し、前記ヘッダ部は、主流路と、前記主流路から前記流入部に向かって徐々に狭くなる絞り流路と、を有していてもよい。 In the sanitary washing device, the heat exchanger further includes a water inlet, and a header portion formed between the water inlet and the inflow portion. A throttle channel that gradually narrows toward the inflow portion.
 以下、本発明の実施の形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。 In the following, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted.
 また、平板状ヒータ20の伝熱面20a、20bが鉛直方向になるように、熱交換器10を縦置きした状態について説明する。各図面に示すZ方向は鉛直方向を示す。X方向は鉛直方向に直交しかつ平板状ヒータ20の伝熱面20a、20bに平行な方向を示す。Y方向はZ方向およびX方向の何れにも直交する方向を示す。さらに、断面積は、洗浄水の流れに直交する平面における面積を示す。 Further, a state in which the heat exchanger 10 is placed vertically so that the heat transfer surfaces 20a and 20b of the flat heater 20 are in the vertical direction will be described. The Z direction shown in each drawing indicates the vertical direction. The X direction indicates a direction orthogonal to the vertical direction and parallel to the heat transfer surfaces 20 a and 20 b of the flat heater 20. The Y direction indicates a direction orthogonal to both the Z direction and the X direction. Further, the cross-sectional area indicates an area in a plane perpendicular to the flow of the cleaning water.
 (実施の形態1)
 図9は、実施の形態1に係る衛生洗浄装置1の主要構成を示す模式図である。
(Embodiment 1)
FIG. 9 is a schematic diagram illustrating a main configuration of the sanitary washing device 1 according to the first embodiment.
 衛生洗浄装置1は、ノズル7と、給水源8に接続されるべき上流端を有し、下流端がノズル7に接続された給水路9と、給水路9に設けられる熱交換器10とを備える。 The sanitary washing device 1 includes a nozzle 7, a water supply path 9 having an upstream end to be connected to the water supply source 8, and a downstream end connected to the nozzle 7, and a heat exchanger 10 provided in the water supply path 9. Prepare.
 図10は、図9の衛生洗浄装置1に搭載された熱交換器10を示す横断面図である。 FIG. 10 is a cross-sectional view showing the heat exchanger 10 mounted on the sanitary washing device 1 of FIG.
 熱交換器10は、流入部10aと、流入部10aより上方に位置する流出部10bと、下端部が流入部10aに連通し、上端部が流出部10bに連通し、且つ上下方向に延びるように形成された板状のヒータ収容空間23cと、を含むケーシング23と、ケーシング23のヒータ収容空間23cに上下方向に延在するように収容され、ヒータ収容空間23cの主面30a、40aに対向する伝熱面20a、20bを含む平板状ヒータ20と、伝熱面20a、20bとヒータ収容空間23cの主面30a、40aとの間の間隙に形成された流路スペース25と、を有する。流路スペース25は、流入部10a側の間隙の幅が、流出部10b側の間隙の幅より小さくなるように形成されている。ここで、「上下方向」とは、鉛直方向と鉛直方向に交差する方向との双方を含む概念である。「ヒータ収容空間」は、ケーシングからヒータを除去したと仮定した場合に、ヒータが存在していた領域と当該領域に接する空間とを含む空間を意味する。「流路スペース」は、ケーシング内に、平板状ヒータの一対の伝熱面に沿って流体(ここでは水)を導くように形成された流路であると言い換えることができる。 The heat exchanger 10 has an inflow portion 10a, an outflow portion 10b positioned above the inflow portion 10a, a lower end portion that communicates with the inflow portion 10a, an upper end portion that communicates with the outflow portion 10b, and extends vertically. A casing 23 including a plate-shaped heater housing space 23c formed therein, and is accommodated in the heater housing space 23c of the casing 23 so as to extend in the vertical direction, and is opposed to the main surfaces 30a and 40a of the heater housing space 23c. And a flow path space 25 formed in a gap between the heat transfer surfaces 20a and 20b and the main surfaces 30a and 40a of the heater accommodating space 23c. The flow path space 25 is formed such that the width of the gap on the inflow portion 10a side is smaller than the width of the gap on the outflow portion 10b side. Here, the “vertical direction” is a concept including both the vertical direction and the direction intersecting the vertical direction. The “heater accommodating space” means a space including a region where the heater is present and a space in contact with the region, assuming that the heater is removed from the casing. In other words, the “flow path space” is a flow path formed so as to guide a fluid (here, water) along the pair of heat transfer surfaces of the flat heater in the casing.
 上記構成の衛生洗浄装置1では、洗浄水は給水源8から給水路9を流れる。洗浄水は、給水路9において熱交換器10に流入し、ここで加熱される。高温になった洗浄水は、熱交換器10から流出して、ノズル7へ供給される。これにより、温水がノズル7から噴出する。 In the sanitary washing device 1 having the above configuration, the washing water flows from the water supply source 8 through the water supply passage 9. Wash water flows into the heat exchanger 10 in the water supply channel 9 and is heated here. The wash water that has reached a high temperature flows out of the heat exchanger 10 and is supplied to the nozzle 7. Thereby, hot water is ejected from the nozzle 7.
 また、熱交換器10においては、洗浄水は、流入部10aからケーシング23のヒータ収容空間23cに流入する。洗浄水は、ヒータ収容空間23cの平面状の主面30a、40aと平板状ヒータ20の伝熱面20a、20bとの間に入り、流路スペース25を通過する。このとき洗浄水は、伝熱面20a、20bにより加熱されて、その温度が上昇する。 Further, in the heat exchanger 10, the washing water flows into the heater accommodating space 23c of the casing 23 from the inflow portion 10a. The washing water enters between the planar main surfaces 30 a and 40 a of the heater housing space 23 c and the heat transfer surfaces 20 a and 20 b of the flat heater 20 and passes through the flow path space 25. At this time, the washing water is heated by the heat transfer surfaces 20a and 20b, and the temperature rises.
 この流路スペース25では、流入部10a側の間隙の幅が、流出部10b側の間隙の幅より小さくなっている。このため、流路スペース25を流れる洗浄水は流入部10a側で強制対流が速くなる。ここで、伝熱面20a、20bから洗浄水との境界層の速度勾配が大きくなり、熱伝達率が高くなる。伝熱面20a、20bから洗浄水に熱が与えられ、伝熱面20a、20bの温度が低く、伝熱面20a、20bにスケールが付着することが防止される。 In the flow path space 25, the width of the gap on the inflow portion 10a side is smaller than the width of the gap on the outflow portion 10b side. For this reason, the cleaning water flowing through the flow path space 25 is accelerated in forced convection on the inflow portion 10a side. Here, the velocity gradient of the boundary layer between the heat transfer surfaces 20a and 20b and the washing water increases, and the heat transfer coefficient increases. Heat is applied to the washing water from the heat transfer surfaces 20a and 20b, the temperature of the heat transfer surfaces 20a and 20b is low, and scales are prevented from adhering to the heat transfer surfaces 20a and 20b.
 洗浄水は、強制対流により、流入部10a側から流出部10b側へ流れる。流出部10b側においても、洗浄水は伝熱面20a、20bにさらに加熱される。これにより、洗浄水に混入していた空気が膨張し、気泡が発生する。この流出部10b側の間隙の幅が大きいため、気泡が、流路スペース25に留まらずに、流出部10bへ出る。 Wash water flows from the inflow portion 10a side to the outflow portion 10b side by forced convection. The washing water is further heated by the heat transfer surfaces 20a and 20b on the outflow portion 10b side. Thereby, the air mixed in the cleaning water expands and bubbles are generated. Since the width of the gap on the outflow portion 10b side is large, the bubbles exit to the outflow portion 10b without staying in the flow path space 25.
