WO2014096430A1 - Embase pour cassette radiologique numerique portable - Google Patents

Embase pour cassette radiologique numerique portable Download PDF

Info

Publication number
WO2014096430A1
WO2014096430A1 PCT/EP2013/077858 EP2013077858W WO2014096430A1 WO 2014096430 A1 WO2014096430 A1 WO 2014096430A1 EP 2013077858 W EP2013077858 W EP 2013077858W WO 2014096430 A1 WO2014096430 A1 WO 2014096430A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
detector
electronic card
thermal conductivity
faces
Prior art date
Application number
PCT/EP2013/077858
Other languages
English (en)
Inventor
Pierre Rieuvernet
Original Assignee
Trixell
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trixell filed Critical Trixell
Priority to US14/653,799 priority Critical patent/US9980687B2/en
Priority to CN201380071037.7A priority patent/CN104936521B/zh
Priority to EP13815512.2A priority patent/EP2934319B1/fr
Priority to KR1020157019614A priority patent/KR102192964B1/ko
Priority to JP2015548666A priority patent/JP6415446B2/ja
Publication of WO2014096430A1 publication Critical patent/WO2014096430A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling

Definitions

  • the invention relates to a portable radiological cassette intended to equip a digital radiological system.
  • the case includes a digital ionizing radiation detector for providing an image function of the received radiation.
  • the radiological system further comprises a source of ionizing radiation, such as an X-ray tube, for generating X-radiation and a base station comprising an information processing system for synchronizing the X-ray tube and the detector and also making it possible to perform image processing as to present to the operator the corrected image of all the defects inherent to the detector and improved, for example by contour enhancement treatments.
  • An object whose image X is to be obtained is placed between the source and the detector.
  • Such a system can be used in many applications such as for example medical radiology and non-destructive testing.
  • the invention can also be implemented for other types of radiation to be detected including gamma radiation.
  • radiological systems were large and not very mobile. It was necessary to position the object in relation to the system to obtain the desired image. With the appearance of solid state detectors such as for example described in the French patent application FR 2 605 166, the detector became less bulky and it was possible to move the detector relative to a fixed remaining object.
  • digital detectors in the form of mobile cassettes have been made that can be placed in the immediate vicinity of a patient whose image is to be imaged, when the state of health of the patient prevents his movement towards a patient. room reserved for radiology.
  • the mobile cassette essentially comprises a digital ionizing radiation detector in the form of a flat panel and an electronic card ensuring in particular the control of the digital detector.
  • the detector and the card are arranged in a housing providing their mechanical protection.
  • the cassette used in a portable system undergoes many more manipulations than in a fixed radiological system and it is necessary to strengthen its mechanical protection, especially vis-à-vis shocks that the cassette may be caused to suffer during its movements.
  • the digital detector is often made from photosensitive components arranged in a matrix on a glass slab forming the most fragile element of the cassette. In addition to the shocks that could damage it, this slab is also sensitive to deformation including torsion.
  • the implementation of a radiological cassette presents particular constraints in thermal matter. It was realized that the operation of the detector was impaired by the ambient temperature. It is possible to correct this alteration, for example by measuring the ambient temperature and globally correcting the image from the detector.
  • the presence of the electronic card in the casing of the casette in the immediate vicinity of the detector can cause local artifacts in the radiological image.
  • the electronic card does not cover the entire surface of the detector. The area of the detector facing the electronic card is therefore more affected thermally than the rest of the detector. Then, locally in the electronic map, temperature differences may exist due to the presence of various components whose heat dissipation can vary in large proportions. It becomes difficult to correct the effects of these temperature differences.
  • the invention aims to improve the mechanical and thermal strength of existing cassettes while limiting their increase in weight.
  • the subject of the invention is a portable radiological cassette comprising a digital ionizing radiation detector in the form of a flat panel, an electronic card managing the digital detector and a housing providing mechanical protection for the detector and the detector.
  • electronic card characterized in that it comprises in in addition to a flat monoblock base supporting the detector on a first of its main faces and the electronic card on a second of its main faces, the two main faces being opposite, and in that the base is formed of a heterogeneous stack made of so that the surface thermal conductivity of the base is greater than the transverse thermal conductivity of the base, in that the base comprises two outer skins forming the two main faces and an inner material disposed between the two outer skins, the inner material and the two outer skins having a surface substantially equal to that of the detector, and in that the thermal conductivity of the outer skins is greater than the thermal conductivity of the inner material.
  • Thermal conductivity is understood to mean the thermal conductivity of the base in directions carried by the two main faces of the base and by transverse thermal conductivity means the thermal conductivity of the base in a direction perpendicular to the directions borne by the two. main faces of the base.
  • FIG. 1 represents an example of a radiological system embodying the invention
  • FIG. 2 is an exploded view of a first variant of a portable cassette
  • Figure 3 shows an exploded view a second variant of portable cassette
  • Figure 4 shows in more detail elements disposed within a casing of the cassette
  • Figures 5 and 6 show a variant of a base forming the support of the elements arranged inside the housing.
  • FIG. 1 shows a radiological system for medical use.
  • the system comprises a fixed base station 1 a X-ray generator 2 and a radiation detector in the form of a portable cassette 3.
  • the cassette makes it possible to obtain an image of a patient 4 crossed by the X-radiation coming from the generator 2.
  • the cassette 3 comprises a digital detector made in the form of a flat panel 5 connected to a control module 6 making it possible to read the image obtained by the flat panel 5 and to digitize it through an analog digital converter.
  • the mobile cassette 3 also comprises a data management module 7, a radio module 8, a battery 9 and a battery management module 10.
  • the base station comprises a radio module 14, a data management module 15 and a power supply 16.
  • Communication means 11 between the cassette 3 and the base station 1 makes it possible to transfer data such as the image between the cassette 3 and the base station 1.
  • the data can flow either from the base station 1 to the cassette 3 or from the cassette 3 to the base station 1.
  • the communication means may comprise a removable wire link 12 and / or a wireless link 13.
  • the two links 12 and 13 are both capable of transferring the data.
  • the two radio modules 8 and 14 make it possible to exchange the data between the base station 1 and the cassette 3.
  • the data management module 7 of the cassette 3 makes it possible to route the data received or coming from the control module 6 to one of the links 12 or 13.
  • the data management module 15 makes it possible to route the data received or coming from one of the links 12 or 13.
  • the power supply 16 provides the electrical energy necessary for the operation of the different modules of the base station 1 as well as the cassette 3.
  • the system comprises means for charging the battery 9. More specifically, the battery management module 10 measures the charge of the battery 9 and causes its recharge when necessary.
  • Figure 2 shows a first variant of portable cassette in exploded view.
  • the cassette here bears the mark 17 and comprises a housing 20 having a substantially parallelepipedal shape in which the digital detector 5 is arranged, and an electronic card 18 providing the management of the detector 5.
  • the electronic card 18 comprises for example the control module 6, the data management module 7, the radio module 8, and the battery management module 10. These four modules are given by way of example. They are not mandatory for the implementation of the invention.
  • the battery 9 is disposed outside the housing 20 to facilitate a possible replacement.
  • the housing 20 has six main faces 21 to 26 delimiting the parallelepiped shape.
  • the six faces are parallel two by two.
  • the detector 5, in the form of a flat panel, has a radiation detection surface close to that of the two largest faces 21 and 22.
  • the parallel faces 25 and 26 are the two smaller faces of the housing 20.
  • the housing 20 comprises for example an envelope 27 made in a one-piece mechanical part forming the five faces 21 to 25 of substantially parallelepipedal shape, including the two largest faces 21 and 22.
  • the housing 20 further comprises a plug 28 for closing the face 26 of the substantially parallelepiped shape.
  • the plug 28 can close the face 23 or the face 24. It is however advantageous to place the plug 28 on one of the two smaller faces, in the example shown: the face 26 in order to limit the contact surface as much as possible between the two elements 27 and 28 forming the casing 20 in order to facilitate the sealing of the casing 20 and to increase the mechanical rigidity of the casing 20.
  • the fact of making a one-piece piece on five sides makes it possible to strongly stiffen the case. More particularly, the three smaller faces 23, 24 and 25 encircle the housing 20 in two perpendicular directions, which increases the rigidity of the housing 20 in torsion around axes parallel to the two largest faces 21 and 22.
  • the various elements disposed inside the housing 20 are integral with each other and are slid into the casing 27 by the face 26 in a translation movement perpendicular to this face. These various elements are for example mounted on a flat base 29 having a surface close to that of the two largest faces 21 and 22.
  • the detector 5 is fixed on the base 29 on one side thereof and the electronic card 18 is fixed on the base 29 on the other side thereof.
  • the battery 10 is housed inside the parallelepipedal volume formed by the housing 20.
  • the battery 10 is housed by the outside of the casette 17 in a recess 30 made in the face 21.
  • the face 22, opposite the face 21, is intended to be traversed by the ionizing radiation to be detected.
  • the digital detector 5 is disposed inside the housing 20 on the side of the face 22.
