WO2014096450A1 - Transmission de véhicule agricole - Google Patents

Transmission de véhicule agricole Download PDF

Info

Publication number
WO2014096450A1
WO2014096450A1 PCT/EP2013/077922 EP2013077922W WO2014096450A1 WO 2014096450 A1 WO2014096450 A1 WO 2014096450A1 EP 2013077922 W EP2013077922 W EP 2013077922W WO 2014096450 A1 WO2014096450 A1 WO 2014096450A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
drive shaft
shaft
axle drive
drive
Prior art date
Application number
PCT/EP2013/077922
Other languages
English (en)
Inventor
Richard Heindl
Original Assignee
Agco International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agco International Gmbh filed Critical Agco International Gmbh
Publication of WO2014096450A1 publication Critical patent/WO2014096450A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/28Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/36Arrangement or mounting of transmissions in vehicles for driving tandem wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/142Heavy duty trucks
    • B60Y2200/1422Multi-axle trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears

Definitions

  • the present invention relates to vehicle transmissions and in particular, but not exclusively, to a transmission adaptable for use with a variety of configurations of agricultural vehicles, such as tractors.
  • Transmissions form part of the driveline tractors.
  • the purpose of the driveline is to transmit torque from the engine (most usually an internal combustion engine and/or or electric motor) to the wheels (or tracks as may be the case in larger tractors).
  • the driveline may also include a flywheel; one or more clutches; a transfer box; and front, centre and rear differentials.
  • the configuration of the driveline depends on the specific type of tractor, for example whether the vehicle is rear wheel drive or four wheel drive, front wheel steered or centrally articulated, tracked or provided with conventional wheels and tyres. Each variation of driveline requires a different transmission layout.
  • the transmission may be required to drive front and/or rear power take off (PTO) shafts to allow the tractor to operate ancillary equipment such as seed drills and bailers.
  • PTO power take off
  • a rear wheel drive tractor with steered front wheels would not require a front differential or a front output shaft from the transmission, but would require a rear output shaft and a rear differential.
  • it may be provided with front and/or rear PTO shafts.
  • a tracked tractor would not require an output shaft from the transmission to the front wheels, but would require a rear drive shaft and rear differential capable of splitting the torque between the left and right tracks in order to steer the tractor.
  • tracked tractors where only the rear track wheels, not the front idler wheels, are driven.
  • FIG. 1 a tractor 1 has an engine 2 providing drive to a transmission 3 which in turn has a rear PTO shaft 4 and a rear output shaft 5.
  • the rear out put shaft 5 drives a transfer box 6 and a rear axle 7 via a rear differential 11.
  • the transfer box 6 has a front drive shaft 8 which drives a front axle 9. It can be seen that the transfer box 6 does not form part of the transmission 3 and serves to drop the front drive shaft 8 by a vertical distance A relative to the rear output shaft 5.
  • Figures 2A to 2D show alternative uses of the "bolt-on" transfer box 6 to alter the relative vertical displacements of the output shafts.
  • Figure 2 A replicates part of the view of Figure 2 and once again shows the relative vertical distance A between front drive shaft 8 and the rear output shaft 5 for ease comparison with Figures 2B to 2D.
  • Figure 2D shows the use of a second configuration of transfer box 6B which raises the height of the rear differential 11 by a distance B relative to the rear output shaft 5.
  • Figure 2C shows use of a second transfer box 6' in front of the transmission 3 in order to raise the height of the front differential (not shown for clarity) by a distance C relative to the front drive shaft 8.
  • Figure 2D shows an arrangement similar to Figure 2B in which transfer box 6D raises the height of the rear differential 11 by a distance D relative to the rear output shaft 5.
  • continuously variable transmission for an agricultural vehicle, the transmission comprising a transmission casing and transmission components
  • the casing having a front wall and a rear wall, the front wall having a first aperture for receiving an input shaft and a second aperture for receiving a front axle drive shaft,