 また、洗浄水が温度上昇し、その密度が小さくなることにより、自然対流の上昇流が生じ、洗浄水が流出部10bへ流れる。この流出部10b側の隙間の幅が大きいため、自然対流の上昇流により気泡が排除され易く、かつ伝熱面20a、20bから洗浄水への熱伝達率が向上する。 Further, the temperature of the washing water rises and the density thereof decreases, so that an upward flow of natural convection occurs, and the washing water flows to the outflow portion 10b. Since the width of the gap on the outflow portion 10b side is large, bubbles are easily removed by the upward flow of natural convection, and the heat transfer rate from the heat transfer surfaces 20a, 20b to the washing water is improved.
 上記構成の衛生洗浄装置1によれば、気泡が円滑に排出されることにより、気泡によって洗浄水と伝熱面20a、20bとの熱交換が阻害されずに安定的に行われる。 According to the sanitary washing device 1 having the above-described configuration, the bubbles are smoothly discharged, so that heat exchange between the washing water and the heat transfer surfaces 20a and 20b is stably performed without being inhibited by the bubbles.
 また、気泡により洗浄水が一部に滞留し、スケールが局部的に生じることが低減される。このため、スケールが流路スペース25を狭めてしまうことなく、洗浄水が円滑に流れるため、必要な流量の洗浄水を確保することができる。 Also, it is reduced that the cleaning water stays in a part due to bubbles and the scale is locally generated. For this reason, since the washing water flows smoothly without the scale narrowing the flow path space 25, it is possible to secure the washing water with a necessary flow rate.
 さらに、伝熱面20a、20bに気泡が付着せず、この部分が高温になり、伝熱面20a、20bにおいて温度差が生じることが防止される。これにより、温度差による熱応力により伝熱面20a、20bが変形したり破損したりせず、平板状ヒータ20が故障してしまうことが防ぐことができる。 Furthermore, bubbles do not adhere to the heat transfer surfaces 20a and 20b, and this portion is heated to prevent a temperature difference between the heat transfer surfaces 20a and 20b. Thereby, it can prevent that the heat- transfer surfaces 20a and 20b are not deform | transformed or damaged by the thermal stress by a temperature difference, and the flat heater 20 fails.
 (実施の形態2)
 [衛生洗浄装置の構成]
 図1は、実施の形態2に係る衛生洗浄装置1を便器2に装着したトイレを示す。
(Embodiment 2)
[Configuration of sanitary washing equipment]
FIG. 1 shows a toilet in which a sanitary washing device 1 according to Embodiment 2 is attached to a toilet bowl 2.
 衛生洗浄装置1は、便器2の上面に配設されている。衛生洗浄装置1は、本体部3、便座部4、便蓋部5、および操作部6を備える。 The sanitary washing device 1 is disposed on the upper surface of the toilet bowl 2. The sanitary washing device 1 includes a main body part 3, a toilet seat part 4, a toilet lid part 5, and an operation part 6.
 本体部3は、便座部4の後側、つまり着座した使用者から見て背後側に配設されている。本体部3は、横長の筐体3aであって、図9に示す給水路9および熱交換器10を収容する。また、これ以外にも、本体部3は、図示しない洗浄ユニット、乾燥ユニット、およびこれらの動作を制御する制御ユニットなどが収納されている。 The main body 3 is disposed on the rear side of the toilet seat 4, that is, on the rear side as viewed from the seated user. The main body 3 is a horizontally long casing 3a and houses the water supply passage 9 and the heat exchanger 10 shown in FIG. In addition to this, the main body unit 3 houses a cleaning unit, a drying unit, a control unit for controlling these operations, and the like (not shown).
 給水路9は、便器2の設置建物に付随の水道設備(給水源8)から水道水(流体,液体,洗浄水)を熱交換器10を介してノズル7に導入する。使用者が操作部6を操作して所定の入力を行うと、洗浄ユニットが駆動する。洗浄水が熱交換器10で温められて、温水がノズル7からシャワー状に便器2の開口に向かって吐出する。 The water supply channel 9 introduces tap water (fluid, liquid, washing water) into the nozzle 7 through the heat exchanger 10 from a water supply facility (water supply source 8) attached to the building where the toilet 2 is installed. When the user operates the operation unit 6 to perform a predetermined input, the cleaning unit is driven. Washing water is warmed by the heat exchanger 10, and the hot water is discharged from the nozzle 7 in a shower shape toward the opening of the toilet 2.
 [熱交換器の構成]
 図2は、熱交換器10の正面を示す平面図である。図3は、熱交換器10の右側主面を示す平面図である。図4は、図2のA-A線に沿って切断した熱交換器10を示す横断面図である。図5は、図3のB-B線に沿って切断した熱交換器10を示す縦断面図である。図6は、図4のCの領域の拡大図である。
[Configuration of heat exchanger]
FIG. 2 is a plan view showing the front of the heat exchanger 10. FIG. 3 is a plan view showing the right main surface of the heat exchanger 10. FIG. 4 is a cross-sectional view showing the heat exchanger 10 cut along the line AA in FIG. FIG. 5 is a longitudinal sectional view showing the heat exchanger 10 cut along the line BB in FIG. 6 is an enlarged view of a region C in FIG.
 熱交換器10は、Y方向の厚み寸法が小さく、X-Z方向に長方形状を成す。図4に示すように、熱交換器10は、平板状ヒータ20と第一流路形成部材21と第二流路形成部材22とを備えている。 The heat exchanger 10 has a small thickness in the Y direction and a rectangular shape in the XZ direction. As shown in FIG. 4, the heat exchanger 10 includes a flat heater 20, a first flow path forming member 21, and a second flow path forming member 22.
 第一流路形成部材21および第二流路形成部材22によりケーシング23が形成される。第一流路形成部材21および第二流路形成部材22は、たとえば、それぞれABS樹脂にガラス繊維をコンパウンドした強化ABS樹脂で形成される。 A casing 23 is formed by the first flow path forming member 21 and the second flow path forming member 22. The first flow path forming member 21 and the second flow path forming member 22 are each formed of, for example, a reinforced ABS resin obtained by compounding a glass fiber with an ABS resin.
 第一流路形成部材21は、平板状ヒータ20の第一伝熱面20a側に配される。第一流路形成部材21は、ベース部30および棚段部31を含む。ベース部30はベース面(主面)30aを含み、ベース面30aは平面形状であって第一伝熱面20aに対向する。棚段部31において、ベース部30のY方向の厚みが変わる。棚段部31より流出部10b側におけるベース部30の厚みは、棚段部31より流入部10a側より小さい。このため、棚段部31より流入部10a側のベース面30aは、流出部10b側のベース面30aに比べて、第一伝熱面20aに近接する。流入部10a側のベース面30aと第一伝熱面20aとの間の幅は、流出部10b側のベース面30aと第一伝熱面20aとの間の幅より狭い。 The first flow path forming member 21 is disposed on the first heat transfer surface 20a side of the flat heater 20. The first flow path forming member 21 includes a base portion 30 and a shelf step portion 31. The base portion 30 includes a base surface (main surface) 30a. The base surface 30a has a planar shape and faces the first heat transfer surface 20a. In the shelf step portion 31, the thickness of the base portion 30 in the Y direction changes. The thickness of the base 30 on the outflow part 10 b side from the shelf step part 31 is smaller than the inflow part 10 a side from the shelf step part 31. For this reason, the base surface 30a on the inflow portion 10a side from the shelf step portion 31 is closer to the first heat transfer surface 20a than the base surface 30a on the outflow portion 10b side. The width between the base surface 30a on the inflow portion 10a side and the first heat transfer surface 20a is narrower than the width between the base surface 30a on the outflow portion 10b side and the first heat transfer surface 20a.