  • the ISO 4090 standard has defined the dimensions of cassettes enclosing silver films.
  • the thickness of the cassettes, defined by the standard, is between 13 and 16 mm.
  • the cassette 17 meets, in terms of its dimensions, the requirements of ISO 4090. More particularly, the overall thickness of the cassette 3 measured between the two largest faces 21 and 22 is less than 16 mm. This makes it possible to use the storage means of film cassettes for a digital cassette 1 7.
  • FIG. 3 is an exploded view of a second variant of a portable cassette, bearing reference numeral 31 here.
  • the housing differs, it is here the reference 32. It is formed of two half-shells 33 and 34 each forming one of the largest faces of the casing 31. The base 29 and the various elements that are attached to it are arranged between the two half-shells 33 and 34 which are then fixed to one another, for example by screwing, at the periphery of the two large faces.
  • the battery 10 is, as in the first variant, housed in a recess 30 made in the half-shell 34.
  • FIG. 4 shows in more detail the elements disposed inside the housing 20 or the housing 32, namely the base 29 on which the detector 5 and the electronic card 18 are fixed.
  • the base 29 has the form of a generally flat plate and comprises two main faces 35 and 36 opposite to each other.
  • the detector 5 is fixed on the face 35 and the electronic card 18 on the face 36.
  • the assembly formed by the base 29, the electronic card 18 and the detector 5 is self-supporting. This assembly can be manipulated before it is assembled in one of the housings 20 or 32.
  • a parallelepipedal radiological cassette as represented in the two variants of FIGS. 2 and 3, it is sought to make the best use of the surface of the largest faces of the parallelepiped for detection of the X-ray radiation.
  • the surface of the detector 5 is practically equal to that of the two large faces 21 and 22.
  • the base 29 provides the mechanical support function of the detector 5 which occupies almost the entire surface of the base 29 .
  • the base is monobloc. It constitutes an autonomous mechanical part.
  • the base 29 is formed of a stack comprising at least two skins 37 and 38 external forming the two main faces of the base 29, respectively 35 and 36, and an inner material 39, for example formed of a cellular material arranged between the two skins 37 and 38.
  • a cellular material because of its structure, has a high thermal resistance.
  • the skins 37 and 38 are advantageously made of a solid material.
  • the density of the skins is advantageously greater than that of the internal material.
  • the mechanical strength of the two outer skins 37 and 38 is advantageously greater than the mechanical strength of the foam 39.
  • the foam 39 and the two skins 37 and 38 are generally flat and have a surface substantially equal to that of the detector 5.
  • the overall thickness of the cassette must not exceed 16 mm. In this thickness, one must have the housing, the detector 5, the base 29 and the electronic card 18 equipped with its components. During the design of the cassette, it is constrained by the active elements of the cassette, the detector 5 and the electronic card 18, which leaves little thickness available for the mechanical parts and in particular for the base 29. Tests internal made by the applicant have shown that the thickness of the base 29 should not exceed 2 mm. It is possible to admit a thickness up to 3 mm but this causes greater stresses on the various elements entering the stack of 16 mm.
  • the improvement of the mechanical strength of the base is at the expense of its resistance to thermal stress of a radiological cassette. More specifically, materials having a good mechanical strength often have good thermal conductivity. The presence of the electronic card 18 facing a portion of the detector 5 then locally disturbs the operation of the detector 5.
  • the embodiment of the base 29 in a homogeneous metallic material such as aluminum or titanium is well indicated for good mechanical strength.
  • these metals transmit the heat particularly well and generate artifacts difficult to correct.
  • the thermal situation can be improved by making the base 29 of composite material, for example fibers embedded in resin. The small thickness of the base 29 does not completely improve the thermal situation.
  • the presence of the foam 39 in the stack of the base 29 allows a thermal break in a transverse direction of the base.
  • the skins 37 and 38 have a thermal conductivity greater than the thermal conductivity of the foam 39.
  • the card Electronic 18 diffuses the heat emitted during its operation to the skin 38 on which it is attached. Due to the difference in surface and transverse thermal conductivity of the base 29, the heat emitted by the electronic card 18 tends to diffuse more easily by conduction over the entire surface of the skin 38 than transversely towards the other skin 37. thus obtaining a more homogeneous temperature of the skin 37 in contact with the detector 5, than in the absence of thermal break.
  • the two skins 37 and 38 are made of the same material to simplify the embodiment of the base 29.
  • the two skins 37 and 38 may be made of a metal alloy, such as by example an alloy based on iron, copper or aluminum.
  • a metal alloy such as by example an alloy based on iron, copper or aluminum.
  • certain iron alloys such as stainless steels with austenitic structure have relatively low thermal conductivities, of the order of 15 Wm -1 .K -1 or even 10 Wm -1 .K -1 , it is possible to use these alloys for their mechanical strength property.
  • the copper has a thermal conductivity of 390 Wm -1 .K -1 and that the aluminum of 237 W. m- 1 K -1 .
  • the skins 37 and 38 in a composite material comprising fibers and resin embedding the fibers.
  • Many fibers can be used, such as, for example, glass or carbon fibers.
  • Carbon fibers have the advantage of being electrically conductive. They can thus perform an electromagnetic shielding function between the electronic card 18 and the detector 5.
  • To improve the mechanical strength it is also possible to drown aramid fibers. It is of course possible to mix different types of fibers according to the desired result.
  • the skin 38 may comprise fibers whose thermal conductivity is greater than greater than 30 Wm -1 .K -1 .
  • fibers whose thermal conductivity is greater than 30 Wm -1 .K -1 .
  • pitch-based carbon fibers known in the English literature as "pitch based carbon fiber” whose thermal conductivity exceeds 500 Wm -1 .K “1 .
  • the skin 37 can of course include the same type of fibers.
  • the carbon fibers may be placed in the mold in the form of pre-impregnated fibers in several overlapping layers. It is also possible to dispose the dry fibers in the mold and then to inject resin according to a technology known under the name resin transfer molding or "Resin Transfer Modling" in the Anglo-Saxon literature. This manufacturing method also makes it possible to improve the surface condition of faces 35 and 36. The surface state makes it easier to set up the electronic card 18 and the detector 5, in particular by guaranteeing a constant thickness of the film. base 29.
  • unidirectional fibers Alternatively to fibers organized in fabrics or mat, one can also use unidirectional fibers. In this case, in order to ensure good mechanical strength, the unidirectional fibers are arranged in several crossed layers. A particular provision of unidirectional fibers has an advantage in terms of thermal conductivity.
  • Figure 5 allows to better specify this advantage. More specifically, it is common that the electronic card 18 covers a first portion 40 only of the base 29. A second portion 41 of the base 29 is not covered by the electronic card 18.
  • the electronic card 18 covers a first portion 40 only of the base 29. A second portion 41 of the base 29 is not covered by the electronic card 18.
  • This orientation of the fibers is performed so as to conduct heat generated by the electronic card during its operation, preferably from part 40 to part 41. This allows a better homogeneity of the skin temperature 38 over its entire surface and more generally over the entire surface of the base 29.
  • An example of a foam that can be used is a poly methyl methacrylate foam, known by its Anglo-Saxon abbreviation PMMA for Poly Methyl Methacrylate. This type of foam has a thermal conductivity of the order of 0.04 Wm -1 .K -1 .
  • the materials of the skins and the foam so that the ratio between the surface thermal conductivity of the base and the transverse thermal conductivity of the base is greater than 100.
  • it may comprise at the periphery of its main faces 35 and 36 a mechanical reinforcement 43 connecting the skins 37 and 38.
  • the reinforcement 43 is advantageously made in the material used for the skins 37 and 38.
  • the reinforcement 43 can completely follow the perimeter of the faces 35 and 36.
  • the reinforcement 43 may alternatively follow only a portion of the perimeter of the faces 35 and 36 as shown in FIG. 5.
  • the reinforcement 43 may be used to improve the homogeneity of the temperature of the two skins 37 and 38.
  • the reinforcement 43 advantageously has a thermal conductivity greater than the transverse thermal conductivity of the base 29 defined in the absence of the reinforcement 43.
  • the reinforcement 43 thus produces a peripheral thermal bridge between the two faces of the base 29.
  • the main heat sources of the cassette are electronic components located on the electronic board 18. When these dissipating components are placed far away from the periphery of the electronic card 18, the heat they emit dissipates on the skin 38 before reaching the reinforcement 43 whose temperature is therefore substantially homogeneous.
  • the thermal bridge formed by the reinforcement 43 then makes it possible to maintain a good homogeneity of the temperature of the skin 37 on which the digital detector 5 is fixed.
  • the skins 37 and 38 are made of composite material, because of the presence of fibers arranged in the plane of the skin, their surface thermal conductivity and better than their transverse thermal conductivity. It is then difficult to make the reinforcement 43 using such a material to fulfill the function of thermal bridge between the two skins 37 and 38. To do this, it would be necessary to integrate in the reinforcement 43 transverse fibers. Alternatively, to simplify the realization of the reinforcement 43, it can be realized in a homogeneous material such as for example an aluminum alloy which provides both the mechanical reinforcement function and thermal bridge between the two skins 37 and 38.
  • the base 29, the detector 5 and the electronic card 18 are arranged in the casing 27 by the face 26. More specifically, the assembly formed by these three assembled elements are slid into the casing 27 by the face 26. The cap 28 then closes the face 26.
  • the edges of the base 29 provide guidance of the assembly during insertion into the envelope 27. To facilitate this insertion , one can report on the base 29 two sections 45 and 46 providing the slide function which facilitate the setting in position of the base in the housing 20.
  • These profiles appear in Figure 6.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