  • the rear wall having a third aperture for receiving a first rear power take off shaft and/or a first rear axle drive shaft.
  • the invention provides a transmission unit which is readily adaptable for each of the required tractor configurations. This provides a considerable technical advantage over known transmission units in that the extent of adaptation required between the different configurations is minimized.
  • the transmission includes fourth and fifth apertures for receiving second and third rear axles hafts respectively.
  • the transmission casing includes one or more blanking plates which cover one or more of the first to fifth apertures when not required to receive a drive shaft.
  • the rear power take off shaft and first rear drive shaft are co-axial to oneanother and pass through the second aperture in the transmission casing.
  • the transmission further includes
  • a hydrostatic transmission branch having a hydraulic pump driven by the input shaft and at least one hydraulic motor hydraulically driven by the pump,
  • axle drive shafts are additionally driven by the at least one hydraulic motor so as to provide the axle drive shafts with continuously variable drive.
  • the front axle drive shaft is mechanically connected to one or more of the rear axle drive shafts.
  • the transmission includes a planetary gear assembly to split the torque from the input shaft between the mechanical and hydraulic transmission branches.
  • Figures 1 to 2D which depict prior art relevant to the invention, the invention will now be described, by way of example only, and with reference to the following drawings, in which: Figure 3 is a representation of a standard tractor including a transmission according to the present invention;
  • Figure 4 is a schematic representation of the driveline of the tractor of Figure 3, including a first configuration of the transmission of the present invention
  • Figure 5 is a plan view of the layout of the first transmission configuration of Figure 4.
  • Figure 6 is an elevated rear view of the layout of the first transmission configuration of Figure 4.
  • Figure 7 is a rear view of the layout of the first transmission configuration of Figure 4.
  • Figure 8 is a schematic representation of an alternative tractor driveline including a second configuration of the transmission of the present invention.
  • Figure 9 is a plan view of the layout of the second transmission configuration of Figure 8;
  • Figure 10 is an elevated rear view of the layout of the second transmission configuration of Figure 8;
  • Figure 11 is a rear view of the layout of the second transmission configuration of Figure 8.
  • Figure 12 is a schematic representation of a third transmission configuration of the transmission of the present invention
  • Figure 13 is a schematic representation of a fourth transmission configuration of the transmission of the present invention
  • Figure 14 is a schematic representation of a fifth transmission configuration of the transmission of the present invention.
  • Figure 15 is a schematic representation of a sixth transmission configuration of the transmission of the present invention
  • Figure 16 is a schematic representation of a seventh transmission configuration of the transmission of the present invention
  • Figure 17 is a schematic rear view of the transmission of the present invention
  • Figure 18 is a schematic front view of the transmission of the present invention.
  • Figure 19 is a schematic side view of the transmission of the present invention.
  • FIG 3 shows an agricultural vehicle, in the form of a tractor 110, having front wheels 112, rear wheels 114, an engine cover 116 and operator cab 118.
  • the tractor 110 has a chassis 120 (not shown in Figure 3 for clarity) and provides support for the tractor and a driveline 121 which provides propulsive drive.
  • the driveline may form part of the chassis, for example where the outer casing of a transmission and a rear transaxle is structurally integral to the chassis.
  • Figure 4 shows the driveline 121 having a prime mover in the form of an internal combustion engine 124 and a first configuration of transmission 100 (indicated schematically in Figure 4 by dotted line 100).