 第一流路形成部材21は、ベース部30の周縁部に全周に亘って壁状のフランジ部32が設けられている。フランジ部32の先端部に係合溝33が形成され、係合溝33はフランジ部32に沿ってその全周に亘って形成されている。 The first flow path forming member 21 is provided with a wall-like flange portion 32 around the entire periphery of the base portion 30. An engagement groove 33 is formed at the distal end of the flange portion 32, and the engagement groove 33 is formed along the entire circumference of the flange portion 32.
 第二流路形成部材22は、平板状ヒータ20の第二伝熱面20b側に配される。第二流路形成部材22は、ベース部40および棚段部41を含む。ベース部40はベース面(主面)40aを含み、ベース面40aは平面形状であって第二伝熱面20bに対向する。棚段部41において、ベース部40のY方向の厚みが変わる。棚段部41より流出部10b側におけるベース部40の厚みは、棚段部41より流入部10a側より小さい。このため、棚段部41より流入部側のベース面40aは、流出部10b側のベース面40aに比べて、第二伝熱面20bに近接する。流入部10a側のベース面40aと第二伝熱面20bとの間の幅は、流出部10b側のベース面40aと第二伝熱面20bとの間の幅より狭い。 The second flow path forming member 22 is disposed on the second heat transfer surface 20 b side of the flat heater 20. The second flow path forming member 22 includes a base portion 40 and a shelf step portion 41. The base portion 40 includes a base surface (main surface) 40a. The base surface 40a has a planar shape and faces the second heat transfer surface 20b. In the shelf step portion 41, the thickness of the base portion 40 in the Y direction changes. The thickness of the base portion 40 on the outflow portion 10b side from the shelf step portion 41 is smaller than the shelf step portion 41 on the inflow portion 10a side. For this reason, the base surface 40a on the inflow portion side from the shelf step portion 41 is closer to the second heat transfer surface 20b than the base surface 40a on the outflow portion 10b side. The width between the base surface 40a on the inflow portion 10a side and the second heat transfer surface 20b is narrower than the width between the base surface 40a on the outflow portion 10b side and the second heat transfer surface 20b.
 第二流路形成部材22は、ベース部40の周縁部に全周に亘って壁状のフランジ部42が設けられている。フランジ部42は、ベース面40aの反対側に向かって突出する。そしてフランジ部42の先端部は、ベース面40a側に折り返している。この先端部の先に係合突起43が設けられ、係合突起43がフランジ部42の全周に亘って形成されている。 The second flow path forming member 22 is provided with a wall-like flange portion 42 around the entire periphery of the base portion 40. The flange part 42 protrudes toward the opposite side of the base surface 40a. And the front-end | tip part of the flange part 42 is return | folded to the base surface 40a side. An engagement protrusion 43 is provided at the tip of the tip, and the engagement protrusion 43 is formed over the entire circumference of the flange portion 42.
 第一流路形成部材21のフランジ部32の中に第二流路形成部材22のフランジ部42が入り、第一流路形成部材21の係合溝33に第二流路形成部材22の係合突起43が嵌る。例えば、係合突起43は超音波溶着により係合溝33に固定される。これにより、第一流路形成部材21と第二流路形成部材22とは水密的に接合され、ケーシング23が形成される。 The flange portion 42 of the second flow path forming member 22 enters the flange portion 32 of the first flow path forming member 21, and the engaging protrusion of the second flow path forming member 22 enters the engaging groove 33 of the first flow path forming member 21. 43 fits. For example, the engagement protrusion 43 is fixed to the engagement groove 33 by ultrasonic welding. Thereby, the 1st flow path formation member 21 and the 2nd flow path formation member 22 are watertightly joined, and the casing 23 is formed.
 ケーシング23は、2つの側面と2つの主面と天面と底面とを有し、これらに囲まれる略矩形状の中空部を含む。この略矩形状の中空部は、板状のヒータ収容空間23cを構成する。ヒータ収容空間23cは、上下方向に延びる。ヒータ収容空間23cの下端部が流入部10aに連通し、上端部が流出部10bに連通する。Y―Z方向の2つの側面のうち、1つの側面に入水口23aおよび出水口23bが開口する。出水口23bの開口が流出部10bとなる。入水口23aは、側面の一端下部に設けられ、給水路9(図9)の上流側端部に接続される。出水口23bは、側面の一端上部に設けられ、給水路9(図9)の下流側端部に接続される。X―Z方向の2つの主面は、ベース面30a、40aでそれぞれ形成される。天面は、平板状ヒータ20の上端と対向する。天面は、出水口23bに近いほど天面と平板状ヒータ20の上端との間隙が広くなるように傾斜する。底面は、平板状ヒータ20の下端と対向する。天面に流路スペース25の流入部10aが開口し、流入部10aはX方向に延びる。ケーシング23の内部に流路スペース25およびヘッダ部45が形成される。 The casing 23 has two side surfaces, two main surfaces, a top surface, and a bottom surface, and includes a substantially rectangular hollow portion surrounded by these. This substantially rectangular hollow portion constitutes a plate-shaped heater accommodating space 23c. The heater housing space 23c extends in the vertical direction. The lower end portion of the heater accommodating space 23c communicates with the inflow portion 10a, and the upper end portion communicates with the outflow portion 10b. Of the two side surfaces in the YZ direction, the water inlet 23a and the water outlet 23b open on one side. The opening of the water outlet 23b becomes the outflow part 10b. The water inlet 23a is provided at one end lower portion of the side surface, and is connected to the upstream end of the water supply channel 9 (FIG. 9). The water outlet 23b is provided at the upper end of the side surface and is connected to the downstream end of the water supply channel 9 (FIG. 9). Two main surfaces in the XZ direction are formed by base surfaces 30a and 40a, respectively. The top surface faces the upper end of the flat heater 20. The top surface is inclined so that the gap between the top surface and the upper end of the flat heater 20 becomes wider as it approaches the water outlet 23b. The bottom surface faces the lower end of the flat heater 20. The inflow portion 10a of the flow path space 25 opens on the top surface, and the inflow portion 10a extends in the X direction. A flow path space 25 and a header portion 45 are formed inside the casing 23.
 流路スペース25は、第一伝熱面20aとベース面30aとの間の流路と、第二伝熱面20bとベース面40aとの間の流路とを含む。これらの2つの流路は、平板状ヒータ20の両側に対称的に形成される。2つの流路は、入口側流路25aおよび出口側流路25bをそれぞれ有する。入口側流路25aは棚段部31、41より下部の入水口23aに近い側に設けられる。出口側流路25bは、棚段部31、41より上部の出水口23bに近い側に設けられる。入口側流路25aにおけるY軸方向の厚みは、出口側流路25bにおけるY軸方向の厚みより小さい。 The flow path space 25 includes a flow path between the first heat transfer surface 20a and the base surface 30a and a flow path between the second heat transfer surface 20b and the base surface 40a. These two flow paths are formed symmetrically on both sides of the flat heater 20. Each of the two channels has an inlet side channel 25a and an outlet side channel 25b. The inlet-side flow path 25a is provided on the side closer to the water inlet 23a below the shelf steps 31, 41. The outlet side flow path 25b is provided on the side closer to the water outlet 23b above the shelf steps 31, 41. The Y-axis direction thickness of the inlet-side channel 25a is smaller than the Y-axis direction thickness of the outlet-side channel 25b.