L'invention concerne une cassette radiologique portable destinée à équiper un système radiologique numérique. La cassette comprend un détecteur numérique de rayonnement ionisant (5) sous forme d'un panneau plat permettant de fournir une image fonction du rayonnement reçu, une carte électronique (18) assurant la gestion du détecteur numérique (5) et un boîtier assurant la protection mécanique du détecteur (5) et de la carte électronique (5). Selon l'invention, la cassette comprend en outre une embase (29) plane supportant le détecteur (5) sur une première de ses faces principales (35) et la carte électronique (18) sur une seconde de ses faces principales (36), les deux faces principales (35, 36) étant opposées. L'embase (29) est formée d'un empilement hétérogène réalisé de façon à ce que la conductivité thermique surfacique de l'embase (29) soit supérieure à la conductivité thermique transversale de l'embase (29).

Description

Embase pour cassette radiologique numérique portable
L'invention concerne une cassette radiologique portable destinée à équiper un système radiologique numérique. La casette comprend un détecteur numérique de rayonnement ionisant permettant de fournir une image fonction du rayonnement reçu.
Le système radiologique comprend en outre une source de rayonnement ionisant, comme par exemple un tube à rayons X, permettant de générer un rayonnement X et une station de base comprenant un système de traitement de l'information permettant de synchroniser le tube à rayon X et le détecteur et permettant aussi de réaliser des traitements d'images comme de présenter à l'opérateur l'image corrigée de tous les défauts inhérents au détecteur et améliorée, par exemple par des traitements de rehaussement de contour. Un objet dont on veut obtenir l'image X est placé entre la source et le détecteur. Un tel système peut être utilisé dans de nombreuses applications telles que par exemple la radiologie médicale et le contrôle non destructif. L'invention peut également être mise en œuvre pour d'autres types de rayonnements à détecter notamment des rayonnements gamma.
Par le passé, les systèmes radiologiques étaient volumineux et peu mobiles. Il était nécessaire de positionner l'objet par rapport au système pour obtenir l'image désirée. Avec l'apparition de détecteurs à l'état solide tels que par exemple décrit dans la demande de brevet français FR 2 605 166, le détecteur est devenu moins volumineux et il a été possible de déplacer le détecteur par rapport à un objet restant fixe. Pour la radiologie médicale, on a réalisé des détecteurs numériques sous forme de cassettes mobiles qu'il devient possible de placer à proximité immédiate d'un patient dont on veut réaliser une image, lorsque l'état de santé du patient empêche son déplacement vers une salle réservée à la radiologie.
La cassette mobile comprend essentiellement un détecteur numérique de rayonnement ionisant ayant la forme d'un panneau plat et une carte électronique assurant notamment le pilotage du détecteur numérique. Le détecteur et la carte sont disposés dans un boîtier assurant leur protection mécanique. La cassette utilisée dans un système portable subit beaucoup plus de manipulations que dans un système radiologique fixe et il est nécessaire de renforcer sa protection mécanique, notamment vis-à-vis de chocs que la cassette peut être amenée à subir lors de ses déplacements. Plus précisément, le détecteur numérique est souvent réalisé à partir de composant photosensibles disposés en matrice sur une dalle de verre formant l'élément le plus fragile de la cassette. Outre les chocs qui pourraient l'endommager, cette dalle est également sensible aux déformations notamment en torsion.
Les contraintes mécaniques auxquelles doivent résister la cassette et notamment le détecteur numérique obligent à renforcer la structure du boîtier, ce qui se fait obligatoirement au détriment du poids de la cassette.
De plus, la mise en œuvre d'une cassette radiologique présente des contraintes particulières en matière thermique. On s'est rendu compte que le fonctionnement du détecteur était altéré par la température ambiante. Il est possible de corriger cette altération, par exemple en mesurant la température ambiante et en corrigeant globalement l'image issue du détecteur. Or la présence de la carte électronique dans le boîtier de la casette à proximité immédiate du détecteur peut entraîner des artéfacts locaux dans l'image radiologique. Tout d'abord la carte électronique ne recouvre pas toute la surface du détecteur. La zone du détecteur faisant face à la carte électronique est donc plus affectée thermiquement que le reste du détecteur. Ensuite, localement dans la carte électronique, des écarts de température peuvent exister du fait de la présence de composants divers dont la dissipation thermique peut varier dans de grandes proportions. Il devient alors difficile de corriger les effets de ces écarts de température.
L'invention vise à améliorer la tenue mécanique et thermique des cassettes existantes tout en limitant leur augmentation de poids.
A cet effet, l'invention a pour objet une cassette radiologique portable comprenant un détecteur numérique de rayonnement ionisant sous forme d'un panneau plat, une carte électronique assurant la gestion du détecteur numérique et un boîtier assurant la protection mécanique du détecteur et de la carte électronique, caractérisée en ce qu'elle comprend en outre une embase monobloc plane supportant le détecteur sur une première de ses faces principales et la carte électronique sur une seconde de ses faces principales, les deux faces principales étant opposées, et en ce que l'embase est formée d'un empilement hétérogène réalisé de façon à ce que la conductivité thermique surfacique de l'embase soit supérieure à la conductivité thermique transversale de l'embase, en ce que l'embase comprend deux peaux externes formant les deux faces principales et un matériau interne disposé entre les deux peaux externes, le matériau interne et les deux peaux externes ayant une surface sensiblement égale à celle du détecteur, et en ce que la conductivité thermique des peaux externes est supérieure à la conductivité thermique du matériau interne..
On entend par conductivité thermique surfacique la conductivité thermique de l'embase dans des directions portées par les deux faces principales de l'embase et on entend par conductivité thermique transversale la conductivité thermique de l'embase dans une direction perpendiculaire aux directions portées par les deux faces principales de l'embase.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel :
la figure 1 représente un exemple de système radiologique mettant en œuvre l'invention ;
la figure 2 représente en vue éclatée une première variante de cassette portable ;
la figure 3 représente en vue éclatée une seconde variante de cassette portable ;