  • the transmission 100 has an inner transmission casing 199 (not shown in Figure 4) which is mounted inside an outer structural housing (not shown) which forms part of the chassis. Accordingly, the transmission 100, specifically the casing 199, supports or houses all of the components required to provide the full transmission output power with variable torque, variable vehicle speed and variable driving direction over a full range of vehicle speeds.
  • the prime mover could be an electric motor or other form of propulsive engine.
  • the configuration of the tractor 110 shown in Figures 3 to 7 is a four wheel drive tractor with steered front wheels.
  • the tractor may be rear wheel drive only in which case the driveline 121 would not include a front differential assembly while the transmission 100 would be otherwise unchanged.
  • the engine 124 provides drive to the transmission 100 via a flywheel 146.
  • the transmission 100 drives the front and rear axle drive shafts 134,136 to provide propulsive drive to the wheels 112, 114.
  • the transmission 100 also provides drive to a rear power take-off drive shaft 132.
  • the engine 124 is connected to an input shaft 102 of the transmission 100 via the flywheel 146.
  • the input shaft 102 is connected at its inboard end to a planetary gear assembly indicated generally 148.
  • the purpose of the planetary gear assembly 148 is to split the torque provided by the input shaft 102 between a mechanical branch indicated generally at 150 and a hydrostatic branch indicated generally at 152.
  • a rear power take off shaft 132 On the opposite side of the planetary gear assembly to the input shaft 102 is a rear power take off shaft 132.
  • the hydrostatic branch 152 drives a hydraulic pump 140.
  • the mechanical branch 150 is connected to a front axle drive shaft 134 and a rear axle drive shaft 136 as follows. Torque is transmitted from the mechanical branch 150 of the planetary gear assembly 148 to the rear axle drive shaft 136 via a rear axle gear 154. Mounted on the same shaft as the rear axle drive gear 154 is an intermediary gear 156 which in turn drives a front axle drive gear 158 which selectively drives the front axle drive shaft 134.
  • a clutch 160 is provided to selectively engage and disengage the front axle drive shaft 134 from the rear axle drive shaft 136 or to control the ratio of torque distribution between the two axles. This allows grip to be optimised dependant on the ground conditions.
  • the hydraulic pump 140 is hydraulically connected (not shown in Figure 4 for clarity) to a first hydraulic motor 142 which is driveably connected to the rear axle drive shaft 136 in order to provide hydraulic drive to the rear wheels.
  • the hydraulic pump 140 is also connected to a second hydraulic motor 144 in order to provide hydraulic drive to the front axle drive shaft 134 as follows.
  • the motor 144 is driveably connected to the front axle drive shaft 134 via first and second hydraulic motor gears 162, 164.
  • a clutch 166 allows the second hydraulic motor 144 to be selectively engaged and disengaged from the front axle drive shaft 134.
  • Second hydraulic motor 144 is connected to front axle drive shaft 134 by gears 162, 164 having a high transmission ratio. This allows motor 142 to provide high torque at a limited, lower range of vehicle speeds. Consequently, at higher vehicle speeds, the motor 144 may be disconnected from driveline 121 via clutch 166. Due to the layout, the first hydraulic motor 144 is provided for delivering lower torque but over the full range of vehicle speeds. However, in combination, both motors 142, 144 enable the transmission to provide a full transmission output power with variable torque, variable vehicle speed and variable driving direction over a full range of vehicle speeds.
  • the rear axle drive shaft 136 provides drive to the rear wheels 114.
  • the front axle drive shaft 134 provides drive to the front wheels 112.
  • clutches 160 and 166 With the clutch 160 disengaged, and the clutch 166 engaged, motor 142 drives the rear axle drive shaft 136 and thereby rear axle 114, and motor 144 drives the front axle drive shaft 134 and thereby front axle 112. With the clutch 160 disengaged, and the clutch 166 disengaged, motor 142 drives the rear axle drive shaft 136 and thereby rear axle 114. The front axle drive shaft 134 and thereby front axle 112 is not driven. With the clutch 160 engaged, and the clutch 166 disengaged, motor 142 drives the rear axle drive shaft 136 and thereby rear axle 114. The motor 142 also drives the front axle drive shaft 134 and thereby front axle 112.
  • motor 142 and motor 144 both drive the rear axle drive shaft 136 and thereby rear axle 114.