 ヘッダ部45は、図6に示したように、流路スペース25の流入部10aと入水口23aとの間に設けられ、X方向に延びる。ヘッダ部45は、ヘッダ部主流路45aおよびヘッダ部絞り流路45bを含む。ヘッダ部主流路45aにおけるX-Y方向の流路断面積は、ヘッダ部絞り流路45bより広い。つまり、このX-Y方向の流路断面積は、入水口23aから流入部10aへ流れる洗浄水の流れに対して直交する。ヘッダ部絞り流路45bの流路断面積は、ヘッダ部主流路45aから流入部10aから流入部10aに向かって、徐々に狭くなる。ヘッダ部絞り流路45bは、クランク形状を有する。ヘッダ部絞り流路45bは、垂直部45bb、水平部45bcおよび垂直部45bdを含む。垂直部45bb、水平部45bcおよび垂直部45bdの順に、その断面積が小さくなる(すなわち狭くなる)。 As shown in FIG. 6, the header part 45 is provided between the inflow part 10a of the flow path space 25 and the water inlet 23a, and extends in the X direction. The header part 45 includes a header part main flow path 45a and a header part throttle flow path 45b. The cross-sectional area in the XY direction of the header portion main flow passage 45a is wider than that of the header portion restriction flow passage 45b. That is, the channel cross-sectional area in the XY direction is orthogonal to the flow of cleaning water flowing from the water inlet 23a to the inflow portion 10a. The flow passage cross-sectional area of the header portion restriction flow passage 45b gradually decreases from the header portion main flow passage 45a toward the inflow portion 10a from the inflow portion 10a. The header throttle channel 45b has a crank shape. The header portion narrowing channel 45b includes a vertical portion 45bb, a horizontal portion 45bc, and a vertical portion 45bd. In the order of the vertical portion 45bb, the horizontal portion 45bc, and the vertical portion 45bd, the cross-sectional areas become smaller (that is, narrower).
 平板状ヒータ20は、ケーシング23のヒータ収容空間23cに収容され、上下方向に延在する。平板状ヒータ20は、矩形平板状を有し、両面に第一および第二伝熱面20a、20bを含む。平板状ヒータ20は、セラミック基体20k、抵抗体パターン20pおよび電極(図示せず)を含む。伝熱面20a、20bの温度は、局部的に所定温度より高温になることが防がれている。この所定温度は、一般的には伝熱面20a、20bの温度を沸騰が発生する100℃以下、好ましくは80℃以下に設定される。さらに、所定温度は、水道水のスケール濃度や、ヒータの所要耐久時間などにより、適宜決められる。 The flat heater 20 is accommodated in the heater accommodating space 23c of the casing 23 and extends in the vertical direction. The flat heater 20 has a rectangular flat plate shape and includes first and second heat transfer surfaces 20a and 20b on both surfaces. The flat heater 20 includes a ceramic substrate 20k, a resistor pattern 20p, and electrodes (not shown). The temperature of the heat transfer surfaces 20a and 20b is prevented from being locally higher than a predetermined temperature. This predetermined temperature is generally set to 100 ° C. or lower, preferably 80 ° C. or lower, at which boiling occurs in the temperature of the heat transfer surfaces 20a and 20b. Further, the predetermined temperature is appropriately determined depending on the scale concentration of tap water, the required durability time of the heater, and the like.
 抵抗体パターン20pは、セラミック基体20k上に抵抗体が印刷されている。抵抗体パターン20pは、電熱線(ヒータ線)を構成し、電極からの通電により発熱する。図7に示すように、ヒータ線は、X方向に長く延び、蛇行しながら、Z方向の上側に広がる。入口側流路25aにおけるヒータ線の幅20sは、出口側流路25bにおけるヒータ線の幅20sより細く、このヒータ線の断面積が小さい。このヒータ線の幅20sが細く、ヒータ線の断面積が小さいほど、ヒータ線の抵抗値が大きい。よって、入口側流路25aにおけるヒータ線の抵抗値は、出口側流路25bにおけるヒータ線の抵抗値より高い。これにより、入口側流路25aにおける抵抗体のパターン20pにおける発熱密度は、出口側流路25bにおける抵抗体のパターン20pにおける発熱密度より高い。 The resistor pattern 20p has a resistor printed on the ceramic substrate 20k. The resistor pattern 20p forms a heating wire (heater wire) and generates heat when energized from the electrodes. As shown in FIG. 7, the heater wire extends long in the X direction and spreads upward in the Z direction while meandering. The heater wire width 20s in the inlet-side channel 25a is narrower than the heater wire width 20s in the outlet-side channel 25b, and the heater wire has a smaller cross-sectional area. The smaller the heater wire width 20s and the smaller the heater wire cross-sectional area, the greater the resistance value of the heater wire. Therefore, the resistance value of the heater wire in the inlet side channel 25a is higher than the resistance value of the heater wire in the outlet side channel 25b. Thus, the heat generation density in the resistor pattern 20p in the inlet-side flow path 25a is higher than the heat generation density in the resistor pattern 20p in the outlet-side flow path 25b.
 [衛生洗浄装置における洗浄水の流れ]
 図9に示すように、電磁弁が開くと、洗浄水は、給水源8の水道配管から分岐水栓を介して給水路9に流れる。図3および図4に示すように、洗浄水は、給水路9から入水口23aを介してケーシング23内に流入する。
[Flow of cleaning water in sanitary cleaning equipment]
As shown in FIG. 9, when the electromagnetic valve is opened, the washing water flows from the water supply pipe of the water supply source 8 to the water supply passage 9 through the branch tap. As shown in FIGS. 3 and 4, the wash water flows into the casing 23 from the water supply channel 9 through the water inlet 23a.
 図4~図6に示すように、洗浄水は、ヘッダ部45のヘッダ部主流路45aに進入する。ヘッダ部絞り流路45bの断面積がヘッダ部主流路45aの断面積より非常に小さいため、ヘッダ部主流路45aからヘッダ部絞り流路45bへの抵抗は、ヘッダ部主流路45aのX方向への抵抗より大きい。よって、洗浄水の多くはヘッダ部主流路45aのX方向へ流れ、洗浄水はヘッダ部主流路45aを一様に満たす。そして、洗浄水は、ヘッダ部主流路45aからヘッダ部絞り流路45bへ流れる。このヘッダ部絞り流路45bの流路断面積が徐々に狭くなるため、洗浄水の流れは次第に速くなっていく。また、ヘッダ部絞り流路45bに空気が滞留する場所がない。このため、洗浄水中に空気が混入していても、空気は、溜まることなく、流入部10a側に向かって運ばれる。洗浄水が流入部10aから入口側流路25aに流れ込むと、気泡は、垂直方向の流路スペース25に沿って浮力によってスムーズに上昇する。さらに、気泡は、流出部10bに向かって高くなるケーシング23の天面に沿って、流出部10bに流れる。そして、気泡は、流出部10bから出水口23bを介して外部に排出される。 As shown in FIG. 4 to FIG. 6, the cleaning water enters the header part main flow path 45a of the header part 45. Since the cross-sectional area of the header section throttle flow path 45b is much smaller than the cross-sectional area of the header section main flow path 45a, the resistance from the header section main flow path 45a to the header section throttle flow path 45b is in the X direction of the header section main flow path 45a. Greater than the resistance. Therefore, most of the washing water flows in the X direction of the header part main flow path 45a, and the washing water uniformly fills the header part main flow path 45a. Then, the washing water flows from the header part main flow path 45a to the header part throttle flow path 45b. Since the flow path cross-sectional area of the header portion narrowing flow path 45b is gradually narrowed, the flow of cleaning water becomes gradually faster. Further, there is no place where air stays in the header throttle channel 45b. For this reason, even if air is mixed in the washing water, the air is carried toward the inflow portion 10a without accumulating. When the washing water flows from the inflow portion 10a into the inlet-side flow path 25a, the bubbles rise smoothly by buoyancy along the flow path space 25 in the vertical direction. Further, the bubbles flow to the outflow portion 10b along the top surface of the casing 23 that increases toward the outflow portion 10b. And a bubble is discharged | emitted outside through the water outlet 23b from the outflow part 10b.