la figure 4 représente plus en détail des éléments disposés à l'intérieur d'un boîtier de la cassette ;
les figures 5 et 6 représentent une variante d'une embase formant le support des éléments disposés à l'intérieur du boîtier.
Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.
La figure 1 représente un système radiologique destiné à une utilisation médicale. Le système comporte une station de base fixe 1 un générateur de rayonnement X 2 et un détecteur de rayonnement sous forme d'une cassette portable 3. La cassette permet d'obtenir une image d'un patient 4 traversé par le rayonnement X issu du générateur 2. La cassette 3 comporte un détecteur numérique réalisé sous forme d'un panneau plat 5 relié à un module de pilotage 6 permettant de lire l'image obtenue par le panneau plat 5 et de la numériser au travers d'un convertisseur analogique numérique. La cassette mobile 3 comporte également un module de gestion de données 7, un module radio 8, une batterie 9 et un module de gestion de la batterie 10.
La station de base comporte un module radio 14, un module de gestion de données 15 et une alimentation 16.
Des moyens de communication 1 1 entre la cassette 3 et la station de base 1 permettent de transférer des données telles que l'image entre la cassette 3 et la station de base 1 . Les données peuvent circuler soit de la station de base 1 vers la cassette 3, soit de la cassette 3 vers la station de base 1 . Vers la cassette 3, il s'agit par exemple d'informations de commande du panneau plat 5 et vers la station de base 1 , les données comportent par exemple des images réalisées par le panneau plat 5.
Les moyens de communication peuvent comprendre une liaison filaire amovible 12 et/ou une liaison sans fil 13. Les deux liaisons 12 et 13 sont susceptibles toutes deux de transférer les données. Les deux modules radio 8 et 14 permettent d'échanger les données entre la station de base 1 et la cassette 3. Le module de gestion de données 7 de la cassette 3 permet d'aiguiller les données reçues ou en provenance du module de pilotage 6 vers l'une des liaisons 12 ou 13. De même, dans la station de base 1 , le module de gestion de données 15 permet d'aiguiller les données reçues ou en provenance d'une des liaisons 12 ou 13. L'alimentation 16 fournit l'énergie électrique nécessaire au fonctionnement des différents modules de la station de base 1 ainsi que de la cassette 3.
L'alimentation de la cassette 3 se fait par l'intermédiaire de la liaison filaire 12 ou de la batterie 9. Avantageusement, le système comporte des moyens pour recharger la batterie 9. Plus précisément, le module de gestion de la batterie 10 mesure la charge de la batterie 9 et provoque sa recharge en cas de besoin. La figure 2 représente une première variante de cassette portable en vue éclatée. La cassette porte ici le repère 17 et comprend un boîtier 20 ayant une forme essentiellement parallélépipédique dans lequel sont disposés le détecteur numérique 5, et une carte électronique 18 assurant la gestion du détecteur 5. Pour se référer à la figure 1 , la carte électronique 18 comprend par exemple le module de pilotage 6, le module de gestion de données 7, le module radio 8, et le module de gestion de la batterie 10. Ces quatre modules ne sont donnés qu'à titre d'exemple. Ils ne sont pas obligatoires pour la mise en œuvre de l'invention. La batterie 9 est disposée à l'extérieur du boîtier 20 afin de faciliter un éventuel remplacement.
Le boîtier 20 possède six faces principales 21 à 26 délimitant la forme parallélépipédique. Les six faces sont parallèles deux à deux. Le détecteur 5, sous forme d'un panneau plat, possède une surface de détection de rayonnement proche de celle des deux plus grandes faces 21 et 22. Les faces parallèles 25 et 26 sont les deux plus petites faces du boîtier 20.
Le boîtier 20 comprend par exemple une enveloppe 27 réalisée dans une pièce mécanique monobloc formant les cinq faces 21 à 25 de la forme essentiellement parallélépipédique dont les deux plus grandes faces 21 et 22. Le boîtier 20 comprend en outre un bouchon 28 permettant d'obturer la face 26 de la forme essentiellement parallélépipédique. Alternativement, le bouchon 28 peut obturer la face 23 ou la face 24. Il est cependant avantageux de placer le bouchon 28 sur une des deux plus petites faces, dans l'exemple représenté : la face 26 afin de limiter au maximum la surface de contact entre les deux éléments 27 et 28 formant le boîtier 20 afin de faciliter la réalisation de l'étanchéité du boîtier 20 et d'augmenter la rigidité mécanique du boîtier 20.
Le fait de réaliser une pièce monobloc sur cinq faces permet de rigidifier fortement le boîtier. Plus particulièrement, les trois plus petites faces 23, 24 et 25 ceinturent le boîtier 20 selon deux directions perpendiculaires, ce qui augmente la rigidité du boîtier 20 en torsion autour d'axes parallèles aux deux plus grandes faces 21 et 22.
Les différents éléments disposés à l'intérieur du boîtier 20 sont solidaires les uns des autres et sont glissés dans l'enveloppe 27 par la face 26 dans un mouvement de translation perpendiculairement à cette face. Ces différents éléments sont par exemple montés sur une embase 29 plate ayant une surface proche de celle des deux plus grandes faces 21 et 22. Le détecteur 5 est fixé sur l'embase 29 d'un coté de celle-ci et la carte électronique 18 est fixée sur l'embase 29 de l'autre coté de celle-ci.
La batterie 10 est logée à l'intérieur du volume parallélépipédique formée par le boîtier 20. La batterie 10 est logée par l'extérieur de la casette 17 dans un embrèvement 30 réalisée dans la face 21 . La face 22, opposée à la face 21 , est destinée à être traversée par le rayonnement ionisant à détecter. Le détecteur numérique 5 est disposé à l'intérieur du boîtier 20 du coté de la face 22.
Par le passé, la radiologie médicale utilisait des films argentiques qui étaient manipulés dans des cassettes. La norme ISO 4090 a défini les dimensions des cassettes enveloppant les films argentiques. L'épaisseur des cassettes, définie par la norme, est comprise entre 13 et 16 mm. Avantageusement, La cassette 17 répond, quant à ses dimensions, aux exigences de la norme ISO 4090. Plus particulièrement, l'épaisseur hors tout de la cassette 3 mesurée entre les deux plus grandes faces 21 et 22 est inférieure à 16 mm. Ceci permet d'utiliser les moyens de rangements de cassettes argentiques pour une cassette numérique 1 7.
La figure 3 représente en vue éclatée une seconde variante de cassette portable, portant ici le repère 31 . On retrouve, assemblé de la même façon, l'embase 29, le détecteur 5 et la carte électronique 18. On retrouve également la batterie 10. A la différence de la figure 2, le boîtier diffère, il porte ici le repère 32. Il est formé de deux demi coques 33 et 34 formant chacune une des plus grandes faces du boîtier 31 . L'embase 29 et les différents éléments qui y sont fixés sont disposés entre les deux demi coques 33 et 34 qui sont ensuite fixées l'une à l'autre, par exemple par vissage, au niveau de la périphérie des deux grandes faces. La batterie 10 est, comme dans la première variante, logée dans un embrèvement 30 réalisé dans la demi-coque 34.