  • the motors 142, 144 also drive the front axle drive shaft 134 and thereby front axle 112.
  • the input shaft 102, rear power take-off drive shaft 132, front axle drive shaft 134 and a rear axle drive shaft 136 are visible at the exterior of the an inner transmission casing 199.
  • the transmission 100 has a blanking cap 138 which covers an aperture in the inner transmission casing 199 for an additional drive shaft not used in this first configuration of transmission.
  • the hydraulic pump 140, first hydraulic motor 142 and second hydraulic motor 144 are shown mounted to the inner transmission casing 199. In use, the operator is able to vary the division of torque provided by the transmission 100 either mechanically or hydraulically by varying the amount of hydraulic assistance provided by the first and second hydraulic motors.
  • the transmission of the present invention is also suitable for a tracked tractor as will now be described in further detail.
  • Figure 8 shows the driveline 221 for a tracked tractor having an engine 224 which drives a second configuration of transmission 200 which in turn provides drive to a rear axle drive shaft 236.
  • the rear axle drive shaft 236 provides drive to the rear drive wheels (not shown) which in turn drive the track (not shown).
  • the engine 224 provides drive to the transmission 200 via a flywheel 246.
  • the transmission 200 also provides drive to a rear power take-off drive shaft 232.
  • the engine 224 is connected to the input shaft 202 of transmission 200 via the flywheel 246.
  • the input shaft 202 is connected at its inboard end to a planetary gear assembly indicated generally 248.
  • the purpose of the planetary gear assembly 248 is to split the torque provided by the input shaft 202 between a mechanical branch indicated generally at 250 and a hydrostatic branch indicated generally at 252.
  • On the opposite side of the planetary gear assembly 248 to the input shaft 202 is the rear PTO drive shaft 232.
  • the hydrostatic branch 252 drives first and second hydraulic motors 242, 244 via hydraulic pump 240 while the mechanical branch 250 provides drive to the rear axle drive shafts 236 as follows. Torque is transmitted from the mechanical branch 250 of the planetary gear assembly 248 to the rear axle drive shaft 236 via initial gear 254.
  • an intermediary gear 256 which in turn drives a rear axle drive gear 258.
  • the rear axle drive gear 258 is mounted on and thereby drives the rear axle drive shaft 236.
  • a steering differential (not shown) is provided to split the torque delivered by the rear axle drive shaft 236 between the left and right rear drive wheels in order to steer the tractor 210.
  • the hydraulic pump 240 is hydraulically connected (not shown in Figure 5 for clarity) to the first hydraulic motor 242 which is driveably connected to the rear axle drive shaft 236 via the intermediary gear 256 and rear axle drive gear 258 in order to provide supplementary hydraulic drive to the rear drive wheels 212.
  • the hydraulic pump 240 is also connected to the second hydraulic motor 244 which is driveably connected to the rear axle drive shaft 236 via second hydraulic motor gear 264.
  • a clutch 266 allows the second hydraulic motor 244 to be selectively engaged and disengaged from the rear axle drive shaft 236. This allows hydraulic drive to be provided to the rear axle drive shaft 236 by the second hydraulic motor 244 in addition to, or alternatively to, the drive delivered by the first hydraulic motor 242 and the mechanical branch 250 of the planetary gear assembly 248.
  • the transmission 200 does not have the blanking cap 138 of the transmission 100. Instead the transmission 200 uses the aperture covered by the blanking cap 138 in transmission 100 to provide access for the rear axle drive shaft 236. Also the transmission 200 has no front axle drive shaft as the tracked tractor 210 requires no drive to the front wheels. Furthermore, the transmission 200 is not provided with clutch 166 of transmission 100 as there is no need for torque distribution.
  • hydraulic pump 240 and the first and second hydraulic motors 242, 244 are shown mounted to the inner transmission casing 299.
  • the transmission of the present invention can be configured to provide a configuration of transmission 100 for tractor 110 or transmission 200 for tractor 210 wherein the drive shafts 136, 134, 236 can be positioned at a different vertical distance to e.g. the input shaft 202. Furthermore the drive shafts 136, 134, 236 are positioned at the appropriate vertical shaft level and provided with the respective transmission ratio/output speed to meet the requirements of different wheel sizes over different vehicles.