 図4に示すように、洗浄水は、流入部10aから流路スペース25の入口側流路25aに流入する。流路厚みが薄い領域である入口側流路25aでは、洗浄水の流速が速い。このため、平板状ヒータ20の各伝熱面20a、20bと洗浄水との境界層の速度勾配が大きく、各伝熱面20a、20bと洗浄水との熱伝達率が大きい。しかも、各伝熱面20a、20bにおいて、入口側流路25aにおける抵抗体のパターン20pにおける発熱密度が高い。よって、洗浄水は、各伝熱面20a、20bにより加熱され高温になるとともに、その密度が小さくなる。これにより、洗浄水は、上昇し、入口側流路25aから出口側流路25bに流入する。 As shown in FIG. 4, the washing water flows from the inflow portion 10 a into the inlet side flow path 25 a of the flow path space 25. In the inlet side channel 25a, which is a region where the channel thickness is thin, the flow rate of the cleaning water is fast. For this reason, the velocity gradient of the boundary layer between each heat transfer surface 20a, 20b of the flat heater 20 and the cleaning water is large, and the heat transfer coefficient between each heat transfer surface 20a, 20b and the cleaning water is large. Moreover, in each of the heat transfer surfaces 20a and 20b, the heat generation density in the resistor pattern 20p in the inlet-side flow path 25a is high. Therefore, the washing water is heated by the heat transfer surfaces 20a and 20b and becomes high temperature, and its density is reduced. As a result, the washing water rises and flows from the inlet side channel 25a into the outlet side channel 25b.
 なお、入口側流路25aにおける抵抗体のパターン20pにおける発熱密度が高いため、各伝熱面20a、20bの温度は高くなろうとする。ただし、入口側流路25aにおける洗浄水の温度は低いため、サブクール(水の沸騰温度に対しての冷却度)は大きくなり洗浄水は各伝熱面20a、20bから熱を多く奪う。さらに、入口側流路25aでは、流路厚みが薄く、洗浄水の流速が速い。したがって、熱伝達率が高く、局所的な沸騰現象が生じるほどの高温に洗浄水はならない。 In addition, since the heat generation density in the resistor pattern 20p in the inlet-side channel 25a is high, the temperature of each heat transfer surface 20a, 20b tends to increase. However, since the temperature of the cleaning water in the inlet-side flow path 25a is low, the subcool (degree of cooling with respect to the boiling temperature of water) increases and the cleaning water takes a lot of heat from the heat transfer surfaces 20a and 20b. Furthermore, in the inlet side flow path 25a, the flow path thickness is thin and the flow rate of the washing water is fast. Therefore, the washing water does not have such a high heat transfer rate that the local boiling phenomenon occurs.
 出口側流路25bでは、入口側流路25aにおける強制対流に加えて、密度の違いから自然対流も生じる。これらにより、洗浄水は、各伝熱面20a、20bに沿って上昇する。この洗浄水は、入口側流路25aにおいて加熱されているため、温度が高い。この洗浄水により各伝熱面20a、20bから奪われる熱は少なく、サブクールの値は小さい。このため、出口側流路25bにおける各伝熱面20a、20bの温度は上昇しやすい。しかし、出口側流路25bにおける発熱密度が小さいため、出水口23bに近づくに従って洗浄水の温度が次第に上昇するが、急激な沸騰は発生しない。これにより、スケールが各伝熱面20a、20bの一部に付着することが防止される。 In the outlet side channel 25b, in addition to forced convection in the inlet side channel 25a, natural convection also occurs due to the difference in density. As a result, the cleaning water rises along the heat transfer surfaces 20a and 20b. Since this wash water is heated in the inlet side flow path 25a, the temperature is high. The heat taken from each heat transfer surface 20a, 20b by this washing water is small, and the subcool value is small. For this reason, the temperature of each heat- transfer surface 20a, 20b in the exit side flow path 25b tends to rise. However, since the heat generation density in the outlet-side channel 25b is small, the temperature of the cleaning water gradually increases as it approaches the water outlet 23b, but no sudden boiling occurs. This prevents the scale from adhering to a part of each heat transfer surface 20a, 20b.
 また、仮に各伝熱面20a、20b上に発生する気泡が発しても、出口側流路25bにおける流路厚みが厚い出口側流路25bを気泡が通り上昇する。そして、気泡は出水口23bから排出される。 Further, even if bubbles are generated on the heat transfer surfaces 20a and 20b, the bubbles rise through the outlet side channel 25b having a thick channel in the outlet side channel 25b. The bubbles are discharged from the water outlet 23b.
 このように高温になった洗浄水が出水口23bから給水路9に流入する。洗浄水は、タンク(図示せず)などにより温度が調整される。そして、電磁弁が開くと、ノズル7から暖かい洗浄水が吐出される。 The washing water having such a high temperature flows into the water supply channel 9 from the outlet 23b. The temperature of the wash water is adjusted by a tank (not shown) or the like. When the solenoid valve is opened, warm washing water is discharged from the nozzle 7.
 [効果]
 断面積が徐々に狭くなるヘッダ部絞り流路45bにより、流速が徐々に速まる。このため、水道配管中に空気が混入した場合でも、気泡が大きく成長する前に、気泡が下流に押し出されて、ヘッダ部45および流路スペース25から速やかに排出される。これにより、気泡によって、各伝熱面20a、20bにおける洗浄水の流れが不均一となり、各伝熱面20a、20bが局所的に過熱状態になることが防止される。よって、スケールが、各伝熱面20a、20bに局部的に付着し、流路を狭めることが防止される。これにより、必要な流量が確保される。また、スケールによる各伝熱面20a、20bの温度差によって、熱応力で平板状ヒータ20が故障することが回避される。
[effect]
The flow rate is gradually increased by the header throttle channel 45b whose cross-sectional area is gradually narrowed. For this reason, even when air is mixed in the water supply pipe, the bubbles are pushed out downstream from the header portion 45 and the flow path space 25 before the bubbles grow large. Thereby, the flow of the cleaning water on the heat transfer surfaces 20a and 20b becomes non-uniform due to the bubbles, and the heat transfer surfaces 20a and 20b are prevented from being locally overheated. Therefore, the scale is prevented from locally attaching to the heat transfer surfaces 20a and 20b and narrowing the flow path. Thereby, a required flow rate is ensured. Further, the flat heater 20 is prevented from being damaged by thermal stress due to the temperature difference between the heat transfer surfaces 20a and 20b due to the scale.
 また、ヘッダ部絞り流路45bがクランク形状を有することにより、ヘッダ部絞り流路45bにおける流路が長くなる。このため、仮に、ヘッダ部絞り流路45bにおける断面積が少し広くなっても、ヘッダ部絞り流路45bにおいて流路抵抗が確保できる。これにより、洗浄水がヘッダ部主流路45aの全長に亘って一様にヘッダ部絞り流路45bに流入することができる。 Further, since the header portion restricting passage 45b has a crank shape, the passage in the header portion restricting passage 45b becomes longer. For this reason, even if the cross-sectional area in the header throttle channel 45b is slightly increased, it is possible to ensure channel resistance in the header throttle channel 45b. As a result, the cleaning water can uniformly flow into the header throttle channel 45b over the entire length of the header main channel 45a.