La mise en œuvre d'une pièce monobloc pour réaliser l'enveloppe 27, comme représenté sur la figure 2 permet d'augmenter sa rigidité mécanique. En effet, dans la variante de réalisation de la figure 3, la présence d'un plan d'assemblage de deux pièces mécaniques distinctes 33 et 34 au niveau d'une des grandes faces 21 ou 22 réduit la rigidité en torsion et en flexion du boîtier. Dans la variante de la figure 3, le plan d'assemblage est reporté sur une des petites faces du boîtier, à savoir la face 26 dans l'exemple représenté.
La figure 4 représente plus en détail les éléments disposés à l'intérieur du boîtier 20 ou du boîtier 32, à savoir l'embase 29 sur laquelle sont fixés le détecteur 5 et la carte électronique 18. L'embase 29 a la forme d'une plaque globalement plane et comprend deux faces principales 35 et 36 opposées l'une à l'autre. Le détecteur 5 est fixé sur la face 35 et la carte électronique 18 sur la face 36. L'ensemble formé par l'embase 29, la carte électronique 18 et le détecteur 5 est autoporté. On peut manipuler cet ensemble avant son assemblage dans l'un des boîtiers 20 ou 32. Dans une cassette radiologique parallélépipédique comme représenté dans les deux variantes des figures 2 et 3, on cherche à utiliser au mieux la surface des plus grandes faces du parallélépipède pour la détection du rayonnement X. La surface du détecteur 5 est pratiquement égale à celle des deux grandes faces 21 et 22. L'embase 29 assure la fonction de support mécanique du détecteur 5 qui occupe la quasi totalité de la surface de l'embase 29.
L'embase est monobloc. Elle constitue une pièce mécanique autonome. L'embase 29 est formée d'un empilement comprenant au moins deux peaux 37 et 38 externes formant les deux faces principales de l'embase 29, respectivement 35 et 36, et un matériau interne 39, par exemple formé d'un matériau alvéolaire disposé entre les deux peaux 37 et 38. Un matériau alvéolaire, du fait de sa structure, possède une résistance thermique élevée. Comme matériau alvéolaire, il est possible de mettre en œuvre une mousse, un bois léger comme du balsa ou une structure en nid d'abeille. En revanche, les peaux 37 et 38 sont avantageusement réalisées dans un matériau plein. La densité des peaux est avantageusement plus forte que celle su matériau interne. La résistance mécanique des deux peaux externes 37 et 38 est avantageusement supérieure à la résistance mécanique de la mousse 39. La mousse 39 et les deux peaux 37 et 38 sont globalement planes et ont une surface sensiblement égale à celle du détecteur 5.
Il est possible de concevoir une embase à partir d'empilements comprenant un plus grand nombre de constituants pour former par exemple une alternance de couches de peau et de mousse. Lorsqu'on cherche à réaliser une cassette rentrant dans les dimensions imposées par la norme ISO 4090, l'épaisseur hors tout de la cassette ne doit pas dépasser 16 mm. Dans cette épaisseur, on doit disposer le boîtier, le détecteur 5, l'embase 29 et la carte électronique 18 équipée de ses composants. Lors de la conception de la cassette, on est contraint par les éléments actifs de la cassette, le détecteur 5 et la carte électronique 18, ce qui laisse peu d'épaisseur disponible pour les pièces mécaniques et notamment pour l'embase 29. Des essais internes réalisés par la demanderesse ont montré que l'épaisseur de l'embase 29 ne devait pas dépasser 2 mm. On peut admettre une épaisseur jusqu'à 3 mm mais cela entraine des contraintes plus importantes sur les différents éléments entrant dans l'empilement de 16 mm. A ce jour aucun empilement mettant en œuvre une mousse montée en sandwich entre deux peaux n'a été mis en œuvre pour des épaisseurs si fines. Pour réaliser un support mécanique d'une telle épaisseur, l'idée largement répandue consiste à réaliser une embase dans un matériau homogène. On profite ainsi de la raideur du matériau retenu dans toute son épaisseur.
Néanmoins, l'amélioration de la résistance mécanique de l'embase se fait au détriment de sa tenue aux contraintes thermiques d'une cassette radiologique. Plus précisément, les matériaux ayant une bonne résistance mécanique ont le pus souvent une bonne conductivité thermique. La présence de la carte électronique 18 en regard d'une partie du détecteur 5 perturbe alors localement le fonctionnement du détecteur 5.
Plus précisément, la réalisation de l'embase 29 dans un matériau métallique homogène comme par exemple l'aluminium ou le titane est bien indiquée pour une bonne résistance mécanique. En revanche ces métaux transmettent particulièrement bien la chaleur et génèrent des artéfacts difficiles à corriger. On peut améliorer la situation thermique en réalisant l'embase 29 en matériau composite, comme par exemple des fibres noyées dans de la résine. La faible épaisseur de l'embase 29 ne permet pas d'améliorer complètement la situation thermique.
La présence de la mousse 39 dans l'empilement de l'embase 29 permet de réaliser une rupture de pont thermique dans une direction transversale de l'embase. Les peaux 37 et 38 possèdent une conductivité thermique supérieure à la conductivité thermique de la mousse 39. La carte électronique 18 diffuse la chaleur émise lors de son fonctionnement vers la peau 38 sur laquelle elle est fixée. Du fait de la différence de conductivité thermique surfacique et transversale de l'embase 29, la chaleur émise par la carte électronique 18 tend à diffuser plus facilement par conduction sur toute la surface de la peau 38 que transversalement vers l'autre peau 37. On obtient ainsi une température plus homogène de la peau 37 en contact avec le détecteur 5, qu'en l'absence de rupture de pont thermique.
Il est bien entendu possible de réaliser d'autres empilements hétérogènes pour réaliser l'embase 29, notamment des empilements comprenant plus de trois couches distinctes.
Pour revenir à l'empilement décrit, avantageusement, les deux peaux 37 et 38 sont réalisées dans un même matériau afin de simplifier la réalisation de l'embase 29. Les deux peaux 37 et 38 peuvent être réalisées dans un alliage métallique, tel que par exemple un alliage à base de fer, de cuivre ou d'aluminium. Bien que certains alliages de fer tel que des aciers inoxydables à structure austénitique ait des conductivités thermiques relativement faibles, de l'ordre de 15 W.m"1.K"1 voire de 10 W.m"1.K"1, il est possible d'utiliser ces alliages pour leur propriété de résistance mécanique. On rappelle que le cuivre a une conductivité thermique de 390 W.m"1.K"1 et que l'aluminium de 237 W. m"1. K"1.