  • Drive shaft 136 is provided with the respective gear ratio suitable to drive a big size rear wheel of a standard tractor.
  • Drive shaft 134 is provided with the respective gear ratio suitable to drive a smaller rear wheel of a standard tractor.
  • Drive shafts 136 is provided with the respective gear ratio suitable to drive a mid size drive wheel to drive the track of a track-type tractor.
  • This design eliminates the requirement for transfer boxes when used in different vehicle types.
  • the inner transmission casing 199, 299 and many of the internal components remain the same. This provides significant advantages, for example a reduction in the complexity of production of the transmissions across a range of tractors typically offered by agricultural manufacturers.
  • the transmission unit 26 can provide further configurations of transmission to suit a large range of applications. Further alternative transmission configurations of transmission will now be described with reference to Figures 12 to 19.
  • Each transmission is similar in construction and operation to transmissions 100, 200 described above and all provide at least two continuously variable output drive shafts.
  • a configuration of transmission 400 has an input shaft 402 which drives a planetary gear system 448 with a mechanical branch 450 and a hydraulic branch 452.
  • the hydraulic branch 450 drives a hydraulic pump 440 which provides hydraulic power to a hydraulic motor 442.
  • the input shaft 402 passes through the planetary gear system 448 and exits the transmission at the rear as a rear PTO drive shaft 432.
  • the rear PTO drive shaft 432 is co-axial with, and positioned diametrically within, a rear axle drive shaft 436.
  • a front axle drive shaft 434 is driven by the hydraulic motor 442 and the mechanical branch 450 via gears 474, 476.
  • the hydraulic motor 442 is also able to power the rear axle drive shaft 436 via gears 474, 476.
  • FIG 14 shows a further configuration of transmission 500.
  • the transmission 500 has an input shaft 502, front axle drive shaft 534, rear axle drive shaft 536, gears 574, 576, hydraulic pump 540 and hydraulic motor 542 in common with transmission 400.
  • no PTO shaft is provided as the hollow shaft extending to the rear of the planetary gear system 548 is connected to the rear axle drive shaft 536.
  • This arrangement may be suitable for a truck not requiring a rear PTO.
  • the planetary gear system 548' may be adapted so that the rear axle drive shaft 536 is drivingly connected to a component of the planetary gear system 548' which rotates with lower speed.
  • the transmission 600 of Figure 14 differs from transmission 400 (with identical components being numbered 200 higher in Figure 14 than in Figure 12) in that it has a second hydraulic motor 644 which acts in cooperation with the first hydraulic motor 642 to drive the front axle drive shaft 634 and rear axle drive shaft 636.
  • the second motor 644 could also be provided in the embodiments shown in Figure 12 and 13.
  • the transmission 700 has an input shaft 702 driving a planetary gear system 748 with a mechanical branch 750 and a hydraulic branch 752.
  • the hydraulic branch 752 drives a hydraulic pump 740 which provides hydraulic power to first and second hydraulic motors 742, 744.
  • the input shaft 702 passes through the planetary gear system 748 and exits the transmission at the rear as a rear PTO drive shaft 732.
  • the rear PTO drive shaft 432 is co-axial with, and positioned diametrically within, a first rear drive shaft 736.
  • a second rear drive shaft 790 is driven by the first hydraulic motor 742 and the mechanical branch 750 via gears 774, 776.
  • the first hydraulic motor 742 is also able to power the first rear drive shaft 736 via gears 774, 776.
  • a front axle drive shaft 734 is driven by the first hydraulic motor 742 and mechanical branch 750 of the planetary gear system 748 via gears 792, 794 and clutch 796.
  • Attached to the other end of the front axle drive shaft 734 is a third rear drive shaft 798.
  • the front axle drive shaft 734 and third rear drive shaft 798 are selectively driven by the second hydraulic motor 744 via clutch and gears 795, 797.
  • the clutch 766 can be engaged to enable the second hydraulic motor 744 to drive the first and second rear drive shafts 736, 790 via the gears 795, 797, 794, 792, 776 and 774.