 ヘッダ部絞り流路45bにより流路スペース25において各伝熱面20a、20bに沿った洗浄水の均一な速い流れが形成される。これにより、各伝熱面20a、20bと洗浄水との熱伝達率が大きくなる。このため、洗浄水を効率的に加熱することができる。また、各伝熱面20a、20bの温度を低く抑え、各伝熱面20a、20bにスケールが付着することを低減することができる。さらに、各伝熱面20a、20b上に発生する気泡が抜けやすく、局部的なスケールの発生および熱応力による平板状ヒータ20の破損が防止されるとともに、伝熱面20a、20bと洗浄水との熱交換が阻害されずに、安定した熱交換が可能となる。 A uniform and fast flow of cleaning water along the heat transfer surfaces 20a and 20b is formed in the flow path space 25 by the header throttle flow path 45b. Thereby, the heat transfer rate between each heat transfer surface 20a, 20b and the washing water is increased. For this reason, washing water can be heated efficiently. Moreover, it can suppress that the temperature of each heat- transfer surface 20a, 20b is low, and a scale adheres to each heat- transfer surface 20a, 20b. In addition, bubbles generated on the heat transfer surfaces 20a and 20b are easily removed, and the occurrence of local scales and damage to the flat heater 20 due to thermal stress are prevented, and the heat transfer surfaces 20a and 20b and cleaning water Thus, stable heat exchange is possible without hindering the heat exchange.
 特に、入口側流路25aでは、ヘッダ部絞り流路45bに近く、かつ流路厚みが薄い。このため、入口側流路25aでは、ヘッダ部絞り流路45bからの速い流れが維持される。よって、各伝熱面20a、20bと洗浄水との境界層における速度勾配が大きく、各伝熱面20a、20bと洗浄水との強制対流による熱伝達率が大きい。洗浄水が効率的に加熱され、平板状ヒータ20の破損が防止される。 In particular, the inlet-side channel 25a is close to the header throttle channel 45b and has a small channel thickness. For this reason, in the inlet side flow path 25a, the quick flow from the header part throttle flow path 45b is maintained. Therefore, the velocity gradient in the boundary layer between each heat transfer surface 20a, 20b and the wash water is large, and the heat transfer coefficient due to forced convection between each heat transfer surface 20a, 20b and the wash water is large. The washing water is efficiently heated and the flat heater 20 is prevented from being damaged.
 さらに、出口側流路25bにおける各伝熱面20a、20bの発熱密度が小さいため、局所的な沸騰現象が防がれることにより、平板状ヒータ20の破損が防止される。 Furthermore, since the heat generation density of each heat transfer surface 20a, 20b in the outlet-side flow path 25b is small, the local boiling phenomenon is prevented, thereby preventing the flat heater 20 from being damaged.
 また、平板状ヒータ20は表裏の両面の伝熱面20a、20bで洗浄水を加熱するため、放熱ロスがほとんどない。このため、熱交換器10の高い熱効率を実現でき、かつコンパクト化することができる。 Further, since the flat heater 20 heats the cleaning water by the heat transfer surfaces 20a and 20b on both the front and back surfaces, there is almost no heat dissipation loss. For this reason, the high heat efficiency of the heat exchanger 10 can be realized and the apparatus can be made compact.
 さらに、出口側流路25bにおいても、平板状ヒータ20は、局所的な沸騰現象が生じるほどの高温になることが抑制され、局部的なスケールの生成が防止される。このため、金属と比較して熱容量が小さいが、割れやすいとセラミックを平板状ヒータ20に用いても、その割れが防止され、衛生洗浄装置1の長寿命化が図られる。 Furthermore, also in the outlet side flow path 25b, the flat heater 20 is suppressed from being heated to such a high temperature that a local boiling phenomenon occurs, and local scale generation is prevented. For this reason, although a heat capacity is small compared with a metal, even if it uses a ceramic for the flat heater 20 if it is easy to break, the crack is prevented and the lifetime of the sanitary washing apparatus 1 is extended.
 また、仮に、平板状ヒータ20に両伝熱面20a、20bのそれぞれにおける伝熱量に大きな相違が生じ、一方の流路の洗浄水が局所的に沸騰し、気泡が生じたとしても、気泡が円滑に排出される。よって、洗浄水の流路抵抗が高くなったり、2つの流路の流量バランスが崩れたり、2つの流路の伝熱量に大きな差が生じたりすることが防止される。 In addition, even if there is a large difference in the amount of heat transfer in each of the heat transfer surfaces 20a and 20b in the flat heater 20, and even if the cleaning water in one flow channel boils locally and bubbles are generated, It is discharged smoothly. Therefore, it is possible to prevent the flow resistance of the washing water from increasing, the flow rate balance between the two flow paths from being lost, and a large difference between the heat transfer amounts of the two flow paths from occurring.
 さらに、仮に、流路スペース25の流出部10b近傍にサーミスタなどの温度センサが配されていても、温度センサは適切に温度を検知することができる。つまり、気泡が排出されることにより、気泡が大きくなることがない。よって、大きな気泡が温度センサに付き、温度センサが大きな気泡によって洗浄水と接触できずに洗浄水の温度を検出できないという状況が回避される。 Furthermore, even if a temperature sensor such as a thermistor is disposed in the vicinity of the outflow portion 10b of the flow path space 25, the temperature sensor can appropriately detect the temperature. In other words, the bubbles do not become large by discharging the bubbles. Thus, a situation is avoided in which large bubbles are attached to the temperature sensor, and the temperature sensor cannot contact the cleaning water due to the large bubbles and cannot detect the temperature of the cleaning water.
 また、洗浄水の強制対流および気泡の排出により、スケールが伝熱面20a、20bに付着することが抑制される。これにより、スケールによる伝熱障害を回避するため、伝熱面20a、20bの面積を増やす必要がない。よって、衛生洗浄装置1のコスト上昇が防げ、かつコンパクト化が図られる。さらに、
 また、ヘッダ部絞り流路45bの断面積が徐々に狭く、かつ流路スペース25において入口側流路25aの断面積が出口側流路25bより狭い。これにより、流路厚みを薄くしなくても、各伝熱面20a、20bに沿った洗浄水の均一な速い流れが形成される。
Further, the forced convection of the washing water and the discharge of the bubbles suppress the scale from adhering to the heat transfer surfaces 20a and 20b. Thereby, in order to avoid the heat transfer failure by a scale, it is not necessary to increase the area of the heat- transfer surfaces 20a and 20b. Therefore, the cost increase of the sanitary washing device 1 can be prevented and the size can be reduced. further,
In addition, the sectional area of the header throttle channel 45b is gradually narrower, and the sectional area of the inlet-side channel 25a is narrower than that of the outlet-side channel 25b in the channel space 25. Thereby, even if it does not make flow path thickness thin, the uniform quick flow of the washing water along each heat- transfer surface 20a, 20b is formed.
 さらに、断面積が徐々に狭くなるヘッダ部絞り流路45bと、断面積が狭い入口側流路25aとにより、強制対流が生じ、伝熱面20a、20b上の気泡が速やかに上方に押し上げられる。しかも、断面積が広い出口側流路25bにおいて、大きな気泡でも移動しやすい。よって、気泡は速やかに外部へ排出される。これにより、洗浄水の流れは均一になる。 Further, forced convection is generated by the header restricting flow path 45b having a gradually reduced cross-sectional area and the inlet-side flow path 25a having a narrow cross-sectional area, and bubbles on the heat transfer surfaces 20a and 20b are quickly pushed upward. . In addition, even in the outlet side channel 25b having a large cross-sectional area, even a large bubble can easily move. Therefore, the bubbles are quickly discharged to the outside. Thereby, the flow of cleaning water becomes uniform.