Il est également possible de former les peaux 37 et 38 dans un matériau composite comprenant des fibres et de la résine noyant les fibres. On peut mettre en œuvre de nombreuses fibres telles que par exemple des fibres de verre ou de carbone. Les fibres de carbone présentent l'avantage d'être conductrices de l'électricité. Elles peuvent ainsi remplir une fonction de blindage électromagnétique entre la carte électronique 18 et le détecteur 5. Pour améliorer la tenue mécanique, on peut également noyer des fibres d'aramide. Il est bien entendu possible de mélanger différent types de fibres en fonction du résultat recherché.
Afin d'améliorer l'homogénéité de la température de la peau 38, celle-ci peut comprendre des fibres dont la conductivité thermique est supérieure à supérieure à 30 W.m"1.K"1. A titre d'exemple, il existe des fibres de carbone à base de brai, connu dans la littérature anglo-saxonne sous le nom de : « pitch based carbon fiber » dont la conductivité thermique dépasse 500 W.m"1.K"1. La peau 37 peut bien entendu comprendre le même type de fibres.
Pour réaliser les peaux 37 et 38, on peut utiliser des fibres organisées en tissus ou en mat qui peuvent être secs ou pré imprégnés de résine.
Plus précisément, les fibres de carbone peuvent être disposées dans le moule sous forme de fibres pré imprégnées en plusieurs couches se recouvrant II est également possible de disposer des fibres sèches dans le moule puis d'injecter de la résine selon une technologie connue sous le nom de moulage par transfert de résine ou « Resin Transfer Modling » dans la littérature anglo-saxonne. Ce procédé de fabrication permet également d'améliorer l'état de surface de faces 35 et 36. L'état de surface permet de faciliter la mise en place de la carte électronique 18 et du détecteur 5, notamment en garantissant une épaisseur constante de l'embase 29.
Alternativement aux fibres organisées en tissus ou en mat, on peut aussi utiliser des fibres unidirectionnelles. Dans ce cas, afin d'assurer une bonne résistance mécanique, les fibres unidirectionnelles sont disposées en plusieurs couches croisées. Une disposition particulière des fibres unidirectionnelles présente un avantage au niveau de la conductivité thermique.
La figure 5 permet de mieux préciser cet avantage. Plus précisément, il est courant que la carte électronique 18 recouvre une première partie 40 seulement de l'embase 29. Une seconde partie 41 de l'embase 29 n'est pas recouverte par la carte électronique 18. Pour la couche de fibres unidirectionnelles disposée au plus près de la carte électronique 18, il est avantageux de diriger les fibres qu'elle contient de la première partie 40 vers la seconde partie 41 . Cette direction est représentée par des flèches 42 sur la figure 5. Cette orientation des fibres est réalisée de façon à conduire de la chaleur générée par la carte électronique18 lors de son fonctionnement préférentiellement de la partie 40 vers la partie 41 . Cela permet une meilleure homogénéité de la température de la peau 38 sur toute sa surface et plus généralement sur toute la surface de l'embase 29.
Pour obtenir une embase de 2 mm d'épaisseur, on peut par exemple mettre en œuvre une mousse 39 d'épaisseur 1 ,2 mm et deux peaux en matériaux composites à base de fibres de carbone de 0,4 mm d'épaisseur chacune. Un exemple de mousse pouvant être mise en œuvre est une mousse de Poly méthacrylate de méthyle, connue par son abréviation anglo- saxonne PMMA pour Poly Methyl MethAcrylate. Ce type de mousse a une conductivité thermique de l'ordre de 0,04 W.m"1.K"1.
De façon plus générale, il est avantageux de choisir les matériaux des peaux et de la mousse de telle sorte que le rapport entre la conductivité thermique surfacique de l'embase et la conductivité thermique transversale de l'embase est supérieur à 100. Afin d'améliorer la tenue mécanique de l'embase 29, celle-ci peut comprendre en périphérie de ses faces principales 35 et 36 un renfort mécanique 43 reliant les peaux 37 et 38. Le renfort 43 est avantageusement réalisé dans le matériau mis en œuvre pour les peaux 37 et 38. Le renfort 43 peut suivre en totalité le périmètre des faces 35 et 36. Le renfort 43 peut alternativement ne suivre qu'une partie du périmètre des faces 35 et 36 comme représenté sur la figure 5.
Le renfort 43 peut être utilisé pour améliorer l'homogénéité de la température des deux peaux 37 et 38. A cet effet, le renfort 43 possède avantageusement une conductivité thermique supérieure à la conductivité thermique transversale de l'embase 29 définie en l'absence du renfort 43. Le renfort 43 réalise ainsi un pont thermique périphérique entre les deux faces de l'embase 29. En effet les principales sources de chaleur de la cassette sont des composants électroniques situés sur la carte électronique 18. Lorsque ces composants dissipateurs sont placés loin de la périphérie de la carte électronique 18, la chaleur qu'ils émettent se dissipe sur la peau 38 avant d'atteindre le renfort 43 dont la température est de ce fait sensiblement homogène. Le pont thermique réalisé par le renfort 43 permet alors de conserver une bonne homogénéité de la température de la peau 37 sur laquelle est fixé le détecteur numérique 5.
Lorsque les peaux 37 et 38 sont réalisées en matériau composites, du fait de la présence de fibres disposées dans le plan de la peau, leur conductivité thermique surfacique et meilleure que leur conductivité thermique transversale. Il est alors difficile de réaliser le renfort 43 à l'aide d'un tel matériau pour remplir la fonction de pont thermique entre les deux peaux 37 et 38. Pour ce faire, il faudrait intégrer dans le renfort 43 des fibres transversales. Alternativement, pour simplifier la réalisation du renfort 43, on peut le réaliser dans un matériau homogène tel que par exemple un alliage d'aluminium qui assure à la fois la fonction de renfort mécanique et de pont thermique entre les deux peaux 37 et 38.
Dans le cas de la première variante représentée sur la figure 2, l'embase 29, le détecteur 5 et la carte électronique 18 sont disposés dans l'enveloppe 27 par la face 26. Plus précisément, l'ensemble formé par ces trois éléments assemblés sont glissés dans l'enveloppe 27 par la face 26. Le bouchon 28 obture ensuite la face 26. Des bords de l'embase 29 assurent le guidage de l'ensemble lors de l'insertion dans l'enveloppe 27. Pour faciliter cette insertion, on peut rapporter sur l'embase 29 deux profilés 45 et 46 assurant la fonction de glissière qui permettent de faciliter la mise en position de l'embase dans le boîtier 20. Ces profilés apparaissent sur la figure 6. Afin de limiter la chaîne de cote entre l'enveloppe 27 et l'embase 29, on peut fixer les profilés 45 et 46 sur l'embase 29, par exemple par collage puis usiner les deux profilés conjointement de façon à obtenir une bonne précision dans la distance séparant les deux profilés 45 et 46.