  • the clutch 796 can be engaged to mechanical drive and hydraulic drive to the front axle drive shaft 734 and third rear drive shaft 798. As the clutch 796 is summing up the torque delivered by motors 742 and 744 via circumferential toothed portions, the front axle drive shaft 734 can extend through clutch 796 to provide third rear drive shaft 798.
  • the configuration of transmission 700 may be used to drive a vehicle with more than two driven axles as follows.
  • the front axle of the vehicle may be connected to front axle drive shaft 734
  • a mid vehicle axle may be connected to third rear drive shaft 798 while the rear vehicle axle may be connected to second rear drive shaft 790.
  • rear PTO drive shaft 432 may drive a PTO.
  • the front (first) axle of the vehicle may be connected to front axle drive shaft 734
  • a mid (second) vehicle axle may be connected to third rear drive shaft 798 while the first rear (third) vehicle axle may be connected to first rear drive shaft 736.
  • the second rear (fourth) vehicle axle may be connected to first rear drive shaft 736.
  • the rear PTO drive shaft 432 would not be used in this case.
  • the transmission 800 of Figure 16 differs from transmission 700 (with identical components being numbered 100 higher in Figure 16 than in Figure 15) in that second hydraulic motor 844 is positioned in line with the front axle drive shaft 834 in order to selectively (via clutches 866 and 896) drive the front axle drive shaft 834 and rear drive shafts 836, 890.
  • the second hydraulic motor 844 is shown in an alternative location 844" by dashed lines in Figure 16 in which embodiment the front axle drive shaft 834 is removed in order to provide access for the motor 844" and a third rear drive shaft 898 is provided instead.
  • the rear wall of the transmission unit 26 is depicted showing the shaft positions of configurations of transmission 100, 200, 400, 500, 600, 700 and 800.
  • Figures 18 and 19 show the shaft positions in front wall and side walls, respectively.
  • the input shaft 102, 202, 402, 502, 602, 702, 802 enters the transmission unit 26 through aperture Al .
  • the rear PTO drive shaft 132, 232, 432, 632, 732, 832 is positioned coaxially within the rear axle drive shaft 436, 536, 636, 736, 836 at position A exiting the transmission unit through aperture A3.
  • the rear axle drive shaft 136, 790, 890 is provided at an intermediate position B exiting the transmission unit through aperture A4.
  • the front axle drive shaft 434, 534, 634 exits the front of the transmission casing at position B through aperture A6.
  • the rear axle drive shaft 236, 798, 898 is provided at a low position C exiting the transmission unit through aperture A5.
  • the front axle drive shaft 134, 734, 834 exits the front of the transmission casing at position C through aperture A2.
  • the embodiments of transmission described above all have a hydrostatic branch defined by a pump (driven by the input shaft) and two motors which are driven by the pump.
  • the hydrostatic branch is replaced by an electrical branch in which the hydraulic pump is replaced by an electrical generator (driven by the input shaft) and the hydraulic motors are replaced by electric motors.
  • the transmission unit 26 is surrounded by an additional structural housing integral with the chassis of the tractor. This is especially advantageous for assembly and maintenance reasons.
  • the transmission unit 26 could incorporate the structural housing in place of the inner transmission casing 199. In this case, all the components included in each configuration of the transmission unit 26 described above would be directly assembled to the structural housing.
  • the embodiments described above are based on an orientation of the transmission which is common in agricultural vehicles such as tractors, that is to say that the engine is at the front and the transmission is positioned rearwards of the engine relative to the driving direction. This results in the front axle being situated in front of the transmission while the rear axle is behind the transmission.
  • the orientation of the transmission or the engine could be altered, e.g. for bucket loaders having a rear engine, would result in a different orientation of the vehicle front and rear axle(s) in relation to the transmission. So the reference of to front or rear axle must be more seen with reference to the transmission than strictly to the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