 また、各伝熱面20a、20bの発熱密度は、出口側流路25bが入口側流路25aより小さい。これに対して、洗浄水の流速は、入口側流路25aが出口側流路25bより大きい。このため、各伝熱面20a、20bの熱流束は、入口側流路25aが出口側流路25bより高い。これにより、伝熱面20a、20bの温度の均一化が図られ、局所的にスケールが付着することを抑制できる。 Further, the heat generation density of each heat transfer surface 20a, 20b is such that the outlet side flow path 25b is smaller than the inlet side flow path 25a. On the other hand, the flow rate of the washing water is larger in the inlet side channel 25a than in the outlet side channel 25b. For this reason, as for the heat flux of each heat- transfer surface 20a, 20b, the inlet side flow path 25a is higher than the outlet side flow path 25b. Thereby, the temperature of the heat transfer surfaces 20a and 20b can be made uniform, and local adhesion of scale can be suppressed.
 [その他の例]
 上記実施の形態2では、図7に示すように、入口側流路25aにおけるヒータ線の幅20sは、出口側流路25bにおけるヒータ線の幅20sより細く形成されている。ただし、入口側流路25aにおける抵抗体のパターン20pにおける発熱密度が、出口側流路25bにおける抵抗体のパターン20pにおける発熱密度より高くなれば、このヒータ線の幅20sに限定されない。
[Other examples]
In the second embodiment, as shown in FIG. 7, the heater wire width 20s in the inlet-side channel 25a is formed to be narrower than the heater wire width 20s in the outlet-side channel 25b. However, as long as the heat generation density in the resistor pattern 20p in the inlet-side channel 25a is higher than the heat generation density in the resistor pattern 20p in the outlet-side channel 25b, the heater wire width is not limited to 20s.
 たとえば、図8に示すように、抵抗体のパターン20pでは、入口側流路25aにおいて互いに隣接するヒータ線の間隔20hが、出口側流路25bより狭い。これにより、入口側流路25aにおける抵抗体のパターン20pにおける発熱密度が、出口側流路25bにおける抵抗体のパターン20pにおける発熱密度より高くなっている。 For example, as shown in FIG. 8, in the resistor pattern 20p, the interval 20h between the heater wires adjacent to each other in the inlet-side channel 25a is narrower than that in the outlet-side channel 25b. Thereby, the heat generation density in the resistor pattern 20p in the inlet-side flow path 25a is higher than the heat generation density in the resistor pattern 20p in the outlet-side flow path 25b.
 また、上記実施の形態2では、ヘッダ部絞り流路45bは、略クランク形状を有し、その流路断面積が徐々に狭められた。ヘッダ部絞り流路45bの形状は、略クランクに限定されない。たとえば、図6に示す垂直部45bbおよび水平部45bcの2辺で形成され、その2辺がそれぞれ傾斜した略「く」の字形状の断面でヘッダ部絞り流路が形成されてもよい。また、流路断面積が段階的に狭められるものに限定されない。たとえば、図11に示すように、上方に向かって間隔が狭くなる三角形状の断面でヘッダ部絞り流路が形成されてもよい。この場合、流路断面積は連続的に次第狭められる。 In the second embodiment, the header throttle channel 45b has a substantially crank shape, and its channel cross-sectional area is gradually narrowed. The shape of the header throttle channel 45b is not limited to a substantially crank. For example, the header portion restriction channel may be formed by a substantially “<”-shaped cross section formed by two sides of the vertical portion 45bb and the horizontal portion 45bc shown in FIG. Moreover, it is not limited to what a flow-path cross-sectional area is narrowed in steps. For example, as shown in FIG. 11, the header restricting flow path may be formed with a triangular cross section whose interval becomes narrower upward. In this case, the flow path cross-sectional area is narrowed gradually.
 さらに、上記実施の形態2では、各部材21、22において棚段部31、41によりベース部30、40のY方向の厚みが段階的に変わった。これにより、流路スペース25に、断面積が異なる2つの流路25a、25bが設けられた。これに対して、図11に示すように、ベース部30、40のY方向の厚みが徐々に変わるように各部材21、22が形成されてもよい。この場合、流路スペース25には断面積が徐々に変わる1つの流路が設けられる。 Furthermore, in the second embodiment, the thickness of the base portions 30 and 40 in the Y direction is changed stepwise by the shelf steps 31 and 41 in the members 21 and 22. Thereby, two flow paths 25 a and 25 b having different cross-sectional areas are provided in the flow path space 25. On the other hand, as shown in FIG. 11, each member 21 and 22 may be formed so that the thickness of the base parts 30 and 40 in the Y direction gradually changes. In this case, the channel space 25 is provided with one channel whose cross-sectional area gradually changes.
 また、上記全実施の形態は、互いに相手を排除しない限り、互いに組合わせてもよい。 In addition, all the above embodiments may be combined with each other as long as they do not exclude each other.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明の衛生洗浄装置は、必要な洗浄水の流量を確保し、かつ故障を防止することが可能な衛生洗浄装置等として有用である。 The sanitary washing apparatus of the present invention is useful as a sanitary washing apparatus that can secure a necessary flow rate of washing water and prevent failure.
 1 衛生洗浄装置
 7 ノズル
 8 給水源
 9 給水路
 10 熱交換器
 10a 流入部
 10b 流出部
 20 平板状ヒータ
 20a 第一伝熱面(伝熱面)
 20b 第二伝熱面(伝熱面)
 20k セラミック基体
 20p パターン(電熱線)
 23 ケーシング
 23a 入水口
 25 流路スペース
 30a ベース面(主面)
 40a ベース面(主面)
 45 ヘッダ部
 45a ヘッダ部主流路(主流路)
 45b ヘッダ部絞り流路(絞り流路)
DESCRIPTION OF SYMBOLS 1 Sanitary washing device 7 Nozzle 8 Water supply source 9 Water supply path 10 Heat exchanger 10a Inflow part 10b Outflow part 20 Flat heater 20a First heat transfer surface (heat transfer surface)
20b Second heat transfer surface (heat transfer surface)
20k ceramic substrate 20p pattern (heating wire)
23 Casing 23a Water inlet 25 Channel space 30a Base surface (main surface)
40a Base surface (main surface)
45 Header section 45a Header section main flow path (main flow path)
45b Restriction flow path (throttle flow path) for header section

Claims (5)

  1.  ノズルと、給水源に接続されるべき上流端を有し、下流端が前記ノズルに接続された給水路と、前記給水路に設けられる熱交換器とを備え、
     前記熱交換器が、
      流入部と、前記流入部より上方に位置する流出部と、下端部が前記流入部に連通し、上端部が前記流出部に連通し、且つ上下方向に延びるように形成された板状のヒータ収容空間と、を含むケーシングと、
      前記ケーシングのヒータ収容空間に上下方向に延在するように収容され、前記ヒータ収容空間の主面に対向する伝熱面を含む平板状ヒータと、
      前記伝熱面と前記ヒータ収容空間の主面との間の間隙に形成された流路スペースと、を有し
      前記流路スペースは、前記流入部側の前記間隙の幅が、前記流出部側の前記間隙の幅より小さくなるように形成されている、衛生洗浄装置。
    A nozzle, an upstream end to be connected to a water supply source, a downstream water supply path connected to the nozzle, and a heat exchanger provided in the water supply path,
    The heat exchanger is
    An inflow portion, an outflow portion located above the inflow portion, a lower end portion communicates with the inflow portion, an upper end portion communicates with the outflow portion, and is formed so as to extend vertically. A casing including a housing space;
    A flat plate-like heater that is accommodated in the heater accommodation space of the casing so as to extend in the vertical direction and includes a heat transfer surface facing the main surface of the heater accommodation space;
    A flow path space formed in a gap between the heat transfer surface and the main surface of the heater housing space, wherein the flow path space has a width of the gap on the inflow portion side that is on the outflow portion side. The sanitary washing device is formed to be smaller than the width of the gap.