Claims

REVENDICATIONS
1 . Cassette radiologique portable comprenant un détecteur numérique de rayonnement ionisant (5) sous forme d'un panneau plat, une carte électronique (18) assurant la gestion du détecteur numérique (5) et un boîtier (20 ; 32) assurant la protection mécanique du détecteur (5) et de la carte électronique (5), caractérisée en ce qu'elle comprend en outre une embase (29) monobloc plane supportant le détecteur (5) sur une première de ses faces principales (35) et la carte électronique (18) sur une seconde de ses faces principales (36), les deux faces principales (35, 36) étant opposées, en ce que l'embase (29) est formée d'un empilement hétérogène réalisé de façon à ce que la conductivité thermique surfacique de l'embase (29) soit supérieure à la conductivité thermique transversale de l'embase (29), en ce que l'embase (29) comprend deux peaux externes (37, 38) formant les deux faces principales (35, 36) et un matériau interne (39) disposé entre les deux peaux externes (37, 38), le matériau interne (39) et les deux peaux externes (37, 38) ayant une surface sensiblement égale à celle du détecteur (5) et en ce que la conductivité thermique des peaux externes (37, 38) est supérieure à la conductivité thermique du matériau interne.
2. Cassette radiologique selon la revendication 1 , caractérisée en ce qu'un rapport entre la conductivité thermique surfacique de l'embase et la conductivité thermique transversale de l'embase est supérieur à 100.
3. Cassette radiologique selon l'une des revendications précédentes, caractérisée en ce que le boîtier (20 ; 32) a une forme essentiellement parallélépipédique dont les deux plus grandes faces (21 , 22) sont parallèles au détecteur (5), et en ce que l'épaisseur hors tout de la cassette (3) mesurée entre les deux plus grandes faces (21 , 22) est inférieure à 16 mm.
4. Cassette radiologique selon l'une des revendications précédentes, caractérisée en ce que le matériau interne est formé d'un matériau alvéolaire (39).
5. Cassette radiologique selon la revendication 4, caractérisée en ce que l'embase (29) comprend en périphérie de ses faces principales (35, 36) un renfort mécanique (43) reliant les peaux (37, 38).
6. Cassette radiologique selon la revendication 5, caractérisée en ce que le renfort (43) possède une conductivité thermique supérieure à la conductivité thermique transversale de l'embase (29) définie en l'absence du renfort (43).
7. Cassette radiologique selon l'une quelconque des revendications 3 à 6, caractérisée en ce que les deux peaux externes (37, 38) sont formées dans un matériau composite comprenant des fibres et de la résine noyant les fibres.
8. Cassette radiologique selon la revendication 7, caractérisée en ce que la peau (38) formant la seconde de face principale (36) sur laquelle est fixée la carte électronique (18) comprend des fibres dont la conductivité thermique est supérieure à 30 W.m"1.K"1.
9. Cassette radiologique selon l'une quelconque des revendications 7 ou 8, caractérisée en ce que la carte électronique (18) recouvre une première partie (40) de l'embase (29) et en ce que la peau (38) formant la seconde de face principale (36) sur laquelle est fixée la carte électronique (18) comprend plusieurs couches de fibres unidirectionnelles, et en ce que pour la couche disposée au plus près de la carte électronique (18), les fibres unidirectionnelles sont dirigées (42) de la première partie (40) vers une seconde partie (41 ) de l'embase (29) non recouverte par la carte électronique (18) de façon à conduire de la chaleur générée par la carte électronique (18) lors de son fonctionnement, préférentiellement de la première partie (40) vers la seconde partie (41 ) de l'embase (29).
10. Cassette radiologique selon l'une quelconque des revendications 3 à 9, caractérisée en ce que la conductivité thermique de la peau (38) formant la seconde de face principale (36) sur laquelle est fixée la carte électronique (18) est supérieure à 10 W.m"1.K"1.
1 1 . Cassette radiologique selon l'une des revendications précédentes, caractérisée en ce que le boîtier (20) a une forme essentiellement parallélépipédique dont les deux plus grandes faces (21 , 22) sont parallèles au détecteur (5), en ce qu'une première (22) des deux grandes faces est destinée à être traversée par le rayonnement ionisant, en ce que le boîtier (20), comprend une enveloppe (27) réalisée dans une pièce mécanique monobloc formant cinq premières faces (21 , 22, 23, 24, 25) de la forme essentiellement parallélépipédique dont les deux plus grandes faces (21 , 22), et un bouchon (28) permettant d'obturer une sixième face (26) de la forme essentiellement parallélépipédique et en ce qu'un ensemble formé par l'embase (29), le détecteur (5) et la carte électronique (18) sont insérés dans l'enveloppe (27) par la sixième face (26).
12. Cassette radiologique selon la revendication 1 1 , caractérisée en ce que l'embase (29) comprend deux profilés (45, 46) rapportés assurant la fonction de glissière lors de l'insertion de l'ensemble formé par l'embase (29), le détecteur (5) et la carte électronique (18) dans l'enveloppe (27).
13. Cassette radiologique selon l'une des revendications précédentes, caractérisée en ce que la résistance mécanique des deux peaux externes (37, 38) est supérieure à la résistance mécanique du matériau interne (39).
14. Cassette radiologique selon l'une des revendications précédentes, caractérisée en ce qu'une épaisseur de l'embase est inférieure à 3 mm.
PCT/EP2013/077858 2012-12-21 2013-12-20 Embase pour cassette radiologique numerique portable WO2014096430A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/653,799 US9980687B2 (en) 2012-12-21 2013-12-20 Seating for a portable digital radiological cassette
CN201380071037.7A CN104936521B (zh) 2012-12-21 2013-12-20 用于便携数字式放射盒的基座
EP13815512.2A EP2934319B1 (fr) 2012-12-21 2013-12-20 Embase pour cassette radiologique numerique portable
KR1020157019614A KR102192964B1 (ko) 2012-12-21 2013-12-20 휴대용 디지털 방사선 카세트용 시팅
JP2015548666A JP6415446B2 (ja) 2012-12-21 2013-12-20 携帯用デジタル放射線カセッテの台座