L'invention concerne une transmission à variation continue pour un véhicule agricole, la transmission comportant un boîtier de transmission et des composants de transmission, le boîtier ayant une paroi avant et une paroi arrière, la paroi avant ayant une première ouverture pour recevoir un arbre d'entrée et une deuxième ouverture pour recevoir un arbre d'essieu avant, la paroi arrière ayant une troisième ouverture pour recevoir un premier arbre de prise de force et/ou un premier arbre d'essieu arrière.
PCT/EP2013/077922 2012-12-21 2013-12-23 Transmission de véhicule agricole WO2014096450A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB201223538A GB201223538D0 (en) 2012-12-21 2012-12-21 Agricultural vehicle transmission
GB1223538.8 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014096450A1 true WO2014096450A1 (fr) 2014-06-26

Family

ID=47716313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077922 WO2014096450A1 (fr) 2012-12-21 2013-12-23 Transmission de véhicule agricole

Country Status (2)

Country Link
GB (1) GB201223538D0 (fr)
WO (1) WO2014096450A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023480A3 (fr) * 2020-12-18 2022-08-10 Deere & Company Transmission et véhicule utilitaire agricole ou industriel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2399201A (en) * 1942-12-01 1946-04-30 Timken Axle Co Detroit Power transmitting mechanism
US3374681A (en) * 1966-07-22 1968-03-26 Int Harvester Co Concentric power take-offs
WO2006042434A1 (fr) * 2004-10-20 2006-04-27 Markus Liebherr International Ag Transmission a repartition de puissance et procede pour faire fonctionner cette transmission
DE102007053266A1 (de) * 2007-11-08 2009-05-14 Agco Gmbh Nutzfahrzeug mit mindestens drei antreibbaren Fahrzeugachsen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2399201A (en) * 1942-12-01 1946-04-30 Timken Axle Co Detroit Power transmitting mechanism
US3374681A (en) * 1966-07-22 1968-03-26 Int Harvester Co Concentric power take-offs
WO2006042434A1 (fr) * 2004-10-20 2006-04-27 Markus Liebherr International Ag Transmission a repartition de puissance et procede pour faire fonctionner cette transmission
DE102007053266A1 (de) * 2007-11-08 2009-05-14 Agco Gmbh Nutzfahrzeug mit mindestens drei antreibbaren Fahrzeugachsen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023480A3 (fr) * 2020-12-18 2022-08-10 Deere & Company Transmission et véhicule utilitaire agricole ou industriel
US11618317B2 (en) 2020-12-18 2023-04-04 Deere & Company Transmission and agricultural or commercial vehicle having a transmission

Also Published As

Publication number Publication date
GB201223538D0 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
EP2934936B1 (fr) Transmission de véhicule agricole
EP3085992B1 (fr) Appareil de transmission
US7617892B2 (en) Utility vehicle
US11850928B2 (en) Electric drive axle for a vehicle
KR101383135B1 (ko) 트랜스미션
US10086696B2 (en) Agricultural working vehicle transmission combination
CN103118892B (zh) 分动器
EP3090930B1 (fr) Combinaison d'une roue d'entraînement et d'une boîte de vitesses pour un système de rail continu
US9919737B2 (en) Steerable crawler track
US6902026B2 (en) Wheel type traveling and operating vehicle
US6821225B2 (en) Transmission apparatus for a working vehicle
WO2014096450A1 (fr) Transmission de véhicule agricole
WO2014096451A1 (fr) Transmission de véhicule
US11458837B2 (en) Drive train for an agricultural machine
WO2014096447A1 (fr) Transmission de véhicule agricole
US10759397B2 (en) Vehicle drive train braking
JP6904323B2 (ja) 作業車両
EP4238802A1 (fr) Système de distribution de couple amélioré entre essieux de véhicule lourd
US20230103790A1 (en) Electric vehicle transmission
CN117429242A (zh) 驱动桥总成及具有其的电动拖拉机
GB2475082A (en) PTO gearbox with an aperture that receives a driveshaft in a different configuration
WO2023275895A1 (fr) Ensemble hydraulique d'entraînement de roues pour engin agricole
JP2018184171A (ja) トラクタに備えられる伝動装置
CN115593213A (zh) 用于车辆的电动力总成
JPH0478500B2 (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13814972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13814972

Country of ref document: EP

Kind code of ref document: A1