  2.  前記平板状ヒータは、前記流入部側の発熱密度が、前記流出部側の発熱密度より大きくなるように構成されている、請求項1に記載の衛生洗浄装置。 The sanitary washing device according to claim 1, wherein the flat heater is configured such that a heat generation density on the inflow portion side is larger than a heat generation density on the outflow portion side.
  3.  前記平板状ヒータは、セラミック基体と、前記セラミック基体上にパターン印刷にて形成された電熱線と、を有し、
     前記流入部側の前記電熱線の断面積が、前記流出部側の前記電熱線の断面積より小さい、請求項1または2に記載の衛生洗浄装置。
    The flat heater has a ceramic base and a heating wire formed by pattern printing on the ceramic base,
    The sanitary washing device according to claim 1 or 2, wherein a cross-sectional area of the heating wire on the inflow portion side is smaller than a cross-sectional area of the heating wire on the outflow portion side.
  4.  前記平板状ヒータは、セラミック基体と、前記セラミック基体上にパターン印刷して形成された電熱線と、を有し、
     前記流入部側の互いに隣接する前記電熱線の間隔が、前記流出部側の互いに隣接する前記電熱線の間隔より大きい、請求項1または2に記載の衛生洗浄装置。
    The flat heater has a ceramic base and a heating wire formed by pattern printing on the ceramic base,
    The sanitary washing device according to claim 1 or 2, wherein an interval between the heating wires adjacent to each other on the inflow portion side is larger than an interval between the heating wires adjacent to each other on the outflow portion side.
  5.  前記熱交換器は、入水口と、前記入水口と前記流入部との間に形成されたヘッダ部と、をさらに有し、
     前記ヘッダ部は、主流路と、前記主流路から前記流入部に向かって徐々に狭くなる絞り流路と、を有する、請求項1~4のいずれか1項に記載の衛生洗浄装置。
    The heat exchanger further includes a water inlet, and a header portion formed between the water inlet and the inflow portion,
    The sanitary washing device according to any one of claims 1 to 4, wherein the header section includes a main channel and a throttle channel that gradually narrows from the main channel toward the inflow portion.
PCT/JP2012/001522 2011-04-22 2012-03-06 Hygienic cleaning device WO2012144122A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127022666A KR101399717B1 (en) 2011-04-22 2012-03-06 Sanitary washing device
CN201280000811.0A CN102859086B (en) 2011-04-22 2012-03-06 Hygienic cleaning device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-095749 2011-04-22
JP2011-095750 2011-04-22
JP2011095749A JP5786129B2 (en) 2011-04-22 2011-04-22 Heat exchanger
JP2011095750 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144122A1 true WO2012144122A1 (en) 2012-10-26

Family

ID=47041259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001522 WO2012144122A1 (en) 2011-04-22 2012-03-06 Hygienic cleaning device

Country Status (4)

Country Link
KR (1) KR101399717B1 (en)
CN (1) CN102859086B (en)
TW (1) TWI504370B (en)
WO (1) WO2012144122A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784407A1 (en) * 2012-12-17 2014-10-01 Panasonic Corporation Heat exchanger and sanitary cleaning device with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155972B2 (en) * 2013-08-27 2017-07-05 アイシン精機株式会社 HEAT EXCHANGE UNIT AND HUMAN BODY LOCAL CLEANING DEVICE HAVING THE SAME

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027576A1 (en) * 2009-09-07 2011-03-10 パナソニック株式会社 Heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245693A (en) * 1991-03-15 1993-09-14 In-Touch Products Co. Parenteral fluid warmer apparatus and disposable cassette utilizing thin, flexible heat-exchange membrane
JPH0988159A (en) * 1995-09-21 1997-03-31 Toto Ltd Sanitary cleaner
TW373047B (en) * 1997-04-02 1999-11-01 Matsushita Electric Ind Co Ltd Apparatus for washing human private
JP2000054463A (en) 1998-08-10 2000-02-22 Toto Ltd Sanitary washing device
KR100624568B1 (en) * 2006-01-02 2006-09-15 주식회사 노비타 Warm water device the moment for irrigator
KR100804303B1 (en) 2007-04-25 2008-02-18 웅진코웨이주식회사 Instantaneous water heater
CN201190322Y (en) * 2008-05-23 2009-02-04 浙江星星便洁宝有限公司 Instant heating device for intelligent toilet chair
KR200453744Y1 (en) * 2009-01-12 2011-05-27 주식회사 지노아이앤티 Instant Heating Heat Assembly for Bidet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027576A1 (en) * 2009-09-07 2011-03-10 パナソニック株式会社 Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784407A1 (en) * 2012-12-17 2014-10-01 Panasonic Corporation Heat exchanger and sanitary cleaning device with same
EP2784407A4 (en) * 2012-12-17 2015-02-25 Panasonic Corp Heat exchanger and sanitary cleaning device with same

Also Published As

Publication number Publication date
KR20120137476A (en) 2012-12-21
TW201242561A (en) 2012-11-01
CN102859086B (en) 2015-01-21
CN102859086A (en) 2013-01-02
TWI504370B (en) 2015-10-21
KR101399717B1 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
Drummond et al. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions
JP6118531B2 (en) Battery module and cooling plate for battery module
KR20140057184A (en) A heating device that slim type
KR102363117B1 (en) fluid control unit
TW201114398A (en) Heat exchanger
EP2003944A9 (en) Method of ebullient cooling, ebullient cooling apparatus, flow channel structure and application product thereof
WO2012144122A1 (en) Hygienic cleaning device
JP5306290B2 (en) Combustion device
JP5747165B2 (en) Heat exchanger
JP5534117B2 (en) Manufacturing method of heat exchanger
US20210348803A1 (en) Pipe fluid heat exchange flat pipe and device for heating pipe fluid
Zhao et al. Combining a distributed flow manifold and 3D woven metallic lattices to enhance fluidic and thermal properties for heat transfer applications
JP5945722B2 (en) Heat exchanger and sanitary washing toilet seat equipped with it
JP2017198437A (en) Heat exchanger and water heating system
JP2021517539A (en) Temperature control and build-up reduction in water heating systems
JP5786129B2 (en) Heat exchanger
WO2013150696A1 (en) Heat exchanger and hygienic cleaning device provided therewith
US20120148220A1 (en) Heat exchanger
KR101605082B1 (en) Apparatus for controlling temperature of fluid
US8687952B2 (en) Heating apparatus
Jenkins et al. Thermal-hydraulic performance of convective boiling jet array impingement
JP5460937B1 (en) Heat exchanger and sanitary washing apparatus provided with the same
RU2382289C1 (en) Heating unit
JP2008157544A (en) Heat exchanger and water heater
JP4209302B2 (en) Instantaneous heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000811.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127022666

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773900

Country of ref document: EP

Kind code of ref document: A1