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262665A FR3000345B1 (fr) 2012-12-21 2012-12-21 Embase pour cassette radiologique numerique portable
FR1262665 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014096430A1 true WO2014096430A1 (fr) 2014-06-26

Family

ID=47882345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077858 WO2014096430A1 (fr) 2012-12-21 2013-12-20 Embase pour cassette radiologique numerique portable

Country Status (7)

Country Link
US (1) US9980687B2 (fr)
EP (1) EP2934319B1 (fr)
JP (1) JP6415446B2 (fr)
KR (1) KR102192964B1 (fr)
CN (1) CN104936521B (fr)
FR (1) FR3000345B1 (fr)
WO (1) WO2014096430A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220125658A1 (en) * 2019-03-14 2022-04-28 Infinitus Medical Technologies Llc Surgical Table Top Accessory with Sacral Offloading Attachment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397208B2 (ja) * 2014-04-09 2018-09-26 キヤノン株式会社 放射線画像撮影装置および放射線画像撮影システム
JP6259382B2 (ja) * 2014-09-22 2018-01-10 富士フイルム株式会社 電子カセッテ
US11022706B2 (en) * 2017-02-14 2021-06-01 Carestream Health, Inc. Radiographic detector
FR3119725A1 (fr) * 2021-02-08 2022-08-12 Trixell Cassette radiologique avec absorbeurs de choc

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010411A1 (fr) * 1993-10-14 1995-04-20 Hexcel Corporation Nid d'abeilles non metallique a haute conductibilite thermique et parois cellulaires stratifiees
US20070272873A1 (en) * 2006-05-26 2007-11-29 Eastman Kodak Company Compact and durable encasement for a digital radiography detector
US20110204239A1 (en) * 2010-02-24 2011-08-25 Fujifilm Corporation Radiation detection device
US20120168632A1 (en) * 2011-01-05 2012-07-05 Fujifilm Corporation Electronic cassette for radiation imaging

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605166B1 (fr) 1986-10-09 1989-02-10 Thomson Csf Dispositif photosensible a l'etat solide, procede de lecture et procede de fabrication
JP2002131437A (ja) * 2000-10-25 2002-05-09 Canon Inc X線画像撮影装置
FR2831671B1 (fr) * 2001-10-26 2004-05-28 Trixell Sas Detecteur de rayonnement x a l'etat solide
JP2007505478A (ja) * 2003-08-29 2007-03-08 サーマルワークス,インコーポレイティド 膨張制約されたダイスタック
US7495227B2 (en) * 2007-07-10 2009-02-24 General Electric Company Digital x-ray detectors
EP2333585B1 (fr) * 2008-10-03 2019-11-20 Canon Electron Tubes & Devices Co., Ltd. Dispositif de détection de rayonnement et appareil de photographie d un rayonnement
US8213573B2 (en) * 2010-04-20 2012-07-03 General Electric Company System and method for monitoring X-rays received by a portable imaging detector
JP5466082B2 (ja) * 2010-05-25 2014-04-09 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影システム、及び、放射線画像撮影装置における放射線変換パネルの固定方法
JP2011247826A (ja) * 2010-05-28 2011-12-08 Fujifilm Corp 放射線検出パネル及びその製造方法
JP2011252732A (ja) * 2010-05-31 2011-12-15 Fujifilm Corp 放射線検出パネル及びその製造方法
US8319506B2 (en) * 2010-06-28 2012-11-27 General Electric Company Detector state monitoring system and a portable detector including same
JP5743477B2 (ja) * 2010-09-29 2015-07-01 キヤノン株式会社 放射線撮影用装置
JP5771972B2 (ja) * 2010-12-15 2015-09-02 コニカミノルタ株式会社 カセッテ型放射線画像固体検出器
JP5634883B2 (ja) * 2011-01-05 2014-12-03 富士フイルム株式会社 放射線撮影用電子カセッテ
JP2013200188A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 放射線検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010411A1 (fr) * 1993-10-14 1995-04-20 Hexcel Corporation Nid d'abeilles non metallique a haute conductibilite thermique et parois cellulaires stratifiees
US20070272873A1 (en) * 2006-05-26 2007-11-29 Eastman Kodak Company Compact and durable encasement for a digital radiography detector
US20110204239A1 (en) * 2010-02-24 2011-08-25 Fujifilm Corporation Radiation detection device
US20120168632A1 (en) * 2011-01-05 2012-07-05 Fujifilm Corporation Electronic cassette for radiation imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220125658A1 (en) * 2019-03-14 2022-04-28 Infinitus Medical Technologies Llc Surgical Table Top Accessory with Sacral Offloading Attachment

Also Published As

Publication number Publication date
CN104936521A (zh) 2015-09-23
EP2934319B1 (fr) 2019-05-29
FR3000345A1 (fr) 2014-06-27
JP6415446B2 (ja) 2018-10-31
US20150320373A1 (en) 2015-11-12
KR20150103073A (ko) 2015-09-09
US9980687B2 (en) 2018-05-29
JP2016506514A (ja) 2016-03-03
KR102192964B1 (ko) 2020-12-18
EP2934319A1 (fr) 2015-10-28
FR3000345B1 (fr) 2016-03-04
CN104936521B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
EP2934319B1 (fr) Embase pour cassette radiologique numerique portable
RU2408901C1 (ru) Устройство для обнаружения излучения и система для обнаружения излучения
Zhou et al. Radiative cooling for low-bandgap photovoltaics under concentrated sunlight
Harrison et al. Development of the high-energy focusing telescope (HEFT) balloon experiment
JPH11284909A (ja) 二次元撮像装置
JP5118661B2 (ja) X線撮像装置
FR2833358A1 (fr) REVETEMENT DE SCINTILLATEUR AU Csl DIRECT POUR AMELIORER LA LONGEVITE D'UN ENSEMBLE DE DETECTEUR DE RAYONS X NUMERIQUE
WO2009054242A1 (fr) Détecteur à semi-conducteurs d'image radiographique en cassette
US7829833B2 (en) Arranging and/or supporting an image pickup device in an image pickup apparatus
CN102121993A (zh) 数字x射线探测器组件
CN102087366A (zh) 数字x射线探测器的探测器组件
JP2008051814A (ja) X線変換素子
FR2954495A1 (fr) Dispositif de controle thermique
JPH0143917B2 (fr)
EP1448964B1 (fr) Comparateur de flux thermiques
WO2002061459A1 (fr) Panneau de scintillation et detecteur d'images de rayonnement
JP2010101640A (ja) 放射線検出器
EP3319520B1 (fr) Cassette radiologique portable avec moyen d'identification du patient
JP2010217273A (ja) 放射線画像検出カセッテ
FR3000344A1 (fr) Cassette radiologique numerique portable
WO2019110653A1 (fr) Panier de rangement pour stockage ou transport de matieres nucleaires
EP3995862B1 (fr) Structure de detecteur radiologique
JP2011070060A (ja) 放射線画像検出カセッテ
JP2004013010A (ja) 衛星搭載光学機器用反射鏡
JP5674260B2 (ja) 画像取得装置、変換装置、及び画像取得方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13815512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14653799

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015548666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013815512

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157019614

Country of ref document: KR

Kind code of ref document: A